JP4184451B2 - Method for producing titania-based catalyst - Google Patents

Method for producing titania-based catalyst Download PDF

Info

Publication number
JP4184451B2
JP4184451B2 JP22896695A JP22896695A JP4184451B2 JP 4184451 B2 JP4184451 B2 JP 4184451B2 JP 22896695 A JP22896695 A JP 22896695A JP 22896695 A JP22896695 A JP 22896695A JP 4184451 B2 JP4184451 B2 JP 4184451B2
Authority
JP
Japan
Prior art keywords
titania
catalyst
temperature
treatment
based catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22896695A
Other languages
Japanese (ja)
Other versions
JPH0970532A (en
Inventor
智子 春日
正義 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP22896695A priority Critical patent/JP4184451B2/en
Publication of JPH0970532A publication Critical patent/JPH0970532A/en
Application granted granted Critical
Publication of JP4184451B2 publication Critical patent/JP4184451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、チタニア系触媒に関し、さらに、詳しくは、光触媒活性に優れたチタニア系触媒を容易に製造できる方法に関する。
【0002】
【従来の技術】
チタニアは、触媒活性に優れた材料として広く知られ、さまざまな光触媒反応が検討されている。
【0003】
光触媒反応は、(1) 触媒表面に反応分子が近接する、(2) 触媒の内部で光照射によって励起された電子・ホールが触媒表面にある反応分子を還元あるいは酸化させることによって、化学反応を促進させると考えられる。
【0004】
触媒活性を向上させるための手段としては、触媒の比表面積の増大(触媒活性点の増大)につながる、触媒粉末の微細化、ないしは、多結晶であっても結晶粒径(単一結晶の)の小径化が、即ち、結晶微細化が有効な一手段として期待できる。そして、結晶微細化の方法として、ゾルゲル法、気相法等が公知である。
【0005】
さらに、1992年1月発行の「科学と工業 第66巻」に投稿された研究論文「白金およびルテニウムを担持したTiO2 −SiO2 触媒の調製と光触媒活性」に、ゾルゲル法でチタニア系触媒粉末を調製する際に、シリカ(SiO2 )をドープ(添加)すると結晶粒径が小さくなることが報告されている。
【0006】
しかし、当該チタニア系触媒においては、触媒助剤として白金とルテニウムを担持させて光触媒活性を増大させることを前提とし、TiO2 −SiO2 は、触媒活性をほとんど期待しない担体としての役割を担っていると推定される。
【0007】
そして、これらの担持操作は、貴金属を塩化物水溶液の形にして行うため、面倒であり、かつ、コスト高となり易い。
【0008】
また、TiO2 −SiO2 だけでは、高い触媒活性が得難いことが、本発明者らが試験検討した結果、分かった。
【0009】
そこで、本発明者らは、特別に貴金属助触媒等を担持させなくても、TiO2 又は、TiO2 −SiO2 だけで、触媒活性を増大させることができるチタニア系触媒の製造方法を、特願平7−67893号(本願出願時未公開)及び、学会発表(日本セラミックス協会年会、1995年4月2日)において、下記構成の方法を、先に提案した。
【0010】
「(1−x)TiO2 ・xSiO2 (x=0〜0.5)のモル比となるように、チタンアルコキシド及びシリコンアルコキシドを混合した加水分解ゾルをゲル化後、該ゲル化物を350〜1200℃で焼成してチタニア系触媒を製造する方法であって、
焼成後のチタニア系触媒を、酸またはアルカリで表面処理(化学処理)することを特徴とする。」
【0011】
【発明が解決しようとする課題】
しかし、上記方法において得られるチタニア系触媒の活性をさらに増大させたい要望が出てきている。
【0012】
本発明は、上記にかんがみて、特別に貴金属助触媒等を担持させなくてもTiO2 又は、TiO2 −SiO2 だけで、触媒活性を増大できるチタニア系触媒の製造方法において、さらに、触媒活性を増大させることのできるチタニア系触媒の製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく、上記化学処理条件等を変えれば、TiO2 結晶に何らかの影響を及ぼす可能性があることに着目し、鋭意開発に努力をした結果、下記構成のチタニア系触媒の製造方法に想到した。
【0014】
(1−x)TiO2 ・xSiO2 (x=0〜0.5)のモル比となるように、チタンアルコキシド及びシリコンアルコキシドを混合した加水分解ゾルをゲル化後、熱処理温度350〜1200℃で焼成し、さらに、アルカリまたは酸で化学処理をした後、200〜1200℃の温度で再熱処理することを特徴とする。
【0015】
【手段の詳細な説明】
以下、本発明のチタニア系触媒の製造方法を、図5に基づいて説明をする。
【0016】
(1) 本発明のチタニア系触媒を製造する方法は、所定比でチタンアルコキシド及びシリコンアルコキシドを混合した加水分解ゾル(コロイド溶液)をゲル化後、該ゲル化物を焼成(結晶化)して製造することを、第一の前提的構成とする。
【0017】
ここで、チタニアとシリカのモル比は、示性式(1−x)TiO2 ・xSiO2 でx=0〜0.5、望ましくは、x=0.02〜0.25の範囲とする。
【0018】
チタニアのみでもよいが、少量のシリカをドープ(添加)することにより、前述の如く、結晶粒径が小さくなり望ましい。そしてその範囲は、x=0.02〜0.25とする。xが0.02未満では、シリカの添加効果(結晶微細化:比表面積の増大化)を得難く、シリカ添加量が過多となると、結晶の微細化が余り促進されない上に、相対的にチタニアの比率が低下して、却って、触媒活性が低下する。(シリカ添加量と比表面積の関係を示すグラフ図である図1参照。)
また、焼成条件は、シリカの比率により異なるが、通常、350〜1200℃×0.3〜2h、望ましくは、450〜600℃×0.5〜1.5hであることが望ましい。温度が相対的に低い方が、結晶微細化(比表面積の増大化)が図れて望ましい(焼成温度と触媒活性の関係を示すグラフ図である図2参照)。しかし、低過ぎると、焼成が困難となるとともに焼成時間が相対的に長くなり、生産性が低下する。
【0019】
本発明で使用するチタニア系触媒(チタニア−シリカ複合微粒子結晶)は、例えば、特開平5−58649号公報に記載の方法によって調製する。
【0020】
単にシリカ微粒子とチタニア微粒子を混合したものではなく、所定比率となる様にシリコンアルコキシドとチタンアルコキシドの加水分解ゾル溶液をゲル化後、焼成、さらには必要により粉砕を行って調製する。
【0021】
該加水分解ゾル溶液を調製する場合、チタンアルコキシド及びシリコンアルコキシドを混合した後、同時に加水分解する方法、あるいは一方を一部加水分解した(以下、予備加水分解という)後、他方を添加し、さらに加水分解する(以下、最終加水分解という)方法などがある。後者の方法は、用いるシリコンアルコキシドとチタンアルコキシドの加水分解速度が大きく異なり、加水分解時に沈殿を生じやすい場合に特に用いられる。
【0022】
上記チタンアルコキシドとしては、一般式Ti(OR)4 (但し、Rはアルキル基またはアルコキシアルキル基)で表示される化合物、または上記一般式中の1つあるいは2つのアルコキシド基(OR)がカルボキシル基あるいはβ−ジカルボニル基で置換された化合物あるいはそれらの混合物が好ましい。
【0023】
具体的に上記チタンアルコキシドを例示すると、Ti(O-isoC3H7)4、Ti(O-nC4H9)4、Ti(O-CH2CH(C2H5)C4H9)4、Ti(O-C17H35)4、Ti(O-isoC3H7)2[CO(CH3)CHCOCH3]2、Ti(O-nC4H9)2[OC2H4N(C2H4OH)2]2、Ti(OH)2[OCH(CH3)COOH]2、Ti(OCH2CH(C2H5)CH(OH)C3H7)4、Ti(O-nC4H9)2(OCOC17H35)等の化合物である。
【0024】
上記シリコンアルコキシドとしては種々あるが、工業的に入手しやすいものとして例えば、一般式Si(OR14 (但し、R1 はアルキル基またはアルコキシアルキル基)で表示される化合物、または上記一般式中の1つあるいは2つのアルコキシド基(OR1 )がカルボキシル基あるいはβ−ジカルボニル基で置換された化合物、または、それらを部分的に加水分解して得られる低縮合物あるいはそれらの混合物が特に限定されずに使用される。上記アルキル基としては、メチル基、エチル基、イソプロピル基、ブチル基等の低級アルキル基を、及び、アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、メトキシエチル基、エトキシエチル基、メトキシプロピル基等を好適に挙げることができる。これらのシリコンアルコキシドは市販品をそのまま、または蒸留精製して用いればよい。
【0025】
加水分解は、水の他に、必要ならばアルコールなどの溶媒、酸あるいは塩基性触媒の存在下で、攪拌しながら行われる。このとき水浴中あるいは湯浴中で加水分解を行うのが望ましい。触媒とアルコールなどの溶媒は、必ずしも必要ではないが、触媒は加水分解、重縮合の速度を速める効果、アルコールなどの溶媒は沈殿物の発生を抑制し、より均一なゾル溶液を調製するという効果がある。
【0026】
触媒は、酸あるいは塩基性化合物をそのままか、あるいは水またはアルコールなどの溶媒に溶解させた状態のもの(以下、それぞれ酸性触媒、塩基性触媒という)を用いる。そのときの濃度については特に限定しないが、濃度が濃い場合は加水分解、重縮合速度が速くなる傾向がある。但し、濃度の濃い塩基性触媒を用いると、ゾル溶液中で沈殿物が生成する場合があるため、塩基性触媒の濃度は1N(水溶液での濃度換算)以下が望ましい。
【0027】
酸性触媒あるいは塩基性触媒の種類は特に限定されないが、濃度の濃い触媒を用いる必要がある場合には、焼結後に触媒結晶粒中にほとんど残留しないような元素から構成される触媒がよい。具体的には、酸性触媒としては、塩酸などのハロゲン化水素、硝酸、硫酸、亜硫酸、硫化水素、過塩素酸、過酸化水素、炭酸、蟻酸や酢酸などのカルボン酸、構造式RCOOHのRを他元素または置換基によって置換した置換カルボン酸、ベンゼンスルホン酸などのスルホン酸など、塩基性触媒としては、アンモニア水などのアンモニア性塩基、エチルアミンやアニリンなどのアミン類などがあげられる。
【0028】
(2) 本発明は、上記方法で得たチタニア系触媒をアルカリまたは酸で化学処理する。その際の条件は、常温・常圧(大気圧)下の条件でも良いが、水熱合成的反応が発生する高温・加圧下の条件で行うことが、反応が促進される等の見地から望ましい。
【0029】
ここでアルカリとしては水酸化ナトリウム・カリウムの水溶液等を、酸としてはフッ酸等を好適に使用可能である。
【0030】
ここで、水熱合成的反応が発生する高温・加圧下とは、例えば、水酸化ナトリウムで化学処理(表面処理)をする場合、耐圧密閉容器内で、温度70〜150℃×1〜100h、望ましくは、100〜120℃×2〜120hの条件下で行う。
【0031】
この化学処理により、チタニア系触媒粉末の表面に残存しているアモルファスシリカ(触媒活性に悪影響を与えると考えられる)が除去される。化学処理が高温・高濃度下で行われる場合は、比表面積が格段に増大する(各種アルカリ濃度におけるアルカリ処理温度と比表面積の関係を示すグラフ図である図3参照)。
【0032】
なお、各化学処理後は、水洗しておく。そして、アルカリで化学処理した場合、水洗後、希塩酸等の無機酸で中和処理しておくことが望ましい。この、中和処理方法は、通常、浸漬・噴霧等の方法で行う。
【0033】
(3) 上記のようにして調製した化学処理後のチタニア系触媒は、さらに、200〜1200℃×10〜400分、望ましくは、300〜600℃×60〜160分の温度で再加熱処理を行う。この再加熱処理により、TiO2 の結晶性が向上して、触媒活性が向上する。即ち、化学処理(表面処理)したとき、TiO2 の表面層に、Ti−OHあるいはTi−Oという結合が形成されていると考えられ、これを熱処理すると、Ti−O−Tiの結合が形成され、相対的に触媒反応に寄与するTiO2量が増えるため、触媒活性が向上するものと推定される。
【0034】
加熱処理温度が、200℃未満では、Ti−O−Ti結合が形成されず、1200℃を越えると、結晶が成長し、比表面積が減少するため触媒活性が低下するおそれがある。
【0035】
(4) この再加熱処理品は、そのまま、触媒(光活性)として使用してもよいが、通常、粉砕して使用する。粉砕方法としては、通常、ボール・ロッドミル、マイクロナイザー等の微粉砕機・超微粉砕機を使用して行う。
【0036】
【発明の作用・効果】
本発明のチタニア系触媒の製造方法は、上記のような構成により、下記のような作用・効果を奏する。
【0037】
(1) シリカをドープまたはドープレスのチタニア系焼成体を、アルカリ又は酸で、水熱合成的反応を誘起するような条件化学処理するとともに、再加熱処理することにより、後述の実施例で支持される如く、光触媒特性が格段に増大する。これは、化学処理によりチタニア系焼成体に残存しているチタニア・シリカアモルファスが除去され、また、再加熱処理により、TiO2 表面の各結晶の触媒活性が増大するように改質されるものと推定される。
【0038】
(2) シリカを所定量以上ドープした場合、さらには、焼成温度を可及的に低くすることにより、やはり、光触媒特性が増大する。単一結晶の粒径が小さくなって(相対的に比表面積が増大する)、触媒活性面が増大するためと推定される。
【0039】
以上の如く、本発明のチタニア系触媒の製造方法は、貴金属助触媒を担持させずに、光触媒活性を容易に増大させる先行方法において、光触媒活性をさらに増大させることが可能となる。
【0040】
【試験例】
以下、本発明の効果を確認するために行った試験例について説明をする。
【0041】
(1) シリカ添加量と比表面積との関係:組成が、(1−x)TiO2 ・xSiO2 (x=0、0.05、0.1)となるように、市販のテトライソプロポキシチタン及びテトラエトキシシランを、エタノール及び水で溶解させたゾル溶液に、希塩酸を加水分解触媒として加えて、加水分解後、放置してゲル化させた。(図5の工程図参照)
各ゲル化物を、500・600・700℃の温度で、それぞれ、2時間づつ熱処理を行って焼成し、該焼成体を、めのう乳鉢で粉砕して微粉末状(粒径<320メッシュ)のチタニア系触媒を調製した各チタニア系触媒について、比表面積をBET法に基づいて測定した。その結果を、図1に示すが、シリカの添加量の増大に従って、比表面積が増大することが分かる。また、焼成温度(結晶化温度)が高くなるに従って、比表面積が小さくなることが分かる。
【0042】
(2) 焼成温度と触媒活性との関係:
上記でシリカ添加量が0.05モル%で、結晶化温度が500・600・700℃で得た各触媒について、触媒活性を光コルベ法により測定した。その結果を、図2に示すが、結晶化温度が低い方が(比表面積が大きい方が)高いことが分かる。
【0043】
(3) 各種アルカリ濃度におけるアルカリ処理温度と比表面積との関係:シリカ添加量20モル%とし、焼成温度600℃で調製したものを、20%、40%、68%の各水酸化ナトリウム濃度において、20℃、60℃、110℃の各温度で、それぞれ20hアルカリ処理を行って(再加熱処理せず)、各チタニア系触媒を調製した。
【0044】
各チタニア系触媒について、比表面積をBET法に基づいて測定した。その結果を、図3に示すが、アルカリ処理条件である、濃度及び温度の上昇に従って、比表面積が増大することが分かる。
【0045】
なお、化学処理は、アルカリ処理後、水洗し、HClaq(0.1N)で酸洗浄して完了した。以下、同様である。
【0046】
(4) アルカリ処理・再熱処理と触媒活性との関係:シリカ添加量20モル%とし、焼成温度600℃で調製したものの、1)非処理品、2)常温・常圧アルカリ処理品、3)高温・加圧アルカリ処理品(40%NaOH×110℃×20h、4)高温・加圧アルカリ処理品を再加熱処理したもの、について、それぞれ光コルベ法により触媒活性を測定した。その結果を、図4に示すが、再加熱処理しないもの3)は、常温・常圧アルカリ処理品2)と触媒活性がほとんど変わらないが(非処理品に比して触媒活性は増大する。)、再加熱処理したもの4)は、格段に触媒活性が増大することが分かる。
【図面の簡単な説明】
【図1】 シリカ添加量と比表面積との関係を示すグラフ図
【図2】 焼成温度と触媒活性との関係を示すグラフ図
【図3】 アルカリ処理温度・濃度と比表面積との関係を示すグラフ図
【図4】 アルカリ処理・再加熱処理の有無と触媒活性との関係を示すグラフ図
【図5】 上記試験例におけるゾル・ゲル法の工程図
[0001]
[Industrial application fields]
The present invention relates to a titania-based catalyst, and more particularly to a method capable of easily producing a titania-based catalyst having excellent photocatalytic activity.
[0002]
[Prior art]
Titania is widely known as a material excellent in catalytic activity, and various photocatalytic reactions have been studied.
[0003]
The photocatalytic reaction consists of (1) a reactive molecule in the proximity of the catalyst surface, (2) a chemical reaction by reducing or oxidizing the reactive molecule on the catalyst surface by the electrons and holes excited by light irradiation inside the catalyst. It is thought to promote.
[0004]
As means for improving the catalyst activity, refinement of the catalyst powder leading to an increase in the specific surface area of the catalyst (increase in the catalyst active point), or a crystal grain size (single crystal) even if it is polycrystalline Therefore, it can be expected that the diameter is reduced, that is, crystal refinement is an effective means. As a method for crystal refinement, a sol-gel method, a gas phase method, and the like are known.
[0005]
Furthermore, in the research paper “Preparation and Photocatalytic Activity of TiO 2 —SiO 2 Catalysts Supported on Platinum and Ruthenium” published in “Science and Industry Vol. 66” published in January 1992, the titania-based catalyst powder was prepared by the sol-gel method. It has been reported that the crystal grain size becomes small when silica (SiO 2 ) is doped (added) in preparing the above.
[0006]
However, in the titania-based catalyst, assuming that platinum and ruthenium are supported as catalyst assistants to increase the photocatalytic activity, TiO 2 —SiO 2 plays a role as a carrier that hardly expects catalytic activity. It is estimated that
[0007]
And since these carrying | support operations are performed in the form of chloride aqueous solution in a noble metal, it is troublesome and tends to be expensive.
[0008]
Further, as a result of the examination by the present inventors, it was found that it is difficult to obtain a high catalytic activity only with TiO 2 —SiO 2 .
[0009]
Therefore, the present inventors have specially proposed a method for producing a titania-based catalyst that can increase the catalytic activity only with TiO 2 or TiO 2 —SiO 2 without carrying a noble metal promoter or the like. In Japanese Patent Application No. 7-67893 (unpublished at the time of filing this application) and at a conference presentation (Japan Ceramic Society Annual Meeting, April 2, 1995), a method having the following configuration was previously proposed.
[0010]
“After hydrolyzing sol in which titanium alkoxide and silicon alkoxide are mixed so that the molar ratio of (1-x) TiO 2 · xSiO 2 (x = 0 to 0.5) is gelled, the gelled product is 350 to A method for producing a titania-based catalyst by firing at 1200 ° C.,
The titania-based catalyst after calcination is subjected to surface treatment (chemical treatment) with acid or alkali. "
[0011]
[Problems to be solved by the invention]
However, there is a demand for further increasing the activity of the titania-based catalyst obtained by the above method.
[0012]
In view of the above, the present invention provides a method for producing a titania-based catalyst that can increase the catalytic activity only with TiO 2 or TiO 2 —SiO 2 without carrying a precious metal promoter or the like. It is an object of the present invention to provide a method for producing a titania-based catalyst capable of increasing the catalyst.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors paid attention to the possibility of some influence on the TiO 2 crystal if the chemical treatment conditions are changed. The inventors have come up with a method for producing a titania-based catalyst.
[0014]
(1-x) After hydrolyzing sol mixed with titanium alkoxide and silicon alkoxide so as to have a molar ratio of TiO 2 · xSiO 2 (x = 0 to 0.5), heat treatment temperature is 350 to 1200 ° C. After baking and further chemical treatment with alkali or acid, re-heat treatment is performed at a temperature of 200 to 1200 ° C.
[0015]
[Detailed description of the means]
Hereinafter, the manufacturing method of the titania catalyst of the present invention will be described with reference to FIG.
[0016]
(1) The method for producing the titania-based catalyst of the present invention is produced by gelling a hydrolyzed sol (colloid solution) in which titanium alkoxide and silicon alkoxide are mixed at a predetermined ratio, and then firing (crystallizing) the gelled product. This is the first premise structure.
[0017]
Here, the molar ratio of titania and silica is x = 0 to 0.5, preferably x = 0.02 to 0.25 in the formula (1-x) TiO 2 · xSiO 2 .
[0018]
Although titania alone may be used, it is desirable to dope (add) a small amount of silica to reduce the crystal grain size as described above. The range is x = 0.02 to 0.25. When x is less than 0.02, it is difficult to obtain the effect of silica addition (crystal refinement: increase in specific surface area). When the amount of silica added is excessive, crystal refinement is not promoted so much and relatively titania. On the other hand, the catalytic activity decreases. (See FIG. 1, which is a graph showing the relationship between the amount of silica added and the specific surface area.)
Moreover, although baking conditions change with ratios of a silica, it is 350-1200 degreeC x 0.3-2h normally, It is desirable that it is 450-600 degreeC x 0.5-1.5h normally. It is desirable that the temperature is relatively low because crystal refinement (increase in specific surface area) can be achieved (see FIG. 2 which is a graph showing the relationship between the calcination temperature and catalyst activity). However, if it is too low, firing becomes difficult and the firing time becomes relatively long, and productivity is lowered.
[0019]
The titania-based catalyst (titania-silica composite fine particle crystal) used in the present invention is prepared, for example, by the method described in JP-A-5-58649.
[0020]
It is not simply a mixture of silica fine particles and titania fine particles, but is prepared by gelling a hydrolyzed sol solution of silicon alkoxide and titanium alkoxide so as to have a predetermined ratio, followed by firing and, if necessary, grinding.
[0021]
When preparing the hydrolyzed sol solution, after mixing titanium alkoxide and silicon alkoxide, hydrolyzing at the same time, or partially hydrolyzing one (hereinafter referred to as prehydrolysis), then adding the other, There is a method of hydrolysis (hereinafter referred to as final hydrolysis). The latter method is particularly used when the hydrolysis rate of the silicon alkoxide and titanium alkoxide to be used is greatly different and precipitation is likely to occur during hydrolysis.
[0022]
As the titanium alkoxide, a compound represented by the general formula Ti (OR) 4 (where R is an alkyl group or an alkoxyalkyl group), or one or two alkoxide groups (OR) in the general formula is a carboxyl group. Alternatively, a compound substituted with a β-dicarbonyl group or a mixture thereof is preferable.
[0023]
Specific examples of the titanium alkoxide include Ti (O-isoC 3 H 7 ) 4 , Ti (O-nC 4 H 9 ) 4 , Ti (O—CH 2 CH (C 2 H 5 ) C 4 H 9 ). 4 , Ti (OC 17 H 35 ) 4 , Ti (O-isoC 3 H 7 ) 2 [CO (CH 3 ) CHCOCH 3 ] 2 , Ti (O-nC 4 H 9 ) 2 [OC 2 H 4 N (C 2 H 4 OH) 2] 2 , Ti (OH) 2 [OCH (CH 3) COOH] 2, Ti (OCH 2 CH (C 2 H 5) CH (OH) C 3 H 7) 4, Ti (O- nC 4 H 9 ) 2 (OCOC 17 H 35 ) and the like.
[0024]
There are various types of silicon alkoxides, but examples of those which are easily available industrially include, for example, compounds represented by the general formula Si (OR 1 ) 4 (where R 1 is an alkyl group or an alkoxyalkyl group), or the above general formula A compound in which one or two alkoxide groups (OR 1 ) are substituted with a carboxyl group or a β-dicarbonyl group, or a low condensate obtained by partially hydrolyzing them or a mixture thereof. Used without limitation. Examples of the alkyl group include lower alkyl groups such as a methyl group, an ethyl group, an isopropyl group, and a butyl group. Examples of the alkoxyalkyl group include a methoxymethyl group, an ethoxymethyl group, a methoxyethyl group, an ethoxyethyl group, and a methoxypropyl group. Groups and the like can be preferably mentioned. These silicon alkoxides may be used as they are or after being purified by distillation.
[0025]
The hydrolysis is performed with stirring in the presence of a solvent such as alcohol, an acid or a basic catalyst, if necessary, in addition to water. At this time, it is desirable to perform hydrolysis in a water bath or a hot water bath. A catalyst and a solvent such as alcohol are not necessarily required, but the catalyst is effective in increasing the speed of hydrolysis and polycondensation, and the solvent such as alcohol is effective in suppressing the generation of precipitates and preparing a more uniform sol solution. There is.
[0026]
As the catalyst, an acid or a basic compound is used as it is or in a state in which it is dissolved in a solvent such as water or alcohol (hereinafter referred to as an acidic catalyst and a basic catalyst, respectively). The concentration at that time is not particularly limited, but when the concentration is high, the hydrolysis and polycondensation rates tend to increase. However, when a basic catalyst having a high concentration is used, a precipitate may be generated in the sol solution. Therefore, the concentration of the basic catalyst is preferably 1 N (concentration in aqueous solution) or less.
[0027]
The type of acidic catalyst or basic catalyst is not particularly limited, but when a catalyst having a high concentration needs to be used, a catalyst composed of an element that hardly remains in the catalyst crystal grains after sintering is preferable. Specifically, examples of the acidic catalyst include hydrogen halides such as hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, hydrogen sulfide, perchloric acid, hydrogen peroxide, carbonic acid, carbonic acid such as formic acid and acetic acid, and R of the structural formula RCOOH. Examples of basic catalysts such as substituted carboxylic acids substituted with other elements or substituents, sulfonic acids such as benzenesulfonic acid, and the like include ammoniacal bases such as aqueous ammonia and amines such as ethylamine and aniline.
[0028]
(2) In the present invention, the titania catalyst obtained by the above method is chemically treated with an alkali or an acid. The conditions at that time may be conditions under normal temperature and normal pressure (atmospheric pressure), but it is desirable from the standpoint that the reaction is promoted, etc., under conditions of high temperature and pressure at which a hydrothermal synthesis reaction occurs. .
[0029]
Here, sodium hydroxide / potassium hydroxide aqueous solution or the like can be suitably used as the alkali, and hydrofluoric acid or the like can be suitably used as the acid.
[0030]
Here, the high temperature and pressure under which hydrothermal synthesis reaction occurs, for example, in the case of chemical treatment (surface treatment) with sodium hydroxide, in a pressure-resistant sealed container, the temperature is 70 to 150 ° C. × 1 to 100 h, Desirably, it is performed under conditions of 100 to 120 ° C. × 2 to 120 hours.
[0031]
By this chemical treatment, the amorphous silica remaining on the surface of the titania-based catalyst powder (which is thought to adversely affect the catalytic activity) is removed. When the chemical treatment is performed at a high temperature and a high concentration , the specific surface area is remarkably increased (see FIG. 3 which is a graph showing the relationship between the alkali treatment temperature and the specific surface area at various alkali concentrations).
[0032]
In addition, it wash | cleans with water after each chemical treatment. And when chemically treating with an alkali, it is desirable to neutralize with an inorganic acid such as dilute hydrochloric acid after washing with water. This neutralization treatment method is usually performed by a method such as immersion or spraying.
[0033]
(3) The titania-based catalyst after the chemical treatment prepared as described above is further subjected to a reheating treatment at a temperature of 200 to 1200 ° C. for 10 to 400 minutes, preferably 300 to 600 ° C. for 60 to 160 minutes. Do. This reheating treatment improves the crystallinity of TiO 2 and improves the catalytic activity. That is, when chemical treatment (surface treatment) is performed, it is considered that a bond of Ti—OH or Ti—O is formed on the surface layer of TiO 2. When this is heat-treated, a bond of Ti—O—Ti is formed. Therefore, it is presumed that the catalytic activity is improved because the amount of TiO 2 that contributes relatively to the catalytic reaction increases.
[0034]
When the heat treatment temperature is less than 200 ° C., Ti—O—Ti bonds are not formed, and when it exceeds 1200 ° C., crystals grow and the specific surface area decreases, so that the catalytic activity may be lowered.
[0035]
(4) The reheat-treated product may be used as it is as a catalyst (photoactive), but is usually used after being pulverized. As a pulverization method, a fine pulverizer / ultra-fine pulverizer such as a ball / rod mill or a micronizer is usually used.
[0036]
[Operation and effect of the invention]
The method for producing a titania-based catalyst of the present invention has the following operations and effects with the above-described configuration.
[0037]
(1) The silica-doped or dopeless titania-based fired body is supported by the below-described examples by subjecting it to a condition chemical treatment that induces a hydrothermal synthetic reaction with an alkali or an acid, and a reheating treatment. As shown, the photocatalytic properties are greatly increased. This is because the titania-silica amorphous remaining in the titania-based fired body is removed by chemical treatment, and modified by reheating treatment so that the catalytic activity of each crystal on the TiO 2 surface is increased. Presumed.
[0038]
(2) When a predetermined amount or more of silica is doped, the photocatalytic properties are also increased by lowering the firing temperature as much as possible. It is presumed that the particle size of the single crystal is reduced (relatively increased specific surface area), and the catalytic activity surface is increased.
[0039]
As described above, the production method of the titania-based catalyst of the present invention can further increase the photocatalytic activity in the prior method in which the photocatalytic activity is easily increased without supporting the noble metal promoter.
[0040]
[Test example]
Hereinafter, test examples conducted for confirming the effects of the present invention will be described.
[0041]
(1) Relationship between silica addition amount and specific surface area: Commercially available tetraisopropoxy titanium so that the composition is (1-x) TiO 2 · xSiO 2 (x = 0, 0.05, 0.1) In addition, dilute hydrochloric acid was added as a hydrolysis catalyst to a sol solution in which tetraethoxysilane was dissolved in ethanol and water, and the mixture was allowed to stand and gelled after hydrolysis. (See the process diagram in FIG. 5)
Each gelled product is calcined by heating for 2 hours at temperatures of 500, 600, and 700 ° C., and the calcined product is pulverized in an agate mortar to form fine powder (particle size <320 mesh) titania. The specific surface area of each titania catalyst from which the system catalyst was prepared was measured based on the BET method. The results are shown in FIG. 1, and it can be seen that the specific surface area increases as the amount of silica added increases. Moreover, it turns out that a specific surface area becomes small as a calcination temperature (crystallization temperature) becomes high.
[0042]
(2) Relationship between calcination temperature and catalyst activity:
The catalytic activity of each catalyst obtained above with a silica addition amount of 0.05 mol% and a crystallization temperature of 500, 600, and 700 ° C. was measured by the optical Kolbe method. The results are shown in FIG. 2, and it can be seen that the lower the crystallization temperature (the higher the specific surface area) is.
[0043]
(3) Relationship between alkali treatment temperature and specific surface area at various alkali concentrations: Silica added amount of 20 mol%, and prepared at calcination temperature of 600 ° C. at each sodium hydroxide concentration of 20%, 40% and 68% Each titania-based catalyst was prepared by performing alkali treatment at 20 ° C., 60 ° C., and 110 ° C. for 20 hours (without reheating treatment).
[0044]
For each titania-based catalyst, the specific surface area was measured based on the BET method. The result is shown in FIG. 3, and it can be seen that the specific surface area increases as the concentration and temperature increase, which are alkali treatment conditions.
[0045]
The chemical treatment was completed by washing with water after acid treatment and acid washing with HClaq (0.1N). The same applies hereinafter.
[0046]
(4) Relationship between alkali treatment / reheat treatment and catalytic activity: Silica added at 20 mol% and prepared at a calcination temperature of 600 ° C., 1) untreated product, 2) normal temperature / normal pressure alkali treated product, 3) High-temperature / pressurized alkali-treated products (40% NaOH × 110 ° C. × 20 h, 4) Reacted high-temperature / pressurized-alkali-treated products were measured for catalytic activity by the optical Kolbe method. The results are shown in FIG. 4, but the product 3) not subjected to reheating treatment has almost the same catalytic activity as that of the normal temperature / normal pressure alkali treated product 2) (but the catalytic activity is increased as compared with the non-treated product). ), Reheat-treated 4) shows a marked increase in catalytic activity .
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between silica addition amount and specific surface area. FIG. 2 is a graph showing the relationship between calcination temperature and catalytic activity. FIG. 3 is a graph showing the relationship between alkali treatment temperature / concentration and specific surface area. Graph [Figure 4] Graph showing the relationship between the presence or absence of alkali treatment / reheating treatment and catalyst activity [Figure 5] Process diagram of sol-gel method in the above test example

Claims (4)

(1−x)TiO2 ・xSiO2 (x=0.02〜0.25)のモル比となるように、チタンアルコキシド及びシリコンアルコキシドを混合した加水分解ゾルをゲル化後、熱処理温度350〜1200℃で焼成し、さらに、アルカリまたは酸で化学処理をしたのち、200〜1200℃の温度で再加熱処理することを特徴とするチタニア系触媒の製造方法。(1-x) A hydrolytic sol in which a titanium alkoxide and a silicon alkoxide are mixed so as to have a molar ratio of TiO 2 .xSiO 2 (x = 0.02 to 0.25 ) is gelled, and a heat treatment temperature is 350 to 1200. and fired at ° C., further, after the chemical treatment with alkali or acid, the production method of the titania-based catalysts, characterized in that the reheating treatment at a temperature of 200 to 1200 ° C.. 請求項1において、前記熱処理温度が450〜600℃であることを特徴とするチタニア系触媒の製造方法。 The method for producing a titania-based catalyst according to claim 1 , wherein the heat treatment temperature is 450 to 600 ° C. 請求項1又は2において、前記化学処理がアルカリ処理であって、水酸化ナトリウム濃度20%以上、温度20〜150℃の条件下で行うことを特徴とするチタニア系触媒の製造方法。 The method for producing a titania-based catalyst according to claim 1 or 2 , wherein the chemical treatment is an alkali treatment, and is performed under a condition of a sodium hydroxide concentration of 20% or more and a temperature of 20 to 150 ° C. 請求項1〜3のいずれかにおいて、前記再加熱処理温度が300〜600℃であることを特徴とするチタニア系触媒の製造方法。 The method for producing a titania-based catalyst according to any one of claims 1 to 3 , wherein the reheating treatment temperature is 300 to 600 ° C.
JP22896695A 1995-09-06 1995-09-06 Method for producing titania-based catalyst Expired - Fee Related JP4184451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22896695A JP4184451B2 (en) 1995-09-06 1995-09-06 Method for producing titania-based catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22896695A JP4184451B2 (en) 1995-09-06 1995-09-06 Method for producing titania-based catalyst

Publications (2)

Publication Number Publication Date
JPH0970532A JPH0970532A (en) 1997-03-18
JP4184451B2 true JP4184451B2 (en) 2008-11-19

Family

ID=16884663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22896695A Expired - Fee Related JP4184451B2 (en) 1995-09-06 1995-09-06 Method for producing titania-based catalyst

Country Status (1)

Country Link
JP (1) JP4184451B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027775A (en) 1996-09-30 2000-02-22 Chubu Electric Power Co., Inc. Crystalline titania and process for producing the same
JP2008126127A (en) * 2006-11-20 2008-06-05 Noritake Co Ltd Method of reproducing porous material having ceramic porous membrane
JP5298282B2 (en) * 2008-10-03 2013-09-25 佐賀県 Method for producing titanium oxide particles
FR2950543B1 (en) * 2009-09-25 2011-12-16 Centre Nat Rech Scient ULTRA-POROUS PHOTOCATALYTIC MATERIAL, MANUFACTURING METHOD AND USES

Also Published As

Publication number Publication date
JPH0970532A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
KR100374478B1 (en) Method for Preparing an Anatase Typed-Titanium Dioxide Photocatalyst and Photocatalyst Produced by the same
US6537517B1 (en) Crystalline titania having nanotube crystal shape and process for producing the same
CN107935039B (en) Preparation method of titanium dioxide water-based sol
CN111960464B (en) Black titanium dioxide optical nano material rich in oxygen vacancy defects and preparation method and application thereof
CN105664808B (en) Method for preparing stable nano anatase titanium dioxide alcohol phase sol at low temperature
JPH10152323A (en) Crystal titania and its production
JP4739120B2 (en) Conductive titanium oxide and method for producing the same
JP4891021B2 (en) Method for producing niobium oxide fine particles
JP3738371B2 (en) Method for producing titania-based catalyst
CN111996618A (en) Vanadium-doped strontium titanate nanofiber and preparation method and application thereof
CN104370472A (en) Preparation method of glass-loaded nano-TiO2 membrane
JP5835589B2 (en) Method for producing rutile type titanium oxide sol
JP4184451B2 (en) Method for producing titania-based catalyst
US4370263A (en) Catalyst for the photo-decomposition of water and process for the preparation of the catalyst
KR100297809B1 (en) Room temperature production method of crystalline titania particles using sol-gel method
JP3537885B2 (en) Method for producing anatase-type titanium oxide
JPH10128110A (en) Photocatalyst composition and its forming agent
JP5625929B2 (en) Method for producing silica-containing hydrous titanium oxide and silica-containing anatase-type titanium oxide
JPH1015387A (en) Preparation of titania type catalyst
KR100354857B1 (en) Process for Preparing Silica/Titania Photocatalyst by the Sol-Gel Method
JP2002241129A (en) Crystalline titania
JP4343335B2 (en) Titanium oxide coating film forming composition for photocatalyst and process for producing the same
JP2022156812A (en) Method for producing zinc oxide nanoparticle
JP3642490B1 (en) Method for producing titania solution
JPH1129327A (en) Titanium amino alcohol complex, its production, its complex solution, titanium dioxide and substrate having titanium dioxide on surface

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees