WO2012133054A1 - Process for producing bromine - Google Patents

Process for producing bromine Download PDF

Info

Publication number
WO2012133054A1
WO2012133054A1 PCT/JP2012/057204 JP2012057204W WO2012133054A1 WO 2012133054 A1 WO2012133054 A1 WO 2012133054A1 JP 2012057204 W JP2012057204 W JP 2012057204W WO 2012133054 A1 WO2012133054 A1 WO 2012133054A1
Authority
WO
WIPO (PCT)
Prior art keywords
ruthenium
catalyst
oxide
hydrogen bromide
carrier
Prior art date
Application number
PCT/JP2012/057204
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 内田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012133054A1 publication Critical patent/WO2012133054A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/09Bromine; Hydrogen bromide
    • C01B7/096Bromine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation

Definitions

  • the present invention relates to a method for producing bromine.
  • Bromine is useful as a raw material for producing flame retardants such as tetrabromobisphenol A and decabromodiphenyl ether.
  • Patent Document 1 describes a method of performing the oxidation using Cu oxide, halide, and / or oxidized halide as a catalyst. Has been.
  • an object of the present invention is to provide a method capable of producing bromine in a good yield by oxidizing hydrogen bromide with oxygen.
  • this invention consists of the following structures.
  • (1) A process for producing bromine in which hydrogen bromide is oxidized with oxygen in the presence of a catalyst containing at least one selected from the group consisting of metal ruthenium and ruthenium compounds.
  • (2) The production method according to (1), wherein the catalyst is a catalyst in which at least one selected from the group consisting of metal ruthenium and a ruthenium compound is supported on a carrier.
  • the carrier contains at least one selected from the group consisting of titanium oxide, alumina, and zirconium oxide.
  • (4) The production method according to any one of (1) to (3), wherein the ruthenium compound is ruthenium oxide.
  • bromine can be produced in good yield by oxidizing hydrogen bromide with oxygen.
  • hydrogen bromide is oxidized with oxygen in the presence of a catalyst containing at least one selected from the group consisting of metal ruthenium and ruthenium compounds.
  • the catalyst used in the present invention is a catalyst containing at least one selected from the group consisting of ruthenium metal and ruthenium compounds (hereinafter sometimes referred to as “ruthenium component”).
  • the said metal ruthenium means ruthenium of a metal simple substance.
  • the ruthenium compound include oxides such as RuO 2 , RuO 4 , Ru 2 O 3 and Ru 2 O 7 , and oxyhydroxides such as RuO (OH) 2 , Ru (OH) 3 and Ru (OH) 4.
  • a hydroxide a halide such as RuCl 3 or RuBr 3, a halogenate such as K 3 RuCl 6 or K 2 RuCl 6, an oxoacid salt such as K 2 RuO 4 , Ru 2 OCl 4 or Ru 2 OCl 5 Oxyhalides such as Ru 2 OCl 6 , K 2 [RuCl 5 (H 2 O) 4 ], [RuCl 2 (H 2 O) 4 ] Cl, K 2 [Ru 2 OCl 10 ], Cs 2 [Ru 2 such halogeno complexes OCl 4], [Ru (NH 3) 5 H 2 O] Cl 2, [Ru (NH 3) 5 Cl] Cl 2, [Ru (NH 3) 6] Cl 2, [Ru (N 3) 6] Cl 3, [ Ru (NH 3) 6] such ammine complex of Br 3, Ru (CO) 5 , Ru 3 (CO) 12 , such as carbonyl complexes, [Ru 3 O (OCOCH 3 ) 6 (H Carboxylato complexes such as
  • Examples of other oxides in the composite oxide include titanium oxide, zirconium oxide, alumina, silica, vanadium oxide, boron oxide, chromium oxide, niobium oxide, hafnium oxide, tantalum oxide, and tungsten oxide. Two or more of them may be contained in the composite oxide.
  • the hydrate may be sufficient and the mixture of 2 or more types of ruthenium compounds may be sufficient.
  • the ruthenium compound an oxide is particularly preferable.
  • ruthenium dioxide (RuO 2 ) is preferable, and its oxidation number is usually +4.
  • ruthenium having another oxidation number or ruthenium oxide in another form may be contained.
  • metal ruthenium may become ruthenium oxide after the reaction, or the ruthenium compound may become metal ruthenium.
  • a catalyst containing a ruthenium component metal ruthenium or a ruthenium compound itself may be used, but a catalyst in which a ruthenium component is supported on a carrier is used in order to reduce the amount of expensive metal ruthenium or ruthenium compound used. It is preferable to do.
  • Supports include titanium oxide, alumina, zirconium oxide, zeolite, silica, silica alumina, vanadium oxide, diatomaceous earth, composite oxides of titanium oxide and other oxides, composite oxides of zirconium oxide and other oxides.
  • composite oxides of alumina and other oxides, metal sulfates, and the like can be used, and two or more of these can be used as necessary.
  • a carrier containing at least one selected from the group consisting of titanium oxide, alumina, and zirconium oxide is preferable.
  • a powdery or sol-like carrier kneaded, molded, and then fired can be used as the carrier.
  • the calcined carrier can be prepared based on a known method.
  • a powdery carrier or a sol-like carrier is kneaded with a molding aid such as an organic binder and water, and extruded into a noodle shape. It can be prepared by drying, crushing to obtain a molded body, and then firing the obtained molded body in an oxidizing gas atmosphere such as air.
  • titanium oxide When titanium oxide is contained in the carrier, examples of titanium oxide include rutile type titanium oxide (titanium oxide having a rutile type crystal structure), anatase type titanium oxide (titanium oxide having an anatase type crystal structure), or amorphous. It may be made of quality titanium oxide or a mixture of these.
  • examples of alumina include ( ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, amorphous alumina, boehmite, and the like. Two or more types may be used in combination, with ⁇ -alumina being preferred.
  • Examples of the method of supporting the ruthenium component on the carrier include a method of contacting the carrier with a solution containing the ruthenium component.
  • the temperature during the treatment is usually 0 to 100 ° C., preferably 0 to 50 ° C.
  • the pressure during the treatment is usually 0.1 to 1 MPa, preferably atmospheric pressure.
  • Such contact treatment can be performed in an air atmosphere or in an inert gas atmosphere such as nitrogen, helium, argon, oxygen dioxide, and may contain water vapor.
  • Examples of the contact treatment include impregnation and immersion.
  • Examples of the method for contact treatment with the solution include (A) a method in which a support containing a ruthenium component is impregnated in a support, and (B) a method in which the support is immersed in a solution containing a ruthenium component to adsorb the ruthenium component.
  • the method (A) is preferred.
  • the solvent used for preparing the solution is preferably water.
  • water highly purified water, such as distilled water, ion-exchange water, and ultrapure water, is preferable. If the water used contains a large amount of impurities, such impurities may adhere to the catalyst and reduce the activity of the catalyst.
  • the amount of water used is usually 1.5 to 8000 mol, preferably 3 to 2500 mol, more preferably 7 to 1500 mol, per 1 mol of the ruthenium component contained in the solution.
  • the ruthenium component is supported on the carrier, dried, and then fired.
  • a drying method a conventionally known method can be employed.
  • the temperature is usually from room temperature to about 100 ° C.
  • the pressure is usually from 0.001 to 1 MPa, preferably atmospheric pressure.
  • Such drying can be performed in an air atmosphere or an inert gas atmosphere such as nitrogen, helium, argon, or oxygen dioxide, and may contain water vapor. From the viewpoint of handling, it is preferable to carry out in the inert gas atmosphere.
  • the calcination can be performed in an oxidizing gas, a reducing gas, or an inert gas atmosphere, and these gas atmospheres may be combined in multiple stages.
  • the oxidizing gas is a gas containing an oxidizing substance, and examples thereof include an oxygen-containing gas.
  • the oxygen concentration is usually about 1 to 30% by volume.
  • As the oxygen source air or pure oxygen is usually used, and diluted with an inert gas or water vapor as necessary. Of these, air is preferable as the oxidizing gas.
  • the firing temperature is usually 100 to 1000 ° C., preferably 200 to 450 ° C.
  • the reducing gas is a gas containing a reducing substance, and examples thereof include a hydrogen-containing gas, a carbon monoxide-containing gas, and a hydrocarbon-containing gas.
  • the concentration is usually about 1 to 30% by volume, and the concentration is adjusted with, for example, an inert gas or water vapor.
  • a hydrogen-containing gas and a carbon monoxide-containing gas are preferable.
  • the firing temperature is usually 100 to 1000 ° C., preferably 200 to 500 ° C.
  • the inert gas examples include nitrogen, carbon dioxide, helium, argon, and the like, and diluted with water vapor as necessary. Among these, nitrogen and carbon dioxide are preferable as the inert gas.
  • the firing temperature is usually 100 to 1000 ° C., preferably 200 to 600 ° C.
  • the content ratio (ruthenium component / support) selected from the group consisting of metal ruthenium and a ruthenium compound with respect to the support is usually 0.1 / 99.9 as a weight ratio. 20/80, preferably 0.5 / 99.5 to 15/85, more preferably 0.5 / 99.5 to 5/95, and the ruthenium component is supported on the carrier so as to fall within this range.
  • the ratio of the ruthenium component and the carrier used is appropriately adjusted. If the ruthenium component supported on the support is too small, the catalytic activity may not be sufficient, and if it is too large, the cost is disadvantageous.
  • the catalyst containing the ruthenium component includes other components such as palladium, a copper compound, a chromium compound, a vanadium compound, an alkali metal compound, a rare earth compound, a manganese compound, and an alkaline earth compound. Also good.
  • the content of other components is usually 0.1 to 10% by weight based on the total amount of the carrier and other components.
  • the shape of the catalyst containing the ruthenium component may be a spherical granular shape, a cylindrical pellet shape, an extruded shape, a ring shape, a honeycomb shape, or an appropriately sized granule shape after pulverization and classification.
  • the diameter of the catalyst is preferably 5 mm or less. If the catalyst diameter is too large, the conversion of hydrogen bromide may be low.
  • the lower limit of the diameter of the catalyst is not particularly limited, but if it becomes excessively small, pressure loss in the catalyst layer increases, and therefore, a catalyst having a diameter of 0.5 mm or more is usually used.
  • the diameter of the catalyst here means the diameter of a sphere in the case of spherical particles, the diameter of a circular cross section in the case of a cylindrical pellet, and the maximum diameter of the cross section in other shapes.
  • the catalyst containing a ruthenium component may be produced by the above-described method or may be a commercially available one.
  • Hydrogen bromide can be efficiently produced by oxidizing hydrogen bromide with oxygen in the presence of a catalyst containing such a ruthenium component.
  • Examples of the raw material hydrogen bromide include hydrogen bromide produced by the reaction of hydrogen and bromine, hydrogen bromide produced by the thermal decomposition reaction and combustion reaction of bromine compounds, and organic compounds such as alkanes and aromatic compounds.
  • Bromination reaction with bromine hydrolysis reaction of brominated hydrocarbon, amination reaction of brominated hydrocarbon, Friedel-Crafts alkylation reaction of alkyl bromide and aromatic compound, Friedel-Crafts of acyl bromide and aromatic compound
  • Hydrogen bromide by-produced by acylation reaction coupling reaction of brominated organic compounds, hydrogen bromide recovered from oxidation reaction of hydrogen bromide to bromine, bromination reaction of alkenes with hydrogen bromide, etc. Can be used.
  • hydrogen bromide a gas containing hydrogen bromide diluted with a gas such as nitrogen, carbon dioxide, helium, argon, or water vapor may be used.
  • oxygen an oxygen-containing gas
  • oxygen-containing gas pure oxygen, a product obtained by diluting pure oxygen with a gas such as nitrogen, carbon dioxide, helium, argon, water vapor, or air is used. be able to. Pure oxygen can be obtained by ordinary industrial methods such as air pressure swing method or cryogenic separation.
  • a reaction method such as a fluidized bed, a fixed bed, or a moving bed can be adopted, and a fixed bed reactor of an adiabatic method or a heat exchange method is preferable.
  • a reaction method such as a fluidized bed, a fixed bed, or a moving bed
  • a fixed bed reactor of an adiabatic method or a heat exchange method is preferable.
  • an adiabatic fixed bed reactor either a single tube fixed bed reactor or a multitubular fixed bed reactor can be used, but a single tube fixed bed reactor is preferably used.
  • a heat exchange type fixed bed reactor either a single-tube fixed bed reactor or a multi-tube fixed bed reactor can be used, but a multi-tube fixed bed reactor is preferably used. be able to.
  • This oxidation reaction is an equilibrium reaction, and is preferably performed at a relatively low temperature since the equilibrium conversion rate decreases when performed at too high a temperature.
  • the reaction temperature is usually 50 to 500 ° C., preferably 100 to 450 ° C. Preferably, it is 300 to 450 ° C.
  • the reaction pressure is usually about 0.1 to 5 MPa.
  • the theoretical molar amount of oxygen with respect to hydrogen bromide is 1/4 mole, but usually 0.1 to 10 times the theoretical amount of oxygen is used.
  • the supply rate of hydrogen bromide is usually about 10 to 20000 h ⁇ 1 in terms of gas supply rate per liter of catalyst (L / h; 0 ° C., converted to 0.1 MPa), that is, GHSV.
  • the catalyst containing a ruthenium component when using the catalyst containing a ruthenium component, it can also be used by diluting with titania, alumina, zirconia, silica or the like.
  • the gas supply rate (ml / min) is a converted value of 0 ° C. and 1 MPa unless otherwise specified.
  • Example 1 (Preparation of supported ruthenium oxide catalyst) 50 parts by weight of titanium oxide (STR-60R manufactured by Sakai Chemical Co., Ltd., 100% rutile type), 100 parts by weight of ⁇ -alumina [AES-12 manufactured by Sumitomo Chemical Co., Ltd.], 13.2 parts by weight of titania sol [ ⁇ CSB manufactured by Chemical Co., Ltd., titania content 38% by weight] and 2 parts by weight of methylcellulose [Metroze 65SH-4000 manufactured by Shin-Etsu Chemical Co., Ltd.] were mixed, and then pure water was added and kneaded. This mixture was extruded into a cylindrical shape having a diameter of 3.0 mm ⁇ , dried, and then crushed to a length of about 4 to 6 mm.
  • the obtained molded body was fired in air at 800 ° C. for 3 hours to obtain a carrier made of a mixture of titanium oxide and ⁇ -alumina.
  • a carrier made of a mixture of titanium oxide and ⁇ -alumina.
  • 3.88 parts by weight of ruthenium chloride hydrate (RuCl 3 ⁇ nH 2 O manufactured by NE Chemcat Co., Ltd., Ru content 40.0% by weight) is added to 22 parts by weight of pure water.
  • An aqueous solution prepared by dissolution was impregnated and dried at room temperature in an air atmosphere.
  • the obtained dried product was calcined at 250 ° C. to 280 ° C. for 2 hours under air flow to obtain blue-gray-supported ruthenium oxide having a ruthenium oxide content of 2.0% by weight.
  • the gas at the outlet of the reaction tube was circulated through a 30% by weight potassium iodide aqueous solution for 20 minutes, and the amount of bromine produced was measured by iodometric titration to produce bromine.
  • the rate (mol / h) was determined.
  • the conversion rate of hydrogen bromide was calculated from the following formula from the bromine production rate and the hydrogen bromide supply rate, and the results are shown in Table 1.
  • Hydrogen bromide conversion (%) [bromine production rate (mol / h) ⁇ 2 ⁇ hydrogen bromide supply rate (mol / h)] ⁇ 100
  • Example 2 (Preparation of supported ruthenium oxide catalyst) A supported ruthenium oxide was obtained in the same manner as in Example 1.
  • Example 3 (Preparation of supported ruthenium oxide catalyst) A supported ruthenium oxide was obtained in the same manner as in Example 1.
  • Comparative Example 1 (Preparation of supported copper oxide catalyst) Based on the method described in JP-A-2008-155199, 100 parts by weight of titania powder [F-1R manufactured by Showa Titanium Co., Ltd., rutile-type titania ratio 93%] and 2 parts by weight of organic binder [YUKENE CO., LTD. YB-152A manufactured by Yokogawa Co., Ltd.] was mixed, and then 29 parts by weight of pure water and 12.5 parts by weight of titania sol [CSB manufactured by Sakai Chemical Co., Ltd., titania content 40% by weight] were added and kneaded. This mixture was extruded into a noodle shape having a diameter of 3.0 mm ⁇ , dried at 60 ° C.
  • the obtained molded body was heated in air from room temperature to 600 ° C. over 17 hours, and then kept at the same temperature for 3 hours to obtain a carrier made of titanium oxide.
  • 2.38 g of copper chloride (II) dihydrate (CuCl 2 ⁇ 2H 2 O manufactured by Wako Pure Chemical Industries, Ltd., Cu content 37 wt%) was added to 10.00 g of this carrier to 2.28 g of pure water.
  • An aqueous solution prepared by dissolution was impregnated and dried at room temperature in an air atmosphere.
  • the obtained solid (13.04 g) was heated from room temperature to 250 ° C. over 1.1 hours under air flow, then held at the same temperature for 2 hours and calcined, and the content of copper oxide was 10% by weight.
  • a brown supported copper oxide of 11.66 g was obtained.

Abstract

The present invention provides a process for producing bromine in a high yield by oxidizing hydrogen bromide with oxygen, more specifically, by oxidizing hydrogen bromide with oxygen in the presence of a catalyst that contains at least one ruthenium component selected from the group consisting of metallic ruthenium and ruthenium compounds. The catalyst is preferably a catalyst obtained by making at least one ruthenium component supported on a carrier, said at least one ruthenium component being selected from the group consisting of metallic ruthenium and ruthenium compounds. It is preferable that the carrier contains at least one compound selected from the group consisting of titanium oxide, alumina and zirconium oxide.

Description

臭素の製造方法Method for producing bromine
 本発明は、臭素の製造方法に関するものである。臭素は、例えば、テトラブロモビスフェノールA、デカブロモジフェニルエーテル等の難燃剤の製造原料として有用である。 The present invention relates to a method for producing bromine. Bromine is useful as a raw material for producing flame retardants such as tetrabromobisphenol A and decabromodiphenyl ether.
 臭化水素を酸素で酸化して臭素を製造する方法として、例えば、特許文献1には、Cuの酸化物、ハロゲン化物、及び/又は酸化ハロゲン化物を触媒として用い、前記酸化を行う方法が記載されている。 As a method for producing bromine by oxidizing hydrogen bromide with oxygen, for example, Patent Document 1 describes a method of performing the oxidation using Cu oxide, halide, and / or oxidized halide as a catalyst. Has been.
特表2009-525395号公報Special table 2009-525395
 しかしながら、上記従来の方法では、臭素の収率の点で必ずしも満足できないことがあった。そこで、本発明の目的は、臭化水素を酸素で酸化して、臭素を良好な収率で製造することができる方法を提供することにある。 However, the above conventional methods are not always satisfactory in terms of bromine yield. Accordingly, an object of the present invention is to provide a method capable of producing bromine in a good yield by oxidizing hydrogen bromide with oxygen.
 本発明者は、前記課題を解決するべく鋭意検討を行った結果、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
 すなわち、本発明は、以下の構成からなる。
  (1)金属ルテニウム及びルテニウム化合物からなる群より選ばれる少なくとも1種を含有する触媒の存在下に、臭化水素を酸素により酸化する臭素の製造方法。
  (2)前記触媒が、金属ルテニウム及びルテニウム化合物からなる群より選ばれる少なくとも1種が担体に担持されてなる触媒である前記(1)に記載の製造方法。
  (3)前記担体が、酸化チタン、アルミナ及び酸化ジルコニウムからなる群より選ばれる少なくとも1種を含有する前記(2)に記載の製造方法。
  (4)前記ルテニウム化合物が、酸化ルテニウムである前記(1)~(3)のいずれかに記載の製造方法。
That is, this invention consists of the following structures.
(1) A process for producing bromine in which hydrogen bromide is oxidized with oxygen in the presence of a catalyst containing at least one selected from the group consisting of metal ruthenium and ruthenium compounds.
(2) The production method according to (1), wherein the catalyst is a catalyst in which at least one selected from the group consisting of metal ruthenium and a ruthenium compound is supported on a carrier.
(3) The production method according to (2), wherein the carrier contains at least one selected from the group consisting of titanium oxide, alumina, and zirconium oxide.
(4) The production method according to any one of (1) to (3), wherein the ruthenium compound is ruthenium oxide.
 本発明によれば、臭化水素を酸素で酸化して、臭素を良好な収率で製造することができる。 According to the present invention, bromine can be produced in good yield by oxidizing hydrogen bromide with oxygen.
 以下、本発明を詳細に説明する。本発明においては、金属ルテニウム及びルテニウム化合物からなる群より選ばれる少なくとも1種を含有する触媒の存在下に、臭化水素を酸素により酸化する。 Hereinafter, the present invention will be described in detail. In the present invention, hydrogen bromide is oxidized with oxygen in the presence of a catalyst containing at least one selected from the group consisting of metal ruthenium and ruthenium compounds.
 本発明で使用される触謀は、金属ルテニウム及びルテニウム化合物からなる群より選ばれる少なくとも1種(以下、「ルテニウム成分」と称することがある)を含有する触媒である。前記の金属ルテニウムとは、金属単体のルテニウムをいう。前記ルテニウム化合物としては、例えば、RuO、RuO、Ru、Ruの如き酸化物、RuO(OH)、Ru(OH)、Ru(OH)の如きオキシ水酸化物又は水酸化物;RuCl、RuBrの如きハロゲン化物、KRuCl、KRuClの如きハロゲノ酸塩、KRuOの如きオキソ酸塩、RuOCl、RuOCl、RuOClの如きオキシハロゲン化物、K[RuCl(HO)]、[RuCl(HO)]Cl、K[RuOCl10]、Cs[RuOCl]の如きハロゲノ錯体、[Ru(NHO]Cl、[Ru(NHCl]Cl、[Ru(NH]Cl、[Ru(NH]Cl、[Ru(NH]Brの如きアンミン錯体、Ru(CO)、Ru(CO)12の如きカルボニル錯体、[RuO(OCOCH(HO)]OCOCH、[Ru(OCOR)]Cl(R=炭素数1~3のアルキル基)の如きカルボキシラト錯体、K[RuCl(NO)]、[Ru(NH(NO)]Cl、[Ru(OH)(NH(NO)](NO、[Ru(NO)](NOの如きニトロシル錯体、ホスフィン錯体、アミン錯体、アセチルアセトナト錯体、酸化ルテニウムと他の酸化物との複合酸化物等が挙げられる。前記複合酸化物における他の酸化物としては、酸化チタン、酸化ジルコニウム、アルミナ、シリカ、酸化バナジウム、酸化ホウ素、酸化クロム、酸化ニオブ、酸化ハフニウム、酸化タンタル、酸化タングステン等が挙げられ、必要に応じてそれらの2種以上が前記複合酸化物に含まれてもよい。尚、ルテニウム化合物としては、その水和物であってもよいし、また、2種以上のルテニウム化合物の混合物であってもよい。ルテニウム化合物としては、中でも、酸化物が好ましい。酸化物の中でも、二酸化ルテニウム(RuO)が好ましく、その酸化数は、通常+4であるが、他の酸化数のルテニウムないし他の形態の酸化ルテニウムが含まれていてもよい。また、反応条件によっては、触媒において、金属ルテニウムが反応後に酸化ルテニウムになることや、ルテニウム化合物が金属ルテニウムになることがある。 The catalyst used in the present invention is a catalyst containing at least one selected from the group consisting of ruthenium metal and ruthenium compounds (hereinafter sometimes referred to as “ruthenium component”). The said metal ruthenium means ruthenium of a metal simple substance. Examples of the ruthenium compound include oxides such as RuO 2 , RuO 4 , Ru 2 O 3 and Ru 2 O 7 , and oxyhydroxides such as RuO (OH) 2 , Ru (OH) 3 and Ru (OH) 4. Or a hydroxide; a halide such as RuCl 3 or RuBr 3, a halogenate such as K 3 RuCl 6 or K 2 RuCl 6, an oxoacid salt such as K 2 RuO 4 , Ru 2 OCl 4 or Ru 2 OCl 5 Oxyhalides such as Ru 2 OCl 6 , K 2 [RuCl 5 (H 2 O) 4 ], [RuCl 2 (H 2 O) 4 ] Cl, K 2 [Ru 2 OCl 10 ], Cs 2 [Ru 2 such halogeno complexes OCl 4], [Ru (NH 3) 5 H 2 O] Cl 2, [Ru (NH 3) 5 Cl] Cl 2, [Ru (NH 3) 6] Cl 2, [Ru (N 3) 6] Cl 3, [ Ru (NH 3) 6] such ammine complex of Br 3, Ru (CO) 5 , Ru 3 (CO) 12 , such as carbonyl complexes, [Ru 3 O (OCOCH 3 ) 6 (H Carboxylato complexes such as 2 O) 3 ] OCOCH 3 , [Ru 2 (OCOR) 4 ] Cl (R = an alkyl group having 1 to 3 carbon atoms), K 2 [RuCl 5 (NO)], [Ru (NH 3 ) 5 (NO)] Cl 3 , [Ru (OH) (NH 3 ) 4 (NO)] (NO 3 ) 2 , [Ru (NO)] (NO 3 ) 3 nitrosyl complexes, phosphine complexes, amine complexes Acetylacetonato complex, and complex oxides of ruthenium oxide and other oxides. Examples of other oxides in the composite oxide include titanium oxide, zirconium oxide, alumina, silica, vanadium oxide, boron oxide, chromium oxide, niobium oxide, hafnium oxide, tantalum oxide, and tungsten oxide. Two or more of them may be contained in the composite oxide. In addition, as a ruthenium compound, the hydrate may be sufficient and the mixture of 2 or more types of ruthenium compounds may be sufficient. As the ruthenium compound, an oxide is particularly preferable. Among the oxides, ruthenium dioxide (RuO 2 ) is preferable, and its oxidation number is usually +4. However, ruthenium having another oxidation number or ruthenium oxide in another form may be contained. Depending on the reaction conditions, in the catalyst, metal ruthenium may become ruthenium oxide after the reaction, or the ruthenium compound may become metal ruthenium.
 ルテニウム成分を含有する触媒として、金属ルテニウムやルテニウム化合物のそれ自体を使用してもよいが、高価な金属ルテニウムやルテニウム化合物の使用量を削減するためルテニウム成分が担体に担持されてなる触媒を使用することが好ましい。担体としては、酸化チタン、アルミナ、酸化ジルコニウム、ゼオライト、シリカ、シリカアルミナ、酸化バナジウム、ケイソウ土、酸化チタンと他の酸化物との複合酸化物、酸化ジルコニウムと他の酸化物との複合酸化物、アルミナと他の酸化物との複合酸化物、金属硫酸塩等が挙げられ、必要に応じてこれらの2種以上を用いることもできる。中でも、酸化チタン、アルミナ及び酸化ジルコニウムからなる群より選ばれる少なくとも1種を含有する担体が好ましい。 As a catalyst containing a ruthenium component, metal ruthenium or a ruthenium compound itself may be used, but a catalyst in which a ruthenium component is supported on a carrier is used in order to reduce the amount of expensive metal ruthenium or ruthenium compound used. It is preferable to do. Supports include titanium oxide, alumina, zirconium oxide, zeolite, silica, silica alumina, vanadium oxide, diatomaceous earth, composite oxides of titanium oxide and other oxides, composite oxides of zirconium oxide and other oxides. In addition, composite oxides of alumina and other oxides, metal sulfates, and the like can be used, and two or more of these can be used as necessary. Among these, a carrier containing at least one selected from the group consisting of titanium oxide, alumina, and zirconium oxide is preferable.
 前記担体は、粉末状やゾル状の担体を混練、成形し、次いで焼成したものを用いることができる。焼成した担体は、公知の方法に基づいて調製することができ、例えば、粉末状の担体やゾル状の担体を、有機バインダー等の成形助剤及び水と混練し、ヌードル状に押出成形した後、乾燥、破砕して成形体を得、次いで得られた成形体を空気等の酸化性ガス雰囲気下で焼成することで調製できる。 As the carrier, a powdery or sol-like carrier kneaded, molded, and then fired can be used. The calcined carrier can be prepared based on a known method. For example, a powdery carrier or a sol-like carrier is kneaded with a molding aid such as an organic binder and water, and extruded into a noodle shape. It can be prepared by drying, crushing to obtain a molded body, and then firing the obtained molded body in an oxidizing gas atmosphere such as air.
 前記担体に酸化チタンが含まれる場合、酸化チタンとしては、ルチル型酸化チタン(ルチル型の結晶構造を有する酸化チタン)、アナターゼ型酸化チタン(アナターゼ型の結晶構造を有する酸化チタン)、又は非晶質の酸化チタンからなるものであってもよいし、これらの混合物からなるものであってもよい。 When titanium oxide is contained in the carrier, examples of titanium oxide include rutile type titanium oxide (titanium oxide having a rutile type crystal structure), anatase type titanium oxide (titanium oxide having an anatase type crystal structure), or amorphous. It may be made of quality titanium oxide or a mixture of these.
 前記担体にアルミナが含まれる場合、アルミナとしては、(α-アルミナ、γ-アルミナ、θ-アルミナ、δ-アルミナ、β-アルミナ、非晶質アルミナ、ベーマイト等が挙げられ、これらは1種又は2種以上を混合して用いてもよい。中でも、α-アルミナが好ましい。 When alumina is contained in the carrier, examples of alumina include (α-alumina, γ-alumina, θ-alumina, δ-alumina, β-alumina, amorphous alumina, boehmite, and the like. Two or more types may be used in combination, with α-alumina being preferred.
 担体にルテニウム成分を担持する方法としては、担体をルテニウム成分を含む溶液と接触処理する方法が挙げられる。接触処理において、処理時の温度は、通常0~100℃、好ましくは0~50℃であり、処理時の圧力は通常0.1~1MPa、好ましくは大気圧である。また、かかる接触処理は、空気雰囲気下や、窒素、ヘリウム、アルゴン、二酸化酸素の如き不活性ガス雰囲気下で行うことができ、この際、水蒸気を含んでいてもよい。 Examples of the method of supporting the ruthenium component on the carrier include a method of contacting the carrier with a solution containing the ruthenium component. In the contact treatment, the temperature during the treatment is usually 0 to 100 ° C., preferably 0 to 50 ° C., and the pressure during the treatment is usually 0.1 to 1 MPa, preferably atmospheric pressure. Such contact treatment can be performed in an air atmosphere or in an inert gas atmosphere such as nitrogen, helium, argon, oxygen dioxide, and may contain water vapor.
 接触処理としては、含浸、浸漬等が挙げられる。前記溶液と接触処理する方法として、(A)ルテニウム成分を含む溶液を担体に含浸させる方法や、(B)担体をルテニウム成分を含む溶液に浸漬させて、ルテニウム成分を吸着させる方法等が挙げられるが、前記(A)の方法が好ましい。 Examples of the contact treatment include impregnation and immersion. Examples of the method for contact treatment with the solution include (A) a method in which a support containing a ruthenium component is impregnated in a support, and (B) a method in which the support is immersed in a solution containing a ruthenium component to adsorb the ruthenium component. However, the method (A) is preferred.
 前記溶液の調製に使用される溶媒としては、水が好ましい。水としては、蒸留水、イオン交換水、超純水などの純度の高い水が好ましい。使用する水に不純物が多く含まれると、かかる不純物が触媒に付着して、触媒の活性を低下させる場合がある。水の使用量は、前記溶液に含まれるルテニウム成分1モルに対して、通常1.5~8000モル、好ましくは3~2500モル、より好ましくは7~1500モルである。 The solvent used for preparing the solution is preferably water. As water, highly purified water, such as distilled water, ion-exchange water, and ultrapure water, is preferable. If the water used contains a large amount of impurities, such impurities may adhere to the catalyst and reduce the activity of the catalyst. The amount of water used is usually 1.5 to 8000 mol, preferably 3 to 2500 mol, more preferably 7 to 1500 mol, per 1 mol of the ruthenium component contained in the solution.
 担体にルテニウム成分を担持した後、乾燥し、その後、焼成するのが好ましい。かかる乾燥方法としては、従来公知の方法を採用することができ、その温度は、通常、室温から100℃程度であり、その圧力は、通常0.001~1MPa、好ましくは大気圧である。かかる乾燥は、空気雰囲気下や、窒素、ヘリウム、アルゴン、二酸化酸素の如き不活性ガス雰囲気下で行うことができ、この際、水蒸気を含んでいてもよい。取り扱いの観点から、上記不活性ガス雰囲気下で行うのが好ましい。 It is preferable that the ruthenium component is supported on the carrier, dried, and then fired. As such a drying method, a conventionally known method can be employed. The temperature is usually from room temperature to about 100 ° C., and the pressure is usually from 0.001 to 1 MPa, preferably atmospheric pressure. Such drying can be performed in an air atmosphere or an inert gas atmosphere such as nitrogen, helium, argon, or oxygen dioxide, and may contain water vapor. From the viewpoint of handling, it is preferable to carry out in the inert gas atmosphere.
 前記焼成は、酸化性ガス、還元性ガス又は不活性ガス雰囲気下で行うことができ、これらのガス雰囲気下を組み合わせて多段階で行ってもよい。酸化性ガスとは、酸化性物質を含むガスであり、例えば酸素含有ガス等が挙げられ、その酸素濃度としては、通常、1~30容量%程度である。この酸素源としては、通常、空気や純酸素が用いられ、必要に応じて不活性ガスや水蒸気で希釈される。酸化性ガスは、中でも、空気が好ましい。また、焼成温度は、通常、100~1000℃、好ましくは200~450℃である。酸化性ガス雰囲気下で焼成を行うことにより、担持されたルテニウム成分は酸化ルテニウムに変換され得る。 The calcination can be performed in an oxidizing gas, a reducing gas, or an inert gas atmosphere, and these gas atmospheres may be combined in multiple stages. The oxidizing gas is a gas containing an oxidizing substance, and examples thereof include an oxygen-containing gas. The oxygen concentration is usually about 1 to 30% by volume. As the oxygen source, air or pure oxygen is usually used, and diluted with an inert gas or water vapor as necessary. Of these, air is preferable as the oxidizing gas. The firing temperature is usually 100 to 1000 ° C., preferably 200 to 450 ° C. By carrying out firing in an oxidizing gas atmosphere, the supported ruthenium component can be converted to ruthenium oxide.
 前記還元性ガスとは、還元性物質を含むガスであり、例えば水素含有ガス、一酸化炭素含有ガス、炭化水素含有ガス等が挙げられる。その濃度としては、通常、1~30容量%程度であり、例えば、不活性ガスや水蒸気で濃度調整される。還元性ガスは、中でも、水素含有ガス、一酸化炭素含有ガスが好ましい。また、焼成温度は、通常、100~1000℃、好ましくは200~500℃である。還元性ガス雰囲気下で焼成を行うことにより、担持されたルテニウム成分は金属ルテニウムに変換され得る。 The reducing gas is a gas containing a reducing substance, and examples thereof include a hydrogen-containing gas, a carbon monoxide-containing gas, and a hydrocarbon-containing gas. The concentration is usually about 1 to 30% by volume, and the concentration is adjusted with, for example, an inert gas or water vapor. Among these reducing gases, a hydrogen-containing gas and a carbon monoxide-containing gas are preferable. The firing temperature is usually 100 to 1000 ° C., preferably 200 to 500 ° C. By carrying out calcination in a reducing gas atmosphere, the supported ruthenium component can be converted to metal ruthenium.
 前記不活性ガスとしては、例えば窒素、二酸化炭素、ヘリウム、アルゴン等が挙げられ、必要に応じて水蒸気で希釈される。不活性ガスは、中でも、窒素、二酸化炭素が好ましい。また、焼成温度は、通常、100~1000℃、好ましくは200~600℃である。 Examples of the inert gas include nitrogen, carbon dioxide, helium, argon, and the like, and diluted with water vapor as necessary. Among these, nitrogen and carbon dioxide are preferable as the inert gas. The firing temperature is usually 100 to 1000 ° C., preferably 200 to 600 ° C.
 ルテニウム成分が担体に担持されてなる触媒において、担体に対する金属ルテニウム及びルテニウム化合物からなる群から選ばれる少なくとも一種の含有割合(ルテニウム成分/担体)は、重量比として、通常0.1/99.9~20/80、好ましくは0.5/99.5~15/85、より好ましくは0.5/99.5~5/95であり、この範囲になるように、担体にルテニウム成分を担持する際のルテニウム成分と担体との使用割合が適宜調整される。担体に担持されたルテニウム成分があまり少ないと触媒活性が十分でないことがあり、あまり多いとコスト的に不利となる。 In a catalyst in which a ruthenium component is supported on a support, the content ratio (ruthenium component / support) selected from the group consisting of metal ruthenium and a ruthenium compound with respect to the support is usually 0.1 / 99.9 as a weight ratio. 20/80, preferably 0.5 / 99.5 to 15/85, more preferably 0.5 / 99.5 to 5/95, and the ruthenium component is supported on the carrier so as to fall within this range. The ratio of the ruthenium component and the carrier used is appropriately adjusted. If the ruthenium component supported on the support is too small, the catalytic activity may not be sufficient, and if it is too large, the cost is disadvantageous.
 ルテニウム成分を含有する触媒には、ルテニウム成分の他に、パラジウム、銅化合物、クロム化合物、バナジウム化合物、アルカリ金属化合物、稀土類化合物、マンガン化合物、アルカリ土類化合物等の他成分が含まれていてもよい。他成分の含有量は、担体及び他成分の総量に対して、通常0.1~10重量%である。 In addition to the ruthenium component, the catalyst containing the ruthenium component includes other components such as palladium, a copper compound, a chromium compound, a vanadium compound, an alkali metal compound, a rare earth compound, a manganese compound, and an alkaline earth compound. Also good. The content of other components is usually 0.1 to 10% by weight based on the total amount of the carrier and other components.
 ルテニウム成分を含有する触媒の形状は、球形粒状、円柱形ペレット状、押出形状、リング形状、ハニカム状あるいは成型後に粉砕分級した適度の大きさの顆粒状等で用いられる。この際、触媒の直径としては5mm以下が好ましい。触媒の直径が大きすぎると、臭化水素の転化率が低くなることがある。触媒の直径の下限は特に制限はないが、過度に小さくなると、触媒層での圧力損失が大きくなるため、通常は0.5mm以上のものが用いられる。なお、ここでいう触媒の直径とは、球形粒状では球の直径、円柱形ペレット状では円形断面の直径、その他の形状では断面の最大直径を意味する。 The shape of the catalyst containing the ruthenium component may be a spherical granular shape, a cylindrical pellet shape, an extruded shape, a ring shape, a honeycomb shape, or an appropriately sized granule shape after pulverization and classification. At this time, the diameter of the catalyst is preferably 5 mm or less. If the catalyst diameter is too large, the conversion of hydrogen bromide may be low. The lower limit of the diameter of the catalyst is not particularly limited, but if it becomes excessively small, pressure loss in the catalyst layer increases, and therefore, a catalyst having a diameter of 0.5 mm or more is usually used. The diameter of the catalyst here means the diameter of a sphere in the case of spherical particles, the diameter of a circular cross section in the case of a cylindrical pellet, and the maximum diameter of the cross section in other shapes.
 本発明における、ルテニウム成分を含有する触媒は、上述の方法により製造されたものであってもよいし、市販のものであってもよい。 In the present invention, the catalyst containing a ruthenium component may be produced by the above-described method or may be a commercially available one.
 かかるルテニウム成分を含有する触媒の存在下に、臭化水素を酸素により酸化することにより、臭化水素を効率的に製造することができる。 Hydrogen bromide can be efficiently produced by oxidizing hydrogen bromide with oxygen in the presence of a catalyst containing such a ruthenium component.
 原料である臭化水素としては、水素と臭素との反応により生成する臭化水素や、臭素化合物の熱分解反応や燃焼反応により生成する臭化水素や、アルカン、芳香族化合物等の有機化合物の臭素による臭素化反応、臭素化炭化水素の加水分解反応、臭素化炭化水素のアミノ化反応、臭化アルキルと芳香族化合物のフリーデルクラフツアルキル化反応、臭化アシルと芳香族化合物のフリーデルクラフツアシル化反応、臭素化有機化合物のカップリング反応等により副生する臭化水素や、臭化水素の臭素への酸化反応やアルケンの臭化水素による臭素化反応等から回収される臭化水素等を使用することができる。また、これらの臭化水素を使用する場合、臭化水素とともに回収されうる未反応原料や反応生成物との混合物として使用してもよい。また、臭化水素として、窒素、二酸化炭素、ヘリウム、アルゴン、水蒸気等のガスにより希釈された、臭化水素を含有するガスを使用してもよい。 Examples of the raw material hydrogen bromide include hydrogen bromide produced by the reaction of hydrogen and bromine, hydrogen bromide produced by the thermal decomposition reaction and combustion reaction of bromine compounds, and organic compounds such as alkanes and aromatic compounds. Bromination reaction with bromine, hydrolysis reaction of brominated hydrocarbon, amination reaction of brominated hydrocarbon, Friedel-Crafts alkylation reaction of alkyl bromide and aromatic compound, Friedel-Crafts of acyl bromide and aromatic compound Hydrogen bromide by-produced by acylation reaction, coupling reaction of brominated organic compounds, hydrogen bromide recovered from oxidation reaction of hydrogen bromide to bromine, bromination reaction of alkenes with hydrogen bromide, etc. Can be used. Moreover, when using these hydrogen bromides, you may use as a mixture with the unreacted raw material and reaction product which can be collect | recovered with hydrogen bromide. Further, as hydrogen bromide, a gas containing hydrogen bromide diluted with a gas such as nitrogen, carbon dioxide, helium, argon, or water vapor may be used.
 酸素としては、酸素含有ガスを使用することができ、酸素含有ガスとしては、純酸素や、純酸素を窒素、二酸化炭素、ヘリウム、アルゴン、水蒸気等のガスで希釈したものや、空気を使用することができる。純酸素は、空気の圧力スイング法や深冷分離等の通常の工業的な方法によって得ることができる。 As oxygen, an oxygen-containing gas can be used. As the oxygen-containing gas, pure oxygen, a product obtained by diluting pure oxygen with a gas such as nitrogen, carbon dioxide, helium, argon, water vapor, or air is used. be able to. Pure oxygen can be obtained by ordinary industrial methods such as air pressure swing method or cryogenic separation.
 反応方式としては、流動床、固定床、移動床等の反応方式が採用可能であり、断熱方式又は熱交換方式の固定床反応器が好ましい。断熱方式の固定床反応器を用いる場合には、単管式固定床反応器、多管式固定床反応器のいずれも使用することができるが、単管式固定床反応器を好ましく使用することができる。熱交換方式の固定床反応器を用いる場合には、単管式固定床反応器、多管式固定床反応器のいずれも使用することができるが、多管式固定床反応器を好ましく使用することができる。 As the reaction method, a reaction method such as a fluidized bed, a fixed bed, or a moving bed can be adopted, and a fixed bed reactor of an adiabatic method or a heat exchange method is preferable. When an adiabatic fixed bed reactor is used, either a single tube fixed bed reactor or a multitubular fixed bed reactor can be used, but a single tube fixed bed reactor is preferably used. Can do. When a heat exchange type fixed bed reactor is used, either a single-tube fixed bed reactor or a multi-tube fixed bed reactor can be used, but a multi-tube fixed bed reactor is preferably used. be able to.
 この酸化反応は平衡反応であり、あまり高温で行うと平衡転化率が下がるため、比較的低温で行うのが好ましく、反応温度は、通常50~500℃、好ましくは100~450℃であり、より好ましくは300~450℃である。また、反応圧力は、通常0.1~5MPa程度である。臭化水素に対する酸素の理論モル量は1/4モルであるが、通常、この理論量の0.1~10倍の酸素が使用される。また、臭化水素の供給速度は、触媒1Lあたりのガス供給速度(L/h;0℃、0.1MPa換算)、すなわちGHSVで表して、通常10~20000h-1程度である。 This oxidation reaction is an equilibrium reaction, and is preferably performed at a relatively low temperature since the equilibrium conversion rate decreases when performed at too high a temperature. The reaction temperature is usually 50 to 500 ° C., preferably 100 to 450 ° C. Preferably, it is 300 to 450 ° C. The reaction pressure is usually about 0.1 to 5 MPa. The theoretical molar amount of oxygen with respect to hydrogen bromide is 1/4 mole, but usually 0.1 to 10 times the theoretical amount of oxygen is used. The supply rate of hydrogen bromide is usually about 10 to 20000 h −1 in terms of gas supply rate per liter of catalyst (L / h; 0 ° C., converted to 0.1 MPa), that is, GHSV.
 尚、ルテニウム成分を含有する触媒を使用する際、チタニア、アルミナ、ジルコニア、シリカ等で希釈して使用することもできる。 In addition, when using the catalyst containing a ruthenium component, it can also be used by diluting with titania, alumina, zirconia, silica or the like.
 以下に本発明の実施例を示すが、本発明はこれらによって限定されるものではない。例中、ガスの供給速度(ml/min)は、特記ない限り、0℃、1MPaの換算値である。 Examples of the present invention will be shown below, but the present invention is not limited thereto. In the examples, the gas supply rate (ml / min) is a converted value of 0 ° C. and 1 MPa unless otherwise specified.
 実施例1
 (担持酸化ルテニウム触媒の調製)
 酸化チタン50重量部〔堺化学(株)製のSTR-60R、100%ルチル型〕、α-アルミナ100重量部〔住友化学(株)製のAES-12〕、チタニアゾル13.2量部〔堺化学(株)製のCSB、チタニア含有量38重量%〕、及びメチルセルロース2重量部〔信越化学(株)製のメトローズ65SH-4000〕を混合し、次いで純水を加えて混練した。この混合物を直径3.0mmφの円柱状に押出し、乾燥した後、長さ4~6mm程度に破砕した。得られた成型体を空気中、800℃で3時間焼成し、酸化チタンとα-アルミナの混合物からなる担体を得た。得られた担体100重量部に、塩化ルテニウム水和物〔NEケムキャット(株)製のRuCl・nHO、Ru含有量40.0重量%〕3.88重量部を純水22重量部に溶解して調製した水溶液を含浸させ、空気雰囲気下、室温で乾燥した。得られた乾燥物を、空気流通下、250℃~280℃で2時間焼成し、酸化ルテニウムの含有量が2.0重量%である青灰色の担持酸化ルテニウムを得た。
Example 1
(Preparation of supported ruthenium oxide catalyst)
50 parts by weight of titanium oxide (STR-60R manufactured by Sakai Chemical Co., Ltd., 100% rutile type), 100 parts by weight of α-alumina [AES-12 manufactured by Sumitomo Chemical Co., Ltd.], 13.2 parts by weight of titania sol [堺CSB manufactured by Chemical Co., Ltd., titania content 38% by weight] and 2 parts by weight of methylcellulose [Metroze 65SH-4000 manufactured by Shin-Etsu Chemical Co., Ltd.] were mixed, and then pure water was added and kneaded. This mixture was extruded into a cylindrical shape having a diameter of 3.0 mmφ, dried, and then crushed to a length of about 4 to 6 mm. The obtained molded body was fired in air at 800 ° C. for 3 hours to obtain a carrier made of a mixture of titanium oxide and α-alumina. To 100 parts by weight of the obtained carrier, 3.88 parts by weight of ruthenium chloride hydrate (RuCl 3 · nH 2 O manufactured by NE Chemcat Co., Ltd., Ru content 40.0% by weight) is added to 22 parts by weight of pure water. An aqueous solution prepared by dissolution was impregnated and dried at room temperature in an air atmosphere. The obtained dried product was calcined at 250 ° C. to 280 ° C. for 2 hours under air flow to obtain blue-gray-supported ruthenium oxide having a ruthenium oxide content of 2.0% by weight.
 (触媒の活性評価)
 上記で得られた担持酸化ルテニウム1.0gを直径2mmのα-アルミナ球〔ニッカトー(株)製のSSA995〕12gで希釈し石英製反応管(内径12mm)に充填した。この中に、臭化水素ガスを80ml/min(0.21mol/h)、及び酸素ガスを40ml/min(0.11mol/h)の速度で常圧下に供給し、触媒層の最も温度の高い部分(ホットスポット)が323℃となるように加熱して反応を行った。反応開始1.4時間後の時点で、反応管出口のガスを30重量%ヨウ化カリウム水溶液に流通させることによりサンプリングを20分間行い、ヨウ素滴定法により臭素の生成量を測定し、臭素の生成速度(mol/h)を求めた。この臭素の生成速度と上記の臭化水素の供給速度から、下式より臭化水素の転化率を計算し、表1に示した。
(Evaluation of catalyst activity)
1.0 g of the supported ruthenium oxide obtained above was diluted with 12 g of α-alumina sphere having a diameter of 2 mm (SSA995 manufactured by Nikkato Co., Ltd.) and filled into a quartz reaction tube (inner diameter 12 mm). In this, hydrogen bromide gas is supplied at a rate of 80 ml / min (0.21 mol / h) and oxygen gas at a rate of 40 ml / min (0.11 mol / h) under normal pressure, and the catalyst layer has the highest temperature. The reaction was performed by heating so that the portion (hot spot) was 323 ° C. At 1.4 hours after the start of the reaction, the gas at the outlet of the reaction tube was circulated through a 30% by weight potassium iodide aqueous solution for 20 minutes, and the amount of bromine produced was measured by iodometric titration to produce bromine. The rate (mol / h) was determined. The conversion rate of hydrogen bromide was calculated from the following formula from the bromine production rate and the hydrogen bromide supply rate, and the results are shown in Table 1.
 臭化水素の転化率(%)=〔臭素の生成速度(mol/h)×2÷臭化水素の供給速度 (mol/h)〕×100 Hydrogen bromide conversion (%) = [bromine production rate (mol / h) × 2 ÷ hydrogen bromide supply rate (mol / h)] × 100
 実施例2
 (担持酸化ルテニウム触媒の調製)
 実施例1と同様の方法で担持酸化ルテニウムを得た。
Example 2
(Preparation of supported ruthenium oxide catalyst)
A supported ruthenium oxide was obtained in the same manner as in Example 1.
 (触媒の活性評価)
  (触媒の活性評価)において触媒の最も温度の高い部分(ホットスポット)が157℃となるようにし、反応開始1.0時間の時点でサンプリングを行った以外は、実施例1と同様の方法で、担持酸化ルテニウムの活性評価を行った。結果を表1に示した。
(Evaluation of catalyst activity)
In (Evaluation of catalyst activity), the highest temperature portion (hot spot) of the catalyst was set to 157 ° C., and sampling was performed at the time of 1.0 hour from the start of the reaction. The activity of the supported ruthenium oxide was evaluated. The results are shown in Table 1.
 実施例3
 (担持酸化ルテニウム触媒の調製)
 実施例1と同様の方法で担持酸化ルテニウムを得た。
Example 3
(Preparation of supported ruthenium oxide catalyst)
A supported ruthenium oxide was obtained in the same manner as in Example 1.
 (触媒の活性評価)
  (触媒の活性評価)において触媒の最も温度の高い部分(ホットスポット)が206℃となるようにし、反応開始1.0時間の時点でサンプリングを行った以外は、実施例1と同様の方法で、担持酸化ルテニウムの活性評価を行った。結果を表1に示した。
(Evaluation of catalyst activity)
In (Evaluation of catalyst activity), the highest temperature portion (hot spot) of the catalyst was set to 206 ° C., and sampling was performed at the time of 1.0 hour from the start of the reaction. The activity of the supported ruthenium oxide was evaluated. The results are shown in Table 1.
 比較例1
 (担持酸化銅触媒の調製)
 特開2008-155199号公報に記載の方法に基づき、チタニア粉末〔昭和タイタニウム(株)製のF-1R、ルチル型チタニア比率93%〕100重量部と有機バインダー2重量部〔ユケンエ業(株)製のYB-152A〕とを混合し、次いで純水29重量部、チタニアゾル〔堺化学(株)製のCSB、チタニア含有量40重量%〕12.5重量部を加えて混練した。この混合物を直径3.0mmφのヌードル状に押出し、60℃で2時間乾燥した後、長さ3~5mm程度に破砕した。得られた成形体を、空気中で室温から600℃まで1,7時間かけて昇温した後、同温度で3時間保持し、酸化チタンからなる担体を得た。この担体10.00gに、塩化銅(II)二水和物〔和光純薬工業(株)製のCuCl・2HO、Cu含有量37重量%〕2.38gを純水2.28gに溶解して調製した水溶液を含浸させ、空気雰囲気下、室温で乾燥した。得られた固体13.04gを、空気流通下、室温から250℃まで1.1時間かけて昇温した後、同温度で2時間保持して焼成し、酸化銅の含有量が10重量%である茶色の担持酸化銅11.66gを得た。
Comparative Example 1
(Preparation of supported copper oxide catalyst)
Based on the method described in JP-A-2008-155199, 100 parts by weight of titania powder [F-1R manufactured by Showa Titanium Co., Ltd., rutile-type titania ratio 93%] and 2 parts by weight of organic binder [YUKENE CO., LTD. YB-152A manufactured by Yokogawa Co., Ltd.] was mixed, and then 29 parts by weight of pure water and 12.5 parts by weight of titania sol [CSB manufactured by Sakai Chemical Co., Ltd., titania content 40% by weight] were added and kneaded. This mixture was extruded into a noodle shape having a diameter of 3.0 mmφ, dried at 60 ° C. for 2 hours, and then crushed to a length of about 3 to 5 mm. The obtained molded body was heated in air from room temperature to 600 ° C. over 17 hours, and then kept at the same temperature for 3 hours to obtain a carrier made of titanium oxide. 2.38 g of copper chloride (II) dihydrate (CuCl 2 · 2H 2 O manufactured by Wako Pure Chemical Industries, Ltd., Cu content 37 wt%) was added to 10.00 g of this carrier to 2.28 g of pure water. An aqueous solution prepared by dissolution was impregnated and dried at room temperature in an air atmosphere. The obtained solid (13.04 g) was heated from room temperature to 250 ° C. over 1.1 hours under air flow, then held at the same temperature for 2 hours and calcined, and the content of copper oxide was 10% by weight. A brown supported copper oxide of 11.66 g was obtained.
 (触媒の活性評価)
  (触媒の活性評価)において、担持酸化ルテニウムに代えて上記で得られた担持酸化銅を使用し、触媒の最も温度の高い部分(ホットスポット)が331℃となるようにし、反応開始1.3時間の時点でサンプリングを行った以外は、実施例1と同様の方法で、担持酸化銅の活性評価を行った。結果を表1に示した。
(Evaluation of catalyst activity)
In (catalyst activity evaluation), the supported copper oxide obtained above was used in place of the supported ruthenium oxide so that the hottest portion of the catalyst (hot spot) was 331 ° C. The activity of the supported copper oxide was evaluated in the same manner as in Example 1 except that sampling was performed at the time point. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (4)

  1.  金属ルテニウム及びルテニウム化合物からなる群より選ばれる少なくとも1種を含有する触媒の存在下に、臭化水素を酸素により酸化する臭素の製造方法。 A process for producing bromine in which hydrogen bromide is oxidized with oxygen in the presence of a catalyst containing at least one selected from the group consisting of metal ruthenium and ruthenium compounds.
  2.  前記触媒が、金属ルテニウム及びルテニウム化合物からなる群より選ばれる少なくとも1種が担体に担持されてなる触媒である請求項1に記載の製造方法。 The production method according to claim 1, wherein the catalyst is a catalyst in which at least one selected from the group consisting of metal ruthenium and a ruthenium compound is supported on a carrier.
  3.  前記担体が、酸化チタン、アルミナ及び酸化ジルコニウムからなる群より選ばれる少なくとも1種を含有する請求項2に記載の製造方法。 The method according to claim 2, wherein the carrier contains at least one selected from the group consisting of titanium oxide, alumina, and zirconium oxide.
  4.  前記ルテニウム化合物が、酸化ルテニウムである請求項1~3のいずれかに記載の製造方法。 The method according to any one of claims 1 to 3, wherein the ruthenium compound is ruthenium oxide.
PCT/JP2012/057204 2011-03-28 2012-03-21 Process for producing bromine WO2012133054A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-069447 2011-03-28
JP2011069447A JP2012200700A (en) 2011-03-28 2011-03-28 Method for producing bromine

Publications (1)

Publication Number Publication Date
WO2012133054A1 true WO2012133054A1 (en) 2012-10-04

Family

ID=46930786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057204 WO2012133054A1 (en) 2011-03-28 2012-03-21 Process for producing bromine

Country Status (2)

Country Link
JP (1) JP2012200700A (en)
WO (1) WO2012133054A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786833B2 (en) 2012-09-12 2015-09-30 株式会社デンソー Parking assistance device
JP2020019687A (en) 2018-08-02 2020-02-06 住友化学株式会社 Method of producing bromine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5295593A (en) * 1976-02-09 1977-08-11 Central Glass Co Ltd Production of bromine from hydrogen bromide
JPS5696702A (en) * 1979-12-13 1981-08-05 Ici Ltd Method of recovering section containing bromine
JPH07503404A (en) * 1992-02-04 1995-04-13 カタリティカ,インコーポレイテッド CeBr↓3 catalyst and bromine production process
JPH09142806A (en) * 1995-09-12 1997-06-03 Basf Ag Production of chlorine from hydrogen chloride
JP2009525395A (en) * 2006-02-03 2009-07-09 ジーアールティー,インコーポレイティド A continuous process for converting natural gas to liquefied hydrocarbons.
JP2010117123A (en) * 2008-10-15 2010-05-27 Bayer Materialscience Ag Method of removing carbon monoxide from coarse hcl gas, and hcl oxidizing method using purified hcl gas obtained by the method
JP2010533059A (en) * 2007-07-13 2010-10-21 バイエル・テクノロジー・サービシズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Catalyst and process for the production of chlorine by gas phase oxidation of hydrogen chloride

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5295593A (en) * 1976-02-09 1977-08-11 Central Glass Co Ltd Production of bromine from hydrogen bromide
JPS5696702A (en) * 1979-12-13 1981-08-05 Ici Ltd Method of recovering section containing bromine
JPH07503404A (en) * 1992-02-04 1995-04-13 カタリティカ,インコーポレイテッド CeBr↓3 catalyst and bromine production process
JPH09142806A (en) * 1995-09-12 1997-06-03 Basf Ag Production of chlorine from hydrogen chloride
JP2009525395A (en) * 2006-02-03 2009-07-09 ジーアールティー,インコーポレイティド A continuous process for converting natural gas to liquefied hydrocarbons.
JP2010533059A (en) * 2007-07-13 2010-10-21 バイエル・テクノロジー・サービシズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Catalyst and process for the production of chlorine by gas phase oxidation of hydrogen chloride
JP2010117123A (en) * 2008-10-15 2010-05-27 Bayer Materialscience Ag Method of removing carbon monoxide from coarse hcl gas, and hcl oxidizing method using purified hcl gas obtained by the method

Also Published As

Publication number Publication date
JP2012200700A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
JP5382100B2 (en) Chlorine production method
TW200808655A (en) Process for the preparation of chlorine by gas phase oxidation
JP2009537449A (en) Method for producing chlorine by gas phase oxidation
JP6379781B2 (en) Heterogeneous catalyst and catalyst system for the production of 1,2-dichloroethane
WO2010050546A1 (en) Process for producing chlorine
JP2013139017A (en) Method for producing carried ruthenium oxide, and method for producing chlorine
JP4839661B2 (en) Chlorine production method
JP7269349B2 (en) Method for producing supported ruthenium oxide catalyst for chlorine production and catalyst produced thereby
WO2012133054A1 (en) Process for producing bromine
JP2023509887A (en) Molded catalyst for hydrogen chloride oxidation reaction and method for producing the same
KR20150131139A (en) Catalyst and process for oxychlorination of ethylene to dichloroethane
JP2012161716A (en) Method for producing supported ruthenium oxide, and method for producing chlorine
JP4285179B2 (en) Method for producing a catalyst for chlorine production
KR20200078194A (en) Catalyst for Hydrogen Chloride Oxidation Reaction for Chlorine Production and Preparation Method thereof
JP4432876B2 (en) Catalyst for chlorine production and method for producing chlorine
JP2012161717A (en) Method for producing supported ruthenium oxide, and method for producing chlorine
JP2014117673A (en) Oxychlorination catalyst and method for manufacturing 1,2-dichloroethane using the same
JP2012193130A (en) Method of producing halogenated propane
JP5333413B2 (en) Method for producing supported ruthenium oxide and method for producing chlorine
JP2011162382A (en) Method for producing chlorine
JP2019181332A (en) Catalyst for decomposing hydrogen iodide
JP5365540B2 (en) Method for oxidizing organic compounds
JP2023508695A (en) Molded catalyst for hydrogen chloride oxidation reaction process and method for producing the same
JP5267305B2 (en) Chlorine production method
JP2011241122A (en) Method for producing synthesis gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765907

Country of ref document: EP

Kind code of ref document: A1