JP4285179B2 - Method for producing a catalyst for chlorine production - Google Patents
Method for producing a catalyst for chlorine production Download PDFInfo
- Publication number
- JP4285179B2 JP4285179B2 JP2003343253A JP2003343253A JP4285179B2 JP 4285179 B2 JP4285179 B2 JP 4285179B2 JP 2003343253 A JP2003343253 A JP 2003343253A JP 2003343253 A JP2003343253 A JP 2003343253A JP 4285179 B2 JP4285179 B2 JP 4285179B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- ruthenium
- producing
- supported
- hydrogen chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Catalysts (AREA)
Description
本発明は、塩素の製造用触媒の製造方法に関する。詳しくは、塩化水素を酸素によって酸化して塩素を製造する際に用いられるアルカリ金属化合物と酸化ルテニウムを含むルテニウム化合物とが担体に担持された触媒の製造方法に関する。 The present invention relates to a method for producing a catalyst for producing chlorine. Specifically, the present invention relates to a method for producing a catalyst in which an alkali metal compound used in producing chlorine by oxidizing hydrogen chloride with oxygen and a ruthenium compound containing ruthenium oxide are supported on a carrier.
塩化水素を酸素によって接触酸化して塩素を製造する触媒に関してはいくつかの提案がなされている。例えば、特許文献1にはルテニウム化合物を担体に担持した触媒やこれらを酸化処理して得られた担持酸化ルテニウム触媒が、特許文献2にはルテニウム化合物を担体に担持し、還元処理した後に酸化処理して得られた担持酸化ルテニウム触媒等が、それぞれ提案されている。また、特許文献3には、活性種である酸化ルテニウムを微粒化させ高活性な触媒とするために、担持金属ルテニウムを酸素を含む気体中でアルカリ金属塩の存在下に焼成して担持酸化ルテニウム触媒を製造する方法が提案されている。また、特許文献4には、反応中における触媒の活性低下を小さくする方法として、担体の焼成温度を制御する方法が提案されている。 Several proposals have been made regarding a catalyst for producing chlorine by catalytic oxidation of hydrogen chloride with oxygen. For example, Patent Document 1 discloses a catalyst in which a ruthenium compound is supported on a carrier and a supported ruthenium oxide catalyst obtained by oxidizing them. Each of the supported ruthenium oxide catalysts obtained in this manner has been proposed. In Patent Document 3, in order to atomize ruthenium oxide, which is an active species, to make a highly active catalyst, the supported metal ruthenium is calcined in the presence of an alkali metal salt in a gas containing oxygen to carry the supported ruthenium oxide. A method for producing a catalyst has been proposed. Patent Document 4 proposes a method for controlling the calcination temperature of the carrier as a method for reducing the decrease in the activity of the catalyst during the reaction.
しかしながら、これらの触媒は反応中の経時的な活性の低下が大きく、工業的見地からはさらに活性低下の小さい触媒の開発が望まれていた。
本発明の目的は、塩化水素から塩素の製造に使用される触媒の製造法において、反応中の触媒活性低下が小さい触媒の製造方法を提供することにある。
However, these catalysts have a large decrease in activity over time during the reaction, and from an industrial standpoint, it has been desired to develop a catalyst with a smaller decrease in activity.
An object of the present invention is to provide a method for producing a catalyst having a small decrease in catalytic activity during the reaction in a method for producing a catalyst used for producing chlorine from hydrogen chloride.
すなわち本発明は、塩化水素を酸素によって酸化して塩素を製造する際に用いられる、アルカリ金属化合物と酸化ルテニウムを含むルテニウム化合物とが担体に担持された触媒の製造方法であって、予め酸化ルテニウムを含むルテニウム化合物が担持された触媒を調製した後に、アルカリ金属化合物を添加することを特徴とする塩素製造用触媒の製造方法に係るものである。 That is, the present invention relates to a method for producing a catalyst in which an alkali metal compound and a ruthenium compound containing ruthenium oxide are supported on a carrier, which is used when producing chlorine by oxidizing hydrogen chloride with oxygen, The present invention relates to a method for producing a catalyst for producing chlorine, characterized in that an alkali metal compound is added after preparing a catalyst on which a ruthenium compound containing is supported.
本発明により、塩化水素から塩素の製造に使用される触媒の製造法において、反応中の触媒活性低下が小さいという特徴を有する触媒の製造方法を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for producing a catalyst having a feature that a decrease in catalytic activity during the reaction is small in a method for producing a catalyst used for producing chlorine from hydrogen chloride.
以下、本発明を詳細に説明する。本発明の特徴は、酸化ルテニウムを含むルテニウム化合物が担体上に担持された後に、アルカリ金属化合物を添加し、触媒とすることにある。 Hereinafter, the present invention will be described in detail. A feature of the present invention is that after a ruthenium compound containing ruthenium oxide is supported on a support, an alkali metal compound is added to form a catalyst.
担体としては、酸化チタン、酸化アルミニウム、酸化ジルコニウム、二酸化ケイ素等公知の担体が用いられる。2種以上の複合物を用いることもできる。好ましい担体は酸化チタンである。 As the carrier, known carriers such as titanium oxide, aluminum oxide, zirconium oxide, silicon dioxide are used. Two or more composites can also be used. A preferred carrier is titanium oxide.
酸化ルテニウムを含むルテニウム化合物が担持された触媒を調製する場合、担体に担持するルテニウム化合物としては、RuCl3、RuCl3水和物などのルテニウム塩化物、Ru2OCl4、Ru2OCl5、Ru2OCl6などのルテニウムオキシ塩化物、〔Ru(NH3)6〕2+、〔Ru(NH3)6〕3+、〔Ru(NH3)5H2O〕2+などのルテニウムアンミン錯体、〔Ru(NH3)5Cl〕2+、〔Ru(NH3)6〕Cl2、〔Ru(NH3)6〕Cl3、〔Ru(NH3)6〕Br3などのルテニウムアンミン錯体の塩化物、臭化物、RuBr3、RuBr3水和物などのルテニウム臭化物、その他のルテニウム有機アミン錯体、ルテニウムアセチルアセトナート錯体、Ru(CO)5、Ru3(CO)12などのルテニウムカルボニル錯体、[Ru3O(OCOCH3)6(H2O)3] OCOCH3水和物、Ru2(RCOO)4Cl(R=炭素数1−3のアルキル基)などのルテニウム有機酸塩、〔Ru(NH3)5(NO)〕Cl3、〔Ru(OH)(NH3)4(NO)〕(NO3)2、 Ru(NO)(NO3)3などのルテニウムニトロシル錯体、ルテニウムホスフィン錯体などの化合物などがあげられる。好ましいルテニウム化合物としては、 RuCl3、RuCl3水和物などのルテニウム塩化物、 RuBr3、RuBr3水和物などのルテニウム臭化物などハロゲン化ルテニウム化合物があげられる。さらに好ましくは、塩化ルテニウム水和物である。 When preparing a catalyst on which a ruthenium compound containing ruthenium oxide is supported, examples of the ruthenium compound supported on the carrier include ruthenium chlorides such as RuCl 3 and RuCl 3 hydrate, Ru 2 OCl 4 , Ru 2 OCl 5 , Ru. Ruthenium oxychlorides such as 2 OCl 6 , ruthenium ammine complexes such as [Ru (NH 3 ) 6 ] 2+, [Ru (NH 3 ) 6 ] 3 +, [Ru (NH 3 ) 5 H 2 O] 2+, Chlorination of ruthenium ammine complexes such as [Ru (NH 3 ) 5 Cl] 2+, [Ru (NH 3 ) 6 ] Cl 2, [Ru (NH 3 ) 6 ] Cl 3 , [Ru (NH 3 ) 6 ] Br 3 things, bromide, RuBr 3, RuBr 3 ruthenium bromide such as hydrates, other ruthenium organic amine complex, ruthenium acetylacetonato complex, Ru (CO) 5, ruthenium carbonitrile such Ru 3 (CO) 12 Le complex, [Ru 3 O (OCOCH 3 ) 6 (H 2 O) 3] OCOCH 3 hydrate, ruthenium organic acid salt such as Ru 2 (RCOO) 4 Cl ( R = alkyl group of 1-3 carbon atoms) Ruthenium nitrosyl complexes such as [Ru (NH 3 ) 5 (NO)] Cl 3 , [Ru (OH) (NH 3 ) 4 (NO)] (NO 3 ) 2 , Ru (NO) (NO 3 ) 3 , And compounds such as a ruthenium phosphine complex. Preferred ruthenium compounds include ruthenium halide compounds such as ruthenium chlorides such as RuCl 3 and RuCl 3 hydrates, and ruthenium bromides such as RuBr 3 and RuBr 3 hydrates. More preferred is ruthenium chloride hydrate.
担体にルテニウム化合物を担持する方法としては、特開2002−79093号公報に記載されるような公知の方法があげられる。 Examples of the method for supporting the ruthenium compound on the carrier include known methods as described in JP-A-2002-79093.
次いで、担持したルテニウム化合物を酸化する方法としては、特開2002−79093号公報に記載されるような公知の方法があげられる。このとき担持したルテニウム化合物の全てが酸化ルテニウムに変化しても良いし、一部担持したルテニウム化合物が残存しても良い。 Next, examples of a method for oxidizing the supported ruthenium compound include known methods as described in JP-A-2002-79093. At this time, all of the supported ruthenium compound may be changed to ruthenium oxide, or a partially supported ruthenium compound may remain.
酸化ルテニウムと担体の質量比は、特開2002−79093号公報に記載されるような範囲が一般的である。 The mass ratio between ruthenium oxide and the carrier is generally in the range as described in JP-A-2002-79093.
酸化ルテニウムを含むルテニウム化合物が担持された触媒に添加するアルカリ金属化合物は、例えば、塩化カリウム、水酸化ナトリウム、硝酸セシウム等をあげることができ、好ましくは塩化カリウムである。 Examples of the alkali metal compound added to the catalyst on which the ruthenium compound containing ruthenium oxide is supported include potassium chloride, sodium hydroxide, cesium nitrate, and the like, and potassium chloride is preferable.
添加するアルカリ金属化合物の量は、酸化ルテニウムに対し0.01〜100重量%であり、好ましくは0.1〜10重量%である。 The amount of the alkali metal compound to be added is 0.01 to 100% by weight, preferably 0.1 to 10% by weight, based on ruthenium oxide.
アルカリ金属化合物の添加方法は、特に限定されるものではないが、アルカリ金属化合物が固体の場合、水もしくは有機溶媒に溶解させた後、担持酸化ルテニウムへ含浸する方法が簡便である。 The method of adding the alkali metal compound is not particularly limited, but when the alkali metal compound is solid, a method of impregnating the supported ruthenium oxide after dissolving in water or an organic solvent is convenient.
アルカリ金属化合物を添加した触媒は、必要に応じ乾燥させても良い。乾燥温度は20〜150℃、好ましくは40〜100℃で、乾燥時間は30分〜24時間である。 The catalyst to which the alkali metal compound has been added may be dried as necessary. The drying temperature is 20 to 150 ° C., preferably 40 to 100 ° C., and the drying time is 30 minutes to 24 hours.
このようにして得られた、アルカリ金属化合物と酸化ルテニウムを含むルテニウム化合物とが担体に担持された触媒は、塩化水素の酸素による接触酸化反応用触媒として使用し得る。 The catalyst thus obtained, in which an alkali metal compound and a ruthenium compound containing ruthenium oxide are supported on a carrier, can be used as a catalyst for catalytic oxidation reaction with hydrogen chloride oxygen.
反応方式としては特開2002−79093号公報に記載されるような公知の反応方式が用いられる。 As the reaction method, a known reaction method as described in JP-A-2002-79093 is used.
反応温度は、高温の場合、反応の平衡転化率が下がるため低い温度で反応することが望まれ、100〜500℃が好ましく、より好ましくは200〜450℃があげられる。反応圧は通常大気圧〜50気圧程度である。酸素原料としては、空気をそのまま使用してもよいし、酸素富化空気もしくは純酸素を使用してもよい。塩化水素に対する酸素の理論モル量は1/4モルであるが、理論量の0.1〜10倍供給するのが通常である。また、触媒の使用量は、固定床気相流通方式の場合で、大気圧下原料塩化水素の供給速度との比GHSVで表わすと、通常10〜20000h-1程度で適宜行なわれる。 When the reaction temperature is high, the equilibrium conversion rate of the reaction is lowered, so that it is desired to react at a low temperature, preferably 100 to 500 ° C, more preferably 200 to 450 ° C. The reaction pressure is usually about atmospheric pressure to 50 atmospheres. As the oxygen source, air may be used as it is, or oxygen-enriched air or pure oxygen may be used. The theoretical molar amount of oxygen with respect to hydrogen chloride is 1/4 mole, but it is usually supplied 0.1 to 10 times the theoretical amount. In addition, the amount of the catalyst used in the fixed bed gas-phase circulation method is appropriately set at about 10 to 20000 h −1 in terms of a ratio GHSV to the supply rate of the raw material hydrogen chloride under atmospheric pressure.
以下に実施例に基づいて本発明をより詳細に説明するが、本発明はこれら実施例より限定されるものではない。尚、本発明において、反応率(%)は次の如く定義されるものである。
塩化水素の転化率(%)=[塩素の生成量(mol/min)×2/塩化水素の供給量(mol/min)]×100
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In the present invention, the reaction rate (%) is defined as follows.
Hydrogen chloride conversion (%) = [chlorine production (mol / min) × 2 / hydrogen chloride supply (mol / min)] × 100
実施例1
特開平10−194705号公報の実施例24に記載されている方法に類似させた含浸法により触媒を調製した。すなわち、酸化チタン粉末(石原産業(株)、PT−101)100.0gとメチルセルロース2.0g(信越化学(株)、メトローズ65SH−4000)を混合し、次いで純水を29.2g、酸化チタンゾル(堺化学(株)CSB、TiO2含量38質量%)13.2gを加え混練した。この混合物を直径3.0mmφ、長さ3〜6mm程度のヌードル状に押出して成型体を得た。得られた成型体を空気中で、室温から800℃まで2.2時間で昇温し、同温度で3時間焼成し白色の押出し状酸化チタン担体を得た。
得られた酸化チタン担体90.0gに、塩化ルテニウム(NEケムキャット(株)製、RuCl3・nH2O、Ru含量40.0質量%)6.836gを18.5gの純水に溶解して調製した水溶液を含浸し、25℃で18時間放置した。次いで、得られた固体のうち51.9gを、室温から250℃まで空気流通下、1.3時間で昇温し、同温度で2時間焼成し、46.8gの青灰色押出し状の触媒(A)を得た。
Example 1
A catalyst was prepared by an impregnation method similar to the method described in Example 24 of JP-A-10-194705. That is, 100.0 g of titanium oxide powder (Ishihara Sangyo Co., Ltd., PT-101) and 2.0 g of methylcellulose (Shin-Etsu Chemical Co., Ltd., Metrolose 65SH-4000) are mixed, and then 29.2 g of pure water, titanium oxide sol (Sakai Chemical Co., Ltd. CSB, TiO 2 content 38 mass%) 13.2 g was added and kneaded. This mixture was extruded into a noodle shape having a diameter of 3.0 mmφ and a length of about 3 to 6 mm to obtain a molded body. The obtained molded body was heated in air from room temperature to 800 ° C. in 2.2 hours, and calcined at the same temperature for 3 hours to obtain a white extruded titanium oxide carrier.
In 90.0 g of the obtained titanium oxide support, 6.836 g of ruthenium chloride (manufactured by NE Chemcat Co., Ltd., RuCl 3 · nH 2 O, Ru content 40.0 mass%) was dissolved in 18.5 g of pure water. The prepared aqueous solution was impregnated and left at 25 ° C. for 18 hours. Next, 51.9 g of the obtained solid was heated from room temperature to 250 ° C. under air flow in 1.3 hours, calcined at the same temperature for 2 hours, and 46.8 g of a blue-gray extruded catalyst ( A) was obtained.
次に、触媒(A)36.0gを3.6kgの純水で濾過水洗を行なった後、60℃で12時間乾燥した。得られた乾燥品のうち10.0gに、塩化カリウム(和光純薬工業(株))9.6mgを2.1gの純水に溶解して調製した水溶液を含浸した。次いで60℃で2時間乾燥し、塩化カリウム含有触媒を得た(B)。なお、酸化ルテニウムに対する塩化カリウム含量の計算値は、KCl/RuO2×100=2.5重量%であった。
触媒活性の経時変化を確認するために、以下の短期寿命試験(1211時間)を実施した。すなわち上述の方法で調製された触媒(B)のうち、1.5gをニッケル製反応管(内径14mm)に充填した。塩化水素94ml/minと酸素47ml/minと5容量%の一酸化炭素を含む窒素を3.76ml/minおよび水2.4ml/min(いずれも標準状態換算)を、予め、塩化水素の転化率が50%以上のガス組成になるよう調整した後、充填層に供給し、ホットスポットを300℃とした。300℃での運転を395時間行なった後、触媒量を1.2gへ減少させ、ホットスポットを380℃まで上昇させた。380℃での運転を816時間行なった後に触媒を反応管より抜出した。
触媒(B)で、反応に使用していない触媒と短期寿命試験に使用された触媒それぞれについて、以下のように活性の評価を実施した。
触媒1.0gを直径2mmのα−アルミナ球(ニッカトー(株)製、SSA995)12gで希釈してニッケル製反応管(内径14mm)に充填し、さらに触媒層上部にα−アルミナ球12gを予熱層として充填した。塩化水素80ml/minと酸素40ml/min(いずれも0℃、1気圧換算)を常圧下に供給し、触媒層を281〜282℃に加熱した。反応開始1.5時間後の時点で、反応管出口のガスを30質量%ヨウ化カリウム水溶液に流通させることによりサンプリングを行い、ヨウ素滴定法及び中和滴定法によりそれぞれ塩素の生成量及び未反応塩化水素量を測定した。塩化水素の転化率を表1に示した。
Next, 36.0 g of the catalyst (A) was filtered and washed with 3.6 kg of pure water, and then dried at 60 ° C. for 12 hours. 10.0 g of the obtained dried product was impregnated with an aqueous solution prepared by dissolving 9.6 mg of potassium chloride (Wako Pure Chemical Industries, Ltd.) in 2.1 g of pure water. Subsequently, it dried at 60 degreeC for 2 hours, and the potassium chloride containing catalyst was obtained (B). In addition, the calculated value of the potassium chloride content with respect to ruthenium oxide was KCl / RuO 2 × 100 = 2.5 wt%.
The following short-term life test (1211 hours) was carried out in order to confirm the change in catalyst activity over time. That is, 1.5 g of the catalyst (B) prepared by the above-described method was packed in a nickel reaction tube (inner diameter: 14 mm). Hydrogen chloride 94 ml / min, oxygen 47 ml / min, nitrogen containing 5% by volume of carbon monoxide 3.76 ml / min and water 2.4 ml / min (both converted to standard conditions) are converted into hydrogen chloride in advance. Was adjusted to a gas composition of 50% or more, and then supplied to the packed bed, and the hot spot was set to 300 ° C. After 395 hours of operation at 300 ° C., the catalyst amount was reduced to 1.2 g and the hot spot was raised to 380 ° C. After operating at 380 ° C. for 816 hours, the catalyst was extracted from the reaction tube.
With respect to the catalyst (B), the activity of each of the catalyst not used in the reaction and the catalyst used in the short-term life test was evaluated as follows.
1.0 g of catalyst was diluted with 12 g of α-alumina spheres (Nikkato Co., Ltd., SSA995) having a diameter of 2 mm and filled into a nickel reaction tube (inner diameter 14 mm), and 12 g of α-alumina spheres were preheated on the upper part of the catalyst layer. Filled as a layer. Hydrogen chloride 80 ml / min and oxygen 40 ml / min (both 0 ° C. and 1 atm) were supplied under normal pressure, and the catalyst layer was heated to 281 to 282 ° C. At 1.5 hours after the start of the reaction, sampling was performed by circulating the gas at the outlet of the reaction tube through a 30% by mass aqueous potassium iodide solution. The amount of hydrogen chloride was measured. The conversion rate of hydrogen chloride is shown in Table 1.
比較例1
実施例1で得られた塩化カリウム添加前の触媒(A)を用いた以外は実施例1と同様に反応を行なった。塩化水素の転化率を表1に示した。
Comparative Example 1
The reaction was conducted in the same manner as in Example 1 except that the catalyst (A) obtained before adding potassium chloride obtained in Example 1 was used. The conversion rate of hydrogen chloride is shown in Table 1.
Claims (1)
A method for producing a catalyst in which an alkali metal compound and a ruthenium compound containing ruthenium oxide are supported on a carrier, which is used in producing chlorine by oxidizing hydrogen chloride with oxygen, wherein the ruthenium compound containing ruthenium oxide in advance is used. A method for producing a catalyst for chlorine production, comprising adding an alkali metal compound after preparing a supported catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003343253A JP4285179B2 (en) | 2003-02-27 | 2003-10-01 | Method for producing a catalyst for chlorine production |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003050754 | 2003-02-27 | ||
JP2003343253A JP4285179B2 (en) | 2003-02-27 | 2003-10-01 | Method for producing a catalyst for chlorine production |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004276012A JP2004276012A (en) | 2004-10-07 |
JP4285179B2 true JP4285179B2 (en) | 2009-06-24 |
Family
ID=33301805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003343253A Expired - Fee Related JP4285179B2 (en) | 2003-02-27 | 2003-10-01 | Method for producing a catalyst for chlorine production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4285179B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012135722A (en) * | 2010-12-27 | 2012-07-19 | Sumitomo Chemical Co Ltd | Method for manufacturing carried ruthenium oxide and method for manufacturing chlorine |
JP2013139017A (en) | 2011-12-07 | 2013-07-18 | Sumitomo Chemical Co Ltd | Method for producing carried ruthenium oxide, and method for producing chlorine |
KR102287846B1 (en) * | 2018-12-21 | 2021-08-06 | 한화솔루션 주식회사 | Catalyst for Hydrogen Chloride Oxidation Reaction for Chlorine Production and Preparation Method thereof |
CN109821571B (en) * | 2019-03-15 | 2021-09-17 | 西安近代化学研究所 | Preparation method of high-activity hydrogen chloride oxidation catalyst |
-
2003
- 2003-10-01 JP JP2003343253A patent/JP4285179B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004276012A (en) | 2004-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5382100B2 (en) | Chlorine production method | |
JP5225377B2 (en) | Thermally stable catalyst for gas phase oxidation of hydrogen chloride | |
US9089838B2 (en) | Catalyst and method for the production of chlorine by gas phase oxidation | |
JP2544925B2 (en) | Method for producing silver-containing catalyst | |
JP2009537449A (en) | Method for producing chlorine by gas phase oxidation | |
JP2009537446A (en) | Method for producing chlorine by gas phase oxidation | |
JP7269349B2 (en) | Method for producing supported ruthenium oxide catalyst for chlorine production and catalyst produced thereby | |
JP4367381B2 (en) | Method for activating catalyst for producing chlorine and method for producing chlorine | |
JP4285179B2 (en) | Method for producing a catalyst for chlorine production | |
JP2006289228A (en) | Method for producing carried ruthenium oxide and method for producing chlorine | |
JP7520124B2 (en) | Molded catalyst for hydrogen chloride oxidation reaction and its manufacturing method | |
CN113164924B (en) | Catalyst for hydrogen chloride oxidation reaction for preparing chlorine and preparation method thereof | |
MXPA05003170A (en) | Catalyst for the catalytic oxidation of hydrogen chloride. | |
JP4432876B2 (en) | Catalyst for chlorine production and method for producing chlorine | |
JP4400042B2 (en) | Supported ruthenium oxide catalyst and method for producing chlorine | |
JP4411958B2 (en) | Chlorine production method | |
JP2012200700A (en) | Method for producing bromine | |
JP7496421B2 (en) | Molded catalyst for hydrogen chloride oxidation reaction process and its manufacturing method | |
JP4285220B2 (en) | Catalyst for chlorine production | |
JP4182739B2 (en) | Chlorine production method | |
US20090274612A1 (en) | Process for producing supported ruthenium oxide and process for producing chlorine | |
JP2019181332A (en) | Catalyst for decomposing hydrogen iodide | |
CN116685555A (en) | Method for producing chlorine in high yield by oxidation reaction of hydrogen chloride | |
JP2014101295A (en) | Method for producing olefin oxide | |
JP2012135722A (en) | Method for manufacturing carried ruthenium oxide and method for manufacturing chlorine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060530 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20080130 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20080513 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090303 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090316 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120403 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120403 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120403 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130403 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130403 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140403 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |