JP2005289800A - Method of producing chlorine - Google Patents

Method of producing chlorine Download PDF

Info

Publication number
JP2005289800A
JP2005289800A JP2005079001A JP2005079001A JP2005289800A JP 2005289800 A JP2005289800 A JP 2005289800A JP 2005079001 A JP2005079001 A JP 2005079001A JP 2005079001 A JP2005079001 A JP 2005079001A JP 2005289800 A JP2005289800 A JP 2005289800A
Authority
JP
Japan
Prior art keywords
hydrogen chloride
reaction
chlorine
gas
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005079001A
Other languages
Japanese (ja)
Inventor
Seiji Iwanaga
清司 岩永
Yasuhiko Mori
康彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005079001A priority Critical patent/JP2005289800A/en
Publication of JP2005289800A publication Critical patent/JP2005289800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing chlorine having a high oxidation reactivity of carbon monoxide, phosgene, hydrogen, or an organic compound and a high inversion rate of hydrogen chloride to chlorine, in producing chlorine by contacting a mixed gas containing carbon monoxide, phosgene, hydrogen or an organic compound, and hydrogen chloride with a gas containing oxygen, where at least one compound selected from the carbon monoxide, the phosgene, the hydrogen or the organic compound contained in the gas is oxidized and the hydrogen chloride is oxidized into chlorine as well. <P>SOLUTION: In the presence of ruthenium carried on titanium oxide and/or a ruthenium compound, a mixed gas containing at least one compound selected from the group consisting of carbon monoxide, phosgene, hydrogen, and an organic compound and hydrogen chloride is contacted with a gas containing oxygen, and at least one of the compounds is oxidized and the hydrogen chloride is oxidized into chlorine as well. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、一酸化炭素、ホスゲン、水素および有機化合物よりなる群から選ばれる少なくとも1つの化合物を酸化すると同時に、塩化水素を塩素に酸化する塩素の製造方法に関するものである。更に詳しくは、本発明は、一酸化炭素、ホスゲン、水素および有機化合物よりなる群から選ばれる少なくとも1つの化合物ならびに塩化水素を含む混合ガスを、酸素を含むガスと接触させ、該少なくとも1つの化合物を酸化すると同時に、塩化水素を塩素に酸化する塩素の製造方法であって、一酸化炭素、ホスゲン、水素または有機化合物の酸化の反応率が高く、塩化水素の塩素への転化率が高いという優れた特徴を有する塩素の製造方法に関するものである。 The present invention relates to a method for producing chlorine in which at least one compound selected from the group consisting of carbon monoxide, phosgene, hydrogen and an organic compound is oxidized, and at the same time, hydrogen chloride is oxidized to chlorine. More specifically, the present invention is directed to bringing at least one compound selected from the group consisting of carbon monoxide, phosgene, hydrogen and an organic compound and a mixed gas containing hydrogen chloride into contact with a gas containing oxygen, and said at least one compound Is a method for producing chlorine in which hydrogen chloride is oxidized to chlorine at the same time as oxidation of carbon monoxide, oxidization of carbon monoxide, phosgene, hydrogen or organic compounds is high, and conversion rate of hydrogen chloride to chlorine is high. The present invention relates to a method for producing chlorine having the above characteristics.

一酸化炭素、ホスゲン、水素および有機化合物よりなる群から選ばれる少なくとも1つの化合物ならびに塩化水素を含む混合ガス中の該化合物を酸素を含むガスを用いて酸化分解する方法は公知である。例えば特許文献1〔特開2003−171103号公報〕には、300℃から800℃の間で焼成した酸化ジルコニウムにルテニウム化合物を含浸した後、熱処理して得られる触媒の存在下に一酸化炭素、ホスゲンおよび有機化合物のうちから選ばれる少なくとも1つの化合物並びに塩化水素を含む混合ガス中の一酸化炭素、ホスゲンおよび有機化合物のうちから選ばれる少なくとも1つの化合物を、酸素を含むガスを用いて酸化分解する方法が開示されている。 A method of oxidatively decomposing at least one compound selected from the group consisting of carbon monoxide, phosgene, hydrogen and an organic compound and a compound gas containing hydrogen chloride using a gas containing oxygen is known. For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-171103), carbon monoxide is impregnated in the presence of a catalyst obtained by impregnating a ruthenium compound with zirconium oxide calcined between 300 ° C. and 800 ° C. Oxidative decomposition of at least one compound selected from phosgene and an organic compound and at least one compound selected from carbon monoxide, phosgene and an organic compound in a mixed gas containing hydrogen chloride using a gas containing oxygen A method is disclosed.

特開2003−171103号公報JP 2003-171103 A 特開2000−229239号公報JP 2000-229239 A 特開2000−281314号公報JP 2000-281314 A 特開2002−79093号公報JP 2002-79093 A 特開2004−181408号公報JP 2004-181408 A

しかしながら、従来の方法においては、一酸化炭素、ホスゲンまたは有機化合物の酸化分解の反応率が低いという問題があった。かかる状況において、本発明が解決しようとする課題は、一酸化炭素、ホスゲン、水素および有機化合物よりなる群から選ばれる少なくとも1つの化合物ならびに塩化水素を含む混合ガスを、酸素を含むガスと接触させ、該少なくとも1つの化合物を酸化すると同時に、塩化水素を塩素に酸化する塩素の製造方法であって、該少なくとも1つの化合物の酸化の反応率が高く、塩化水素の塩素への転化率が高いという優れた特徴を有する塩素の製造を提供する点にある。 However, the conventional method has a problem that the reaction rate of oxidative decomposition of carbon monoxide, phosgene or an organic compound is low. In such a situation, the problem to be solved by the present invention is to bring a mixed gas containing at least one compound selected from the group consisting of carbon monoxide, phosgene, hydrogen and an organic compound and hydrogen chloride into contact with a gas containing oxygen. A method for producing chlorine wherein the at least one compound is oxidized simultaneously with the oxidation of hydrogen chloride to chlorine, wherein the reaction rate of oxidation of the at least one compound is high and the conversion rate of hydrogen chloride to chlorine is high. The object is to provide production of chlorine having excellent characteristics.

すなわち、本発明は、酸化チタンに担持されたルテニウムおよび/またはルテニウム化合物の存在下、一酸化炭素、ホスゲン、水素および有機化合物よりなる群から選ばれる少なくとも1つの化合物ならびに塩化水素を含む混合ガスを、酸素を含むガスと接触させ、該少なくとも1つの化合物を酸化すると同時に、塩化水素を塩素に酸化する塩素の製造方法に係るものである。 That is, the present invention provides a mixed gas containing hydrogen chloride and at least one compound selected from the group consisting of carbon monoxide, phosgene, hydrogen and an organic compound in the presence of ruthenium and / or ruthenium compounds supported on titanium oxide. The invention relates to a method for producing chlorine, which is brought into contact with a gas containing oxygen to oxidize at least one compound and simultaneously oxidize hydrogen chloride to chlorine.

本発明により、一酸化炭素、ホスゲン、水素および有機化合物よりなる群から選ばれる少なくとも1つの化合物ならびに塩化水素を含む混合ガスを、酸素を含むガスと接触させることにより、高い反応率で、一酸化炭素、ホスゲン、水素または有機化合物を酸化し、高い転化率で塩化水素から塩素を製造することができる。 According to the present invention, at least one compound selected from the group consisting of carbon monoxide, phosgene, hydrogen, and an organic compound and a mixed gas containing hydrogen chloride are brought into contact with a gas containing oxygen, and thereby the monoxide is oxidized at a high reaction rate. Carbon, phosgene, hydrogen or organic compounds can be oxidized to produce chlorine from hydrogen chloride with high conversion.

本発明においては、触媒として酸化チタンに担持されたルテニウムおよび/またはルテニウム化合物を用いる必要がある。このことにより、一酸化炭素、ホスゲン、水素または有機化合物の酸化の反応率が高く、塩化水素の塩素への転化率を高くすることができる。 In the present invention, it is necessary to use ruthenium and / or a ruthenium compound supported on titanium oxide as a catalyst. Thereby, the reaction rate of oxidation of carbon monoxide, phosgene, hydrogen or an organic compound is high, and the conversion rate of hydrogen chloride to chlorine can be increased.

本発明において用いられるルテニウムおよび/またはルテニウム化合物としては、金属単体のルテニウムである金属ルテニウム、酸化ルテニウム、塩化ルテニウム、塩化ルテニウム水和物、硝酸ニトロシルルテニウム、ルテニウムカルボニル錯体およびこれらのうちの任意の組み合わせよりなる混合物が挙げられる。 The ruthenium and / or ruthenium compound used in the present invention includes ruthenium metal, ruthenium oxide, ruthenium chloride, ruthenium chloride hydrate, nitrosyl ruthenium nitrate, ruthenium carbonyl complex, and any combination thereof. The mixture which consists of is mentioned.

本発明において用いられる一酸化炭素、ホスゲン、水素および有機化合物よりなる群から選ばれる少なくとも1つの化合物ならびに塩化水素を含む混合ガスとしては、水素と塩素の反応、塩素化合物の熱分解反応や燃焼反応、有機化合物のホスゲン化反応または塩素化反応、クロロフルオロアルカンの製造、塩酸の加熱、焼却炉の燃焼等において発生した塩化水素を含むいかなるものを使用することができる。 The mixed gas containing at least one compound selected from the group consisting of carbon monoxide, phosgene, hydrogen and organic compounds and hydrogen chloride used in the present invention includes a reaction between hydrogen and chlorine, a thermal decomposition reaction and a combustion reaction of a chlorine compound. Any compound containing hydrogen chloride generated in the phosgenation reaction or chlorination reaction of organic compounds, production of chlorofluoroalkane, heating of hydrochloric acid, combustion in an incinerator, etc. can be used.

塩素化合物の熱分解反応としては、1,2−ジクロロエタンから塩化ビニルの製造、クロロジフルオロメタンからテトラフルオロエチレンの製造などが挙げられる。 Examples of the thermal decomposition reaction of the chlorine compound include production of vinyl chloride from 1,2-dichloroethane, production of tetrafluoroethylene from chlorodifluoromethane, and the like.

有機化合物のホスゲン化反応としては、アミンとホスゲンとの反応によるイソシアネートの製造、アルコールおよび/または芳香族アルコールとホスゲンとの反応による炭酸エステルの製造が挙げられる。 Examples of the phosgenation reaction of an organic compound include production of isocyanate by reaction of amine and phosgene, and production of carbonate ester by reaction of alcohol and / or aromatic alcohol with phosgene.

有機化合物の塩素化反応としては、プロピレンと塩素との反応による塩化アリルの製造、エタンと塩素との反応による塩化エチルの製造、1,2−ジクロロエタンと塩素との反応によるトリクロロエチレンとテトラクロロエチレンの製造、ベンゼンと塩素との反応によるクロロベンゼンの製造などが挙げられる。 The chlorination reaction of organic compounds includes the production of allyl chloride by the reaction of propylene and chlorine, the production of ethyl chloride by the reaction of ethane and chlorine, the production of trichlorethylene and tetrachloroethylene by the reaction of 1,2-dichloroethane and chlorine, Examples include production of chlorobenzene by reaction of benzene and chlorine.

クロロフルオロアルカンの製造としては、四塩化炭素とフッ化水素との反応によるジクロロジフルオロメタンとトリクロロモノフルオロメタンの製造、メタンと塩素とフッ化水素との反応によるジクロロジフルオロメタンとトリクロロモノフルオロメタンの製造などが挙げられる。 The production of chlorofluoroalkane includes the production of dichlorodifluoromethane and trichloromonofluoromethane by the reaction of carbon tetrachloride and hydrogen fluoride, and the production of dichlorodifluoromethane and trichloromonofluoromethane by the reaction of methane, chlorine and hydrogen fluoride. Manufacturing etc. are mentioned.

本発明において用いられる混合ガス中の有機化合物としては、脂肪族炭化水素、芳香族炭化水素、アルコール、芳香族アルコールが挙げられる。 Examples of the organic compound in the mixed gas used in the present invention include aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, and aromatic alcohols.

脂肪族炭化水素としては、エタン、エチレン、アセチレン、プロパン、プロピレン、塩化メチル、ジクロロメタン、トリクロロメタン、四塩化炭素、塩化エチル、塩化ビニル、1,2−ジクロロエタンなどのジクロロエタン、トリクロロエタン、テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタンが挙げられる。 Aliphatic hydrocarbons include ethane, ethylene, acetylene, propane, propylene, methyl chloride, dichloromethane, trichloromethane, carbon tetrachloride, ethyl chloride, vinyl chloride, 1,2-dichloroethane, dichloroethane, trichloroethane, tetrachloroethane, penta Examples include chloroethane and hexachloroethane.

芳香族炭化水素としては、ベンゼン、モノクロロベンゼン、オルトジクロロベンゼンなどのジクロロベンゼン、トリクロロベンゼン、テトラクロロベンゼン、ペンタクロロベンゼン、ヘキサクロロベンゼンが挙げられる。 Examples of the aromatic hydrocarbon include dichlorobenzene such as benzene, monochlorobenzene and orthodichlorobenzene, trichlorobenzene, tetrachlorobenzene, pentachlorobenzene and hexachlorobenzene.

アルコールとしては、メタノール、エタノール、プロパノールが挙げられる。
芳香族アルコールとしては、フェノール、クレゾールが挙げられる。
Examples of the alcohol include methanol, ethanol, and propanol.
Examples of the aromatic alcohol include phenol and cresol.

本発明において用いられる酸素を含むガスとしては、酸素または空気が使用される。酸素は空気の圧力スイング法や深冷分離などの通常の工業的な方法によって得ることができる。 As the gas containing oxygen used in the present invention, oxygen or air is used. Oxygen can be obtained by ordinary industrial methods such as pressure swing of air or cryogenic separation.

本発明においては、触媒としては酸化チタンに担持された酸化ルテニウムが好ましく、ルチル結晶形酸化チタンに担持された酸化ルテニウムが一酸化炭素、ホスゲン、水素または有機化合物の酸化の反応率が高く、塩化水素の塩素への転化率が高いために更に好ましい。酸化チタンに担持された酸化ルテニウムを含有する触媒は、例えば特許文献2〔特開2000−229239号公報〕、特許文献3〔特開2000−281314号公報〕、特許文献4〔特開2002−79093号公報〕に記載されている。 In the present invention, the catalyst is preferably ruthenium oxide supported on titanium oxide, and ruthenium oxide supported on rutile crystalline titanium oxide has a high oxidation reaction rate of carbon monoxide, phosgene, hydrogen or an organic compound, and chloride. More preferable because of the high conversion rate of hydrogen to chlorine. Catalysts containing ruthenium oxide supported on titanium oxide include, for example, Patent Document 2 (Japanese Patent Laid-Open No. 2000-229239), Patent Document 3 (Japanese Patent Laid-Open No. 2000-281314), and Patent Document 4 (Japanese Patent Laid-Open No. 2002-79093). No.].

本発明において用いられる酸化チタンには、酸化チタンと他の金属酸化物との複合酸化物や、酸化チタンとアルミナ、酸化ジルコニウム、シリカなどの他の金属酸化物との混合物も含まれる。また触媒は、アルミナ、酸化ジルコニウム、シリカなどとの反応に不活性な物質で希釈して用いることができる。 The titanium oxide used in the present invention includes composite oxides of titanium oxide and other metal oxides, and mixtures of titanium oxide and other metal oxides such as alumina, zirconium oxide, and silica. Further, the catalyst can be used after diluted with a substance that is inert to the reaction with alumina, zirconium oxide, silica or the like.

触媒の形状は、球形粒状、円柱形ペレット状、押出形状、リング形状、ハニカム状あるいは成型後に粉砕分級した適度の大きさの顆粒状等で用いられる。この際、触媒の直径としては5mm以下が好ましい。触媒の直径が大きいと、一酸化炭素、ホスゲン、水素または有機化合物の酸化分解の反応率が低くなったり、塩化水素の塩素への転化率が低いことがある。触媒の直径の下限は特に制限はないが、過度に小さくなると、触媒層での圧力損失が大きくなるため、通常は0.5mm以上のものが用いられる。なお、ここでいう触媒の直径とは、球形粒状では球の直径、円柱形ペレット状では円形断面の直径、その他の形状では断面の最大直径を意味する。 The catalyst may be used in the form of a spherical particle, a cylindrical pellet, an extruded shape, a ring shape, a honeycomb shape, or an appropriately sized granule that has been pulverized and classified after molding. At this time, the diameter of the catalyst is preferably 5 mm or less. When the diameter of the catalyst is large, the reaction rate of oxidative decomposition of carbon monoxide, phosgene, hydrogen or an organic compound may be low, or the conversion rate of hydrogen chloride to chlorine may be low. The lower limit of the diameter of the catalyst is not particularly limited, but if it becomes excessively small, pressure loss in the catalyst layer increases, and therefore, a catalyst having a diameter of 0.5 mm or more is usually used. The diameter of the catalyst here means the diameter of a sphere in the case of spherical particles, the diameter of a circular cross section in the case of a cylindrical pellet, and the maximum diameter of the cross section in other shapes.

触媒の使用量は標準状態における一酸化炭素、ホスゲン、水素および有機化合物よりなる群から選ばれる少なくとも1つの化合物ならびに塩化水素を含む混合ガスの供給速度との比(GHSV)で表すと、通常10〜50000h-1である。 The amount of the catalyst used is usually 10 in terms of the ratio (GHSV) to the supply rate of the mixed gas containing at least one compound selected from the group consisting of carbon monoxide, phosgene, hydrogen and an organic compound and hydrogen chloride in the standard state. ˜50000 h −1 .

本発明においては、該混合ガス中の一酸化炭素の濃度は通常5体積%以下、好ましくは1体積%以下、更に好ましくは0.5体積%以下のものが用いられる。一酸化炭素の濃度が高すぎる場合には触媒の活性が低下することがある。 In the present invention, the concentration of carbon monoxide in the mixed gas is usually 5% by volume or less, preferably 1% by volume or less, more preferably 0.5% by volume or less. If the concentration of carbon monoxide is too high, the activity of the catalyst may decrease.

本発明においては、該混合ガス中のホスゲンの濃度は通常5体積%以下、好ましくは1体積%以下、更に好ましくは0.5体積%以下のものが用いられる。 In the present invention, the concentration of phosgene in the mixed gas is usually 5% by volume or less, preferably 1% by volume or less, more preferably 0.5% by volume or less.

本発明においては、該混合ガス中の水素の濃度は通常5体積%以下、好ましくは1体積%以下、更に好ましくは0.5体積%以下のものが用いられる。 In the present invention, the hydrogen concentration in the mixed gas is usually 5% by volume or less, preferably 1% by volume or less, more preferably 0.5% by volume or less.

本発明においては、該混合ガス中の有機化合物の濃度は通常5体積%以下、好ましくは1体積%以下、更に好ましくは0.1体積%以下のものが用いられる。有機化合物の濃度が高すぎる場合には触媒の活性が低下することがある。 In the present invention, the concentration of the organic compound in the mixed gas is usually 5% by volume or less, preferably 1% by volume or less, more preferably 0.1% by volume or less. If the concentration of the organic compound is too high, the activity of the catalyst may decrease.

本発明においては、該混合ガス中の塩化水素の濃度は通常50体積%以上、好ましくは80体積%以上、更に好ましくは90体積%以上のものが用いられる。 In the present invention, the concentration of hydrogen chloride in the mixed gas is usually 50% by volume or more, preferably 80% by volume or more, more preferably 90% by volume or more.

本発明においては、一酸化炭素、ホスゲン、水素および有機化合物よりなる群から選ばれる少なくとも1つの化合物ならびに塩化水素の合計量に対する酸素のモル比を0.2以上とすることが好ましく、0.5以上が更に好ましい。酸素の量が過少であると、一酸化炭素、ホスゲン、水素または有機化合物の酸化の反応率が低いことがある。 In the present invention, the molar ratio of oxygen to the total amount of at least one compound selected from the group consisting of carbon monoxide, phosgene, hydrogen and an organic compound and hydrogen chloride is preferably 0.2 or more. The above is more preferable. If the amount of oxygen is too small, the reaction rate of oxidation of carbon monoxide, phosgene, hydrogen or organic compounds may be low.

本発明においては、反応温度は通常200〜500℃であるが、250〜450℃とすることが好ましく、300〜400℃が更に好ましい。反応温度が低すぎる場合は、一酸化炭素、ホスゲン、水素または有機化合物の酸化の反応率が低くなったり、塩化水素の塩素への転化率が低いことがある。一方、反応温度が高すぎる場合は、触媒の成分が揮散することがある。 In this invention, although reaction temperature is 200-500 degreeC normally, it is preferable to set it as 250-450 degreeC, and 300-400 degreeC is still more preferable. When the reaction temperature is too low, the reaction rate of oxidation of carbon monoxide, phosgene, hydrogen or an organic compound may be low, or the conversion rate of hydrogen chloride to chlorine may be low. On the other hand, if the reaction temperature is too high, the catalyst components may volatilize.

反応圧力は通常0.1〜5MPaであるが、0.1〜1MPaとすることが好ましい。 The reaction pressure is usually 0.1 to 5 MPa, preferably 0.1 to 1 MPa.

空塔基準のガス線速度は、通常0.1〜20m/sである。なお、本発明の空塔基準のガス線速度とは、反応器に供給される全てのガスの標準状態における供給速度の合計量と反応器の断面積の比を意味する。 The gas linear velocity based on the empty column is usually 0.1 to 20 m / s. The superficial gas linear velocity of the present invention means the ratio of the total supply rate of all the gases supplied to the reactor in the standard state to the cross-sectional area of the reactor.

反応方式としては、固定床気相流通反応方式または流動層気相流通反応方式が挙げられる。 Examples of the reaction method include a fixed bed gas phase flow reaction method and a fluidized bed gas phase flow reaction method.

固定床気相流通反応方式の場合、温度制御は熱交換方式で行うことができる。本発明の熱交換方式とは、触媒が充填された反応管の外側にジャケット部を有し、反応で生成した反応熱をジャケット内の熱媒体によって除去する方式を意味する。熱交換方式では、反応管内の触媒充填層の温度がジャケット内の熱媒体によって制御される。工業的には、反応管を並列に配列し、外側にジャケット部を有する多管式熱交換器型の固定床多管式反応器を用いることができる。 In the case of the fixed bed gas phase flow reaction method, the temperature control can be performed by a heat exchange method. The heat exchange system of the present invention means a system having a jacket portion outside the reaction tube filled with a catalyst and removing reaction heat generated by the reaction with a heat medium in the jacket. In the heat exchange system, the temperature of the catalyst packed bed in the reaction tube is controlled by the heat medium in the jacket. Industrially, it is possible to use a multi-tube heat exchanger type fixed-bed multi-tubular reactor having reaction tubes arranged in parallel and having a jacket portion on the outside.

本発明においては以下の工程によって塩素を得ることができる。
(1)反応工程:一酸化炭素、ホスゲン、水素および有機化合物よりなる群から選ばれる少なくとも1つの化合物ならびに塩化水素を含む混合ガスを、酸素を含むガスと接触させ、該少なくとも1つの化合物を酸化すると同時に、塩化水素を塩素に酸化する工程
(2)吸収工程:反応工程で得たガスを、冷却することにより、水および/または塩酸と接触させることにより、あるいは、水および/または塩酸と接触させた後に冷却することにより、塩化水素と水を主成分とする溶液を回収し、塩素と未反応酸素を主成分とするガスを得る工程
(3)乾燥工程:吸収工程で得たガス中の水分を除去することにより、乾燥したガスを得る工程
(4)精製工程:乾燥工程で得た乾燥したガスを、塩素を主成分とする液体またはガスと未反応酸素を主成分とするガスとに分離することにより塩素を得る工程
(5)循環工程:精製工程で得た未反応酸素を主成分とするガスの一部または全部を反応工程へ供給する工程
(6)除害工程:精製工程で得た未反応酸素を主成分とするガス、または循環工程で反応工程へ供給されなかったガスについて該ガス中に含まれる塩素を除去した後、系外に排出する工程
In the present invention, chlorine can be obtained by the following steps.
(1) Reaction step: contacting at least one compound selected from the group consisting of carbon monoxide, phosgene, hydrogen and an organic compound and a mixed gas containing hydrogen chloride with a gas containing oxygen, and oxidizing the at least one compound And simultaneously oxidizing hydrogen chloride to chlorine
(2) Absorption step: The gas obtained in the reaction step is cooled, brought into contact with water and / or hydrochloric acid, or brought into contact with water and / or hydrochloric acid and then cooled, and then cooled with hydrogen chloride. A step of collecting a solution containing water as a main component to obtain a gas containing chlorine and unreacted oxygen as main components
(3) Drying step: A step of obtaining a dried gas by removing moisture in the gas obtained in the absorption step.
(4) Purification step: A step of obtaining chlorine by separating the dried gas obtained in the drying step into a liquid or gas mainly containing chlorine and a gas mainly containing unreacted oxygen.
(5) Circulation step: A step of supplying a part or all of the gas mainly composed of unreacted oxygen obtained in the purification step to the reaction step.
(6) Detoxification step: After removing chlorine contained in the gas from the gas mainly composed of unreacted oxygen obtained in the purification step or the gas not supplied to the reaction step in the circulation step, Discharging process

本発明においては、該混合ガスを活性炭と接触させた後に反応工程に用いることができる。 In this invention, after making this mixed gas contact activated carbon, it can use for a reaction process.

本発明においては、吸収工程で得た塩化水素と水を主成分とする溶液は、そのまま、あるいは溶液中に含まれる塩素を加熱、および/または窒素等の不活性なガスのバブリングにより除去した後、電解槽のpH調整、ボイラ−フィ−ド水の中和、アニリンとホルマリンとの縮合転位反応による4,4’−ジフェニルメタンジアミンの製造、および塩酸電解の原料に用いることができる。また、塩化水素回収用の蒸留に付して蒸留塔の頂部から塩化水素を回収して該混合ガスの一部として反応に用い、蒸留塔の底部の液の一部または全部を脱水用の蒸留に付して蒸留塔の頂部から水を回収し、蒸留塔の底部の液の一部または全部を上記塩化水素回収用の蒸留塔へ供給することができる。 In the present invention, the solution containing hydrogen chloride and water as main components obtained in the absorption step is used as it is or after removing chlorine contained in the solution by heating and / or bubbling with an inert gas such as nitrogen. It can be used as a raw material for pH adjustment of electrolytic cells, neutralization of boiler feed water, production of 4,4′-diphenylmethanediamine by condensation rearrangement reaction of aniline and formalin, and hydrochloric acid electrolysis. In addition, hydrogen chloride is recovered from the top of the distillation column by being subjected to distillation for hydrogen chloride recovery and used in the reaction as a part of the mixed gas, and part or all of the liquid at the bottom of the distillation column is distilled for dehydration. Then, water can be recovered from the top of the distillation column, and a part or all of the liquid at the bottom of the distillation column can be supplied to the distillation column for recovering hydrogen chloride.

本発明においては、精製工程で得た未反応酸素を主成分とするガスの一部または全部を散気部材にて吸収液にバブリングさせて硫酸ミストを除去することができる。 In the present invention, the sulfuric acid mist can be removed by bubbling a part or all of the gas mainly composed of unreacted oxygen obtained in the purification step to the absorbing solution by the air diffuser.

本発明においては、精製工程で得た塩素は、エチレンとの反応による1,2−ジクロロエタンの製造、一酸化炭素との反応によるホスゲン、プロピレンとの反応による塩化アリルの製造に用いることができる。ホスゲンはアミンとの反応によるイソシアネートの製造、アルコールおよび/または芳香族アルコールとの反応による炭酸エステルの製造に使用することができる。イソシアネートとしては、トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、ヘキサメチレン−1,6−ジイソシアネートを挙げることができる。炭酸エステルとしては、炭酸ジフェニル、炭酸ジメチルを挙げることができる。 In the present invention, the chlorine obtained in the purification step can be used for production of 1,2-dichloroethane by reaction with ethylene, phosgene by reaction with carbon monoxide, and allyl chloride by reaction with propylene. Phosgene can be used in the production of isocyanates by reaction with amines, and in the production of carbonate esters by reaction with alcohols and / or aromatic alcohols. Examples of the isocyanate include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and hexamethylene-1,6-diisocyanate. Examples of the carbonate ester include diphenyl carbonate and dimethyl carbonate.

以下、本発明を実施例により説明する。 Hereinafter, the present invention will be described with reference to examples.

実施例1
特許文献4〔特開2002−79093号公報〕の実施例16に記載されている触媒b(1.5mmφ押出し状酸化チタン−αアルミナ担持酸化ルテニウム触媒)と同様の方法により、酸化ルテニウム担持量が2.0質量%である触媒Aと酸化ルテニウム担持量が4.0質量%である触媒Bとを調製した。
Example 1
In the same manner as catalyst b (1.5 mmφ extruded titanium oxide-α-alumina-supported ruthenium oxide catalyst) described in Example 16 of Patent Document 4 (Japanese Patent Laid-Open No. 2002-79093), the amount of ruthenium oxide supported was A catalyst A having 2.0% by mass and a catalyst B having a ruthenium oxide loading of 4.0% by mass were prepared.

得られた触媒を用い、以下の通り、塩化水素を酸素によって酸化する反応を行い、触媒の活性を安定させた後、有機物添加実験を行った。すなわち、直立させた石英反応管(内径14mm)に、触媒Bを3.71g(2.7cm3)充填し、さらに該触媒Bの上方に8.11g(6.1cm3)の触媒Aと直径2mmのα−アルミナ球(ニッカトー(株)製、SSA995)6.0gとの混合物を充填した。 Using the obtained catalyst, the reaction of oxidizing hydrogen chloride with oxygen was performed as follows to stabilize the activity of the catalyst, and then an organic substance addition experiment was performed. That is, 3.71 g (2.7 cm 3 ) of catalyst B was filled in an upright quartz reaction tube (inner diameter: 14 mm), and 8.11 g (6.1 cm 3 ) of catalyst A and diameter were further above catalyst B. A mixture with 6.0 g of 2 mm α-alumina spheres (SSA995, manufactured by Nikkato Co., Ltd.) was charged.

この反応管上部から、塩化水素ガスを80ml/min、酸素ガスを40ml/min(いずれも絶対圧力0.1MPa、0℃換算)の流量で連続的に供給した。反応温度は340〜359℃であり、反応圧力は0.1MPaであり、触媒体積に対するGHSVは549h-1であった。 From the upper part of the reaction tube, hydrogen chloride gas was continuously supplied at a flow rate of 80 ml / min, and oxygen gas was supplied at a flow rate of 40 ml / min (both absolute pressure 0.1 MPa, converted to 0 ° C.). The reaction temperature was 340-359 ° C., the reaction pressure was 0.1 MPa, and the GHSV with respect to the catalyst volume was 549 h −1 .

塩化水素ガスと酸素ガスの供給開始から1.5時間後、反応管出口のガスを30質量%ヨウ化カリウム水溶液に流通させることにより前記ガスを捕集し、ヨウ素滴定法により生成塩素量を、中和滴定法により未反応塩化水素量を測定した。。塩化水素の転化率を表1に示した。 After 1.5 hours from the start of supply of hydrogen chloride gas and oxygen gas, the gas is collected by circulating the gas at the outlet of the reaction tube through a 30% by mass potassium iodide aqueous solution, and the amount of generated chlorine is determined by iodine titration. The amount of unreacted hydrogen chloride was measured by a neutralization titration method. . The conversion rate of hydrogen chloride is shown in Table 1.

塩化水素ガスと酸素ガスの供給開始から23時間後、窒素により0.45体積%に希釈されたフェノールガスを20ml/minの流量で供給開始した。原料中の塩化水素ガスに対するフェノールの濃度は0.1体積%と計算される。 After 23 hours from the start of supply of hydrogen chloride gas and oxygen gas, the supply of phenol gas diluted to 0.45% by volume with nitrogen was started at a flow rate of 20 ml / min. The concentration of phenol with respect to hydrogen chloride gas in the raw material is calculated to be 0.1% by volume.

塩化水素ガスと酸素ガスの供給から27時間後および93時間後、反応管出口のガスを30質量%ヨウ化カリウム水溶液に流通させることにより前記ガスを捕集し、ヨウ素滴定法により塩素の生成量を、中和滴定法により未反応塩化水素量を、ガスクロマトグラフィーで分析し、出口二酸化炭素量を測定した。それぞれの塩化水素の転化率および二酸化炭素のフェノールに対する収量を第1表に示した。
27 hours and 93 hours after the supply of hydrogen chloride gas and oxygen gas, the gas at the outlet of the reaction tube was passed through a 30% by mass potassium iodide aqueous solution to collect the gas, and the amount of chlorine produced by iodine titration The amount of unreacted hydrogen chloride was analyzed by gas chromatography by a neutralization titration method, and the amount of carbon dioxide at the outlet was measured. The conversion rate of each hydrogen chloride and the yield of carbon dioxide with respect to phenol are shown in Table 1.

第 1 表
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
反応時間 フェノールの 塩化水素の 二酸化炭素の
添加時間(h) 転化率(%) フェノールに
対する収量(%)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
1.5 − 84.0 −
27 4 84.5 87
93 70 84.9 87
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Table 1
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Reaction time phenolic hydrogen chloride carbon dioxide
Addition time (h) Conversion (%) To phenol
Yield (%)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
1.5-84.0-
27 4 84.5 87
93 70 84.9 87
━━━━━━━━━━━━━━━━━━━━━━━━━━━━

実施例2
実施例1で使用した触媒AおよびBの触媒径を3.0mmφとした以外は同様の方法で触媒CおよびDを調製した。触媒Cの酸化ルテニウム担持量は2.0質量%であり、触媒Dの酸化ルテニウム担持量は4.0質量%であった。同様にして、触媒径が3mmφであり、酸化ルテニウムの担持量が1.0質量%である触媒Eを調製した。
Example 2
Catalysts C and D were prepared in the same manner except that the catalyst diameters of the catalysts A and B used in Example 1 were 3.0 mmφ. The amount of ruthenium oxide supported on catalyst C was 2.0% by mass, and the amount of ruthenium oxide supported on catalyst D was 4.0% by mass. Similarly, Catalyst E having a catalyst diameter of 3 mmφ and a ruthenium oxide loading of 1.0% by mass was prepared.

次の方法により触媒Fを調製した。すなわち、粉末状の酸化ジルコニウム担体(日本電工(株)DN)30.0gおよびメトローズ(信越化学、65SH−4000)0.6gをよく混合した。さらに、純水6.0gと硝酸ジルコニル水溶液(第一稀元素化学工業(株)ジルコゾールZN ジルコニア25質量%含有)6.0gとを混合した水溶液を添加し、次によく混練した。 Catalyst F was prepared by the following method. That is, 30.0 g of powdery zirconium oxide support (Nippon Denko DN Co., Ltd.) and 0.6 g of Metroz (Shin-Etsu Chemical, 65SH-4000) were mixed well. Further, an aqueous solution obtained by mixing 6.0 g of pure water and 6.0 g of an aqueous zirconyl nitrate solution (containing 25% by mass of Zirconol ZN Zirconia, a first rare element chemical industry) was added and then kneaded well.

つぎに、混練で得られたものを押出成型器により3mmφのヌードル状に押出した後、熱風循環式乾燥器を用いて空気中、60℃で4時間乾燥し、固体を得た。次に、そうして得られた押出し乾燥品を、マッフル炉を用い、空気中で、室温から600℃まで6℃/minの速度で昇温し、同温度で3時間焼成し、得られた担体を約5mm程度の長さに切り揃え、酸化ジルコニウム押出し成形担体を得た。次に、市販の塩化ルテニウム水和物(Ru含量40.7wt%含有)を純水に溶解し、よく攪拌して塩化ルテニウム溶液を得た。得られた水溶液を該酸化ジルコニウム押出し成形担体に滴下して、この後の処理により得られる酸化ルテニウムが2.0質量%になるように塩化ルテニウムを含浸担持させた。担持したものを室温で一晩放置した。ついで、空気中60℃で2時間乾燥し、酸化ジルコニウム担持塩化ルテニウムを得た。得られた酸化ジルコニウム担持塩化ルテニウムをマッフル炉を用いて空気中400℃まで6℃/minの速度で昇温し、同温度で3時間焼成した。この様にして得られた酸化ジルコニウム担持酸化ルテニウム触媒を触媒Fと呼ぶ。 Next, the product obtained by kneading was extruded into a 3 mmφ noodle shape by an extruder and then dried in the air at 60 ° C. for 4 hours using a hot air circulating dryer to obtain a solid. Next, the extruded dried product thus obtained was heated at a rate of 6 ° C./min from room temperature to 600 ° C. in air using a muffle furnace, and baked at the same temperature for 3 hours. The carrier was cut to a length of about 5 mm to obtain a zirconium oxide extruded carrier. Next, commercially available ruthenium chloride hydrate (Ru content 40.7 wt%) was dissolved in pure water and stirred well to obtain a ruthenium chloride solution. The obtained aqueous solution was dropped onto the zirconium oxide extruded carrier, and ruthenium chloride was impregnated and supported so that ruthenium oxide obtained by the subsequent treatment was 2.0% by mass. The supported one was left overnight at room temperature. Subsequently, it dried at 60 degreeC in the air for 2 hours, and the zirconium oxide carrying | support ruthenium chloride was obtained. The obtained zirconium oxide-supported ruthenium chloride was heated to 400 ° C. in air at a rate of 6 ° C./min using a muffle furnace, and calcined at the same temperature for 3 hours. The zirconium oxide-supported ruthenium oxide catalyst thus obtained is referred to as catalyst F.

得られた触媒を用い、以下の通り、塩化水素を酸素によって酸化する反応を行い、触媒の活性を安定させた後、有機物添加実験を行った。 Using the obtained catalyst, the reaction of oxidizing hydrogen chloride with oxygen was performed as follows to stabilize the activity of the catalyst, and then an organic substance addition experiment was performed.

すなわち、直立させた石英反応管(内径14mm)に、触媒Dを3.12g(2.4cm3)充填し、さらに該触媒Dの上方に3.66g(2.8cm3)の触媒Cと直径2mmのα−アルミナ球(ニッカトー(株)製、SSA995)8.0gとの混合物を充填し、さらにその上方に1.87g(1.4cm3)の触媒Eと直径2mmのα−アルミナ球(ニッカトー(株)製、SSA995)1.0gとの混合物を充填し、さらにその上方に触媒Fを2.01g(1.3cm3)充填した。 That is, 3.12 g (2.4 cm 3 ) of catalyst D was filled in an upright quartz reaction tube (inner diameter 14 mm), and 3.66 g (2.8 cm 3 ) of catalyst C and diameter were further above catalyst D. A mixture of 8.0 mm of 2 mm α-alumina spheres (Nikkato Co., Ltd., SSA995) was charged, and 1.87 g (1.4 cm 3 ) of catalyst E and 2 mm diameter α-alumina spheres ( A mixture of 1.0 g of SSA995 manufactured by Nikkato Co., Ltd. was charged, and 2.01 g (1.3 cm 3 ) of catalyst F was further filled thereover.

この反応管上部から、塩化水素ガスを80ml/min、酸素ガスを40ml/min(いずれも絶対圧力0.1MPa、0℃換算)の流量で連続的に供給した。反応温度は337〜363℃であり、反応圧力は0.1MPaであり、触媒体積に対するGHSVは602h-1であった。 From the upper part of the reaction tube, hydrogen chloride gas was continuously supplied at a flow rate of 80 ml / min, and oxygen gas was supplied at a flow rate of 40 ml / min (both absolute pressure 0.1 MPa, converted to 0 ° C.). The reaction temperature was 337-363 ° C., the reaction pressure was 0.1 MPa, and the GHSV relative to the catalyst volume was 602 h −1 .

塩化水素ガスと酸素ガスの供給開始から2時間後、反応管出口のガスを30質量%ヨウ化カリウム水溶液に流通させることによりガスを捕集し、ヨウ素滴定法により塩素の生成量を、中和滴定法により未反応塩化水素量を測定した。塩化水素の転化率を表2に示した。 Two hours after the start of supply of hydrogen chloride gas and oxygen gas, gas was collected by circulating the gas at the outlet of the reaction tube through a 30% by mass potassium iodide aqueous solution, and the amount of chlorine produced was neutralized by the iodometric titration method. The amount of unreacted hydrogen chloride was measured by a titration method. The conversion rate of hydrogen chloride is shown in Table 2.

塩化水素ガスと酸素ガスの供給開始から23時間後、窒素により19体積%に希釈された四塩化炭素ガスを3.5ml/minの流量で供給開始した。原料中の塩化水素ガスに対する四塩化炭素の濃度は0.8体積%と計算される。 23 hours after the start of supply of hydrogen chloride gas and oxygen gas, carbon tetrachloride gas diluted to 19% by volume with nitrogen was started to be supplied at a flow rate of 3.5 ml / min. The concentration of carbon tetrachloride with respect to hydrogen chloride gas in the raw material is calculated as 0.8% by volume.

塩化水素ガスと酸素ガスの供給開始から25時間後および52時間後、反応管出口のガスを30質量%ヨウ化カリウム水溶液に流通させることによりガスを捕集し、ヨウ素滴定法により塩素の生成量を、中和滴定法により未反応塩化水素量をガスクロマトグラフィーで分析し、出口二酸化炭素量を測定した。それぞれの塩化水素の転化率および二酸化炭素の四塩化炭素に対する収量を表2に示した。 After 25 and 52 hours from the start of the supply of hydrogen chloride gas and oxygen gas, gas was collected by circulating the gas at the outlet of the reaction tube through a 30% by mass potassium iodide aqueous solution, and the amount of chlorine produced by the iodine titration method The amount of unreacted hydrogen chloride was analyzed by gas chromatography by a neutralization titration method, and the amount of carbon dioxide at the outlet was measured. Table 2 shows the conversion rate of each hydrogen chloride and the yield of carbon dioxide with respect to carbon tetrachloride.

第 2 表
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
反応時間 四塩化炭素の 塩化水素の 二酸化炭素の
添加時間(h) 転化率(%) 四塩化炭素に
対する収量(%)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
2 − 84.4 −
25 2 87.6 100
52 29 87.8 99
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Table 2
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Reaction time Carbon tetrachloride Hydrogen chloride Carbon dioxide
Addition time (h) Conversion (%) To carbon tetrachloride
Yield (%)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
2-84.4-
25 2 87.6 100
52 29 87.8 99
━━━━━━━━━━━━━━━━━━━━━━━━━━━━

実施例3
特許文献5〔特開2004−181408号公報〕の触媒製造例1と同様の方法により、3.0mmφ押出し状酸化チタン−αアルミナ担持酸化ルテニウム触媒を調製した。酸化ルテニウムの担持量は2.0質量%であった。得られた触媒を用い、以下の通り、塩化水素を酸素によって酸化する反応を行い、触媒の活性を安定させた後、一酸化炭素添加実験を行った。
Example 3
A 3.0 mmφ extruded titanium oxide-α-alumina-supported ruthenium oxide catalyst was prepared by the same method as in Catalyst Production Example 1 of Patent Document 5 (Japanese Patent Application Laid-Open No. 2004-181408). The amount of ruthenium oxide supported was 2.0% by mass. Using the obtained catalyst, the reaction of oxidizing hydrogen chloride with oxygen was performed as follows to stabilize the activity of the catalyst, and then a carbon monoxide addition experiment was performed.

該触媒を650g充填したニッケル製反応管(内径25mm)を3本直列に連結し、それぞれを溶融塩による熱媒ジャケット内に設置した。触媒層の前後にはα−アルミナ球(ニッカトー(株)製、SSA−995)を充填し、反応ガスの予熱及び冷却に用いた。溶融塩には亜硝酸ナトリウムと硝酸カリウムを重量比で1:1に混合したものを用いた。この反応管入口から塩化水素ガスを1.66m3/h、酸素ガスを0.83m3/h、一酸化炭素ガスを0.0623m3/h(塩化水素ガスに対して0.75体積%)の流量(いずれも絶対圧0.1MPa、0℃換算)で連続的に供給した。溶融塩による熱媒ジャケットの温度は1段目を280〜306℃、2段目を310〜315℃、3段目を330℃とし、反応器入口圧力0.42MPaG、触媒に対するGHSVは1140h-1とした。この条件で1250時間の連続実験を行った。定期的に反応器出口ガスを捕集し、ヨウ素滴定法により生成塩素量を、中和滴定法により未反応塩化水素量を、ガスクロマトグラフィーにより生成二酸化炭素量及び未反応一酸化炭素量を測定した。第3表に、塩化水素の転化率および二酸化炭素の一酸化炭素に対する収率を示した。


Three nickel reaction tubes (inner diameter 25 mm) filled with 650 g of the catalyst were connected in series, and each was installed in a heating medium jacket made of molten salt. Before and after the catalyst layer, α-alumina spheres (manufactured by Nikkato Co., Ltd., SSA-995) were filled and used for preheating and cooling of the reaction gas. As the molten salt, a mixture of sodium nitrite and potassium nitrate in a weight ratio of 1: 1 was used. From this reaction tube inlet, hydrogen chloride gas is 1.66 m 3 / h, oxygen gas is 0.83 m 3 / h, carbon monoxide gas is 0.0623 m 3 / h (0.75% by volume with respect to hydrogen chloride gas). (Both absolute pressure 0.1 MPa, 0 ° C. conversion). The temperature of the heating medium jacket with molten salt is 280 to 306 ° C. in the first stage, 310 to 315 ° C. in the second stage, 330 ° C. in the third stage, the reactor inlet pressure is 0.42 MPaG, and the GHSV for the catalyst is 1140 h −1. It was. Under these conditions, a continuous experiment for 1250 hours was conducted. Periodically collect the reactor outlet gas, measure the amount of chlorine produced by iodometric titration, the amount of unreacted hydrogen chloride by neutralization titration, and the amount of produced carbon dioxide and the amount of unreacted carbon monoxide by gas chromatography did. Table 3 shows the conversion rate of hydrogen chloride and the yield of carbon dioxide with respect to carbon monoxide.


第 3 表
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
反応時間 一酸化炭素の 塩化水素の 二酸化炭素の
添加時間(h) 転化率(%) 一酸化炭素に
対する収量(%)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
118 118 58.5 100
504 504 58.5 100
1191 1191 54.7 100
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Table 3
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Reaction time Carbon monoxide Hydrogen chloride Carbon dioxide
Addition time (h) Conversion (%) To carbon monoxide
Yield (%)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
118 118 58.5 100
504 504 58.5 100
1191 1191 54.7 100
━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Claims (7)

酸化チタンに担持されたルテニウムおよび/またはルテニウム化合物の存在下、一酸化炭素、ホスゲン、水素および有機化合物よりなる群から選ばれる少なくとも1つの化合物ならびに塩化水素を含む混合ガスを、酸素を含むガスと接触させ、該少なくとも1つの化合物を酸化すると同時に、塩化水素を塩素に酸化する塩素の製造方法。 In the presence of ruthenium and / or a ruthenium compound supported on titanium oxide, a mixed gas containing at least one compound selected from the group consisting of carbon monoxide, phosgene, hydrogen and an organic compound and hydrogen chloride, and a gas containing oxygen A method for producing chlorine comprising contacting and oxidizing the at least one compound and simultaneously oxidizing hydrogen chloride to chlorine. ルテニウム化合物が酸化ルテニウムである請求項1記載の方法。 The method of claim 1, wherein the ruthenium compound is ruthenium oxide. 酸化チタンがルチル結晶形酸化チタンである請求項1記載の方法。 The method according to claim 1, wherein the titanium oxide is rutile crystalline titanium oxide. 混合ガス中の一酸化炭素の濃度が1体積%以下である請求項1記載の方法。 The method according to claim 1, wherein the concentration of carbon monoxide in the mixed gas is 1% by volume or less. 混合ガス中の有機化合物の濃度が0.1体積%以下である請求項1記載の方法。 The method according to claim 1, wherein the concentration of the organic compound in the mixed gas is 0.1% by volume or less. 混合ガス中の塩化水素の濃度が80体積%以上である請求項1記載の方法。 The method according to claim 1, wherein the concentration of hydrogen chloride in the mixed gas is 80% by volume or more. 反応温度が250〜450℃である請求項1記載の方法。 The process according to claim 1, wherein the reaction temperature is 250 to 450 ° C.
JP2005079001A 2004-03-22 2005-03-18 Method of producing chlorine Pending JP2005289800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005079001A JP2005289800A (en) 2004-03-22 2005-03-18 Method of producing chlorine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004082143 2004-03-22
JP2005079001A JP2005289800A (en) 2004-03-22 2005-03-18 Method of producing chlorine

Publications (1)

Publication Number Publication Date
JP2005289800A true JP2005289800A (en) 2005-10-20

Family

ID=35323178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079001A Pending JP2005289800A (en) 2004-03-22 2005-03-18 Method of producing chlorine

Country Status (1)

Country Link
JP (1) JP2005289800A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007134775A1 (en) * 2006-05-23 2007-11-29 Bayer Materialscience Ag Process for the oxidation of a gas containing hydrogen chloride
WO2008029938A1 (en) * 2006-09-05 2008-03-13 Sumitomo Chemical Company, Limited Method for producing chlorine
JP2009022917A (en) * 2007-07-23 2009-02-05 Sumitomo Chemical Co Ltd Activation method for chlorine production catalyst and method for producing chlorine
DE102008050976A1 (en) 2008-10-09 2010-04-15 Bayer Technology Services Gmbh Process for the production of chlorine from process gases
JP2010105859A (en) * 2008-10-30 2010-05-13 Sumitomo Chemical Co Ltd Method for producing chlorine, and method for oxidizing carbon monoxide and/or unsaturated hydrocarbon
JP2010105858A (en) * 2008-10-30 2010-05-13 Sumitomo Chemical Co Ltd Method for producing chlorine, and method for oxidizing carbon monoxide and/or unsaturated hydrocarbon
WO2010058761A1 (en) * 2008-11-18 2010-05-27 住友化学株式会社 Chlorine production method
WO2010058810A1 (en) * 2008-11-21 2010-05-27 住友化学株式会社 Chlorine manufacturing method
WO2010076262A1 (en) * 2008-12-30 2010-07-08 Basf Se Catalyst for hydrogen chloride oxidation containing ruthenium and nickel
WO2011099543A1 (en) * 2010-02-12 2011-08-18 住友化学株式会社 Method for oxidizing organic compound

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007134775A1 (en) * 2006-05-23 2007-11-29 Bayer Materialscience Ag Process for the oxidation of a gas containing hydrogen chloride
WO2008029938A1 (en) * 2006-09-05 2008-03-13 Sumitomo Chemical Company, Limited Method for producing chlorine
JP2008063167A (en) * 2006-09-05 2008-03-21 Sumitomo Chemical Co Ltd Method for manufacturing chlorine
JP2009022917A (en) * 2007-07-23 2009-02-05 Sumitomo Chemical Co Ltd Activation method for chlorine production catalyst and method for producing chlorine
DE102008050976A1 (en) 2008-10-09 2010-04-15 Bayer Technology Services Gmbh Process for the production of chlorine from process gases
JP2010105859A (en) * 2008-10-30 2010-05-13 Sumitomo Chemical Co Ltd Method for producing chlorine, and method for oxidizing carbon monoxide and/or unsaturated hydrocarbon
JP2010105858A (en) * 2008-10-30 2010-05-13 Sumitomo Chemical Co Ltd Method for producing chlorine, and method for oxidizing carbon monoxide and/or unsaturated hydrocarbon
CN102216207A (en) * 2008-11-18 2011-10-12 住友化学株式会社 Chlorine production method
WO2010058761A1 (en) * 2008-11-18 2010-05-27 住友化学株式会社 Chlorine production method
JP2010120791A (en) * 2008-11-18 2010-06-03 Sumitomo Chemical Co Ltd Method for producing chlorine
WO2010058810A1 (en) * 2008-11-21 2010-05-27 住友化学株式会社 Chlorine manufacturing method
JP2010150120A (en) * 2008-11-21 2010-07-08 Sumitomo Chemical Co Ltd Method for producing chlorine
WO2010076262A1 (en) * 2008-12-30 2010-07-08 Basf Se Catalyst for hydrogen chloride oxidation containing ruthenium and nickel
JP2012513892A (en) * 2008-12-30 2012-06-21 ビーエーエスエフ ソシエタス・ヨーロピア Ruthenium and nickel containing catalysts for hydrogen chloride oxidation.
WO2011099543A1 (en) * 2010-02-12 2011-08-18 住友化学株式会社 Method for oxidizing organic compound
JP2011162498A (en) * 2010-02-12 2011-08-25 Sumitomo Chemical Co Ltd Method for oxidizing organic compound
CN102762298A (en) * 2010-02-12 2012-10-31 住友化学株式会社 Method for oxidizing organic compound
DE112011100519T5 (en) 2010-02-12 2012-11-29 Sumitomo Chemical Company, Limited Process for oxidizing an organic compound
CN102762298B (en) * 2010-02-12 2014-09-03 住友化学株式会社 Method for oxidizing organic compound

Similar Documents

Publication Publication Date Title
US6977066B1 (en) Method for producing chlorine
JP2005289800A (en) Method of producing chlorine
US6713035B1 (en) Process for producing chlorine
JP4341591B2 (en) Chlorine production reactor and chlorine production method
JP2006503785A (en) Chlorine production method from hydrochloric acid
JP2009537451A (en) Method for oxidizing gas containing hydrogen chloride
JP2005538027A (en) Method for producing fixed bed chlorine by gas phase catalytic oxidation of hydrogen chloride
JP4668190B2 (en) Chlorine production method
JP3606147B2 (en) Chlorine production method
JP4785515B2 (en) Chlorine production method
JP2007021484A (en) Method for manufacturing oxidizing catalyst, method for manufacturing chlorine, and method for oxidizing carbon monoxide and/or unsaturated hydrocarbon
JP2000272906A (en) Production of chlorine
JP3570322B2 (en) Method for producing chlorine
US20100303710A1 (en) Process for producing chlorine
CA2218744A1 (en) Method of oxychlorination
JPH0149334B2 (en)
JP2005306715A (en) Method for manufacturing chlorine
JP5169763B2 (en) Chlorine production method
JP5267305B2 (en) Chlorine production method
JP2005306712A (en) Method for manufacturing chlorine and hydrochloric acid
JP4999406B2 (en) Chlorine production method
JP2005177614A (en) Method of removing sulfur compound
JP2008105862A (en) Method for producing chlorine
WO2005090231A1 (en) Method for producing chlorine
JP2007144392A (en) Manufacturing method of oxidizing catalyst, manufacturing method of chlorine, and oxidizing method of carbon monoxide and/or unsaturated hydrocarbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721