JP3570322B2 - Method for producing chlorine - Google Patents

Method for producing chlorine Download PDF

Info

Publication number
JP3570322B2
JP3570322B2 JP2000004539A JP2000004539A JP3570322B2 JP 3570322 B2 JP3570322 B2 JP 3570322B2 JP 2000004539 A JP2000004539 A JP 2000004539A JP 2000004539 A JP2000004539 A JP 2000004539A JP 3570322 B2 JP3570322 B2 JP 3570322B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
reaction zone
hydrogen chloride
packed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000004539A
Other languages
Japanese (ja)
Other versions
JP2001199710A (en
Inventor
清司 岩永
政之 吉井
哲也 鈴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2000004539A priority Critical patent/JP3570322B2/en
Publication of JP2001199710A publication Critical patent/JP2001199710A/en
Application granted granted Critical
Publication of JP3570322B2 publication Critical patent/JP3570322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、塩素の製造方法に関するものである。更に詳しくは、本発明は、塩化水素を含むガス中の塩化水素を、酸素を含むガスを用いて、触媒充填層からなる反応域を有する固定床反応方式で酸化する塩素の製造方法であって、触媒充填層の過度のホットスポットを抑制し、触媒充填層を有効に活用することによって、触媒の安定した活性が維持され、かつ塩素を安定して高収率で得ることができ、よって触媒コスト、設備コスト、運転コスト、運転の安定性及び容易性の観点から極めて有利な塩素の製造方法に関するものである。
【0002】
【従来の技術】
塩素は塩化ビニル、ホスゲンなどの原料として有用であり、塩化水素の酸化によって得られることもよく知られている。たとえば、塩化水素を触媒を用いて分子状酸素で接触酸化し、塩素を製造する方法としては、従来からDeacon触媒と呼ばれる銅系の触媒が従来優れた活性を有するとされ、塩化銅と塩化カリウムに第三成分として種々の化合物を添加した触媒が多数提案されている。また、Deacon触媒以外にも、酸化クロム又はこの化合物を触媒として用いる方法、酸化ルテニウム又はこの化合物を触媒として用いる方法も提案されている。
【0003】
しかしながら、塩化水素の酸化反応は59kJ/mol−塩素の発熱反応であり、触媒充填層での過度のホットスポットを抑制することは、触媒の熱劣化を低減し、運転の安定性及び容易性を確保する観点からも重要である。また、過度のホットスポットは、最悪の場合には暴走反応を引き起こすこともあり、塩化水素及び/又は塩素による装置材料の高温ガス腐食を起こす問題もある。
【0004】
雑誌「触媒」(Vol.33 No.1(1991))には、酸化クロムを触媒とした純塩化水素と純酸素の反応では、固定床反応形式ではホットスポットの除去が困難であり、実装置では流動床反応器の採用が必要であることが記載されている。
【0005】
【発明が解決しようとする課題】
かかる状況において、本発明が解決しようとする課題は、塩化水素を含むガス中の塩化水素を、酸素を含むガスを用いて、触媒充填層からなる反応域を有する固定床反応方式で酸化する塩素の製造方法であって、触媒充填層の過度のホットスポットを抑制し、触媒充填層を有効に活用することによって、触媒の安定した活性が維持され、かつ塩素を安定して高収率で得ることができ、よって触媒コスト、設備コスト、運転コスト、運転の安定性及び容易性の観点から極めて有利な塩素の製造方法を提供する点に存するものである。
【0006】
【課題を解決するための手段】
すなわち、本発明は、塩化水素を含むガス中の塩化水素を、酸素を含むガスを用いて、触媒充填層からなる反応域を有する固定床反応方式で酸化する方法において、空塔基準のガス線速度を0.70〜10m/sとする塩素の製造方法に係るものである。
【0007】
【発明の実施の形態】
本発明において用いられる塩化水素を含むガスとしては、塩素化合物の熱分解反応や燃焼反応、有機化合物のホスゲン化反応、脱塩化水素反応又は塩素化反応、焼却炉の燃焼等において発生した塩化水素を含むいかなるものを使用することができる。塩化水素を含むガスとしては、通常、該ガス中の塩化水素の濃度は通常10体積%以上、好ましくは50体積%以上、更に好ましくは80体積%以上のものが用いられる。該濃度が10体積%よりも低い場合には、生成した塩素の分離、及び/又は未反応酸素をリサイクルする場合に、リサイクルが煩雑になることがある。塩化水素を含むガス中の塩化水素以外の成分としては、オルトジクロロベンゼン、モノクロロベンゼン等の塩素化芳香族炭化水素、及びトルエン、ベンゼン等の芳香族炭化水素、及び塩化ビニル、1,2−ジクロロエタン、塩化メチル、塩化エチル、塩化プロピル、塩化アリル等の塩素化脂肪族炭化水素、及びメタン、アセチレン、エチレン、プロピレン等の脂肪族炭化水素、及び窒素、アルゴン、二酸化炭素、一酸化炭素、ホスゲン、水素、硫化カルボニル、硫化水素等の無機ガスがあげられる。塩化水素と酸素との反応において、塩素化芳香族炭化水素及び塩素化脂肪族炭化水素は、二酸化炭素と水と塩素に酸化され、芳香族炭化水素及び脂肪族炭化水素は、二酸化炭素と水に酸化され、一酸化炭素は二酸化炭素に酸化され、ホスゲンは、二酸化炭素と塩素に酸化される。
【0008】
酸素を含むガスとしては、酸素又は空気が使用される。酸素は、空気の圧力スイング法や深冷分離などの通常の工業的な方法によって得ることができる。
【0009】
塩化水素1モルに対する酸素の理論モル量は0.25モルであるが、理論量以上供給することが好ましく、塩化水素1モルに対し酸素0.25〜2モルが更に好ましい。酸素の量が過小であると、塩化水素の転化率が低くなる場合があり、一方酸素の量が過多であると生成した塩素と未反応酸素の分離が困難になる場合がある。
【0010】
本発明においては、触媒充填層を少なくとも二の反応域に分割し、酸素を含むガスを少なくとも二に分割して導入することが好ましい。酸素を含むガスを分割して導入する方法としては、塩化水素を含むガスの全量と、酸素を含むガスの一部分を第1反応域に導入し、その反応物と残りの酸素を含むガスを第2反応域以降の反応域に導入する方法があげられる。ここで、第1反応域は原料ガスの流れについての最も上流側の反応域を意味し、第2反応域は第1反応域の下流側の反応域を意味する。第1反応域に導入される酸素を含むガスの分割量は、全体量の5〜90%、好ましくは10〜80%、更に好ましくは30〜60%である。該分割量が少なすぎる場合は、第2反応域以降の反応域の温度制御が困難になることがある。
【0011】
本発明の酸化反応の触媒としては、塩化水素を酸化して塩素を製造する触媒として知られる公知の触媒を用いることができる。該触媒の一例として、塩化銅と塩化カリウムに第三成分として種々の化合物を添加した触媒、酸化クロムを主成分とする触媒、酸化ルテニウムを含有する触媒などをあげることができる。中でも酸化ルテニウムを含有する触媒が好ましく、酸化ルテニウム及び酸化チタンを含む触媒が更に好ましい。酸化ルテニウムを含む触媒は、たとえば特開平10−182104号公報、ヨーロッパ特許第936184号公報に記載されている。酸化ルテニウム及び酸化チタンを含む触媒は、たとえば、特開平10−194705号公報、特開平10−338502号公報に記載されている。触媒中の酸化ルテニウムの含有量は、0.1〜20重量%が好ましい。酸化ルテニウムの量が過小であると触媒の活性が低く塩化水素の転化率が低くなる場合があり、一方、酸化ルテニウムの量が過多であると触媒価格が高くなる場合がある。
【0012】
触媒の形状は、球形粒状、円柱形ペレット状、押し出し形状、リング形状、ハニカム状あるいは成型後に粉砕分級した適度の大きさの顆粒状等で用いられる。この際、触媒直径としては10mm以下が好ましい。触媒直径が10mmを越えると、活性が低下する場合がある。触媒直径の下限は特に制限はないが、過度に小さくなると、触媒充填層での圧力損失が大きくなるため、通常は0.1mm以上のものが用いられる。なお、ここでいう触媒直径とは、球形粒状では球の直径、円柱形ペレット状では断面の直径、その他の形状では断面の最大直径を意味する。
【0013】
触媒の使用量(体積)は、標準状態(0℃、0.1MPa)における塩化水素の供給速度との比(GHSV)で表すと、通常10〜20000h−1で行われる。原料を反応域に流す方向は、上向きでも下向きでもよい。反応圧力は、通常0.1〜5MPaで行われる。反応温度は、好ましくは200〜500℃、更に好ましくは200〜380℃である。反応温度が低すぎる場合は、塩化水素の転化率が低くなる場合があり、一方反応温度が高すぎる場合は、触媒成分が揮発する場合がある。
【0014】
本発明の触媒充填層からなる反応域とは、充填された触媒、及び触媒を希釈する不活性物質及び/又は担体のみで成型した充填物の全体を意味する。触媒充填層からなる反応域の上部及び/又は下部には、不活性物質を充填してもよい。ただし、不活性物質のみからなる充填層は、触媒充填層とは見なさない。
【0015】
本発明においては、空塔基準のガス線速度を0.70〜10m/sとする必要があり、好ましくは0.70〜6m/sであり、更に好ましくは0.70〜3m/sである。このことにより、触媒充填層の過度のホットスポットを抑制し、触媒充填層を有効に活用することによって、触媒の安定した活性が維持され、かつ塩素を安定して高収率で得ることができるために、触媒コスト、設備コスト、運転コスト、運転の安定性及び容易性を確保しうる。なお、本発明の空塔基準のガス線速度とは、触媒充填層に供給される全てのガスの標準状態(0℃、0.1MPa)における供給速度の合計量と反応管の断面積の比を意味する。
【0016】
本発明においては、反応管内に少なくとも二の触媒充填層からなる反応域を有する固定床反応方式で行うことが、触媒充填層を有効に活用することによって、塩素を安定して高収率で得ることができるために好ましい。少なくとも二の触媒充填層を形成する方法としては、反応管内の触媒充填層を管軸方向に少なくとも二の反応域に分割して、活性、組成及び/又は粒径の異なる触媒を充填する方法、又は触媒を不活性物質及び/又は担体のみで成型した充填物で希釈率を変えて充填する方法、又は触媒と触媒を不活性物質及び/又は担体のみで成型した充填物で希釈したものを充填する方法をあげることができる。通常、連続する反応域は直接に接している状態にあるが、反応域の間に不活性物質を充填してもよい。ただし、不活性物質のみからなる充填層は、触媒充填層とは見なさない。触媒充填層の分割数は多くするほど、該触媒充填層を有効に利用することができるが、工業的には通常2〜20反応域、好ましくは2〜8反応域、更に好ましくは2〜4反応域で実施される。分割数が多すぎる場合は、充填する触媒の種類が多くなるといったことがあり、経済的に不利になることがある。
【0017】
本発明においては、触媒充填層を管軸方向に少なくとも二の反応域に分割して、第1反応域の割合を70体積%以下とすることが好ましく、30体積%以下が更に好ましい。また、第1反応域の割合を70体積%以下、好ましくは30体積%以下とし、かつ第2反応域の温度を第1反応域よりも通常は5℃以上、好ましくは10℃以上高くする、及び/又は第2反応域の活性が第1反応域よりも通常は1.1倍以上、好ましくは1.5倍以上高くなるように、触媒又は触媒と不活性物質及び/又は担体のみで成型した充填物を充填することが更に好ましい。ここで、反応域の活性(mol−HCl/ml−反応域・min)とは、単位触媒重量及び時間当りの塩化水素反応活性( mol−HCl/g−触媒・min)と触媒充填量(g)の積を、反応域の体積(ml)で除した計算値を意味する。単位触媒重量及び時間当りの塩化水素反応活性は、触媒の体積と標準状態(0℃、0.1MPa)における塩化水素の供給速度との比が4400〜4800h−1で、塩化水素1モルに対し酸素0.5モルを供給し、反応圧力0.1MPa、反応温度280℃で反応させ、この時に生成した塩素量から計算された値である。第1反応域では、反応物質である塩化水素と酸素の濃度が高いために反応速度が大きい。したがって、たとえばジャケット部を有する熱交換方式の固定床反応では、該第1反応域の入口側にホットスポットが生じる。一方、該第1反応域の出口側はジャケット内の熱媒体の温度に近い温度となる。第1反応域の割合が70体積%より大きい場合には、該反応域において、ジャケット内の熱媒体の温度に近い温度の部分が多くなり、触媒を有効に活用することができない。
【0018】
本発明においては、触媒充填層を管軸方向に少なくとも二の反応域に分割して、第1反応域の熱伝導度が最も高くなるように、触媒又は触媒と不活性物質及び/又は担体のみで成型した充填物を充填することが好ましく、第1反応域から最終反応域に向かって、ガスの流れ方向に、反応域の熱伝導度が順次低くなるように充填することが更に好ましい。ここで、最終反応域はガスの流れについての最も下流側の反応域を意味する。反応域の熱伝導度は、反応域に充填された充填物の熱伝導度を意味する。原料の入口側の反応域では、反応物質である塩化水素と酸素の濃度が高いために反応速度が大きく、酸化反応による発熱が大きい。したがって、入口側の反応域に触媒の熱伝導度が比較的高い触媒を充填することにより、過度なホットスポットを抑制することができる。
【0019】
本発明においては、触媒充填層を管軸方向に少なくとも二の反応域に分割して、第1反応域から最終反応域に向かって、ガスの流れ方向に、反応域の活性が順次高くなるように触媒又は触媒と不活性物質及び/又は担体のみで成型した充填物を充填することにより、連続する反応域の温度差を小さくすることができ、したがって、運転を安定して容易に行うことができるために好ましい。
【0020】
本発明においては、触媒充填層を管軸方向に少なくとも二の反応域に分割して、最終反応域の活性を、その直前の反応域の活性よりも高くなるように、触媒又は触媒と不活性物質及び/又は担体のみで成型した充填物を充填し、かつ最終反応域のホットスポットを、その直前の反応域のホットスポットよりも低くする方法が好ましい。最終反応域の活性がその直前の活性よりも低く、かつ最終反応域のホットスポットがその直前の反応域のホットスポットよりも高い場合は、塩化水素を酸素で酸化して塩素と水に変換する反応が平衡反応であるために、塩化水素の転化率が化学平衡組成に支配されて低くなる場合がある。
【0021】
本発明においては、触媒充填層を管軸方向に少なくとも二の反応域に分割して、最終反応域の出口のガス温度を200〜350℃とする方法が好ましく、200〜320℃とする方法が更に好ましい。最終反応域の出口のガス温度が350℃よりも高い場合は、塩化水素を酸素で酸化して塩素と水に変換する反応が平衡反応であるために、塩化水素の転化率が化学平衡組成に支配されて低くなる場合がある。
【0022】
本発明においては、触媒充填層からなる反応域の温度制御を熱交換方式で行う方法が、反応熱が良好に除去され、運転の安定性及び容易性が確保されるために好ましい。本発明の熱交換方式とは、触媒が充填された反応管の外側にジャケット部を有し、反応で生成した反応熱をジャケット内の熱媒体によって除去する方式を意味する。熱交換方式では、反応管内の触媒充填層からなる反応域の温度が、ジャケット内の熱媒体によって制御される。工業的には、直列に配列された触媒充填層からなる反応域を有する反応管を並列に配列し、外側にジャケット部を有する多管式熱交換器型の固定床多管式反応器を用いることもできる。熱交換方式以外の方法としては、電気炉方式があげられるが、反応域の温度制御が難しいといった問題がある。
【0023】
熱媒体としては、溶融塩、スチーム、有機化合物又は溶融金属をあげることができるが、熱安定性や取り扱いの容易さ等の点から溶融塩又はスチームが好ましく、より良好な熱安定性の点から溶融塩が更に好ましい。溶融金属は、コストが高く、取り扱いが難しいといった問題がある。溶融塩の組成としては、硝酸カリウム50重量%と亜硝酸ナトリウム50重量%の混合物、硝酸カリウム53重量%と亜硝酸ナトリウム40重量%と硝酸ナトリウム7重量%の混合物などをあげることができる。有機化合物としては、ダウサムA(ジフェニルオキサイドとジフェニルの混合物)をあげることができる。
【0024】
本発明においては、触媒充填層からなる反応域の温度を、少なくとも二の独立した温度制御で行うことが、触媒充填層を有効に活用することによって、塩素を安定して高収率で得ることができるために好ましい。この方法としては、反応管内の触媒充填層を管軸方向に少なくとも二の反応域に分割して、熱交換方式と熱交換方式以外の方法の組み合わせで該反応域の温度制御を行う方法、少なくとも二に分割された反応域に独立したジャケット部を作り、独立に熱媒体を循環させて該反応域の温度制御を行う方法、及び/又は仕切り板によってジャケット部を少なくとも二に分割して、仕切られた部分に独立して熱媒体を循環させて該反応域の温度制御を行う方法をあげることができる。仕切り板は、反応管に溶接などにより直接固定されていてもよいが、仕切り板や反応管に熱的な歪みが生じることを防ぐために、実質的に独立して熱媒体を循環できる範囲内において、仕切り板と反応管との間に適当な間隔を設けることができる。ジャケット内の熱媒体の流れは、下方から上方に流れるようにするのが好ましい。独立した温度制御による反応域の数は多くするほど、該反応域を有効に利用することができるが、工業的には通常2〜20反応域、好ましくは2〜8反応域、更に好ましくは2〜4反応域で実施される。制御する反応域数が多すぎる場合は、温度制御のための機器が多くなるといったことがあり、経済的に不利になることがある。
【0025】
本発明においては、触媒充填層を管軸方向に少なくとも二の反応域に分割して、全反応域の温度制御を熱交換方式によって行う方法が、反応熱が良好に除去され、運転の安定性及び容易性が確保されるために好ましい。
【0026】
反応管の内径は、通常10〜50mm、好ましくは10〜40mm、更に好ましくは10〜30mmである。反応管の内径が小さすぎる場合は、工業用反応装置で塩化水素の満足いく処理量を得るためには、過剰数の反応管が必要とされるので不利益である場合があり、反応管の内径が大きすぎる場合は、触媒充填層に過度のホットスポットを生じさせる場合がある。
【0027】
反応管の内径(D)と触媒直径(d)の比率(D/d)は、通常5/1〜100/1、好ましくは5/1〜50/1、更に好ましくは5/1〜20/1である。比率が小さすぎる場合は、触媒充填層に過度のホットスポットを生じさせる場合、或いは工業用反応装置で塩化水素の満足いく処理量を得るためには、過剰数の反応管が必要とされるので不利益である場合があり、比率が大きすぎる場合は、触媒充填層に過度のホットスポットを生じさせる場合、或いは触媒充填層の圧力損失が大きくなる場合がある。
【0028】
【実施例】
以下、本発明を実施例により説明する。
実施例1
反応器には、溶融塩(硝酸カリウム/亜硝酸ナトリウム=1/1重量比)を熱媒体とするジャケットを備えた内径18mm及び長さ1mのNi製反応管(外径5mmの温度測定用鞘管)からなる固定床反応器を用いた。反応管内には、直径1〜2mmのアナターゼ結晶形TiO担持6.6重量%酸化ルテニウム球形粒状触媒99.4g(100ml)を充填し、触媒充填層とした。触媒充填層の上部及び下部には、直径2mmのα−Al球(ニッカト(株)製、SSA995)をそれぞれ238g及び164g充填した。なお、直径1〜2mmのアナターゼ結晶形TiO担持6.6重量%酸化ルテニウム球形粒状触媒は、特開平10−338502号公報に記載された方法に準拠して調製され、890h使用したものを再使用した。
塩化水素9.4l/min(標準状態、塩化水素:99体積%以上)及び酸素4.7l/min(標準状態、酸素:99体積%以上)を電気炉で380℃に加熱した内径30mmのNi製予熱管(外径6mmの温度測定用鞘管)に供給して加熱し、水0.756g/minを電気炉で380℃に加熱した内径2mmのステンレス製予熱管に供給して水蒸気に気化させた。続いて、予熱された塩化水素と酸素の混合ガスを水蒸気と混合させた後、反応管の上部から下部へダウンフローで流通させた。塩化水素/酸素/水のモル比は10/5/1、GHSVは5639h−1、空塔基準のガス線速度は1.1m/sと計算される。
ジャケット内の溶融塩の温度が336℃で、触媒層の反応温度は入口337℃、出口356℃、ホットスポット368℃であった。この時、反応管入口部の圧力は0.12MPa−Gであった。出口ガスをよう化カリウム水溶液にサンプリングして、生成した塩素と未反応の塩化水素と生成水を吸収させ、よう素滴定法及び中和滴定法によって、それぞれ塩素の生成量及び未反応塩化水素量を測定した。塩化水素の塩素への転化率は21.5%であった。
【0029】
比較例1
触媒量を48.1g(49ml)とし、塩化水素4.7l/min、酸素2.4l/min及び水0.378g/minとしたこと以外は、実施例1に準拠して行った。塩化水素/酸素/水のモル比は10/5/1、GHSVは5761h−1、空塔基準のガス線速度は0.54m/sと計算される。
ジャケット内の溶融塩の温度が336℃で、反応熱のために触媒層のホットスポットは380℃を越えて制御不能となった。
【0030】
比較例2
触媒量を18.8g(20ml)とし、塩化水素1.9l/min、酸素0.96l/min及び水0.151g/minとしたこと以外は、実施例1に準拠して行った。塩化水素/酸素/水のモル比は10/5/1、GHSVは5724h−1、空塔基準のガス線速度は0.22m/sと計算される。
ジャケット内の溶融塩の温度が336℃で、反応熱のために触媒層のホットスポットは380℃を越えて制御不能となった。
【0031】
【発明の効果】
以上説明したとおり、本発明により、塩化水素を含むガス中の塩化水素を、酸素を含むガスを用いて酸化する塩素の製造方法であって、触媒充填層の過度のホットスポットを抑制し、触媒充填層を有効に活用することによって、触媒の安定した活性が維持され、かつ塩素を安定して高収率で得ることができ、よって触媒コスト、設備コスト、運転コスト、運転の安定性及び容易性の観点から極めて有利な塩素の製造方法を提供することができた。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing chlorine. More specifically, the present invention relates to a method for producing chlorine in which hydrogen chloride in a gas containing hydrogen chloride is oxidized by a fixed bed reaction method having a reaction zone composed of a catalyst packed bed using a gas containing oxygen. By suppressing excessive hot spots in the catalyst packed bed and effectively utilizing the catalyst packed bed, stable activity of the catalyst is maintained, and chlorine can be obtained in a stable and high yield. The present invention relates to a chlorine production method which is extremely advantageous from the viewpoints of cost, equipment cost, operation cost, operation stability and ease.
[0002]
[Prior art]
Chlorine is useful as a raw material for vinyl chloride, phosgene and the like, and is also well known to be obtained by oxidation of hydrogen chloride. For example, as a method for producing chlorine by catalytically oxidizing hydrogen chloride with molecular oxygen using a catalyst, a copper-based catalyst called a Deacon catalyst has conventionally been considered to have excellent activity, and copper chloride and potassium chloride have been conventionally used. Many catalysts in which various compounds are added as a third component have been proposed. In addition to the Deacon catalyst, a method using chromium oxide or this compound as a catalyst and a method using ruthenium oxide or this compound as a catalyst have been proposed.
[0003]
However, the oxidation reaction of hydrogen chloride is an exothermic reaction of 59 kJ / mol-chlorine, and suppressing excessive hot spots in the catalyst packed bed reduces thermal deterioration of the catalyst and reduces the stability and ease of operation. It is important from the viewpoint of securing. Excessive hot spots can also cause runaway reactions in the worst case, and cause high temperature gas corrosion of equipment materials due to hydrogen chloride and / or chlorine.
[0004]
According to the magazine “Catalyst” (Vol. 33 No. 1 (1991)), in a reaction between pure hydrogen chloride and pure oxygen using chromium oxide as a catalyst, it is difficult to remove hot spots in a fixed-bed reaction system. Describes that it is necessary to employ a fluidized bed reactor.
[0005]
[Problems to be solved by the invention]
In such a situation, the problem to be solved by the present invention is to oxidize hydrogen chloride in a gas containing hydrogen chloride in a fixed bed reaction system having a reaction zone consisting of a catalyst packed bed using a gas containing oxygen. The method for producing a catalyst of the present invention, by suppressing excessive hot spots in the catalyst packed bed and effectively utilizing the catalyst packed bed, the stable activity of the catalyst is maintained, and chlorine is obtained in a stable and high yield. Accordingly, it is an object of the present invention to provide a method for producing chlorine which is extremely advantageous from the viewpoint of catalyst cost, equipment cost, operation cost, operation stability and ease.
[0006]
[Means for Solving the Problems]
That is, the present invention relates to a method for oxidizing hydrogen chloride in a gas containing hydrogen chloride using a gas containing oxygen by a fixed bed reaction method having a reaction zone composed of a catalyst packed bed. The present invention relates to a method for producing chlorine at a speed of 0.70 to 10 m / s.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of the gas containing hydrogen chloride used in the present invention include a pyrolysis reaction and a combustion reaction of a chlorine compound, a phosgenation reaction of an organic compound, a dehydrochlorination reaction or a chlorination reaction, and hydrogen chloride generated in combustion of an incinerator. Anything can be used, including: As the gas containing hydrogen chloride, a gas having a concentration of hydrogen chloride in the gas of usually 10% by volume or more, preferably 50% by volume or more, more preferably 80% by volume or more is used. If the concentration is lower than 10% by volume, the recycling may be complicated when separating generated chlorine and / or recycling unreacted oxygen. Components other than hydrogen chloride in the gas containing hydrogen chloride include chlorinated aromatic hydrocarbons such as orthodichlorobenzene and monochlorobenzene, and aromatic hydrocarbons such as toluene and benzene, and vinyl chloride and 1,2-dichloroethane. Chlorinated aliphatic hydrocarbons such as methyl chloride, ethyl chloride, propyl chloride, allyl chloride, and aliphatic hydrocarbons such as methane, acetylene, ethylene, and propylene; and nitrogen, argon, carbon dioxide, carbon monoxide, phosgene, Inorganic gases such as hydrogen, carbonyl sulfide, and hydrogen sulfide are exemplified. In the reaction between hydrogen chloride and oxygen, chlorinated aromatic hydrocarbons and chlorinated aliphatic hydrocarbons are oxidized to carbon dioxide, water and chlorine, and aromatic hydrocarbons and aliphatic hydrocarbons are converted to carbon dioxide and water. Oxidized, carbon monoxide is oxidized to carbon dioxide, and phosgene is oxidized to carbon dioxide and chlorine.
[0008]
Oxygen or air is used as the gas containing oxygen. Oxygen can be obtained by ordinary industrial methods such as air pressure swinging and cryogenic separation.
[0009]
The theoretical molar amount of oxygen to 1 mol of hydrogen chloride is 0.25 mol, but it is preferable to supply more than the theoretical amount, more preferably 0.25 to 2 mol of oxygen to 1 mol of hydrogen chloride. If the amount of oxygen is too small, the conversion of hydrogen chloride may decrease, while if the amount of oxygen is excessive, it may be difficult to separate generated chlorine from unreacted oxygen.
[0010]
In the present invention, it is preferable that the catalyst packed bed is divided into at least two reaction zones, and the gas containing oxygen is divided into at least two and introduced. As a method of dividing and introducing the gas containing oxygen, the entire amount of the gas containing hydrogen chloride and a part of the gas containing oxygen are introduced into the first reaction zone, and the reactant and the remaining gas containing oxygen are introduced into the first reaction zone. There is a method of introducing into the reaction zone after the second reaction zone. Here, the first reaction zone means the most upstream reaction zone for the flow of the raw material gas, and the second reaction zone means the downstream reaction zone of the first reaction zone. The division amount of the gas containing oxygen introduced into the first reaction zone is 5 to 90%, preferably 10 to 80%, and more preferably 30 to 60% of the total amount. If the amount of division is too small, it may be difficult to control the temperature of the reaction zone after the second reaction zone.
[0011]
As the catalyst for the oxidation reaction of the present invention, a known catalyst known as a catalyst for oxidizing hydrogen chloride to produce chlorine can be used. Examples of the catalyst include a catalyst obtained by adding various compounds as a third component to copper chloride and potassium chloride, a catalyst containing chromium oxide as a main component, and a catalyst containing ruthenium oxide. Among them, a catalyst containing ruthenium oxide is preferable, and a catalyst containing ruthenium oxide and titanium oxide is more preferable. Catalysts containing ruthenium oxide are described, for example, in JP-A-10-182104 and EP-A-936184. Catalysts containing ruthenium oxide and titanium oxide are described, for example, in JP-A-10-194705 and JP-A-10-338502. The content of ruthenium oxide in the catalyst is preferably from 0.1 to 20% by weight. If the amount of ruthenium oxide is too small, the activity of the catalyst may be low and the conversion of hydrogen chloride may be low. On the other hand, if the amount of ruthenium oxide is too large, the price of the catalyst may be high.
[0012]
The catalyst may be used in the form of a spherical particle, a columnar pellet, an extruded shape, a ring shape, a honeycomb shape, or an appropriately sized granule which is pulverized and classified after molding. At this time, the diameter of the catalyst is preferably 10 mm or less. If the catalyst diameter exceeds 10 mm, the activity may decrease. The lower limit of the catalyst diameter is not particularly limited, but if it is excessively small, the pressure loss in the catalyst packed bed increases, so that a catalyst having a diameter of 0.1 mm or more is usually used. The term “catalyst diameter” as used herein refers to the diameter of a sphere in the case of spherical particles, the diameter of a cross section in the case of a cylindrical pellet, and the maximum diameter of the cross section in other shapes.
[0013]
The amount (volume) of the catalyst used is usually from 10 to 20,000 h −1 , expressed as a ratio (GHSV) to the supply rate of hydrogen chloride in a standard state (0 ° C., 0.1 MPa). The direction in which the raw material flows into the reaction zone may be upward or downward. The reaction pressure is usually from 0.1 to 5 MPa. The reaction temperature is preferably from 200 to 500C, more preferably from 200 to 380C. If the reaction temperature is too low, the conversion of hydrogen chloride may decrease, while if the reaction temperature is too high, the catalyst components may volatilize.
[0014]
The reaction zone consisting of the catalyst packed bed of the present invention means the whole of the packed catalyst and the packing formed only with the inert substance and / or the carrier that dilutes the catalyst. The upper and / or lower part of the reaction zone comprising the catalyst packed layer may be filled with an inert substance. However, a packed bed composed only of an inert substance is not considered as a catalyst packed bed.
[0015]
In the present invention, the gas linear velocity based on a superficial tower needs to be 0.70 to 10 m / s, preferably 0.70 to 6 m / s, and more preferably 0.70 to 3 m / s. . Thus, by suppressing excessive hot spots in the catalyst packed bed and effectively utilizing the catalyst packed bed, stable activity of the catalyst is maintained, and chlorine can be stably obtained at a high yield. Therefore, catalyst cost, equipment cost, operation cost, operation stability and ease can be ensured. In addition, the gas linear velocity based on an empty tower according to the present invention is a ratio of the total amount of supply rates of all gases supplied to the catalyst packed bed in a standard state (0 ° C., 0.1 MPa) to the cross-sectional area of the reaction tube. Means
[0016]
In the present invention, the fixed-bed reaction method having a reaction zone including at least two catalyst-packed layers in a reaction tube is performed, and chlorine is stably obtained at a high yield by effectively utilizing the catalyst-packed layers. It is preferred because it can be. As a method of forming at least two catalyst-packed layers, a method of dividing the catalyst-packed layer in the reaction tube into at least two reaction zones in the tube axis direction and filling catalysts having different activities, compositions, and / or particle sizes, Or a method in which the catalyst is filled with a filler molded only with an inert substance and / or a carrier at a different dilution ratio, or a catalyst and a catalyst diluted with a filler molded only with an inert substance and / or a carrier are filled There are ways to do that. Usually, successive reaction zones are in direct contact with each other, but an inert substance may be filled between the reaction zones. However, a packed bed composed only of an inert substance is not considered as a catalyst packed bed. The larger the number of divisions of the catalyst-packed layer, the more effectively the catalyst-packed layer can be utilized. However, industrially, it is usually 2 to 20 reaction zones, preferably 2 to 8 reaction zones, and more preferably 2 to 4 reaction zones. Performed in the reaction zone. If the number of divisions is too large, the number of types of the catalyst to be charged may increase, which may be economically disadvantageous.
[0017]
In the present invention, the catalyst packed bed is divided into at least two reaction zones in the tube axis direction, and the ratio of the first reaction zone is preferably 70% by volume or less, more preferably 30% by volume or less. In addition, the ratio of the first reaction zone is set to 70% by volume or less, preferably 30% by volume or less, and the temperature of the second reaction zone is usually 5 ° C. or higher, preferably 10 ° C. or higher than the first reaction zone. And / or molding only with a catalyst or a catalyst and an inert substance and / or a carrier such that the activity of the second reaction zone is usually 1.1 times or more, preferably 1.5 times or more higher than that of the first reaction zone. More preferably, the filled filler is filled. Here, the activity of the reaction zone (mol-HCl / ml-reaction zone-min) means the hydrogen chloride reaction activity (mol-HCl / g-catalyst-min) per unit catalyst weight and time, and the catalyst loading amount (g). ) Means the calculated value divided by the volume (ml) of the reaction zone. The hydrogen chloride reaction activity per unit weight of the catalyst and the hydrogen chloride reaction activity per hour are as follows: the ratio of the volume of the catalyst to the supply rate of hydrogen chloride in a standard state (0 ° C., 0.1 MPa) is 4400 to 4800 h −1 , This is a value calculated from the amount of chlorine generated at this time by reacting at a reaction pressure of 0.1 MPa and a reaction temperature of 280 ° C. by supplying 0.5 mol of oxygen. In the first reaction zone, the reaction rate is high because the concentrations of the reactants hydrogen chloride and oxygen are high. Therefore, for example, in a fixed bed reaction of a heat exchange system having a jacket portion, a hot spot is generated on the inlet side of the first reaction zone. On the other hand, the outlet side of the first reaction zone has a temperature close to the temperature of the heat medium in the jacket. If the ratio of the first reaction zone is larger than 70% by volume, the temperature of the reaction zone in the jacket is close to the temperature of the heat medium in the jacket, and the catalyst cannot be used effectively.
[0018]
In the present invention, the catalyst packed bed is divided into at least two reaction zones in the axial direction of the tube, and only the catalyst or the catalyst and the inert substance and / or the carrier are so selected that the thermal conductivity of the first reaction zone is the highest. It is preferable to fill the filler molded in the step (a), and it is more preferable to fill the reaction zone so that the thermal conductivity of the reaction zone gradually decreases in the gas flow direction from the first reaction zone toward the final reaction zone. Here, the final reaction zone means the most downstream reaction zone for the gas flow. The thermal conductivity of the reaction zone means the thermal conductivity of the packing filled in the reaction zone. In the reaction zone on the raw material inlet side, the reaction rate is high due to the high concentration of the reactants hydrogen chloride and oxygen, and the heat generated by the oxidation reaction is large. Therefore, by filling the reaction zone on the inlet side with a catalyst having a relatively high thermal conductivity of the catalyst, an excessive hot spot can be suppressed.
[0019]
In the present invention, the catalyst packed bed is divided into at least two reaction zones in the tube axis direction, and the activity of the reaction zone is gradually increased in the gas flow direction from the first reaction zone toward the final reaction zone. By filling the catalyst or the filler molded only with the catalyst and the inert substance and / or the carrier, the temperature difference in the continuous reaction zone can be reduced, and therefore, the operation can be performed stably and easily. Preferred because it can.
[0020]
In the present invention, the catalyst packed bed is divided into at least two reaction zones in the tube axis direction, and the activity of the final reaction zone is higher than the activity of the immediately preceding reaction zone, so that the catalyst or the catalyst is inactive. A method is preferred in which a filling molded only with the substance and / or the carrier is filled and the hot spot in the final reaction zone is lower than the hot spot in the immediately preceding reaction zone. If the activity of the final reaction zone is lower than that of the previous reaction zone and the hot spot of the final reaction zone is higher than the hot spot of the immediately preceding reaction zone, hydrogen chloride is oxidized with oxygen and converted to chlorine and water. Since the reaction is an equilibrium reaction, the conversion rate of hydrogen chloride may be low due to the chemical equilibrium composition.
[0021]
In the present invention, a method in which the catalyst packed bed is divided into at least two reaction zones in the tube axis direction, and the gas temperature at the outlet of the final reaction zone is preferably 200 to 350 ° C, more preferably 200 to 320 ° C. More preferred. When the gas temperature at the outlet of the final reaction zone is higher than 350 ° C., the reaction of oxidizing hydrogen chloride with oxygen and converting it to chlorine and water is an equilibrium reaction, so that the conversion of hydrogen chloride becomes a chemical equilibrium composition. May be dominated and lower.
[0022]
In the present invention, a method in which the temperature of the reaction zone composed of the catalyst packed bed is controlled by a heat exchange method is preferable since the reaction heat is removed well and the stability and operability of the operation are secured. The heat exchange method of the present invention means a method in which a jacket is provided outside a reaction tube filled with a catalyst, and reaction heat generated by the reaction is removed by a heat medium in the jacket. In the heat exchange method, the temperature of a reaction zone including a catalyst packed bed in a reaction tube is controlled by a heat medium in a jacket. Industrially, a fixed-tube multitubular reactor of a multitubular heat exchanger type having a reaction zone having a reaction zone composed of a catalyst packed bed arranged in series and having a jacket portion on the outside is used. You can also. As a method other than the heat exchange method, there is an electric furnace method, but there is a problem that it is difficult to control the temperature of the reaction zone.
[0023]
Examples of the heat medium include a molten salt, steam, an organic compound and a molten metal, but a molten salt or steam is preferred from the viewpoint of thermal stability and ease of handling, and from the viewpoint of better thermal stability. Molten salts are more preferred. Molten metal has problems such as high cost and difficulty in handling. Examples of the composition of the molten salt include a mixture of 50% by weight of potassium nitrate and 50% by weight of sodium nitrite, and a mixture of 53% by weight of potassium nitrate, 40% by weight of sodium nitrite and 7% by weight of sodium nitrate. Examples of the organic compound include Dowsome A (a mixture of diphenyl oxide and diphenyl).
[0024]
In the present invention, the temperature of the reaction zone composed of the catalyst-packed bed is controlled by at least two independent temperature controls. Is preferred because As this method, a method in which the catalyst packed bed in the reaction tube is divided into at least two reaction regions in the tube axis direction and the temperature of the reaction region is controlled by a combination of a heat exchange method and a method other than the heat exchange method, at least A method in which an independent jacket portion is formed in the reaction region divided into two, and a heating medium is independently circulated to control the temperature of the reaction region, and / or the jacket portion is divided into at least two parts by a partition plate, and partitioned. A method of controlling the temperature of the reaction zone by circulating a heat medium independently in the portion where the heat medium is circulated. Although the partition plate may be directly fixed to the reaction tube by welding or the like, in order to prevent thermal distortion from occurring in the partition plate and the reaction tube, the partition plate can be substantially independently circulated within a range where the heat medium can be circulated. An appropriate distance can be provided between the partition plate and the reaction tube. It is preferable that the flow of the heat medium in the jacket flows upward from below. The more the number of reaction zones by independent temperature control, the more effectively the reaction zone can be utilized. However, industrially, usually 2 to 20 reaction zones, preferably 2 to 8 reaction zones, and more preferably 2 to 8 reaction zones. 44 reaction zones. If the number of reaction zones to be controlled is too large, the equipment for temperature control may increase, which may be economically disadvantageous.
[0025]
In the present invention, a method in which the catalyst packed bed is divided into at least two reaction zones in the tube axis direction and the temperature of the entire reaction zone is controlled by a heat exchange method is such that the reaction heat is satisfactorily removed and the operation stability is improved. This is preferable because the simplicity is ensured.
[0026]
The inner diameter of the reaction tube is usually 10 to 50 mm, preferably 10 to 40 mm, and more preferably 10 to 30 mm. If the inside diameter of the reaction tube is too small, it may be disadvantageous because an excessive number of reaction tubes is required in order to obtain a satisfactory throughput of hydrogen chloride in an industrial reactor. If the inner diameter is too large, an excessive hot spot may be generated in the catalyst packed bed.
[0027]
The ratio (D / d) of the inner diameter (D) of the reaction tube to the catalyst diameter (d) is usually 5/1 to 100/1, preferably 5/1 to 50/1, and more preferably 5/1 to 20 /. It is one. If the ratio is too small, excessive hot spots are generated in the catalyst packed bed, or an excessive number of reaction tubes are required to obtain a satisfactory throughput of hydrogen chloride in an industrial reactor. If it is disadvantageous and the ratio is too large, excessive hot spots may be generated in the catalyst packed bed, or pressure loss of the catalyst packed bed may be large.
[0028]
【Example】
Hereinafter, the present invention will be described with reference to examples.
Example 1
The reactor was equipped with a jacket made of a molten medium (potassium nitrate / sodium nitrite = 1/1 weight ratio) with a heating medium of 18 mm in inner diameter and 1 m in length made of a Ni reaction tube (sheath tube of 5 mm in outer diameter for temperature measurement). ) Was used. The reaction tube was filled with 99.4 g (100 ml) of a 6.6 wt% ruthenium oxide spherical granular catalyst supporting anatase crystalline TiO 2 having a diameter of 1 to 2 mm to form a catalyst packed layer. The upper and lower portions of the catalyst packed layer were filled with 238 g and 164 g of α-Al 2 O 3 spheres having a diameter of 2 mm (manufactured by Nikkat Co., Ltd., SSA995), respectively. Incidentally, anatase crystalline form TiO 2 carrying 6.6 wt% ruthenium oxide spherical particulate catalyst having a diameter of 1~2mm is prepared according to the method described in JP-A-10-338502, those used 890h again used.
Ni of 30 mm in inner diameter heated to 380 ° C. in an electric furnace with 9.4 l / min of hydrogen chloride (standard condition, hydrogen chloride: 99 vol% or more) and 4.7 l / min of oxygen (standard condition, oxygen: 99 vol% or more). It is supplied to a preheating tube (outer diameter 6 mm sheath for temperature measurement) and heated, and water is supplied to a stainless steel preheating tube having an inner diameter of 2 mm heated to 380 ° C. by an electric furnace at a temperature of 380 ° C. to vaporize water vapor. I let it. Subsequently, the preheated mixed gas of hydrogen chloride and oxygen was mixed with steam, and then flowed from the upper part to the lower part of the reaction tube in a down flow. The molar ratio of hydrogen chloride / oxygen / water is calculated to be 10/5/1, the GHSV is calculated to be 5639 h −1 , and the gas linear velocity based on an empty tower is calculated to be 1.1 m / s.
The temperature of the molten salt in the jacket was 336 ° C, and the reaction temperature of the catalyst layer was 337 ° C at the inlet, 356 ° C at the outlet, and 368 ° C for the hot spot. At this time, the pressure at the inlet of the reaction tube was 0.12 MPa-G. The outlet gas is sampled in an aqueous potassium iodide solution to absorb generated chlorine, unreacted hydrogen chloride and generated water, and the amount of chlorine produced and the amount of unreacted hydrogen chloride are determined by iodometric titration and neutralization titration, respectively. Was measured. The conversion of hydrogen chloride to chlorine was 21.5%.
[0029]
Comparative Example 1
The procedure was performed in the same manner as in Example 1 except that the catalyst amount was 48.1 g (49 ml), hydrogen chloride was 4.7 l / min, oxygen was 2.4 l / min, and water was 0.378 g / min. The molar ratio of hydrogen chloride / oxygen / water is calculated to be 10/5/1, the GHSV is calculated to be 5761 h −1 , and the gas linear velocity based on an empty tower is calculated to be 0.54 m / s.
The temperature of the molten salt in the jacket was 336 ° C., and the hot spot of the catalyst layer exceeded 380 ° C. due to the heat of reaction and became uncontrollable.
[0030]
Comparative Example 2
Example 1 was repeated except that the amount of the catalyst was 18.8 g (20 ml), hydrogen chloride was 1.9 l / min, oxygen was 0.96 l / min, and water was 0.151 g / min. The molar ratio of hydrogen chloride / oxygen / water is calculated to be 10/5/1, the GHSV is calculated to be 5724 h −1 , and the gas linear velocity based on an empty tower is calculated to be 0.22 m / s.
The temperature of the molten salt in the jacket was 336 ° C., and the hot spot of the catalyst layer exceeded 380 ° C. due to the heat of reaction and became uncontrollable.
[0031]
【The invention's effect】
As described above, according to the present invention, a method for producing chlorine, in which hydrogen chloride in a gas containing hydrogen chloride is oxidized using a gas containing oxygen, which suppresses excessive hot spots in the catalyst packed bed, By effectively utilizing the packed bed, stable activity of the catalyst can be maintained and chlorine can be obtained in a stable and high yield, so that catalyst cost, equipment cost, operation cost, operation stability and easy operation It was possible to provide an extremely advantageous method for producing chlorine from the viewpoint of properties.

Claims (3)

塩化水素を含むガス中の塩化水素を、酸素を含むガスを用いて、触媒充填層からなる反応域を有する固定床反応方式で酸化する方法において、空塔基準のガス線速度を0.70〜10m/sとする塩素の製造方法。In a method of oxidizing hydrogen chloride in a gas containing hydrogen chloride using a gas containing oxygen by a fixed bed reaction method having a reaction zone composed of a catalyst packed bed, a gas linear velocity based on an empty tower is set to 0.70 to 0.70. A method for producing chlorine at 10 m / s. 少なくとも二の触媒充填層からなる反応域を有する固定床反応方式で酸化する請求項1記載の塩素の製造方法。The method for producing chlorine according to claim 1, wherein the oxidation is carried out by a fixed bed reaction method having a reaction zone comprising at least two catalyst packed beds. 触媒充填層からなる反応域の温度を、少なくとも二の独立した温度制御で行う請求項1記載の塩素の製造方法。2. The method for producing chlorine according to claim 1, wherein the temperature of the reaction zone comprising the catalyst packed bed is controlled by at least two independent temperature controls.
JP2000004539A 2000-01-13 2000-01-13 Method for producing chlorine Expired - Lifetime JP3570322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000004539A JP3570322B2 (en) 2000-01-13 2000-01-13 Method for producing chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000004539A JP3570322B2 (en) 2000-01-13 2000-01-13 Method for producing chlorine

Publications (2)

Publication Number Publication Date
JP2001199710A JP2001199710A (en) 2001-07-24
JP3570322B2 true JP3570322B2 (en) 2004-09-29

Family

ID=18533315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000004539A Expired - Lifetime JP3570322B2 (en) 2000-01-13 2000-01-13 Method for producing chlorine

Country Status (1)

Country Link
JP (1) JP3570322B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005072859A1 (en) * 2004-01-29 2005-08-11 Sumitomo Chemical Company, Limited Filler for vapor-phase reaction
JP4507615B2 (en) * 2004-02-04 2010-07-21 住友化学株式会社 Chlorine production method
JP4507614B2 (en) * 2004-02-04 2010-07-21 住友化学株式会社 Chlorine production method
DE102004014677A1 (en) * 2004-03-25 2005-10-13 Basf Ag Fluidized bed process and reactor for carrying out exothermic chemical equilibrium reactions
JP4205035B2 (en) 2004-09-27 2009-01-07 住友化学株式会社 Multi-tube reactor for catalytic gas phase reaction
JP4341591B2 (en) * 2005-06-22 2009-10-07 住友化学株式会社 Chlorine production reactor and chlorine production method
JP2008105862A (en) * 2006-10-23 2008-05-08 Sumitomo Chemical Co Ltd Method for producing chlorine
JP5130155B2 (en) 2008-08-28 2013-01-30 住友化学株式会社 Chlorine production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197302A (en) * 1986-02-21 1987-09-01 Mitsui Toatsu Chem Inc Production of chlorine
JPS62270405A (en) * 1986-05-19 1987-11-24 Mitsui Toatsu Chem Inc Production of chlorine
CA2229993A1 (en) * 1997-02-27 1998-08-27 Air Products And Chemicals, Inc. Fixed-bed temperature swing catalytic process for chemical reactions
JPH11180701A (en) * 1997-10-15 1999-07-06 Sumitomo Chem Co Ltd Production of chlorine

Also Published As

Publication number Publication date
JP2001199710A (en) 2001-07-24

Similar Documents

Publication Publication Date Title
KR101513298B1 (en) Method for producing chlorine
EP1251100B1 (en) Method for producing chlorine
SK282577B6 (en) Method for single stage fixed bed oxychlorination of ethylene
JP3606147B2 (en) Chlorine production method
JPH0569042B2 (en)
JP3124455B2 (en) Method for producing phosgene
JP3570322B2 (en) Method for producing chlorine
JP2005289800A (en) Method of producing chlorine
JP3058696B2 (en) Oxychlorination of ethylene in a two-stage fixed bed reactor
JP4081591B2 (en) Chlorine production method
US3291846A (en) Process for producing vinyl chloride
EP0146925B1 (en) Method for the oxychlorination of ethylene
CN101357751B (en) Pulp bed reaction technique for producing chlorine gas by chloride hydrogen catalytic oxidation
KR100241085B1 (en) Oxychlorination of ethylene in two stage fixed-bed reactor
JP2008105862A (en) Method for producing chlorine
CN102216207A (en) Chlorine production method
JP2012180242A (en) Method for producing chlorine
JP2010030831A (en) Method for producing chlorine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R151 Written notification of patent or utility model registration

Ref document number: 3570322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

EXPY Cancellation because of completion of term