JPS62270405A - Production of chlorine - Google Patents

Production of chlorine

Info

Publication number
JPS62270405A
JPS62270405A JP61112592A JP11259286A JPS62270405A JP S62270405 A JPS62270405 A JP S62270405A JP 61112592 A JP61112592 A JP 61112592A JP 11259286 A JP11259286 A JP 11259286A JP S62270405 A JPS62270405 A JP S62270405A
Authority
JP
Japan
Prior art keywords
catalyst
chlorine
gas
hydrogen chloride
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61112592A
Other languages
Japanese (ja)
Other versions
JPH0413283B2 (en
Inventor
Tadamitsu Kiyoura
清浦 忠光
Yasuo Kogure
小暮 靖雄
Tokio Nagayama
時男 永山
Kazuo Kanetani
金谷 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP61112592A priority Critical patent/JPS62270405A/en
Publication of JPS62270405A publication Critical patent/JPS62270405A/en
Publication of JPH0413283B2 publication Critical patent/JPH0413283B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To recover and collect chlorine from a formed gas efficiently, by spray-drying chromia hydrogel-containing slurry by a fluidized bed reactor, calcining the dried material to give a fine spherical catalyst and using the catalyst. CONSTITUTION:A hydrogen chloride gas prepared as a by-product in a reaction process of organic compound is oxidized in a fluidized bed reactor to give chlorine. In the operation, slurry containing 2-20wt% chromia hydrogel is spray-dried and then calcined to give a fine spherical catalyst and the catalyst is used. The catalyst is usually used in a range of about 350-450 deg.C. Since the catalyst has high activity, high mechanical strength and especially improved wear resistance, chlorine gas is efficiently recovered from a formed gas.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、塩化水素ガスを含酸素ガスで酸化して塩素を
製造する方法に関する。更に詳細には、流動床反応器を
用いて塩化水素ガスを含酸素ガスで酸化して塩素を製造
するために、好適に調製された微小球状触媒を使用する
ことを特徴とする塩素の製造方法に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing chlorine by oxidizing hydrogen chloride gas with an oxygen-containing gas. More specifically, a method for producing chlorine, which comprises using a suitably prepared microspherical catalyst to produce chlorine by oxidizing hydrogen chloride gas with an oxygen-containing gas using a fluidized bed reactor. It is related to.

(発明の技術的背景) 塩素は食塩電解により大規模に製造されており、塩素の
需要は年々増大するにもかかわらず、食塩電解の際に生
成する苛性ソーダの需要は塩素のそれよりも少ないため
に、各々の不均衡をうまく調整するのは困難な状況が生
じている。
(Technical background of the invention) Chlorine is produced on a large scale by salt electrolysis, and although the demand for chlorine increases year by year, the demand for caustic soda produced during salt electrolysis is less than that of chlorine. However, a situation has arisen in which it is difficult to adjust each imbalance properly.

一方、有機化合物の塩素化反応または、ホスゲンを用い
る反応の際に大量の塩化水素が副生じており、副生塩化
水素の量は、塩酸の需要量より大幅に多いために、大量
の塩化水素が未利用のままで無駄に廃棄されている。ま
た廃棄のための処理コストもかなりの額に達する。
On the other hand, large amounts of hydrogen chloride are produced as a by-product during chlorination reactions of organic compounds or reactions using phosgene. remains unused and wasted. Additionally, the processing costs for disposal can be considerable.

上記のように大量に廃棄された塩化水素から効率よく塩
素を回収出来れば、苛性ソーダ生産量との不均衡を生し
ることなく、塩素の需要を満たずことができる。
If chlorine can be efficiently recovered from large amounts of discarded hydrogen chloride as described above, the demand for chlorine can be met without creating an imbalance with the production of caustic soda.

(従来の技術および発明が解決しようとする問題点) 塩化水素を酸化して塩素を製造する反応は古くからDe
acon反応として知られている。1868年、Dea
conの発明による銅系の触媒が、従来量も優れた活性
を示す触媒とされ、塩化銅と塩化カリに第三成分として
種々な化合物を添加した触媒が多数提案されている。し
かしながら、これらの触媒で工業的に充分な反応速度で
塩化水素を酸化するためには、反応温度を400℃以上
にする必要があり、触媒成分の飛散に伴なう触媒寿命の
低下等が問題となる。
(Problems to be solved by the prior art and the invention) The reaction of oxidizing hydrogen chloride to produce chlorine has been conducted since ancient times using De
This is known as the acon reaction. 1868, Dea
The copper-based catalyst invented by John Con. has been shown to exhibit excellent activity even in conventional amounts, and many catalysts have been proposed in which various compounds are added as third components to copper chloride and potassium chloride. However, in order to oxidize hydrogen chloride at an industrially sufficient reaction rate with these catalysts, it is necessary to raise the reaction temperature to 400°C or higher, which poses problems such as shortened catalyst life due to scattering of catalyst components. becomes.

以上の観点から、銅系以外の触媒として、酸化クロムは
銅等に比較すると高温に対する安定性、耐久性があるの
で、酸化クロムを塩化水素の酸化に触媒として用いる提
案もなされている。しかしながら、未だ充分な活性を示
す結果は報告されていない。例えば、英国特許第584
.790号には、無水クロム酸または硝酸クロム水溶液
を適当な担体に含浸させて熱分解した触媒上に、塩化水
素を400℃前後で流通させて塩素を発生させ、触媒が
失活したところで塩化水素の供給を停止し、空気を流通
させて触媒を再生後、空気の流通を断って、ふたたび塩
化水素を流通させる不連続的方法が記載されいている。
From the above viewpoint, as a non-copper-based catalyst, chromium oxide has been proposed to be used as a catalyst for the oxidation of hydrogen chloride because it has stability and durability against high temperatures compared to copper and the like. However, no results showing sufficient activity have been reported yet. For example, British Patent No. 584
.. No. 790 discloses that hydrogen chloride is passed at around 400°C over a thermally decomposed catalyst impregnated with an aqueous solution of chromic acid anhydride or chromium nitrate to generate chlorine, and when the catalyst is deactivated, hydrogen chloride is released. A discontinuous method is described in which the supply of hydrogen chloride is stopped, air is allowed to flow to regenerate the catalyst, and then the air flow is cut off and hydrogen chloride is allowed to flow again.

また、英国特許第676、667号には、重クロム酸塩
または暗黒緑色の酸化クロムを、担体上、に担持した触
媒を用い、塩化水素と含酸素ガスを420〜,130℃
の反応温度で空間速度380Hr−’で反応させ、平衡
値の67.4%の塩化水素の転化率、空間速度680t
lr”では63%の塩化水素の転化率を得ている。その
際反応温度340°Cでも反応は認められるが、この場
合には空間速度を6511+”といった低い値にし、し
かも52%の転化率を得ているに過ぎない。
Furthermore, British Patent Nos. 676 and 667 disclose hydrogen chloride and oxygen-containing gas at 420 to 130°C using a catalyst in which dichromate or dark green chromium oxide is supported on a carrier.
The reaction was carried out at a reaction temperature of 380 Hr-' and a hydrogen chloride conversion rate of 67.4% of the equilibrium value, and a space velocity of 680 t.
lr'', a conversion rate of 63% of hydrogen chloride was obtained. At that time, the reaction was observed even at a reaction temperature of 340°C, but in this case, the space velocity was set to a low value of 6511+'', and a conversion rate of 52% was obtained. It's just that you're getting it.

またこれらの改良法として、英国特許第846,832
号には酸化クロム触媒の存在下、反応系中のガス相にク
ロミルクロライドを存在させて反応を実施している。そ
の具体例として六価の重り一コム酸アンモニウムを焼成
して六価の酸化クロムとなし、これを水素で還元して得
た三価の酸化クロムを触媒に用い、塩化水素と酸素との
等モル混合物を420℃の反応温度で空間速度1200
1−1r−’で反応させ、平衡値の92%の塩化水素の
転化率を得ているが、185時間後には46%に低下す
るため、活性を維持するため原料塩化水素にクロミルク
ロライドを混入する方法がとられている。
Furthermore, as an improved method of these, British Patent No. 846,832
The reaction was carried out in the presence of a chromium oxide catalyst and in the presence of chromyl chloride in the gas phase of the reaction system. As a specific example, a hexavalent weight, ammonium monocomate, is calcined to produce hexavalent chromium oxide, and trivalent chromium oxide obtained by reducing this with hydrogen is used as a catalyst, and hydrogen chloride and oxygen are combined. molar mixture at a reaction temperature of 420°C and a space velocity of 1200
1-1r-', the conversion of hydrogen chloride was 92% of the equilibrium value, but it decreased to 46% after 185 hours, so chromyl chloride was added to the raw material hydrogen chloride to maintain the activity. A method of mixing is used.

しかしながら、重クロム酸アンモンやクロミルクロライ
ドなどのように六価クロムは人体に有害であり、またこ
の方法は、触媒調整時の水素還元や、反応終了後のクロ
ミルクロライドの分離精製など工程が煩雑となる。
However, hexavalent chromium, such as ammonium dichromate and chromyl chloride, is harmful to the human body, and this method requires steps such as hydrogen reduction during catalyst preparation and separation and purification of chromyl chloride after the reaction is completed. It becomes complicated.

このようなことより、酸化クロムを触媒に用いても、上
記英国特許第846,832号に記載のように新たな反
応試薬を加えない限り、従来公知の方法は反応温度も高
く、空間速度が低いために工業的な操業に耐え得る状態
にはない。すなわち、従来報告されている酸化クロム触
媒は、銅系触媒に比較して特に優れた性能を示すもので
はなかった。
For this reason, even if chromium oxide is used as a catalyst, unless a new reaction reagent is added as described in the above-mentioned British Patent No. 846,832, conventionally known methods have a high reaction temperature and a low space velocity. Due to its low temperature, it is not in a condition that can withstand industrial operations. That is, conventionally reported chromium oxide catalysts did not exhibit particularly superior performance compared to copper-based catalysts.

本発明者らは、先に、活性が高く、塩化水素の処理量も
多い触媒を用いて効率よく塩素を製造する方法を見出し
た。
The present inventors have previously discovered a method for efficiently producing chlorine using a catalyst that has high activity and can process a large amount of hydrogen chloride.

塩酸を分子状酸素で酸化して高い効率で塩素を回収する
には、吸収工程での塩素ガス濃度を高くする必要がある
。高濃度の塩素ガスを与えるためには反応器入口ガス中
の塩化水素ガスと酸素ガスの濃度を高くする必要があり
、その結果、反応器単位容積当たりの反応熱に基づく発
熱量は増加する。
In order to recover chlorine with high efficiency by oxidizing hydrochloric acid with molecular oxygen, it is necessary to increase the chlorine gas concentration in the absorption process. In order to provide high-concentration chlorine gas, it is necessary to increase the concentrations of hydrogen chloride gas and oxygen gas in the reactor inlet gas, and as a result, the calorific value based on the heat of reaction per unit volume of the reactor increases.

反応熱を能率よく除去し小型の反応器でも使用可能とす
るには、固定床反応器よりも流動床反応器が有利である
A fluidized bed reactor is more advantageous than a fixed bed reactor in order to efficiently remove the heat of reaction and enable the use of even a small reactor.

流動床反応器を採用するには、流動床反応器に適した粒
度を持つ微小球状の流動床用触媒が必要となる。しかし
、微小球状のクロミアを主成分とする流動床用触媒を使
用し流動床反応器により、塩化水素ガスを含酸素ガスで
酸化し、塩素を製造する方法は未だ知られていない。
In order to employ a fluidized bed reactor, a microspherical fluidized bed catalyst with a particle size suitable for the fluidized bed reactor is required. However, there is still no known method for producing chlorine by oxidizing hydrogen chloride gas with an oxygen-containing gas in a fluidized bed reactor using a fluidized bed catalyst containing microspherical chromia as a main component.

本発明の目的は、高活性、高い機械的強度、特に耐摩耗
性の優れたクロミア系流動床用触媒を用い塩素を製造す
る方法を提供することである。
An object of the present invention is to provide a method for producing chlorine using a chromia-based fluidized bed catalyst that has high activity, high mechanical strength, and particularly excellent wear resistance.

(問題点を解決するための手段) 本発明者らは、流動床反応器を用い塩化水素ガスを含酸
素ガスで酸化し、塩素を製造するに際し使用するに好適
なりロミアを主要成分とする流動床用触媒の製造法に関
して種々研究した。その結果、クロム塩水溶液にアルカ
リ物質を添加して得られるクロミアヒドロゲルを噴霧乾
燥して微小球状に造粒するに際し、クロミアヒドロゲル
を含有するスラリー濃度が2〜20重量%の範囲にある
スラリーを噴霧乾燥すれば、流動床触媒に適した微小球
触媒が得られることを見出し、本発明を完成するに至っ
た。
(Means for Solving the Problems) The present inventors oxidized hydrogen chloride gas with an oxygen-containing gas using a fluidized bed reactor, and discovered that a fluid containing Romia as a main component is suitable for use in producing chlorine. Various studies were conducted regarding the manufacturing method of bed catalysts. As a result, when spray-drying chromia hydrogel obtained by adding an alkaline substance to an aqueous chromium salt solution and granulating it into microspheres, a slurry containing chromia hydrogel with a concentration in the range of 2 to 20% by weight was sprayed. It was discovered that a microsphere catalyst suitable for a fluidized bed catalyst could be obtained by drying, and the present invention was completed.

即ち、本発明は流動床反応器を用い塩化水素ガスを含酸
素ガスで酸化し塩素を製造するに際し、クロミアヒドロ
ゲルを2〜20重量%の範囲の濃度で含有するスラリー
を噴霧乾燥し、ついで焼成して得られる微小球状触媒を
使用することを特徴とする塩素の製造方法である。
That is, when producing chlorine by oxidizing hydrogen chloride gas with an oxygen-containing gas using a fluidized bed reactor, the present invention spray-dries a slurry containing chromia hydrogel at a concentration in the range of 2 to 20% by weight, and then calcinates it. This is a method for producing chlorine, which is characterized by using a microspherical catalyst obtained by.

本発明の方法に於いて使用するクロミアヒドロゲルは、
通常つぎに挙げるような方法で製造される。すなわち、
クロムの塩を含有する水溶液にアルカリ物質(特にアン
モニア水が好ましい)を添加しクロミアヒドロゲルの沈
殿を生成させる。生成したクロミアヒドロゲルの沈殿を
常法により水洗し、そのまま、あるいは、シリカゲル、
その他必要ならば第三、さらには第四の添加物を加え、
全スラリー濃度が2〜20重量%となる様に調整する。
The chromia hydrogel used in the method of the present invention is
It is usually manufactured by the following method. That is,
An alkaline substance (especially preferably ammonia water) is added to an aqueous solution containing a chromium salt to form a chromia hydrogel precipitate. The generated chromia hydrogel precipitate is washed with water using a conventional method, and either directly or with silica gel,
If necessary, add a third or even fourth additive,
The total slurry concentration is adjusted to 2 to 20% by weight.

スラリー濃度の調整には、濾過濃縮または遠心分離等の
通常用いられる方法が適用できる。
To adjust the slurry concentration, commonly used methods such as filtration concentration or centrifugation can be applied.

クロミアの濃度は、焼上り後の触媒で30〜100重量
%、シリカの濃度で0〜70重量%の範囲が多用される
The concentration of chromia is often in the range of 30 to 100% by weight in the fired catalyst, and the concentration of silica is in the range of 0 to 70% by weight.

このように2〜20重量%の範囲に調整されたスラリー
を噴霧乾燥し微小球に造粒する。使用する噴霧乾燥器の
型式はディスク式またはノズル式のアトマイザ−を持つ
ものが使用出来る。ディスク式の場合は通常粒度分布が
比較的狭い粒子を得る目的に多用され、ノズル式の場合
には粒度分布が比較的広い粒子を得る目的に多用される
。ノズル式の場合でも、特に−流体ノズルによるものが
好ましい。流動床触媒として用いる微小球は粒子径が5
〜200μ、特に10〜150μ程度の広い範囲に分布
しているもの、平均粒径では40〜80μの範囲が適し
ている。通常上記の粒度分布を持つ微小球の製造には、
ノズル式のアトマイザ−が多用されノズルの孔径は0.
5〜2.0m/lIlφの範囲が多用されノズルへのス
ラリーを圧入するポンプ圧は5〜31Jg/cIAの範
囲が適している。
The slurry thus adjusted to a range of 2 to 20% by weight is spray-dried and granulated into microspheres. The type of spray dryer used can be one with a disk type or nozzle type atomizer. The disk type is usually used to obtain particles with a relatively narrow particle size distribution, and the nozzle type is often used to obtain particles with a relatively wide particle size distribution. Even in the case of a nozzle type, one using a fluid nozzle is particularly preferred. The microspheres used as fluidized bed catalysts have a particle size of 5
-200μ, particularly those distributed over a wide range of about 10-150μ, and an average particle size in the range of 40-80μ are suitable. Usually, to produce microspheres with the above particle size distribution,
Nozzle-type atomizers are often used, and the nozzle hole diameter is 0.
A range of 5 to 2.0 m/lIlφ is often used, and a suitable pump pressure for injecting the slurry into the nozzle is a range of 5 to 31 Jg/cIA.

噴霧された粒子を乾燥するために熱風が使用される。熱
風温度は100〜500’Cの範囲が多用される。
Hot air is used to dry the sprayed particles. The hot air temperature is often in the range of 100 to 500'C.

使用するスラリーは、クロム塩の水溶液にアンモニア水
等のアルカリ物質または尿素を反応させて生じたクロミ
アヒドロゲルの沈殿を常法により洗浄したものを濃縮し
たもの、あるいは洗浄後のクロミアヒドロゲルの沈殿に
シリカゾルを添加したもの、さらに第三〜第四の添加物
を加えたものを用いる。噴霧乾燥を行う際のクロミアヒ
ドロゲル含有スラリーの濃度は2〜20重量%の範囲に
保つことが必要である。この範囲のスラリーの粘度はク
ロミアヒドロゲルとシリカゾルとの組成により変化する
が、通常10〜2000cpの範囲にある。北記した範
囲にスラリー濃度を保ことで、前述した流動床触媒とし
て最適な範囲の粒度分布を持ったクロミアゲルの微小球
を製造することが出来る。
The slurry to be used is the one obtained by washing the precipitate of chromia hydrogel produced by reacting an aqueous solution of chromium salt with an alkaline substance such as aqueous ammonia or urea using a conventional method, and then concentrating the precipitate, or by adding silica sol to the precipitate of chromia hydrogel after washing. , and the third to fourth additives are used. It is necessary to maintain the concentration of the chromia hydrogel-containing slurry in the range of 2 to 20% by weight during spray drying. The viscosity of the slurry in this range varies depending on the composition of chromia hydrogel and silica sol, but is usually in the range of 10 to 2000 cp. By keeping the slurry concentration within the range described above, it is possible to produce chromia gel microspheres having a particle size distribution in the optimum range for the fluidized bed catalyst described above.

スラIJ−41度が2重量%未満であると粒度分布が少
粒径に片寄り、スラリー濃度が上記濃度を越えると粒度
分布が大粒径に片寄るばかりでなく、スラリー粘度が増
加し、ノヅルから噴霧するのが困難となる。
If the slurry IJ-41 degree is less than 2% by weight, the particle size distribution will be biased towards small particle sizes, and if the slurry concentration exceeds the above concentration, the particle size distribution will not only be biased towards large particle sizes, but the slurry viscosity will increase, causing nozzle It becomes difficult to spray from the ground.

噴霧乾燥後の微小球は通常空気雰囲気中で400〜80
0℃の温度で焼成して触媒とする。
After spray drying, the microspheres usually have a density of 400 to 80% in an air atmosphere.
The catalyst is calcined at a temperature of 0°C.

上記範囲の濃度のスラリーを用いて製造した微小球を、
引き続き焼成した触媒の耐摩耗性は良好なものであり、
流動床用触媒として適したものが得られる。
Microspheres produced using a slurry with a concentration in the above range,
The abrasion resistance of the subsequently calcined catalyst was good;
A catalyst suitable for fluidized beds is obtained.

本発明の方法では、以」二のように製造した触媒を、通
常反応温度350〜450℃の温度範囲で、塩化水素ガ
スを含酸素ガスで酸化する塩素の製造に使用する。
In the method of the present invention, the catalyst produced as described below is used for producing chlorine by oxidizing hydrogen chloride gas with an oxygen-containing gas at a normal reaction temperature range of 350 to 450°C.

本発明の方法において、塩化水素と酸素とのモル比はH
Cfi 10□が110.25〜1/1の範囲が多用さ
れる。
In the method of the present invention, the molar ratio of hydrogen chloride and oxygen is H
A range of Cfi 10□ of 110.25 to 1/1 is often used.

反応ガスの線速度は、10〜50cm/secが適当で
ある。
The linear velocity of the reaction gas is suitably 10 to 50 cm/sec.

(作用および効果) 本発明の方法により高濃度の塩化水素ガスを酸素で酸化
し、反応器出口ガス中の生成塩素濃度を高く保つことが
出来る。したがって、生成ガスからの塩素の回収取得が
極めて効率的に実施できて、工業的に有利な塩素の回収
が可能となる。
(Functions and Effects) By the method of the present invention, highly concentrated hydrogen chloride gas can be oxidized with oxygen, and the concentration of produced chlorine in the reactor outlet gas can be maintained at a high level. Therefore, chlorine can be recovered and obtained from the generated gas extremely efficiently, and industrially advantageous chlorine recovery becomes possible.

(実施例) 以下、実施例により本発明を説明する。(Example) The present invention will be explained below with reference to Examples.

実施例1 40重量%硝酸クロム水溶液126Kgに純水905.
5Kgを加え、次いで25重量%のアンモニア水92.
3Kgを4時間を要して注入滴下した。滴下中は母液を
充分に撹拌し、また反応温度を45〜50℃の範囲に保
つ様に液温の調節を行った。
Example 1 126 kg of 40% by weight chromium nitrate aqueous solution and 905 kg of pure water were added.
5Kg and then 25% by weight aqueous ammonia92.
3 kg was injected dropwise over 4 hours. During the dropwise addition, the mother liquor was sufficiently stirred, and the liquid temperature was adjusted to maintain the reaction temperature in the range of 45 to 50°C.

生成沈殿を50℃で3時間熟成させた後沈殿を洗浄し濾
過濃縮を行った。次いで25重量%のシリカゾル28K
gを添加し充分に攪拌混合した。得られたスラリーの濃
度は6.5重量%であった。このスラリーをノヅル径1
 、2m#nの加圧ノズル式スプレードライヤーを用い
、スラリー送入圧10Kgで噴霧し、入口空気温度32
0℃で微小球に造粒した。得られた微小球を550’c
で5時間焼成し、流動床触媒を製造した。本触媒の平均
粒度は67μであり、10μから150μの広い範囲に
粒径が分布しており、流動床触媒として好ましい性状で
ある。ACC法(加速テスト)で測定した摩耗損失は0
.16χHr−’であり触媒として充分な耐摩耗性を示
す。
After aging the resulting precipitate at 50° C. for 3 hours, the precipitate was washed, filtered and concentrated. Then 25% by weight silica sol 28K
g was added and thoroughly stirred and mixed. The concentration of the resulting slurry was 6.5% by weight. Pour this slurry through a nozzle diameter of 1
, using a 2m#n pressurized nozzle type spray dryer, the slurry was sprayed at a pressure of 10Kg, and the inlet air temperature was 32
It was granulated into microspheres at 0°C. The obtained microspheres were heated to 550'c
The mixture was calcined for 5 hours to produce a fluidized bed catalyst. The average particle size of this catalyst is 67μ, and the particle size is distributed over a wide range of 10μ to 150μ, which is a desirable property as a fluidized bed catalyst. Wear loss measured by ACC method (accelerated test) is 0
.. 16χHr-' and exhibits sufficient wear resistance as a catalyst.

本触媒2Kgを採り内径4inchの流動床反応器に充
填し触媒床温度を380 ’C〜390°C、IICI
I 102が1.10.5ガス線速度30cm八ecで
反応させ、塩化水素の添加率78%で塩素を回収した。
2 kg of this catalyst was taken and packed into a fluidized bed reactor with an inner diameter of 4 inches, and the catalyst bed temperature was set at 380'C to 390°C, IICI.
I102 was reacted at 1.10.5 gas linear velocity of 30 cm and 8 ec, and chlorine was recovered at a hydrogen chloride addition rate of 78%.

実施例−2〜7 実施例−1と同様の方法と装置を用い、使用するスラリ
ーの濃度を種々に変えて触媒を調整した。
Examples 2 to 7 Using the same method and apparatus as in Example 1, catalysts were prepared by varying the concentration of the slurry used.

得られた触媒の平均粒径を以下の表に示す。本反応に使
用する流動床触媒としては平均粒径が40〜80μが適
当な範囲である。
The average particle size of the catalyst obtained is shown in the table below. The average particle size of the fluidized bed catalyst used in this reaction is suitably in the range of 40 to 80 microns.

Claims (1)

【特許請求の範囲】[Claims] (1)流動床反応器を用い塩化水素ガスを含酸素ガスで
酸化し塩素を製造するに際し、クロミアヒドロゲルを2
〜20重量%の範囲の濃度で含有するスラリーを噴霧乾
燥し、ついで焼成して得られる微小球状触媒を使用する
ことを特徴とする塩素の製造方法。
(1) When producing chlorine by oxidizing hydrogen chloride gas with oxygen-containing gas using a fluidized bed reactor, chromia hydrogel
A method for producing chlorine, which comprises using a microspherical catalyst obtained by spray-drying a slurry containing chlorine at a concentration in the range of 20% by weight and then calcination.
JP61112592A 1986-05-19 1986-05-19 Production of chlorine Granted JPS62270405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61112592A JPS62270405A (en) 1986-05-19 1986-05-19 Production of chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61112592A JPS62270405A (en) 1986-05-19 1986-05-19 Production of chlorine

Publications (2)

Publication Number Publication Date
JPS62270405A true JPS62270405A (en) 1987-11-24
JPH0413283B2 JPH0413283B2 (en) 1992-03-09

Family

ID=14590591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61112592A Granted JPS62270405A (en) 1986-05-19 1986-05-19 Production of chlorine

Country Status (1)

Country Link
JP (1) JPS62270405A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224201A (en) * 1988-03-01 1989-09-07 Mitsui Toatsu Chem Inc Production of chlorine
EP0743277A1 (en) * 1995-05-18 1996-11-20 Sumitomo Chemical Company Limited Process for producing chlorine
JP2001199710A (en) * 2000-01-13 2001-07-24 Sumitomo Chem Co Ltd Method of producing chlorine
WO2009014229A1 (en) 2007-07-23 2009-01-29 Sumitomo Chemical Company, Limited Method for activating catalyst for chlorine production
WO2010021407A1 (en) 2008-08-22 2010-02-25 住友化学株式会社 Method for producing chlorine and catalyst
WO2010050546A1 (en) 2008-10-30 2010-05-06 住友化学株式会社 Process for producing chlorine
DE112010002611T5 (en) 2009-05-29 2012-08-23 Sumitomo Chemical Company, Limited Method for activating a catalyst for chlorine production and method for producing chlorine
WO2015109587A1 (en) * 2014-01-21 2015-07-30 万华化学集团股份有限公司 Method for preparing catalyst used for preparing chlorine, catalyst and method for preparing chlorine
WO2021199633A1 (en) 2020-04-01 2021-10-07 住友化学株式会社 Molding catalyst and method for producing halogen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB676667A (en) * 1949-08-27 1952-07-30 Diamond Alkali Co Improvements in or relating to the oxidation of hydrogen chloride
JPS5021997A (en) * 1973-06-28 1975-03-08

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB676667A (en) * 1949-08-27 1952-07-30 Diamond Alkali Co Improvements in or relating to the oxidation of hydrogen chloride
JPS5021997A (en) * 1973-06-28 1975-03-08

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224201A (en) * 1988-03-01 1989-09-07 Mitsui Toatsu Chem Inc Production of chlorine
EP0743277A1 (en) * 1995-05-18 1996-11-20 Sumitomo Chemical Company Limited Process for producing chlorine
US5871707A (en) * 1995-05-18 1999-02-16 Sumitomo Chemical Company, Limited Process for producing chlorine
JP2001199710A (en) * 2000-01-13 2001-07-24 Sumitomo Chem Co Ltd Method of producing chlorine
WO2009014229A1 (en) 2007-07-23 2009-01-29 Sumitomo Chemical Company, Limited Method for activating catalyst for chlorine production
WO2010021407A1 (en) 2008-08-22 2010-02-25 住友化学株式会社 Method for producing chlorine and catalyst
WO2010050546A1 (en) 2008-10-30 2010-05-06 住友化学株式会社 Process for producing chlorine
DE112010002611T5 (en) 2009-05-29 2012-08-23 Sumitomo Chemical Company, Limited Method for activating a catalyst for chlorine production and method for producing chlorine
WO2015109587A1 (en) * 2014-01-21 2015-07-30 万华化学集团股份有限公司 Method for preparing catalyst used for preparing chlorine, catalyst and method for preparing chlorine
US10226758B2 (en) 2014-01-21 2019-03-12 Wanhua Chemical Group Co., Ltd. Method for preparing catalyst used for preparing chlorine, catalyst and method for preparing chlorine
WO2021199633A1 (en) 2020-04-01 2021-10-07 住友化学株式会社 Molding catalyst and method for producing halogen

Also Published As

Publication number Publication date
JPH0413283B2 (en) 1992-03-09

Similar Documents

Publication Publication Date Title
JPH0470946B2 (en)
JPH04277030A (en) Ethylbenzene dehydrogenation catalyst
JPS62270405A (en) Production of chlorine
IE52463B1 (en) Oxychlorination process and catalyst therefor
CA2283137A1 (en) Use of ce/zr mixed oxide phase for the manufacture of styrene by dehydrogenation of ethylbenzene
US2769018A (en) Catalytic oxidation of polynuclear hydrocarbons
JPS6331541A (en) Preparation of fluidized catalyst for synthesis of methanol
CN113908837B (en) MOFs derivative denitration catalyst, preparation method and application thereof
JPH0568401B2 (en)
JPH0114810B2 (en)
JPS62113701A (en) Production of chlorine
JPH0114807B2 (en)
EP0465243B1 (en) Method for stabilizing treatment of catalytic activity
JP3867305B2 (en) Carbon monoxide conversion catalyst
JPS62241804A (en) Production of chlorine
JPS6242744A (en) Carrier of catalyst for removing nitrogen oxide and production of catalyst using said carrier
JP3797146B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JPH08245211A (en) Production of carbon monoxide
JPS6268541A (en) Preparation of catalyst for removing nitrogen oxide
JPS62241805A (en) Production of chlorine
JPS6115727B2 (en)
JPH053401B2 (en)
CN106669691B (en) A kind of preparation method for the copper bismuth catalyst for being used to synthesize 1,4- butynediols
JP3032816B2 (en) Method for producing styrene monomer
JP2002001122A (en) Copper-zinc based catalyst precursor composition and method for manufacturing the catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees