WO2005072859A1 - Filler for vapor-phase reaction - Google Patents

Filler for vapor-phase reaction Download PDF

Info

Publication number
WO2005072859A1
WO2005072859A1 PCT/JP2005/000938 JP2005000938W WO2005072859A1 WO 2005072859 A1 WO2005072859 A1 WO 2005072859A1 JP 2005000938 W JP2005000938 W JP 2005000938W WO 2005072859 A1 WO2005072859 A1 WO 2005072859A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
filler
reaction tube
jacket
gas phase
Prior art date
Application number
PCT/JP2005/000938
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiko Mori
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2005072859A1 publication Critical patent/WO2005072859A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00176Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00221Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • B01J2208/00663Concentration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions

Definitions

  • the present invention relates to a filler for a gas phase reaction.
  • a gas phase reactor in which a gaseous raw material compound is reacted is usually filled with a filler in order to improve the heat conductivity of the raw material compound and to support and dilute the solid catalyst.
  • Japanese Patent Publication 4 7 4 0 7 9 2 JP page 2 ceramic Raschig rings (Rasching Ring) as a filler, i.e. silica filler (S i 0 2) composite oxide composed mainly of This filler is filled in the upper part of the gas phase reactor, and gaseous N— ( ⁇ -hydroxyethyl) -12-pyrrolidone is supplied from the upper end of the gas phase reactor. A method of heating to 50 ° C. or higher is described.
  • a Raschig ring made of inorganic glass or stainless steel is disclosed as a filler, and this filler is filled in a gas phase reactor, A method is described in which gaseous N- ( ⁇ -methoxyethyl) formamide is introduced and heated to 300 ° C or more to cause a thermal decomposition reaction.
  • Japanese Patent Application Laid-Open No. 2001-276660 discloses that a silica-alumina firing material containing at least 0.5% by weight of an alkali metal element and at least 10% by weight of silicon as an oxide is used as a filler. There is disclosed a filler obtained by carrying an alcohol compound on the resultant and then calcining the filler. The filler is charged into a gas phase reactor, and gaseous 2-ethoxyethanol is introduced into the reactor. A method is described in which a decomposition reaction is carried out by heating at a temperature of 100 ° C. or higher.
  • these conventional fillers are not always durable. For example, if they are used for a long period of time, the fillers are likely to deteriorate or lose their mass due to volatilization of components, and hydrogen chloride (HC) 1) This was particularly noticeable when acidic gas such as gas was used. Disclosure of the invention The present inventors have conducted intensive studies to develop a filler for a gas phase reactor having excellent durability. As a result, the aluminum content is about 90% by weight or more in terms of oxide, that is, in terms of aluminum oxide. The present inventors have found that a filler consisting of has little deterioration and mass change even when used for a long period of time, and can be used for a long period of time.
  • the present invention provides a filler for a gas phase reaction comprising alumina having an aluminum content of about 90% by weight or more in terms of aluminum oxide.
  • the filler of the present invention has excellent durability and can be used for a long time.
  • 1 to 3 are cross-sectional views of a gas-phase reaction reactor filled with a filler according to the present invention.
  • the filler in the present invention is made of alumina, and includes, for example, a crystalline material such as alumina and r-alumina, preferably an alumina.
  • powdered alumina (A 1 2 0 3) may be a sintered body obtained by sintering a.
  • a sintered body made of alumina is preferable because it has a small specific surface area and good thermal conductivity.
  • the alumina in the present invention contains aluminum (A 1) in an amount of about 90% by weight or more, preferably about 92% by weight or more in terms of aluminum oxide. It may contain substantially 100% by weight of aluminum oxide in terms of aluminum oxide without substantially containing metal components other than aluminum.
  • the content of metal components other than aluminum may be 0% or less as long as they are about 10% by weight or less in terms of oxides.
  • the metal component other than aluminum include silicon (S ⁇ , alkali metals such as sodium (Na) and potassium (K), and transition metals such as iron (F e) and titanium (T i). .
  • the specific surface area of the filler in the present invention are preferably lm 2 Z g or less, more preferably 0. 5 m 2 g or less, more preferably not more than 0. 2 m 2 Z g, this case, the filling of the present invention
  • the material is sufficiently durable even when a strongly acidic starting compound such as hydrogen chloride is reacted at a high temperature.
  • the filler exhibits sufficient durability especially in a strong chlorinated atmosphere such as in the presence of hydrogen chloride containing no water.
  • the specific surface area can be measured as a BET specific surface area by a nitrogen adsorption method.
  • a sintered body made of alumina is preferred because it has a small specific surface area.
  • the size of the filler in the present invention can be 0.1 mm or more and 2 cm or less, and is preferably 1 mm or more and 1 cm or less.
  • the shape of the filler varies depending on the shape of the gas phase reactor in which it is used, the reaction conditions, and the like, and is appropriately selected. For example, it may be in the form of an amorphous powder, a sphere, or a column.
  • the spherical shape is preferred because the filling into the reactor is easy, and the bulk density of the filling does not easily change depending on the filling rate.
  • Various types of spherical alumina are commercially available, for example, as a powder frame medium, a catalyst carrier, and the like, and these commercially available aluminas can be used as the filler in the present invention.
  • Examples of commercially available alumina include “HD” (trade name) and rsSA-995j (both manufactured by Nitsukato Corporation).
  • the filler in the present invention can be used by filling a reactor for introducing and reacting a gaseous raw material compound.
  • Examples of such a raw material compound include strongly acidic compounds such as hydrogen chloride (H C 1), and olefins. Since the filler in the present invention has sufficient durability against strongly acidic compounds such as hydrogen chloride, it can be suitably used for the reaction.
  • strongly acidic compounds such as hydrogen chloride (H C 1)
  • olefins since the filler in the present invention has sufficient durability against strongly acidic compounds such as hydrogen chloride, it can be suitably used for the reaction.
  • the gas phase reaction is performed in the reactor filled with the filler according to the present invention.
  • a reaction examples include an oxidation reaction in which hydrogen chloride is used as a raw material compound (A) and oxygen ( ⁇ 2 ) is reacted therewith to produce chlorine (Cl 2 ) as a reactant; Isomerization reaction to obtain an isomer of olefins as a reactant by using the olefins as a reactant; using olefins as a raw material compound, adding water and alcohols thereto, and forming a derivative of the olefins as a reactant An addition reaction to be obtained; and an oxidation reaction in which an olefin is used as a raw material compound and oxygen is reacted therewith to produce an olefin oxide as a reactant.
  • the gas-phase reaction reactor used in the present invention may be a fixed-bed reactor in which the packing material filled therein is fixed and used, or a moving-bed reactor in which the packing material is used while being moved. It may be a fluidized bed reactor which is used while being fluidized together with the raw material compound.
  • FIG. 1 to 3 are cross-sectional views of a gas-phase reactor filled with a gas-phase reaction filler (1) used in the present invention as a filler.
  • the gas phase reactor (2) fixes the filling material The fixed bed reactor used.
  • the gas-phase reactor (2) includes a reaction tube as a reactor body (20), and further includes a jacket (21) that covers the reaction tube (20).
  • a heating medium (3) flows through the jacket (21), and the reaction tube (20) is cooled or heated by the heating medium (3).
  • the heat medium (3) is taken out of the jacket (21), for example, and then temperature-controlled by a heat exchanger (not shown) or the like, and is again introduced into the jacket (21). May be circulated.
  • the type of the heat medium (3) is appropriately selected and used depending on the reaction temperature, and examples thereof include water, oil, molten salt, and ionic liquid.
  • the number of reaction tubes (20) in the gas-phase reactor (2) is not particularly limited.
  • a single-tube gas-phase reactor having only one reaction tube (20) such as a gas-phase reactor (2) shown in FIGS. 1 and 2, or FIG.
  • a multi-tube gas-phase reactor provided with two or more reaction tubes (20), and the plurality of reaction tubes (20) covered with a jacket (21). It may be.
  • the starting compound (A) By introducing the gaseous starting compound (A) into such a gas phase reactor (2), the starting compound (A) can be reacted.
  • the raw material compound (A) is introduced into the reaction tube (20), while the reaction tube (20) is cooled or heated by the heating medium (3).
  • the raw material mixture (A) introduced from the inlet (2a) reacts in the reaction tube, and the reactant (B) generated by the reaction is taken out from the outlet (2c).
  • the position of the filled filler (1) in the reaction tube (20) is not particularly limited.
  • the filler (1) is used by being filled near the inlet (2a) on the upstream side of the reaction region (2b) in the reaction tube (20).
  • the reaction region (2b) is a region where most of the raw material compound (A) reacts, for example, a catalyst layer filled with a solid catalyst for the reaction.
  • the filler (1) in the present invention may be used by filling it near the outlet (2c) downstream of the catalyst layer (2b).
  • the catalyst layer (2b) is supported to prevent the movement of the catalyst due to the wind pressure of the raw material mixture (A), especially the scattering from the outlet. It can be expected that the reaction product (B) after the reaction is rapidly cooled.
  • the filler (1) according to the present invention may be used by filling the catalyst layer (2b) filled with the catalyst together with the catalyst.
  • the amount of catalyst per unit volume in the catalyst layer (2b) can be reduced and adjusted, and the heat transfer from the catalyst can be adjusted. Things can be expected.
  • FIG. 2 when a single reaction tube (20) is filled with a plurality of catalyst layers (2b, 2), a layer (2d) partitioning between the catalyst layers (2b, 2b ') is formed.
  • the filler (1) in the present invention may be filled.
  • the catalyst in the catalyst layers (2b, 2b ') is prevented from moving and being mixed with the flow of the raw material compound (A) and the reactant (B).
  • the raw material compound (A) is heated in the upstream catalyst layer (2b)
  • it can be expected that the heated raw material compound is cooled and led to the downstream catalyst layer (2b ′).
  • the divided catalyst layers (2b, 2b ') may be filled with the same composition of catalytic power or may be filled with different compositions of catalytic power.
  • a jacket (2) may be provided with a partition plate (4).
  • the partition plate (4) supports the plurality of reaction tubes (20), fixes it to the jacket (21), and regulates or blocks the flow of the heat carrier (3) flowing through the jacket (21).
  • the partition plate (4) include a tube plate (41) for fixing the reaction tube (20) to the jacket (21) at the inlet (2a) of the reaction tube (20); and an outlet (2c) for the reaction tube (20).
  • Baffle plate (44) for changing the direction of flow of heat carrier (3).
  • the intermediate tube plate (43) and the baffle plate (44) may be tightly fixed to the reaction tube (20), or may have a slight gap between the reaction tube (20) and The heat medium (3) flowing in the jacket (21) may move between the sections (21, 2 ⁇ ) through the gap.
  • the baffle plate (44) changes the direction of flow of the heat medium (3) in the jacket (21) so that the heat medium (3) flows evenly in the entire jacket (21).
  • the flow of the heat medium (3) in the jacket (21) is adjusted by the partition plates (4) such as the tube sheets (41, 42), the intermediate tube sheet (43), and the baffle plate (44).
  • the inside of the jacket (21) is located near a portion where the reaction tube (20) is in contact with the partition plate (4).
  • the heat medium (3) may stay, and the cooling and heating of the reaction tube (20) may become insufficient near that portion.
  • the filler (1) in a portion of the reaction tube (20) where the heat exchange tends to be insufficient, even if the flow of the heat medium (3) is sufficient.
  • the entire reaction tube (20) can be sufficiently cooled or heated even if it is not.
  • the filler (1) used in the present invention is made of alumina having an aluminum content of 90% by weight or more, and exhibits good thermal conductivity. From the viewpoint of such good thermal conductivity, the filler (1) in the present invention preferably has a specific surface area of 1 m 2 Zg or less. Good. A sintered body made of alumina is preferred because of its small specific surface area and particularly good thermal conductivity.
  • the filler (1) in the present invention is filled near the portion where the reaction tube (20) and the partition plate (4) are in contact inside the reaction tube (20), heating is insufficient. This is preferable because it is possible to prevent a reduction in the reaction yield of the catalyst and a deterioration of the catalyst and a reaction tube due to insufficient cooling.
  • the starting compound (A) can be reacted at 600 ° C or lower, preferably 500 ° C or lower, more preferably 400 ° C or lower.
  • the filler (1) in the present invention exhibits a remarkable durability effect at 200 ° C. or higher. It is preferably used in a reaction for reacting the starting compound (A) at a temperature of at least C, more preferably at least 300 ° C.
  • spherical alumina having a particle diameter of about 3 mm and a specific surface area of 140 m 2 Zg (“NKHD-24”, manufactured by Sumitomo Chemical Co., Ltd. aluminum Niumu content (A 1 2 0 3) 99. 7 wt%, silicon content (S i 0 2) 0. 02 wt%, sodium ⁇ beam content (N a 2 0) 0. 2 7 wt%, iron content (F e 2 0 3) 0 .
  • a reaction tube similar to that of Example 1 was prepared except that a nickel thermometer sheath and a tube having an outer diameter of 6 were installed on the reaction tube so that the gas temperature in the reaction tube could be measured in the axial direction of the reaction tube.
  • the gas inlet side of the reaction tube was filled with a supported catalyst obtained by extrusion molding (1% by weight of ruthenium oxide supported on titania and alumina), and the gas outlet side was the same as that used in Example 1.
  • the same filler was filled.
  • the heat medium was introduced into the jacket covering the reaction tube with the nucleus being 3oo :, while the heat medium was introduced from the gas inlet side of the reaction tube to 300 ”, 0.00”.
  • Hydrogen chloride gas and oxygen gas were mixed and introduced at a flow rate of 300 Nm 3 Z (O: atmospheric pressure) and a flow rate of 0.014 Nm 3 (0, atmospheric pressure).
  • the gas introduced into the reaction tube reacts and generates heat when it comes into contact with the catalyst layer, and the generated reaction gas reaches 350 at the gas outlet of the catalyst layer, but then comes into contact with the filler layer.
  • the heat is removed by the heat transfer between the filler and the heating medium.
  • the temperature of the reaction gas drops to 300, the same as the heating medium.
  • the temperature power of the reaction gas 3 ⁇ 4 decreased slightly, indicating that the heat removal was good.
  • a reaction tube was prepared in the same manner as in Example 1 except that a nickel thermometer sheath and a tube having an outer diameter of 6 were installed in the reaction tube so that the gas temperature in the reaction tube could be measured in the axial direction of the reaction tube.
  • the gas inlet side of the reaction tube was filled with a supported catalyst obtained by extrusion molding (1% by weight of ruthenium oxide supported on titania and alumina), and the gas outlet side was the same as that used in Example 2.
  • the same filler was filled.
  • the temperature was set to 300, and the heat medium was introduced into a jacket covering the reaction tube.
  • Hydrogen chloride gas was introduced at a flow rate of 300 Nm 3 Z (0, converted to atmospheric pressure) and oxygen was introduced at a flow rate of 0.014 Nm 3 / min (0 ° C, converted to atmospheric pressure).
  • the gas introduced into the reaction tube reacts and generates heat when it comes into contact with the catalyst layer, and the generated reaction gas reaches 35 Ot: at the gas outlet of the catalyst layer.
  • the heat is removed by heat transfer between the filler and the heating medium, so that at a distance of 20 cm from the gas inlet side of the filler, the temperature of the reaction gas drops to 310 ° C and a temperature of 45 cm At this point, the reaction gas had decreased to 300, the same as the heat medium.
  • the rapid reduction in the temperature of the reaction gas indicated that the heat removal was good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Disclosed is a filler for vapor-phase reactions which is composed of an alumina having an aluminum content of about 90 weight% or more in terms of aluminum oxide. This filler can be continuously used for a long time since it hardly suffers from changes in properties or mass even after long use.

Description

明 細 書 気相反応用充填材 技術分野  Description Filler for gas phase reaction Technical field
本発明は、 気相反応用充填材に関する。 背景技術  The present invention relates to a filler for a gas phase reaction. Background art
内部でガス状の原料化合物を反応させる気相反応器には通常、 原料化合物の伝熱性を向上させ たり、 固体触媒を支持したり希釈したりするために、 充填材が充填されている。  A gas phase reactor in which a gaseous raw material compound is reacted is usually filled with a filler in order to improve the heat conductivity of the raw material compound and to support and dilute the solid catalyst.
例えば特公昭 4 7— 4 0 7 9 2号公報第 2頁には、 充填材としてセラミック製のラシヒリング (Rasching Ring) 、 即ちシリカ (S i 02) を主成分とする複合酸化物の充填材が開示されてお り、 この充填材を気相反応器の上部に充填しておき、 気相反応器の上端からガス状の N— (β - ヒドロキシェチル) 一 2—ピロリドンを供給し 3 5 0 °C以上に加熱する方法が記載されている。 特開平 3 - 1 8 1 4 5 1号公報第 2頁には、 充填材として無機ガラスまたはステンレス製のラ シヒリングが開示されており、 この充填材を気相反応器内に充填しておき、 ガス状の N— (α— メトキシーェチル) ホルムアミドを導入して 3 0 0 °C以上に加熱して熱分解反応させる方法が記 載されている。 For example, Japanese Patent Publication 4 7 4 0 7 9 2 JP page 2, ceramic Raschig rings (Rasching Ring) as a filler, i.e. silica filler (S i 0 2) composite oxide composed mainly of This filler is filled in the upper part of the gas phase reactor, and gaseous N— (β-hydroxyethyl) -12-pyrrolidone is supplied from the upper end of the gas phase reactor. A method of heating to 50 ° C. or higher is described. On page 2 of Japanese Patent Application Laid-Open No. 3-181451, a Raschig ring made of inorganic glass or stainless steel is disclosed as a filler, and this filler is filled in a gas phase reactor, A method is described in which gaseous N- (α-methoxyethyl) formamide is introduced and heated to 300 ° C or more to cause a thermal decomposition reaction.
特開 2 0 0 1— 2 7 6 6 0 1号公報には、 充填材として、 酸化物換算でアル力リ金属元素 0 . 5重量%以上およびシリコン 1 0重量%以上を含むシリカーアルミナ焼結体にアル力リ化合物を 担持させ、 次いで焼成して得た充填材が開示されており、 この充填材を気相反応器に充填し、 ガ ス状の 2—エトキシエタノールを導入して 3 0 0 °C以上に加熱して分解反応させる方法が記載さ れている。  Japanese Patent Application Laid-Open No. 2001-276660 discloses that a silica-alumina firing material containing at least 0.5% by weight of an alkali metal element and at least 10% by weight of silicon as an oxide is used as a filler. There is disclosed a filler obtained by carrying an alcohol compound on the resultant and then calcining the filler. The filler is charged into a gas phase reactor, and gaseous 2-ethoxyethanol is introduced into the reactor. A method is described in which a decomposition reaction is carried out by heating at a temperature of 100 ° C. or higher.
しかし、 これら従来の充填材は必ずしも耐久性が十分とは言えず、 例えば、 長期間使用し続け ると当該充填材は変質したり、 成分が揮散して質量が減少し易く、 塩化水素 (H C 1 ) ガスのよ うな酸性ガスが用いられた際には特に顕著であつた。 発明の開示 本発明者は、 耐久性に優れた気相反応器用充填材を開発するべく鋭意検討した結果、 アルミ二 ゥム含有量が酸化物換算、 即ち酸化アルミニウム換算で、 約 9 0重量%以上のアルミナからなる 充填材は、 長期間使用し続けても変質や質量変化が少なく、 長期間にわたり使用し続けることが できることを見出し、 本発明に至った。 However, these conventional fillers are not always durable. For example, if they are used for a long period of time, the fillers are likely to deteriorate or lose their mass due to volatilization of components, and hydrogen chloride (HC) 1) This was particularly noticeable when acidic gas such as gas was used. Disclosure of the invention The present inventors have conducted intensive studies to develop a filler for a gas phase reactor having excellent durability. As a result, the aluminum content is about 90% by weight or more in terms of oxide, that is, in terms of aluminum oxide. The present inventors have found that a filler consisting of has little deterioration and mass change even when used for a long period of time, and can be used for a long period of time.
すなわち本発明は、 酸化アルミニウム換算のアルミニウム含有量が約 9 0重量%以上のアルミ ナからなる気相反応用充填材を提供するものである。  That is, the present invention provides a filler for a gas phase reaction comprising alumina having an aluminum content of about 90% by weight or more in terms of aluminum oxide.
上記したように、 本発明における充填材は耐久性に優れているので、 長期間にわたり使用し続 けることができる。 図面の簡単な説明  As described above, the filler of the present invention has excellent durability and can be used for a long time. Brief Description of Drawings
図 1〜 3は、 本発明における充填材を充填した気相反応用反応器の断面図である。 発明を実施するための最良の形態  1 to 3 are cross-sectional views of a gas-phase reaction reactor filled with a filler according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明における充填材はアルミナからなり、 例えば、 ひ アルミナ、 r アルミナなどの結晶質、 好ましくはひアルミナからなるものが挙げられる。 又、 粉末状のアルミナ (A 1 203) を焼結 させて得られる焼結体であってもよい。 特に、 アルミナからなる焼結体は、 比表面積が小さ く、 熱伝導性が良好であるので好ましい。 The filler in the present invention is made of alumina, and includes, for example, a crystalline material such as alumina and r-alumina, preferably an alumina. Also, powdered alumina (A 1 2 0 3) may be a sintered body obtained by sintering a. In particular, a sintered body made of alumina is preferable because it has a small specific surface area and good thermal conductivity.
本発明におけるアルミナは、 アルミニウム (A 1 ) を、 酸化アルミニウム換算で約 9 0重量% 以上であり、 好ましくは約 9 2重量%以上含有している。 アルミニウム以外の金属成分を実質的 に含まず、 アルミニウムを酸化アルミニウム換算で 1 0 0重量%含むものであってもよい。 アル ミニゥム以外の金属成分の含有量は、 それらの酸化物換算にして約 1 0重量%以下であればよぐ その含有量が 0 %であってもよい。 アルミニウム以外の金属成分としては、 例えばシリコン (S Π や、 ナトリウム (N a) 、 カリウム (K) などのアルカリ金属や、 鉄 (F e ) 、 チタン (T i ) などの遷移金属などが挙げられる。  The alumina in the present invention contains aluminum (A 1) in an amount of about 90% by weight or more, preferably about 92% by weight or more in terms of aluminum oxide. It may contain substantially 100% by weight of aluminum oxide in terms of aluminum oxide without substantially containing metal components other than aluminum. The content of metal components other than aluminum may be 0% or less as long as they are about 10% by weight or less in terms of oxides. Examples of the metal component other than aluminum include silicon (SΠ, alkali metals such as sodium (Na) and potassium (K), and transition metals such as iron (F e) and titanium (T i). .
本発明における充填材の比表面積は、 好ましくは l m2Z g以下、 より好ましくは 0. 5 m2 g以下、 さらに好ましくは 0 . 2 m2Z g以下であり、 この場合、 本発明における充填材は、 塩 化水素のような強酸性の原料化合物を高温で反応させる場合にも十分な耐久性を示す。 該充填材 は、 特に、 水を全く含有しない塩ィ匕水素存在下のような強度の塩素化雰囲気下においても十分な 耐久性を示す。 尚、 比表面積は窒素吸着法により B E T比表面積として測定することができる。 ひアルミナからなる焼結体は、 比表面積が小さく、 好ましい。 The specific surface area of the filler in the present invention are preferably lm 2 Z g or less, more preferably 0. 5 m 2 g or less, more preferably not more than 0. 2 m 2 Z g, this case, the filling of the present invention The material is sufficiently durable even when a strongly acidic starting compound such as hydrogen chloride is reacted at a high temperature. The filler exhibits sufficient durability especially in a strong chlorinated atmosphere such as in the presence of hydrogen chloride containing no water. The specific surface area can be measured as a BET specific surface area by a nitrogen adsorption method. A sintered body made of alumina is preferred because it has a small specific surface area.
本発明における充填材の大きさは、 0. 1 mm以上 2 c m以下であることができ、 好ましくは 1 mm以上 1 c m以下である。  The size of the filler in the present invention can be 0.1 mm or more and 2 cm or less, and is preferably 1 mm or more and 1 cm or less.
充填材の形状は、 それが用いられる気相反応器の形状、 反応条件などにより異なり、 適宜選択 される。 例えば、 不定形の粉末状であってもよいし、 球状、 円柱状であってもよい。 反応器への 充填が容易で、 充填速度の大小によって充填されたときの嵩密度が変動しにくい点で、 球状であ ることが好ましい。 球状のアルミナは、 例えば粉枠媒体、 触媒担体などとして様々なものが市販 されており、 これら市販のアルミナを本発明における充填材として用いることができる。  The shape of the filler varies depending on the shape of the gas phase reactor in which it is used, the reaction conditions, and the like, and is appropriately selected. For example, it may be in the form of an amorphous powder, a sphere, or a column. The spherical shape is preferred because the filling into the reactor is easy, and the bulk density of the filling does not easily change depending on the filling rate. Various types of spherical alumina are commercially available, for example, as a powder frame medium, a catalyst carrier, and the like, and these commercially available aluminas can be used as the filler in the present invention.
市販のアルミナとしては、 例えば、 商品名 「HD」 、 rsSA-995j (いずれも (株) ニツカトー 製) が挙げられる。  Examples of commercially available alumina include “HD” (trade name) and rsSA-995j (both manufactured by Nitsukato Corporation).
本発明における充填材は、 ガス状の原料化合物を導入して反応させるための反応器に充填して 用いることができる。  The filler in the present invention can be used by filling a reactor for introducing and reacting a gaseous raw material compound.
かかる原料化合物としては、 例えば塩化水素 (H C 1 ) などのような強酸性の化合物、 ォレフ イン類等が挙げられる。 本発明における充填材は、 塩化水素のような強酸性の化合物に対しても 十分な耐久性を有しているので、 その反応に好適に用いることができる。  Examples of such a raw material compound include strongly acidic compounds such as hydrogen chloride (H C 1), and olefins. Since the filler in the present invention has sufficient durability against strongly acidic compounds such as hydrogen chloride, it can be suitably used for the reaction.
本発明における充填材カ充填された反応器において気相反応が実施される。 かかる反応として は、 例えば、 原料化合物 (A)として塩化水素を用い、 それに酸素 (〇2) を反応させ、 反応物とし て塩素 (C l 2) を製造する酸ィ匕反応;原料化合物としてォレフィン類を用い、 それを異性化し、 反応物としてォレフィン類の異性化物を得る異性化反応;原料化合物としてォレフィン類を用い、 これに水、 アルコール類を付加して、 反応物としてォレフィン類の誘導体を得る付加反応;及び、 原料化合物としてォレフィン類を用い、 それに酸素を反応させ、 反応物としてォレフィン類の酸 化物を製造する酸化反応、 等が挙げられる。 The gas phase reaction is performed in the reactor filled with the filler according to the present invention. Examples of such a reaction include an oxidation reaction in which hydrogen chloride is used as a raw material compound (A) and oxygen (〇 2 ) is reacted therewith to produce chlorine (Cl 2 ) as a reactant; Isomerization reaction to obtain an isomer of olefins as a reactant by using the olefins as a reactant; using olefins as a raw material compound, adding water and alcohols thereto, and forming a derivative of the olefins as a reactant An addition reaction to be obtained; and an oxidation reaction in which an olefin is used as a raw material compound and oxygen is reacted therewith to produce an olefin oxide as a reactant.
本発明で用いられる気相反応用反応器は、 内部に充填された前記充填材を、 固定して使用する 固定床反応器であってもよいし、 移動させながら使用する移動床反応器であってもよいし、 原料 化合物と共に流動させながら使用する流動床反応器であってもよい。  The gas-phase reaction reactor used in the present invention may be a fixed-bed reactor in which the packing material filled therein is fixed and used, or a moving-bed reactor in which the packing material is used while being moved. It may be a fluidized bed reactor which is used while being fluidized together with the raw material compound.
以下、 図 1〜図 3を用いて本発明の態様例を説明するが、 本発明はかかる態様に何ら限定され るものではない。  Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3, but the present invention is not limited to such embodiments.
図 1〜図 3は、 いずれも、 充填材として本発明で用いられる気相反応用充填材(1)が充填され た気相反応器の断面図を図示している。 気相反応器 (2)は、 内部に充填された充填材を固定して 使用する固定床反応器である。 気相反応器 (2)は、 反応器本体 (20)として反応管を備えており、 また、 この反応管 (20)を覆うジャケット(21)を備えている。 このジャケット(21)内には熱媒体 (3)が流れており、 熱媒体 (3)によって、 反応管 (20)を冷却または加熱する。 熱媒体 (3)は、 例え ばジャケット(21)から抜き出された後に熱交換器 (図示せず)などによつて温度調節されて再びジ ャケット(21)に導入され、 ジャケット(21)内を循環していてもよい。 熱媒体 (3)の種類は、 反応 温度によって適宜選択して用いられ、 例えば水、 油、 溶融塩、 イオン性液体などが挙げられる。 気相反応器 (2)における反応管 (20)の本数は特に限定されるものではない。 例えば、 図 1およ び図 2に示される気相反応器 (2)のように、 反応管 (20)が 1本だけの単管式気相反応器であって もよいし、 図 3に示される気相反応器 (2)示すように、 2本以上の反応管 (20)を備え、 これら複 数の反応管 (20)がジャケット(21)で覆われた多管式気相反応器であってもよい。 1 to 3 are cross-sectional views of a gas-phase reactor filled with a gas-phase reaction filler (1) used in the present invention as a filler. The gas phase reactor (2) fixes the filling material The fixed bed reactor used. The gas-phase reactor (2) includes a reaction tube as a reactor body (20), and further includes a jacket (21) that covers the reaction tube (20). A heating medium (3) flows through the jacket (21), and the reaction tube (20) is cooled or heated by the heating medium (3). The heat medium (3) is taken out of the jacket (21), for example, and then temperature-controlled by a heat exchanger (not shown) or the like, and is again introduced into the jacket (21). May be circulated. The type of the heat medium (3) is appropriately selected and used depending on the reaction temperature, and examples thereof include water, oil, molten salt, and ionic liquid. The number of reaction tubes (20) in the gas-phase reactor (2) is not particularly limited. For example, a single-tube gas-phase reactor having only one reaction tube (20), such as a gas-phase reactor (2) shown in FIGS. 1 and 2, or FIG. As shown in the gas-phase reactor (2), a multi-tube gas-phase reactor provided with two or more reaction tubes (20), and the plurality of reaction tubes (20) covered with a jacket (21). It may be.
このような気相反応器 (2)にガス状の原料化合物 (A)を導入することで、 原料化合物 (A)を反応 させることができる。 原料化合物 (A)は反応管 (20)に導入される一方、 反応管 (20)は熱媒体 (3)に より冷却または加熱される。 入口(2a)から導入された原料ィ匕合物 (A)は、 反応管内で反応し、 反 応により生成した反応物 (B)は出口(2c)から取り出される。  By introducing the gaseous starting compound (A) into such a gas phase reactor (2), the starting compound (A) can be reacted. The raw material compound (A) is introduced into the reaction tube (20), while the reaction tube (20) is cooled or heated by the heating medium (3). The raw material mixture (A) introduced from the inlet (2a) reacts in the reaction tube, and the reactant (B) generated by the reaction is taken out from the outlet (2c).
本発明において、 充填された充填材(1)の反応管 (20)内における位置は特に限定されない。 例 えば図 1に示すように、 充填材(1)は、 反応管 (20)内の反応領域 (2b)よりも上流側の入口(2a)近 傍に充填されて用いられる。 ここで、 反応領域 (2b)とは、 原料化合物 (A)の多くが反応する領域 であって、 例えば反応のための固体触媒が充填された触媒層などが挙げられる。 充填材(1)を入 口(2a)近傍に充填することで、 入口から導入された原料化合物 (A)を速やかに昇温して触媒層 (2b)に導くこと、 触媒層 (2b)の固体触媒を支持して原料化合物 (A)の風圧による固体触媒の移動 を防止することなどが期待される。  In the present invention, the position of the filled filler (1) in the reaction tube (20) is not particularly limited. For example, as shown in FIG. 1, the filler (1) is used by being filled near the inlet (2a) on the upstream side of the reaction region (2b) in the reaction tube (20). Here, the reaction region (2b) is a region where most of the raw material compound (A) reacts, for example, a catalyst layer filled with a solid catalyst for the reaction. By filling the filler (1) in the vicinity of the inlet (2a), the raw material compound (A) introduced from the inlet is quickly heated to be led to the catalyst layer (2b). It is expected to support the solid catalyst and prevent the movement of the solid catalyst due to the wind pressure of the raw material compound (A).
また、 本発明における充填材(1)は、 触媒層 (2b)よりも下流の出口(2c)近傍に充填して用いて もよい。 充填材 (1)を出口(2c)近傍に充填することで、 触媒層 (2b)を支持して原料ィ匕合物 (A)の風 圧による触媒の移動、 特に出口からの飛散を防止すること、 反応後の反応物 (B)を速やかに冷却 することなどが期待できる。  Further, the filler (1) in the present invention may be used by filling it near the outlet (2c) downstream of the catalyst layer (2b). By filling the filler (1) in the vicinity of the outlet (2c), the catalyst layer (2b) is supported to prevent the movement of the catalyst due to the wind pressure of the raw material mixture (A), especially the scattering from the outlet. It can be expected that the reaction product (B) after the reaction is rapidly cooled.
更に又、 本発明にける充填材(1)は、 触媒が充填された触媒層 (2b)に触媒と共に充填して用い てもよい。 充填材 (1)を触媒と共に触媒層(2b)に充填することで、 触媒層(2b)における単位体積 あたりの触媒量を減少させてその量を調整すること、 触媒からの伝熱性を調整することなどが期 待できる。 図 2に示すように一本の反応管 (20)に対して複数の触媒層 (2b、 2 )が充填される場合、 触媒 層 (2b、 2b' )同士の間を仕切る層 (2d)として本発明における前記充填材 (1)を充填してもよい。 か かる仕切り層 (2d)として用いることで、 原料化合物 (A)や反応物 (B)の流れに伴つて触媒層 (2b、 2b' )内の触媒が移動して互いに混合されるのを防止すること、 原料化合物 (A)が上流側の触媒層 (2b)で加熱されたときには、 この加熱原料化合物を冷却して下流側の触媒層 (2b' )に導くことな どが期待できる。 ここで、 複数に分けられた触媒層 (2b、 2b' )には、 互いに同じ組成の触媒力充 填されていてもよいし、 異なる組成の触媒力充填されてもよい。 Furthermore, the filler (1) according to the present invention may be used by filling the catalyst layer (2b) filled with the catalyst together with the catalyst. By filling the catalyst layer (2b) with the filler (1) together with the catalyst, the amount of catalyst per unit volume in the catalyst layer (2b) can be reduced and adjusted, and the heat transfer from the catalyst can be adjusted. Things can be expected. As shown in FIG. 2, when a single reaction tube (20) is filled with a plurality of catalyst layers (2b, 2), a layer (2d) partitioning between the catalyst layers (2b, 2b ') is formed. The filler (1) in the present invention may be filled. By using such a partition layer (2d), the catalyst in the catalyst layers (2b, 2b ') is prevented from moving and being mixed with the flow of the raw material compound (A) and the reactant (B). When the raw material compound (A) is heated in the upstream catalyst layer (2b), it can be expected that the heated raw material compound is cooled and led to the downstream catalyst layer (2b ′). Here, the divided catalyst layers (2b, 2b ') may be filled with the same composition of catalytic power or may be filled with different compositions of catalytic power.
本発明における反応器では、 図 3の多管式気相反応器において示されるように、 ジャケット (2】)に仕切板 (4)が備えられていてもよい。 仕切板 (4)は、 複数の反応管 (20)を支えたり、 ジャケ ット(21)に固定したり、 ジャケット(21)内を流れる熱媒体 (3)の流れを整えたり、 遮ったりする 役目がある。 仕切板 (4)の例としては、 反応管 (20)の入口(2a)で反応管 (20)をジャケット(21)に 固定する管板 (41);反応管 (20)の出口(2c)で反応管 (20)をジャケット(21)に固定する管板 (42); 反応管 (20)の中間でジャケット(21)内を複数の区画 (21, 21' )に仕切る中間管板 (43) ;熱媒体 (3) の流れる方向を変えるバッフル板 (44)等が挙げられる。  In the reactor according to the present invention, as shown in the multitubular gas phase reactor in FIG. 3, a jacket (2) may be provided with a partition plate (4). The partition plate (4) supports the plurality of reaction tubes (20), fixes it to the jacket (21), and regulates or blocks the flow of the heat carrier (3) flowing through the jacket (21). Has a role. Examples of the partition plate (4) include a tube plate (41) for fixing the reaction tube (20) to the jacket (21) at the inlet (2a) of the reaction tube (20); and an outlet (2c) for the reaction tube (20). A tube plate (42) for fixing the reaction tube (20) to the jacket (21) by using an intermediate tube plate (43) for dividing the inside of the jacket (21) into a plurality of sections (21, 21 ') in the middle of the reaction tube (20). Baffle plate (44) for changing the direction of flow of heat carrier (3).
尚、 中間管板 (43)及びバッフル板 (44)は、 反応管 (20)に対して密着して固定されていてもよい し、 反応管 (20)との間に僅かな隙間があり、 その隙間からジャケット(21)内を流れる熱媒体 (3) が区画 (21, 2Γ )の間を行き来するものであってもよい。 バッフル板 (44)は、 ジャケット(21)内で 熱媒体 (3)の流れる方向を変えさせ、 ジャケット(21)内全体を熱媒体 (3)が均等に流れるようにす ることができる。 これら管板 (41、 42)、 中間管板 (43)、 バッフル板 (44)等の仕切板 (4)により、 ジャケット(21)内の熱媒体 (3)の流れは整えられている。  In addition, the intermediate tube plate (43) and the baffle plate (44) may be tightly fixed to the reaction tube (20), or may have a slight gap between the reaction tube (20) and The heat medium (3) flowing in the jacket (21) may move between the sections (21, 2Γ) through the gap. The baffle plate (44) changes the direction of flow of the heat medium (3) in the jacket (21) so that the heat medium (3) flows evenly in the entire jacket (21). The flow of the heat medium (3) in the jacket (21) is adjusted by the partition plates (4) such as the tube sheets (41, 42), the intermediate tube sheet (43), and the baffle plate (44).
一般に、 ジャケット(21)に仕切板 (4)が備えられている多管式気相反応器においては、 反応管 (20)が仕切板 (4)に接する部分の近傍では、 ジャケット(21)内で熱媒体 (3)が滞留し、 その部分付 近で反応管 (20)の冷却や加熱が不十分となることがある。 しかし本発明においては、 反応管 (20) 内の、 熱交換がそのように不十分になりがちな部分に前記充填材 (1)を充填させることにより、 たとえ熱媒体 (3)の流れが十分でない場合においても、 十分に反応管 (20)全体を冷却または加熱 することができ、 好ましい。 これは、 本発明で用いられる充填材(1)が、 アルミニウムの含有量 が 9 0重量%以上であるアルミナからなり、 良好な熱伝導性を示すことによる。 かかる良好な熱 伝導性の観点から、 本発明における充填材 (1)は、 その比表面積が 1 m2Z g以下であることが好 ましい。 ひアルミナからなる焼結体は、 比表面積が小さく、 熱伝導性が特に良好であり、 好ま しい。 Generally, in a multitubular gas-phase reactor provided with a partition plate (4) in a jacket (21), the inside of the jacket (21) is located near a portion where the reaction tube (20) is in contact with the partition plate (4). As a result, the heat medium (3) may stay, and the cooling and heating of the reaction tube (20) may become insufficient near that portion. However, in the present invention, by filling the filler (1) in a portion of the reaction tube (20) where the heat exchange tends to be insufficient, even if the flow of the heat medium (3) is sufficient. However, it is preferable that the entire reaction tube (20) can be sufficiently cooled or heated even if it is not. This is because the filler (1) used in the present invention is made of alumina having an aluminum content of 90% by weight or more, and exhibits good thermal conductivity. From the viewpoint of such good thermal conductivity, the filler (1) in the present invention preferably has a specific surface area of 1 m 2 Zg or less. Good. A sintered body made of alumina is preferred because of its small specific surface area and particularly good thermal conductivity.
本発明における充填材 (1)が、 反応管 (20)内部の、 反応管 (20)と仕切板 (4)とが接する部分の近 傍に充填されていると、 加熱が不十分であるための反応収率の低下や、 冷却が不十分であるため の触媒劣化や反応管劣化などを防止することができ、 好ましい。  If the filler (1) in the present invention is filled near the portion where the reaction tube (20) and the partition plate (4) are in contact inside the reaction tube (20), heating is insufficient. This is preferable because it is possible to prevent a reduction in the reaction yield of the catalyst and a deterioration of the catalyst and a reaction tube due to insufficient cooling.
反応管 (20)内で原料化合物 (A)は、 600 °C以下、 好ましくは 500 °C以下、 さらに好ましく は 400°C以下で反応させることができる。 本発明における充填材(1)は、 200°C以上で耐久 性の効果を顕著に発揮するので、 200。C以上、 さらには 300°C以上で原料化合物 (A)を反応 させる反応に好ましく用いられる。 実施例  In the reaction tube (20), the starting compound (A) can be reacted at 600 ° C or lower, preferably 500 ° C or lower, more preferably 400 ° C or lower. The filler (1) in the present invention exhibits a remarkable durability effect at 200 ° C. or higher. It is preferably used in a reaction for reacting the starting compound (A) at a temperature of at least C, more preferably at least 300 ° C. Example
以下、 実施例によって本発明をより詳細に説明するが、 本発明は、 かかる実施例によって限定 されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
実施例 1 Example 1
粒子径約 3 mm、 B E T法で測定した比表面積 0. 1 m2/ g (測定下限) 未満で球状のひァ ルミナボール 〔(株)ニツカトー製、 「HD」 、 酸化物換算でアルミニウム含有量 (A 1203) 9 3重量%、 シリコン含有量 (S i〇2) 5. 4重量%、 カリウム含有量 (K2〇) 0. 05重量%、 ナトリウム含有量 (Na20) 0. 3重量%、 チタン含有量 (Ti〇2) 0. 1重量%、 鉄含有量 (Fe23) 0. 15重量%〕 500 gを充填材として用い、 これを内径 25 mmで長さ 200 Ommのニッケル製反応管に充填した。 反応管の外側はジャケットで覆い、 ジャケット内には熱 媒体 〔NaN02 50重量%とKN03 50重量%との溶融塩; 350"C〕 を導入した。 反応管 の一端から 0。C、 大気圧換算で、 0. 0305Nm3/分の流速で塩化水素ガスおよび 0. 01 4 Nm3Z分の流速で酸素ガスを混合して導入しつつ、 ガスを他端から抜き出した。 反応管の内 部の ί¾¾は 350°Cとした。 100時間後、 内部の充填材を取り出して質量を測定したところ、 充填材に質量の変化はなかった。 A spherical ceramic ball with a particle diameter of about 3 mm and a specific surface area of less than 0.1 m 2 / g (measurement lower limit) measured by the BET method (Nitsukato Co., Ltd., “HD”, aluminum content in terms of oxides) (A 1 2 0 3) 9 3 wt%, silicon content (S I_〇 2) 5.4 wt%, potassium content (K 2 〇) 0.05 wt%, sodium content (Na 2 0) 0 . 3% by weight, the titanium content (Ti_〇 2) 0.1 wt%, iron content (Fe 23) 0.15 wt%] using a 500 g as filler, the length of this inner diameter 25 mm of A 200 Omm nickel reaction tube was filled. Outside the reaction tube is covered with a jacket, the jacket [molten salt with NaN0 2 50 wt% and KN0 3 50 wt%; 350 "C] the heat medium. 0.C from one end of the introduction of the reaction tube, the large The gas was extracted from the other end while mixing and introducing hydrogen chloride gas and oxygen gas at a flow rate of 0.014 Nm 3 Z at a flow rate of 0.0305 Nm 3 / min in terms of atmospheric pressure. The ί¾¾ of the part was 350 ° C. After 100 hours, the internal filler was taken out and the mass was measured, and there was no change in the mass of the filler.
実施例 2 Example 2
充填材として実施例 1で用いたアルミナポールに代えて、 粒子径約 3mm、 比表面積 140m 2Zgで球状の rアルミナ 〔住友化学工業 (株)社製、 「NKHD—24」 、 酸化物換算でアルミ ニゥム含有量 (A 1203) 99. 7重量%、 シリコン含有量 (S i 02) 0. 02重量%、 ナトリ ゥム含有量 (N a 20) 0 . 2 7重量%、 鉄含有量 (F e 203) 0 . 0 2重量%〕 5 0 0 gを用レ、 反応管内部の^ 及び熱媒体の温度を各々 2 5 0 °Cとした以外は実施例 1と同様に反応を実施し た。 内部の充填材を取り出して質量を測定したところ、 充填材に質量の変化はなかった。 In place of the alumina pole used in Example 1 as a filler, spherical alumina having a particle diameter of about 3 mm and a specific surface area of 140 m 2 Zg (“NKHD-24”, manufactured by Sumitomo Chemical Co., Ltd. aluminum Niumu content (A 1 2 0 3) 99. 7 wt%, silicon content (S i 0 2) 0. 02 wt%, sodium © beam content (N a 2 0) 0. 2 7 wt%, iron content (F e 2 0 3) 0 . 0 2 wt%] 5 0 0 g of Yore, reaction tube of ^ and the heat medium The reaction was carried out in the same manner as in Example 1 except that the temperature of each was set at 250 ° C. When the filler was taken out and the mass was measured, there was no change in the filler mass.
実施例 3 Example 3
反応管軸方向に、 反応管内ガス温度を測定できるよう外径 6腿でニッケル製の温度計さや管を 反応管に設置した以外は、 実施例 1と同様の反応管を準備した。 反応管のガス流入口側に、 押出 し成形して得た担持触媒 (酸化ルテニウム 1重量%をチタニア及びアルミナに担持) を充填し、 ガス流出口側には、 実施例 1で用いたのと同じ充填剤を充填した。 実施例 1で用いたのと同じ熱 媒体を用い、 その髓を 3oo :として反応管を覆うジャケットに同熱媒体を導入しつつ、 反応管 のガス流入口側から 3 0 0 " 、 0. 0 3 0 5 Nm3Z分 (O :、 大気圧換算) の流速で塩化水素ガ スおよび 0. 0 1 4 Nm3ノ分 (0 、 大気圧換算) の流速で酸素ガスを混合して導入した。 反応 管に導入されたガスは、 触媒層に接触すると反応し発熱し、 触媒層のガス出口部分では、 生成し た反応ガスは 3 5 0でに達したが、 次いで充填剤層に接触すると、 充填剤と熱媒体との間の熱伝 達により熱除去され、 その結果、 充填剤のガス入口側から 2 0 c mのところで、 反応ガスの温度 は熱媒体と同じ 3 0 0 に低下していた。 反応ガスの温度力 ¾ やかに低下したことから、 熱除去 が良好であることがわかる。 A reaction tube similar to that of Example 1 was prepared except that a nickel thermometer sheath and a tube having an outer diameter of 6 were installed on the reaction tube so that the gas temperature in the reaction tube could be measured in the axial direction of the reaction tube. The gas inlet side of the reaction tube was filled with a supported catalyst obtained by extrusion molding (1% by weight of ruthenium oxide supported on titania and alumina), and the gas outlet side was the same as that used in Example 1. The same filler was filled. Using the same heat medium as that used in Example 1, the heat medium was introduced into the jacket covering the reaction tube with the nucleus being 3oo :, while the heat medium was introduced from the gas inlet side of the reaction tube to 300 ”, 0.00”. Hydrogen chloride gas and oxygen gas were mixed and introduced at a flow rate of 300 Nm 3 Z (O: atmospheric pressure) and a flow rate of 0.014 Nm 3 (0, atmospheric pressure). The gas introduced into the reaction tube reacts and generates heat when it comes into contact with the catalyst layer, and the generated reaction gas reaches 350 at the gas outlet of the catalyst layer, but then comes into contact with the filler layer. However, the heat is removed by the heat transfer between the filler and the heating medium. As a result, at a distance of 20 cm from the gas inlet side of the filler, the temperature of the reaction gas drops to 300, the same as the heating medium. The temperature power of the reaction gas ¾ decreased slightly, indicating that the heat removal was good.
実施例 4 Example 4
反応管軸方向に、 反応管内ガス温度を測定できるよう外径 6匪でニッケル製の温度計さや管を 反応管に設置した以外は、 実施例 1と同様の反応管を準備した。 反応管のガス流入口側に、 押出 し成形して得た担持触媒 (酸化ルテニウム 1重量%をチタニア及びアルミナに担持) を充填し、 ガス流出口側には、 実施例 2で用いたのと同じ充填剤を充填した。 実施例 1で用いたのと同じ熱 媒体を用い、 その温度を 300でとして反応管を覆うジャケットに同熱媒体を導入しつつ、 反応管 のガス流入口側から 3 0 0で、 0. 0 3 0 5 Nm3Z分 (0で、 大気圧換算) の流速で塩化水素ガ スおよび 0 . 0 1 4 Nm3/分 (0°C、 大気圧換算) の流速で酸素を導入した。 反応管に導入され たガスは、 触媒層に接触すると反応し発熱し、 触媒層のガス出口部分では、 生成した反応ガスは 3 5 O t:に達したが、 次いで充填剤層に接触すると、 充填剤と熱媒体との間の熱伝達により熱除 去され、 その結果、 充填剤のガス入口側から 2 0 c mのところで、 反応ガスの温度は 3 1 0 °Cに 低下し、 4 5 c mのところで、 反応ガスの は熱媒体と同じ 3 0 0 に低下していた。 反応ガ スの温度が速やかに低下したことから、 熱除去が良好であることがわかる。 A reaction tube was prepared in the same manner as in Example 1 except that a nickel thermometer sheath and a tube having an outer diameter of 6 were installed in the reaction tube so that the gas temperature in the reaction tube could be measured in the axial direction of the reaction tube. The gas inlet side of the reaction tube was filled with a supported catalyst obtained by extrusion molding (1% by weight of ruthenium oxide supported on titania and alumina), and the gas outlet side was the same as that used in Example 2. The same filler was filled. Using the same heat medium as that used in Example 1, the temperature was set to 300, and the heat medium was introduced into a jacket covering the reaction tube. Hydrogen chloride gas was introduced at a flow rate of 300 Nm 3 Z (0, converted to atmospheric pressure) and oxygen was introduced at a flow rate of 0.014 Nm 3 / min (0 ° C, converted to atmospheric pressure). The gas introduced into the reaction tube reacts and generates heat when it comes into contact with the catalyst layer, and the generated reaction gas reaches 35 Ot: at the gas outlet of the catalyst layer. The heat is removed by heat transfer between the filler and the heating medium, so that at a distance of 20 cm from the gas inlet side of the filler, the temperature of the reaction gas drops to 310 ° C and a temperature of 45 cm At this point, the reaction gas had decreased to 300, the same as the heat medium. The rapid reduction in the temperature of the reaction gas indicated that the heat removal was good.

Claims

請 求 の 範 囲 The scope of the claims
1 . 酸化アルミニウム換算のアルミニウム含有量が約 9 0重量%以上のアルミナからなる 気相反応用充填材 1. Filler for gas phase reaction consisting of alumina with aluminum content of about 90% by weight or more in terms of aluminum oxide
2 . 比表面積が 1 m2/ g以下である請求項 1に記載の気相反応用充填材。 2. The packing material for a gas phase reaction according to claim 1, which has a specific surface area of 1 m 2 / g or less.
3 . 充填材が、 aアルミナからなる焼結体である、 請求項 1又は 2に記載の気相反応用 充填材。  3. The filler for a gas phase reaction according to claim 1, wherein the filler is a sintered body made of a-alumina.
4. 請求項 1〜 3のいずれかに記載の充填材が充填されている気相反応用反応器。  4. A gas phase reaction reactor filled with the filler according to any one of claims 1 to 3.
5 . 反応管および前記反応管を覆うジャケットを備え、 前記ジャケット内を流れる熱媒体 により前記反応管を冷却または加熱する気相反応器であり、 前記ジャケット内の前記反応管近傍 に、 前記熱媒体を整流する仕切板が備えられ、 前記反応管内の前記仕切板近傍に、 請求項 1 ~ 3 のいずれかに記載の気相反応器用充填材カ充填されている、 気相反応用反応器。  5. A gas phase reactor comprising a reaction tube and a jacket covering the reaction tube, wherein the reaction medium is cooled or heated by a heating medium flowing in the jacket, and the heating medium is provided near the reaction tube in the jacket. 4. A reactor for a gas phase reaction, comprising: a partition plate for rectifying the flow rate; and a filler near the partition plate in the reaction tube, which is filled with the filler for a gas phase reactor according to any one of claims 1 to 3.
6 . 複数の反応管、 該反応管を覆うジャケット、 及び、 反応管を支え、 ジャケット(21)に 固定し、 ジャケット内の熱媒体の流れを整える仕切板を備える気相反応用多管式反応器であり、 反応管 (20)と仕切板 (4)とが接する部分の近傍の、 反応管 (20)内に、 請求項 1〜3のいずれかに 記載の充填材が充填されている、 気相反応用反応器。  6. Multi-tube reactor for gas phase reaction, comprising a plurality of reaction tubes, a jacket covering the reaction tubes, and a partition plate supporting the reaction tubes, fixed to the jacket (21), and regulating the flow of the heat medium in the jacket. The filler according to any one of claims 1 to 3, wherein the filler according to any one of claims 1 to 3 is filled in the reaction tube (20) near a portion where the reaction tube (20) and the partition plate (4) are in contact with each other. Reactor for phase reaction.
7 . ガス状の原料化合物を、 請求項 1〜3のいずれかに記載の充填材が充填された反応器 に導入して反応させる、 化合物の気相反応方法。  7. A gas phase reaction method for a compound, wherein a gaseous raw material compound is introduced into a reactor filled with the filler according to any one of claims 1 to 3 and reacted.
8 . 反応管および前記反応管を覆うジャケットを備え、 前記ジャケット内を流れる熱媒体 により前記反応管を冷却または加熱しながら、 前記反応管にガス状の原料化合物を導入して反応 させる方法であり、 前記ジャケット内の前記反応管近傍に、 前記熱媒体を整流する仕切板が備え られ、 前記反応管内の前記仕切板近傍に、 請求項 1〜3のいずれかに記載の気相反応器用充填材 が充填されている、 化合物の反応方法。  8. A method comprising providing a reaction tube and a jacket covering the reaction tube, and introducing or reacting a gaseous raw material compound into the reaction tube while cooling or heating the reaction tube with a heat medium flowing in the jacket. A partition plate for rectifying the heat medium is provided near the reaction tube in the jacket, and near the partition plate in the reaction tube, the filler for a gas phase reactor according to any one of claims 1 to 3. A method for reacting a compound, wherein
9 . 複数の反応管、 該反応管を覆うジャケット、 及び、 反応管を支え、 ジャケット(21)に 固定し、 ジャケット内の熱媒体の流れを整える仕切板を備える気相反応用多管式反応器にガス状 の原料化合物を導入して反応させる方法であり、 反応管 (20)と仕切板 (4)とが接する部分の近傍 の、 反応管 (20)内に、 請求項 1〜3のいずれかに記載の充填材カ充填されている、 化合物の反応 方法。  9. Multi-tube reactor for gas phase reaction, comprising a plurality of reaction tubes, a jacket covering the reaction tubes, and a partition plate supporting the reaction tubes, fixed to the jacket (21), and adjusting the flow of the heat medium in the jacket. Wherein the reaction is carried out by introducing a gaseous raw material compound into the reaction tube, wherein the reaction tube (20) is in the vicinity of a portion where the reaction tube (20) and the partition plate (4) are in contact with each other. A method for reacting a compound, the method comprising:
1 0 . 前記化合物を 2 0 0°C以上で反応させる請求項 7〜 9のいずれかに記載の反応方法。 10. The reaction method according to any one of claims 7 to 9, wherein the compound is reacted at 200 ° C or higher.
1 1 . 前記原料化合物が塩ィヒ水素および酸素を含む、 請求項 7〜 1 0いずれかに記載の反 応方法。 11. The reaction method according to any one of claims 7 to 10, wherein the raw material compound contains hydrogen chloride and oxygen.
1 2. 請求項 1 1に記載の反応方法により塩化水素および酸素を反応させる、 塩素の製造 方法。  12. A method for producing chlorine, comprising reacting hydrogen chloride and oxygen by the reaction method according to claim 11.
PCT/JP2005/000938 2004-01-29 2005-01-19 Filler for vapor-phase reaction WO2005072859A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-021004 2004-01-29
JP2004021004 2004-01-29

Publications (1)

Publication Number Publication Date
WO2005072859A1 true WO2005072859A1 (en) 2005-08-11

Family

ID=34823775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000938 WO2005072859A1 (en) 2004-01-29 2005-01-19 Filler for vapor-phase reaction

Country Status (1)

Country Link
WO (1) WO2005072859A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432408A (en) * 1977-08-13 1979-03-09 Mitsubishi Petrochem Co Ltd Preparation of ethylene oxide and its reaction vessel
JP2001137689A (en) * 1999-08-31 2001-05-22 Nippon Shokubai Co Ltd Gas phase catalytic oxidation reactor
JP2001199710A (en) * 2000-01-13 2001-07-24 Sumitomo Chem Co Ltd Method of producing chlorine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432408A (en) * 1977-08-13 1979-03-09 Mitsubishi Petrochem Co Ltd Preparation of ethylene oxide and its reaction vessel
JP2001137689A (en) * 1999-08-31 2001-05-22 Nippon Shokubai Co Ltd Gas phase catalytic oxidation reactor
JP2001199710A (en) * 2000-01-13 2001-07-24 Sumitomo Chem Co Ltd Method of producing chlorine

Similar Documents

Publication Publication Date Title
CN101090771B (en) Use of a multi-layer catalyst for producing phthalic anhydride
TWI468223B (en) Modified trilobe shape for maleic anhydride catalyst and process for preparing maleic anhydride
WO2000043313A1 (en) Method for producing chlorine
JP2011074083A (en) Method for catalytic gas-phase oxidation of acrolein into acrylic acid
WO2001060743A1 (en) Method for producing chlorine
CN101090769A (en) Method for producing a multi-layer catalyst for obtaining phthalic anhydride
TW200535127A (en) Long-term operation of a heterogeneously catalyzed gas phase partial oxidation of propene to acrolein
US20060054314A1 (en) Process for manufacturing ethylene oxide
JP2005238225A (en) Filler for vapor-phase reactor
JP2000272907A (en) Production of chlorine
CN102791620B (en) Method for producing chlorine using fixed bed reactor
WO2005072859A1 (en) Filler for vapor-phase reaction
JP4549290B2 (en) Multi-tube reactor
JP5691151B2 (en) Reaction method using heat exchange reactor
CN202113842U (en) Novel fixed bed reactor for vinyl acetate synthesis
JP3570322B2 (en) Method for producing chlorine
JP2006142288A (en) Fixed bed multitubular reactor
JP5130155B2 (en) Chlorine production method
JP5710964B2 (en) Method and apparatus for producing hydrogen
JP5143667B2 (en) Chlorine production method and catalyst
CA2793500A1 (en) Catalytic fixed bed reactor for producing ethylene oxide by partial oxidation of ethylene
JP2008105862A (en) Method for producing chlorine
Shiizaki et al. Thermal performance of the plate fin type reactor with anodized alumina catalyst for methanol decomposition
US11192839B2 (en) Method for producing 2-chloro-3,3,3-trifluoropropene and facility for implementing same
JP3537162B2 (en) Method for producing pyromellitic anhydride

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase