JP2000272907A - Production of chlorine - Google Patents

Production of chlorine

Info

Publication number
JP2000272907A
JP2000272907A JP2000004538A JP2000004538A JP2000272907A JP 2000272907 A JP2000272907 A JP 2000272907A JP 2000004538 A JP2000004538 A JP 2000004538A JP 2000004538 A JP2000004538 A JP 2000004538A JP 2000272907 A JP2000272907 A JP 2000272907A
Authority
JP
Japan
Prior art keywords
catalyst
reaction zone
reaction
hydrogen chloride
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000004538A
Other languages
Japanese (ja)
Other versions
JP3606147B2 (en
Inventor
Seiji Iwanaga
清司 岩永
Tetsuya Suzuta
哲也 鈴田
Yasuhiko Mori
康彦 森
Masayuki Yoshii
政之 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2000004538A priority Critical patent/JP3606147B2/en
Publication of JP2000272907A publication Critical patent/JP2000272907A/en
Application granted granted Critical
Publication of JP3606147B2 publication Critical patent/JP3606147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/20Improvements relating to chlorine production

Abstract

PROBLEM TO BE SOLVED: To stably produce chlorine in high yield while suppressing excessive hot spots in a catalyst packed bed by arranging two or more reactive catalyst packed beds for oxidizing hydrogen chloride included in a gas with a gas containing oxygen, in series, and carrying out the temperature control of one or more thereof by a heat-exchanging method. SOLUTION: Hydrogen chloride included in a gas is oxidized by a gas containing 0.25-2 mol oxygen per mol hydrogen chloride in the presence of a catalyst to produce the objective chlorine. The reaction zone is composed of at least two (preferably two to eight) catalyst packed beds arranged in series. The whole amount of the gas containing the hydrogen chloride and 5-90% of the whole amount of the gas containing the oxygen are introduced to the first reaction zone, and the gas containing the oxygen is separately introduced to the second reaction zone and the following. Reaction temperature is preferably 200-500 deg.C, and the temperature control of at least one of the reaction zones, (preferably the whole reaction zones) is carried out by a heat-exchanging method. As a result, excessive hot spots in the reaction zones are suppressed and stable activities of the catalyst are maintained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩素の製造方法に
関するものである。更に詳しくは、本発明は、塩化水素
を含むガス中の塩化水素を、酸素を含むガスを用いて酸
化する塩素の製造方法であって、触媒充填層の過度のホ
ットスポットを抑制し、触媒充填層を有効に活用するこ
とによって、触媒の安定した活性が維持され、かつ塩素
を安定して高収率で得ることができ、よって触媒コス
ト、設備コスト、運転コスト、運転の安定性及び容易性
の観点から極めて有利な塩素の製造方法に関するもので
ある。
[0001] The present invention relates to a method for producing chlorine. More specifically, the present invention relates to a method for producing chlorine, in which hydrogen chloride in a gas containing hydrogen chloride is oxidized using a gas containing oxygen. By making effective use of the bed, stable activity of the catalyst is maintained and chlorine can be obtained in a stable and high yield, so that catalyst cost, equipment cost, operation cost, stability and ease of operation The present invention relates to a very advantageous method for producing chlorine from the viewpoint of the above.

【0002】[0002]

【従来の技術】塩素は塩化ビニル、ホスゲンなどの原料
として有用であり、塩化水素の酸化によって得られるこ
ともよく知られている。たとえば、塩化水素を触媒を用
いて分子状酸素で接触酸化し、塩素を製造する方法とし
ては、従来からDeacon触媒と呼ばれる銅系の触媒
が従来優れた活性を有するとされ、塩化銅と塩化カリウ
ムに第三成分として種々の化合物を添加した触媒が多数
提案されている。また、Deacon触媒以外にも、酸
化クロム又はこの化合物を触媒として用いる方法、酸化
ルテニウム又はこの化合物を触媒として用いる方法も提
案されている。
2. Description of the Related Art It is well known that chlorine is useful as a raw material for vinyl chloride, phosgene and the like, and is obtained by oxidation of hydrogen chloride. For example, as a method for producing chlorine by catalytically oxidizing hydrogen chloride with molecular oxygen using a catalyst, a copper-based catalyst called a Deacon catalyst has been conventionally considered to have excellent activity, and copper chloride and potassium chloride have been conventionally used. Many catalysts in which various compounds are added as a third component have been proposed. In addition to the Deacon catalyst, a method using chromium oxide or this compound as a catalyst and a method using ruthenium oxide or this compound as a catalyst have been proposed.

【0003】しかしながら、塩化水素の酸化反応は59
kJ/mol−塩素の発熱反応であり、触媒充填層での
過度のホットスポットを抑制することは、触媒の熱劣化
を低減し、運転の安定性及び容易性を確保する観点から
も重要である。また、過度のホットスポットは、最悪の
場合には暴走反応を引き起こすこともあり、塩化水素及
び/又は塩素による装置材料の高温ガス腐食を起こす問
題もある。
However, the oxidation reaction of hydrogen chloride is 59%.
This is an exothermic reaction of kJ / mol-chlorine, and it is important to suppress excessive hot spots in the catalyst packed bed from the viewpoint of reducing thermal deterioration of the catalyst and ensuring stability and ease of operation. . Excessive hot spots can also cause runaway reactions in the worst case, and cause high temperature gas corrosion of equipment materials due to hydrogen chloride and / or chlorine.

【0004】雑誌「触媒」(Vol.33 No.1
(1991))には、酸化クロムを触媒とした純塩化水
素と純酸素の反応では、固定床反応形式ではホットスポ
ットの除去が困難であり、実装置では流動床反応器の採
用が必要であることが記載されている。
The magazine “Catalyst” (Vol. 33 No. 1)
(1991)), in a reaction between pure hydrogen chloride and pure oxygen using chromium oxide as a catalyst, it is difficult to remove hot spots in a fixed-bed reaction mode, and a fluidized-bed reactor must be used in an actual apparatus. It is described.

【0005】[0005]

【発明が解決しようとする課題】かかる状況において、
本発明が解決しようとする課題は、塩化水素を含むガス
中の塩化水素を、酸素を含むガスを用いて酸化する塩素
の製造方法であって、触媒充填層の過度のホットスポッ
トを抑制し、触媒充填層を有効に活用することによっ
て、触媒の安定した活性が維持され、かつ塩素を安定し
て高収率で得ることができ、よって触媒コスト、設備コ
スト、運転コスト、運転の安定性及び容易性の観点から
極めて有利な塩素の製造方法を提供する点に存するもの
である。
In such a situation,
The problem to be solved by the present invention is a method for producing chlorine, in which hydrogen chloride in a gas containing hydrogen chloride is oxidized using a gas containing oxygen, which suppresses excessive hot spots in the catalyst packed bed. By effectively utilizing the catalyst packed bed, stable activity of the catalyst is maintained, and chlorine can be obtained in a high yield stably, so that catalyst cost, equipment cost, operation cost, operation stability and An object of the present invention is to provide a method for producing chlorine which is extremely advantageous from the viewpoint of easiness.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、触
媒の存在下、塩化水素を含むガス中の塩化水素を、酸素
を含むガスを用いて酸化する塩素の製造方法であって、
少なくとも二の直列に配列された触媒充填層からなる反
応域を有し、かつ該反応域のうちの少なくとも一の反応
域の温度制御を熱交換方式によって行う塩素の製造方法
に係るものである。
That is, the present invention relates to a method for producing chlorine by oxidizing hydrogen chloride in a gas containing hydrogen chloride using a gas containing oxygen in the presence of a catalyst,
The present invention relates to a method for producing chlorine, which has a reaction zone composed of at least two catalyst packed layers arranged in series, and controls the temperature of at least one of the reaction zones by a heat exchange method.

【0007】[0007]

【発明の実施の形態】本発明において用いられる塩化水
素を含むガスとしては、塩素化合物の熱分解反応や燃焼
反応、有機化合物のホスゲン化反応、脱塩化水素反応又
は塩素化反応、焼却炉の燃焼等において発生した塩化水
素を含むいかなるものを使用することができる。塩化水
素を含むガスとしては、通常、該ガス中の塩化水素の濃
度は通常10体積%以上、好ましくは50体積%以上、
更に好ましくは80体積%以上のものが用いられる。該
濃度が10体積%よりも低い場合には、生成した塩素の
分離、及び/又は未反応酸素をリサイクルする場合に、
リサイクルが煩雑になることがある。塩化水素を含むガ
ス中の塩化水素以外の成分としては、オルトジクロロベ
ンゼン、モノクロロベンゼン等の塩素化芳香族炭化水
素、及びトルエン、ベンゼン等の芳香族炭化水素、及び
塩化ビニル、1,2−ジクロロエタン、塩化メチル、塩
化エチル、塩化プロピル、塩化アリル等の塩素化脂肪族
炭化水素、及びメタン、アセチレン、エチレン、プロピ
レン等の脂肪族炭化水素、及び窒素、アルゴン、二酸化
炭素、一酸化炭素、ホスゲン、水素、硫化カルボニル、
硫化水素等の無機ガスがあげられる。塩化水素と酸素と
の反応において、塩素化芳香族炭化水素及び塩素化脂肪
族炭化水素は、二酸化炭素と水と塩素に酸化され、芳香
族炭化水素及び脂肪族炭化水素は、二酸化炭素と水に酸
化され、一酸化炭素は二酸化炭素に酸化され、ホスゲン
は、二酸化炭素と塩素に酸化される。
BEST MODE FOR CARRYING OUT THE INVENTION The gas containing hydrogen chloride used in the present invention includes a pyrolysis reaction and a combustion reaction of a chlorine compound, a phosgenation reaction of an organic compound, a dehydrochlorination reaction or a chlorination reaction, and a combustion in an incinerator. Any substance including hydrogen chloride generated in the above method can be used. As a gas containing hydrogen chloride, the concentration of hydrogen chloride in the gas is usually 10% by volume or more, preferably 50% by volume or more,
More preferably, 80% by volume or more is used. When the concentration is lower than 10% by volume, when separating generated chlorine and / or recycling unreacted oxygen,
Recycling can be complicated. Components other than hydrogen chloride in the gas containing hydrogen chloride include chlorinated aromatic hydrocarbons such as orthodichlorobenzene and monochlorobenzene, aromatic hydrocarbons such as toluene and benzene, and vinyl chloride and 1,2-dichloroethane. Chlorinated aliphatic hydrocarbons such as methyl chloride, ethyl chloride, propyl chloride and allyl chloride; and aliphatic hydrocarbons such as methane, acetylene, ethylene and propylene; and nitrogen, argon, carbon dioxide, carbon monoxide, phosgene, Hydrogen, carbonyl sulfide,
Inorganic gas such as hydrogen sulfide; In the reaction between hydrogen chloride and oxygen, chlorinated aromatic hydrocarbons and chlorinated aliphatic hydrocarbons are oxidized to carbon dioxide, water and chlorine, and aromatic hydrocarbons and aliphatic hydrocarbons are converted to carbon dioxide and water. Oxidized, carbon monoxide is oxidized to carbon dioxide, and phosgene is oxidized to carbon dioxide and chlorine.

【0008】酸素を含むガスとしては、酸素又は空気が
使用される。酸素は、空気の圧力スイング法や深冷分離
などの通常の工業的な方法によって得ることができる。
As the gas containing oxygen, oxygen or air is used. Oxygen can be obtained by ordinary industrial methods such as air pressure swinging and cryogenic separation.

【0009】塩化水素1モルに対する酸素の理論モル量
は0.25モルであるが、理論量以上供給することが好
ましく、塩化水素1モルに対し酸素0.25〜2モルが
更に好ましい。酸素の量が過小であると、塩化水素の転
化率が低くなる場合があり、一方酸素の量が過多である
と生成した塩素と未反応酸素の分離が困難になる場合が
ある。
The theoretical molar amount of oxygen to 1 mole of hydrogen chloride is 0.25 mole, but it is preferable to supply more than the theoretical amount, and more preferably 0.25 to 2 moles of oxygen to 1 mole of hydrogen chloride. If the amount of oxygen is too small, the conversion of hydrogen chloride may decrease, while if the amount of oxygen is excessive, it may be difficult to separate generated chlorine from unreacted oxygen.

【0010】本発明においては、少なくとも二の直列に
配列された触媒充填層からなる反応域に、酸素を含むガ
スを分割して導入することが好ましい。酸素を含むガス
を分割して導入する方法としては、塩化水素を含むガス
の全量と、酸素を含むガスの一部分を第1反応域に導入
し、その反応物と残りの酸素を含むガスを第2反応域以
降の反応域に導入する方法があげられる。ここで、第1
反応域は原料ガスの流れについての最も上流側の反応域
を意味し、第2反応域は第1反応域の下流側の反応域を
意味する。第1反応域に導入される酸素を含むガスの分
割量は、全体量の5〜90%、好ましくは10〜80
%、更に好ましくは30〜60%である。該分割量が少
なすぎる場合は、第2反応域以降の反応域の温度制御が
困難になることがある。
In the present invention, it is preferred that a gas containing oxygen is divided and introduced into a reaction zone comprising at least two catalyst packed layers arranged in series. As a method of dividing and introducing the gas containing oxygen, the entire amount of the gas containing hydrogen chloride and a part of the gas containing oxygen are introduced into the first reaction zone, and the reactant and the remaining gas containing oxygen are introduced into the first reaction zone. There is a method of introducing the compound into the reaction zone after the second reaction zone. Here, the first
The reaction zone means the most upstream reaction zone for the flow of the raw material gas, and the second reaction zone means the downstream reaction zone of the first reaction zone. The division amount of the gas containing oxygen introduced into the first reaction zone is 5 to 90% of the total amount, preferably 10 to 80%.
%, More preferably 30 to 60%. If the amount of division is too small, it may be difficult to control the temperature of the reaction zone after the second reaction zone.

【0011】本発明においては、反応域のうちの少なく
とも一の反応域の温度制御を熱交換方式によって行う必
要がある。このことにより、反応域の過度のホットスポ
ットを抑制し、反応域を有効に活用することによって、
触媒の安定した活性が維持され、かつ塩素を安定して高
収率で得ることができるために、触媒コスト、設備コス
ト、運転コスト、運転の安定性及び容易性を確保しう
る。
In the present invention, it is necessary to control the temperature of at least one of the reaction zones by a heat exchange method. As a result, by suppressing excessive hot spots in the reaction zone and effectively utilizing the reaction zone,
Since stable activity of the catalyst is maintained and chlorine can be obtained stably at a high yield, catalyst cost, equipment cost, operation cost, stability and ease of operation can be secured.

【0012】少なくとも二の直列に配列された触媒充填
層からなる反応域は、反応管内に少なくとも二種の触媒
を充填すること、及び/又は反応域の温度を少なくとも
二の方式で温度制御させることによって形成される。こ
こで、触媒充填層からなる反応域は、固定床反応器を形
成するものであり、流動層反応器及び移動層反応器を形
成するものではない。少なくとも二種の触媒を充填する
方法としては、反応管内の触媒充填層を管軸方向に少な
くとも二の区分に分割して、活性、組成及び/又は粒径
の異なる触媒を充填する方法、又は触媒を不活性物質及
び/又は担体のみで成型した充填物で少なくとも二の方
式で希釈する方法、又は触媒と触媒を不活性物質及び/
又は担体のみで成型した充填物で希釈したものを充填す
る方法をあげることができる。触媒を不活性物質及び/
又は担体のみで成型した充填物で希釈した場合は、充填
された触媒と不活性物質及び/又は担体のみで成型した
充填物の全体が、触媒充填層からなる反応域を意味す
る。通常、連続する反応域は直接に接している状態にあ
るが、反応域の間に不活性物質を充填してもよい。ただ
し、不活性物質のみからなる充填層は、触媒充填層とは
見なさない。触媒充填層からなる反応域の温度を少なく
とも二の方式で温度制御させる方法としては、少なくと
も二の独立した方式での温度制御を行う方法をあげるこ
とができる。この場合、少なくとも一の方式の温度制御
は、熱交換方式で行う必要がある。
In the reaction zone comprising at least two catalyst packed layers arranged in series, the reaction tube is filled with at least two kinds of catalysts and / or the temperature of the reaction zone is controlled in at least two ways. Formed by Here, the reaction zone consisting of the catalyst-packed bed forms a fixed-bed reactor, and does not form a fluidized-bed reactor and a moving-bed reactor. As a method of filling at least two kinds of catalysts, a method of dividing a catalyst packed bed in a reaction tube into at least two sections in a tube axis direction and filling catalysts having different activities, compositions and / or particle diameters, or a method of filling catalysts Is diluted in at least two ways with a packing molded only with an inert substance and / or a carrier, or a catalyst and a catalyst are diluted with an inert substance and / or
Alternatively, there may be mentioned a method of filling a material diluted with a filler molded only with a carrier. The catalyst is inert and / or
Alternatively, in the case of dilution with a packing molded only with a carrier, the whole of the packed catalyst and an inert substance and / or a packing molded only with a carrier means a reaction zone including a catalyst packed layer. Usually, successive reaction zones are in direct contact with each other, but an inert substance may be filled between the reaction zones. However, a packed bed composed only of an inert substance is not considered as a catalyst packed bed. As a method of controlling the temperature of the reaction zone composed of the catalyst packed bed by at least two methods, a method of controlling the temperature by at least two independent methods can be mentioned. In this case, at least one type of temperature control needs to be performed by a heat exchange method.

【0013】本発明の熱交換方式とは、触媒が充填され
た反応管の外側にジャケット部を有し、反応で生成した
反応熱をジャケット内の熱媒体によって除去する方式を
意味する。熱交換方式では、反応管内の触媒充填層から
なる反応域の温度が、ジャケット内の熱媒体によって制
御される。工業的には、直列に配列された触媒充填層か
らなる反応域を有する反応管を並列に配列し、外側にジ
ャケット部を有する多管式熱交換器型の固定床多管式反
応器を用いることもできる。熱交換方式以外の方法とし
ては、電気炉方式があげられるが、反応域の温度制御が
難しいといった問題がある。
The heat exchange method of the present invention means a method in which a jacket is provided outside a reaction tube filled with a catalyst, and heat of reaction generated by the reaction is removed by a heat medium in the jacket. In the heat exchange method, the temperature of a reaction zone formed of a catalyst packed bed in a reaction tube is controlled by a heat medium in a jacket. Industrially, a reaction tube having reaction zones consisting of catalyst packed layers arranged in series is arranged in parallel, and a fixed tube multi-tube reactor of a multi-tube heat exchanger type having a jacket portion on the outside is used. You can also. As a method other than the heat exchange method, there is an electric furnace method, but there is a problem that it is difficult to control the temperature of the reaction zone.

【0014】本発明においては、反応域のうちの少なく
とも二の反応域の温度制御を熱交換方式によって行うこ
とが好ましい。この方法としては、少なくとも二の独立
したジャケット部に独立に熱媒体を循環させて該反応域
の温度制御を行う方法、及び/又は仕切り板によってジ
ャケット部を少なくとも二に分割して、仕切られた部分
に独立して熱媒体を循環させて該反応域の温度制御を行
う方法をあげることができる。仕切り板は、反応管に溶
接などにより直接固定されていてもよいが、仕切り板や
反応管に熱的な歪みが生じることを防ぐために、実質的
に独立して熱媒体を循環できる範囲内において、仕切り
板と反応管との間に適当な間隔を設けることができる。
ジャッケト内の熱媒体の流れは、下方から上方に流れる
ようにするのが好ましい。
In the present invention, it is preferable to control the temperature of at least two of the reaction zones by a heat exchange method. As this method, a method in which a heating medium is independently circulated through at least two independent jacket portions to control the temperature of the reaction zone, and / or the jacket portion is divided into at least two by a partition plate and partitioned. A method of controlling the temperature of the reaction zone by circulating a heat medium independently in each part can be given. The partition plate may be directly fixed to the reaction tube by welding or the like, but in order to prevent thermal distortion from occurring in the partition plate and the reaction tube, within a range where the heat medium can be substantially independently circulated. An appropriate distance can be provided between the partition plate and the reaction tube.
Preferably, the flow of the heat medium in the jacket flows upward from below.

【0015】本発明においては、全反応域の温度制御を
熱交換方式によって行う方法が、反応熱が良好に除去さ
れ、運転の安定性及び容易性が確保されるために好まし
い。
In the present invention, a method in which the temperature of the entire reaction zone is controlled by a heat exchange method is preferable because the reaction heat is removed well and the stability and operability of the operation are ensured.

【0016】熱媒体としては、溶融塩、スチーム、有機
化合物又は溶融金属をあげることができるが、熱安定性
や取り扱いの容易さ等の点から溶融塩又はスチームが好
ましく、より良好な熱安定性の点から溶融塩が更に好ま
しい。溶融金属は、コストが高く、取り扱いが難しいと
いった問題がある。溶融塩の組成としては、硝酸カリウ
ム50重量%と亜硝酸ナトリウム50重量%の混合物、
硝酸カリウム53重量%と亜硝酸ナトリウム40重量%
と硝酸ナトリウム7重量%の混合物などをあげることが
できる。有機化合物としては、ダウサムA(ジフェニル
オキサイドとジフェニルの混合物)をあげることができ
る。
The heat medium may be a molten salt, steam, an organic compound or a molten metal, but a molten salt or steam is preferred from the viewpoint of thermal stability and ease of handling, and more favorable thermal stability In view of this, a molten salt is more preferred. Molten metal has problems such as high cost and difficulty in handling. As the composition of the molten salt, a mixture of 50% by weight of potassium nitrate and 50% by weight of sodium nitrite,
53% by weight of potassium nitrate and 40% by weight of sodium nitrite
And 7% by weight of sodium nitrate. Examples of the organic compound include Dowsome A (a mixture of diphenyl oxide and diphenyl).

【0017】反応域の数は多くするほど、該反応域を有
効に利用することができるが、工業的には通常2〜20
反応域、好ましくは2〜8反応域、更に好ましくは2〜
4反応域で実施される。該反応域が多すぎる場合は、充
填する触媒の種類が多くなる、及び/又は温度制御のた
めの機器が多くなるといったことがあり、経済的に不利
になることがある。
The larger the number of reaction zones, the more effectively the reaction zones can be utilized.
Reaction zone, preferably 2-8 reaction zones, more preferably 2-8
Performed in four reaction zones. If the number of reaction zones is too large, the type of catalyst to be charged may be increased and / or the equipment for temperature control may be increased, which may be economically disadvantageous.

【0018】本発明においては、少なくとも二の直列に
配列された触媒充填層からなる反応域の、第1反応域の
割合を70体積%以下とすることが好ましく、30体積
%以下が更に好ましい。また、第1反応域の割合を70
体積%以下、好ましくは30体積%以下とし、かつ第2
反応域の温度を第1反応域よりも通常は5℃以上、好ま
しくは10℃以上高くする、及び/又は第2反応域の活
性が第1反応域よりも通常は1.1倍以上、好ましくは
1.5倍以上高くなるように、触媒又は触媒と不活性物
質及び/又は担体のみで成型した充填物を充填すること
が更に好ましい。ここで、反応域の活性(mol−HC
l/ml−反応域・min)とは、単位触媒重量及び時
間当りの塩化水素反応活性( mol−HCl/g−触
媒・min)と触媒充填量(g)の積を、反応域の体積
(ml)で除した計算値を意味する。単位触媒重量及び
時間当りの塩化水素反応活性は、触媒の体積と標準状態
(0℃、0.1MPa)における塩化水素の供給速度と
の比が4400〜4800h-1で、塩化水素1モルに対
し酸素0.5モルを供給し、反応圧力0.1MPa、反
応温度280℃で反応させ、この時に生成した塩素量か
ら計算された値である。第1反応域では、反応物質であ
る塩化水素と酸素の濃度が高いために反応速度が大き
く、該第1反応域の入口側にホットスポットが生じる。
一方、該第1反応域の出口側はジャケット内の熱媒体の
温度に近い温度となる。第1反応域の割合が70体積%
より大きい場合には、該反応域において、ジャケット内
の熱媒体の温度に近い温度の触媒充填層部分が多くな
り、触媒を有効に活用することができない。
In the present invention, the ratio of the first reaction zone in the reaction zone comprising at least two catalyst packed layers arranged in series is preferably 70% by volume or less, more preferably 30% by volume or less. Further, the ratio of the first reaction zone is set to 70
Volume% or less, preferably 30 volume% or less, and the second
The temperature of the reaction zone is usually at least 5 ° C., preferably at least 10 ° C. higher than the first reaction zone, and / or the activity of the second reaction zone is usually at least 1.1 times higher than that of the first reaction zone, preferably It is more preferable to fill a catalyst or a filler molded only with a catalyst and an inert substance and / or a carrier so that the pressure is 1.5 times or more. Here, the activity of the reaction zone (mol-HC
1 / ml-reaction zone · min) is the product of the hydrogen chloride reaction activity per unit catalyst weight and time (mol-HCl / g-catalyst · min) and the catalyst loading amount (g), and the volume of the reaction zone (g). ml) means the calculated value. The hydrogen chloride reaction activity per unit catalyst weight and time was as follows: the ratio of the catalyst volume to the supply rate of hydrogen chloride under standard conditions (0 ° C., 0.1 MPa) was 4400 to 4800 h −1 , A value calculated from the amount of chlorine generated at this time by reacting at a reaction pressure of 0.1 MPa and a reaction temperature of 280 ° C. by supplying 0.5 mol of oxygen. In the first reaction zone, the reaction rate is high due to the high concentration of the reactants, hydrogen chloride and oxygen, and a hot spot is generated on the inlet side of the first reaction zone.
On the other hand, the outlet side of the first reaction zone has a temperature close to the temperature of the heat medium in the jacket. 70% by volume in the first reaction zone
If it is larger, the catalyst packed layer portion at a temperature close to the temperature of the heat medium in the jacket increases in the reaction zone, and the catalyst cannot be used effectively.

【0019】本発明の酸化反応の触媒としては、塩化水
素を酸化して塩素を製造する触媒として知られる公知の
触媒を用いることができる。該触媒の一例として、塩化
銅と塩化カリウムに第三成分として種々の化合物を添加
した触媒、酸化クロムを主成分とする触媒、酸化ルテニ
ウムを含有する触媒などをあげることができる。中でも
酸化ルテニウムを含有する触媒が好ましく、酸化ルテニ
ウム及び酸化チタンを含む触媒が更に好ましい。酸化ル
テニウムを含む触媒は、たとえば特開平10−1821
04号公報、ヨーロッパ特許第936184号公報に記
載されている。酸化ルテニウム及び酸化チタンを含む触
媒は、たとえば、特開平10−194705号公報、特
開平10−338502号公報に記載されている。触媒
中の酸化ルテニウムの含有量は、0.1〜20重量%が
好ましい。酸化ルテニウムの量が過小であると触媒の活
性が低く塩化水素の転化率が低くなる場合があり、一
方、酸化ルテニウムの量が過多であると触媒価格が高く
なる場合がある。
As the catalyst for the oxidation reaction of the present invention, a known catalyst known as a catalyst for producing chlorine by oxidizing hydrogen chloride can be used. Examples of the catalyst include a catalyst obtained by adding various compounds as a third component to copper chloride and potassium chloride, a catalyst containing chromium oxide as a main component, a catalyst containing ruthenium oxide, and the like. Among them, a catalyst containing ruthenium oxide is preferable, and a catalyst containing ruthenium oxide and titanium oxide is more preferable. Catalysts containing ruthenium oxide are disclosed, for example, in JP-A-10-1821.
No. 04, EP 936184. Catalysts containing ruthenium oxide and titanium oxide are described, for example, in JP-A-10-194705 and JP-A-10-338502. The content of ruthenium oxide in the catalyst is preferably 0.1 to 20% by weight. If the amount of ruthenium oxide is too small, the activity of the catalyst may be low and the conversion of hydrogen chloride may be low. On the other hand, if the amount of ruthenium oxide is too large, the price of the catalyst may be high.

【0020】触媒の形状は、球形粒状、円柱形ペレット
状、押し出し形状、リング形状、ハニカム状あるいは成
型後に粉砕分級した適度の大きさの顆粒状等で用いられ
る。この際、触媒直径としては10mm以下が好まし
い。触媒直径が10mmを越えると、活性が低下する場
合がある。触媒直径の下限は特に制限はないが、過度に
小さくなると、触媒充填層での圧力損失が大きくなるた
め、通常は0.1mm以上のものが用いられる。なお、
ここでいう触媒直径とは、球形粒状では球の直径、円柱
形ペレット状では断面の直径、その他の形状では断面の
最大直径を意味する。
The catalyst may be used in the form of spherical granules, cylindrical pellets, extruded shapes, ring shapes, honeycomb shapes, or granules of an appropriate size which are pulverized and classified after molding. At this time, the catalyst diameter is preferably 10 mm or less. If the catalyst diameter exceeds 10 mm, the activity may be reduced. The lower limit of the catalyst diameter is not particularly limited. However, when the catalyst diameter is excessively small, the pressure loss in the catalyst packed bed increases. In addition,
The term "catalyst diameter" as used herein means the diameter of a sphere in the case of spherical particles, the diameter of a cross section in the case of a cylindrical pellet, or the maximum diameter of a cross section in other shapes.

【0021】本発明においては、第1反応域の熱伝導度
が最も高くなるように、触媒又は触媒と不活性物質及び
/又は担体のみで成型した充填物を充填することが好ま
しく、第1反応域から最終反応域に向かって、ガスの流
れ方向に、反応域の熱伝導度が順次低くなるように充填
することが更に好ましい。ここで、最終反応域はガスの
流れについての最も下流側の反応域を意味する。反応域
の熱伝導度は、反応域に充填された充填物の熱伝導度を
意味する。原料の入口側の反応域では、反応物質である
塩化水素と酸素の濃度が高いために反応速度が大きく、
酸化反応による発熱が大きい。したがって、入口側の反
応域に触媒の熱伝導度が比較的高い触媒を充填すること
により、触媒充填層の過度なホットスポットを抑制する
ことができる。
In the present invention, it is preferable to fill a catalyst or a filler molded only with a catalyst and an inert substance and / or a carrier so that the thermal conductivity of the first reaction zone is the highest. It is more preferable to fill the reaction zone from the zone to the final reaction zone so that the thermal conductivity of the reaction zone decreases in the gas flow direction. Here, the final reaction zone means the most downstream reaction zone for the gas flow. The thermal conductivity of the reaction zone means the thermal conductivity of the packing filled in the reaction zone. In the reaction zone on the inlet side of the raw material, the reaction rate is high due to the high concentration of the reactants hydrogen chloride and oxygen,
Large heat generation due to oxidation reaction. Therefore, by filling the reaction zone on the inlet side with a catalyst having a relatively high thermal conductivity of the catalyst, an excessive hot spot in the catalyst packed layer can be suppressed.

【0022】本発明においては、第1反応域から最終反
応域に向かって、ガスの流れ方向に、反応域の活性が順
次高くなるように触媒又は触媒と不活性物質及び/又は
担体のみで成型した充填物を充填することにより、連続
する反応域の温度差を小さくすることができ、したがっ
て、運転を安定して容易に行うことができるために好ま
しい。
In the present invention, from the first reaction zone to the final reaction zone, only the catalyst or the catalyst and the inert substance and / or the carrier are molded so that the activity of the reaction zone becomes higher in the gas flow direction. Filling with the filled packing is preferable because the temperature difference in the continuous reaction zone can be reduced, and thus the operation can be stably and easily performed.

【0023】本発明においては、最終反応域の活性を、
その直前の反応域の活性よりも高くなるように、触媒又
は触媒と不活性物質及び/又は担体のみで成型した充填
物を充填し、かつ最終反応域のホットスポットを、その
直前の反応域のホットスポットよりも低くする方法が好
ましい。最終反応域の活性がその直前の活性よりも低
く、かつ最終反応域のホットスポットがその直前の反応
域のホットスポットよりも高い場合は、塩化水素を酸素
で酸化して塩素と水に変換する反応が平衡反応であるた
めに、塩化水素の転化率が化学平衡組成に支配されて低
くなる場合がある。
In the present invention, the activity of the final reaction zone is
The catalyst or the packing molded only with the catalyst and the inert substance and / or the carrier is filled so that the activity is higher than the activity of the immediately preceding reaction zone, and the hot spot of the final reaction zone is filled with the hot spot of the immediately preceding reaction zone. A method of lowering the temperature than the hot spot is preferable. If the activity of the final reaction zone is lower than that of the previous reaction zone and the hot spot of the final reaction zone is higher than the hot spot of the immediately preceding reaction zone, hydrogen chloride is oxidized with oxygen and converted to chlorine and water. Since the reaction is an equilibrium reaction, the conversion of hydrogen chloride may be low due to the chemical equilibrium composition.

【0024】触媒の使用量(体積)は、標準状態(0
℃、0.1MPa)における塩化水素の供給速度との比
(GHSV)で表すと、通常10〜20000h-1で行
われる。原料を反応域に流す方向は、上向きでも下向き
でもよい。反応圧力は、通常0.1〜5MPaで行われ
る。反応温度は、好ましくは200〜500℃、更に好
ましくは200〜380℃である。反応温度が低すぎる
場合は、塩化水素の転化率が低くなる場合があり、一方
反応温度が高すぎる場合は、触媒成分が揮発する場合が
ある。
The amount (volume) of the catalyst used is in the standard state (0
In terms of the ratio (GHSV) to the supply rate of hydrogen chloride at 0.1 ° C. and 0.1 MPa), the reaction is usually performed at 10 to 20,000 h −1 . The direction in which the raw material flows into the reaction zone may be upward or downward. The reaction pressure is usually from 0.1 to 5 MPa. The reaction temperature is preferably from 200 to 500C, more preferably from 200 to 380C. If the reaction temperature is too low, the conversion of hydrogen chloride may decrease, while if the reaction temperature is too high, the catalyst components may volatilize.

【0025】本発明においては、最終反応域の出口のガ
ス温度を200〜350℃とする方法が好ましく、20
0〜320℃とする方法が更に好ましい。最終反応域の
出口のガス温度が350℃よりも高い場合は、塩化水素
を酸素で酸化して塩素と水に変換する反応が平衡反応で
あるために、塩化水素の転化率が化学平衡組成に支配さ
れて低くなる場合がある。
In the present invention, a method in which the gas temperature at the outlet of the final reaction zone is set to 200 to 350 ° C. is preferable.
A method of setting the temperature to 0 to 320 ° C is more preferable. If the gas temperature at the outlet of the final reaction zone is higher than 350 ° C., the conversion of hydrogen chloride to oxygen and conversion to chlorine and water is an equilibrium reaction. May be dominated and lower.

【0026】本発明においては、空塔基準のガス線速度
を0.2〜10m/sとすることが好ましく、0.2〜5
m/sが更に好ましい。ガス線速度が低すぎる場合は、
工業用反応装置で塩化水素の満足いく処理量を得るため
には、過剰数の反応管が必要とされるので不利益である
場合があり、ガス線速度が高すぎる場合は、触媒充填層
の圧力損失が大きくなる場合がある。なお、本発明の空
塔基準のガス線速度とは、標準状態(0℃、0.1MP
a)における塩化水素を含むガスと酸素を含むガスの供
給速度の合計と反応管の断面積の比を意味する。
In the present invention, the gas linear velocity based on the superficial tower is preferably from 0.2 to 10 m / s, and from 0.2 to 5 m / s.
m / s is more preferred. If the gas linear velocity is too low,
In order to obtain a satisfactory throughput of hydrogen chloride in an industrial reactor, an excessive number of reaction tubes may be required, which may be disadvantageous. Pressure loss may increase. In addition, the gas linear velocity based on the superficial tower of the present invention refers to a standard state (0 ° C., 0.1 MPa
It means the ratio of the sum of the supply rates of the gas containing hydrogen chloride and the gas containing oxygen in a) to the cross-sectional area of the reaction tube.

【0027】反応管の内径は、通常10〜50mm、好
ましくは10〜40mm、更に好ましくは10〜30m
mである。反応管の内径が小さすぎる場合は、工業用反
応装置で塩化水素の満足いく処理量を得るためには、過
剰数の反応管が必要とされるので不利益である場合があ
り、反応管の内径が大きすぎる場合は、触媒充填層に過
度のホットスポットを生じさせる場合がある。
The inner diameter of the reaction tube is usually 10 to 50 mm, preferably 10 to 40 mm, more preferably 10 to 30 m.
m. If the inner diameter of the reaction tube is too small, it may be disadvantageous because an excessive number of reaction tubes is required in order to obtain a satisfactory throughput of hydrogen chloride in an industrial reactor. If the inner diameter is too large, an excessive hot spot may be generated in the catalyst packed bed.

【0028】反応管の内径(D)と触媒直径(d)の比
率(D/d)は、通常5/1〜100/1、好ましくは
5/1〜50/1、更に好ましくは5/1〜20/1で
ある。比率が小さすぎる場合は、触媒充填層に過度のホ
ットスポットを生じさせる場合があり、比率が大きすぎ
る場合は、触媒充填層の圧力損失が大きくなる場合があ
る。
The ratio (D / d) of the inner diameter (D) of the reaction tube to the catalyst diameter (d) is usually 5/1 to 100/1, preferably 5/1 to 50/1, more preferably 5/1. 2020/1. When the ratio is too small, an excessive hot spot may be generated in the catalyst packed bed, and when the ratio is too large, the pressure loss of the catalyst packed bed may be large.

【0029】[0029]

【実施例】以下、本発明を実施例により説明する。 実施例1 反応器には、溶融塩(硝酸カリウム/亜硝酸ナトリウム
=1/1重量比)を熱媒体とするジャケットを備えた内
径18mm及び長さ1mの反応管(外径5mmの温度測
定用鞘管)からなる固定床反応器を用いた。反応管の上
部側に、直径1.5mmのα−Al23担持6.6重量
%酸化ルテニウム押し出し触媒80.2g(60.0m
l)を充填し、第1反応域とした。なお、この触媒は、
塩化水素の酸化反応に約260h使用したものを再使用
した。第1反応域の下部側に、直径1〜2mmのアナタ
ーゼ結晶形TiO2担持6.6重量%酸化ルテニウム球
形粒状触媒35.9g(35.6ml)と、直径2mm
のα−Al23球(ニッカト(株)製、SSA995)
37.6g(17.8ml)を十分に混合して充填し、
第2反応域とした。触媒充填長は、第1反応域/第2反
応域=0.280m/0.235mであった。触媒充填
体積は、第1反応域/第2反応域=66ml/55ml
で、第1反応域の割合は54体積%と計算される。な
お、直径1.5mmのα−Al23担持6.6重量%酸
化ルテニウム押し出し触媒は、次の方法により調製し
た。すなわち、市販のα−Al23粉末(住友化学
(株)製、AES−12)と塩化ルテニウムと純水及び
アルミナゾル(日産化学(株)製、アルミナゾル20
0)をよく混合した。混合したものに室温で乾燥空気を
吹きかけ、適当な粘度になるまで乾燥させた。この混合
物を直径1.5mmに押し出し成型した。次いで、空気
中、60℃で4時間乾燥した。得られた固体を室温から
350℃まで1時間で昇温し、同温度で3時間焼成し、
直径1.5mmのα−Al23担持6.6重量%酸化ル
テニウム押し出し触媒を得た。直径1〜2mmのアナタ
ーゼ結晶形TiO2担持6.6重量%酸化ルテニウム球
形粒状触媒は、特開平10−338502号公報に記載
された方法に準拠して調製された。また、本実施例で用
いたα−Al23担持6.6重量%酸化ルテニウム押し
出し触媒の単位触媒重量及び時間当りの塩化水素反応活
性は1.3×10-4mol−HCl/g−触媒・min
であり、以下の方法で測定した。内径14mmのパイレ
ックスガラス製反応管(外径4mmの温度測定用鞘管)
に触媒を4.0g(3.3ml)充填し、温度280℃
の溶融塩バス中に入れ、塩化水素0.26l/min
(標準状態)、酸素0.13l/min(標準状態)を
上部から下部へダウンフローで流通させ、1.5h後に
出口ガスをよう化カリウム水溶液にサンプリングして、
生成した塩素と未反応の塩化水素と生成水を吸収させ、
よう素滴定法及び中和滴定法によって、それぞれ塩素の
生成量及び未反応塩化水素量を測定した。アナターゼ結
晶形TiO2担持6.6重量%酸化ルテニウム球形粒状
触媒の単位触媒重量及び時間当りの塩化水素反応活性は
4.8×10-4mol−HCl/g−触媒・minであ
り、触媒の使用量を1.9g(2.0ml)、塩化水素
0.16l/min(標準状態)、酸素0.08l/m
in(標準状態)とした以外は、α−Al23担持6.
6重量%酸化ルテニウム押し出し触媒に準拠にて行っ
た。第1反応域の活性は1.6×10-4mol−HCl
/ml−反応域・min、第2反応域の活性は3.1×
10-4mol−HCl/ml−反応域・minと計算さ
れる。塩化水素を含むガス6.1l/min(標準状
態、塩化水素:99体積%以上)、酸素3.05l/m
in(標準状態、酸素:99体積%以上)をNi製反応
管の上部から下部へダウンフローで流通させ、ジャケッ
ト内の溶融塩の温度を326℃として反応を行った。空
塔基準のガス線速度は、0.65m/sと計算される。
第1反応域の反応温度は入口332℃、出口335℃、
ホットスポット347℃であった。第2反応域の反応温
度は入口335℃、出口338℃、ホットスポット34
4℃であった。第2反応域の出口ガスをよう化カリウム
水溶液にサンプリングして、生成した塩素と未反応の塩
化水素と生成水を吸収させ、よう素滴定法及び中和滴定
法によって、それぞれ塩素の生成量及び未反応塩化水素
量を測定した。塩化水素の塩素への転化率は30.6%
であった。
The present invention will be described below with reference to examples. Example 1 A reactor equipped with a jacket using a molten salt (potassium nitrate / sodium nitrite = 1/1 weight ratio) having a diameter of 18 mm and a length of 1 m (temperature measuring sheath having an outer diameter of 5 mm) was used in a reactor. Tube). On the upper side of the reaction tube, 80.2 g (60.0 m) of a 6.6 wt% ruthenium oxide extrusion catalyst supporting α-Al 2 O 3 having a diameter of 1.5 mm was loaded.
1) was filled to form a first reaction zone. In addition, this catalyst,
What was used for about 260 hours in the oxidation reaction of hydrogen chloride was reused. At the lower side of the first reaction zone, 35.9 g (35.6 ml) of a 6.6 wt% ruthenium oxide spherical granular catalyst supporting anatase crystalline TiO 2 having a diameter of 1 to 2 mm and a diameter of 2 mm
Α-Al 2 O 3 spheres (Nikkato Co., Ltd., SSA995)
37.6 g (17.8 ml) are mixed well and filled,
This was the second reaction zone. The catalyst filling length was (first reaction zone / second reaction zone) = 0.280 m / 0.235 m. The catalyst filling volume was 1 reaction zone / second reaction zone = 66 ml / 55 ml
The ratio of the first reaction zone is calculated to be 54% by volume. The 1.5-mm diameter α-Al 2 O 3 supported 6.6 wt% ruthenium oxide extrusion catalyst was prepared by the following method. That is, commercially available α-Al 2 O 3 powder (manufactured by Sumitomo Chemical Co., Ltd., AES-12), ruthenium chloride, pure water, and alumina sol (manufactured by Nissan Chemical Co., Ltd., alumina sol 20)
0) was mixed well. The mixture was blown with dry air at room temperature and dried to an appropriate viscosity. This mixture was extruded to a diameter of 1.5 mm. Then, it was dried in air at 60 ° C. for 4 hours. The obtained solid was heated from room temperature to 350 ° C. in 1 hour, and calcined at the same temperature for 3 hours,
There was obtained a 6.6 wt% ruthenium oxide extrusion catalyst supporting α-Al 2 O 3 having a diameter of 1.5 mm. An anatase crystalline TiO 2 supported 6.6 wt% ruthenium oxide spherical granular catalyst having a diameter of 1 to 2 mm was prepared according to the method described in JP-A-10-338502. Further, the hydrogen chloride reaction activity per unit catalyst weight and time per hour of the 6.6 wt% ruthenium oxide extrusion catalyst supporting α-Al 2 O 3 used in this example was 1.3 × 10 −4 mol-HCl / g-. Catalyst ・ min
And measured by the following method. 14 mm inner diameter Pyrex glass reaction tube (outer diameter 4 mm sheath tube for temperature measurement)
Was charged with 4.0 g (3.3 ml) of the catalyst, and the temperature was 280 ° C.
Into a molten salt bath of 0.26 l / min hydrogen chloride
(Standard state), oxygen 0.13 l / min (standard state) was circulated from the upper part to the lower part by down flow, and after 1.5 h, the outlet gas was sampled in an aqueous potassium iodide solution,
Absorb the generated chlorine, unreacted hydrogen chloride and generated water,
The amount of chlorine produced and the amount of unreacted hydrogen chloride were measured by iodine titration and neutralization titration, respectively. The unit catalyst weight and hydrogen chloride reaction activity per unit time of the anatase crystalline TiO 2 supported 6.6 wt% ruthenium oxide spherical granular catalyst are 4.8 × 10 −4 mol-HCl / g-catalyst · min. 1.9 g (2.0 ml), 0.16 l / min of hydrogen chloride (standard condition), 0.08 l / m of oxygen
5. α-Al 2 O 3 supported except that in (standard state) was used.
The test was performed in accordance with a 6% by weight ruthenium oxide extrusion catalyst. The activity of the first reaction zone is 1.6 × 10 −4 mol-HCl
/ Ml-reaction zone · min, the activity of the second reaction zone is 3.1 ×
It is calculated as 10 −4 mol-HCl / ml-reaction zone · min. Gas containing hydrogen chloride 6.1 l / min (standard condition, hydrogen chloride: 99 volume% or more), oxygen 3.05 l / m
in (standard condition, oxygen: 99% by volume or more) was allowed to flow from the upper portion to the lower portion of the Ni-made reaction tube by downflow, and the reaction was performed with the temperature of the molten salt in the jacket at 326 ° C. The gas linear velocity based on the superficial tower is calculated to be 0.65 m / s.
The reaction temperature in the first reaction zone is 332 ° C. at the inlet, 335 ° C. at the outlet,
The hot spot was 347 ° C. The reaction temperature in the second reaction zone is 335 ° C. at the inlet, 338 ° C. at the outlet,
4 ° C. The outlet gas of the second reaction zone is sampled into an aqueous solution of potassium iodide to absorb generated chlorine, unreacted hydrogen chloride and generated water, and determine the amount of chlorine produced and the amount of chlorine by iodometric titration and neutralization titration, respectively. The amount of unreacted hydrogen chloride was measured. Conversion of hydrogen chloride to chlorine is 30.6%
Met.

【0030】実施例2 反応器には、電気炉を備えた内径26mm及び長さ2.
0mのNi製反応管(外径6mmの温度測定用鞘管)1
本と、溶融塩(硝酸カリウム/亜硝酸ナトリウム=1/
1重量比)を熱媒体とするジャケットを備えた内径18
mm及び長さ2.5mの反応管(外径6mmの温度測定
用鞘管)2本からなる合計3本の反応管が直列に連結さ
れた固定床反応器を用いた。内径26mmの反応管に
は、直径1.5mmのα−Al23担持6.6重量%酸
化ルテニウム押し出し触媒69g(60ml)と直径2
mmのα−Al23球132g(60ml)を十分に混
合して充填し、第1反応域とした。内径18mmの反応
管の1本目には、直径1〜2mmのアナターゼ結晶形T
iO2担持6.6重量%酸化ルテニウム球形粒状触媒3
00g(300ml)と直径2mmのα−Al23球3
40g(150ml)を十分に混合して充填し、第2反
応域とした。内径18mmの反応管の2本目には、直径
1〜2mmのアナターゼ結晶形TiO2担持6.6重量
%酸化ルテニウム球形粒状触媒297g(294ml)
を充填し、第3反応域とした。触媒充填長は、第1反応
域/第2反応域/第3反応域=0.21m/1.98m
/1.37mであった。触媒充填体積は、第1反応域/
第2反応域/第3反応域=103ml/447ml/3
09mlで、第1反応域の割合は12体積%と計算され
る。なお、α−Al23担持6.6重量%酸化ルテニウ
ム押し出し触媒は、実施例1に準拠して調製し、触媒の
使用量を4.0g(3.5ml)とした以外は実施例1
に準拠して測定された単位触媒重量及び時間当りの塩化
水素反応活性は2.5×10-4mol−HCl/g−触
媒・minであった。第1反応域の活性は1.7×10
-4mol−HCl/ml−反応域・min、第2反応域
の活性は3.2×10-4mol−HCl/ml−反応域
・min、第3反応域の活性は4.6×10-4mol−
HCl/ml−反応域・minと計算される。塩化水素
を含むガス6l/min(標準状態、塩化水素:99体
積%以上)、酸素1.13l/min(標準状態、酸
素:99体積%以上)、及び塩素を分離後に得られた未
反応酸素を主成分とするガス2.15l/min(標準
状態、酸素:86.0体積%、塩素:8.9体積%(計
算値)、窒素:2.3体積%、アルゴン:2.7体積
%、二酸化炭素:0.1体積%)をNi製反応管の上部
から下部へダウンフローで流通させ、反応器の入口圧力
を1.19kg/cm2−G(0.22MPa相当)と
し、電気炉の温度を342℃、ジャケット内の溶融塩の
温度を345℃及び332℃として反応を行った。空塔
基準のガス線速度は、内径26mmの反応管で0.31
m/s、内径18mmの反応管で0.68m/sと計算
される。第1反応域の反応温度は入口322℃、出口3
43℃、ホットスポット344℃であった。第2反応域
の反応温度は入口336℃、出口348℃、ホットスポ
ット362℃であった。第3反応域の反応温度は入口3
25℃、出口338℃、ホットスポット350℃であっ
た。反応で得られたガスを冷却し、続いて吸収塔内にフ
ィ−ドした。吸収塔には、純水用タンクと純水フィ−ド
用ポンプ、20重量%塩酸フィ−ド用ポンプ及び塔内塩
酸の循環用ポンプを設置した。純水は、純水フィ−ド用
ポンプを用いて0.15kg/h(29℃)で純水用タ
ンクへフィ−ドし、吸収塔へのフィ−ド前に、純水タン
ク内で吸収塔の塔頂部から得られたガスと接触させた
後、タンク内から吸収塔の塔底部へオーバーフローでフ
ィ−ドした。20重量%塩酸0.355kg/h(29
℃)は、20重量%塩酸フィ−ド用ポンプを用いて吸収
塔の上部からフィ−ドし、ガスと向流式に接触させた。
塩化水素と水を主成分とする塔内の塩酸の溶液(塩化水
素24.7重量%、塩素:0.39重量%)は、循環ポ
ンプで吸収塔の上部に循環させ、ガスと向流式に接触さ
せた。また、該溶液は、循環ポンプ出口から0.736
kg/hの流量で抜き出した。塔頂部からは、温度は2
8℃の常圧のガスが得られた。吸収塔の塔頂部から得ら
れたガスを硫酸乾燥塔に流通させた。硫酸乾燥塔には、
硫酸フィード用ポンプを設置した。硫酸乾燥塔には、硫
酸フィード用ポンプを用いて98重量%硫酸 0.14
5kg/hをフィードし、塔内の硫酸はオーバーフロー
で0.172kg/hで抜き出された。得られた乾燥ガ
ス(水:0.05mg/l以下)をミストセパレータで
ミストを分離後、圧縮機にフィードし、9.25kg/
cm2−G(1.01MPa相当)に昇圧し、続いて−
20℃に冷却して、塩素を主成分とする液体と未反応酸
素を主成分とするガスに分離した。得られた塩素の組成
は、塩素:98.6体積%(計算値)、酸素:1.1体
積%、窒素:0.17体積%、アルゴン:0.07体積
%、二酸化炭素:0.09体積%であった。未反応酸素
を主成分とするガスを反応へリサイクルした。
Example 2 The reactor was equipped with an electric furnace and had an inner diameter of 26 mm and a length of 2.
0 m Ni reaction tube (outer diameter 6 mm sheath tube for temperature measurement) 1
Book and molten salt (potassium nitrate / sodium nitrite = 1 /
1 wt.
A fixed bed reactor in which a total of three reaction tubes consisting of two reaction tubes having a length of 2.5 mm and a length of 2.5 m (sheath tubes having an outer diameter of 6 mm) were connected in series was used. In a reaction tube having an inner diameter of 26 mm, 69 g (60 ml) of a 6.6 wt% ruthenium oxide extruded catalyst supporting α-Al 2 O 3 having a diameter of 1.5 mm and a diameter of 2
132 g (60 ml) of α-Al 2 O 3 spheres having a diameter of mm were sufficiently mixed and filled to form a first reaction zone. The first reaction tube having an inner diameter of 18 mm has an anatase crystal form T having a diameter of 1 to 2 mm.
6.6% by weight of ruthenium oxide spherical catalyst supported on iO 2 3
Α-Al 2 O 3 spheres 3 of 00 g (300 ml) and 2 mm in diameter
40 g (150 ml) was sufficiently mixed and filled to form a second reaction zone. In the second reaction tube having an inner diameter of 18 mm, 297 g (294 ml) of a 6.6 wt% ruthenium oxide spherical granular catalyst supporting anatase crystalline TiO 2 having a diameter of 1 to 2 mm was used.
To form a third reaction zone. The catalyst filling length is: first reaction zone / second reaction zone / third reaction zone = 0.21 m / 1.98 m
/1.37 m. The catalyst loading volume is the first reaction zone /
2nd reaction zone / 3rd reaction zone = 103ml / 447ml / 3
At 09 ml, the proportion of the first reaction zone is calculated to be 12% by volume. The 6.6 wt% ruthenium oxide extrusion catalyst supporting α-Al 2 O 3 was prepared according to Example 1, and the amount of the catalyst used was changed to 4.0 g (3.5 ml).
The hydrogen chloride reaction activity per unit catalyst weight and time measured in accordance with the above was 2.5 × 10 −4 mol-HCl / g-catalyst · min. The activity of the first reaction zone is 1.7 × 10
-4 mol-HCl / ml-reaction zone · min, activity in the second reaction zone is 3.2 × 10 -4 mol-HCl / ml-reaction zone · min, activity in the third reaction zone is 4.6 × 10 -4 mol-
HCl / ml-reaction zone · min. Gas containing hydrogen chloride 6 l / min (standard condition, hydrogen chloride: 99 vol% or more), oxygen 1.13 l / min (standard condition, oxygen: 99 vol% or more), and unreacted oxygen obtained after separating chlorine 2.15 l / min (standard condition, oxygen: 86.0 vol%, chlorine: 8.9 vol% (calculated value), nitrogen: 2.3 vol%, argon: 2.7 vol% , Carbon dioxide: 0.1% by volume) from the upper part to the lower part of the Ni reaction tube in a downflow manner, the inlet pressure of the reactor was 1.19 kg / cm 2 -G (corresponding to 0.22 MPa), and the electric furnace was At 342 ° C. and the temperature of the molten salt in the jacket at 345 ° C. and 332 ° C. for the reaction. The gas linear velocity based on a superficial tower is 0.31 in a reaction tube having an inner diameter of 26 mm.
m / s, calculated to be 0.68 m / s for a reaction tube having an inner diameter of 18 mm. The reaction temperature in the first reaction zone was 322 ° C. at the inlet and 3 at the outlet.
43 ° C., hot spot 344 ° C. The reaction temperature in the second reaction zone was 336 ° C. at the inlet, 348 ° C. at the outlet, and 362 ° C. in the hot spot. The reaction temperature in the third reaction zone is inlet 3
The temperature was 25 ° C, the outlet was 338 ° C, and the hot spot was 350 ° C. The gas obtained from the reaction was cooled and subsequently fed into the absorption tower. The absorption tower was provided with a pure water tank, a pure water feed pump, a 20 wt% hydrochloric acid feed pump, and a pump for circulating hydrochloric acid in the tower. Pure water is fed into the pure water tank at 0.15 kg / h (29 ° C.) using a pure water feed pump, and absorbed in the pure water tank before feeding to the absorption tower. After contact with the gas obtained from the top of the tower, the gas was fed from the tank to the bottom of the absorption tower by overflow. 20 wt% hydrochloric acid 0.355 kg / h (29
C.) was fed from the upper part of the absorption tower using a pump for a 20% by weight hydrochloric acid feed and brought into contact with the gas in a countercurrent manner.
A solution of hydrochloric acid (24.7% by weight of hydrogen chloride, 0.39% by weight of chlorine) in a tower containing hydrogen chloride and water as main components is circulated to the upper part of the absorption tower by a circulation pump, and is counter-flowed with gas. Was contacted. Also, the solution was supplied 0.736 from the circulation pump outlet.
It was withdrawn at a flow rate of kg / h. From the top, the temperature is 2
A gas at normal pressure of 8 ° C. was obtained. The gas obtained from the top of the absorption tower was passed through the sulfuric acid drying tower. In the sulfuric acid drying tower,
A sulfuric acid feed pump was installed. In the sulfuric acid drying tower, 98% by weight sulfuric acid 0.14 was added using a sulfuric acid feed pump.
5 kg / h was fed, and sulfuric acid in the tower was withdrawn at 0.172 kg / h by overflow. The obtained dry gas (water: 0.05 mg / l or less) was separated into mist by a mist separator, and then fed to a compressor, and then dried at 9.25 kg / l.
cm 2 -G (equivalent to 1.01 MPa), followed by-
After cooling to 20 ° C., it was separated into a liquid mainly composed of chlorine and a gas mainly composed of unreacted oxygen. The composition of the obtained chlorine was as follows: chlorine: 98.6% by volume (calculated value), oxygen: 1.1% by volume, nitrogen: 0.17% by volume, argon: 0.07% by volume, carbon dioxide: 0.09% % By volume. The gas containing unreacted oxygen as the main component was recycled to the reaction.

【0031】[0031]

【発明の効果】以上説明したとおり、本発明により、塩
化水素を含むガス中の塩化水素を、酸素を含むガスを用
いて酸化する塩素の製造方法であって、触媒充填層の過
度のホットスポットを抑制し、触媒充填層を有効に活用
することによって、触媒の安定した活性が維持され、か
つ塩素を安定して高収率で得ることができ、よって触媒
コスト、設備コスト、運転コスト、運転の安定性及び容
易性の観点から極めて有利な塩素の製造方法を提供する
ことができた。
As described above, according to the present invention, there is provided a method for producing chlorine by oxidizing hydrogen chloride in a gas containing hydrogen chloride using a gas containing oxygen, the method comprising: By effectively controlling the catalyst packed bed, the stable activity of the catalyst can be maintained, and chlorine can be obtained in a stable and high yield. From the viewpoint of the stability and easiness of the production of chlorine.

フロントページの続き (72)発明者 森 康彦 愛媛県新居浜市惣開町5番1号 住友化学 工業株式会社内 (72)発明者 吉井 政之 千葉県市原市姉崎海岸5の1 住友化学工 業株式会社内 Fターム(参考) 4G069 AA03 BA01A BA01B BA04A BA04B BB04A BB04B BB08A BC03A BC31A BC50A BC50B BC58A BC70A BC70B BD12A CB81 DA06 EA02Y EA04Y EA18 EB14Y EB18Y EE08Continued on the front page (72) Inventor Yasuhiko Mori 5-1 Sokai-cho, Niihama-shi, Ehime Sumitomo Chemical Industries, Ltd. (72) Inventor Masayuki Yoshii 5-1, Anesaki Beach, Ichihara-shi, Chiba Sumitomo Chemical Industries, Ltd. F term (reference) 4G069 AA03 BA01A BA01B BA04A BA04B BB04A BB04B BB08A BC03A BC31A BC50A BC50B BC58A BC70A BC70B BD12A CB81 DA06 EA02Y EA04Y EA18 EB14Y EB18Y EE08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 触媒の存在下、塩化水素を含むガス中の
塩化水素を、酸素を含むガスを用いて酸化する塩素の製
造方法であって、少なくとも二の直列に配列された触媒
充填層からなる反応域を有し、かつ該反応域のうちの少
なくとも一の反応域の温度制御を熱交換方式によって行
う塩素の製造方法。
1. A method for producing chlorine in which hydrogen chloride in a gas containing hydrogen chloride is oxidized using a gas containing oxygen in the presence of a catalyst, comprising the steps of: A method for producing chlorine, comprising: a reaction zone; and controlling the temperature of at least one of the reaction zones by a heat exchange method.
【請求項2】 少なくとも二の直列に配列された触媒充
填層からなる反応域の最も上流側の反応域である第1反
応域の割合が70体積%以下である請求項1記載の塩素
の製造方法。
2. The chlorine production according to claim 1, wherein the proportion of the first reaction zone which is the most upstream reaction zone of the reaction zone comprising at least two catalyst packed layers arranged in series is 70% by volume or less. Method.
JP2000004538A 1999-01-22 2000-01-13 Chlorine production method Expired - Lifetime JP3606147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000004538A JP3606147B2 (en) 1999-01-22 2000-01-13 Chlorine production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-14236 1999-01-22
JP1423699 1999-01-22
JP2000004538A JP3606147B2 (en) 1999-01-22 2000-01-13 Chlorine production method

Publications (2)

Publication Number Publication Date
JP2000272907A true JP2000272907A (en) 2000-10-03
JP3606147B2 JP3606147B2 (en) 2005-01-05

Family

ID=26350140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000004538A Expired - Lifetime JP3606147B2 (en) 1999-01-22 2000-01-13 Chlorine production method

Country Status (1)

Country Link
JP (1) JP3606147B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306712A (en) * 2004-10-15 2005-11-04 Sumitomo Chemical Co Ltd Method for manufacturing chlorine and hydrochloric acid
WO2006137583A1 (en) * 2005-06-22 2006-12-28 Sumitomo Chemical Company, Limited Reactor for chlorine production and process for producing chlorine
WO2007066810A1 (en) 2005-12-08 2007-06-14 Sumitomo Chemical Company, Limited Method for production of chlorine
WO2008029940A1 (en) 2006-09-06 2008-03-13 Sumitomo Chemical Company, Limited Start-up method
JP2008105862A (en) * 2006-10-23 2008-05-08 Sumitomo Chemical Co Ltd Method for producing chlorine
JP2009505817A (en) * 2005-08-25 2009-02-12 ビーエーエスエフ ソシエタス・ヨーロピア Mechanically stable α-aluminum oxide based catalyst
JP2009196825A (en) * 2008-02-19 2009-09-03 Sumitomo Chemical Co Ltd Method for manufacturing chlorine
JP2010017715A (en) * 2004-05-28 2010-01-28 Sumitomo Chemical Co Ltd Heat exchange reactor
JP2010030831A (en) * 2008-07-29 2010-02-12 Sumitomo Chemical Co Ltd Method for producing chlorine
WO2010067751A1 (en) 2008-12-09 2010-06-17 住友化学株式会社 Method for manufacturing chlorine
WO2010073888A1 (en) 2008-12-22 2010-07-01 住友化学株式会社 Chlorine manufacturing method
JP2010189206A (en) * 2009-02-16 2010-09-02 Mitsui Chemicals Inc Method for producing chlorine
JP2010533114A (en) * 2007-07-13 2010-10-21 バイエル・テクノロジー・サービシズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for producing chlorine by gas phase oxidation
US11072527B2 (en) 2016-12-02 2021-07-27 Mitsui Chemicals, Inc. Method for producing chlorine by oxidation of hydrogen chloride

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017715A (en) * 2004-05-28 2010-01-28 Sumitomo Chemical Co Ltd Heat exchange reactor
JP2005306712A (en) * 2004-10-15 2005-11-04 Sumitomo Chemical Co Ltd Method for manufacturing chlorine and hydrochloric acid
WO2006137583A1 (en) * 2005-06-22 2006-12-28 Sumitomo Chemical Company, Limited Reactor for chlorine production and process for producing chlorine
KR101299903B1 (en) * 2005-06-22 2013-08-23 스미또모 가가꾸 가부시끼가이샤 Reactor for producing chlorine and process for producing chlorine
JP2009505817A (en) * 2005-08-25 2009-02-12 ビーエーエスエフ ソシエタス・ヨーロピア Mechanically stable α-aluminum oxide based catalyst
WO2007066810A1 (en) 2005-12-08 2007-06-14 Sumitomo Chemical Company, Limited Method for production of chlorine
WO2008029940A1 (en) 2006-09-06 2008-03-13 Sumitomo Chemical Company, Limited Start-up method
US8168154B2 (en) 2006-09-06 2012-05-01 Sumitomo Chemical Company, Limited Start-up method for producing chlorine
JP2008105862A (en) * 2006-10-23 2008-05-08 Sumitomo Chemical Co Ltd Method for producing chlorine
JP2010533114A (en) * 2007-07-13 2010-10-21 バイエル・テクノロジー・サービシズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for producing chlorine by gas phase oxidation
JP2009196825A (en) * 2008-02-19 2009-09-03 Sumitomo Chemical Co Ltd Method for manufacturing chlorine
JP2010030831A (en) * 2008-07-29 2010-02-12 Sumitomo Chemical Co Ltd Method for producing chlorine
WO2010067751A1 (en) 2008-12-09 2010-06-17 住友化学株式会社 Method for manufacturing chlorine
WO2010073888A1 (en) 2008-12-22 2010-07-01 住友化学株式会社 Chlorine manufacturing method
JP2010189206A (en) * 2009-02-16 2010-09-02 Mitsui Chemicals Inc Method for producing chlorine
US11072527B2 (en) 2016-12-02 2021-07-27 Mitsui Chemicals, Inc. Method for producing chlorine by oxidation of hydrogen chloride

Also Published As

Publication number Publication date
JP3606147B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
KR101513298B1 (en) Method for producing chlorine
KR101513299B1 (en) Method for producing chlorine
JP3606147B2 (en) Chlorine production method
JP2009537448A (en) Method for producing chlorine by gas phase oxidation
SK282577B6 (en) Method for single stage fixed bed oxychlorination of ethylene
US20100266481A1 (en) Processes for the oxidation of a gas containing hydrogen chloride
JP2010533113A (en) Method for producing chlorine by multistage adiabatic gas phase oxidation
JP2005289800A (en) Method of producing chlorine
JP3058696B2 (en) Oxychlorination of ethylene in a two-stage fixed bed reactor
WO2007066810A1 (en) Method for production of chlorine
JP3570322B2 (en) Method for producing chlorine
JP4081591B2 (en) Chlorine production method
EP0146925B1 (en) Method for the oxychlorination of ethylene
US3291846A (en) Process for producing vinyl chloride
CN1129192A (en) Process for the oxidation of hydrogen chloride
JP5130155B2 (en) Chlorine production method
JP2008105862A (en) Method for producing chlorine
JP5267305B2 (en) Chlorine production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R151 Written notification of patent or utility model registration

Ref document number: 3606147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

EXPY Cancellation because of completion of term