WO2011099128A1 - 風力発電装置および風力発電装置の制御方法 - Google Patents

風力発電装置および風力発電装置の制御方法 Download PDF

Info

Publication number
WO2011099128A1
WO2011099128A1 PCT/JP2010/051978 JP2010051978W WO2011099128A1 WO 2011099128 A1 WO2011099128 A1 WO 2011099128A1 JP 2010051978 W JP2010051978 W JP 2010051978W WO 2011099128 A1 WO2011099128 A1 WO 2011099128A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
nacelle
anemometer
wind speed
measurement result
Prior art date
Application number
PCT/JP2010/051978
Other languages
English (en)
French (fr)
Inventor
亨 南
哲夫 竹辺
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2010/051978 priority Critical patent/WO2011099128A1/ja
Priority to AU2010201621A priority patent/AU2010201621B1/en
Priority to BRPI1000013A priority patent/BRPI1000013A2/pt
Priority to JP2010506744A priority patent/JP5031092B2/ja
Priority to CN201080000718.0A priority patent/CN102741546B/zh
Priority to CA2694111A priority patent/CA2694111C/en
Priority to US12/675,271 priority patent/US8157521B2/en
Priority to KR1020107008804A priority patent/KR101110908B1/ko
Priority to EP10703608.9A priority patent/EP2375061B1/en
Publication of WO2011099128A1 publication Critical patent/WO2011099128A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/026Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for starting-up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/044Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with PID control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • F05B2270/3201"cut-off" or "shut-down" wind speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/321Wind directions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind turbine generator and a wind turbine generator control method, and more particularly to a wind turbine generator capable of turning a nacelle based on measurement results of an anemometer and anemometer and a control method thereof.
  • a wind turbine generator generally includes a rotor head to which a rotor blade is attached, a nacelle that houses a rotating shaft and a generator, and a support column that supports the nacelle. Further, in order to improve the power generation efficiency, yaw turning for turning the nacelle and pitch control for rotating the rotor blades in the pitch direction are often performed in accordance with wind conditions.
  • a wind power generator there is an anemometer attached to the nacelle and a device that controls the nacelle direction based on the measurement result of the anemometer.
  • anemometer attached to the nacelle and a device that controls the nacelle direction based on the measurement result of the anemometer.
  • Patent Document 1 when the variation range of the wind direction measured by the anemometer is smaller than the first set value and the variation range of the wind speed measured by the anemometer is smaller than the second set value, It is described that power is efficiently generated by causing the nacelle to follow the measured wind direction.
  • Patent Documents 1 and 2 do not describe how to turn the nacelle when the wind speed is smaller than the cut-in wind speed and the wind is almost stopped. Is smaller than the cut-in wind speed, the nacelle is not allowed to follow the wind direction measured by the anemometer.
  • the nacelle direction does not follow the wind direction when the wind starts to get stronger, it is not possible to quickly shift to normal operation at a cut-in wind speed or higher.
  • a wind power generator installed in an area where strong winds are not always blown, it is difficult to efficiently generate power unless the nacelle direction is aligned with the wind direction when the wind begins to become strong.
  • the present invention has been made in view of the above-described circumstances, and is a wind power generator and a wind power generator that can suppress a decrease in power generation efficiency even when installed in a place where strong winds do not always blow.
  • An object is to provide a control method.
  • the wind power generator includes an anemometer, an anemometer, a nacelle turning mechanism for turning the nacelle, and a wind speed obtained from a measurement result of the anemometer exceeds a first threshold value smaller than a cut-in wind speed.
  • the nacelle turns when the nacelle turns based on the wind direction obtained from the measurement result of the anemometer while the wind speed obtained from the measurement result of the anemometer is not more than the first threshold value.
  • a control means for controlling the nacelle turning mechanism so as to stop.
  • the wind speed obtained from the anemometer measurement result may be the wind speed itself measured by the anemometer, or the true speed obtained by performing some correction on the wind speed measured by the anemometer. It may be wind speed.
  • the wind direction obtained from the anemometer measurement result may be the wind direction itself measured by the anemometer, or the true direction obtained by performing some correction on the wind direction measured by the anemometer. It may be the wind direction.
  • the wind power generator even if the wind speed obtained from the anemometer measurement result is smaller than the cut-in wind speed, if the wind speed is greater than the first threshold value, the wind speed is obtained based on the wind direction obtained from the anemometer measurement result. Since the nacelle is swirled, when the wind starts to become stronger and exceeds the cut-in wind speed, the nacelle direction is substantially along the wind direction, and it is possible to quickly shift to normal operation at a speed higher than the cut-in wind speed. Therefore, even when it is installed in a place where strong winds are not always blown, it is possible to suppress a decrease in power generation efficiency.
  • the nacelle stops turning.
  • the wind direction is unstable, and if the nacelle direction is made to follow the wind direction, the nacelle is frequently turned. Therefore, when the wind speed obtained from the measurement result of the anemometer is equal to or lower than the first threshold value, the nacelle turns frequently by stopping the turning of the nacelle, and a great amount of power is not consumed. Therefore, even if it is a case where it installs in the place where a strong wind does not always blow, the fall of power generation efficiency can be suppressed.
  • control means is configured such that the wind speed obtained from the measurement result of the anemometer is larger than the first threshold and smaller than the cut-in wind speed in a state where the turning of the nacelle is stopped. It is preferable to control the nacelle turning mechanism so as to resume the turning of the nacelle based on the wind direction obtained from the measurement result of the anemometer when the second threshold value is reached.
  • the nacelle resumes turning to increase the wind strength.
  • the cut-in wind speed is exceeded for the first time, since the nacelle direction is substantially along the wind direction, it is possible to quickly shift to normal operation at a cut-in wind speed or higher. Therefore, even if it is a case where it installs in the place where a strong wind does not always blow, the fall of power generation efficiency can be suppressed further.
  • the wind turbine generator further includes a pitch drive mechanism that opens and closes the rotor blades in the pitch direction, and the control unit is configured to rotate the rotor blades when a wind speed obtained from a measurement result of the anemometer is lower than the cut-in wind speed. While the rotation mode is set with an upper limit on the pitch angle of the wind speed, when the wind speed obtained from the measurement result of the anemometer is equal to or higher than the cut-in wind speed, the pitch angle of the rotor blade is allowed to be fully opened. It is preferable to control the pitch drive mechanism so as to be in the normal operation mode.
  • the control means is configured so that the nacelle follows the wind direction corrected by the wind direction correcting means. It is preferable to control the nacelle turning mechanism.
  • An anemometer of a wind power generator is generally attached to a nacelle located behind a rotor blade.
  • the detection target of the anemometer is the wind after hitting the rotor blade, the measurement result of the anemometer may deviate from the actual wind direction. Therefore, as described above, the wind direction correction means is provided, and the nacelle direction is corrected according to the wind direction by correcting the wind direction based on the deviation between the nacelle direction where the power curve is maximum and the wind direction measured by the anemometer. Power generation efficiency can be improved.
  • a method for controlling a wind turbine generator is a method for controlling a wind turbine generator having an anemometer, an anemometer, and a nacelle turning mechanism for turning a nacelle, the wind velocity obtained from the measurement result of the anemometer.
  • the nacelle is turned by the nacelle turning mechanism based on the wind direction obtained from the measurement result of the anemometer, and obtained from the measurement result of the anemometer.
  • the nacelle stops turning when the wind speed obtained from the anemometer measurement result is equal to or lower than the first threshold value. For this reason, since the nacelle frequently turns and does not consume a large amount of power, even if the wind power generator is installed in a place where the strong wind does not always blow, the power generation efficiency decreases. Can be suppressed.
  • a second wind speed obtained from a measurement result of the anemometer is larger than the first threshold and smaller than the cut-in wind speed. It is preferable to further include a step of resuming the turning of the nacelle based on the wind direction obtained from the measurement result of the anemometer when the threshold value is exceeded.
  • the nacelle resumes turning to increase the wind strength.
  • the cut-in wind speed is exceeded for the first time, since the nacelle direction is substantially along the wind direction, it is possible to quickly shift to normal operation at a cut-in wind speed or higher.
  • the wind turbine generator further includes a pitch drive mechanism that opens and closes the rotor blades in the pitch direction, and the wind speed obtained from the measurement result of the anemometer is lower than the cut-in wind speed.
  • a step of adjusting the pitch angle of the rotor blade by the pitch driving mechanism in an idle mode in which an upper limit is set for the pitch angle of the rotor blade, and the wind speed obtained from the measurement result of the anemometer is the cut It is preferable to further include a step of adjusting the pitch angle of the rotary blade by the pitch driving mechanism in a normal operation mode in which the pitch angle of the rotary blade is allowed to a fully open state when the wind speed is equal to or higher than the in wind speed.
  • the wind direction measured by the wind vane is calculated based on a deviation between the nacelle direction in which the power curve of the wind turbine generator is maximum and the wind direction measured by the wind vane. It is preferable that the method further includes a step of correcting, and in the step of turning the nacelle, the nacelle is turned so as to follow the wind direction corrected in the step of correcting the wind direction.
  • the nacelle is set based on the wind direction obtained from the measurement result of the anemometer. Since it turns, when the wind starts to become stronger and exceeds the cut-in wind speed, the nacelle direction is substantially along the wind direction, and it is possible to quickly shift to normal operation at a speed higher than the cut-in wind speed. Furthermore, in the present invention, when the wind speed obtained from the measurement result of the anemometer is equal to or lower than the first threshold value, the nacelle stops turning, so the nacelle frequently turns and consumes a large amount of power. There is nothing. Therefore, even if a wind power generator is installed in a place where strong winds are not always blown, a decrease in power generation efficiency can be suppressed.
  • FIG. 1 It is a figure which shows the example of whole structure of a wind power generator. It is a side view which shows an example of the detailed structure of each part of the wind power generator shown in FIG. It is sectional drawing which shows the structural example of a nacelle turning mechanism. It is a flowchart which shows an example of operation
  • FIG. 1 is a diagram illustrating an overall configuration example of a wind turbine generator according to the present embodiment.
  • the wind turbine generator 1 is mainly composed of a support column 2 erected on the foundation B, a nacelle 4 installed at the upper end of the support column 2, a rotor head 6 attached to the nacelle 4, A plurality of rotating blades 8 attached to the rotor head 6 are used.
  • the column 2 has a column shape extending upward from the base B (upward in FIG. 1).
  • the column 2 may be constituted by a single column member, or a plurality of units are connected in the vertical direction. And you may comprise in column shape.
  • the support column 2 is composed of a plurality of units, the nacelle 4 is installed on the unit provided at the top.
  • the nacelle 4 supports the rotor head 6 and houses the drive train 10 and the generator 18 including the speed increaser 14 therein.
  • the nacelle 4 is provided with an anemometer 5 for measuring the surrounding wind speed and an anemometer 7 for measuring the surrounding wind direction. Note that the wind speed and the wind direction measured by the anemometer 5 and the anemometer 7 are preferably corrected by a wind speed correction unit 42 and a wind direction correction unit 44 described later, respectively.
  • a control device 40 that controls each part of the wind power generator 1 is provided.
  • the control device 40 receives the corrected wind speed value and wind direction value output from the wind speed correction unit 42 and the wind direction correction unit 44, and sends a command to the nacelle turning mechanism 20 and the pitch control mechanism 30.
  • the operation of each part of the wind turbine generator 1 under the control of the control device 40 will be described in detail later.
  • 1 shows an example in which the control device 40 is provided in the nacelle 4, the position of the control device 40 is not particularly limited, and may be provided, for example, below the support column 2.
  • FIG. 2 is a diagram illustrating an example of a detailed structure of each part of the wind turbine generator 1.
  • the drive train 10 includes a main shaft 12 connected to the rotor hub 6 ⁇ / b> A of the rotor head 6, a speed increaser 14 connected to the main shaft 12, and a cup connecting the speed increaser 14 to the generator 18. Ring 16.
  • the main shaft 12 rotates together with the rotor hub 6 ⁇ / b> A, and the rotation of the main shaft 12 is accelerated by the speed increaser 14, and then is transmitted to the generator 18 through the coupling 16. It is designed to be entered.
  • a nacelle turning mechanism 20 for turning the nacelle 4 in the yaw direction is provided below the nacelle 4.
  • FIG. 3 is a cross-sectional view showing a configuration example of the nacelle turning mechanism 20.
  • the nacelle turning mechanism 20 includes a yaw motor 22, a pinion 24 that rotates by driving the yaw motor 22, an internal gear 26 that meshes with the pinion 24, a brake disk 28A, and a brake shoe 28B. You may comprise.
  • the yaw motor 22, the pinion 24, and the brake shoe 28B are fixed to the nacelle 4 side, while the internal gear 26 and the brake disc 28A are fixed to the support column 2 side.
  • the yaw motor 22 when the yaw motor 22 is driven, the pinion 24 rotates and the nacelle 4 turns by yaw. Further, when the brake shoe 28B of the yaw brake mechanism 28 sandwiches the brake disk 28A, the yaw turning of the nacelle 4 is braked.
  • the yaw motor 22 and the yaw brake mechanism 28 are controlled by the control device 40.
  • the rotor head 6 is fixed to the nacelle 4 so as to be rotatable about a substantially horizontal axis, and a rotor hub 6A to which the rotor blades 8 are attached, and a head capsule 6B covering the rotor hub 6A. It is comprised including.
  • the rotor hub 6A is provided with a pitch driving device 30 that rotates the rotary blade 8 around its axis (in the direction of the arrow in FIG. 2) to change the pitch angle of the rotary blade 8.
  • the pitch driving device 30 includes a cylinder 32 and a shaft portion 34 connected to the rotary blade 8.
  • the rotary blade 8 is supported by a bearing 36 so as to be rotatable in the pitch direction. For this reason, the rotating blade 8 rotates in the pitch direction together with the shaft portion 34 when the shaft portion 34 rotates by the cylinder 32 of the pitch driving device 30.
  • the pitch driving device 30 provided for each rotor blade 8 may be connected to each other by a link mechanism (not shown), and the pitch angle control of each rotor blade 8 may be performed in conjunction with each other.
  • FIG. 4 is a flowchart showing an example of the operation of each part of the wind turbine generator 1.
  • the surrounding wind speed V 0 and the wind direction ⁇ 0 are measured by the anemometer 5 and the anemometer 7 (step S2).
  • the anemometer 5 and the anemometer 7 of the wind turbine generator 1 are generally attached to the nacelle 4 located behind the rotor blade 8 as shown in FIGS.
  • the detection target of the anemometer 5 and the anemometer 7 is the wind after hitting the rotor blade 8
  • the detection results of the anemometer 5 and the anemometer 7 may deviate from the actual wind speed and direction. is there.
  • the wind speed V 0 and the wind direction ⁇ 0 measured by the anemometer 5 and the anemometer 7 are corrected by the wind speed correction unit 42 and the wind direction correction unit 44 to calculate the actual wind speed V and the actual wind direction ⁇ .
  • Step S4 a correlation between the wind speed V 0 measured by the anemometer 5 and the actual wind speed (raw wind speed) is acquired in advance, and the wind speed correction unit 42 corrects the wind speed V 0 based on this correlation. It may be.
  • the correlation between the wind direction ⁇ 0 measured by the anemometer 7 and the actual wind direction (raw wind direction) is acquired in advance, and the wind direction ⁇ 0 is corrected by the wind direction correction unit 44 based on this correlation. You may do it.
  • the correlation used when the wind direction correction unit 44 corrects the wind direction ⁇ 0 is measured by, for example, the azimuth of the nacelle 4 where the power curve of the wind turbine generator 1 is maximized and the anemometer 7 at that time. You may acquire as a deviation with wind direction (theta) 0 .
  • the power curve is the relationship between the wind speed and the output at a predetermined pitch angle.
  • the power curve is maximum when the direction of the nacelle 4 matches the actual wind direction, and the direction of the nacelle 4 and the actual wind direction are shifted. It has the property of becoming a larger value than the case.
  • the direction of the nacelle 4 at which the power curve of the wind turbine generator 1 is maximum coincides with the actual wind direction (raw wind direction). That is, the above-described deviation represents a correlation between the wind direction ⁇ 0 measured by the anemometer 7 and the actual wind direction (raw wind direction).
  • the wind speed V and the wind direction ⁇ obtained as described above are sent to the control device 40, and the control device 40 determines whether the wind speed V is equal to or higher than the cut-in wind speed Vcut_in (step S6).
  • the wind turbine generator 1 shifts to the normal operation mode (step S8). Specifically, under the control of the control device 40, the rotor blades 8 are opened by the pitch driving mechanism 30 (the pitch angle is increased) while the nacelle 4 is turned by the nacelle turning mechanism 20 to follow the wind direction ⁇ . ) To generate electricity. In the normal operation mode, the pitch angle of the rotor blade 8 is allowed to the fully open state, and no upper limit is set for the pitch angle of the rotor blade 8.
  • step S10 when the wind speed V is smaller than the cut-in wind speed Vcut_in (NO determination in step S6), the wind turbine generator 1 shifts to the idle mode (step S10).
  • the idle mode an upper limit is set for the pitch angle of the rotor blade 8, and the pitch drive mechanism 30 adjusts the pitch angle of the rotor blade 8 within a range not exceeding the upper limit under the control of the control device 40.
  • step S12 the nacelle 4 is turned by the nacelle turning mechanism 20 so as to follow the wind direction ⁇ under the control of the control device 40 (ie, yaw tracking is performed).
  • step S14 the control device 40 determines whether the wind speed V is equal to or lower than the first threshold value Vth1.
  • the first threshold value Vth1 is smaller than the cut-in wind speed Vcut_in, in other words, satisfies the relational expression of 0 ⁇ Vth1 ⁇ Vcut_in.
  • step S14 If the wind speed V is equal to or lower than the first threshold value Vth1 (YES determination in step S14), the process proceeds to step S16, and the turning of the nacelle 4 by the nacelle turning mechanism 20 is stopped under the control of the control device 40 (that is, Stop yaw tracking). On the other hand, when the wind speed V is greater than the first threshold value Vth1 (NO determination in step S14), the process returns to step S6 to determine again whether the wind speed V is equal to or higher than the cut-in wind speed Vcut_in.
  • step S18 After the turning of the nacelle 4 is stopped in step S16, it is determined whether the wind speed V is equal to or higher than the second threshold value Vth2 (step S18).
  • the second threshold Vth2 is smaller than the cut-in wind speed Vcut_in and larger than the first threshold Vth1, in other words, satisfies the relational expression of Vth1 ⁇ Vth2 ⁇ Vcut_in.
  • step S18 If the wind speed V is Vth2 or higher (YES in step S18), the process returns to step S12, and yaw tracking for causing the nacelle 4 to follow the wind direction ⁇ is resumed. On the other hand, when the wind speed V is lower than Vth2 (NO determination in step S18), the process returns to step S16 to maintain the state where the turning of the nacelle 4 is stopped.
  • step S4 is omitted, and measurement is performed by the anemometer 5 and the anemometer 7.
  • the subsequent processing may be performed using the wind speed V 0 and the wind direction ⁇ 0 as they are.
  • step S6, step S14 and step S18 may be determined anemometer wind speed V 0 is determined by 5 the cut-in wind speed Vcut_in, the magnitude relation between the first threshold value Vth1 and the second threshold value Vth2, the step S8 and in step S12, it is sufficient to yaw tracking so that the wind direction theta 0 measured by the wind vane 7 follow the nacelle 4.
  • the anemometer 5 and the anemometer 7, the nacelle turning mechanism 20 for turning the nacelle 4, and the wind speed (V or V 0 ) obtained from the anemometer measurement result V 0 are used.
  • the nacelle 4 turns based on the wind direction ( ⁇ or ⁇ 0 ) obtained from the measurement result ⁇ 0 of the anemometer 7, while the anemometer And a control means 40 for controlling the nacelle turning mechanism 20 to stop the turning of the nacelle 4 when the wind speed (V or V 0 ) obtained from the measurement result V 0 is equal to or lower than the first threshold value Vth1. .
  • the wind turbine generator 1 of the present embodiment even if the wind speed (V or V 0 ) obtained from the measurement result of the anemometer 5 is smaller than the cut-in wind speed Vcut_in, if it is greater than the first threshold value Vth1, Since the nacelle 4 is turned based on the wind direction ( ⁇ or ⁇ 0 ) obtained from the measurement result of the anemometer 7, when the wind starts to become stronger and exceeds the cut-in wind speed Vcut_in, the nacelle direction is generally along the wind direction, It is possible to promptly shift to normal operation at a cut-in wind speed Vcut_in or higher. Therefore, even if the wind power generator 1 is installed in a place where strong winds do not always blow, it is possible to suppress a decrease in power generation efficiency.
  • the wind power generator 1 when the wind speed (V or V 0 ) obtained from the measurement result of the anemometer 5 is equal to or lower than the first threshold value Vth1, the turning of the nacelle 4 is stopped. When the wind is almost stopped, the wind direction is unstable, and if the nacelle direction is made to follow the wind direction, the nacelle 4 is frequently turned. Therefore, when the wind speed (V or V 0 ) obtained from the measurement result of the anemometer 5 is equal to or lower than the first threshold value Vth1, the nacelle 4 frequently turns by stopping the turning of the nacelle 4. Power consumption. Therefore, even if the wind power generator 1 is installed in a place where strong winds do not always blow, it is possible to suppress a decrease in power generation efficiency.
  • the control means 40 cuts the wind speed (V or V 0 ) obtained from the measurement result of the anemometer 5 to be larger than the first threshold value Vth1 while the turning of the nacelle 4 is stopped.
  • the nacelle turning mechanism 20 is set so as to resume the turning of the nacelle 4 based on the wind direction ( ⁇ or ⁇ 0 ) obtained from the measurement result of the anemometer 7 when the second threshold value Vth2 smaller than the in-wind velocity Vcut_in is reached. It is preferable to control.
  • the nacelle 4 When the wind speed (V or V 0 ) obtained from the measurement result of the anemometer becomes equal to or larger than the second threshold value Vth2 which is larger than the first threshold value Vth1 and smaller than the cut-in wind speed Vcut_in, the nacelle 4 By resuming the turning, when the wind starts to become stronger and exceeds the cut-in wind speed Vcut_in, the nacelle direction is substantially along the wind direction, so that it is possible to quickly shift to normal operation at the cut-in wind speed Vcut_in or higher.
  • the wind power generator 1 of the present embodiment further includes a pitch drive mechanism 30 that opens and closes the rotor blades 8 in the pitch direction, and the control means 40 has a wind speed obtained from the measurement result of the anemometer 5 as a cut-in wind speed Vcut_in.
  • the control means 40 has a wind speed obtained from the measurement result of the anemometer 5 as a cut-in wind speed Vcut_in.
  • the pitch driving mechanism 30 it is preferable to control the pitch driving mechanism 30 so that the normal operation mode in which the pitch angle is allowed to the fully open state is set.
  • the wind turbine generator 1 of the present embodiment uses the anemometer 7 based on the deviation between the azimuth of the nacelle 4 where the power curve of the wind turbine generator 1 is maximum and the wind direction ⁇ 0 measured by the anemometer 7.
  • a wind direction correcting means 44 for correcting the measured wind direction V 0 is further provided, and the control means 40, when the wind speed (V or V 0 ) obtained from the measurement result of the anemometer 5 is larger than the first threshold value Vth1, the wind direction. It is preferable to control the nacelle turning mechanism 20 so that the nacelle 4 follows the wind direction ⁇ corrected by the correcting means 44.
  • the wind direction correcting means 44 is provided, and the nacelle direction is actually corrected by correcting the wind direction V 0 based on the deviation between the nacelle direction where the power curve is maximized and the wind direction V 0 measured by the anemometer 7. It is possible to increase the power generation efficiency by following the wind direction V accurately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

強風が常に吹くとは限らない場所に設置される場合であっても、発電効率の低下を抑制できる風力発電装置および風力発電装置の制御方法を提供する。風力発電装置1は、風速計5および風向計7と、ナセル4を旋回させるナセル旋回機構20と、ナセル旋回機構20を制御する制御装置40を備える。制御装置40は、風速計5の測定結果から得られた風速が、カットイン風速Vcut_inよりも小さい第1閾値Vth1を越える場合に、風向計7の測定結果から得られた風向に基づいてナセル4が旋回する一方で、風速計5の測定結果から得られた風速が第1閾値Vth1以下である場合に、ナセル4の旋回が停止するようにナセル旋回機構20を制御するようになっている。

Description

風力発電装置および風力発電装置の制御方法
 本発明は、風力発電装置および風力発電装置の制御方法に係り、特に、風速計および風向計の測定結果に基づいてナセルを旋回させることができる風力発電装置およびその制御方法に関する。
 近年、地球環境の保全の観点から、再生可能エネルギーの一つである風力を利用した風力発電装置の普及が進んでいる。
 風力発電装置は、一般的に、回転翼が取り付けられたロータヘッドと、回転軸及び発電機を収納するナセルと、ナセルを支持する支柱とで構成されている。また、発電効率を向上させるために、風の状態に合わせて、ナセルを旋回するヨー旋回や、回転翼をピッチ方向に回転させるピッチ制御を行うことが多い。
 このような風力発電装置としては、ナセルに取り付けられた風速計および風向計の測定結果に基づいて、ナセルの方位を制御するものがある。例えば特許文献1には、風向計により測定された風向の変動幅が第一の設定値より小さく、風速計により測定された風速の変動幅が第二の設定値より小さい場合に、風向計により測定された風向にナセルを追従させて効率的に発電を行うことが記載されている。
 ところで、風力発電装置の風向計は一般的に回転翼の下流側のナセルに取り付けられるため、回転翼に当たった後の風向を測定することになり、測定誤差が生じてしまう。そこで、風向計で測定された風向とナセル方位との偏差(風向偏差)に対する発電出力の分布曲線を予め取得しておき、この分布曲線のピークとなる風向偏差を補正量として、風向計の測定結果を補正するようにした風力発電装置が提案されている(例えば、特許文献2参照)。
特開2008-309097号公報 特開平9-317760号公報
 特許文献1及び2には、風速がカットイン風速よりも小さく、風がほぼ止んでいる状態において、ナセルの旋回をどのように行うのかについて記載はないが、一般的な風力発電装置では、風速がカットイン風速よりも小さい場合には、風向計により測定された風向にナセルを追従させることは行っていない。
 しかし、風が強くなり始めたときに、ナセル方位が風向に沿っていなければ、カットイン風速以上における通常運転に速やかに移行することができない。特に、常に強い風が吹くとは限らない地域に設置された風力発電装置では、風が強くなり始めたときに、ナセル方位が風向に沿うようにしなければ効率的に発電を行うことが難しい。
 本発明は、上述の事情に鑑みてなされたものであり、強風が常に吹くとは限らない場所に設置される場合であっても、発電効率の低下を抑制できる風力発電装置および風力発電装置の制御方法を提供することを目的とする。
 本発明に係る風力発電装置は、風速計および風向計と、ナセルを旋回させるナセル旋回機構と、前記風速計の測定結果から得られた風速が、カットイン風速よりも小さい第1閾値を越える場合に、前記風向計の測定結果から得られた風向に基づいて前記ナセルが旋回する一方で、前記風速計の測定結果から得られた風速が前記第1閾値以下である場合に、前記ナセルの旋回が停止するように前記ナセル旋回機構を制御する制御手段とを備えることを特徴とする。
 ここで、「風速計の測定結果から得られた風速」とは、風速計により計測された風速そのものであってもよいし、風速計により計測された風速に何らかの補正を行って求めた真の風速であってもよい。同様に、「風向計の測定結果から得られた風向」とは、風向計により計測された風向そのものであってもよいし、風向計により計測された風向に何らかの補正を行って求めた真の風向であってもよい。
 上記風力発電装置では、風速計の測定結果から得られた風速が、カットイン風速よりも小さい場合であっても、第1閾値より大きければ、風向計の測定結果から得られた風向に基づいてナセルを旋回させるので、風が強くなり始めてカットイン風速を超える際、ナセル方位が概ね風向に沿っており、カットイン風速以上における通常運転に速やかに移行することが可能である。したがって、強風が常に吹くとは限らない場所に設置される場合であっても、発電効率の低下を抑制できる。
 さらに、上記風力発電装置では、風速計の測定結果から得られた風速が第1閾値以下である場合には、ナセルの旋回を停止する。風がほぼ止んでいる状態では、風向が不安定であり、ナセル方位を風向に追従させようとすると、頻繁にナセルを旋回させることになってしまう。そこで、風速計の測定結果から得られた風速が第1閾値以下である場合にナセルの旋回を停止することによって、ナセルが頻繁に旋回してしまい、多大な電力を消費することがない。したがって、強風が常に吹くとは限らない場所に設置される場合であっても、発電効率の低下を抑制できる。
 上記風力発電装置において、前記制御手段は、前記ナセルの旋回が停止されている状態で、前記風速計の測定結果から得られた風速が、前記第1閾値よりも大きく前記カットイン風速よりも小さい第2閾値以上になったときに、前記風向計の測定結果から得られた風向に基づく前記ナセルの旋回を再開するように前記ナセル旋回機構を制御することが好ましい。
 このように、風速計の測定結果から得られた風速が、第1閾値よりも大きくカットイン風速よりも小さい第2閾値以上になったときに、ナセルの旋回を再開することで、風が強くなり始めてカットイン風速を超える際、ナセル方位が概ね風向に沿っているので、カットイン風速以上における通常運転に速やかに移行することが可能である。したがって、強風が常に吹くとは限らない場所に設置される場合であっても、発電効率の低下をより一層抑制できる。
 上記風力発電装置において、回転翼をピッチ方向に開閉するピッチ駆動機構をさらに備え、前記制御手段は、前記風速計の測定結果から得られた風速が前記カットイン風速を下回るときに、前記回転翼のピッチ角に上限が設定された遊転モードとなる一方で、前記風速計の測定結果から得られた風速が前記カットイン風速以上であるときに、前記回転翼のピッチ角が全開状態まで許容される通常運転モードとなるように前記ピッチ駆動機構を制御することが好ましい。
 このように、カットイン風速を下回る場合であっても、回転翼のピッチ角に上限が設定された遊転モードで回転翼のピッチ角を調節しておくことで、風が強くなり始めてカットイン風速を超える際、通常運転モードに速やかに移行することができる。
 上記風力発電装置において、前記風力発電装置のパワーカーブが最大となる前記ナセルの方位と、前記風向計により測定された風向との偏差に基づいて、前記風向計により測定された風向を補正する風向補正手段をさらに備え、前記制御手段は、前記風速計の測定結果から得られた風速が前記第1閾値よりも大きい場合、前記風向補正手段によって補正された前記風向に前記ナセルが追従するように前記ナセル旋回機構を制御することが好ましい。
 風力発電装置の風向計は、回転翼の後方に位置するナセルに取り付けられるのが一般的である。この場合、風向計の検出対象は、回転翼に当たった後の風であるため、風向計の測定結果は実際の風向からずれてしまうことがある。そこで、上述のように、風向補正手段を設け、パワーカーブが最大となるナセル方位と、風向計により測定された風向との偏差に基づいて風向を補正することで、ナセル方位を風向により正確に沿わせ、発電効率を高めることができる。
 本発明に係る風力発電装置の制御方法は、風速計および風向計と、ナセルを旋回させるナセル旋回機構とを有する風力発電装置の制御方法であって、前記風速計の測定結果から得られた風速が、カットイン風速よりも小さい第1閾値を越える場合、前記風向計の測定結果から得られた風向に基づいて前記ナセルを前記ナセル旋回機構で旋回させる工程と、前記風速計の測定結果から得られた風速が前記第1閾値以下である場合、前記ナセル旋回機構による前記ナセルの旋回を停止する工程とを備えることを特徴とする。
 この風力発電装置の制御方法では、風速計の測定結果から得られた風速が、カットイン風速よりも小さい場合であっても、第1閾値より大きければ、風向計の測定結果から得られた風向に基づいてナセルを旋回させるので、風が強くなり始めてカットイン風速を超える際、ナセル方位が概ね風向に沿っており、カットイン風速以上における通常運転に速やかに移行することが可能である。したがって、強風が常に吹くとは限らない場所に風力発電装置が設置される場合であっても、発電効率の低下を抑制できる。
 さらに、上記風力発電装置の制御方法では、風速計の測定結果から得られた風速が第1閾値以下である場合には、ナセルの旋回を停止する。このため、ナセルが頻繁に旋回してしまい、多大な電力を消費することがないので、強風が常に吹くとは限らない場所に風力発電装置が設置される場合であっても、発電効率の低下を抑制できる。
 上記風力発電装置の制御方法において、前記ナセルの旋回を停止する工程の後で、前記風速計の測定結果から得られた風速が、前記第1閾値よりも大きく前記カットイン風速よりも小さい第2閾値以上になったときに、前記風向計の測定結果から得られた風向に基づく前記ナセルの旋回を再開する工程をさらに備えることが好ましい。
 このように、風速計の測定結果から得られた風速が、第1閾値よりも大きくカットイン風速よりも小さい第2閾値以上になったときに、ナセルの旋回を再開することで、風が強くなり始めてカットイン風速を超える際、ナセル方位が概ね風向に沿っているので、カットイン風速以上における通常運転に速やかに移行することが可能である。
 上記風力発電装置の制御方法において、前記風力発電装置が、回転翼をピッチ方向に開閉するピッチ駆動機構をさらに有し、前記風速計の測定結果から得られた風速が前記カットイン風速を下回るときに、前記回転翼のピッチ角に上限が設定された遊転モードで、前記ピッチ駆動機構により前記回転翼のピッチ角を調節する工程と、前記風速計の測定結果から得られた風速が前記カットイン風速以上であるときに、前記回転翼のピッチ角が全開状態まで許容される通常運転モードで、前記ピッチ駆動機構により前記回転翼のピッチ角を調節する工程とをさらに備えることが好ましい。
 このように、カットイン風速を下回る場合であっても、回転翼のピッチ角に上限が設定された遊転モードで回転翼のピッチ角を調節しておくことで、風が強くなり始めてカットイン風速を超える際、通常運転モードに速やかに移行することができる。
 上記風力発電装置の制御方法において、前記風力発電装置のパワーカーブが最大となる前記ナセルの方位と、前記風向計により測定された風向との偏差に基づいて、前記風向計により測定された風向を補正する工程をさらに備え、前記ナセルを旋回させる工程では、前記風向を補正する工程で補正された前記風向に追従するように前記ナセルを旋回させることが好ましい。
 このように、風向補正手段を設け、パワーカーブが最大となるナセル方位と、風向計により測定された風向との偏差に基づいて風向を補正することで、ナセル方位を風向により正確に沿わせ、発電効率を高めることができる。
 本発明では、風速計の測定結果から得られた風速が、カットイン風速よりも小さい場合であっても、第1閾値より大きければ、風向計の測定結果から得られた風向に基づいてナセルを旋回させるので、風が強くなり始めてカットイン風速を超える際、ナセル方位が概ね風向に沿っており、カットイン風速以上における通常運転に速やかに移行することが可能である。さらに、本発明では、風速計の測定結果から得られた風速が第1閾値以下である場合には、ナセルの旋回を停止するので、ナセルが頻繁に旋回してしまい、多大な電力を消費することがない。
 したがって、強風が常に吹くとは限らない場所に風力発電装置が設置される場合であっても、発電効率の低下を抑制できる。
風力発電装置の全体構成例を示す図である。 図1に示す風力発電装置の各部の詳細構造の一例を示す横面図である。 ナセル旋回機構の構成例を示す断面図である。 図1に示す風力発電装置の各部の動作の一例を示すフローチャートである。
 以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 図1は、本実施形態に係る風力発電装置の全体構成例を示す図である。同図に示すように、風力発電装置1は、主として、基礎B上に立設された支柱2と、支柱2の上端に設置されたナセル4と、ナセル4に取り付けられたロータヘッド6と、ロータヘッド6に取り付けられた複数枚の回転翼8とで構成されている。
 支柱2は、図1に示すように、基礎Bから上方(図1の上方)に延びる柱状であり、例えば、一本の柱状部材で構成してもよいし、複数のユニットを上下方向に連結して柱状に構成してもよい。支柱2が複数のユニットから構成されている場合には、最上部に設けられたユニットの上にナセル4が設置される。
 ナセル4は、ロータヘッド6を支持するとともに、その内部に増速機14を含むドライブトレイン10や発電機18を収納している。また、ナセル4には、周囲の風速を計測する風速計5と、周囲の風向を計測する風向計7とが取り付けられている。なお、風速計5と風向計7とで計測した風速および風向は、それぞれ、後述する風速補正部42および風向補正部44において補正されるようになっていることが好ましい。
 また、ナセル4内には、風力発電装置1の各部を制御する制御装置40が設けられている。制御装置40は、風速補正部42および風向補正部44から出力された補正後の風速値および風向値を受け取って、ナセル旋回機構20やピッチ制御機構30に指令を送る。制御装置40の制御下における風力発電装置1の各部の動作については、後で詳述する。なお、図1には、制御装置40がナセル4内に設けられている例を示したが、制御装置40の位置は特に限定されず、例えば支柱2の下部に設けてもよい。
 ここで、風力発電装置1の各部の詳細構造を説明する。図2は風力発電装置1の各部の詳細構造の一例を示す図である。
 図2に示すように、ドライブトレイン10は、ロータヘッド6のロータハブ6Aに連結された主軸12と、主軸12に連結された増速機14と、増速機14を発電機18に連結するカップリング16とを有する。風力発電装置1では、回転翼8が風を受けると、ロータハブ6Aとともに主軸12が回転し、主軸12の回転が増速機14によって増速された後、カップリング16を介して発電機18に入力されるようになっている。
 またナセル4の下部には、ナセル4をヨー方向に旋回させるナセル旋回機構20が設けられている。
 図3は、ナセル旋回機構20の構成例を示す断面図である。ナセル旋回機構20は、図3に示すように、ヨーモータ22と、ヨーモータ22の駆動により回転するピニオン24と、ピニオン24と噛み合う内歯車26と、ブレーキディスク28A及びブレーキシュー28Bを有するヨーブレーキ機構28とで構成してもよい。このナセル旋回機構20では、ヨーモータ22、ピニオン24およびブレーキシュー28Bがナセル4側に固定されている一方で、内歯車26およびブレーキディスク28Aは支柱2側に固定されている。
 これにより、ヨーモータ22を駆動すると、ピニオン24が回転し、ナセル4がヨー旋回する。また、ヨーブレーキ機構28のブレーキシュー28Bがブレーキディスク28Aを挟み込むと、ナセル4のヨー旋回が制動される。なお、ヨーモータ22およびヨーブレーキ機構28は、制御装置40によって制御されている。
 図2に示すように、ロータヘッド6は、略水平な軸線周りに回転可能にナセル4に固定されるとともに、回転翼8が取り付けられたロータハブ6Aと、このロータハブ6Aを覆う頭部カプセル6Bとを含んで構成される。
 またロータハブ6Aには、図2に示すように、回転翼8をその軸線周り(図2の矢印方向)に回転させて回転翼8のピッチ角を変更するピッチ駆動装置30が設けられている。
 ピッチ駆動装置30は、図2に示すように、シリンダ32と、回転翼8に連結された軸部34とで構成される。なお回転翼8は、軸受36によりピッチ方向に回転可能に支持されている。このため回転翼8は、ピッチ駆動装置30のシリンダ32によって軸部34が回転すると、軸部34とともにピッチ方向に回転するようになっている。なお、各回転翼8ごとに設けられるピッチ駆動装置30は、不図示のリンク機構で互いに連結されており、各回転翼8のピッチ角制御を連動して行うようになっていてもよい。
 次に、制御装置40の制御下における風力発電装置1の各部の動作について説明する。図4は、風力発電装置1の各部の動作の一例を示すフローチャートである。
 図4に示すように、風力発電装置1では、周囲の風速Vおよび風向θが、風速計5と風向計7とによって計測される(ステップS2)。
 ここで、風力発電装置1の風速計5および風向計7は、図1及び2に示すように、回転翼8の後方に位置するナセル4に取り付けられるのが一般的である。この場合、風速計5および風向計7の検出対象は、回転翼8に当たった後の風であるため、風速計5および風向計7の検出結果は実際の風速および風向からずれてしまうことがある。
 そこで、風速計5と風向計7とで計測した風速Vおよび風向θを、風速補正部42および風向補正部44により補正し、実際の風速Vと実際の風向θを算出することが好ましい(ステップS4)。例えば、風速計5により計測される風速Vと実際の風速(生風速)との相関関係を予め取得しておき、この相関関係に基づいて、風速補正部42で風速Vを補正するようにしてもよい。同様に、風向計7により計測される風向θと実際の風向(生風向)との相関関係を予め取得しておき、この相関関係に基づいて、風向補正部44で風向θを補正するようにしてもよい。
 ここで、風向補正部44で風向θを補正する際に用いる相関関係は、例えば、風力発電装置1のパワーカーブが最大となるナセル4の方位と、そのときに風向計7により測定された風向θとの偏差として取得してもよい。なお、パワーカーブとは、所定のピッチ角における風速と出力との関係であり、ナセル4の方位が実際の風向と一致している場合に最大となり、ナセル4の方位と実際の風向とがずれている場合よりも大きな値になる性質を有する。言い換えると、風力発電装置1のパワーカーブが最大となるナセル4の方位は、実際の風向(生風向)と一致している。つまり、上述の偏差は、風向計7により計測される風向θと実際の風向(生風向)との相関関係を表している。
 上述のように得られた風速Vおよび風向θは制御装置40に送られ、制御装置40によって、風速Vがカットイン風速Vcut_in以上であるかが判定される(ステップS6)。
 風速Vがカットイン風速Vcut_in以上である場合(ステップS6のYES判定)、風力発電装置1は通常運転モードに移行する(ステップS8)。具体的には、制御装置40の制御下で、ナセル旋回機構20によって風向θに追従するようにナセル4を旋回させながら、ピッチ駆動機構30によって回転翼8を開いて(ピッチ角を大きくして)、発電を行う。なお、通常運転モードでは、回転翼8のピッチ角が全開状態まで許容されており、回転翼8のピッチ角に上限は設定されていない。
 一方、風速Vがカットイン風速Vcut_inよりも小さい場合(ステップS6のNO判定)、風力発電装置1は遊転モードに移行する(ステップS10)。遊転モードでは、回転翼8のピッチ角に上限が設定されており、制御装置40の制御下で、ピッチ駆動機構30が上限を超えない範囲で回転翼8のピッチ角を調節する。
 そして、ステップS12において、制御装置40の制御下で、ナセル旋回機構20によって風向θに追従するようにナセル4を旋回させる(すなわち、ヨー・トラッキングを行う)。
 次に、ステップS14において、制御装置40によって、風速Vが第1閾値Vth1以下であるかが判定される。ここで、第1閾値Vth1は、カットイン風速Vcut_inよりも小さい値であり、言い換えると0<Vth1<Vcut_inの関係式を満たす。
 そして、風速Vが第1閾値Vth1以下である場合(ステップS14のYES判定)、ステップS16に進み、制御装置40の制御下で、ナセル旋回機構20によるナセル4の旋回が停止される(すなわち、ヨー・トラッキングを停止する)。一方、風速Vが第1閾値Vth1よりも大きい場合(ステップS14のNO判定)、ステップS6に戻って、風速Vがカットイン風速Vcut_in以上であるかが再び判定されるようになっている。
 ステップS16でナセル4の旋回が停止された後、風速Vが第2閾値Vth2以上であるかが判定される(ステップS18)。ここで、第2閾値Vth2は、カットイン風速Vcut_inよりも小さく、第1閾値Vth1よりも大きい値であり、言い換えるとVth1<Vth2<Vcut_inの関係式を満たす。
 そして、風速VがVth2以上である場合(ステップS18のYES判定)、ステップS12に戻って、風向θにナセル4を追従させるヨー・トラッキングが再開される。一方、風速VがVth2を下回る場合(ステップS18のNO判定)、ステップS16に戻って、ナセル4の旋回を停止したままの状態を維持する。
 なお、図4には、ステップS4において風速および風向を風速補正部42と風向補正部44とで補正する例について説明したが、ステップS4を省略し、風速計5と風向計7とにより計測された風速Vおよび風向θをそのまま用いてその後の処理を行ってもよい。この場合、ステップS6、ステップS14及びステップS18では、風速計5により測定された風速Vとカットイン風速Vcut_in、第1閾値Vth1または第2閾値Vth2との大小関係を判定すればよく、ステップS8及びステップS12では、風向計7により測定された風向θにナセル4を追従させるようヨー・トラッキングを行えばよい。
 以上説明したように、本実施形態では、風速計5および風向計7と、ナセル4を旋回させるナセル旋回機構20と、風速計の測定結果Vから得られた風速(V又はV)が、カットイン風速Vcut_inよりも小さい第1閾値Vth1を越える場合に、風向計7の測定結果θから得られた風向(θ又はθ)に基づいてナセル4が旋回する一方で、風速計の測定結果Vから得られた風速(V又はV)が第1閾値Vth1以下である場合に、ナセル4の旋回が停止するようにナセル旋回機構20を制御する制御手段40とを備えている。
 本実施形態の風力発電装置1では、風速計5の測定結果から得られた風速(V又はV)が、カットイン風速Vcut_inよりも小さい場合であっても、第1閾値Vth1より大きければ、風向計7の測定結果から得られた風向(θ又はθ)に基づいてナセル4を旋回させるので、風が強くなり始めてカットイン風速Vcut_inを超える際、ナセル方位が概ね風向に沿っており、カットイン風速Vcut_in以上における通常運転に速やかに移行することが可能である。したがって、風力発電装置1は、強風が常に吹くとは限らない場所に設置される場合であっても、発電効率の低下を抑制できる。
 さらに、風力発電装置1では、風速計5の測定結果から得られた風速(V又はV)が第1閾値Vth1以下である場合には、ナセル4の旋回を停止する。風がほぼ止んでいる状態では、風向が不安定であり、ナセル方位を風向に追従させようとすると、頻繁にナセル4を旋回させることになってしまう。そこで、風速計5の測定結果から得られた風速(V又はV)が第1閾値Vth1以下である場合にナセル4の旋回を停止することによって、ナセル4が頻繁に旋回してしまい、多大な電力を消費することがない。したがって、風力発電装置1は、強風が常に吹くとは限らない場所に設置される場合であっても、発電効率の低下を抑制できる。
 また本実施形態において、制御手段40は、ナセル4の旋回が停止されている状態で、風速計5の測定結果から得られた風速(V又はV)が、第1閾値Vth1よりも大きくカットイン風速Vcut_inよりも小さい第2閾値Vth2以上になったときに、風向計7の測定結果から得られた風向(θ又はθ)に基づくナセル4の旋回を再開するようにナセル旋回機構20を制御することが好ましい。
 このように、風速計の測定結果から得られた風速(V又はV)が、第1閾値Vth1よりも大きくカットイン風速Vcut_inよりも小さい第2閾値Vth2以上になったときに、ナセル4の旋回を再開することで、風が強くなり始めてカットイン風速Vcut_inを超える際、ナセル方位が概ね風向に沿っているので、カットイン風速Vcut_in以上における通常運転に速やかに移行することが可能である。
 また、本実施形態の風力発電装置1は、回転翼8をピッチ方向に開閉するピッチ駆動機構30をさらに備え、制御手段40は、風速計5の測定結果から得られた風速がカットイン風速Vcut_inを下回るときに、回転翼8のピッチ角に上限が設定された遊転モードとなる一方で、風速計5の測定結果から得られた風速がカットインVcut_in風速以上であるときに、回転翼8のピッチ角が全開状態まで許容される通常運転モードとなるようにピッチ駆動機構30を制御することが好ましい。
 このように、カットイン風速Vcut_inを下回る場合であっても、回転翼8のピッチ角に上限が設定された遊転モードで回転翼8のピッチ角を調節しておくことで、風が強くなり始めてカットイン風速Vcut_inを超える際、通常運転モードに速やかに移行することができる。
 さらに、本実施形態の風力発電装置1は、風力発電装置1のパワーカーブが最大となるナセル4の方位と、風向計7により測定された風向θとの偏差に基づいて、風向計7により測定された風向Vを補正する風向補正手段44をさらに備え、制御手段40は、風速計5の測定結果から得られた風速(V又はV)が第1閾値Vth1よりも大きい場合、風向補正手段44によって補正された風向θにナセル4が追従するようにナセル旋回機構20を制御することが好ましい。
 このように、風向補正手段44を設け、パワーカーブが最大となるナセル方位と、風向計7により測定された風向Vとの偏差に基づいて風向Vを補正することで、ナセル方位を実際の風向Vにより正確に沿わせ、発電効率を高めることができる。
 以上、本発明の一例について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。

Claims (8)

  1.  風速計および風向計と、
     ナセルを旋回させるナセル旋回機構と、
     前記風速計の測定結果から得られた風速が、カットイン風速よりも小さい第1閾値を越える場合に、前記風向計の測定結果から得られた風向に基づいて前記ナセルが旋回する一方で、前記風速計の測定結果から得られた風速が前記第1閾値以下である場合に、前記ナセルの旋回が停止するように前記ナセル旋回機構を制御する制御手段とを備えることを特徴とする風力発電装置。
  2.  前記制御手段は、前記ナセルの旋回が停止されている状態で、前記風速計の測定結果から得られた風速が、前記第1閾値よりも大きく前記カットイン風速よりも小さい第2閾値以上になったときに、前記風向計の測定結果から得られた風向に基づく前記ナセルの旋回を再開するように前記ナセル旋回機構を制御することを特徴とする請求項1に記載の風力発電装置。
  3.  回転翼をピッチ方向に開閉するピッチ駆動機構をさらに備え、
     前記制御手段は、前記風速計の測定結果から得られた風速が前記カットイン風速を下回るときに、前記回転翼のピッチ角に上限が設定された遊転モードとなる一方で、前記風速計の測定結果から得られた風速が前記カットイン風速以上であるときに、前記回転翼のピッチ角が全開状態まで許容される通常運転モードとなるように前記ピッチ駆動機構を制御することを特徴とする請求項1又は2に記載の風力発電装置。
  4.  前記風力発電装置のパワーカーブが最大となる前記ナセルの方位と、前記風向計により測定された風向との偏差に基づいて、前記風向計により測定された風向を補正する風向補正手段をさらに備え、
     前記制御手段は、前記風速計の測定結果から得られた風速が前記第1閾値よりも大きい場合、前記風向補正手段によって補正された前記風向に前記ナセルが追従するように前記ナセル旋回機構を制御することを特徴とする請求項3に記載の風力発電装置。
  5.  風速計および風向計と、ナセルを旋回させるナセル旋回機構とを有する風力発電装置の制御方法であって、
     前記風速計の測定結果から得られた風速が、カットイン風速よりも小さい第1閾値を越える場合、前記風向計の測定結果から得られた風向に基づいて前記ナセルを前記ナセル旋回機構で旋回させる工程と、
     前記風速計の測定結果から得られた風速が前記第1閾値以下である場合、前記ナセル旋回機構による前記ナセルの旋回を停止する工程とを備えることを特徴とする風力発電装置の制御方法。
  6.  前記ナセルの旋回を停止する工程の後で、前記風速計の測定結果から得られた風速が、前記第1閾値よりも大きく前記カットイン風速よりも小さい第2閾値以上になったときに、前記風向計の測定結果から得られた風向に基づく前記ナセルの旋回を再開する工程をさらに備えることを特徴とする請求項5に記載の風力発電装置の制御方法。
  7.  前記風力発電装置が、回転翼をピッチ方向に開閉するピッチ駆動機構をさらに有し、
     前記風速計の測定結果から得られた風速が前記カットイン風速を下回るときに、前記回転翼のピッチ角に上限が設定された遊転モードで、前記ピッチ駆動機構により前記回転翼のピッチ角を調節する工程と、
     前記風速計の測定結果から得られた風速が前記カットイン風速以上であるときに、前記回転翼のピッチ角が全開状態まで許容される通常運転モードで、前記ピッチ駆動機構により前記回転翼のピッチ角を調節する工程とをさらに備えることを特徴とする請求項5又は6に記載の風力発電装置の制御方法。
  8.  前記風力発電装置のパワーカーブが最大となる前記ナセルの方位と、前記風向計により測定された風向との偏差に基づいて、前記風向計により測定された風向を補正する工程をさらに備え、
     前記ナセルを旋回させる工程では、前記風向を補正する工程で補正された前記風向に追従するように前記ナセルを旋回させることを特徴とする請求項7に記載の風力発電装置の制御方法。
PCT/JP2010/051978 2010-02-10 2010-02-10 風力発電装置および風力発電装置の制御方法 WO2011099128A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2010/051978 WO2011099128A1 (ja) 2010-02-10 2010-02-10 風力発電装置および風力発電装置の制御方法
AU2010201621A AU2010201621B1 (en) 2010-02-10 2010-02-10 Wind turbine generator and method of controling the same
BRPI1000013A BRPI1000013A2 (pt) 2010-02-10 2010-02-10 gerador de turbina eólica, e, método para controlar um gerador de turbina eólica
JP2010506744A JP5031092B2 (ja) 2010-02-10 2010-02-10 風力発電装置および風力発電装置の制御方法
CN201080000718.0A CN102741546B (zh) 2010-02-10 2010-02-10 风力涡轮发电机及其控制方法
CA2694111A CA2694111C (en) 2010-02-10 2010-02-10 Wind turbine generator and method of controlling the same
US12/675,271 US8157521B2 (en) 2010-02-10 2010-02-10 Wind turbine generator and method of controlling the same
KR1020107008804A KR101110908B1 (ko) 2010-02-10 2010-02-10 풍력 발전 장치 및 풍력 발전 장치의 제어 방법
EP10703608.9A EP2375061B1 (en) 2010-02-10 2010-02-10 Wind-powered electricity generator and method for controlling wind-powered electricity generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051978 WO2011099128A1 (ja) 2010-02-10 2010-02-10 風力発電装置および風力発電装置の制御方法

Publications (1)

Publication Number Publication Date
WO2011099128A1 true WO2011099128A1 (ja) 2011-08-18

Family

ID=44366927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051978 WO2011099128A1 (ja) 2010-02-10 2010-02-10 風力発電装置および風力発電装置の制御方法

Country Status (9)

Country Link
US (1) US8157521B2 (ja)
EP (1) EP2375061B1 (ja)
JP (1) JP5031092B2 (ja)
KR (1) KR101110908B1 (ja)
CN (1) CN102741546B (ja)
AU (1) AU2010201621B1 (ja)
BR (1) BRPI1000013A2 (ja)
CA (1) CA2694111C (ja)
WO (1) WO2011099128A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015506444A (ja) * 2012-02-08 2015-03-02 ロモ ウインド アーゲー 風力タービンのヨーを調節するための装置
JP2018510287A (ja) * 2015-03-02 2018-04-12 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh 風力発電装置の運転方法
GB2598376A (en) * 2020-08-28 2022-03-02 Vortex Wind Tech Limited Alignment of wind turbine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7892798B2 (en) 1999-06-25 2011-02-22 Evonik Degussa Gmbh Nucleic acid molecules encoding metabolic regulatory proteins from Corynebacterium glutamicum, useful for increasing the production of methionone by a microorganism
CN103994033B (zh) * 2009-06-30 2017-06-23 维斯塔斯风力系统集团公司 具有改进的偏航控制的风轮机
KR101304916B1 (ko) * 2012-02-16 2013-09-05 삼성중공업 주식회사 풍력 발전기의 블레이드의 피치 제어 방법
JP6058029B2 (ja) * 2012-12-26 2017-01-11 エムエイチアイ ヴェスタス オフショア ウィンド エー/エス 制御装置及び方法並びにプログラム、それを備えた浮体式風力発電装置
KR101379268B1 (ko) * 2013-01-11 2014-03-28 삼성중공업 주식회사 풍속 보상 운전이 가능한 풍력 발전 시스템
EP2754886B1 (en) * 2013-01-14 2016-01-06 ALSTOM Renewable Technologies Method of operating a wind turbine rotational system and wind turbine rotational system
KR20170046928A (ko) 2015-10-22 2017-05-04 지유 주식회사 소형 풍력발전기의 블레이드 폴딩 조절장치
EP3394435B1 (en) 2015-12-23 2022-05-04 Vestas Wind Systems A/S Control method for a wind turbine
ES2871094T3 (es) * 2016-03-31 2021-10-28 Vestas Wind Sys As Método de control para una turbina eólica

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894880U (ja) * 1981-12-19 1983-06-27 三菱重工業株式会社 風車の方向制御装置
JPS5993972A (ja) * 1982-11-19 1984-05-30 Sumitomo Precision Prod Co Ltd 風車制御装置
JP2005320891A (ja) * 2004-05-07 2005-11-17 Nabtesco Corp 風力発電装置
JP2006057469A (ja) * 2004-08-17 2006-03-02 Ntt Power & Building Facilities Inc 風力発電システム及びその制御方法
JP2008291786A (ja) * 2007-05-25 2008-12-04 Mitsubishi Heavy Ind Ltd 風力発電装置、風力発電システムおよび風力発電装置の発電制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09317760A (ja) 1996-05-30 1997-12-09 Ntn Corp 自動調心ころ軸受
ES2443171T3 (es) * 2001-12-28 2014-02-18 Mitsubishi Heavy Industries, Ltd. Aerogenerador de tipo contra el viento y método de funcionamiento del mismo
EP2450568B1 (en) * 2005-05-31 2018-04-18 Hitachi, Ltd. Horizontal axis wind turbine
CN100581023C (zh) * 2005-12-30 2010-01-13 中国科学院电工研究所 一种风电机组控制系统
JP4939286B2 (ja) * 2007-04-10 2012-05-23 三菱重工業株式会社 風力発電装置及びその制御方法
JP4994947B2 (ja) * 2007-05-21 2012-08-08 三菱重工業株式会社 風力発電装置および風力発電装置のヨー旋回駆動方法
JP4914294B2 (ja) * 2007-06-05 2012-04-11 富士重工業株式会社 水平軸風車
JP2008309097A (ja) * 2007-06-15 2008-12-25 Ebara Corp 風力発電設備及び風力発電用風車制御方法
US7823437B2 (en) * 2007-06-18 2010-11-02 General Electric Company Anemometer calibration method and wind turbine
KR100883099B1 (ko) * 2007-06-26 2009-02-11 주식회사 케이.알 수직축 풍력발전시스템의 제어장치 및 방법
US8183707B2 (en) * 2007-10-30 2012-05-22 General Electric Company Method of controlling a wind energy system and wind speed sensor free wind energy system
CN101688522B (zh) * 2008-06-11 2011-12-07 三菱重工业株式会社 风力发电装置
EP2267301B1 (en) * 2009-06-24 2012-10-03 Siemens Aktiengesellschaft Arrangement and method to control the yawing of a wind turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894880U (ja) * 1981-12-19 1983-06-27 三菱重工業株式会社 風車の方向制御装置
JPS5993972A (ja) * 1982-11-19 1984-05-30 Sumitomo Precision Prod Co Ltd 風車制御装置
JP2005320891A (ja) * 2004-05-07 2005-11-17 Nabtesco Corp 風力発電装置
JP2006057469A (ja) * 2004-08-17 2006-03-02 Ntt Power & Building Facilities Inc 風力発電システム及びその制御方法
JP2008291786A (ja) * 2007-05-25 2008-12-04 Mitsubishi Heavy Ind Ltd 風力発電装置、風力発電システムおよび風力発電装置の発電制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2375061A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015506444A (ja) * 2012-02-08 2015-03-02 ロモ ウインド アーゲー 風力タービンのヨーを調節するための装置
JP2018510287A (ja) * 2015-03-02 2018-04-12 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh 風力発電装置の運転方法
GB2598376A (en) * 2020-08-28 2022-03-02 Vortex Wind Tech Limited Alignment of wind turbine

Also Published As

Publication number Publication date
CA2694111C (en) 2013-04-09
KR20110116088A (ko) 2011-10-25
US8157521B2 (en) 2012-04-17
CN102741546B (zh) 2015-03-04
JP5031092B2 (ja) 2012-09-19
BRPI1000013A2 (pt) 2018-02-14
KR101110908B1 (ko) 2012-03-13
CN102741546A (zh) 2012-10-17
CA2694111A1 (en) 2011-08-10
EP2375061B1 (en) 2016-07-06
EP2375061A4 (en) 2014-04-23
US20110215576A1 (en) 2011-09-08
EP2375061A1 (en) 2011-10-12
AU2010201621B1 (en) 2011-08-25
JPWO2011099128A1 (ja) 2013-06-13

Similar Documents

Publication Publication Date Title
JP5031092B2 (ja) 風力発電装置および風力発電装置の制御方法
US8215906B2 (en) Variable tip speed ratio tracking control for wind turbines
US8303249B2 (en) Wind turbine and method for optimizing energy production therein
US7772713B2 (en) Method and system for controlling a wind turbine
US8240990B2 (en) Apparatus and method for reducing asymmetric rotor loads in wind turbines during shutdown
US8317471B2 (en) Method for preventing rotor overspeed of a wind turbine
WO2011092810A1 (ja) 風力発電装置及び風力発電装置のヨー旋回制御方法
JP5619278B2 (ja) 風力発電システム及び風力発電システムを用いた装置及びそれらの運転方法
US9133824B2 (en) Wind turbine and an associated yaw control method
WO2015074664A1 (en) Rotor blade control for high winds
WO2010130057A3 (en) System and method for controlling a wind turbine
JP2014513768A (ja) ヨーイングによって動力出力を制御する2枚羽根付き揺動ヒンジ風力タービンにおいて動力出力を制御するために必要とされるヨートルクを最小にするためのシステム
CN110892153A (zh) 具有同轴的变桨马达的立式风力发电设备以及其安装套件和其运行方法
JP2008057350A (ja) 風力発電装置
JP5550501B2 (ja) 水平軸風車
KR20130107959A (ko) 풍력 발전기용 발전기의 제어 방법
CN110892152A (zh) 具有经调节的叶尖速比特性的立式风力发电设备以及其安装套件和其运行方法
EP2686547B1 (en) Downwind turbine with free yaw system
TWI730337B (zh) 風力發電裝置的控制方法
WO2010048958A3 (en) A wind turbine generator with a back skewed rotor
KR101550028B1 (ko) 이중 피치 제어 시스템을 구비한 풍력 발전기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080000718.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010506744

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2694111

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2010703608

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010703608

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107008804

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12675271

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10703608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI1000013

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100422