WO2011098044A1 - Pdcch信令发送和接收方法、基站、ue及系统 - Google Patents

Pdcch信令发送和接收方法、基站、ue及系统 Download PDF

Info

Publication number
WO2011098044A1
WO2011098044A1 PCT/CN2011/070937 CN2011070937W WO2011098044A1 WO 2011098044 A1 WO2011098044 A1 WO 2011098044A1 CN 2011070937 W CN2011070937 W CN 2011070937W WO 2011098044 A1 WO2011098044 A1 WO 2011098044A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
pdcch signaling
cif
signaling
length
Prior art date
Application number
PCT/CN2011/070937
Other languages
English (en)
French (fr)
Inventor
曲秉玉
官磊
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010101421601A external-priority patent/CN102158979A/zh
Priority claimed from CN201010165438.7A external-priority patent/CN102231915B/zh
Priority to MX2012009276A priority Critical patent/MX2012009276A/es
Priority to ES11741915.0T priority patent/ES2450540T3/es
Priority to KR1020127022122A priority patent/KR101446639B1/ko
Priority to BR112012020255-3A priority patent/BR112012020255B1/pt
Priority to EP13183265.1A priority patent/EP2672653B1/en
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2012552251A priority patent/JP5469751B2/ja
Priority to EP11741915.0A priority patent/EP2536204B1/en
Priority to EP19162445.1A priority patent/EP3534563A1/en
Publication of WO2011098044A1 publication Critical patent/WO2011098044A1/zh
Priority to US13/336,209 priority patent/US8340069B2/en
Priority to US13/685,092 priority patent/US8879533B2/en
Priority to US14/517,531 priority patent/US9137794B2/en
Priority to US14/851,449 priority patent/US9510341B2/en
Priority to US16/200,667 priority patent/USRE49396E1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • PDCCH signaling transmission and reception method base station, UE and system
  • the application is filed on February 11, 2010, and the application number is 20101 0111643. 5 , and submitted on March 29, 2010, the application number is 201010142160. 1 , and submitted on April 30, 2010, the application number is 201010165438. 7 , the invention name is "PDCCH signaling transmission and reception method, base station, UE and system" priority of the Chinese application, the entire contents of which are incorporated by reference. Combined in this application. Technical field
  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a physical downlink control channel (PDCCH) signaling signaling and receiving method, a base station, a user equipment (UE), and a system.
  • a physical downlink control channel (PDCCH) signaling signaling and receiving method
  • UE user equipment
  • CA Carrier Aggregation
  • a Physical Downlink Control Channel (PDCCH) signaling can only schedule resources of one carrier.
  • PDCCH Physical Downlink Control Channel
  • SCS Same-CC Scheduling
  • CCS Cross-CC Scheduling
  • CIF carrier indicator field
  • Signaling is used to schedule which resources are on the carrier.
  • the CIF may not be added to the multi-user common PDCCH signaling, so that the UE in the LTE-A system and the UE in the LTE system coexist.
  • the base station notifies the UE by transmitting a semi-static Radio Resource Control (RRC) signaling, which resource scheduling mode is currently used. That is, the UE is notified whether the current CCS mode or the SCS mode is used.
  • RRC Radio Resource Control
  • the PDCCH signaling does not include the CIF.
  • the PDCCH signaling includes a CIF.
  • the RRC connection reconfiguration complete signaling (RRC Connection Reconfiguration Complete) that is fed back by the UE is required to determine that the UE has correctly received the semi-static RRC signaling, and the base station sends the half.
  • the base station has a problem of scheduling ambiguity.
  • the embodiments of the present invention provide a PDCCH signaling sending method, a base station, a UE, and a system, which are used to solve the problem of scheduling scheduling blurring in the prior art.
  • the embodiments of the present invention provide a PDCCH signaling receiving method, a base station, a UE, and a system, which are used to solve the problem that the UE parses the PDCCH signaling error in the prior art.
  • the embodiment of the invention provides a PDCCH signaling sending method, including:
  • the length of the PDCCH signaling that does not include the carrier indication word field CIF in the first search space is equal to the length of the PDCCH signaling including the CIF in the second search space, and If the first search space and the second search space have physical overlap regions, only the PDCCH signaling that does not include the CIF is sent to the UE in the physical overlap region.
  • the embodiment of the invention further provides a PDCCH signaling sending method, including:
  • the mobile station after receiving the radio resource control RRC connection reconfiguration complete signaling sent by the UE, the mobile station only transmits the PDCCH signaling including CIF.
  • the embodiment of the invention further provides a PDCCH signaling sending method, including:
  • the first PDCCH signaling in the first search space is equal to the length of the second PDCCH signaling in the second search space, the first PDCCH signaling is not including the carrier indication word field CIF.
  • PDCCH signaling, the second PDCCH signaling is PDCCH signaling including a CIF, and the first search space and the second search space have physical overlapping regions, and in the physical overlapping region, in the Transmitting, by the UE, the RRC signaling to the RRC connection reconfiguration complete signaling that is sent by the UE, sending the third PDCCH signaling or the fourth PDCCH signaling to the UE, where the third The PDCCH signaling is PDCCH signaling that does not include a CIF, the fourth PDCCH signaling is PDCCH signaling including a CIF, and signaling length of the third PDCCH signaling and signaling of the fourth PDCCH signaling The length of the third PDCCH signaling is different from the length of the first PDCCH signaling, and the length of the fourth PDCCH
  • An embodiment of the present invention further provides a PDCCH signaling receiving method, including:
  • the length of the PDCCH signaling that does not include the carrier indication word field CIF in the first search space of the user equipment UE, and the length of the PDCCH signaling including the CIF in the second search space of the UE If the first search space and the second search space have physical overlap regions, the PDCCH signaling that does not include the CIF is received in the physical overlap region, and is not included according to the set pair.
  • the parsing rule of the PDCCH signaling of the CIF parses the PDCCH signaling that does not include the CIF.
  • An embodiment of the present invention further provides a PDCCH signaling receiving method, including:
  • the length of the PDCCH signaling that does not include the carrier indication word field CIF in the first search space of the user equipment UE is equal to the length of the PDCCH signaling including the CIF in the second search space of the UE, and the first search
  • the physical overlap region exists between the space and the second search space, and after the RRC signaling from the base station is correctly parsed by the UE in the physical overlap region, the PDCCH signaling including the CIF is received. And parsing the PDCCH signaling including the CIF according to the set parsing rule of the PDCCH signaling including the CIF.
  • the embodiment of the invention further provides a base station, including:
  • a first determining module configured to determine a location of the first search space and the second search space of the UE, where the first sending module is configured to determine, at the first determining module, a location of the first search space and the second search space of the UE Afterwards, the PDCCH signaling length that does not include the CIF in the first search space is equal to the PDCCH signaling length that includes the CIF in the second search space, and the first search space and the second search space have physical In the case of an overlap region, only PDCCH signaling not including the CIF is transmitted to the UE in the physical overlap region.
  • the embodiment of the invention further provides a base station, including:
  • a second determining module configured to determine a location of the first search space and the second search space of the user equipment UE
  • a second sending module configured to: after the first determining module determines the location of the first search space and the second search space of the UE, if the length of the first PDCCH signaling in the first search space, The second PDCCH signaling in the second search space is equal in length, the first PDCCH signaling is PDCCH signaling that does not include a carrier indication word domain CIF, and the second PDCCH signaling is a PDCCH signal including a CIF.
  • the first search space and the second search If there is a physical overlap region in the cable space, in the physical overlap region, within a time interval of transmitting radio resource control RRC signaling to the UE to receiving the RRC connection reconfiguration complete signaling fed back by the UE, Transmitting the third PDCCH signaling or the fourth PDCCH signaling to the UE, where the third PDCCH signaling is PDCCH signaling that does not include a CIF, and the fourth PDCCH signaling is PDCCH signaling including a CIF, and The signaling length of the third PDCCH signaling is not equal to the signaling length of the fourth PDCCH signaling, and the length of the third PDCCH signaling is different from the length of the first PDCCH signaling, and the fourth The length of the PDCCH signaling is different from the length of the first PDCCH signaling.
  • the embodiment of the invention further provides a base station, including:
  • a third determining module configured to determine a location of the first search space and the second search space of the user equipment UE;
  • a third sending module configured to: after the third determining module determines the location of the first search space and the second search space of the user equipment UE, if the PDCCH of the carrier indication word domain CIF is not included in the first search space
  • the length of the signaling is equal to the length of the PDCCH signaling including the CIF in the second search space, and in the case where the first search space and the second search space have physical overlapping regions, the physical overlap In the area, after receiving the radio resource control RRC connection reconfiguration complete signaling sent by the UE, the PDCCH signaling including the CIF is sent only to the UE.
  • An embodiment of the present invention further provides a UE, including:
  • a receiving module where a PDCCH signaling length that does not include a CIF in the first search space is equal to a PDCCH signaling length that includes a CIF in the second search space, and the first search space and the second search space are physically intersected.
  • the PDCCH signaling that does not include the CIF sent by the base station is received in the physical overlap region;
  • a parsing module configured to parse the PDCCH signaling received by the receiving module according to the set parsing rule of the PDCCH signaling that does not include the CIF.
  • the embodiment of the invention further provides a UE, including: a second receiving module, configured to: in a first search space of the UE, a length of PDCCH signaling that does not include a carrier indication field CIF, and a length of a PDCCH signaling that includes a CIF in a second search space of the UE And in the case that the first search space and the second search space have physical overlapping regions, in the physical overlapping region, after the UE correctly parses the radio resource control RRC configuration signaling from the base station, Receiving the PDCCH signaling including the CIF;
  • the second parsing module is configured to parse the PDCCH signaling including the CIF received by the receiving module according to the set parsing rule of the PDCCH signaling including the CIF.
  • the embodiment of the present invention further provides a communication system, including the base station including the first determining module and the first sending module and the UE including the receiving module and the parsing module as described above.
  • the embodiment of the present invention further provides a communication system, including a UE and a base station including a second determining module and a second sending module as described above.
  • FIG. 1 is a flowchart of another embodiment of a PDCCH signaling sending method according to the present invention
  • FIG. 2 is a flowchart of another embodiment of a PDCCH signaling sending method according to the present invention
  • FIG. 4 is a flowchart of another embodiment of a PDCCH signaling sending method according to the present invention
  • FIG. 5 is a flowchart of an embodiment of a PDCCH signaling receiving method according to the present invention
  • FIG. 6 is a flowchart of another embodiment of a PDCCH signaling receiving method according to the present invention
  • FIG. 7 is a flowchart of another embodiment of a PDCCH signaling receiving method according to the present invention
  • Schematic diagram of the structure of the embodiment
  • FIG. 9 is a schematic structural diagram of another embodiment of a base station according to the present invention.
  • FIG. 10 is a schematic structural diagram of an embodiment of a UE according to the present invention. detailed description
  • a base station such as an eNB
  • a UE perform resource scheduling on one carrier.
  • the minimum time unit for scheduling resources of the base station is one subframe, and the length is 1 millisecond.
  • the scheduled UE is used.
  • a Radio Network Temporary Identifier (RNTI), a Cyclic Redundancy Check (CRC), is used to check and determine whether the currently detected PDCCH signaling is the PDCCH of the scheduled UE. make.
  • RNTI Radio Network Temporary Identifier
  • CRC Cyclic Redundancy Check
  • the PDCCH signaling carries time-frequency resource allocation information indicating a physical data channel (the physical data channel may be uplink or downlink).
  • a search space is a set of logically consecutive CCEs, and the CCE is the smallest unit that constitutes PDCCH signaling.
  • the UE's PDCCH signaling can be transmitted using four CCE levels, namely 1, 2, 4, and 8, respectively, and different CCE levels have different coding rates.
  • the PDCCH signaling of different CCE levels has different search spaces, but physically, the search space of different PDCCH signaling may be In order to overlap, that is, different search spaces may include some or all of the same numbered CCEs.
  • the search space can be divided into CSS (Common Search Space) and UESS (UE-specific Search Space UE-specific search space). CSS and UESS are different search spaces, but they can be physically overlapped, that is, in different search spaces. Some or all of the same numbered CCEs may be included.
  • the CSS is a space that all UEs need to detect.
  • the CSS includes 16 CCEs and can only transmit PDCCH signaling with a CCE level of 4 or 8.
  • Each UE has a specific UESS, each UESS is determined by a specific RNTI and subframe number, and the UESS can contain CCE levels of 1, 2, 4, and 8, and UESS searches corresponding to the four CCE levels. The number of times is 6, 6, 2, and 2.
  • the PDCCH signaling has different Downlink Control Information (DCI) format depending on the transmission mode and resource allocation mode of the scheduling data.
  • DCI Downlink Control Information
  • DCI format 1A DCI format 1B
  • DCI format 1C DCI format 1D
  • DCI format 1D DCI format 1, DCI format 2, DCI format 2A
  • DCI format 2A DCI format 2A
  • DCI format 2A DCI format 2A
  • PDCCH format 3A etc.
  • PDCCH signals of different DCI formats The length of the commands is usually different, and the RNTI scrambled on the PDCCH signaling may also be different. In some cases, the length of PDCCH signaling for different DCI formats may be the same.
  • the PDCCH signaling for scheduling information common to a plurality of users may be transmitted in the CSS, and the RNTI scrambled for the PDCCH signaling may also be a common RNTI.
  • the multi-user common RNTI may be a paging RNTI (Paging RNTI), a system information RNTI (System Information RNTI), a random access response RNTI (RACH Response RNTI), or a transmission power control (TPC) related.
  • Paging RNTI Paging RNTI
  • System Information RNTI System Information RNTI
  • RACH Response RNTI random access response RNTI
  • TPC transmission power control
  • the PDCCH signaling that uses the specific RNTI to scramble the UE is generally transmitted in the UESS, for example, using Semi-Persistent Scheduling-Cell-RNTI (SPS-C-RNTI) or Cell RNTI (Cell) - RNTI, abbreviated as C-RNTI) scrambled PDCCH signaling.
  • SPS-C-RNTI Semi-Persistent Scheduling-Cell-RNTI
  • C-RNTI Cell RNTI
  • the PDCCH signaling of DCI format 1A may be transmitted in a CSS, which is scrambled using a paging RNTI, a system information RNTI, or a random access response RNTI.
  • the PDCCH signaling of DCI format 1 A may also be transmitted in the UESS, which uses cell RNTI or SPS-C-RNTI to force the interference.
  • the length of the PDCCH signaling of the DCI format 1A is the same as the length of the PDCCH signaling of the DCI format 3, the DCI format 3 A and the DCI format 0.
  • the header distinguishing bits are used to distinguish PDCCH signaling of DCI format 1A and PDCCH signaling of DCI format 0.
  • the PDCCH signaling of the DCI format 1A and the PDCCH signaling of the DCI format 0 are distinguished from the PDCCH signaling of the DCI format 3 and the PDCCH signaling of the DCI format 3 A by using different RNTI scrambling.
  • the PDCCH signaling of the DCI format 1A scrambled by the cell RNTI and the SPS-C-RNTI can be transmitted in the UESS or in the CSS, which does not increase the number of PDCCH signaling detections.
  • the number of times that the UE detects the PDCCH signaling is related to the signaling length. If one signaling length is used, there will be a series of detection times. Since the PDCCH signaling of DCI format 3 or DCI format 3A transmitted in the CSS always needs to be detected, and the two PDCCH signalings are equal to the length of the PDCCH signaling of DCI format 0 and DCI format 1 A, It does not cause an increase in the number of times the UE detects PDCCH signaling.
  • the base station configures one of the seven transmission modes for the UE by semi-static RRC signaling according to different data transmission modes and resource allocation modes.
  • the UE In each transmission mode, the UE needs to detect PDCCH signaling of at least two DCI formats, one PDCCH signaling of the DCI format is related to the currently allocated transmission mode of the UE, and another PDCCH signaling of the DCI format. Is the PDCCH signaling of DCI format 1A and DCI format 0 irrelevant for the transmission mode currently allocated by the UE, that is, regardless of the transmission mode allocated for the UE, the UE needs to detect the PDCCH of DCI format 1A and DCI format 0. Signaling.
  • the UE needs to detect the PDCCH signaling of the DCI format 2A, and the UE also needs to detect the DCI format 0 and PDCCH signaling of DCI format 1A.
  • the PDCCH signaling of the DCI format 2A is the transmission mode 3 related.
  • the base station allocates the transmission mode 4 and the closed-loop MIMO transmission mode to the UE, the UE needs to detect the PDCCH signaling of the DCI format 2, and the UE also needs to detect the PDCCH signaling of the DCI format 0 and the DCI format 1A.
  • the PDCCH signaling of the DCI format 2 is related to the transmission mode 4.
  • a scenario A the semi-static RRC signaling used by the base station to notify the current resource scheduling mode of the UE, the time when the base station receives the RRC connection reconfiguration complete signaling returned by the UE, and the base station receives the UE return.
  • the length of the PDCCH signaling of the DCI format 0 or the DCI format 1A of the CIF is not included in the CSS of the current carrier, and it is possible to schedule another bandwidth on the current carrier for scheduling other bandwidths smaller than the current carrier.
  • the PDCCH signaling of another format including the CIF in the UESS of the carrier is equal in length.
  • the UE will erroneously parse the PDCCH signaling searched in the physical overlapping area.
  • the resource on the current carrier is scheduled, or the PDCCH signaling is erroneously parsed as a resource used in scheduling other carriers whose bandwidth is smaller than the current carrier.
  • one signaling is PDCCH signaling of DCI format 0 or 1A that does not include CIF in the CSS of the current carrier CC1, and another signaling is included in the UESS of the current carrier CC1 for scheduling other carriers CC2 whose bandwidth is smaller than the carrier CC1.
  • Another format of PDCCH signaling for CIF Because the bandwidth of the scheduled carrier CC2 is smaller than the bandwidth of the carrier CC1, the number of resource allocation bits required in the PDCCH signaling is small, then the PDCCH signaling of the DCI format 0 or 1A of the CIF is not included in the CSS of the current carrier CC1.
  • the length may be equal to the PDCCH signaling length of another format including the CIF in the UESS of the current carrier CC1 for scheduling other carriers smaller than the carrier CC2 of the carrier CC1.
  • the UE may erroneously parse that the PDCCH signaling searched in the physical overlap region is used to schedule resources in the carrier CC1, or incorrectly parse the PDCCH signaling. For scheduling resources in carrier CC2.
  • the following line data is taken as an example.
  • the UE erroneously parses the PDCCH signaling, the downlink data will be received on the wrong carrier.
  • the subsequent UE may feed back a non-acknowledgment (NACK) message to the base station, and the base station will retransmit the original data, but
  • NACK non-acknowledgment
  • the UE is still not sure how to correctly parse the PDCCH signaling.
  • the UE still cannot receive data correctly, and the erroneous data remains in the buffer area of the UE until the base station reaches the maximum number of retransmissions. This causes the hybrid automatic repeat-reQuest (HARQ) cache pollution of the UE. .
  • HARQ hybrid automatic repeat-reQuest
  • the CIF in the data resource scheduling mode of the CCS, the CIF is not included in the PDCCH signaling of the DCI format 1A or the DCI format 0 transmitted in the CSS, and the DCI format 1A is included.
  • the PDCCH signaling of the DCI format 0 can only schedule resources on the carrier where the PDCCH signaling is currently located or the uplink carrier corresponding to the carrier.
  • the PDCCH signaling transmitted in a certain UESS does not include the CIF, and the PDCCH signaling can only schedule the current carrier of the signaling or the carrier. Corresponding resources on the uplink carrier.
  • other scenarios can also be included.
  • FIG. 1 is a flowchart of an embodiment of a PDCCH signaling sending method according to the present invention, including:
  • Step 101 The base station determines the locations of the first search space and the second search space.
  • the PDCCH signaling transmitted in the first search space may not include the CIF, the first search space may be CSS and/or UESS, the signaling transmitted in the second search space may include CIF, and the second search space may be UESS.
  • the first search space may be at least one of CSS and UESS.
  • Step 102 If the length of the PDCCH signaling that does not include the CIF in the first search space is equal to the length of the PDCCH signaling that includes the CIF in the second search space, and the physical space overlaps between the first search space and the second search space, Then, in the physical overlap region, the base station sends PDCCH signaling that does not include the CIF to the UE.
  • the base station can determine that the search spaces of different PDCCH signaling can overlap by determining CCEs including some or all of the same labels in different search spaces, that is, the CCEs of the same or all of the same labels are physical overlapping regions.
  • the method may further include: And determining physical overlap regions of the first search space and the second search space according to the locations of the first search space and the second search space.
  • the determining the physical overlapping area of the first search space and the second search space includes:
  • the at least one CCE of the same number is the physical overlapping area.
  • the PDCCH signaling sent by the base station may include resource allocation information and other control information, for example, may include carrier activation or deactivation information, and may include information for triggering a physical random access procedure.
  • the base station may perform the PDCCH signaling transmission according to the existing manner, and will not be described in detail herein.
  • the embodiment shown in Figure 1 limits the physical overlap region of two search spaces for transmitting one of the search space PDCCH signaling, which is actually a method of orthogonalizing the search space. Another method of orthogonalizing the search space may be adopted, that is, the two search spaces are not overlapped, thereby solving the problem that the length of the PDCCH signaling that does not include the CIF in the first search space and the CIF in the second search space are solved.
  • the CSS and UESS are physically overlapped, the CCE size of the CSS and the UESS may not be changed, and the fixed CSS position is unchanged.
  • the UESS is configured by a configuration parameter.
  • the CSS does not overlap. Specifically, the UESS and CSS can be placed consecutively.
  • the base station Since the base station performs scheduling using PDCCH signaling that does not include the CIF before and after the RRC configuration, the base station performs the scheduling of the PDCCH signaling before and after the RRC configuration, thereby avoiding scheduling ambiguity.
  • the PDCCH signaling that does not include the CIF is parsed before and after the RRC configuration is performed, so that the PDCCH signaling scheduling performed by the base station side and the PDCCH signaling analysis by the UE side are consistent, and no parsing error occurs. For example, when the UE does not correctly receive the RRC configuration signaling, the UE still parses according to the parsing rule of the PDCCH signaling that does not include the CIF.
  • the UE may have a parsing error; otherwise, if the UE correctly receives the RRC configuration signaling, the base station still performs scheduling according to the PDCCH signaling that does not include the CIF. Then, the UE parses according to the parsing rule of the PDCCH signaling with the CIF, so a parsing error occurs;
  • the above method of transmitting only PDCCH signaling without CIF in the physical overlap region has no ambiguity, and the UE does not parse the error.
  • FIG. 5 is a flowchart of an embodiment of a PDCCH signaling receiving method according to the present invention, including:
  • Step 501 If the length of the PDCCH signaling that does not include the CIF in the first search space is equal to the length of the PDCCH signaling including the CIF in the second search space, and the first search space and the second search space have physical overlapping regions, Then, in the physical overlap region, the UE receives the PDCCH signaling that is sent by the base station and does not include the CIF.
  • Step 502 Parse the PDCCH signaling according to the set rule.
  • the set rules may specify that the base station and the UE resolve according to the pre-agreed meaning of each field in the PDCCH signaling.
  • the UE may parse according to the parsing rule that does not include the CIF in the PDCCH signaling. What kind of parsing rules the UE specifically uses can be negotiated in advance by the UE and the base station.
  • the length of the PDCCH signaling that does not include the CIF in the first search space is equal to the length of the PDCCH signaling that includes the CIF in the second search space, and the first search space and the second search space are physically intersected.
  • the base station is required to send the PDCCH signaling that does not include the CIF to the UE, so that the PDCCH signaling that does not include the CIF is always sent to the UE, and the UE can determine the PDCCH signaling received in the physical overlap region.
  • the CIF is not included.
  • the resources allocated in the PDCCH signaling are also determined to be resources on the carrier for carrying the PDCCH signaling, and thus the UE does not cause an error in parsing.
  • the base station when the base station sends semi-static RRC signaling for notifying the current resource scheduling mode of the UE, when the base station receives the configuration confirmation completion signaling returned by the UE, and the base station receives the UE reverse After the configuration of the feed is confirmed to be complete, if the CSS of the current carrier used for carrying the PDCCH signaling in the UE does not include the length of the PDCCH signaling of the DCI format 0 or the DCI format 1A of the CIF, and the current carrier is used for scheduling other The PDCCH signaling of another format including the CIF in the UESS of the UE whose bandwidth is smaller than the other carrier of the current carrier is equal, and the CSS and the UESS have a physical overlapping area, then the base station does not include the physical overlapping area transmission.
  • the PDCCH signaling of the CIF, and the signaling carries resource allocation information for the UE.
  • the UE may negotiate with the base station in advance, and the CSF is not included in the PDCCH signaling sent in the physical overlap region. Then, after receiving the PDCCH signaling, the UE may determine that the PDCCH signaling must be Including the CIF, the resources allocated in the PDCCH signaling are also determined to be resources on the carrier used to carry the PDCCH signaling, and thus do not cause the UE to parse the error.
  • the first search space may be CSS
  • the second search space is a specific UESS of the UE
  • the CCE level of the first search space and the second search space may be 4 or 8.
  • the first search space and the second search space comprise two UESSs for scheduling different component carriers of the UE.
  • the UE may determine that the search spaces of different PDCCH signaling may overlap by determining CCEs that include some or all of the same labels in different search spaces, that is, the CCEs of the same or all the same labels are physically overlapping. region.
  • the above method may further include:
  • the determining the physical overlapping area of the first search space and the second search space includes:
  • the foregoing UE may be aware that the first search space does not include the carrier pointer field CIF.
  • the length of the PDCCH signaling is equal to the length of the PDCCH signaling including the CIF in the second search space.
  • the base station configures one of seven transmission modes for the UE by semi-static RRC signaling according to different data transmission modes and resource allocation modes, and the UE needs to detect at least two PDCCHs of the DCI format. Signaling, the length of the foregoing PDCCH signaling can be known by detection.
  • the restriction on the second search space is not very large, because in the second search space, even because the CCE level is 4 or 8
  • the PDCCH signaling length is equal to the CSF-free PDCCH signaling length in the CSS, so that the base station cannot schedule the PDCCH signaling in the physical overlapping area, but the base station can also transmit the CCE level to 1 or 2 in the physical overlapping area. The above PDCCH signaling.
  • the base station cannot schedule the PDCCH in the physical overlapping area, but if the CCE level is 8 in the second search space. PDCCH signaling, the second search space does not overlap with the CSS, and the base station may also schedule the PDCCH signaling with the CCE level of 8.
  • the RRC signaling is sent by the base station, and the base station can clearly know which manner the user terminal receives according to the time when the base station receives the RRC connection reconfiguration complete signaling fed back by the UE, thereby The problem that the control signaling caused by the base station is parsed incorrectly on the UE side is solved.
  • FIG. 2 is a flowchart of another embodiment of a PDCCH signaling sending method according to the present invention, including:
  • Step 201 The base station determines locations of the first search space and the second search space.
  • Step 202 If the length of the first PDCCH signaling in the first search space is equal to the length of the second PDCCH signaling in the second search space, the first PDCCH signal For the PDCCH signaling that does not include the carrier indication field CIF, the second PDCCH signaling is PDCCH signaling including the CIF, and the first search space and the second search space have physical overlapping regions, Transmitting the third PDCCH signaling or the fourth PDCCH in a time interval in which the radio resource control RRC signaling is sent to the UE to receive the RRC connection reconfiguration complete signaling fed back by the UE, in the physical overlap region.
  • the third PDCCH signaling is PDCCH signaling that does not include a CIF
  • the fourth PDCCH signaling is PDCCH signaling including a CIF
  • the signaling length of the third PDCCH signaling is The signaling lengths of the fourth PDCCH signaling are not equal, and the length of the third PDCCH signaling is different from the first
  • the length of the PDCCH signaling, the length of the fourth PDCCH signaling is different from the length of the first PDCCH signaling.
  • the base station After receiving the RRC connection reconfiguration complete signaling returned by the UE, the base station sends the second PDCCH signaling, that is, the PDCCH signaling including the CIF to the UE.
  • the foregoing third PDCCH signaling or fourth PDCCH signaling may be in addition to the first PDCCH signaling and the second
  • PDCCH signaling other kinds of PDCCH signaling other than the PDCCH signaling
  • the other types of PDCCH signaling sent by the base station except the first PDCCH signaling and the second PDCCH signaling are that the base station does not know that the UE is not wrong.
  • Ground-resolved PDCCH signaling For example, there are currently two formats of PDCCH signaling in each transmission mode. For two types of PDCCH signaling (plus CIF) in a certain transmission mode corresponding to carriers that are scheduled across carriers, one of the carriers is assumed to be located with the PDCCH.
  • the PDCCH signaling length of a certain format of the CSS in which the CIF is not added is equal, the eNB may send another PDCCH signaling in the current mode, and the signaling length is not equal to the CSS of the carrier where the PDCCH is located.
  • the CSS of the carrier where the PDCCH is located may also have two UE-specific PDCCH signalings without CIF, and one of them may be parsed by the UE, and the base station may send another PDCCH signaling without CIF to the UE. .
  • FIG. 6 is a flowchart of another embodiment of a PDCCH signaling receiving method according to the present invention, including:
  • Step 601 If the length of the PDCCH signaling of the CIF is not included in the first search space, And the PDCCH signaling length including the CIF in the second search space is equal, and the first search space and the second search space have physical overlapping regions, and in the physical overlapping region, after the UE correctly parses the RRC signaling, the UE receives The PDCCH signaling including the CIF sent by the base station.
  • Step 602 The UE parses the PDCCH signaling including the CIF according to the set parsing rule of the PDCCH signaling including the CIF.
  • the UE may parse according to the parsing rule including the CIF in the PDCCH signaling. What kind of parsing rules are used by the UE may be negotiated in advance by the UE and the base station.
  • the length of the PDCCH signaling that does not include the CIF in the first search space is equal to the length of the PDCCH signaling that includes the CIF in the second search space, and the first search space and the second search space are physically intersected.
  • the base station may not transmit the PDCCH signaling including the CIF in the time interval in which the base station sends the RRC signaling to the acknowledgment signaling that is received by the UE, because the UE may not receive the correct RRC configuration signaling, then The UE will consider that the received PDCCH signaling does not include the CIF, resulting in a parsing error.
  • the base station may send the foregoing PDCCH signaling including the CIF to the UE.
  • the base station may only Other kinds of PDCCH signaling other than the first PDCCH signaling and the second PDCCH signaling are sent to the UE.
  • the UE On the UE side, after the UE correctly parses the RRC configuration signaling, the UE only receives the PDCCH signaling including the CIF sent by the base station.
  • the first search space may be CSS
  • the second search space is a specific UESS of the UE
  • the CCE level of the first search space and the second search space is 4 or 8.
  • the first search space and the second search space include two UESSs for scheduling different component carriers of the UE.
  • the method in the embodiment shown in FIG. 2 is used, and the number of detections of PDCCH signaling in the first search space is not increased.
  • the scheduling freedom of the second search space is larger than that of the first search space (because the second search The space can implement cross-carrier scheduling, and the first search space only allows the same carrier scheduling. Therefore, the scheme completely retains all scheduling degrees of freedom of the second search space, and does not generate any scheduling restrictions on the second search space.
  • FIG. 3 is a flowchart of another embodiment of a PDCCH signaling sending method according to the present invention, including:
  • Step 301 The base station determines the locations of the first search space and the second search space.
  • Step 302 If the length of the first PDCCH signaling in the first search space is equal to the length of the second PDCCH signaling in the second search space, the first PDCCH signaling is not including the carrier indication field CIF.
  • PDCCH signaling, the second PDCCH signaling is PDCCH signaling including a CIF, where a physical overlap region exists in the first search space and the second search space, and RRC signaling is sent in the base station in the physical overlap region.
  • the base station transmits other kinds of PDCCH signaling other than the first PDCCH signaling and the second PDCCH signaling to the UE within a time interval of receiving the acknowledgment signaling fed back by the UE.
  • the other types of PDCCH signaling except the first PDCCH signaling and the second PDCCH signaling may be the third PDCCH signaling or the fourth PDCCH signaling, and the third
  • the PDCCH signaling is PDCCH signaling that does not include the CIF
  • the fourth PDCCH signaling is PDCCH signaling including the CIF
  • the signaling length of the third PDCCH signaling is the fourth
  • the signaling lengths of PDCCH signaling are not equal.
  • a scenario B If the PDCCH signaling for scheduling two carriers has independent UESSs on one carrier, and the two UESSs have physical overlapping regions, the base station sends a half for notifying the current resource scheduling mode of the UE.
  • the base station scheduling is blurred.
  • the resource scheduling mode of the UE is the SCS, and the PDCCH signaling transmitted by the base station to the UE does not include the CIF.
  • the resource scheduling mode of the UE changes to CCS.
  • the base station did not receive the UE counter.
  • the base station determines whether the CIF needs to be included in the PDCCH signaling sent to the UE, which causes the scheduling of the base station to be blurred.
  • the UE correctly receives the RRC configuration signaling of the base station and switches to the CCS mode the PDCCH scheduled in the two UESSs is added with a CIF, and the PDCCH signaling for scheduling different carriers is automatically distinguished, even if both PDCCHs have CIFs. Signaling lengths are equal and will not cause the above problems.
  • the PDCCH signaling including the CIF or the PDCCH signaling not including the CIF may be transmitted only by limiting the time interval during which the base station sends the semi-static RRC signaling to the acknowledgment signal returned by the UE. solve. If the UE is restricted to transmit PDCCH signaling that does not include the CIF, and the UE has correctly parsed the semi-static RRC signaling, the UE is configured to transmit the semi-static RRC signaling to the configuration completion acknowledgment signaling that is received by the UE. The CIF is included in the received PDCCH signaling, which causes the UE to parse the error.
  • the base station only transmits the PDCCH signaling including the CIF in the time interval when the semi-static RRC signaling is sent to the RRC connection reconfiguration complete signaling that is received by the UE, and the UE does not correctly parse the semi-static RRC signaling, then the UE does not correctly parse the semi-static RRC signaling.
  • the UE may consider that the received PDCCH signaling does not include the CIF, thereby causing the UE to parse the error.
  • the base station transmits the PDCCH signaling other than the first PDCCH signaling and the second PDCCH signaling in the physical overlapping region, the scheduling ambiguity of the base station can be avoided, if the embodiment shown in FIG. It is also possible to avoid the parsing error of the UE.
  • the resource scheduling mode of the UE is changed to CCS, even if the two UESSs of the UE have a physical overlapping area, since the PDCCH signaling in the CCS mode includes the CIF, The base station also does not have the problem of scheduling ambiguity, and the UE does not have a parsing error.
  • the first search space and the second search space comprise two UESSs for scheduling different component carriers of the UE.
  • the method in the embodiment shown in FIG. 3 solves the problem that the UE incorrectly parses the PDCCH by the method implemented by the base station itself, without specifying any behavior of the UE, that is, has no effect on the operation of the UE, and the method is simple. Easy to operate.
  • two component carriers CC1 and CC2 of one UE, PDCCH signaling is sent on CC1, and CC1 includes search space CSS, search space UESS1, and search space UESS2, and PDCCH signaling in CSS on CC1 is used.
  • the component carrier CC1 is scheduled, and the PDCCH signaling does not include the CIF.
  • the PDCCH signaling in the UESS1 on the CC1 is used to schedule the component carrier CC1, and the PDCCH signaling does not include the CIF, and the PDCCH signaling in the UESS2 on the CC1.
  • the PDCCH signaling includes a CIF.
  • the base station sends the PDCCH signaling that does not include the CIF to the UE; and the length of the PDCCH signaling that does not include the CIF in the CSS is equal to the length of the PDCCH signaling including the CIF in the UESS2, and the physical overlap region exists between the CSS and the UESS2.
  • the base station sends the PDCCH signaling including the CIF to the UE, and when the length of the PDCCH signaling of the CIF is not included in the UESS1, the length of the PDCCH signaling of the CIF is included in the UESS2, and the CIF is not included in the UESS1.
  • the lengths of the PDCCH signaling are the same, and there is a problem of scheduling ambiguity in the physical overlapping area common to the three.
  • the base station transmits the PDCCH including the CIF in the physical overlapping region.
  • the length of the PDCCH signaling that does not include the CIF in the CSS is equal to the length of the PDCCH signaling including the CIF in the UESS2, and when there is a physical overlapping area between the CSS and the UESS2, in the physical overlapping area, the base station Sending the PDCCH signaling that does not include the CIF to the UE, if the length of the PDCCH signaling of the CIF is not included in the UESS1, the length of the PDCCH signaling including the CIF in the UESS2, and the length of the PDCCH signaling not including the CIF in the UESS1 Equal, in the common physical overlap area of the three, there is a problem of scheduling ambiguity.
  • the base station Only the PDCCH signaling that does not include the CIF is sent to the UE; or the base station only sends the PDCCH signaling including the CIF to the UE.
  • the eNB transmits only the PDCCH signaling that does not include the CIF to the UE, the data is preferentially scheduled on the carrier CC1 where the PDCCH channel is placed, and the scheduling priority of the carrier is guaranteed, and the RRC is guaranteed. a smooth transition scheduled during configuration;
  • the base station transmits only the PDCCH signaling including the CIF to the UE in the physical overlapping area of the three, the scheduling degree of freedom of the UESS of the carrier CC2 scheduled by the cross-carrier is guaranteed.
  • a physical downlink control channel PDCCH signaling sending method includes:
  • the PDCCH signaling length of the carrier indication field CIF is not included in the first search space, the PDCCH signaling length that does not include the CIF in the third search space, and the PDCCH signaling length that includes the CIF in the second search space. If the first search space, the second search space, and the third search space have physical overlap regions, only the PDCCH signaling including the CIF or only the CIF is not included in the physical overlap region. PDCCH signaling to the UE.
  • a physical downlink control channel PD C C H signaling receiving method includes:
  • the PDCCH signaling length of the carrier indication field CIF is not included in the first search space, the PDCCH signaling length that does not include the CIF in the third search space, and the PDCCH signaling length that includes the CIF in the second search space. If the first search space, the second search space, and the third search space have physical overlap regions, the PDCCH signaling including the CIF sent by the base station or the CIF is not included in the physical overlap region. PDCCH signaling; the UE parses the PDCCH signaling according to a set rule.
  • a base station comprising:
  • a sixth determining module configured to determine a location of the first search space, the second search space, and the third search space of the user equipment UE; a sixth sending module, configured to: if the first search space does not include a carrier pointer field
  • the PDCCH signaling length of the CIF is equal to the PDCCH signaling length that does not include the CIF in the third search space, and the PDCCH signaling length including the CIF in the second search space, and the first search space and the second search space.
  • the physical overlap region exists in the third search space, and only the PDCCH signaling including the CIF or only the PDCCH signaling not including the CIF is sent to the UE in the physical overlap region.
  • a user equipment UE including:
  • a seventh receiving module configured to: if a PDCCH signaling length that does not include a carrier indication word field CIF in the first search space, and a PDCCH signaling length that does not include a CIF in the third search space, and the second search space
  • the PDCCH signaling including the CIF is equal in length, and the physical space is overlapped in the first search space, the second search space, and the third search space, and the PDCCH including the CIF sent by the base station is received in the physical overlap region.
  • FIG. 4 is a flowchart of another embodiment of a PDCCH signaling sending method according to the present invention, including:
  • Step 401 The base station determines locations of the first search space and the second search space.
  • Step 402 If the length of the PDCCH signaling that does not include the CIF in the first search space is equal to the length of the PDCCH signaling that includes the CIF in the second search space, the physical space overlaps between the first search space and the second search space. Then, in the physical overlap region, the base station transmits PDCCH signaling including the CIF after adding one bit to the UE in the physical overlap region.
  • the length of the PDCCH signaling that does not include the CIF in the first search space is equal to the length of the PDCCH signaling including the CIF in the second search space, and the first search space and the second search space have physical overlap.
  • the base station is required to transmit PDCCH signaling including CIF after adding one bit in the physical overlap region. Due to the packet received by the UE The PDCCH signaling of the CIF is one bit longer than the length of the PDCCH signaling that does not include the CIF.
  • the UE can determine that the PDCCH signaling with a long signaling length includes the CIF, and the parsing error of the UE can be avoided.
  • the base station After the base station sends the semi-static RRC signaling for notifying the current resource scheduling mode of the UE, the base station receives the RRC connection reconfiguration complete signaling fed back by the UE, and the RRC connection weight that the base station receives the UE feedback.
  • the base station sends the PDCCH signaling in the CSS mode including the CIF to the UE after adding one bit in the physical overlapping area, so that the UE can determine that the received PDCCH signaling includes the CIF, and avoids the parsing error of the UE.
  • the method in the embodiment shown in FIG. 4 is used, and the bit padding only occurs in the length of the PDCCH signaling that does not include the CIF in the CSS, and UESS.
  • the PDCCH signaling length including the CIF is equal, and the CSS and the UESS have a physical overlapping area, and only when the CCE level is 4 or 8, and the overhead is small, and the length of the PDCCH signaling that does not include the CIF in the CSS is not affected. It can be ensured that the PDCCH signaling not including the CIF in the CSS can be compatible with the format of the PDCCH signaling in the LTE system.
  • the C-RNTI checksum is parsed into its own PDCCH signaling by the UE.
  • the PDCCH signaling sent by the base station can only be one of the CCE levels. Therefore, the UE erroneously parses the PDCCH signaling. Therefore, if one bit is filled in the embodiment of the present invention
  • FIG. 7 is a flowchart of another embodiment of a PDCCH signaling receiving method according to the present invention, including:
  • Step 701 If the PDCCH signaling length of the CIF is not included in the first search space, and the PDCCH signaling length including the CIF in the second search space is equal, and the physical space overlaps between the first search space and the second search space, In the physical overlap region, the UE receives the PDCCH signaling including the CIF after the base station transmits one bit.
  • Step 702 Parse the PDCCH signaling according to the set rule.
  • the UE may parse according to the parsing rule that includes the CIF in the PDCCH signaling and adds one bit. What kind of parsing rules are specifically used by the UE can be negotiated in advance by the UE and the base station.
  • the base station may determine the location of the first search space and the second search space of the user equipment UE, if the length of the PDCCH signaling of the carrier indication word domain CIF is not included in the first search space, In the case where the lengths of the PDCCH signaling including the CIF in the second search space are equal, and the first search space and the second search space have a physical overlapping area, in the physical overlapping area, the receiving area is received.
  • the PDCCH signaling including the CIF is sent only to the UE;
  • the first search space is a common search space CSS
  • the second search space is a user equipment specific search space UESS of the UE.
  • the length of the PDCCH signaling that does not include the CIF in the first search space is equal to the length of the PDCCH signaling including the CIF in the second search space, and the physical space exists in the first search space and the second search space.
  • the PDCCH signaling that does not include the CIF in the first search space is the first signaling
  • the PDCCH signaling that includes the CIF in the second search space is the second signaling, and in the physical overlapping region, Passing the first signaling and the second signaling
  • the first signal and the second signaling are distinguished by an existing or redundant or padded bit or state that is fixed in absolute position in the PDCCH.
  • the absolute position is fixed, which means that the field is a field determined by the rank in the PDCCH, for example, the last bit except the CRC bit.
  • the last bit of the DCI format 1A except the CRC bit is one bit of the power command field, and the DCI format 0 except the CRC bit.
  • the last bit is a padding bit, which defaults to padding "0".
  • the PDCCH When the last bit is "0", the PDCCH is the first signaling, and when the PDCCH is the second signaling, if the last bit originally has some kind of Indicates the meaning, that is, the bit is non-redundant or padding bits or states, and the parsing of the field may be restricted, or the meaning of the bit may be represented by other fields in the PDCCH, such as a power control field in the PDCCH that may be scheduled with downlink data. Exchange meaning.
  • uplink control signaling (including uplink ACK/NACK, uplink channel state information, and the like) is fed back on a specific uplink carrier of the UE, and the uplink carrier is called an uplink host.
  • the carrier, the downlink carrier paired with it is called the downlink primary carrier, and the other downlink carriers of the UE are called downlink non-primary carriers.
  • a method for controlling the power of the uplink control channel is controlled by a power control command field of two bits in the PDCCH for scheduling downlink data, because the uplink control channel of all downlink carriers corresponding to a certain UE is only in the uplink host.
  • the power control command field in the PDCCH of the downlink primary carrier needs to be scheduled to perform power control of the uplink control channel, and the power control command field in the PDCCH for scheduling the downlink non-main carrier is redundant.
  • the redundancy field is used to indicate the meaning of the field itself that distinguishes the absolute location of the first signaling and the second signaling, and the UE may distinguish the first signaling and the second by using the absolute fixed field. Signaling, and the meaning of the field to which the absolute position is fixed can be obtained by parsing the redundant field.
  • FIG. 8 is a schematic structural diagram of an embodiment of a base station according to the present invention.
  • the base station 1 includes: a first determining module 11 and a first sending module 12.
  • the first determining module 11 is configured to determine the first The location of a search space and a second search space.
  • the PDCCH signaling length is equal, and the first search space and the second search space have a physical overlapping area, in the physical overlapping area, only the PDCCH signaling that does not include the CIF is sent to the UE, or if The first PDCCH signaling is PDCCH signaling that does not include the CIF in the first search space, and the second PDCCH signaling is the PDCCH signaling that includes the CIF in the second search space, and then sends the PDCCH signal including the CIF after adding one bit. Order to the UE.
  • the base station sends other types of PDCCH signaling other than the first PDCCH signaling and the second PDCCH signaling to the UE; After the configuration confirmation completion signaling returned by the UE, the base station only sends the PDCCH signaling including the CIF to the UE.
  • a base station may include:
  • a third determining module configured to determine a location of the first search space and the second search space of the user equipment UE;
  • a third sending module configured to: after the third determining module determines the location of the first search space and the second search space of the user equipment UE, if the PDCCH of the carrier indication word domain CIF is not included in the first search space
  • the length of the signaling is equal to the length of the PDCCH signaling including the CIF in the second search space, and in the case where the first search space and the second search space have physical overlapping regions, the physical overlap In the area, after receiving the radio resource control RRC connection reconfiguration complete signaling sent by the UE, the PDCCH signaling including the CIF is sent only to the UE.
  • the first search space is a common search space CSS
  • the second search space is a user equipment specific search space UESS of the UE.
  • FIG. 9 is a schematic structural diagram of another embodiment of a base station according to the present invention.
  • the base station 1 includes: a second determining module 13 and a second sending module 14.
  • the second determining module 13 is configured to determine the locations of the first search space and the second search space.
  • a second sending module 14 after the second determining module determines the location of the first search space and the second search space of the UE, if The length of the first PDCCH signaling in the first search space is equal to the length of the second PDCCH signaling in the second search space, and the first PDCCH signaling is PDCCH signaling that does not include the carrier indication word domain CIF.
  • the second PDCCH signaling is PDCCH signaling including a CIF, and the first search space and the second search space have a physical overlapping area, and in the physical overlapping area, the PDCCH signaling is sent to the UE. Transmitting, by the RRC signaling, the third PDCCH signaling or the fourth PDCCH signaling to the UE, the third PDCCH signaling, in a time interval of receiving the RRC connection reconfiguration complete signaling that is fed back by the UE For excluding CIF
  • the fourth PDCCH signaling is PDCCH signaling including a CIF
  • the signaling length of the third PDCCH signaling is not equal to the signaling length of the fourth PDCCH signaling
  • the third The length of the PDCCH signaling is different from the length of the first PDCCH signaling
  • the length of the fourth PDCCH signaling is different from the length of the first PDCCH signaling.
  • the first search space and the second search space comprise two UESSs for scheduling different component carriers of the UE.
  • FIG. 10 is a schematic structural diagram of an embodiment of a UE according to the present invention.
  • the UE2 includes a receiving module 21 and a parsing module 22.
  • the receiving module 21, the PDCCH signaling length for not including the CIF in the first search space is equal to the PDCCH signaling length including the CIF in the second search space, and the first search space and the second search space are physically overlapped.
  • the PDCCH signaling that does not include the CIF sent by the base station is received in the physical overlapping area, or the PDCCH signaling including the CIF after the added one bit is sent by the receiving base station.
  • the parsing module 22 is configured to parse the PDCCH signaling received by the receiving module 21 according to the set parsing rule for the PDCCH signaling that does not include the CIF. Or, after the UE correctly parses the RRC signaling, the UE only receives the PDCCH signaling including the CIF sent by the base station.
  • the user equipment UE may further include:
  • a second receiving module configured to: in a first search space of the UE, a length of PDCCH signaling that does not include a carrier indication field CIF, and a length of a PDCCH signaling that includes a CIF in a second search space of the UE And the first search space and the second search space exist In the case of the overlapped area, the PDCCH signaling including the CIF is received after the UE correctly parses the RRC signaling from the base station in the physical overlap area;
  • the second parsing module is configured to parse the PDCCH signaling including the CIF received by the receiving module according to the set parsing rule of the PDCCH signaling including the CIF.
  • the embodiment of the present invention further provides a communication system, which may include a base station as shown in FIG. 8 and a UE as shown in FIG. 10, and the base station sends PDCCH signaling to the UE by using the method as described in the foregoing method embodiment, where the UE And receiving the PDCCH signaling sent by the base station by using the method as described in the foregoing method embodiment.
  • a communication system which may include a base station as shown in FIG. 8 and a UE as shown in FIG. 10, and the base station sends PDCCH signaling to the UE by using the method as described in the foregoing method embodiment, where the UE And receiving the PDCCH signaling sent by the base station by using the method as described in the foregoing method embodiment.
  • the present invention further provides a communication system, which may include a UE and a UE as shown in FIG. 9.
  • the base station sends PDCCH signaling to the UE by using the method as described in the foregoing method embodiment, and the UE may receive the base station according to an existing method. PDCCH signaling sent.
  • the base station and the UE provided by the embodiment of the present invention, if the length of the PDCCH signaling that does not include the CIF in the first search space is equal to the length of the PDCCH signaling including the CIF in the second search space, the first search space and the second search space If there is a physical overlap region, the base station is restricted from transmitting PDCCH signaling that does not include the CIF to the UE in the physical overlap region.
  • the base station in a time interval in which the base station sends the RRC signaling to the acknowledgment signaling that is received by the UE, the base station sends other types of PDCCH signaling to the UE except the first PDCCH signaling and the second PDCCH signaling; After the configuration confirmation completion signaling returned by the UE, the base station sends PDCCH signaling including the CIF to the UE.
  • the base station sends the semi-static RRC signaling to the RRC connection reconfiguration complete signaling that is received by the UE, and the base station sends the first PDCCH in the physical overlap region.
  • Signaling and other kinds of PDCCH signaling other than the second PDCCH signaling are sent to the UE, so that the scheduling ambiguity of the base station can be avoided, thereby avoiding the parsing error of the UE.
  • the base station determines the location of the first search space and the second search space, if the length of the PDCCH signaling that does not include the CIF in the first search space is equal to the length of the PDCCH signaling including the CIF in the second search space.
  • the physical space overlaps between the first search space and the second search space. In the physical overlap region, the base station sends PDCCH signaling including the CIF to the UE.
  • the UE receives the PDCCH signaling including the CIF sent by the base station, and parses the PDCCH signaling according to the set rule.
  • the UE may parse according to the parsing rule including the CIF in the PDCCH signaling. What kind of parsing rules are used by the UE may be negotiated in advance by the UE and the base station.
  • the length of the PDCCH signaling that does not include the CIF in the first search space is equal to the length of the PDCCH signaling that includes the CIF in the second search space, and the first search space and the second search space are physically intersected.
  • the base station is required to send the PDCCH signaling including the CIF to the UE, so that the PDCCH signaling including the CIF is always sent to the UE, and the UE can determine that the PDCCH signaling received in the physical overlap region must be
  • the resources allocated in the PDCCH signaling, including the CIF are also determined to be resources on the carrier for carrying the PDCCH signaling, and thus do not cause the UE to parse the error.
  • the base station After the base station sends the semi-static RRC signaling for notifying the current resource scheduling mode of the UE, the base station receives the configuration confirmation completion signaling returned by the UE, and the base station receives the configuration confirmation completion signaling returned by the UE.
  • the CSS of the current carrier for carrying the PDCCH signaling in the UE does not include the length of the PDCCH signaling of the DCI format 0 or the DCI format 1A of the CIF, and the current carrier is used to schedule another bandwidth smaller than the current carrier.
  • the PDCCH signaling of another format including the CIF of the UE in the UESS of the carrier is equal in length, and the CSS and the UESS have a physical overlapping area, then the base station transmits PDCCH signaling including the CIF in the physical overlapping area, and the The signaling carries resource allocation information for the UE.
  • the UE may negotiate with the base station in advance, and the CIF is included in the PDCCH signaling sent in the physical overlap region. Then, after receiving the PDCCH signaling, the UE may determine that the PDCCH signaling must include the CIF, and determine, according to the CIF in the PDCCH signaling, which resource is allocated on the carrier, which does not cause the UE to parse the error. .
  • the first search space may be a CSS
  • the second search space is a specific UESS of the UE
  • the CCE level of the first search space and the second search space is 4 or 8.
  • the first search space and the second search space comprise two UESSs for scheduling different component carriers of the UE.
  • the method in the embodiment shown in Fig. 2 is used, and the number of detections of PDCCH signaling in the first search space is not increased.
  • the scheduling freedom of the second search space is larger than that of the first search space (because the second search space can implement cross-carrier scheduling, and the first search space only allows the same carrier scheduling), the scheme completely retains the second. All scheduling degrees of freedom of the search space, without any scheduling restrictions on the second search space.
  • a base station comprising:
  • a fourth determining module configured to determine a location of the first search space and the second search space of the user equipment UE;
  • a fourth sending module configured to: after the first determining module determines the location of the first search space and the second search space of the UE, not including the PDCCH signaling length of the carrier indication field CIF in the first search space And in the case that the PDCCH signaling length including the CIF in the second search space is equal, and the first search space and the second search space have a physical overlapping area, in the physical overlapping area, sending includes The PDCCH signaling of the CIF is sent to the UE or the PDCCH signaling not including the CIF is sent to the UE.
  • a user equipment UE including:
  • a fourth receiving module configured to: in the first search space, a PDCCH signaling length that does not include a carrier indication field CIF, and a length of a PDCCH signaling that includes a CIF in the second search space, and the first search space and the first search space In the case where the physical search area exists in the second search space, the PDCCH signaling or the receiving base station including the CIF sent by the base station is received in the physical overlapping area. The PDCCH signaling that does not include the CIF is sent;
  • a fourth parsing module configured to parse, according to the set rule, the receiving module receives
  • PDCCH signaling A person skilled in the art can understand that all or part of the steps of implementing the above method embodiments may be completed by using hardware related to program instructions, and the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种PDCCH信令发送和接收方法、基站、UE及系统,其中发送方法包括:基站确定第一搜索空间和第二搜索空间的位置;如果第一搜索空间中不包括CIF的PDCCH信令的长度,与第二搜索空间中包括CIF的PDCCH信令长度相等,并且第一搜索空间和第二搜索空间存在物理交叠区域,则在物理交叠区域内,基站只发送所述的不包括CIF的PDCCH信令给UE。本发明实施例提供的方法、基站、UE及系统,可以避免基站的调度模糊,从而可以避免UE解析错误的问题。

Description

PDCCH信令发送和接收方法、 基站、 UE及系统 本申请要求于 2010年 2月 11 日提交的, 申请号为 20101 0111643. 5 , 以 及于 2010年 3月 29 日提交的, 申请号为 201010142160. 1 , 以及于 2010年 4 月 30 日提交的, 申请号为 201010165438. 7 , 发明名称为 "PDCCH信令发送 和接收方法、 基站、 UE及系统" 的中国申请的优先权, 其全部内容通过引 用结合在本申请中。 技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种物理下行控制信道 ( Physical Downlink Control Channel, 简称 PDCCH )信令发送和接收方法、 基站、 用户设备 ( User Equipment , 简称 UE )及系统。
背景技术
在演进的 LTE系统( LTE-Advanced, 简称 LTE-A ) 中, 引入了载波聚合 ( Carrier Aggregation,简称 CA )技术,即将多个成员载波 ( Component Carrier, 简称 CC )的资源同时调度给一个用户设备( User Equipment, 简称 UE )使用, 以满足更高的峰值速率和业务需求。
在没有釆用 CA技术的系统中,一条物理下行控制信道( Physical Downlink Control Channel, 简称 PDCCH )信令只可以调度一个载波的资源。 在釆用了 CA技术的系统中, 如果一个 UE聚合了多个载波来传输数据, 则 UE需要相 应的多个 PDCCH信令。
在 LTE-A 系统中, 有两种方式可以调度资源。 一种方式是同载波调度 ( Same-CC Scheduling, 简称 SCS ), 即某个载波上的 PDCCH信令只可以调 度该载波或与该载波对应的上行载波的资源。 另一种方式是跨载波调度 ( Cross-CC Scheduling, 简称 CCS ), 即某个载波上的 PDCCH信令可以调度 该载波或其他载波的资源。 在跨载波调度方式中, 需要在 UE特定的 PDCCH 信令中加入载波指示字域( Carrier Indicator Field , 简称 CIF )来指示 PDCCH 信令是用于调度哪一个载波上的资源的。 特别地, 多用户公用的 PDCCH信 令中可以不加入 CIF, 以使得 LTE-A系统中的 UE和 LTE系统中的 UE的共 存。
基站通过发送半静态无线资源控制 ( Radio Resource Control, 简称 RRC ) 信令通知 UE, 当前具体釆用哪一种资源调度方式。 即通知 UE 当前是釆用 CCS方式还是 SCS方式。 UE在 RRC空闲状态下或 RRC连接状态下釆用 SCS 方式调度资源时, PDCCH信令不包括 CIF。 UE在连接状态下釆用 CCS方式 调度资源时 , PDCCH信令中包括 CIF。基站发送半静态 RRC信令给 UE之后 , 如果 UE接收到了该半静态 RRC信令,则 UE会按照半静态 RRC信令中指示 的资源调度方式检测和解析 PDCCH信令。 但是, 基站下发半静态 RRC信令 之后, 需要接收到 UE反馈的 RRC连接重配置完成信令 ( RRC Connection Reconfiguration Complete )后才能确定 UE已经正确接收到了半静态 RRC信 令, 在基站下发半静态 RRC信令到基站接收到 UE反馈的 RRC连接重配置 完成信令的这段时间内, 基站存在调度模糊的问题。 现有技术中存在如下的问题: 在基站下发半静态 RRC信令到基站接收到 UE反馈的 RRC连接重配置完成信令的这段时间内, 基站存在调度模糊的问 题, 从而导致的 UE解析错误的问题。
发明内容
本发明实施例提供一种 PDCCH信令发送方法、 基站、 UE及系统, 用 以解决现有技术中基站调度模糊的问题。
本发明实施例提供一种 PDCCH信令接收方法、 基站、 UE及系统, 用 以解决现有技术中 UE对 PDCCH信令解析错误的问题。
本发明实施例提供了一种 PDCCH信令发送方法, 包括:
确定 UE的第一搜索空间和第二搜索空间的位置;
如果所述第一搜索空间中不包括载波指示字域 CIF的 PDCCH信令的 长度, 与所述第二搜索空间中包括 CIF的 PDCCH信令的长度相等, 并且 所述第一搜索空间和第二搜索空间存在物理交叠区域, 则在所述物理交叠 区域内, 只发送所述的不包括 CIF的 PDCCH信令给所述 UE。
本发明实施例还提供了一种 PDCCH信令发送方法, 包括:
确定 UE的第一搜索空间和第二搜索空间的位置;
如果在所述第一搜索空间中不包括载波指示字域 CIF的 PDCCH信令 的长度, 与所述第二搜索空间中包括 CIF的 PDCCH信令的长度相等, 并 且所述第一搜索空间和第二搜索空间存在物理交叠区域的情况下, 在所述 物理交叠区域内,在接收到所述 UE发送的无线资源控制 RRC连接重配置 完成信令之后, 只向所述 UE发送所述的包括 CIF的 PDCCH信令。
本发明实施例还提供了一种 PDCCH信令发送方法, 包括:
确定 UE的第一搜索空间和第二搜索空间的位置;
如果所述第一搜索空间中的第一 PDCCH信令的长度, 与所述第二搜 索空间中第二 PDCCH信令的长度相等, 所述第一 PDCCH信令为不包括 载波指示字域 CIF的 PDCCH信令, 所述第二 PDCCH信令为包括 CIF的 PDCCH信令, 并且所述第一搜索空间和第二搜索空间存在物理交叠区域, 则在所述物理交叠区域内,在向所述 UE发送无线资源控制 RRC信令到接 收到所述 UE反馈的 RRC连接重配置完成信令的时间间隔内, 发送第三 PDCCH信令或第四 PDCCH信令给所述 UE, 所述第三 PDCCH信令为不 包括 CIF的 PDCCH信令,所述第四 PDCCH信令为包括 CIF的 PDCCH信 令, 且所述第三 PDCCH信令的信令长度与所述第四 PDCCH信令的信令 长度不相等, 所述第三 PDCCH信令的长度不同于所述第一 PDCCH信令 的长度, 所述第四 PDCCH信令的长度不同于所述第一 PDCCH信令的长 度。
本发明实施例还提供了一种 PDCCH信令接收方法, 包括:
在用户设备 UE的第一搜索空间中不包括载波指示字域 CIF的 PDCCH 信令的长度, 与所述 UE的第二搜索空间中包括 CIF的 PDCCH信令的长 度相等, 并且所述第一搜索空间和所述第二搜索空间存在物理交叠区域, 则在所述物理交叠区域内, 接收不包括 CIF的 PDCCH信令, 并只根据设 置的对不包括 CIF的 PDCCH信令的解析规则解析所述的不包括 CIF的 PDCCH信令。
本发明实施例还提供了一种 PDCCH信令接收方法, 包括:
在用户设备 UE的第一搜索空间中不包括载波指示字域 CIF的 PDCCH 信令的长度, 与所述 UE的第二搜索空间中包括 CIF的 PDCCH信令的长 度相等, 并且所述第一搜索空间和所述第二搜索空间存在物理交叠区域, 则在所述物理交叠区域内, 在所述 UE正确解析了来自于基站的无线资源 控制 RRC信令后, 接收包括 CIF的 PDCCH信令, 并只根据设置的对包括 CIF的 PDCCH信令的解析规则解析所述的包括 CIF的 PDCCH信令。
本发明实施例还提供了一种基站, 包括:
第一确定模块,用于确定 UE的第一搜索空间和第二搜索空间的位置; 第一发送模块, 用于在所述第一确定模块确定 UE的第一搜索空间和 第二搜索空间的位置后, 在所述第一搜索空间中不包括 CIF的 PDCCH信 令长度, 与所述第二搜索空间中包括 CIF的 PDCCH信令长度相等, 并且 所述第一搜索空间和第二搜索空间存在物理交叠区域的情况下, 在所述物 理交叠区域内, 只发送不包括 CIF的 PDCCH信令给所述 UE。
本发明实施例还提供了一种基站, 包括:
第二确定模块, 用于确定用户设备 UE的第一搜索空间和第二搜索空 间的位置;
第二发送模块, 用于在所述第一确定模块确定所述 UE的第一搜索空 间和第二搜索空间的位置后, 如果所述第一搜索空间中的第一 PDCCH信 令的长度, 与所述第二搜索空间中的第二 PDCCH信令的长度相等, 所述 第一 PDCCH信令为不包括载波指示字域 CIF的 PDCCH信令, 所述第二 PDCCH信令为包括 CIF的 PDCCH信令,并且所述第一搜索空间和第二搜 索空间存在物理交叠区域, 则在所述物理交叠区域内, 在向所述 UE发送 无线资源控制 RRC信令到接收到所述 UE反馈的 RRC连接重配置完成信 令的时间间隔内, 发送第三 PDCCH信令或第四 PDCCH信令给所述 UE, 所述第三 PDCCH信令为不包括 CIF的 PDCCH信令,所述第四 PDCCH信 令为包括 CIF的 PDCCH信令, 且所述第三 PDCCH信令的信令长度与所 述第四 PDCCH信令的信令长度不相等, 所述第三 PDCCH信令的长度不 同于所述第一 PDCCH信令的长度, 所述第四 PDCCH信令的长度不同于 所述第一 PDCCH信令的长度。
本发明实施例还提供了一种基站, 包括:
第三确定模块, 用于确定用户设备 UE的第一搜索空间和第二搜索空 间的位置;
第三发送模块, 用于在所述第三确定模块确定用户设备 UE的第一搜 索空间和第二搜索空间的位置之后, 如果在所述第一搜索空间中不包括载 波指示字域 CIF的 PDCCH信令的长度, 与所述第二搜索空间中包括 CIF 的 PDCCH信令的长度相等, 并且所述第一搜索空间和第二搜索空间存在 物理交叠区域的情况下, 在所述物理交叠区域内, 在接收到所述 UE发送 的无线资源控制 RRC连接重配置完成信令之后,只向所述 UE发送所述的 包括 CIF的 PDCCH信令。
本发明实施例还提供了一种 UE, 包括:
接收模块, 用于在第一搜索空间中不包括 CIF的 PDCCH信令长度, 与第二搜索空间中包括 CIF的 PDCCH信令长度相等, 并且所述第一搜索 空间和第二搜索空间存在物理交叠区域的情况下,在所述物理交叠区域内, 接收基站发送的不包括 CIF的 PDCCH信令;
解析模块, 用于只根据设置的对不包括 CIF的 PDCCH信令的解析规 则解析所述接收模块接收到的 PDCCH信令。
本发明实施例还提供了一种 UE, 包括: 第二接收模块, 用于在所述 UE的第一搜索空间中不包括载波指示字 域 CIF的 PDCCH信令的长度, 与所述 UE的第二搜索空间中包括 CIF的 PDCCH信令的长度相等, 并且所述第一搜索空间和第二搜索空间存在物 理交叠区域的情况下, 在所述物理交叠区域内, 在所述 UE正确解析了来 自于基站的无线资源控制 RRC配置信令后,接收所述的包括 CIF的 PDCCH 信令;
第二解析模块, 用于只根据设置的对包括 CIF的 PDCCH信令的解析 规则解析所述接收模块接收到的所述包括 CIF的 PDCCH信令。
本发明实施例还提供了一种通信系统, 包括如前所述的包括第一确定 模块和第一发送模块的基站和如前所述的包括接收模块和解析模块的 UE。
本发明实施例还提供了一种通信系统, 包括 UE和如前所述的包括第 二确定模块和第二发送模块的基站。
通过本发明实施例提供的 PDCCH信令发送和接收方法、 基站、 UE及系 统, 可以避免基站的调度模糊, 而且 UE在接收到 PDCCH信令之后, 就可以 确定 PDCCH信令中是包括 CIF还是不包括 CIF, 从而可以避免 UE的解析错 误。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1所示为本发明 PDCCH信令发送方法一个实施例的流程图; 图 2所示为本发明 PDCCH信令发送方法另一个实施例的流程图; 图 3所示为本发明 PDCCH信令发送方法另一个实施例的流程图; 图 4所示为本发明 PDCCH信令发送方法另一个实施例的流程图; 图 5所示为本发明 PDCCH信令接收方法一个实施例的流程图; 图 6所示为本发明 PDCCH信令接收方法另一个实施例的流程图; 图 7所示为本发明 PDCCH信令接收方法另一个实施例的流程图; 图 8所示为本发明基站的一个实施例的结构示意图;
图 9所示为本发明基站的另一个实施例的结构示意图;
图 10所示为本发明 UE实施例的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
在通信系统中,如在长期演进 ( Long Term Evolution, 简称 LTE )系统中, 基站, 如 eNB, 与 UE是在一个载波上进行资源调度的。 基站调度资源的最 小时间单位是一个子帧, 长度为 1毫秒。被调度的 UE在 PDCCH的搜索空间 内按照 PDCCH 的信令长度和搜索空间的控制信道单元 (Control Channel Element, 简称 CCE )级别对 PDCCH信令进行解调和解码后, 用该被调度的 UE的无线网络临时标识 ( Radio Network Temporary Identifier, 简称 RNTI ) 解扰循环冗余校验(Cyclic Redundancy Check, 简称 CRC )来校验并确定当 前检测到的 PDCCH信令是否是该被调度的 UE的 PDCCH信令。 当被调度的 UE确定当前检测到的 PDCCH信令是该 UE的 PDCCH信令后, 进一步做后 续的处理。 PDCCH信令中携带了指示物理数据信道(物理数据信道可以是上 行或下行) 的时频资源分配信息。
一个搜索空间是一串逻辑上连续的 CCE的集合, CCE是组成 PDCCH信 令的最小单元。 UE的 PDCCH信令可以釆用四种 CCE等级来传输,分别是 1、 2、 4和 8, 不同的 CCE等级具有不同的编码速率。 不同 CCE等级的 PDCCH 信令具有不同的搜索空间, 但是在物理上, 不同 PDCCH信令的搜索空间可 以交叠, 即不同的搜索空间中可以包括部分或全部相同标号的 CCE。
搜索空间可以分成 CSS ( Common Search Space公共搜索空间)和 UESS ( UE-specific Search Space UE特定搜索空间 ), CSS和 UESS是不同的搜索空 间, 但在物理上可以交叠, 即不同的搜索空间中可以包括部分或全部相同标 号的 CCE。 CSS是所有 UE都需要检测的空间, CSS包括 16个 CCE, 只能传 输 CCE等级为 4或 8的 PDCCH信令, 与这两种 CCE等级对应的 CSS内的 搜索次数分别为 4和 2 ( 4*4=8*2=16 )。 每一个 UE有一个特定的 UESS, 每 个 UESS由特定的 RNTI和子帧号来确定, UESS可以包含的 CCE等级为 1、 2、 4和 8, 与这四种 CCE等级相对应的 UESS内的搜索次数分别为 6、 6、 2 和 2。
PDCCH信令根据调度数据的传输方式、 资源分配方式等的不同, 会有不 同的下行控制信息 ( Downlink Control Information, 简称 DCI )格式。 例如包 括 DCI格式 0、 DCI格式 1A、 DCI格式 1B、 DCI格式 1C、 DCI格式 1D、 DCI格式 1、 DCI格式 2、 DCI格式 2A、 DCI格式 2、 DCI格式 3A等等, 不 同 DCI格式的 PDCCH信令的长度通常是不同的, 在 PDCCH信令上加扰的 RNTI也可以不同。在一些情况下, 不同 DCI格式的 PDCCH信令的长度可能 是相同的。
调度一些多用户公用的信息的 PDCCH信令可以放在 CSS中传输, 对该 PDCCH信令加扰的 RNTI也可以是公用的 RNTI。 例如, 这些多用户公用的 RNTI可以是寻呼 RNTI ( Paging RNTI )、 系统信息 RNTI ( System Information RNTI ), 随机接入应答 RNTI ( RACH Response RNTI ) 或者发送功率控制 ( Transmission Power Control, 简称 TPC )相关的 RNTI。
使用特定 RNTI对 UE进行加扰的 PDCCH信令一般放在 UESS中传输, 例如使用半持续调度-小区 -RNTI ( Semi-Persistent Scheduling-Cell-RNTI, 简称 SPS-C-RNTI )或者小区 RNTI ( Cell-RNTI, 简称 C-RNTI )加扰的 PDCCH信 令。 DCI格式 1A的 PDCCH信令可以在 CSS中传输,该 PDCCH信令使用寻 呼 RNTI、系统信息 RNTI或随机接入应答 RNTI加扰。 DCI格式 1 A的 PDCCH 信令也可以在 UESS中传输, 该 PDCCH信令使用小区 RNTI或 SPS-C-RNTI 力口扰。
DCI格式 1A的 PDCCH信令的长度与 DCI格式 3、 DCI格式 3 A和 DCI 格式 0的 PDCCH信令的长度相同。 使用头区分比特来区别 DCI格式 1A的 PDCCH信令和 DCI格式 0的 PDCCH信令。 DCI格式 1A的 PDCCH信令和 DCI格式 0的 PDCCH信令, 与 DCI格式 3的 PDCCH信令和 DCI格式 3 A 的 PDCCH信令, 釆用不同的 RNTI加扰以示区别。
由小区 RNTI加扰和 SPS-C-RNTI加扰的 DCI格式 1A的 PDCCH信令, 可以在 UESS中传输, 也可以在 CSS中传输, 这样并不会导致 PDCCH信令 检测次数增加。 UE检测 PDCCH信令的次数和信令长度相关, 多一种信令长 度,就会多一系列的检测次数。 因为在 CSS中传输的 DCI格式 3或 DCI格式 3A的 PDCCH信令总是需要被检测, 而这两种 PDCCH信令又都与 DCI格式 0和 DCI格式 1 A的 PDCCH信令的长度相等,所以并不会导致 UE检测 PDCCH 信令的次数增加。
基站会根据数据传输方式、 资源分配方式等的不同, 通过半静态 RRC信 令为 UE配置 7种传输模式中的一种。 在每种传输模式下, UE都需要检测至 少两种 DCI格式的 PDCCH信令, 一种 DCI格式的 PDCCH信令是跟为 UE 当前分配的传输模式相关的, 另一种 DCI格式的 PDCCH信令是跟为 UE当 前分配的传输模式无关的 DCI格式 1A和 DCI格式 0的 PDCCH信令, 也就 是说, 不管为 UE分配的传输模式是什么, UE都需要检测 DCI格式 1A和 DCI格式 0的 PDCCH信令。 例如, 如果基站为 UE分配了传输模式 3 , 开环 多输入多输出 (Multiple Input Multiple Output, 简称 MIMO )传输模式, 则 UE需要检测 DCI格式 2A的 PDCCH信令 , UE还需要检测 DCI格式 0和 DCI 格式 1A的 PDCCH信令。 其中, DCI格式 2A的 PDCCH信令是与传输模式 3相关的。 如果基站为 UE分配了传输模式 4 , 闭环 MIMO传输模式, 则 UE 需要检测 DCI格式 2的 PDCCH信令, UE还需要检测 DCI格式 0和 DCI格 式 1A的 PDCCH信令。 其中, DCI格式 2的 PDCCH信令是与传输模式 4相 关的。
假设一种场景 A:在基站发送用于通知 UE当前的资源调度方式的半静态 RRC信令, 到基站收到 UE返回的 RRC连接重配置完成信令的这段时间, 以 及基站接收到 UE返回的 RRC连接重配置完成信令后, 当前载波的 CSS中不 包括 CIF的 DCI格式 0或 DCI格式 1A的 PDCCH信令的长度, 有可能和当 前载波上用于调度其他带宽小于当前载波的另一载波的 UESS 中的包括 CIF 的另一种格式的 PDCCH信令的长度相等, 如果 CSS和 UESS存在物理交叠 区域,将导致 UE错误地解析出在物理交叠区域搜索到的 PDCCH信令是用于 调度当前载波上的资源, 或错误地解析出该 PDCCH信令是用于调度带宽小 于当前载波的其他载波中的资源。
例如, 一条信令是当前载波 CC1的 CSS中不包括 CIF的 DCI格式 0或 1A的 PDCCH信令,另一条信令是当前载波 CC1上用于调度其他带宽小于载 波 CC1的载波 CC2的 UESS中包括 CIF的另一种格式的 PDCCH信令。 因为 被调度的载波 CC2的带宽小于载波 CC1的带宽,在 PDCCH信令中所需的资 源分配比特数就少, 那么, 当前载波 CC1的 CSS中不包括 CIF的 DCI格式 0 或 1A的 PDCCH信令的长度, 可能和当前载波 CC1上用于调度其他带宽小 于载波 CC1的载波 CC2的 UESS中包括 CIF的另一种格式的 PDCCH信令长 度相等。在 CSS和 UESS存在物理交叠区域时, UE可能会错误地解析在物理 交叠区域搜索到的 PDCCH信令是用于调度载波 CC1中的资源的, 或错误地 解析出该 PDCCH信令是用于调度载波 CC2中的资源的。
以下行数据为例, 一旦 UE错误地解析 PDCCH信令, 将会在错误的载波 上接收下行数据, 后续 UE可能向基站反馈一个不确认(NACK )信息, 基站 会把原来的数据重新发送, 但是 UE仍然不确定如何正确解析 PDCCH信令, UE仍然不能正确接收数据, UE的緩存区中一直保留着错误数据, 直到基站 达到最大重传次数为止, 这样就导致了 UE 的混合自动重传请求 (Hybrid Automatic Repeat-reQuest , 简称 HARQ )緩存污染。
下面详细介绍本发明实施例的如何解决上述的问题。 在本发明的各实施 例中, 例如, 可以假设, 在 CCS这种数据资源调度方式下, 在 CSS中传输的 DCI格式 1A或 DCI格式 0的 PDCCH信令中不包括 CIF, 并且该 DCI格式 1A或 DCI格式 0的 PDCCH信令只可以调度该 PDCCH信令当前所在载波或 与该载波对应的上行载波上的资源。 或者, 也可以 4艮设, 在 CCS这种资源调 度方式下,在某个 UESS中传输的 PDCCH信令中不包括 CIF,并且该 PDCCH 信令只可以调度该信令当前所在载波或与该载波对应的上行载波上的资源。 当然还可以包括其他的一些场景。
如图 1所示为本发明 PDCCH信令发送方法一个实施例的流程图, 包 括:
步骤 101、 基站确定第一搜索空间和第二搜索空间的位置。 第一搜索 空间中传输的 PDCCH信令可以不包括 CIF, 第一搜索空间可以是 CSS和 / 或 UESS, 第二搜索空间中传输的信令可以包括 CIF, 第二搜索空间可以是 UESS。
上述第一搜索空间可以是 CSS和 UESS中的至少一个。
步骤 102、 如果第一搜索空间中不包括 CIF的 PDCCH信令的长度, 与第二搜索空间中包括 CIF的 PDCCH信令长度相等, 且第一搜索空间和 第二搜索空间存在物理交叠区域, 则在物理交叠区域内, 基站发送不包括 CIF的 PDCCH信令给 UE。
基站可以通过确定不同的搜索空间中包括部分或全部相同标号的 CCE, 以确定不同 PDCCH信令的搜索空间可以交叠, 即该部分或全部相 同标号的 CCE就是物理交叠区域。
所述方法还可以包括: 根据所述第一搜索空间和第二搜索空间的位置, 确定所述第一搜索空 间和第二搜索空间的物理交叠区域。
作为一个例子, 所述确定所述第一搜索空间和第二搜索空间的物理交 叠区域, 包括:
确定所述第一搜索空间和第二搜索空间包括至少一个相同标号的
CCE, 所述至少一个相同标号的 CCE为所述物理交叠区域。
基站发送的 PDCCH信令中可以包括资源分配信息以及其他的控制信 息, 例如, 可以包括载波激活或去激活信息, 可以包括用于触发物理随机 接入过程的信息。
作为一个例子, 在用户设备的搜索空间的除上述物理交叠区域外的其 他物理区域中, 基站对 PDCCH信令的发送可以按照现有的方式来处理, 在此不再详细描述。
如图 1所示的实施例限制两个搜索空间的物理交叠区域用于传输其中 一个搜索空间 PDCCH信令, 其实是一种搜索空间正交化的方法。 还可以 釆用另一种搜索空间正交化的方法, 即使得两个搜索空间不交叠, 从而解 决由于第一搜索空间中不包括 CIF的 PDCCH信令的长度与第二搜索空间 中包括 CIF的 PDCCH信令长度相等导致的基站的调度模糊问题, 例如如 果 CSS与 UESS发生物理交叠, 则还可以不改变 CSS和 UESS的 CCE大 小, 且固定 CSS位置不变, 通过一个配置参数使得 UESS与 CSS不交叠, 具体地, 可以使 UESS与 CSS连续放置。
由于在基站在进行 RRC配置前后都使用不包括 CIF的 PDCCH信令进 行调度, 使得基站在 RRC配置前后对 PDCCH信令调度方式一致, 避免了 调度模糊。 而 UE在进行 RRC配置前后使用不包括 CIF的 PDCCH信令进 行解析,从而使得基站侧对 PDCCH信令调度与 UE侧对 PDCCH信令解析 保持一致, 而不会出现解析错误。 例如, 当 UE没有正确接收该 RRC配置 信令, 则 UE仍会按照不包括 CIF的 PDCCH信令的解析规则做解析时, 如果基站已经按照新配置的包括 CIF的 PDCCH信令进行调度了,因此 UE 会出现解析错误; 反之, 如果 UE正确接收了该 RRC配置信令, 但基站仍 按照不包括 CIF的 PDCCH信令进行调度, 则 UE会按照有 CIF的 PDCCH 信令的解析规则进行解析, 因此会出现解析错误;
因此, 上述在物理交叠区域只发送没有 CIF的 PDCCH信令的方法, 没 有模糊度, UE也不会解析错误。
如图 5所示为本发明 PDCCH信令接收方法一个实施例的流程图, 包 括:
步骤 501、 如果第一搜索空间中不包括 CIF的 PDCCH信令的长度, 与第二搜索空间中包括 CIF的 PDCCH信令长度相等, 并且第一搜索空间 和第二搜索空间存在物理交叠区域, 则在物理交叠区域内, UE接收基站 发送的不包括 CIF的 PDCCH信令。
步骤 502、 根据设置的规则解析 PDCCH信令。 该设置的规则可以规定基 站和 UE根据 PDCCH信令中各个字段的按照预先约定好的含义来解析。
如果基站发送的 PDCCH信令中不包括 CIF, 那么 UE接收到 PDCCH 信令后, 可以按照 PDCCH信令中不包括 CIF的解析规则来解析。 UE具体 釆用什么样的解析规则, 可以由 UE和基站事先协商好。
上述的实施例中, 在第一搜索空间中不包括 CIF的 PDCCH信令的长 度, 与第二搜索空间中包括 CIF的 PDCCH信令长度相等, 并且第一搜索 空间和第二搜索空间存在物理交叠区域的情况下, 要求基站发送不包括 CIF的 PDCCH信令给 UE ,这样,发送给 UE的始终是不包括 CIF的 PDCCH 信令, UE就可以确定在物理交叠区域接收到的 PDCCH信令一定是不包括 CIF的, PDCCH信令中分配的资源也确定是用于承载该 PDCCH信令的载 波上的资源, 也就不会导致 UE解析错误。
例如,在基站发送用于通知 UE当前的资源调度方式的半静态 RRC信令, 到基站收到 UE返回的配置确认完成信令的这段时间,以及基站接收到 UE反 馈的配置确认完成信令后, 如果 UE 中用于承载 PDCCH信令的当前载波的 CSS中不包括 CIF的 DCI格式 0或 DCI格式 1A的 PDCCH信令的长度, 和 当前载波上用于调度其他带宽小于当前载波的另一载波的该 UE的 UESS中包 括 CIF的另一种格式的 PDCCH信令的长度相等, 并且 CSS和 UESS存在物 理交叠区域, 那么, 基站在物理交叠区域发送不包括 CIF的 PDCCH信令, 并且该信令中携带针对 UE的资源分配信息。 在一个实施例中, UE可以和基 站事先协商好,在物理交叠区域中发送的 PDCCH信令中均不包括 CIF,那么, UE接收到 PDCCH信令后就可以确定该 PDCCH信令一定是不包括 CIF的, 该 PDCCH信令中分配的资源也确定是用于承载该 PDCCH信令的载波上的资 源, 也就不会导致 UE解析错误。
如图 1和图 5所示的实施例中, 第一搜索空间可以是 CSS, 第二搜索空 间是 UE的特定 UESS, 并且第一搜索空间和第二搜索空间的 CCE等级可以 是 4或 8。 或者, 第一搜索空间和第二搜索空间包括用于调度 UE的不同成员 载波的两个 UESS。
如前所述, 上述 UE可以通过确定不同的搜索空间中包括部分或全部相 同标号的 CCE, 以确定不同 PDCCH信令的搜索空间可以交叠, 即该部分或 全部相同标号的 CCE就是物理交叠区域。
上述方法还可以包括:
确定所述 UE的第一搜索空间和第二搜索空间的位置;
根据所述第一搜索空间和第二搜索空间的位置, 确定所述第一搜索空间 和第二搜索空间的物理交叠区域。
作为一个例子, 所述确定所述第一搜索空间和第二搜索空间的物理交 叠区域, 包括:
确定所述第一搜索空间和第二搜索空间包括至少一个相同标号的 CCE , 所述至少一个相同标号的 CCE为所述物理交叠区域。
上述 UE 可以获知上述第一搜索空间中不包括载波指示字域 CIF 的 PDCCH信令的长度, 与上述第二搜索空间中包括 CIF的 PDCCH信令的长度 相等。 例如, 如前所述, 基站会根据数据传输方式、 资源分配方式等的不同, 通过半静态 RRC信令为 UE配置 7种传输模式中的一种, UE都需要检测至 少两种 DCI格式的 PDCCH信令, 通过检测可以获知上述 PDCCH信令的长 度。
如图 1所示的实施例中, 如果第一搜索空间是 CSS , 第二搜索空间是 UESS , 对第二搜索空间限制不是很大, 因为在第二搜索空间, 即使由于 CCE等级为 4或 8的 PDCCH信令长度与 CSS中的不加 CIF的 PDCCH信令长度 相等, 从而造成基站在物理交叠区域无法调度上述 PDCCH信令, 但基站还 可以在物理交叠区域传输 CCE等级为 1或 2的上述 PDCCH信令。 即使 CCE等 级为 4的 PDCCH信令长度与 CSS中的不加 CIF的 PDCCH信令长度相等而造 成基站在物理交叠区域无法调度上述 PDCCH ,但如果在第二搜索空间中传 输 CCE等级为 8的 PDCCH信令, 该第二搜索空间没有跟 CSS交叠,基站还有 可能调度该 CCE等级为 8的 PDCCH信令。
在上面的实施例中, 在基站下发 RRC信令, 到基站接收到 UE反馈的 RRC连接重配置完成信令的这段时间内, 基站能够清楚地知道用户终端按 照哪种方式进行接收,从而解决了导致基站发射的控制信令在 UE侧解析错 误的问题。
另外, 完全保留了第一搜索空间的全部调度自由度, 即没有对第一搜 索空间产生任何调度限制, 因此最大化的解决了 RRC重配置期间基站的调 度模糊的问题。
如图 2所示为本发明 PDCCH信令发送方法另一个实施例的流程图, 包括:
步骤 201、 基站确定第一搜索空间和第二搜索空间的位置。
步骤 202、 如果所述第一搜索空间中的第一 PDCCH信令的长度, 与 所述第二搜索空间中第二 PDCCH信令的长度相等, 所述第一 PDCCH信 令为不包括载波指示字域 CIF的 PDCCH信令, 所述第二 PDCCH信令为 包括 CIF的 PDCCH信令, 并且所述第一搜索空间和第二搜索空间存在物 理交叠区域, 则在所述物理交叠区域内, 在向所述 UE发送无线资源控制 RRC信令到接收到所述 UE反馈的 RRC连接重配置完成信令的时间间隔 内,发送第三 PDCCH信令或第四 PDCCH信令给所述 UE,所述第三 PDCCH 信令为不包括 CIF的 PDCCH信令, 所述第四 PDCCH信令为包括 CIF的 PDCCH信令, 且所述第三 PDCCH信令的信令长度与所述第四 PDCCH信 令的信令长度不相等, 所述第三 PDCCH信令的长度不同于所述第一
PDCCH信令的长度,所述第四 PDCCH信令的长度不同于所述第一 PDCCH 信令的长度。 基站接收到 UE返回的 RRC连接重配置完成信令后, 基站发 送所述第二 PDCCH信令, 即包括 CIF的 PDCCH信令给 UE。 上述第三 PDCCH信令或第四 PDCCH信令可以为除了第一 PDCCH信令和第二
PDCCH信令之外的其他种类的 PDCCH信令,上述所述基站发送的除了第 一 PDCCH信令和第二 PDCCH信令之外的其他种类的 PDCCH信令,是基 站确知不会被 UE错误地解析的 PDCCH信令。 例如, 当前每种传输模式 下有两种格式的 PDCCH信令, 对于被跨载波调度的载波对应的某种传输 模式下的两种 PDCCH信令(加 CIF ) , 假设其中一种与 PDCCH所在载波 的 CSS中不加 CIF的某种格式的 PDCCH信令长度相等,则 eNB可以发送 当前模式下的另外一种 PDCCH信令, 其信令长度不等于 PDCCH所在载 波的 CSS中不加 CIF的某种格式的 PDCCH信令长度, 此时 UE不会错误 的解析该 PDCCH信令。 或者, PDCCH所在载波的 CSS中可能也存在两 种不加 CIF的 UE特定的 PDCCH信令, 其中一种可能被 UE错误的解析, 则基站可以发送另一种不加 CIF的 PDCCH信令给 UE。
如图 6所示为本发明 PDCCH信令接收方法另一个实施例的流程图, 包括:
步骤 601、 如果第一搜索空间中不包括 CIF的 PDCCH信令的长度, 与第二搜索空间中包括 CIF的 PDCCH信令长度相等, 并且第一搜索空间 和第二搜索空间存在物理交叠区域, 则在物理交叠区域内, 在 UE正确解 析 RRC信令后, UE接收基站发送的包括 CIF的 PDCCH信令。
步骤 602、 UE只根据设置的对包括 CIF的 PDCCH信令的解析规则解 析所述的包括 CIF的 PDCCH信令。
如果基站发送的 PDCCH信令中包括 CIF, 那么 UE接收到 PDCCH信 令后, 可以按照 PDCCH信令中包括 CIF的解析规则来解析。 UE具体釆用 什么样的解析规则, 可以由 UE和基站事先协商好。
上述的实施例中, 在第一搜索空间中不包括 CIF的 PDCCH信令的长 度, 与第二搜索空间中包括 CIF的 PDCCH信令长度相等, 并且第一搜索 空间和第二搜索空间存在物理交叠区域的情况下,在基站发送 RRC信令到 接收到 UE反馈的确认信令的时间间隔内, 基站不可以发送上述包括 CIF 的 PDCCH信令, 因为 UE可能没有接收正确 RRC配置信令, 那么 UE会 认为接收到的 PDCCH信令不包括 CIF , 从而导致解析错误。 所以基站接 收到 UE返回的配置确认完成信令后, 可以发送上述包括 CIF的 PDCCH 信令给 UE; 但是在基站发送 RRC信令到接收到 UE反馈的确认信令的时 间间隔内, 基站只可以发送除了第一 PDCCH信令和第二 PDCCH信令之 外的其他种类的 PDCCH信令给 UE。 而对于 UE侧, 在 UE正确解析 RRC 配置信令后, UE只接收上述基站发送的包括 CIF的 PDCCH信令。
如图 2所示的实施例中, 第一搜索空间可以是 CSS, 第二搜索空间是 UE 的特定 UESS, 并且第一搜索空间和第二搜索空间的 CCE等级是 4或 8。 或 者, 第一搜索空间和第二搜索空间包括用于调度 UE 的不同成员载波的两个 UESS。
如果第一搜索空间是 CSS , 第二搜索空间是 UESS , 则釆用如图 2所示 的实施例中的方法, 不会增加第一搜索空间的 PDCCH信令的检测次数。 另 外, 由于第二搜索空间的调度自由度较第一搜索空间的大 (因为第二搜索 空间可以实现跨载波调度, 而第一搜索空间只允许同载波调度) , 因此本 方案完全保留了第二搜索空间的全部调度自由度, 没有对第二搜索空间产 生任何调度限制。
如图 3所示为本发明 PDCCH信令发送方法另一个实施例的流程图, 包括:
步骤 301、 基站确定第一搜索空间和第二搜索空间的位置。
步骤 302、 如果第一搜索空间中的第一 PDCCH信令的长度, 与第二 搜索空间中的第二 PDCCH信令的长度相等, 所述第一 PDCCH信令为不 包括载波指示字域 CIF的 PDCCH信令,所述第二 PDCCH信令为包括 CIF 的 PDCCH信令, 第一搜索空间和第二搜索空间存在物理交叠区域, 则在 所述物理交叠区域内,在基站发送 RRC信令到接收到 UE反馈的确认信令 的时间间隔内, 基站发送除了第一 PDCCH信令和第二 PDCCH信令之外 的其他种类的 PDCCH信令给 UE。
上述除了第一 PDCCH信令和第二 PDCCH信令之外的其他种类的 PDCCH信令可以是第三 PDCCH信令或第四 PDCCH信令, 所述第三
PDCCH信令为不包括 CIF的 PDCCH信令, 所述第四 PDCCH信令为包括 CIF的 PDCCH信令, 且所述第三 PDCCH信令的信令长度与所述第四
PDCCH信令的信令长度不相等。
如图 3所示的实施例, 可以解决如下场景 B中存在的问题。
例如, 一个场景 B: 如果调度两个载波的 PDCCH信令在一个载波上 有各自独立的 UESS , 且这两个 UESS有物理重叠区域时, 在基站发送用 于通知 UE当前的资源调度方式的半静态 RRC信令后到基站收到 UE返回 的配置确认完成信令的这段时间内,也会存在基站调度模糊的问题。例如, 在发送之前, UE的资源调度方式是 SCS , 基站传输给 UE的 PDCCH信令 中不包括 CIF。 在 UE接收到用于通知 UE当前的资源调度方式的半静态 RRC信令之后, UE的资源调度方式变为 CCS。 而在基站没有收到 UE反 馈的配置确认完成信令的这段时间内, 基站不确定发送给 UE的 PDCCH 信令中是否需要包括 CIF, 这样就导致了基站的调度模糊。 而当 UE正确 接收了基站的 RRC配置信令切换到了 CCS模式, 则上述两个 UESS中调 度的 PDCCH都会加 CIF, 会自动区分调度不同载波的 PDCCH信令, 即使 两个都有 CIF的 PDCCH的信令长度相等, 也不会产生上述问题。
针对场景 B的这种情况,不能通过限制基站在发送半静态 RRC信令到接 收到 UE返回的确认信令的时间间隔内,只发送包括 CIF的 PDCCH信令或不 包括 CIF的 PDCCH信令来解决。 如果限制基站在发送半静态 RRC信令到接 收到 UE 反馈的配置完成确认信令的时间间隔内, 只发送不包括 CIF 的 PDCCH信令, 而 UE已经正确解析了半静态 RRC信令,则 UE会认为接收到 的 PDCCH信令中包括 CIF, 从而导致 UE解析错误。 如果限制基站在发送半 静态 RRC信令到接收到 UE反馈的 RRC连接重配置完成信令的时间间隔内, 只发送包括 CIF的 PDCCH信令, 而 UE并没有正确解析半静态 RRC信令, 那么 UE会认为接收到的 PDCCH信令不包括 CIF, 从而导致 UE解析错误。
如果釆用如图 3 所示的实施例, 基站在物理交叠区域发送除了第一 PDCCH信令和第二 PDCCH信令之外的其他种类的 PDCCH信令, 那么就可 以避免基站的调度模糊, 也可以避免 UE的解析错误。
在基站接收到 UE反馈的 RRC连接重配置完成信令之后, UE的资源调 度方式变为 CCS, 即使 UE的两个 UESS存在物理交叠区域, 由于 CCS模式 下的 PDCCH信令中都包括 CIF, 基站也不会存在调度模糊的问题, UE也不 会发生解析错误。
如图 3所示的实施例中, 第一搜索空间和所述第二搜索空间包括用于调 度 UE的不同成员载波的两个 UESS。
釆用如图 3所示的实施例中的方法, 通过基站自身实现的方法解决了 UE错误解析 PDCCH的问题, 而无需规定 UE的任何行为, 也就是说对 UE的操作没有任何影响, 方法简单, 操作简便。 在一个实施例中, 一个 UE的两个成员载波 CC1和 CC2, PDCCH信 令放在 CC1上发送, CC1包括搜索空间 CSS、 搜索空间 UESS1以及搜索 空间 UESS2 , CC1上的 CSS中的 PDCCH信令用于调度该成员载波 CC1 , 且该 PDCCH信令不包括 CIF, CC1上 UESS1中的 PDCCH信令用于调度 该成员载波 CC1 , 且该 PDCCH信令不包括 CIF, CC1上的 UESS2中的 PDCCH信令用于跨载波调度 CC2 , 且该 PDCCH信令包括 CIF。
在一种情况下, 当 UESS1中不包括 CIF的 PDCCH信令的长度, 与 UESS2中包括 CIF的 PDCCH信令的长度相等, 且 UESS1与 UESS2存在 物理交叠区域时, 在该物理交叠区域内, 基站发送不包括 CIF的 PDCCH 信令给 UE; 且 CSS中不包括 CIF的 PDCCH信令的长度, 与 UESS2中包 括 CIF的 PDCCH信令的长度相等, 且 CSS与 UESS2存在物理交叠区域 时, 在该物理交叠区域内, 基站发送包括 CIF的 PDCCH信令给 UE, 则当 UESS1中不包括 CIF的 PDCCH信令的长度, UESS2中包括 CIF的 PDCCH 信令的长度, 与 UESS1中不包括 CIF的 PDCCH信令的长度三者相等, 在 三者共同的物理交叠区域中, 存在调度模糊的问题。
或者,
当 UESS1中不包括 CIF的 PDCCH信令的长度,与 UESS2中包括 CIF 的 PDCCH信令的长度相等, 且 UESS1与 UESS2存在物理交叠区域时, 在物理交叠区域内, 基站发送包括 CIF的 PDCCH信令给 UE; 且 CSS中 不包括 CIF的 PDCCH信令的长度, 与 UESS2中包括 CIF的 PDCCH信令 的长度相等, 且 CSS与 UESS2存在物理交叠区域时, 在物理交叠区域内, 基站发送不包括 CIF的 PDCCH信令给 UE, 则当 UESS1中不包括 CIF的 PDCCH信令的长度, UESS2中包括 CIF的 PDCCH信令的长度,与 UESS1 中不包括 CIF的 PDCCH信令的长度三者相等, 在三者共同的物理交叠区 域中, 存在调度模糊的问题。
基于上述情况, 在一个实施例中, 在上述三者的物理交叠区域, 基站 只发送不包括 CIF的 PDCCH信令给 UE; 或者基站只发送包括 CIF的 PDCCH信令给 UE。
如果三者的物理交叠区域内, 基站只发送不包括 CIF的 PDCCH信令 给 UE, 数据会优先调度在放置 PDCCH信道的载波 CC1上, 则保证了本 载波的调度优先级, 保证了 RRC重配置期间调度的平滑过渡;
如果三者的物理交叠区域内, 基站只发送包括 CIF的 PDCCH信令给 UE, 则保证了被跨载波调度的载波 CC2的 UESS的调度自由度。
一种物理下行控制信道 PDCCH信令发送方法, 包括:
确定用户设备 UE的第一搜索空间、 第二搜索空间以及第三搜索空间 的位置;
如果所述第一搜索空间中不包括载波指示字域 CIF的 PDCCH信令长 度, 与第三搜索空间中不包括 CIF的 PDCCH信令长度与所述第二搜索空 间中包括 CIF的 PDCCH信令长度相等, 并且所述第一搜索空间、 第二搜 索空间以及第三搜索空间存在物理交叠区域, 则在所述物理交叠区域内, 只发送包括 CIF的 PDCCH信令或只发送不包括 CIF的 PDCCH信令给所 述 UE。
一种物理下行控制信道 PD C C H信令接收方法, 包括:
如果所述第一搜索空间中不包括载波指示字域 CIF的 PDCCH信令长 度, 与第三搜索空间中不包括 CIF的 PDCCH信令长度与所述第二搜索空 间中包括 CIF的 PDCCH信令长度相等, 并且所述第一搜索空间、 第二搜 索空间以及第三搜索空间存在物理交叠区域, 则在所述物理交叠区域内, 接收基站发送的包括 CIF的 PDCCH信令或不包括 CIF的 PDCCH信令; 所述 UE根据设置的规则解析所述 PDCCH信令。
一种基站, 包括:
第六确定模块, 用于确定用户设备 UE的第一搜索空间、 第二搜索空 间以及第三搜索空间的位置; 第六发送模块, 用于如果所述第一搜索空间中不包括载波指示字域
CIF的 PDCCH信令长度,与第三搜索空间中不包括 CIF的 PDCCH信令长 度与所述第二搜索空间中包括 CIF的 PDCCH信令长度相等, 并且所述第 一搜索空间、 第二搜索空间以及第三搜索空间存在物理交叠区域, 则在所 述物理交叠区域内, 只发送包括 CIF的 PDCCH信令或只发送不包括 CIF 的 PDCCH信令给所述 UE。
一种用户设备 UE, 包括:
第七接收模块, 用于如果所述第一搜索空间中不包括载波指示字域 CIF的 PDCCH信令长度,与第三搜索空间中不包括 CIF的 PDCCH信令长 度与所述第二搜索空间中包括 CIF的 PDCCH信令长度相等, 并且所述第 一搜索空间、 第二搜索空间以及第三搜索空间存在物理交叠区域, 则在所 述物理交叠区域内,接收基站发送的包括 CIF的 PDCCH信令或不包括 CIF 的 PDCCH信令;
第七解析模块, 用于所述 UE根据设置的规则解析所述 PDCCH信令。 如图 4所示为本发明 PDCCH信令发送方法另一个实施例的流程图, 包括:
步骤 401、 基站确定第一搜索空间和第二搜索空间的位置。
步骤 402、 如果第一搜索空间中不包括 CIF的 PDCCH信令的长度, 与第二搜索空间中包括 CIF的 PDCCH信令的长度相等, 第一搜索空间和 第二搜索空间存在物理交叠区域, 则在物理交叠区域内, 基站在物理交叠 区域发送增加了一个比特之后的包括 CIF的 PDCCH信令给 UE。
该实施例中, 在第一搜索空间中不包括 CIF的 PDCCH信令的长度, 与第二搜索空间中包括 CIF的 PDCCH信令长度相等, 并且第一搜索空间 和第二搜索空间存在物理交叠区域的情况下, 要求基站在物理交叠区域发 送增加了一个比特之后的包括 CIF的 PDCCH信令。 由于 UE接收到的包 括 CIF的 PDCCH信令比不包括 CIF的 PDCCH信令的长度多了一个比特, UE就可以确定, 信令长度较长的 PDCCH信令中包括 CIF, 也就可以避免 UE的解析错误。
例如,在基站发送用于通知 UE当前的资源调度方式的半静态 RRC信 令后到基站收到 UE反馈的 RRC连接重配置完成信令的这段时间, 以及基 站接收到 UE反馈的 RRC连接重配置完成信令后, 如果 UE中用于承载 PDCCH信令的当前载波的 CSS中不包括 CIF的 DCI格式 0或 DCI格式 1A的 PDCCH信令的长度, 和当前载波上用于调度其他带宽小于当前载波 的另一载波的该 UE的 UESS中包括 CIF的另一种格式的 PDCCH信令的 长度相等, 并且 CSS和 UESS存在物理交叠区域(仅限于 4或 8这两种 CCE级另 , 那么, 基站在物理交叠区域发送增加了一个比特之后的包括 CIF的 CSS模式下的 PDCCH信令给 UE。 这样 UE就可以确定接收到的 PDCCH信令中包括 CIF , 避免了 UE的解析错误。
假设第一搜索空间为 CSS , 第二搜索空间为 UESS , 则釆用如图 4所 示的实施例中的方法, 比特填充只会发生在 CSS中不包括 CIF的 PDCCH 信令的长度, 与 UESS中包括 CIF的 PDCCH信令长度相等, CSS和 UESS 存在物理交叠区域, 且只针对 CCE等级为 4或 8时, 且开销小, 也不会影 响 CSS中不包括 CIF的 PDCCH信令的长度, 可以保证 CSS中不包括 CIF 的 PDCCH信令能够与 LTE系统中的 PDCCH信令的格式相兼容。
由于不同 CCE等级的搜索空间可以物理交叠, 不同 CCE等级又对应 着信道编码的不同速率匹配, 所以当填充比特后的 PDCCH信令长度等于 某些特定长度时, 会导致不同 CCE等级的 PDCCH信令都通过 UE的
C-RNTI的校验, 即都会被 UE解析成自己的 PDCCH信令, 但基站发送的 PDCCH信令只能是其中一个 CCE等级的, 因此会发生 UE错误的解析 PDCCH信令的情况。 因此, 如果本发明实施例中填充了一个比特后的
PDCCH信令长度等于上述造成不同 CCE等级的 PDCCH信令都通过 UE 的 C-RNTI校验的信令长度时, 还要再填充一个比特来避免这种情况。 如图 7所示为本发明 PDCCH信令接收方法另一个实施例的流程图, 包括:
步骤 701、 如果第一搜索空间中不包括 CIF的 PDCCH信令长度, 与 第二搜索空间中包括 CIF的 PDCCH信令长度相等, 并且第一搜索空间和 第二搜索空间存在物理交叠区域, 则在物理交叠区域内, UE接收基站发 送的增加了一个比特之后的包括 CIF的 PDCCH信令。
步骤 702、 根据设置的规则解析该 PDCCH信令。
如果基站发送的 PDCCH信令是增加了一个比特之后的包括 CIF的 PDCCH信令 , 那么 UE接收到 PDCCH信令后 , 可以按照 PDCCH信令中 包括 CIF并且增加了一个比特的解析规则来解析。 UE具体釆用什么样的 解析规则, 可以由 UE和基站事先协商好。
在一个实施例中, 基站可以确定用户设备 UE的第一搜索空间和第二 搜索空间的位置, 如果在所述第一搜索空间中不包括载波指示字域 CIF的 PDCCH信令的长度,与所述第二搜索空间中包括 CIF的 PDCCH信令的长 度相等, 并且所述第一搜索空间和第二搜索空间存在物理交叠区域的情况 下, 在所述物理交叠区域内, 在接收到所述 UE发送的无线资源控制 RRC 连接重配置完成信令之后, 只向所述 UE发送所述的包括 CIF的 PDCCH 信令;
所述第一搜索空间是公共搜索空间 CSS,所述第二搜索空间是所述 UE 的用户设备特定搜索空间 UESS。
在一个实施例中, 如果第一搜索空间中不包括 CIF的 PDCCH信令的 长度, 与第二搜索空间中包括 CIF的 PDCCH信令的长度相等, 并且第一 搜索空间和第二搜索空间存在物理交叠区域, 上述第一搜索空间中不包括 CIF的 PDCCH信令为第一信令, 上述第二搜索空间中包括 CIF的 PDCCH 信令为第二信令, 则在物理交叠区域内, 可以通过所述第一信令和第二信 令的 PDCCH中绝对位置固定的现有或冗余或填充的比特或状态来区分所 述第一信令和第二信令。 所述绝对位置固定, 是指该字段是该 PDCCH中 的位次确定的字段, 比如是除了 CRC比特位的最后一个比特位。
具体以 FDD系统中, 上下行载波带宽相等场景下的 DCI格式 0和 1A 为例, DCI格式 1A的除了 CRC比特的最后一个比特位是功率命令字段的 一个比特, DCI格式 0的除了 CRC比特的最后一个比特是一个填充比特, 默认为填充 "0" 。 可以规定所述最后一个比特为 "0" 时, 代表该 PDCCH 是所述第一信令, 为 " 时, 代表该 PDCCH是所述第二信令。 而如果所 述最后一个比特原来具有某种指示含义, 即该比特为非冗余或填充比特或 状态, 则可以限制该字段的解析, 或者通过 PDCCH中其它字段来表示该 比特的含义, 比如可以与调度下行数据的 PDCCH中的功率控制字段互换 含义。
在一个实施例中, 支持载波聚合的系统中, 上行控制信令(包括上行 ACK/NACK, 上行信道状态信息等) 都是在 UE特定的一个上行载波上反 馈的, 这个上行载波称为上行主载波, 与其成对的下行载波称为下行主载 波, 该 UE的其它下行载波称为下行非主载波。 上行控制信道的功率控制 的一种方法是通过用于调度下行数据的 PDCCH中的两个比特的功率控制 命令字段来控制的, 由于对应某 UE的所有下行载波的上行控制信道都只 在上行主载波上反馈, 因此只需要调度下行主载波的 PDCCH中的功率控 制命令字段做上行控制信道的功率控制即可,调度下行非主载波的 PDCCH 中的功率控制命令字段就冗余了, 则可以使得该冗余字段来表示上述区分 所述第一信令和第二信令的绝对位置固定的字段本身所具有的含义, UE 可以通过该绝对位置固定的字段来区分上述第一信令和第二信令, 并且可 以通过解析该冗余字段来得到该绝对位置固定的字段所要表示的含义。
如图 8所示为本发明基站的一个实施例的结构示意图,该基站 1包括: 第一确定模块 11和第一发送模块 12。 其中, 第一确定模块 11用于确定第 一搜索空间和第二搜索空间的位置。 第一发送模块 12, 用于在第一搜索空 间中不包括 CIF的 PDCCH信令长度, 与第二搜索空间中包括 CIF的
PDCCH信令长度相等, 并且第一搜索空间和第二搜索空间存在物理交叠 区域的情况下, 在物理交叠区域内, 只发送所述的不包括 CIF的 PDCCH 信令给 UE, 或者, 如果第一 PDCCH信令为第一搜索空间中不包括 CIF的 PDCCH信令, 第二 PDCCH信令为第二搜索空间中包括 CIF的 PDCCH信 令, 则发送增加了一个比特之后的包括 CIF的 PDCCH信令给 UE。 或者, 在基站发送 RRC信令到接收到 UE反馈的确认信令的时间间隔内,基站发 送除了第一 PDCCH信令和第二 PDCCH信令之外的其他种类的 PDCCH信 令给 UE; 基站接收到 UE返回的配置确认完成信令后, 基站只发送包括 CIF的 PDCCH信令给 UE。
在一个实施例中, 一种基站可以包括:
第三确定模块, 用于确定用户设备 UE的第一搜索空间和第二搜索空 间的位置;
第三发送模块, 用于在所述第三确定模块确定用户设备 UE的第一搜 索空间和第二搜索空间的位置之后, 如果在所述第一搜索空间中不包括载 波指示字域 CIF的 PDCCH信令的长度, 与所述第二搜索空间中包括 CIF 的 PDCCH信令的长度相等, 并且所述第一搜索空间和第二搜索空间存在 物理交叠区域的情况下, 在所述物理交叠区域内, 在接收到所述 UE发送 的无线资源控制 RRC连接重配置完成信令之后,只向所述 UE发送所述的 包括 CIF的 PDCCH信令。
上述第一搜索空间是公共搜索空间 CSS,所述第二搜索空间是所述 UE 的用户设备特定搜索空间 UESS。
如图 9所示为本发明基站的另一个实施例的结构示意图, 该基站 1包 括: 第二确定模块 13和第二发送模块 14。 其中, 第二确定模块 13用于确 定第一搜索空间和第二搜索空间的位置。 第二发送模块 14 , 在所述第二确 定模块确定所述 UE的第一搜索空间和第二搜索空间的位置后, 如果所述 第一搜索空间中的第一 PDCCH信令的长度, 与所述第二搜索空间中第二 PDCCH信令的长度相等, 所述第一 PDCCH信令为不包括载波指示字域 CIF的 PDCCH信令, 所述第二 PDCCH信令为包括 CIF的 PDCCH信令, 并且所述第一搜索空间和第二搜索空间存在物理交叠区域, 则在所述物理 交叠区域内, 在向所述 UE发送无线资源控制 RRC信令到接收到所述 UE 反馈的 RRC连接重配置完成信令的时间间隔内,发送第三 PDCCH信令或 第四 PDCCH信令给所述 UE, 所述第三 PDCCH信令为不包括 CIF的
PDCCH信令, 所述第四 PDCCH信令为包括 CIF的 PDCCH信令, 且所述 第三 PDCCH信令的信令长度与所述第四 PDCCH信令的信令长度不相等, 所述第三 PDCCH信令的长度不同于所述第一 PDCCH信令的长度, 所述 第四 PDCCH信令的长度不同于所述第一 PDCCH信令的长度。
图 9所示的实施例中,第一搜索空间和第二搜索空间包括用于调度 UE 的不同成员载波的两个 UESS。
如图 10所示为本发明 UE实施例的结构示意图, 该 UE2包括接收模 块 21和解析模块 22。 接收模块 21 , 用于在第一搜索空间中不包括 CIF的 PDCCH信令长度, 与第二搜索空间中包括 CIF的 PDCCH信令长度相等, 并且第一搜索空间和第二搜索空间存在物理交叠区域的情况下, 在物理交 叠区域内, 接收基站发送的不包括 CIF的 PDCCH信令, 或者, 接收基站 发送的增加了一个比特之后的包括 CIF的 PDCCH信令。解析模块 22用于 只根据设置的对不包括 CIF的 PDCCH信令的解析规则解析接收模块 21接 收到的 PDCCH信令。 或者, 在 UE正确解析 RRC信令后, UE只接收上 述基站发送的包括 CIF的 PDCCH信令。
在一个实施例中, 用户设备 UE还可以包括:
第二接收模块, 用于在所述 UE的第一搜索空间中不包括载波指示字 域 CIF的 PDCCH信令的长度, 与所述 UE的第二搜索空间中包括 CIF的 PDCCH信令的长度相等, 并且所述第一搜索空间和第二搜索空间存在物 理交叠区域的情况下, 在所述物理交叠区域内, 在所述 UE正确解析了来 自于基站的无线资源控制 RRC信令后,接收所述的包括 CIF的 PDCCH信 令;
第二解析模块, 用于只根据设置的对包括 CIF的 PDCCH信令的解析 规则解析所述接收模块接收到的所述包括 CIF的 PDCCH信令。
本发明实施例还提供一种通信系统, 可以包括如图 8所示的基站和如 图 10所示的 UE, 基站釆用如前述方法实施例中所述的方法向 UE发送 PDCCH信令, UE釆用如前述方法实施例中所述的方法接收基站发送的 PDCCH信令。
本发明还提供一种通信系统, 可以包括 UE和如图 9所示的 UE, 基站 釆用如前述方法实施例中所述的方法向 UE发送 PDCCH信令, UE可以按 照现有的方法接收基站发送的 PDCCH信令。
本发明实施例提供的基站及 UE, 如果第一搜索空间中不包括 CIF的 PDCCH信令的长度,与第二搜索空间中包括 CIF的 PDCCH信令长度相等, 第一搜索空间和第二搜索空间存在物理交叠区域, 则限制基站在物理交叠 区域发送不包括 CIF的 PDCCH信令给 UE。
或者,在基站发送 RRC信令到接收到 UE反馈的确认信令的时间间隔 内, 基站发送除了第一 PDCCH信令和第二 PDCCH信令之外的其他种类 的 PDCCH信令给 UE; 基站接收到 UE返回的配置确认完成信令后, 基站 发送包括 CIF的 PDCCH信令给 UE。
或者, 如果第一搜索空间中不包括 CIF的第一 PDCCH信令的信令的 长度,与第二搜索空间中包括 CIF的第二 PDCCH信令的信令的长度相等, 并且第一搜索空间和第二搜索空间存在物理交叠区域, 则在物理交叠区域 内, 在基站发送半静态 RRC信令到接收到 UE反馈的 RRC连接重配置完 成信令的时间间隔内, 基站发送除了第一 PDCCH信令和第二 PDCCH信 令之外的其他种类的 PDCCH信令给 UE ,这样就可以避免基站的调度模糊, 从而避免 UE的解析错误。 在一个实施例中, 基站确定第一搜索空间和第二搜索空间的位置, 如 果第一搜索空间中不包括 CIF的 PDCCH信令的长度, 与第二搜索空间中 包括 CIF的 PDCCH信令长度相等, 第一搜索空间和第二搜索空间存在物 理交叠区域, 则在物理交叠区域内, 基站发送包括 CIF的 PDCCH信令给 UE。
如果第一搜索空间中不包括 CIF的 PDCCH信令的长度, 与第二搜索 空间中包括 CIF的 PDCCH信令长度相等, 并且第一搜索空间和第二搜索 空间存在物理交叠区域, 则在物理交叠区域内, UE接收基站发送的包括 CIF的 PDCCH信令, 根据设置的规则解析 PDCCH信令。
如果基站发送的 PDCCH信令中包括 CIF, 那么 UE接收到 PDCCH信 令后, 可以按照 PDCCH信令中包括 CIF的解析规则来解析。 UE具体釆用 什么样的解析规则, 可以由 UE和基站事先协商好。
上述的实施例中, 在第一搜索空间中不包括 CIF的 PDCCH信令的长 度, 与第二搜索空间中包括 CIF的 PDCCH信令长度相等, 并且第一搜索 空间和第二搜索空间存在物理交叠区域的情况下, 要求基站发送包括 CIF 的 PDCCH信令给 UE , 这样, 发送给 UE的始终是包括 CIF的 PDCCH信 令, UE就可以确定在物理交叠区域接收到的 PDCCH信令一定是包括 CIF 的, PDCCH信令中分配的资源也确定是用于承载该 PDCCH信令的载波上 的资源, 也就不会导致 UE解析错误。
例如,在基站发送用于通知 UE当前的资源调度方式的半静态 RRC信 令后到基站收到 UE返回的配置确认完成信令的这段时间, 以及基站接收 到 UE返回的配置确认完成信令后,如果 UE中用于承载 PDCCH信令的当 前载波的 CSS中不包括 CIF的 DCI格式 0或 DCI格式 1A的 PDCCH信令 的长度,和当前载波上用于调度其他带宽小于当前载波的另一载波的该 UE 的 UESS中包括 CIF的另一种格式的 PDCCH信令的长度相等, 并且 CSS 和 UESS存在物理交叠区域, 那么, 基站在物理交叠区域发送包括 CIF的 PDCCH信令, 并且该信令中携带针对 UE的资源分配信息。 在一个实施例 中, UE可以和基站事先协商好, 在物理交叠区域中发送的 PDCCH信令中 均包括 CIF。 那么, UE接收到 PDCCH信令后就可以确定该 PDCCH信令 一定是包括 CIF的, 根据该 PDCCH信令中的 CIF可以确定分配的资源是 哪个载波上的资源, 也就不会导致 UE解析错误。
第一搜索空间可以是 CSS, 第二搜索空间是 UE的特定 UESS, 并且第一 搜索空间和第二搜索空间的 CCE等级是 4或 8。 或者, 第一搜索空间和第二 搜索空间包括用于调度 UE的不同成员载波的两个 UESS。
如果第一搜索空间是 CSS , 第二搜索空间是 UESS , 则釆用如图 2所 示的实施例中的方法, 不会增加第一搜索空间的 PDCCH信令的检测次数。 另外, 由于第二搜索空间的调度自由度较第一搜索空间的大 (因为第二搜 索空间可以实现跨载波调度, 而第一搜索空间只允许同载波调度) , 因此 本方案完全保留了第二搜索空间的全部调度自由度, 没有对第二搜索空间 产生任何调度限制。
在一个实施例中, 提供一种基站, 该基站包括:
第四确定模块, 用于确定用户设备 UE的第一搜索空间和第二搜索空 间的位置;
第四发送模块, 用于在所述第一确定模块确定 UE的第一搜索空间和 第二搜索空间的位置后, 在所述第一搜索空间中不包括载波指示字域 CIF 的 PDCCH信令长度, 与所述第二搜索空间中包括 CIF的 PDCCH信令长 度相等, 并且所述第一搜索空间和第二搜索空间存在物理交叠区域的情况 下, 在所述物理交叠区域内, 发送包括 CIF的 PDCCH信令给所述 UE或 发送不包括 CIF的 PDCCH信令给所述 UE。
在一个实施例中, 提供一种用户设备 UE, 包括:
第四接收模块, 用于在第一搜索空间中不包括载波指示字域 CIF的 PDCCH信令长度, 与第二搜索空间中包括 CIF的 PDCCH信令长度相等, 并且所述第一搜索空间和第二搜索空间存在物理交叠区域的情况下, 在所 述物理交叠区域内, 接收基站发送的包括 CIF的 PDCCH信令或接收基站 发送的不包括 CIF的 PDCCH信令;
第四解析模块, 用于根据设置的规则解析所述接收模块接收到的
PDCCH信令。 本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序 代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要求 书
1、 一种物理下行控制信道 PDCCH信令发送方法,其特征在于, 包括: 确定用户设备 UE的第一搜索空间和第二搜索空间的位置;
如果所述第一搜索空间中不包括载波指示字域 CIF的 PDCCH信令的 长度, 与所述第二搜索空间中包括 CIF的 PDCCH信令的长度相等, 并且 所述第一搜索空间和第二搜索空间存在物理交叠区域, 则在所述物理交叠 区域内, 只发送所述的不包括 CIF的 PDCCH信令给所述 UE。
2、 根据权利要求 1所述的方法, 其特征在于, 所述第一搜索空间是公 共搜索空间 CSS , 所述第二搜索空间是所述 UE的用户设备特定搜索空间 UESS。
3、 根据权利要求 2所述的方法, 其特征在于, 所述第一搜索空间和所 述第二搜索空间中传输的 PDCCH信令的控制信道单元 CCE等级是 4或 8。
4、 根据权利要求 1所述的方法, 其特征在于, 所述第一搜索空间和所 述第二搜索空间包括用于调度所述 UE的不同成员载波的两个 UE S S。
5、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 根据所述第一搜索空间和第二搜索空间的位置, 确定所述第一搜索空 间和第二搜索空间的物理交叠区域。
6、 根据权利要求 5所述的方法, 其特征在于, 所述确定所述第一搜索 空间和第二搜索空间的物理交叠区域, 包括:
确定所述第一搜索空间和第二搜索空间包括至少一个相同标号的
CCE, 所述至少一个相同标号的 CCE为所述物理交叠区域。
7、 一种物理下行控制信道 PDCCH信令接收方法, 其特征在于, 包 括:
如果用户设备 UE的第一搜索空间中不包括载波指示字域 CIF的
PDCCH信令的长度, 与所述 UE的第二搜索空间中包括 CIF的 PDCCH信 令的长度相等, 并且所述第一搜索空间和所述第二搜索空间存在物理交叠 区域, 则在所述物理交叠区域内, 接收不包括 CIF的 PDCCH信令, 并只 根据设置的对不包括 CIF的 PDCCH信令的解析规则解析所述的不包括 CIF 的 PDCCH信令。
8、 根据权利要求 7所述的方法, 其特征在于, 所述第一搜索空间是公 共搜索空间 CSS , 所述第二搜索空间是用户设备 UE的用户设备特定搜索 空间 UESS。
9、 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括: 确定所述 UE的第一搜索空间和第二搜索空间的位置;
根据所述第一搜索空间和第二搜索空间的位置, 确定所述第一搜索空 间和第二搜索空间的物理交叠区域。
10、 根据权利要求 9所述的方法, 其特征在于, 所述确定所述第一搜 索空间和第二搜索空间的物理交叠区域, 包括:
确定所述第一搜索空间和第二搜索空间包括至少一个相同标号的
CCE, 所述至少一个相同标号的 CCE为所述物理交叠区域。
11、 一种物理下行控制信道 PDCCH信令发送方法, 其特征在于, 包 括:
确定用户设备 UE的第一搜索空间和第二搜索空间的位置;
如果在所述第一搜索空间中不包括载波指示字域 CIF的 PDCCH信令 的长度, 与所述第二搜索空间中包括 CIF的 PDCCH信令的长度相等, 并 且所述第一搜索空间和第二搜索空间存在物理交叠区域的情况下, 在所述 物理交叠区域内,在接收到所述 UE发送的无线资源控制 RRC连接重配置 完成信令之后, 只向所述 UE发送所述的包括 CIF的 PDCCH信令。
12、 根据权利要求 11所述的方法, 其特征在于,
所述第一搜索空间是公共搜索空间 CSS,所述第二搜索空间是所述 UE 的用户设备特定搜索空间 UESS。
13、 一种物理下行控制信道 PDCCH信令发送方法, 其特征在于, 包 括:
确定用户设备 UE的第一搜索空间和第二搜索空间的位置;
如果所述第一搜索空间中的第一 PDCCH信令的长度, 与所述第二搜 索空间中的第二 PDCCH信令的长度相等, 所述第一 PDCCH信令为不包 括载波指示字域 CIF的 PDCCH信令, 所述第二 PDCCH信令为包括 CIF 的 PDCCH信令, 并且所述第一搜索空间和第二搜索空间存在物理交叠区 域, 则在所述物理交叠区域内, 在向所述 UE发送无线资源控制 RRC信令 到接收到所述 UE反馈的 RRC连接重配置完成信令的时间间隔内,发送第 三 PDCCH信令或第四 PDCCH信令给所述 UE, 所述第三 PDCCH信令为 不包括 CIF的 PDCCH信令, 所述第四 PDCCH信令为包括 CIF的 PDCCH 信令, 且所述第三 PDCCH信令的信令长度与所述第四 PDCCH信令的信 令长度不相等, 所述第三 PDCCH信令的长度不同于所述第一 PDCCH信 令的长度, 所述第四 PDCCH信令的长度不同于所述第一 PDCCH信令的 长度。
14、 根据权利要求 13所述的方法, 其特征在于, 所述第一搜索空间和 所述第二搜索空间包括用于调度所述 UE的不同成员载波的两个用户设备 特定搜索空间 UESS。
15、 一种物理下行控制信道 PDCCH信令接收方法, 其特征在于, 包 括:
在用户设备 UE的第一搜索空间中不包括载波指示字域 CIF的 PDCCH 信令的长度, 与所述 UE的第二搜索空间中包括 CIF的 PDCCH信令的长 度相等, 并且所述第一搜索空间和所述第二搜索空间存在物理交叠区域, 则在所述物理交叠区域内, 在所述 UE正确解析了来自于基站的无线资源 控制 RRC信令后, 接收包括 CIF的 PDCCH信令, 并只根据设置的对包括 CIF的 PDCCH信令的解析规则解析所述的包括 CIF的 PDCCH信令。
16、 一种基站, 其特征在于, 包括: 第一确定模块, 用于确定用户设备 UE的第一搜索空间和第二搜索空 间的位置;
第一发送模块, 用于根据所述第一确定模块确定的所述 UE的第一搜 索空间和第二搜索空间的位置, 在所述第一搜索空间中不包括载波指示字 域 CIF的 PDCCH信令长度, 与所述第二搜索空间中包括 CIF的 PDCCH 信令长度相等, 并且所述第一搜索空间和第二搜索空间存在物理交叠区域 的情况下, 在所述物理交叠区域内, 只发送所述的不包括 CIF的 PDCCH 信令给所述 UE。
17、 一种基站, 其特征在于, 包括:
第二确定模块, 用于确定用户设备 UE的第一搜索空间和第二搜索空 间的位置;
第二发送模块, 用于根据所述第二确定模块确定所述 UE的第一搜索 空间和第二搜索空间的位置, 如果所述第一搜索空间中的第一 PDCCH信 令的长度, 与所述第二搜索空间中第二 PDCCH信令的长度相等, 所述第 一 PDCCH信令为不包括载波指示字域 CIF的 PDCCH信令, 所述第二 PDCCH信令为包括 CIF的 PDCCH信令,并且所述第一搜索空间和第二搜 索空间存在物理交叠区域, 则在所述物理交叠区域内, 在向所述 UE发送 无线资源控制 RRC信令到接收到所述 UE反馈的 RRC连接重配置完成信 令的时间间隔内, 发送第三 PDCCH信令或第四 PDCCH信令给所述 UE, 所述第三 PDCCH信令为不包括 CIF的 PDCCH信令,所述第四 PDCCH信 令为包括 CIF的 PDCCH信令, 且所述第三 PDCCH信令的信令长度与所 述第四 PDCCH信令的信令长度不相等, 所述第三 PDCCH信令的长度不 同于所述第一 PDCCH信令的长度, 所述第四 PDCCH信令的长度不同于 所述第一 PDCCH信令的长度。
18、 一种基站, 其特征在于, 包括:
第三确定模块, 用于确定用户设备 UE的第一搜索空间和第二搜索空 间的位置; 第三发送模块, 用于根据所述第三确定模块确定用户设备 UE的第一 搜索空间和第二搜索空间的位置, 如果在所述第一搜索空间中不包括载波 指示字域 CIF的 PDCCH信令的长度, 与所述第二搜索空间中包括 CIF的 PDCCH信令的长度相等, 并且所述第一搜索空间和第二搜索空间存在物 理交叠区域的情况下, 在所述物理交叠区域内, 在接收到所述 UE发送的 无线资源控制 RRC连接重配置完成信令之后,只向所述 UE发送所述的包 括 CIF的 PDCCH信令。
19、 一种用户设备 UE, 其特征在于, 包括:
接收模块,用于在第一搜索空间中不包括载波指示字域 CIF的 PDCCH 信令长度, 与第二搜索空间中包括 CIF的 PDCCH信令长度相等, 并且所 述第一搜索空间和第二搜索空间存在物理交叠区域的情况下, 在所述物理 交叠区域内, 接收基站发送的不包括 CIF的 PDCCH信令;
解析模块, 用于只根据设置的对不包括 CIF的 PDCCH信令的解析规 则解析所述接收模块接收到的 PDCCH信令。
20、 一种用户设备 UE, 其特征在于, 包括:
第二接收模块, 用于在所述 UE的第一搜索空间中不包括载波指示字 域 CIF的 PDCCH信令的长度, 与所述 UE的第二搜索空间中包括 CIF的 PDCCH信令的长度相等, 并且所述第一搜索空间和第二搜索空间存在物 理交叠区域的情况下, 在所述物理交叠区域内, 在所述 UE正确解析了来 自于基站的无线资源控制 RRC信令后,接收所述的包括 CIF的 PDCCH信 令;
第二解析模块, 用于只根据设置的对包括 CIF的 PDCCH信令的解析 规则解析所述接收模块接收到的所述包括 CIF的 PDCCH信令。
21、 一种通信系统, 包括如权利要求 16所述的基站和权利要求 19所 述的用户设备 UE。
22、 一种通信系统, 包括用户设备 UE和如权利要求 17所述的基站。
23、 一种物理下行控制信道 PDCCH信令发送方法, 其特征在于, 包 括:
确定用户设备 UE的第一搜索空间和第二搜索空间的位置;
如果所述第一搜索空间中不包括载波指示字域 CIF的 PDCCH信令长 度, 与所述第二搜索空间中包括 CIF的 PDCCH信令长度相等, 并且所述 第一搜索空间和第二搜索空间存在物理交叠区域, 则在所述物理交叠区域 内, 只发送包括 CIF的 PDCCH信令给所述 UE。
24、 一种物理下行控制信道 PDCCH信令接收方法, 其特征在于, 包 括:
如果第一搜索空间中不包括载波指示字域 CIF的 PDCCH信令长度, 与第二搜索空间中包括 CIF的 PDCCH信令长度相等, 并且所述第一搜索 空间和所述第二搜索空间存在物理交叠区域, 则在所述物理交叠区域内, 接收基站发送的只包括 CIF的 PDCCH信令;
根据设置的规则解析所述 PDCCH信令。
PCT/CN2011/070937 2010-02-11 2011-02-11 Pdcch信令发送和接收方法、基站、ue及系统 WO2011098044A1 (zh)

Priority Applications (13)

Application Number Priority Date Filing Date Title
EP11741915.0A EP2536204B1 (en) 2010-02-11 2011-02-11 Method, base station, user equipment and system for physical downlink control channel signalling transmission and reception
EP19162445.1A EP3534563A1 (en) 2010-02-11 2011-02-11 Method, base station, ue, and system for sending and receiving pdcch signaling
JP2012552251A JP5469751B2 (ja) 2010-02-11 2011-02-11 Pdcchシグナリングを送信及び受信する方法、基地局、ue、及びシステム
ES11741915.0T ES2450540T3 (es) 2010-02-11 2011-02-11 Método, estación base, equipo de usuario y sistema para la transmisión y la recepción de señales en el canal de control físico en el enlace descendente
KR1020127022122A KR101446639B1 (ko) 2010-02-11 2011-02-11 물리 다운링크 제어 채널 시그널링 송수신을 위한 방법, 기지국, 사용자 기기 및 시스템
BR112012020255-3A BR112012020255B1 (pt) 2010-02-11 2011-02-11 método, estação de base, ue e sistema para transmissão e recepção de sinalização pdcch
EP13183265.1A EP2672653B1 (en) 2010-02-11 2011-02-11 Method, base station, user equipment, and system for sending and receiving pdcch signaling
MX2012009276A MX2012009276A (es) 2010-02-11 2011-02-11 Metodo, estacion base, equipo de usuario, y sistema para enviar y recibir señalizacion pdcch.
US13/336,209 US8340069B2 (en) 2010-02-11 2011-12-23 Method, base station, UE, and system for sending and receiving PDCCH signaling
US13/685,092 US8879533B2 (en) 2010-02-11 2012-11-26 Method, base station, UE, and system for sending and receiving PDCCH signaling
US14/517,531 US9137794B2 (en) 2010-02-11 2014-10-17 Method, base station, UE, and system for sending and receiving PDCCH signaling
US14/851,449 US9510341B2 (en) 2010-02-11 2015-09-11 Method, base station, UE, and system for sending and receiving PDCCH signaling
US16/200,667 USRE49396E1 (en) 2010-02-11 2018-11-27 Method, base station, UE, and system for sending and receiving PDCCH signaling

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201010111643 2010-02-11
CN201010111643.5 2010-02-11
CN201010142160.1 2010-03-29
CN2010101421601A CN102158979A (zh) 2010-02-11 2010-03-29 Pdcch信令发送和接收方法、基站、ue及系统
CN201010165438.7A CN102231915B (zh) 2010-02-11 2010-04-30 Pdcch信令发送和接收方法、基站、ue及系统
CN201010165438.7 2010-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/336,209 Continuation US8340069B2 (en) 2010-02-11 2011-12-23 Method, base station, UE, and system for sending and receiving PDCCH signaling

Publications (1)

Publication Number Publication Date
WO2011098044A1 true WO2011098044A1 (zh) 2011-08-18

Family

ID=45934097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070937 WO2011098044A1 (zh) 2010-02-11 2011-02-11 Pdcch信令发送和接收方法、基站、ue及系统

Country Status (9)

Country Link
US (5) US8340069B2 (zh)
EP (6) EP3534563A1 (zh)
JP (2) JP5469751B2 (zh)
KR (1) KR101446639B1 (zh)
BR (1) BR112012020255B1 (zh)
ES (1) ES2450540T3 (zh)
MX (1) MX2012009276A (zh)
TR (1) TR201802552T4 (zh)
WO (1) WO2011098044A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050135A (ja) * 2011-11-04 2012-03-08 Sharp Corp 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
US8340069B2 (en) 2010-02-11 2012-12-25 Huawei Technologies Co., Ltd. Method, base station, UE, and system for sending and receiving PDCCH signaling
JP2013523022A (ja) * 2010-03-18 2013-06-13 クゥアルコム・インコーポレイテッド Lteにおけるpdcchペイロードサイズのあいまいさを解決する方法
JP2014053958A (ja) * 2013-11-13 2014-03-20 Sharp Corp 基地局装置、移動局装置、通信方法および集積回路
EP4007419A4 (en) * 2019-07-24 2022-08-17 Vivo Mobile Communication Co., Ltd. TRANSMISSION CONFIGURATION DETERMINATION METHOD, INFORMATION CONFIGURATION METHOD AND DEVICE

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862086B2 (ja) 2010-03-04 2012-01-25 シャープ株式会社 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
US9019922B2 (en) 2010-07-21 2015-04-28 Panasonic Intellectual Property Corporation Of America Base station, terminal, transmission method and reception method
US8902770B2 (en) * 2010-09-28 2014-12-02 Nokia Siemens Networks Oy Carrier indicator field usage and configuration in carrier aggregation
CN103891162B (zh) * 2011-10-19 2017-10-03 Lg电子株式会社 监测控制信道的方法和使用该方法的无线装置
WO2013081577A1 (en) * 2011-11-28 2013-06-06 Empire Technology Development Llc Scheduling for enhancing communication performance
US9756658B2 (en) * 2012-06-26 2017-09-05 Futurewei Technologies, Inc. System and method for contention-free random access
EP2871893B1 (en) * 2012-07-24 2018-05-02 Huawei Technologies Co., Ltd. Method for sending and receiving downlink control information, service node, and user equipment
CN103781177B (zh) * 2012-10-19 2018-10-30 株式会社Ntt都科摩 一种信息传输方法、装置及基站
WO2014090287A1 (en) * 2012-12-11 2014-06-19 Telefonaktiebolaget L M Ericsson (Publ) Pdcch resource utilization
PT2946521T (pt) 2013-01-16 2020-10-30 Ericsson Telefon Ab L M Método e aparelho para envio e receção de informação de controlo de ligação descendente
US10201005B2 (en) 2013-03-13 2019-02-05 Lg Electronics Inc. Method for transmitting and receiving control channel and device therefor
US9078241B2 (en) 2013-03-22 2015-07-07 Sharp Kabushiki Kaisha Systems and methods for establishing multiple radio connections
RU2624639C1 (ru) * 2013-06-27 2017-07-05 Хуавэй Текнолоджиз Ко., Лтд. Способ переключения несущей, базовая станция и пользовательское оборудование
CN104717748A (zh) * 2013-12-11 2015-06-17 北京三星通信技术研究有限公司 物理下行控制信道的资源分配方法和装置
CN105393576B (zh) 2014-06-20 2020-05-15 上海朋邦实业有限公司 一种数据传输方法及设备
JP6255642B2 (ja) * 2015-03-04 2018-01-10 シャープ株式会社 移動局装置、基地局装置、および通信方法
EP3319382B1 (en) 2015-07-01 2020-07-29 Fujitsu Limited Wireless communication system, communication terminal, base station and cell control method
EP3562086B1 (en) 2016-11-02 2021-06-30 Telefonaktiebolaget LM Ericsson (publ) Search space monitoring in wireless communication systems
JP6925438B2 (ja) * 2017-03-24 2021-08-25 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Mtc機器の電力消費を抑えるシグナリング指標
US10897753B2 (en) * 2017-05-04 2021-01-19 Sharp Kabushiki Kaisha Systems and methods for supporting multiple allocations in UL/DL grant for a 5G NR UE and gNB
US11974321B2 (en) * 2018-04-18 2024-04-30 Qualcomm Incorporated Search space configurations for random access messaging
US20200329504A1 (en) * 2019-04-11 2020-10-15 Mediatek Singapore Pte. Ltd. MsgB Format In Two-Step Random Access In Mobile Communications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547514A (zh) * 2008-03-25 2009-09-30 鼎桥通信技术有限公司 一种资源调度的方法
WO2010013970A2 (en) * 2008-08-01 2010-02-04 Lg Electronics Inc. Method and apparatus for transmitting data in multiple carrier system
CN101646202A (zh) * 2009-08-25 2010-02-10 普天信息技术研究院有限公司 一种半静态调度下行传输的实现方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2309362B (en) * 1996-01-20 2000-07-05 Northern Telecom Ltd Telecommunications system
EP2168295B1 (en) 2007-06-20 2012-07-25 Motorola Mobility, Inc. Method and device for candidate control channels
KR101448309B1 (ko) * 2007-09-28 2014-10-08 엘지전자 주식회사 무선통신 시스템에서 하향링크 제어채널 모니터링 방법
US8724636B2 (en) 2008-03-31 2014-05-13 Qualcomm Incorporated Methods of reliably sending control signal
US8326292B2 (en) 2008-06-03 2012-12-04 Innovative Sonic Limited Method and apparatus for determining dedicate searching space in physical downlink control channel
CN101505498B (zh) 2009-03-17 2014-02-05 中兴通讯股份有限公司 下行控制信息发送方法及相关系统、装置
US8625521B2 (en) * 2009-05-14 2014-01-07 Lg Electronics Inc. Apparatus and method for monitoring control channel in multi-carrier system
EP2453598A4 (en) * 2009-07-07 2015-08-19 Lg Electronics Inc METHOD AND APPARATUS FOR PROGRAMMING CARRIERS IN A MULTI-CARRIER SYSTEM
US9351293B2 (en) * 2009-09-11 2016-05-24 Qualcomm Incorporated Multiple carrier indication and downlink control information interaction
CN102859956B (zh) * 2009-10-30 2016-01-13 黑莓有限公司 减少使用载波聚合的通信的盲解码数目
KR101981024B1 (ko) * 2009-10-30 2019-05-21 블랙베리 리미티드 캐리어 집성을 이용하는 경우에서의 다운링크 제어 정보 세트 스위칭
KR101777416B1 (ko) * 2009-11-26 2017-09-27 엘지전자 주식회사 반송파 집성 시스템에서 단말의 통신 방법 및 단말
EP2514238A4 (en) * 2009-12-17 2016-03-09 Lg Electronics Inc APPARATUS AND METHOD FOR AVOIDING CONTROL CHANNEL BLOCKAGE
US9124406B2 (en) * 2009-12-29 2015-09-01 Qualcomm Incorporated Fallback operation for cross-carrier signaling in multi-carrier operation
KR101819501B1 (ko) * 2010-02-04 2018-01-17 엘지전자 주식회사 복수의 컴포넌트 캐리어를 지원하는 무선통신 시스템에서 데이터를 송수신하기 위한 방법 및 장치
BR112012020255B1 (pt) 2010-02-11 2019-01-15 Huawei Technologies Co., Ltd. método, estação de base, ue e sistema para transmissão e recepção de sinalização pdcch
CN102783064B (zh) * 2010-03-11 2016-07-06 Lg电子株式会社 控制信道分配方法和装置
US10439786B2 (en) * 2010-03-18 2019-10-08 Qualcomm Incorporated Methods of resolving PDCCH confusion in LTE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547514A (zh) * 2008-03-25 2009-09-30 鼎桥通信技术有限公司 一种资源调度的方法
WO2010013970A2 (en) * 2008-08-01 2010-02-04 Lg Electronics Inc. Method and apparatus for transmitting data in multiple carrier system
CN101646202A (zh) * 2009-08-25 2010-02-10 普天信息技术研究院有限公司 一种半静态调度下行传输的实现方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2536204A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8340069B2 (en) 2010-02-11 2012-12-25 Huawei Technologies Co., Ltd. Method, base station, UE, and system for sending and receiving PDCCH signaling
US8879533B2 (en) 2010-02-11 2014-11-04 Huawei Technologies Co., Ltd. Method, base station, UE, and system for sending and receiving PDCCH signaling
US9137794B2 (en) 2010-02-11 2015-09-15 Huawei Technologies Co., Ltd. Method, base station, UE, and system for sending and receiving PDCCH signaling
JP2013523022A (ja) * 2010-03-18 2013-06-13 クゥアルコム・インコーポレイテッド Lteにおけるpdcchペイロードサイズのあいまいさを解決する方法
JP2016040929A (ja) * 2010-03-18 2016-03-24 クゥアルコム・インコーポレイテッドQualcomm Incorporated Lteにおけるpdcchペイロードサイズのあいまいさを解決する方法
US10439786B2 (en) 2010-03-18 2019-10-08 Qualcomm Incorporated Methods of resolving PDCCH confusion in LTE
US11108532B2 (en) 2010-03-18 2021-08-31 Qualcomm Incorporated Methods of resolving PDCCH confusion in LTE
JP7086032B2 (ja) 2010-03-18 2022-06-17 クゥアルコム・インコーポレイテッド Lteにおけるpdcchペイロードサイズのあいまいさを解決する方法
JP2012050135A (ja) * 2011-11-04 2012-03-08 Sharp Corp 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
JP2014053958A (ja) * 2013-11-13 2014-03-20 Sharp Corp 基地局装置、移動局装置、通信方法および集積回路
EP4007419A4 (en) * 2019-07-24 2022-08-17 Vivo Mobile Communication Co., Ltd. TRANSMISSION CONFIGURATION DETERMINATION METHOD, INFORMATION CONFIGURATION METHOD AND DEVICE

Also Published As

Publication number Publication date
US20150055599A1 (en) 2015-02-26
JP5469751B2 (ja) 2014-04-16
EP2536204A1 (en) 2012-12-19
EP2672652A3 (en) 2014-01-01
EP2672651A3 (en) 2014-01-01
EP3534563A1 (en) 2019-09-04
EP2672650A2 (en) 2013-12-11
US20130077589A1 (en) 2013-03-28
BR112012020255A2 (pt) 2016-05-03
BR112012020255B1 (pt) 2019-01-15
MX2012009276A (es) 2012-10-15
EP2672653B1 (en) 2019-04-24
EP2672651B1 (en) 2018-03-28
EP2536204A4 (en) 2013-01-16
US8340069B2 (en) 2012-12-25
KR20120123471A (ko) 2012-11-08
KR101446639B1 (ko) 2014-10-01
EP2672650B1 (en) 2017-11-29
EP2672652B1 (en) 2017-11-29
US9510341B2 (en) 2016-11-29
EP2672653A2 (en) 2013-12-11
US20120093112A1 (en) 2012-04-19
EP2672651A2 (en) 2013-12-11
EP2672653A3 (en) 2014-02-19
US20160007326A1 (en) 2016-01-07
US8879533B2 (en) 2014-11-04
JP2014112918A (ja) 2014-06-19
EP2672652A2 (en) 2013-12-11
USRE49396E1 (en) 2023-01-24
JP2013533649A (ja) 2013-08-22
TR201802552T4 (tr) 2018-03-21
EP2672650A3 (en) 2014-02-12
ES2450540T3 (es) 2014-03-25
JP5647363B2 (ja) 2014-12-24
US9137794B2 (en) 2015-09-15
EP2536204B1 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
WO2011098044A1 (zh) Pdcch信令发送和接收方法、基站、ue及系统
CA3049605C (en) Data transmission method and apparatus
US10536962B2 (en) Method and apparatus for receiving downlink data transmissions
TWI737762B (zh) 無線通訊中的延遲降低技術
JP6728214B2 (ja) 低レイテンシ通信のための動的送信時間間隔スケジューリングの管理
JP6452447B2 (ja) フィードバック情報を送受信するためのデバイス
KR102210769B1 (ko) 다중 전송 시간 인터벌들을 통한 스케줄링
KR101595377B1 (ko) 정보 검출 및 전송 장치 및 방법
US20190223204A1 (en) Method and user equipment for receiving downlink channel, and method and base station for transmitting downlink channel
US20180007667A1 (en) Signal receiving method and user equipment, and signal receiving method and base station
US9426671B2 (en) Method for communicating in a mobile network during a transitional configuration mode
US9504033B2 (en) Method and apparatus for allocating channels related to uplink bundling
US11784759B2 (en) Methods and apparatuses for SPS HARQ-ACK transmission
US20180048447A1 (en) User equipments, base stations and methods
KR20220063224A (ko) 업링크 제어 정보를 멀티플렉싱하는 방법 및 관련 디바이스
US20140161084A1 (en) Downlink signal receiving method and user equipment, and downlink signal transmitting method and base station
WO2015039351A1 (zh) 一种配置搜索空间的方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11741915

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012552251

Country of ref document: JP

Ref document number: MX/A/2012/009276

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7214/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127022122

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011741915

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012020255

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012020255

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120813