WO2011096311A1 - Glass substrate for information recording medium, information recording medium, and information recording device - Google Patents

Glass substrate for information recording medium, information recording medium, and information recording device Download PDF

Info

Publication number
WO2011096311A1
WO2011096311A1 PCT/JP2011/051432 JP2011051432W WO2011096311A1 WO 2011096311 A1 WO2011096311 A1 WO 2011096311A1 JP 2011051432 W JP2011051432 W JP 2011051432W WO 2011096311 A1 WO2011096311 A1 WO 2011096311A1
Authority
WO
WIPO (PCT)
Prior art keywords
information recording
glass substrate
recording medium
magnetic disk
polishing
Prior art date
Application number
PCT/JP2011/051432
Other languages
French (fr)
Japanese (ja)
Inventor
直之 福本
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011552741A priority Critical patent/JP5719785B2/en
Publication of WO2011096311A1 publication Critical patent/WO2011096311A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/0014Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture record carriers not specifically of filamentary or web form
    • G11B23/0021Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture record carriers not specifically of filamentary or web form discs

Definitions

  • the present invention relates to an information recording medium glass substrate, an information recording medium, and an information recording apparatus.
  • a substrate using a glass substrate is known as a substrate of a small information recording apparatus used for a notebook type personal computer or a card type recording medium.
  • the magnetic head and the recording layer of the information recording medium are protected from external impacts while the apparatus is at a position where it overlaps the end of the information recording medium.
  • a ramp load type in which a magnetic head is retracted to an arranged lamp and recording is performed by sliding the magnetic head out of the lamp when the apparatus is started.
  • the ramp load type information recording apparatus uses an information recording medium that does not cause a particular problem even if it is dropped or given an impact when incorporated in a non-ramp load type apparatus.
  • the glass substrate is damaged by a sudden impact such as a drop or a collision.
  • this problem was significant when a glass substrate that was not subjected to a tempering treatment was used.
  • a glass substrate for an information recording medium has been proposed in which the main surface is inclined so that the thickness of the substrate decreases from the central portion toward the outer surface to prevent the substrate from cracking due to a lamp collision.
  • the main surface is inclined so that the thickness of the substrate decreases from the central portion toward the outer surface to prevent the substrate from cracking due to a lamp collision.
  • an information recording medium is inserted into a rotating shaft of a spindle motor, and the information recording medium is sandwiched between a cylindrical ring jig and a clamp jig provided with an annular protrusion, and the rotating shaft is inserted into the rotating shaft. Fix it. At this time, the information recording medium is tightened in the thickness direction by the clamp jig and the ring jig so that the torque generated by the rotational drive of the spindle motor can be sufficiently transmitted to the information recording medium.
  • the outermost periphery of the information recording medium is located closer to the lamp side than the middle position of the crow mouth portion of the lamp, and the information recording medium and the lamp come close to each other, so even a slight external impact can cause the lamp. I found out that it would collide.
  • the conventional information recording apparatus does not consider the occurrence of such warpage. Therefore, even if the glass substrate for information recording media described in Patent Document 1 is used, the glass substrate may be cracked due to lamp collision.
  • the present invention has been made in view of the above problems, and prevents the occurrence of warping when fixing an information recording medium to a rotating shaft using a conventional information recording medium fixing mechanism. It is an object of the present invention to provide a glass substrate for an information recording medium, an information recording medium, and an information recording apparatus using the information recording medium capable of preventing the substrate from cracking.
  • the present invention has the following characteristics.
  • a disc-shaped glass substrate for an information recording medium comprising a through-hole into which a rotation shaft is inserted at a central portion, sandwiching a peripheral portion of the through-hole on the main surface from both sides and fixed to the rotation shaft, Protruding or concave warpage is provided in advance from the through hole so that the main surface is corrected and flattened by a force sandwiching the peripheral edge from both sides when fixed to the rotating shaft.
  • the contours of the main surface on both sides are 2.
  • the thickness of the information recording medium glass substrate is: 3.
  • the thickness of the information recording medium glass substrate is: 3.
  • An information recording medium comprising a recording layer provided on the main surface of the glass substrate for information recording medium according to any one of 1 to 5 above.
  • An information recording apparatus having a cylindrical ring jig, a clamp jig provided with an annular protrusion, and a drive mechanism for rotating a rotating shaft, The information recording medium described in 6 above, A head for reading and writing the information recording medium; A lamp arranged such that the position of the tip overlaps the end of the information recording medium; A head driving mechanism for loading the head retracted on the ramp onto the information recording medium and unloading the head onto the ramp; Have The information is obtained by penetrating the rotating shaft in the order of the ring jig and the information recording medium and pressing an annular protrusion of the clamp jig against the surface of the information recording medium and sandwiching the information between the ring jig and the information recording medium.
  • An information recording apparatus wherein the information recording medium is fixed to the rotating shaft by correcting warping of the recording medium.
  • the glass substrate for an information recording medium of the present invention is provided with a convex or concave warp in advance from the through hole to the outside so that the main surface is flattened when fixed to the rotating shaft. Therefore, the warp provided in advance by the force of tightening when the peripheral portion of the through hole on the main surface is sandwiched from both sides and fixed to the rotating shaft is corrected, and the substrate can be flattened.
  • a glass substrate, an information recording medium, and an information recording apparatus using the information recording medium can be provided.
  • FIG. 3 is a top view of a ramp load type hard disk device 200, which is an example of an information recording apparatus according to the present invention, on which a magnetic disk 5 is mounted.
  • FIG. 10 is a perspective view of relevant parts showing an operation example of the hard disk device 200.
  • 3 is a schematic cross-sectional view showing a state in which a magnetic disk 5 is fixed to a rotary shaft 6.
  • FIG. 6 is a cross-sectional view for explaining a cause of warping of a flat magnetic disk 59 when it is fixed to a rotary shaft 6.
  • FIG. 9 is a schematic cross-sectional view showing a state in which a magnetic disk 5 manufactured from the glass substrate 1 shown in FIG. 8 is fixed to a rotating shaft 6.
  • It is a manufacturing-process figure of an example of the manufacturing method of the glass substrate which concerns on this invention.
  • It is explanatory drawing which shows the state which mounted the glass substrate 1 in the lower polishing tray 13 of an Oscar polisher. It is a cross-sectional view of an Oscar polisher.
  • FIG. 1 is a top view of the Oscar grinder for demonstrating the upper grinding
  • 2 is a plan view of a magnetic disk 5.
  • FIG. 1 is a cross-sectional view showing an embodiment of a glass substrate for an information recording medium according to the present invention.
  • the glass substrate 1 for information recording medium has a donut-like disk shape with a through hole 20 formed in the center.
  • the through-hole 20 is used for fixing the glass substrate 1 to the rotation shaft 6 (not shown in FIG. 1) and rotating the glass substrate 1 around the center.
  • the glass substrate 1 is fixed to the rotary shaft 6 by sandwiching the peripheral portions of the through holes 20 of the main surface 10a and the main surface 10b from both sides.
  • the main surface 10a and the main surface 10b of the glass substrate 1 are smooth surfaces.
  • the cross section of the glass substrate 1 is formed in a shape in which the vicinity of the through hole 20 on the main surface 10 a and the main surface 10 b is curved in a convex shape from the through hole 20 toward the outer surface 40.
  • the cross section of the glass substrate 1 is warped in the vicinity of the through hole 20 in that case. Will be.
  • the glass substrate 1 Since the glass substrate 1 is warped from the time of manufacture in this way, the reverse is achieved by clamping the peripheral portions of the through holes 20 of the main surface 10a and the main surface 10b from both sides and fixing them to the rotating shaft 6 in the subsequent process.
  • the glass substrate 1 can be flattened by generating a warp in the direction.
  • the glass substrate 1 is attached to the rotating shaft 6 so that the warping direction of the substrate is opposite to the warping that occurs when the substrate is fixed to the rotating shaft 6.
  • FIG. 2A is an example of interference fringes generated by irradiating the main surface 10a with laser light using an interferometer.
  • FIG. 2B is a cross section of the glass substrate 1, and W indicates warpage.
  • contour lines e1, e2, e3 are all concentric circles, and the intervals are equal. Further, even if the main surface 10b is irradiated with laser light to generate interference fringes, three contour lines are similarly generated. The contour lines are all concentric circles, and the intervals are equal.
  • the peripheral portions of the through holes 20 of the main surface 10a and the main surface 10b are sandwiched from both sides.
  • the glass substrate 1 can be made flatter by fixing to the rotating shaft 6.
  • FIG. 3 is a cross-sectional view of a magnetic disk 5 which is an example of an information recording medium according to the present invention.
  • the magnetic film 11a is directly formed on the main surface 10a of the circular glass substrate 1, and the magnetic film 11b is directly formed on the main surface 10b.
  • the magnetic film 11 may be provided only on either the main surface 10a or the main surface 10b.
  • the glass substrate 1 of the present invention can also be used as a glass substrate for a magneto-optical disk.
  • FIG. 4 is a top view of a ramp load type hard disk device 200, which is an example of an information recording apparatus according to the present invention, in which the magnetic disk 5 is mounted.
  • FIG. 5 is a perspective view of a main part showing an operation example of the hard disk device 200, showing a state in which the suspension 54 that supports the recording / reproducing head 53 is retracted on the sliding surface 51 a of the ramp 51.
  • the hard disk device 200 of this embodiment includes a suspension 54 that supports the recording / reproducing head 53 and an arm 37 that fixes the suspension 54.
  • the arm 37 is rotatably attached to the housing 501 with the pivot 38 as an axis, and is driven to rotate by a voice coil motor (not shown) provided on the opposite side of the suspension 54 with the pivot 38 interposed therebetween.
  • the lift tab 52 is a protrusion provided at the tip of the suspension 54 and is located on the tip side of the recording / reproducing head 53.
  • the ramp 51 has a sliding surface 51 a with which the lift tab 52 comes into contact. While the lift tab 52 is in contact with the sliding surface 51 a of the ramp 51, the interval between the two suspensions 54 is regulated, and the recording / reproducing head 53. Contact between each other and contact between the recording / reproducing head 53 and the magnetic disk 5 are prevented.
  • the recording / reproducing head 53 floats from the surface of the magnetic disk 5 by an air flow generated by the rotation of the magnetic disk 5. For this reason, when loading the recording / reproducing head 53 onto the surface of the magnetic disk 5, it is necessary to support the lift tab 52 with the ramp 51 until the recording / reproducing head 53 reaches the surface of the magnetic disk 5. Further, when the recording / reproducing head 53 is unloaded to the outside of the magnetic disk 5, it is necessary to support the lift tab 52 by the ramp 51 before the recording / reproducing head 53 comes out of the magnetic disk 5.
  • the lift tab 52 needs to be supported by the ramp 51 in a state where the recording / reproducing head 53 is positioned on the surface near the outer periphery of the magnetic disk 5.
  • the recording / reproducing head 53 is positioned on the surface of the magnetic disk 5
  • the lift tab 52 is also positioned on the surface of the magnetic disk 5, so that the contact point between the lift tab 52 and the ramp 51 is on the surface of the magnetic disk 5. Therefore, it is necessary to dispose the tip of the ramp 51 at a position covering the surface of the magnetic disk 5.
  • the tip portions 51 b and 51 c of the lamp 51 are arranged so as to sandwich the magnetic disk 5 as shown in FIG. It is formed in a shape.
  • Such a lamp can be manufactured by molding a resin material.
  • the clamp jig 2 provided with an annular protrusion on the side facing the magnetic disk 5 is fixed to a rotating shaft 6 of a magnetic disk drive motor (not shown) by a screw 3 as shown in FIG.
  • a magnetic disk 5 is sandwiched between a ring-shaped jig 7 (not shown) and fixed to the rotary shaft 6.
  • FIG. 6 is a schematic cross-sectional view showing a state in which the magnetic disk 5 is fixed to the rotary shaft 6, and FIG. 7 explains the cause of warping of the flat magnetic disk 59 when the magnetic disk 5 is fixed to the rotary shaft 6.
  • FIG. 7 explains the cause of warping of the flat magnetic disk 59 when the magnetic disk 5 is fixed to the rotary shaft 6.
  • FIG. 7A shows a state in which the ring-shaped jig 7 and the flat magnetic disk 59 are inserted in this order on the rotating shaft 6 and the clamp jig 2 is tightened with screws 3 from now on.
  • a screw hole that is screwed into the screw 3 is provided at the center of the rotary shaft 6.
  • a point indicated by an arrow A is a point where the annular protrusion 2 a of the clamp jig 2 abuts the magnetic disk 59
  • a point indicated by an arrow B is the magnetic disk 59 at the outermost periphery of the ring-shaped jig 7.
  • the point of contact is the center of the thickness of the outermost periphery of the magnetic disk 59.
  • Lc is the diameter to point C.
  • the diameter La of the annular protrusion 2 a of the clamping jig 2 is smaller than the outer diameter Lb of the ring-shaped jig 7.
  • FIG. 7B shows a state in which the screw 3 is tightened and the magnetic disk 59 is sandwiched between the ring-shaped jig 7 and the clamp jig 2 with a predetermined pressure.
  • pressure is applied to the magnetic disk 59 from the projection 2a of the clamp jig 2 and the contact part of the magnetic disk 59 indicated by A in the figure. Due to this pressure, the tip of the magnetic disk 59 is warped toward the clamping jig 2 as shown in FIG.
  • FIG. 7B shows a state in which the magnetic disk 59 is warped toward the clamp jig 2 from the center line S of the thickness of the flat magnetic disk 59 in FIG.
  • the warpage amount ⁇ is defined as a positive direction for warping in the direction of the clamping jig 2 (upward on the paper surface) and a negative direction for warping in the direction of the ring jig 7 (downward on the paper surface).
  • FIG. 7C shows a state in which the ring-shaped jig 7 and the flat magnetic disk 59 are inserted into the rotating shaft 6 in this order, and the clamp jig 2 is tightened on the screw provided at the center of the rotating shaft 6 from now on. Is shown.
  • the diameter La of the annular protrusion 2 a of the clamp jig 2 is larger than the outer diameter Lb of the ring-shaped jig 7.
  • FIG. 7D shows a state in which the screw 3 is tightened and the magnetic disk 59 is sandwiched between the ring-shaped jig 7 and the clamp jig 2 with a predetermined pressure.
  • pressure is applied to the magnetic disk 59 from the projection 2a of the clamp jig 2 and the contact part of the magnetic disk 59 indicated by A in the figure.
  • the clamp jig 2 and the ring-shaped jig 7 in FIG. 7D are La> Lb. 7 is bent in the direction of the ring-shaped jig 7 so as to be bent from the tip portion.
  • FIG. 7D shows a state in which the magnetic disk 59 is warped in the direction of the ring-shaped jig 7 from the center line S of the thickness of the flat magnetic disk 59 in FIG. ing.
  • FIG. 6 is an example in which the diameter La of the annular protrusion 2a of the clamp jig 2 is smaller than the outer diameter Lb of the ring-shaped jig 7 as shown in FIGS. 7 (a) and 7 (b).
  • the distance between the tip portions 51b and 51c of the lamp 51 is D.
  • FIG. 6A and 6B show an embodiment of the present invention
  • FIG. 6A shows a state in which the magnetic disk 5 shown in FIG. 3 is inserted into the rotary shaft 6 so that the cross section is convex
  • 6 (b) shows a state in which the magnetic disk 5 is sandwiched between the ring-shaped jig 7 and the clamp jig 2 with a predetermined pressure by tightening the screws 3.
  • FIG. 6 (c) and 6 (d) show a conventional example
  • FIG. 6 (c) shows a state in which a flat magnetic disk 59 is inserted into the rotary shaft 6
  • FIG. 6 (d) shows a ring shape by tightening the screw 3.
  • the magnetic disk 59 is sandwiched between the jig 7 and the clamp jig 2 with a predetermined pressure.
  • FIG. 6 (e) and 6 (f) are comparative examples
  • FIG. 6 (e) shows a state in which the magnetic disk 5 shown in FIG. 3 is inserted into the rotating shaft 6 so that the cross section is concave
  • FIG. I shows a state in which the magnetic disk 5 is sandwiched between the ring-shaped jig 7 and the clamp jig 2 with a predetermined pressure by tightening the screws 3.
  • the magnetic disk 5 of the present invention When the magnetic disk 5 of the present invention is inserted into the rotating shaft 6 with the cross-section curved as shown in FIG. 6A, and the screw 3 is tightened to a pressure corresponding to the thickness of the glass substrate 1, FIG. As shown in b), the warp of the magnetic disk 5 is corrected and can be made flat. As a result, the outer peripheral portion of the magnetic disk 5 is equidistant from the tip portions 51b and 51c of the ramp 51, and the probability that the magnetic disk 5 collides with the ramp 51 and is damaged can be reduced.
  • the thickness of the glass substrate 1 is preferably in the range of 0.78 mm to 2.2 mm.
  • the thickness of the glass substrate 1 exceeds 2.2 mm, the glass substrate 1 hardly warps even when sandwiched at a predetermined pressure.
  • the thickness should be 2.2 mm or less. desirable.
  • the thickness of the glass substrate 1 is less than 0.78 mm, the glass substrate 1 is greatly warped when sandwiched at a predetermined pressure. Therefore, it is necessary to prepare the glass substrate 1 having a large warp amount in advance.
  • the thickness is preferably 0.78 mm or more.
  • the circumferential direction TIR (Total Induced Runout) of the main surface 10 in the vicinity of the through hole 20 is 0.7 ⁇ m or less.
  • the circumferential direction TIR refers to a TIR for one round in the circumferential direction at a position in the vicinity of the through hole 20 with which the annular protrusion 2a of the lamp jig 2 contacts.
  • the annular protrusion 2a of the clamp jig 2 abuts in the vicinity of the through hole 20, in the magnetic disk 5 using the glass substrate 1 having a circumferential direction TIR larger than 0.7 ⁇ m, the protrusion 2a of the clamp jig 2 Contact on the surface of the magnetic disk 5 is not uniform, resulting in discontinuous line contact. As a result, the shape of the surface of the magnetic disk 5 after clamping becomes different depending on the cross-sectional direction.
  • the contact between the protrusion 2a of the clamp jig 2 and the surface of the magnetic disk 5 is a substantially uniform circumferential shape.
  • the shape of the surface of the subsequent magnetic disk 5 is almost the same in any cross section. Therefore, it is possible to reduce the probability that the magnetic disk 59 collides with the lamp 51 and is damaged.
  • Such TIR in the circumferential direction can be obtained by measuring the surface shape using interference of white light (for example, Optishift manufactured by Phase Shift Technology) or by injecting laser light obliquely with respect to the surface to be measured. What is necessary is just to measure by the system (For example, FlatMaster FM100XRA by TROPEL) etc. which can obtain a high reflectance compared with a normal incidence system, and can also measure in a rough surface shape.
  • white light for example, Optishift manufactured by Phase Shift Technology
  • laser light obliquely with respect to the surface to be measured What is necessary is just to measure by the system (For example, FlatMaster FM100XRA by TROPEL) etc. which can obtain a high reflectance compared with a normal incidence system, and can also measure in a rough surface shape.
  • the Young's modulus of the glass substrate 1 for information recording media E is preferably 84 or more.
  • the diameter La of the annular protrusion 2 a of the clamp jig 2 is smaller than the outer diameter Lb of the ring-shaped jig 7.
  • the magnetic disk 59 is warped in the upward direction on the paper surface as in FIG. Therefore, the outer periphery of the magnetic disk 59 approaches the tip 51b of the lamp 51, and the probability that the magnetic disk 59 collides with the lamp 51 and is damaged increases.
  • the warp of the magnetic disk 5 is further increased as shown in FIG. It gets bigger.
  • the outer peripheral part of the magnetic disk 5 comes closer to the tip 51b of the ramp 51, and the probability that the magnetic disk 59 collides with the ramp 51 and is damaged becomes very high.
  • FIG. 8 is a sectional view showing a second embodiment of the glass substrate for information recording medium according to the present invention.
  • FIG. 9 is a schematic cross-sectional view showing a state in which the magnetic disk 5 produced from the glass substrate 1 shown in FIG.
  • the diameter La of the annular protrusion 2a of the clamp jig 2 shown in FIG. 9 is smaller than the outer diameter Lb of the ring-shaped jig 7 as shown in FIGS. 7 (a) and 7 (b).
  • the entire configuration of the glass substrate 1 for information recording medium is a disk-like one, and a through hole 20 is formed in the center. Similar to the embodiment of FIG. 1, the through hole 20 is used to fix the glass substrate 1 to the rotation shaft 6 and rotate the glass substrate 1 around the center.
  • the main surface 10a and the main surface 10b of the glass substrate 1 are smooth surfaces.
  • the cross section of the glass substrate 1 warps in a convex shape from the through hole 20 toward the outer surface 40, and the thickness decreases from the through hole 20 toward the outer surface 40 as a whole.
  • the main surfaces 10a and 10b are slightly inclined.
  • FIG. 9A shows a state in which the magnetic disk 5 manufactured from such a glass substrate 1 is inserted into the rotating shaft 6, and FIG. 9B shows a ring-shaped jig 7 and a clamp jig 2 by tightening the screws 3. Is a state in which the magnetic disk 5 is sandwiched at a predetermined pressure.
  • the main surfaces 10a and 10b are tapered from the central portion toward the outer surface 40 in an overall tapered manner, so that the magnetic surfaces are more magnetic than those in the first embodiment shown in FIG.
  • the distances x 1 and x 2 between the outer peripheral portion of the disk 5 and the front end portions 51b and 51c of the lamp 51 can be evenly widened. Further, since the connection from the main surface 10a to the outer surface 40 can be made more gentle, stress concentration is less likely to occur. As a result, the probability of the magnetic disk 59 colliding with the lamp 51 and being damaged can be further reduced.
  • the size of the glass substrate 1 there is no particular limitation on the size of the glass substrate 1.
  • glass substrates 1 having various sizes such as 2.5 inches, 1.8 inches, 1 inch, and 0.8 inches in outer diameter.
  • the thickness of the glass substrate 1 is preferably in the range of 0.78 mm to 2.2 mm.
  • FIG. 10 is a production process diagram of an example of a method for producing a glass substrate according to the present invention. The manufacturing process of the glass substrate of the embodiment will be described in detail with reference to FIG.
  • Glass melting process First, the glass material is melted.
  • soda lime glass mainly composed of SiO 2 , Na 2 O, CaO
  • aluminosilicate glass and borosilicate glass are particularly preferable because they are excellent in impact resistance and vibration resistance.
  • the disc-shaped glass substrate precursor may be produced by cutting a sheet glass formed by, for example, a downdraw method or a float method with a grinding stone, without using press molding.
  • the press-molded glass substrate precursor is drilled at the center with a core drill or the like having a diamond grindstone or the like at the cutter.
  • the inner and outer diameters are processed by grinding the outer peripheral end surface and the inner peripheral end surface of the glass substrate with a grinding wheel such as a drum-like diamond.
  • a grinding wheel such as a drum-like diamond.
  • the order from the first lapping step after the coring processing to the outer peripheral end surface processing step is not limited to that shown in FIG. 10 and can be changed as appropriate according to the situation.
  • the lapping process may be performed first, and then the inner / outer diameter machining process, the inner circumference, and the outer circumference end face machining process may be performed.
  • a second lapping step, an inner circumference and an outer circumference end face machining step may be performed.
  • a polishing machine for lapping a glass substrate in the first and second lapping steps will be described.
  • the polishing machine for example, a known polishing machine called an Oscar polishing machine can be used.
  • FIG. 11 is an explanatory view showing a state in which the glass substrate 1 is placed on the lower polishing tray 13 of the Oscar polishing machine
  • FIG. 12 is a cross-sectional view of the Oscar polishing machine
  • FIG. FIG. 14 is a top view of an Oscar polishing machine for explaining 14.
  • the Oscar polishing machine rotates the lower polishing dish 13 as indicated by an arrow U with the glass substrate 1 as an object to be polished placed on the jig 12 between the upper polishing dish 14 and the lower polishing dish 13.
  • the polishing dish 14 is swung left and right as shown in FIG. 13A shows a state where the upper polishing plate 14 has moved to the left side of the lower polishing plate 13
  • FIG. 13B shows a state where the upper polishing plate 14 has moved to a position where it overlaps the lower polishing plate
  • FIG. c) is a state in which the upper polishing plate 14 has moved to the right side of the lower polishing plate 13.
  • the Oscar polishing machine By such an operation of the Oscar polishing machine, it is possible to perform polishing so as to transfer the shapes of the upper polishing dish 14 and the lower polishing dish 13 to the glass substrate 1 which is an object to be polished. Further, depending on the conditions, rotation of the accompanying polishing object can be promoted. By rotating the glass substrate 1, the point-symmetrical glass substrate 1 as shown in FIG. 1 can be manufactured.
  • the glass substrate 1 can be lapped by supplying the grinding liquid between the upper polishing dish 14 and the glass substrate 1 and between the lower polishing dish 13 and the glass substrate 1. .
  • polishing process Next, the polishing process will be described.
  • the surface of the glass substrate is precisely finished and the shape of the outer peripheral end of the main surface is polished to a desired shape.
  • polishing in the first polish polishing step, the surface roughness is improved and the desired shape is finally made efficient so that the surface roughness finally required in the second polish polishing step can be efficiently obtained. Polishing can be obtained well.
  • the polishing method uses a polishing machine having the same configuration as the polishing machine used in the first and second lapping processes except that the polishing liquid is used instead of the grinding liquid used in the lapping process.
  • the glass substrate is cleaned using a known ultrasonic cleaner, and the abrasive and the like adhering in the first polishing polishing step are removed. Pure water or the like can be used as the cleaning liquid.
  • the glass substrate is heated to a predetermined temperature in a preheating tank before being immersed in the chemical strengthening treatment liquid heated to 300 ° C. to 400 ° C. in the next chemical strengthening step.
  • the preheating temperature is, for example, 200 ° C. or higher.
  • this process can also be abbreviate
  • the glass substrate Prior to the second polishing step, the glass substrate is immersed in a chemical strengthening solution to form a chemically strengthened layer on the glass substrate.
  • a chemical strengthening solution to form a chemically strengthened layer on the glass substrate.
  • alkali metal ions such as lithium ions and sodium ions contained in the glass substrate are converted into alkali ions such as potassium ions having a larger ion radius. This is performed by the ion exchange method for substitution. Compressive stress is generated in the ion-exchanged region due to the distortion caused by the difference in ion radius, and the surface of the glass substrate is strengthened.
  • the chemical strengthening treatment liquid is not particularly limited, and a known chemical strengthening treatment liquid can be used. Usually, it is common to use a molten salt containing potassium ions or a molten salt containing potassium ions and sodium ions. Examples of the molten salt containing potassium ions and sodium ions include potassium and sodium nitrates, carbonates, sulfates, and mixed molten salts thereof. Among these, from the viewpoint that the melting point is low and deformation of the glass substrate can be prevented, it is preferable to use nitrate.
  • the chemical strengthening solution is heated to a temperature higher than the temperature at which the above components melt.
  • the heating temperature of the chemical strengthening treatment liquid is preferably lower than the glass transition point (Tg) of the glass substrate, more preferably lower than the glass transition point ⁇ 50 ° C.
  • the thickness of the chemically strengthened layer is preferably in the range of about 5 ⁇ m to 15 ⁇ m in view of improving the strength of the glass substrate and shortening the polishing process time.
  • the thickness of the reinforcing layer is within this range, a glass substrate having good impact resistance, which is flatness and mechanical strength, can be obtained.
  • the shape of the outer peripheral edge of the main surface 10a after the chemical strengthening step is almost the same as that before the chemical strengthening step, and the above-mentioned chemical strengthening layer of about 5 ⁇ m to 15 ⁇ m is almost uniformly placed on the entire surface of the glass substrate. Become.
  • the second polish polishing step is a step of further precisely polishing the surface of the glass substrate after the first polish polishing step.
  • the pad used in the second polishing step is preferably a soft pad softer than the pad used in the first polishing step, such as urethane foam or suede.
  • the polishing agent the same cerium oxide, colloidal silica, zirconium oxide, titanium oxide, manganese oxide, etc. as in the first polishing step can be used, but in order to make the surface of the glass substrate smoother, the particle size is larger. It is preferable to use an abrasive that is fine and has little variation.
  • the manufacturing method of the glass substrate for information recording media you may have various processes other than the above. For example, an annealing process for relaxing internal strain of the glass substrate, a heat shock process for confirming the reliability of the strength of the glass substrate, various inspection / evaluation processes, and the like may be included.
  • the polishing machine used in the first polishing process is not used as it is, but polishing is performed using another polishing machine that has the same configuration but is prepared for each process. Is preferred. This is because, if the polishing machine used in the first polishing process is used as it is, the polishing accuracy in the second polishing process decreases due to the abrasive remaining in the first polishing process, the polishing conditions are reset, etc. This is because this complicated operation is required and the production efficiency is lowered.
  • this step is performed to reduce the thickness of the glass substrate from the inner periphery to the outer periphery as shown in FIG.
  • FIG. 14 is an explanatory diagram for explaining a process of reducing the thickness of the glass substrate from the inner periphery to the outer periphery.
  • FIG. 14A is a cross-sectional view illustrating an example of a processing method
  • FIG. 14B is a cross-sectional view illustrating a shape after processing.
  • the vicinity of the inner diameter of the glass substrate 1 is sandwiched and fixed by the fixing members 20 and 21, and the upper and lower main surfaces of the glass substrate 1 are sandwiched by the elastic suede material 22. .
  • the glass substrate 1 is rotated together with the fixing members 20 and 21 by a motor (not shown), and polishing is performed while supplying colloidal silica as an abrasive.
  • the glass substrate 1 having a reduced thickness from the inner periphery to the outer periphery as shown in FIG. 14B is obtained.
  • a conventionally known method can be used as a method for forming the magnetic film 11.
  • a method in which a thermosetting resin in which magnetic particles are dispersed is spin-coated on a substrate, a method in which sputtering or electroless plating is used. The method of doing is mentioned.
  • the film thickness by spin coating is about 0.3 ⁇ m to 1.2 ⁇ m
  • the film thickness by sputtering is about 0.04 ⁇ m to 0.08 ⁇ m
  • the film thickness by electroless plating is 0.05 ⁇ m to 0.1 ⁇ m. From the viewpoint of thinning and densification, film formation by sputtering and electroless plating is preferable.
  • the magnetic material used for the magnetic film is not particularly limited, and a conventionally known material can be used. However, in order to obtain a high coercive force, Ni having a high crystal anisotropy is basically used, and Ni or A Co-based alloy to which Cr is added is suitable. Specific examples include CoPt, CoCr, CoNi, CoNiCr, CoCrTa, CoPtCr, and CoNiPt containing Co as a main component, CoNiCrPt, CoNiCrTa, CoCrPtTa, CoCrPtB, and CoCrPtSiO.
  • the magnetic film may have a multilayer structure (for example, CoPtCr / CrMo / CoPtCr, CoCrPtTa / CrMo / CoCrPtTa) that is divided by a nonmagnetic film (for example, Cr, CrMo, CrV, etc.) to reduce noise.
  • a nonmagnetic film for example, Cr, CrMo, CrV, etc.
  • granular materials such as ferrite, iron-rare earth, and non-magnetic films made of SiO 2 , BN, etc. are dispersed with magnetic particles such as Fe, Co, FeCo, CoNiPt, etc. Also good.
  • the magnetic film may be of any recording type of inner surface type and vertical type.
  • a lubricant may be thinly coated on the surface of the magnetic film in order to improve the sliding of the magnetic head.
  • the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a freon-based solvent.
  • an underlayer or a protective layer may be provided.
  • the underlayer in the magnetic disk is selected according to the magnetic film.
  • the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
  • Cr alone or a Cr alloy is preferable from the viewpoint of improving magnetic characteristics.
  • the underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked.
  • a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
  • Examples of the protective layer that prevents wear and corrosion of the magnetic film include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer.
  • These protective layers can be formed continuously with an in-line type sputtering apparatus, such as an underlayer and a magnetic film.
  • these protective layers may be a single layer, or may have a multilayer structure including the same or different layers. Note that another protective layer may be formed on the protective layer or instead of the protective layer.
  • tetraalkoxysilane is diluted with an alcohol solvent on the Cr layer, and then colloidal silica fine particles are dispersed and applied, and then baked to form a silicon dioxide (SiO 2 ) layer. It may be formed.
  • Example 4 (Production of glass substrate) According to the manufacturing process diagram of the first embodiment described with reference to FIG. 10, 1000 glass substrates 1 of Examples 1 to 3 were produced. Moreover, in Example 4, after the same process as Example 2, (the process of thinning the thickness of a glass substrate from an inner periphery to an outer periphery) was performed, and 1000 glass substrates 1 of 2nd Embodiment were produced.
  • aluminosilicate glass (Tg: 500 ° C.) was used as the glass material, and a molten glass was press-molded to produce a blank material.
  • substrate thickness here is an average value of the value measured in arbitrary several points on a board
  • the target value of the warp amount ⁇ of Example 1 is ⁇ 4 ⁇ m
  • the target value of the warp amount ⁇ of Example 2 is ⁇ 5 ⁇ m
  • the target value of the warp amount ⁇ of Example 3 is ⁇ 6 ⁇ m
  • the warp amount ⁇ of Example 4 is The target value was -5 ⁇ m.
  • the diameters of the upper polishing dish 14 and the lower polishing dish 13 of the Oscar polishing machine were 1000 mm, and an elastic suede was attached to the opposing surfaces of the upper polishing dish 14 and the lower polishing dish 13.
  • One hundred sets of the fitting jig 12 having an inner diameter of 65 mm, an outer diameter of 67 mm, and a thickness of 0.5 mm fitted with the glass substrate 1 after the lapping process are placed on the lower polishing dish 13 as shown in FIG.
  • cerium oxide was used, and the particle size of the abrasive was 0.6 ( ⁇ m).
  • Example 1 the lower polishing dish 13 was rotated at a rotation speed of 50 (rpm), and the upper polishing dish 14 was swung in a range of 500 mm from the center of the lower polishing dish 13 by 25 reciprocations per minute.
  • the glass substrate rotates along with the relative movement of the upper and lower polishing dishes.
  • the polishing time is 40 minutes.
  • Example 2 the lower polishing dish 13 was rotated at a rotational speed of 60 (rpm), and the upper polishing dish 14 was swung 30 reciprocations in the range of 500 mm from the center of the lower polishing dish 13 to the left and right.
  • the rotation speed of the glass substrate is faster than that in Example 1.
  • the polishing time is 30 minutes.
  • Example 3 the lower polishing plate 13 was rotated at a rotation speed of 70 (rpm), and the upper polishing plate 14 was swung 35 reciprocations in the range of 500 mm from the center of the lower polishing plate 13 to the left and right.
  • the rotation speed of the glass substrate is faster than that of Example 2.
  • the polishing time is 20 minutes.
  • Example 4 The process of reducing the thickness of the glass substrate from the inner periphery to the outer periphery
  • the thickness near the inner periphery was 0.8 mm and the outermost periphery was polished to 0.7 mm so as to become thinner toward the outer periphery.
  • a lubricating layer made of is sequentially formed on both surfaces of the substrate by a sputtering apparatus.
  • the total film thickness is about 100 nm.
  • the magnetic disk 5 on which the magnetic film for perpendicular magnetic recording was formed in this way was manufactured, but the present invention is not particularly limited, and a magnetic layer or the like may be configured as an in-plane magnetic disk.
  • Examples 5 to 9 The thickness of the glass substrate 1 was changed, and 1000 magnetic disks 5 of Examples 5 to 7 were produced.
  • the thickness of the glass substrate 1 is 0.635 mm in Example 5, 0.77 mm in Example 6, 0.78 mm in Example 7, 1.5 mm in Example 8, and 2.2 mm in Example 9.
  • the proper tightening torque varies depending on the thickness of the glass substrate 1, and the amount of warpage generated by the clamping force at the time of fixing also varies.
  • the target value of the warpage amount ⁇ was determined according to the amount of warpage generated by the clamping force at the time of fixing.
  • the target value of the warp amount ⁇ of Example 5 is ⁇ 15 ⁇ m
  • the target value of the warp amount ⁇ of Example 6 is ⁇ 10 ⁇ m
  • the target value of the warp amount ⁇ of Example 7 is ⁇ 8 ⁇ m
  • the warp amount ⁇ of Example 8 is The target value was ⁇ 4 ⁇ m
  • the target value of the warpage amount ⁇ in Example 9 was ⁇ 2 ⁇ m.
  • Magnetic disks 5 of Examples 5 to 7 were manufactured by setting the number of rotations of the lower polishing dish 13 and the polishing time so that the target warpage amount ⁇ was obtained. Other conditions are the same as those in the second embodiment.
  • Example 10 to 13 Using the glass substrate 1 in the circumferential direction TIR at a position of ⁇ 22 mm in the vicinity of the through hole 20, 1000 magnetic disks 5 of Examples 10 to 13 were manufactured in the same thickness and in the same process as in Example 3.
  • the circumferential direction TIR of Example 10 is 0.4 ⁇ m
  • the circumferential direction TIR of Example 11 is 0.7 ⁇ m
  • the circumferential direction TIR of Example 12 is 0.8 ⁇ m
  • the circumferential direction TIR of Example 13 is 1.0 ⁇ m.
  • the measurement of the circumferential direction TIR was performed using an Optiflat manufactured by Phase Shift Technology.
  • Comparative Example 1 a glass substrate having a target warpage amount ⁇ of 0 ⁇ m was produced by changing the conditions in the same process as in the example.
  • Comparative Example 1 the lower polishing dish 13 was rotated at 0.5 rpm in each polishing step, and the upper polishing dish 14 was reciprocated twice in a range of 300 mm from the center of the lower polishing dish 13 in one minute.
  • the polishing time is 150 minutes. Under this condition, the glass substrate hardly rotates due to the relative movement of the upper and lower polishing dishes, so that the shape of the upper and lower polishing dishes can be transferred as it is.
  • Other manufacturing conditions are the same as in Example 1.
  • the evaluation of the magnetic disk 5 was conducted by attaching the magnetic disks of Examples and Comparative Examples to the hard disk device 200 shown in FIG.
  • the distance D between the tip 51b and the tip 51c of the lamp 51 used in the evaluation experiments of Examples 1 to 4 and Comparative Example 1 is 1.5 mm.
  • the magnetic disk 5 or the magnetic disk 59 was fixed to the rotating shaft 6 by tightening the screw 3 of the clamp jig 2 with a torque of 20 N ⁇ m.
  • the amount of warpage is measured using a multi-function disk interferometer (Optiflat Phase Technology, Inc.) and the entire surface of the glass substrate is measured.
  • the measurement principle is a method of measuring the shape of the surface by irradiating the surface of the glass substrate with white light and measuring the change in the intensity of interference between the reference light and the measurement light having different phases.
  • Evaluation of the crack of the substrate due to the collision of the lamp was performed by dropping the hard disk device 200 attached with the magnetic disk of the example or the comparative example from a certain height using a commercially available drop impact tester.
  • the hard disk device 200 was dropped from a height of 1 mm, the hard disk device 200 was disassembled and the presence or absence of cracking of the magnetic disk was visually confirmed.
  • Table 1 shows the evaluation results of the hard disk device 200 for each of the 1000 magnetic disks produced in Examples 1 to 4 and Comparative Example 1.
  • the case where the number of cracks generated is 1 or less is marked as ⁇
  • the case of 2-5 sheets is marked as ⁇
  • the case of cracks of 6 or more is marked as x.
  • the average value of the warping amount ⁇ after fixing in Example 1 is 1 ⁇ m
  • the average value of the warping amount ⁇ after fixing in Example 2 is 0 ⁇ m
  • the warping amount ⁇ after fixing in Example 3 is The average value was ⁇ 1 ⁇ m
  • the average value of the warping amount ⁇ after fixing Example 4 was 0 ⁇ m.
  • the number of cracks is 1 in Example 2, 0 in Example 4, and 3 in Examples 1 and 3.
  • the crack occurrence rate is determined in Examples 2 and 4, and Examples 1 and 3 are used.
  • the magnetic disk 5 was positioned substantially at the center with respect to the gap of 1.5 mm between the tip portions 51b and 51c of the lamp 51.
  • the interval x 1 of the distal end portion 51b and the magnetic disk 5 0.349Mm interval x 2 of the distal end portion 51c and the magnetic disk 5 was 0.351Mm.
  • x 1 is 0.350 mm
  • x 2 is 0.350 mm
  • x 1 is 0.351mm
  • x 2 is 0.349Mm
  • x 1 is 0. 4mm
  • x 2 was 0.4mm.
  • Comparative Example 1 As shown in Table 1, the average value of the warping amount ⁇ after fixing was 5 ⁇ m. In addition, eight cracks occurred, and the determination of the crack occurrence rate was x. In Comparative Example 1, x 1 is 0.345mm, x 2 is 0.355 mm, spacing of the tip portion 51b of the magnetic disk 59 and lamp 51 were narrowed.
  • the amount of warping ⁇ becomes substantially zero when fixed to the fixed shaft 6 of the hard disk device 200, and the magnetic disk 5 is positioned substantially at the center of the gap between the tip portions 51b and 51c of the ramp 51.
  • ramp 51 and the magnetic disc 5 can be widened, generation
  • Table 2 shows the evaluation results of the hard disk device 200 of 1000 magnetic disks produced in Examples 5 to 9 and Comparative Examples 2 and 3. In this experiment, it was determined that the glass substrate non-defective rate was 95% or more at the time of prototyping, ⁇ when the non-defective rate was less than 95%, and x when the non-defective rate was 60% or less.
  • the average value of the warping amount ⁇ after fixing in Example 5 is 3 ⁇ m
  • the average value of the warping amount ⁇ after fixing in Example 6 is 2 ⁇ m
  • the warping amount after fixing in Examples 7 to 9 The average value of ⁇ was 0 ⁇ m.
  • the number of cracks in Example 5 is 5, the number of cracks in Example 6 is 3, and the determination of crack occurrence rate is ⁇
  • the number of cracks in Examples 7 to 9 is 0, and the determination of crack occurrence rate is Both were ⁇ .
  • the substrate non-defective rate is almost 100% in Examples 7 to 9, and the judgment is ⁇ .
  • the substrate non-defective rate decreases because the target is a thin and the target warpage amount is large. ⁇ .
  • the average value of the warping amount ⁇ after fixing in Comparative Examples 2 and 3 is 0 ⁇ m, but the thickness of the substrate is thick and the distances x 1 and x 2 from the tip portions 51b and 51c of the lamp 51 are narrow. 7 was cracked in 2 and 6 cracks were generated in Comparative Example 3, and the determination of the crack occurrence rate was x.
  • Table 3 shows the evaluation results of the hard disk device 200 for each of the 1000 magnetic disks produced in Examples 10-13.
  • FIG. 15 is a plan view of the magnetic disk 5.
  • the average values of the warping amounts ⁇ of the cross section CC and the cross section DD after fixing in Example 12 are ⁇ 2 ⁇ m and ⁇ 1 ⁇ m, respectively, and the warping amounts of the cross section CC and the cross section DD after fixing in Example 13 are as follows.
  • the average values of ⁇ were ⁇ 4 ⁇ m and +2 ⁇ m, respectively.
  • the number of cracks was 3 and 5 in Examples 12 and 13, respectively, and the determination of crack occurrence rate was “good”.
  • the substrate when the information recording medium is fixed to the rotating shaft using the conventional information recording medium fixing mechanism, the substrate is prevented from cracking due to the collision of the lamp so as not to warp.
  • An information recording medium glass substrate, an information recording medium, and an information recording apparatus using the information recording medium can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Record Carriers (AREA)
  • Holding Or Fastening Of Disk On Rotational Shaft (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

The disclosed glass substrate for an information recording medium is characterized by being provided ahead of time with convex or concave curvature in the direction from a through-hole to the outside in a manner so that the primary surface is corrected and becomes flat by means of clamping force from both sides of the rim when being affixed to a rotating axle.

Description

情報記録媒体用ガラス基板、情報記録媒体、および情報記録装置GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND INFORMATION RECORDING DEVICE
 本発明は、情報記録媒体用ガラス基板、情報記録媒体、および情報記録装置に関する。 The present invention relates to an information recording medium glass substrate, an information recording medium, and an information recording apparatus.
 ノートブック型パソコンやカード型記録媒体に用いられる小型の情報記録装置の基板としてガラス基板を用いたものが知られている。このような携帯して用いられる情報記録装置においては、磁気ヘッド及び情報記録媒体の記録層を外部衝撃から保護する目的で、装置が停止している間、情報記録媒体の端部に重なる位置に配置されたランプに磁気ヘッドを退避させておき、装置が起動したときに磁気ヘッドをランプから滑り出させて記録を行うようにしたランプロード方式のものが知られている。 2. Description of the Related Art A substrate using a glass substrate is known as a substrate of a small information recording apparatus used for a notebook type personal computer or a card type recording medium. In such a portable information recording apparatus, the magnetic head and the recording layer of the information recording medium are protected from external impacts while the apparatus is at a position where it overlaps the end of the information recording medium. There is known a ramp load type in which a magnetic head is retracted to an arranged lamp and recording is performed by sliding the magnetic head out of the lamp when the apparatus is started.
 ランプロード方式の情報記録装置においては、ランプロード方式以外の装置に組み込んだ場合には落下させたり衝撃を与えたりしても特に問題を生じないような情報記録媒体を使用しているにも関わらず、落下や衝突などの急激な衝撃でガラス基板が破損するという問題を生じることが判明した。特に、強化処理を施していないようなガラス基板を用いている場合にこの問題が顕著であった。 Although the ramp load type information recording apparatus uses an information recording medium that does not cause a particular problem even if it is dropped or given an impact when incorporated in a non-ramp load type apparatus. However, it has been found that the glass substrate is damaged by a sudden impact such as a drop or a collision. In particular, this problem was significant when a glass substrate that was not subjected to a tempering treatment was used.
 この問題の原因は、ランプの先端部のカラス口状の部分にわずかな間隔を空けて情報記録媒体を挟んでいるので、記録媒体が撓んだときにランプに衝突し、ガラス基板が破断するためと考えられる。 The cause of this problem is that the information recording medium is sandwiched between the crow mouth part at the tip of the lamp with a slight gap between them, so when the recording medium is bent, it collides with the lamp and the glass substrate is broken. This is probably because of this.
 このような問題を解決するため、中央部から外側面に向かって基板の厚みが薄くなるように主表面を傾斜させランプの衝突による基板の割れを防止する情報記録媒体用ガラス基板が提案されている(例えば、特許文献1参照)。 In order to solve such problems, a glass substrate for an information recording medium has been proposed in which the main surface is inclined so that the thickness of the substrate decreases from the central portion toward the outer surface to prevent the substrate from cracking due to a lamp collision. (For example, refer to Patent Document 1).
特開2006-318583号公報JP 2006-318583 A
 一般に情報記録装置では、スピンドルモータの回転軸に情報記録媒体を挿入し、円筒状のリング治具と、環状の突起部が設けられたクランプ治具と、によって情報記録媒体を挟み込んで回転軸に固定する。その際に、スピンドルモータの回転駆動によるトルクを情報記録媒体に十分に伝達できるよう、情報記録媒体は、クランプ治具とリング治具によって厚み方向に締め付けられる。 In general, in an information recording apparatus, an information recording medium is inserted into a rotating shaft of a spindle motor, and the information recording medium is sandwiched between a cylindrical ring jig and a clamp jig provided with an annular protrusion, and the rotating shaft is inserted into the rotating shaft. Fix it. At this time, the information recording medium is tightened in the thickness direction by the clamp jig and the ring jig so that the torque generated by the rotational drive of the spindle motor can be sufficiently transmitted to the information recording medium.
 近年、情報記録装置に求められる性能の向上に伴い、スピンドルモータをより高速で回転させるようになってきた。そのため、スピンドルモータの回転駆動によるトルクを情報記録媒体に確実に伝達するのに必要な締め付け力量が増加し、強く締め付けられることによって情報記録媒体に反りが発生するようになってきた。 In recent years, with the improvement in performance required for information recording devices, the spindle motor has been rotated at a higher speed. For this reason, the amount of tightening force required to reliably transmit the torque generated by the rotational drive of the spindle motor to the information recording medium is increased, and the information recording medium is warped by being strongly tightened.
 このような反りが発生すると、情報記録媒体の最外周はランプのカラス口状の部分の中間位置よりもランプ側に偏って位置し、情報記録媒体とランプが接近するのでわずかな外部衝撃でもランプに衝突することがわかった。 When such a warp occurs, the outermost periphery of the information recording medium is located closer to the lamp side than the middle position of the crow mouth portion of the lamp, and the information recording medium and the lamp come close to each other, so even a slight external impact can cause the lamp. I found out that it would collide.
 しかしながら、従来の情報記録装置ではこのような反りの発生については考慮されていない。そのため、特許文献1に記載の情報記録媒体用ガラス基板を用いても、ランプの衝突によるガラス基板の割れが発生することがある。 However, the conventional information recording apparatus does not consider the occurrence of such warpage. Therefore, even if the glass substrate for information recording media described in Patent Document 1 is used, the glass substrate may be cracked due to lamp collision.
 ところが、情報記録装置の既存の情報記録媒体固定機構を改良し、回転軸に情報記録媒体を固定する際に反りが発生しないようにするためには、多額の投資が必要であり早急には困難である。 However, in order to improve the existing information recording medium fixing mechanism of the information recording apparatus and prevent the warp when the information recording medium is fixed to the rotating shaft, a large amount of investment is necessary and it is difficult to do so immediately. It is.
 本発明は、上記課題に鑑みてなされたものであって、従来の情報記録媒体固定機構を用いて回転軸に情報記録媒体を固定する際に、反りが発生しないようにして、ランプの衝突による基板の割れを防止することが可能な情報記録媒体用ガラス基板、情報記録媒体、および該情報記録媒体を用いた情報記録装置を提供することを目的とする。 The present invention has been made in view of the above problems, and prevents the occurrence of warping when fixing an information recording medium to a rotating shaft using a conventional information recording medium fixing mechanism. It is an object of the present invention to provide a glass substrate for an information recording medium, an information recording medium, and an information recording apparatus using the information recording medium capable of preventing the substrate from cracking.
 上記の課題を解決するため、本発明は以下のような特徴を有するものである。 In order to solve the above problems, the present invention has the following characteristics.
 1.中心部に回転軸を挿入する貫通孔を備え、主表面の前記貫通孔の周縁部を両側から挟み込んで前記回転軸と固定する円盤状の情報記録媒体用ガラス基板であって、
 前記回転軸と固定する際に前記周縁部を両側から挟み込む力によって前記主表面が矯正され平坦になるように、前記貫通孔から外側に向かって凸状または凹状の反りを予め設けていることを特徴とする情報記録媒体用ガラス基板。
1. A disc-shaped glass substrate for an information recording medium comprising a through-hole into which a rotation shaft is inserted at a central portion, sandwiching a peripheral portion of the through-hole on the main surface from both sides and fixed to the rotation shaft,
Protruding or concave warpage is provided in advance from the through hole so that the main surface is corrected and flattened by a force sandwiching the peripheral edge from both sides when fixed to the rotating shaft. A glass substrate for an information recording medium.
 2.両側の前記主表面の等高線は、
 何れも同心円でありその間隔は等間隔であることを特徴とする前記1に記載の情報記録媒体用ガラス基板。
2. The contours of the main surface on both sides are
2. The glass substrate for an information recording medium as described in 1 above, wherein all of them are concentric circles, and the intervals are equal.
 3.前記情報記録媒体用ガラス基板の厚みは、
 中央部から外側面に向かって薄くなっていることを特徴とする前記1または2に記載の情報記録媒体用ガラス基板。
3. The thickness of the information recording medium glass substrate is:
3. The glass substrate for information recording media according to 1 or 2, wherein the glass substrate is thinner from the center toward the outer surface.
 4.前記情報記録媒体用ガラス基板の厚みは、
 0.78~2.2mmであることを特徴とする前記1または2に記載の情報記録媒体用ガラス基板。
4). The thickness of the information recording medium glass substrate is:
3. The glass substrate for information recording media as described in 1 or 2 above, which has a thickness of 0.78 to 2.2 mm.
 5.前記貫通孔の近傍における前記主表面の周方向TIRは、0.7μm以下であることを特徴とする前記1から4の何れか1項に記載の情報記録媒体用ガラス基板。 5. 5. The glass substrate for information recording media according to any one of 1 to 4, wherein a circumferential direction TIR of the main surface in the vicinity of the through hole is 0.7 μm or less.
 6.前記1から5の何れか1項に記載の情報記録媒体用ガラス基板の前記主表面の上に記録層を設けたことを特徴とする情報記録媒体。 6. 6. An information recording medium comprising a recording layer provided on the main surface of the glass substrate for information recording medium according to any one of 1 to 5 above.
 7.円筒状のリング治具と、環状の突起部が設けられたクランプ治具と、回転軸を回転させる駆動機構と、を有する情報記録装置であって、
 前記6に記載の情報記録媒体と、
 前記情報記録媒体の読み書きを行うためのヘッドと、
 先端の位置が前記情報記録媒体の端部に重なるように配置されたランプと、
 前記ランプに退避している前記ヘッドの前記情報記録媒体へのロード及び前記ヘッドの前記ランプへのアンロードを行うためのヘッド駆動機構と、
 を有し、
 前記リング治具、前記情報記録媒体の順に前記回転軸を貫通させ前記クランプ治具の環状の突起部を前記情報記録媒体の表面に圧接させて前記リング治具との間に挟むことにより前記情報記録媒体の反りを矯正して、前記情報記録媒体は前記回転軸に固定されていることを特徴とする情報記録装置。
7). An information recording apparatus having a cylindrical ring jig, a clamp jig provided with an annular protrusion, and a drive mechanism for rotating a rotating shaft,
The information recording medium described in 6 above,
A head for reading and writing the information recording medium;
A lamp arranged such that the position of the tip overlaps the end of the information recording medium;
A head driving mechanism for loading the head retracted on the ramp onto the information recording medium and unloading the head onto the ramp;
Have
The information is obtained by penetrating the rotating shaft in the order of the ring jig and the information recording medium and pressing an annular protrusion of the clamp jig against the surface of the information recording medium and sandwiching the information between the ring jig and the information recording medium. An information recording apparatus, wherein the information recording medium is fixed to the rotating shaft by correcting warping of the recording medium.
 本発明の情報記録媒体用ガラス基板は、回転軸と固定する際に主表面が平坦に矯正されるように、貫通孔から外側に向かって凸状または凹状の反りを予め設けている。そのため、主表面の貫通孔の周縁部を両側から挟み込んで回転軸と固定する際に締め付ける力により予め設けた反りは矯正され、基板を平坦にすることができる。 The glass substrate for an information recording medium of the present invention is provided with a convex or concave warp in advance from the through hole to the outside so that the main surface is flattened when fixed to the rotating shaft. Therefore, the warp provided in advance by the force of tightening when the peripheral portion of the through hole on the main surface is sandwiched from both sides and fixed to the rotating shaft is corrected, and the substrate can be flattened.
 したがって、従来の情報記録媒体固定機構を用いて回転軸に情報記録媒体を固定する際に、反りが発生しないようにして、ランプの衝突による基板の割れを防止することが可能な情報記録媒体用ガラス基板、情報記録媒体、および該情報記録媒体を用いた情報記録装置を提供することができる。 Therefore, when the information recording medium is fixed to the rotating shaft by using the conventional information recording medium fixing mechanism, it is possible to prevent the substrate from cracking due to the collision of the lamp so as not to warp. A glass substrate, an information recording medium, and an information recording apparatus using the information recording medium can be provided.
本発明に係る情報記録媒体用ガラス基板の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the glass substrate for information recording media which concerns on this invention. 干渉計を用いてガラス基板に発生させた干渉縞の一例である。It is an example of the interference fringe generated on the glass substrate using the interferometer. 本発明に係る情報記録媒体の一例である磁気ディスク5の断面図である。It is sectional drawing of the magnetic disc 5 which is an example of the information recording medium based on this invention. 磁気ディスク5が装着された、本発明に係る情報記録装置の一例であるランプロード方式のハードディスク装置200の上視図である。FIG. 3 is a top view of a ramp load type hard disk device 200, which is an example of an information recording apparatus according to the present invention, on which a magnetic disk 5 is mounted. ハードディスク装置200の動作例を示す要部斜視図である。FIG. 10 is a perspective view of relevant parts showing an operation example of the hard disk device 200. 磁気ディスク5を回転軸6に固定する状態を示す模式的な断面図である。3 is a schematic cross-sectional view showing a state in which a magnetic disk 5 is fixed to a rotary shaft 6. FIG. 回転軸6に固定する際に、平坦な磁気ディスク59に反りの発生する原因を説明するための断面図である。6 is a cross-sectional view for explaining a cause of warping of a flat magnetic disk 59 when it is fixed to a rotary shaft 6. FIG. 本発明に係る情報記録媒体用ガラス基板の第2の実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the glass substrate for information recording media concerning this invention. 図8に示すガラス基板1から作製した磁気ディスク5を回転軸6に固定する状態を示す模式的な断面図である。FIG. 9 is a schematic cross-sectional view showing a state in which a magnetic disk 5 manufactured from the glass substrate 1 shown in FIG. 8 is fixed to a rotating shaft 6. 本発明に係るガラス基板の製造方法の一例の製造工程図である。It is a manufacturing-process figure of an example of the manufacturing method of the glass substrate which concerns on this invention. オスカー研磨機の下研磨皿13にガラス基板1を載置した状態を示す説明図である。It is explanatory drawing which shows the state which mounted the glass substrate 1 in the lower polishing tray 13 of an Oscar polisher. オスカー研磨機の横断面図である。It is a cross-sectional view of an Oscar polisher. 左右に揺動する上研磨皿14を説明するためのオスカー研磨機の上視図である。It is a top view of the Oscar grinder for demonstrating the upper grinding | polishing dish 14 rock | fluctuated right and left. ガラス基板の厚みを内周から外周にかけて薄くする工程を説明する説明図である。It is explanatory drawing explaining the process of making the thickness of a glass substrate thin from an inner periphery to an outer periphery. 磁気ディスク5の平面図である。2 is a plan view of a magnetic disk 5. FIG.
 図1は本発明に係る情報記録媒体用ガラス基板の一実施形態を示す断面図である。 FIG. 1 is a cross-sectional view showing an embodiment of a glass substrate for an information recording medium according to the present invention.
 情報記録媒体用のガラス基板1は、中心に貫通孔20が形成されたドーナツ状の円板形状をしている。貫通孔20は、ガラス基板1を回転軸6(図1には図示せず)に固定して当該中心の周りにガラス基板1を回転させるために使用される。ガラス基板1は、主表面10a及び主表面10bの貫通孔20の周縁部を両側から挟み込んで回転軸6と固定される。ガラス基板1の主表面10a及び主表面10bは平滑な面である。 The glass substrate 1 for information recording medium has a donut-like disk shape with a through hole 20 formed in the center. The through-hole 20 is used for fixing the glass substrate 1 to the rotation shaft 6 (not shown in FIG. 1) and rotating the glass substrate 1 around the center. The glass substrate 1 is fixed to the rotary shaft 6 by sandwiching the peripheral portions of the through holes 20 of the main surface 10a and the main surface 10b from both sides. The main surface 10a and the main surface 10b of the glass substrate 1 are smooth surfaces.
 図1に示すように、ガラス基板1の断面は、貫通孔20から外側面40に向かって主表面10a及び主表面10bの貫通孔20近傍が凸状に反った形状に形成されている。 As shown in FIG. 1, the cross section of the glass substrate 1 is formed in a shape in which the vicinity of the through hole 20 on the main surface 10 a and the main surface 10 b is curved in a convex shape from the through hole 20 toward the outer surface 40.
 なお、ガラス基板1の主表面10bを紙面上側に、主表面10aを紙面下側になるようにして用いることもできるので、その場合ガラス基板1の断面は、貫通孔20近傍が凹状に反っていることになる。 Since the main surface 10b of the glass substrate 1 can be used with the main surface 10a on the upper side of the drawing and the main surface 10a on the lower side of the drawing, the cross section of the glass substrate 1 is warped in the vicinity of the through hole 20 in that case. Will be.
 このようにガラス基板1は製造時から反っているので、後の工程で主表面10a及び主表面10bの貫通孔20の周縁部を両側から挟み込んで回転軸6と固定する際に締め付けることにより逆方向の反りを発生させてガラス基板1を平坦にすることができる。ガラス基板1は、基板の反りの方向が回転軸6と固定する際に発生する反りと反対方向になるように回転軸6に取り付ける。 Since the glass substrate 1 is warped from the time of manufacture in this way, the reverse is achieved by clamping the peripheral portions of the through holes 20 of the main surface 10a and the main surface 10b from both sides and fixing them to the rotating shaft 6 in the subsequent process. The glass substrate 1 can be flattened by generating a warp in the direction. The glass substrate 1 is attached to the rotating shaft 6 so that the warping direction of the substrate is opposite to the warping that occurs when the substrate is fixed to the rotating shaft 6.
 図2(a)は、干渉計を用いて主表面10aにレーザー光を照射して発生させた干渉縞の一例である。図2(b)は、ガラス基板1の断面であり、Wは反りを示す。 FIG. 2A is an example of interference fringes generated by irradiating the main surface 10a with laser light using an interferometer. FIG. 2B is a cross section of the glass substrate 1, and W indicates warpage.
 図2(a)のe1、e2、e3は干渉縞の暗くなっている部分であり、主表面10aの等高線に相当する。図2(a)に示す例では、等高線e1、e2、e3は、何れも同心円でありその間隔は等間隔である。また、主表面10bにレーザー光を照射して干渉縞を発生させても同様に3つの等高線が発生する。その等高線は、何れも同心円であり間隔は等間隔である。 2, e 1, e 2, and e 3 are darkened portions of the interference fringes and correspond to contour lines of the main surface 10 a. In the example shown in FIG. 2A, the contour lines e1, e2, e3 are all concentric circles, and the intervals are equal. Further, even if the main surface 10b is irradiated with laser light to generate interference fringes, three contour lines are similarly generated. The contour lines are all concentric circles, and the intervals are equal.
 このように、主表面10a及び主表面10bを、等高線が同心円でありその間隔が等間隔になるような形状にすると、主表面10a及び主表面10bの貫通孔20の周縁部を両側から挟み込んで回転軸6と固定することによってガラス基板1をより平坦にすることができる。 In this way, when the main surface 10a and the main surface 10b are shaped so that the contour lines are concentric and the intervals are equal, the peripheral portions of the through holes 20 of the main surface 10a and the main surface 10b are sandwiched from both sides. The glass substrate 1 can be made flatter by fixing to the rotating shaft 6.
 図3は、本発明に係る情報記録媒体の一例である磁気ディスク5の断面図である。磁気ディスク5は、円形のガラス基板1の主表面10aに磁性膜11aが、主表面10bに磁性膜11bが直接形成されている。なお、本実施形態では磁気ディスク5の両面に磁性膜11を形成した例を説明するが、磁性膜11は、主表面10aまたは主表面10bの何れか一方の上だけに設けても良い。 FIG. 3 is a cross-sectional view of a magnetic disk 5 which is an example of an information recording medium according to the present invention. In the magnetic disk 5, the magnetic film 11a is directly formed on the main surface 10a of the circular glass substrate 1, and the magnetic film 11b is directly formed on the main surface 10b. In this embodiment, an example in which the magnetic film 11 is formed on both surfaces of the magnetic disk 5 will be described. However, the magnetic film 11 may be provided only on either the main surface 10a or the main surface 10b.
 また、本発明のガラス基板1は、光磁気ディスク用などのガラス基板としても利用できる。 The glass substrate 1 of the present invention can also be used as a glass substrate for a magneto-optical disk.
 図4は、磁気ディスク5が装着された、本発明に係る情報記録装置の一例であるランプロード方式のハードディスク装置200の上視図である。図5は、ハードディスク装置200の動作例を示す要部斜視図であり、記録再生ヘッド53を支持するサスペンション54をランプ51の摺動面51a上に退避させた状態を示す。 FIG. 4 is a top view of a ramp load type hard disk device 200, which is an example of an information recording apparatus according to the present invention, in which the magnetic disk 5 is mounted. FIG. 5 is a perspective view of a main part showing an operation example of the hard disk device 200, showing a state in which the suspension 54 that supports the recording / reproducing head 53 is retracted on the sliding surface 51 a of the ramp 51.
 図4、図5に示すように、本実施形態のハードディスク装置200は、記録再生ヘッド53を支持するサスペンション54、サスペンション54を固定するアーム37を備えている。アーム37は、ピボット38を軸に筐体501に対して回転可能に取り付けられ、ピボット38を挟んでサスペンション54と反対側に設けられているボイスコイルモータ(不図示)によって回転駆動される。 4 and 5, the hard disk device 200 of this embodiment includes a suspension 54 that supports the recording / reproducing head 53 and an arm 37 that fixes the suspension 54. As shown in FIG. The arm 37 is rotatably attached to the housing 501 with the pivot 38 as an axis, and is driven to rotate by a voice coil motor (not shown) provided on the opposite side of the suspension 54 with the pivot 38 interposed therebetween.
 リフトタブ52は、サスペンション54の先端に設けられる突起で、記録再生ヘッド53より先端側に位置する。ランプ51は、リフトタブ52が接触する摺動面51aを有し、リフトタブ52がランプ51の摺動面51aに接触している間は、2枚のサスペンション54の間隔が規制され、記録再生ヘッド53同士の接触及び記録再生ヘッド53と磁気ディスク5の接触が防止される。 The lift tab 52 is a protrusion provided at the tip of the suspension 54 and is located on the tip side of the recording / reproducing head 53. The ramp 51 has a sliding surface 51 a with which the lift tab 52 comes into contact. While the lift tab 52 is in contact with the sliding surface 51 a of the ramp 51, the interval between the two suspensions 54 is regulated, and the recording / reproducing head 53. Contact between each other and contact between the recording / reproducing head 53 and the magnetic disk 5 are prevented.
 記録再生ヘッド53は、磁気ディスク5の回転によって発生する空気流で磁気ディスク5の面上より浮上する。このため、記録再生ヘッド53を磁気ディスク5の面上へロードさせるときは、記録再生ヘッド53が磁気ディスク5の面上に到達するまで、ランプ51でリフトタブ52を支持する必要がある。また、記録再生ヘッド53を磁気ディスク5の外側へアンロードさせるときは、記録再生ヘッド53が磁気ディスク5の外側に出る前に、ランプ51でリフトタブ52を支持する必要がある。 The recording / reproducing head 53 floats from the surface of the magnetic disk 5 by an air flow generated by the rotation of the magnetic disk 5. For this reason, when loading the recording / reproducing head 53 onto the surface of the magnetic disk 5, it is necessary to support the lift tab 52 with the ramp 51 until the recording / reproducing head 53 reaches the surface of the magnetic disk 5. Further, when the recording / reproducing head 53 is unloaded to the outside of the magnetic disk 5, it is necessary to support the lift tab 52 by the ramp 51 before the recording / reproducing head 53 comes out of the magnetic disk 5.
 すなわち、図5に示すように、記録再生ヘッド53が磁気ディスク5の外周付近の面上に位置する状態で、ランプ51でリフトタブ52を支持する必要がある。ここで、記録再生ヘッド53が磁気ディスク5の面上に位置する状態では、リフトタブ52も磁気ディスク5の面上に位置するので、リフトタブ52とランプ51の接触点は磁気ディスク5の面上になければならず、したがってランプ51の先端部は磁気ディスク5の面上に被った位置に配置する必要がある。通常、一枚の磁気ディスク5に対して記録再生ヘッド53は両面分の2個設けられるから、図5に示すように、ランプ51の先端部51b、51cは磁気ディスク5を挟むようにカラス口状に形成されている。このようなランプは、樹脂材料を成型して製造することができる。 That is, as shown in FIG. 5, the lift tab 52 needs to be supported by the ramp 51 in a state where the recording / reproducing head 53 is positioned on the surface near the outer periphery of the magnetic disk 5. Here, when the recording / reproducing head 53 is positioned on the surface of the magnetic disk 5, the lift tab 52 is also positioned on the surface of the magnetic disk 5, so that the contact point between the lift tab 52 and the ramp 51 is on the surface of the magnetic disk 5. Therefore, it is necessary to dispose the tip of the ramp 51 at a position covering the surface of the magnetic disk 5. Usually, since two recording / reproducing heads 53 are provided for both sides of one magnetic disk 5, the tip portions 51 b and 51 c of the lamp 51 are arranged so as to sandwich the magnetic disk 5 as shown in FIG. It is formed in a shape. Such a lamp can be manufactured by molding a resin material.
 磁気ディスク5と対向する側に環状の突起部が設けられたクランプ治具2は、図4のようにビス3によって図示せぬ磁気ディスク駆動用モータの回転軸6に固定され、図4には図示せぬリング状治具7との間に磁気ディスク5を挟み込んで回転軸6と固定している。 The clamp jig 2 provided with an annular protrusion on the side facing the magnetic disk 5 is fixed to a rotating shaft 6 of a magnetic disk drive motor (not shown) by a screw 3 as shown in FIG. A magnetic disk 5 is sandwiched between a ring-shaped jig 7 (not shown) and fixed to the rotary shaft 6.
 次に、図6、図7を用いて磁気ディスク5を回転軸6に固定することによる反りの変化を説明する。 Next, a change in warp caused by fixing the magnetic disk 5 to the rotating shaft 6 will be described with reference to FIGS.
 図6は、磁気ディスク5を回転軸6に固定する状態を示す模式的な断面図、図7は、回転軸6に固定する際に、平坦な磁気ディスク59に反りの発生する原因を説明するための断面図である。 FIG. 6 is a schematic cross-sectional view showing a state in which the magnetic disk 5 is fixed to the rotary shaft 6, and FIG. 7 explains the cause of warping of the flat magnetic disk 59 when the magnetic disk 5 is fixed to the rotary shaft 6. FIG.
 最初に、図7を用いて、従来の平坦な磁気ディスク59をハードディスク装置200の回転軸6に固定する際に反りの発生する現象を説明する。 First, a phenomenon in which a warp occurs when a conventional flat magnetic disk 59 is fixed to the rotating shaft 6 of the hard disk device 200 will be described with reference to FIG.
 図7(a)は、回転軸6にリング状治具7、平坦な磁気ディスク59の順に挿入し、クランプ治具2をビス3でこれから締め付ける状態を示している。なお、回転軸6の軸中心には、ビス3と螺合するネジ穴が設けられている。図中、矢印Aで示す点は、クランプ治具2の環状の突起部2aが磁気ディスク59に当接する点、矢印Bで示す点は、リング状治具7の最外周で磁気ディスク59に当接する点、矢印Cで示す点は、磁気ディスク59の最外周の厚みの中心である。Lcは点Cまでの径である。図7(a)の例では、クランプ治具2の環状の突起部2aの径Laはリング状治具7の外径Lbより小である。 FIG. 7A shows a state in which the ring-shaped jig 7 and the flat magnetic disk 59 are inserted in this order on the rotating shaft 6 and the clamp jig 2 is tightened with screws 3 from now on. A screw hole that is screwed into the screw 3 is provided at the center of the rotary shaft 6. In the figure, a point indicated by an arrow A is a point where the annular protrusion 2 a of the clamp jig 2 abuts the magnetic disk 59, and a point indicated by an arrow B is the magnetic disk 59 at the outermost periphery of the ring-shaped jig 7. The point of contact, the point indicated by arrow C, is the center of the thickness of the outermost periphery of the magnetic disk 59. Lc is the diameter to point C. In the example of FIG. 7A, the diameter La of the annular protrusion 2 a of the clamping jig 2 is smaller than the outer diameter Lb of the ring-shaped jig 7.
 図7(b)は、ビス3を締めてリング状治具7とクランプ治具2との間に磁気ディスク59を所定の圧力で挟み込んだ状態である。ビス3を締めると図中Aで示すクランプ治具2の突起部2aと磁気ディスク59の当接部から磁気ディスク59に圧力が加わる。この圧力により、磁気ディスク59の先端は、図7(b)のようにクランプ治具2側に反ってしまう。図7(b)では、図7(a)の平坦な状態の磁気ディスク59の厚みの中心線Sから反り量αだけクランプ治具2側に磁気ディスク59が反っている状態を示している。なお、反り量αはクランプ治具2側方向(紙面上方向)への反りを正方向とし、リング状治具7側方向(紙面下方向)への反りを負方向とする。 FIG. 7B shows a state in which the screw 3 is tightened and the magnetic disk 59 is sandwiched between the ring-shaped jig 7 and the clamp jig 2 with a predetermined pressure. When the screw 3 is tightened, pressure is applied to the magnetic disk 59 from the projection 2a of the clamp jig 2 and the contact part of the magnetic disk 59 indicated by A in the figure. Due to this pressure, the tip of the magnetic disk 59 is warped toward the clamping jig 2 as shown in FIG. FIG. 7B shows a state in which the magnetic disk 59 is warped toward the clamp jig 2 from the center line S of the thickness of the flat magnetic disk 59 in FIG. The warpage amount α is defined as a positive direction for warping in the direction of the clamping jig 2 (upward on the paper surface) and a negative direction for warping in the direction of the ring jig 7 (downward on the paper surface).
 次に、クランプ治具2の環状の突起部2aの径Laがリング状治具7の外径Lbより大の場合の例を説明する。 Next, an example in which the diameter La of the annular protrusion 2a of the clamp jig 2 is larger than the outer diameter Lb of the ring-shaped jig 7 will be described.
 図7(c)は、回転軸6にリング状治具7、平坦な磁気ディスク59の順に挿入し、クランプ治具2を回転軸6の軸中心に設けられたネジにビス3をこれから締め付ける状態を示している。図7(c)の例では、クランプ治具2の環状の突起部2aの径Laはリング状治具7の外径Lbより大である。 FIG. 7C shows a state in which the ring-shaped jig 7 and the flat magnetic disk 59 are inserted into the rotating shaft 6 in this order, and the clamp jig 2 is tightened on the screw provided at the center of the rotating shaft 6 from now on. Is shown. In the example of FIG. 7C, the diameter La of the annular protrusion 2 a of the clamp jig 2 is larger than the outer diameter Lb of the ring-shaped jig 7.
 図7(d)は、ビス3を締めてリング状治具7とクランプ治具2との間に磁気ディスク59を所定の圧力で挟み込んだ状態である。ビス3を締めると図中Aで示すクランプ治具2の突起部2aと磁気ディスク59の当接部から磁気ディスク59に圧力が加わる。図7(d)のクランプ治具2とリング状治具7は、図7(b)の場合と違ってLa>Lbなので、磁気ディスク59は、この圧力により図中Bで示すリング状治具7の先端部分から折れ曲がるようにリング状治具7側方向に反ってしまう。図7(d)では、図7(c)の平坦な状態の磁気ディスク59の厚みの中心線Sから反り量-αだけリング状治具7側方向に磁気ディスク59が反っている状態を示している。 FIG. 7D shows a state in which the screw 3 is tightened and the magnetic disk 59 is sandwiched between the ring-shaped jig 7 and the clamp jig 2 with a predetermined pressure. When the screw 3 is tightened, pressure is applied to the magnetic disk 59 from the projection 2a of the clamp jig 2 and the contact part of the magnetic disk 59 indicated by A in the figure. Unlike the case of FIG. 7B, the clamp jig 2 and the ring-shaped jig 7 in FIG. 7D are La> Lb. 7 is bent in the direction of the ring-shaped jig 7 so as to be bent from the tip portion. FIG. 7D shows a state in which the magnetic disk 59 is warped in the direction of the ring-shaped jig 7 from the center line S of the thickness of the flat magnetic disk 59 in FIG. ing.
 次に、図6について説明する。図6は、クランプ治具2の環状の突起部2aの径Laは、図7(a)、(b)のようにリング状治具7の外径Lbより小の例である。また、ランプ51の先端部51b、51cの間隔はDである。 Next, FIG. 6 will be described. FIG. 6 is an example in which the diameter La of the annular protrusion 2a of the clamp jig 2 is smaller than the outer diameter Lb of the ring-shaped jig 7 as shown in FIGS. 7 (a) and 7 (b). The distance between the tip portions 51b and 51c of the lamp 51 is D.
 図6(a)、(b)は本発明の実施形態であり、図6(a)は、図3に示す磁気ディスク5を断面が凸状になるように回転軸6に挿入した状態、図6(b)は、ビス3を締め付けてリング状治具7とクランプ治具2との間に磁気ディスク5を所定の圧力で挟み込んだ状態である。 6A and 6B show an embodiment of the present invention, and FIG. 6A shows a state in which the magnetic disk 5 shown in FIG. 3 is inserted into the rotary shaft 6 so that the cross section is convex. 6 (b) shows a state in which the magnetic disk 5 is sandwiched between the ring-shaped jig 7 and the clamp jig 2 with a predetermined pressure by tightening the screws 3.
 図6(c)、(d)は従来例であり、図6(c)は、平坦な磁気ディスク59を回転軸6に挿入した状態、図6(d)は、ビス3を締め付けてリング状治具7とクランプ治具2との間に磁気ディスク59を所定の圧力で挟み込んだ状態である。 6 (c) and 6 (d) show a conventional example, FIG. 6 (c) shows a state in which a flat magnetic disk 59 is inserted into the rotary shaft 6, and FIG. 6 (d) shows a ring shape by tightening the screw 3. The magnetic disk 59 is sandwiched between the jig 7 and the clamp jig 2 with a predetermined pressure.
 図6(e)、(f)は比較例であり、図6(e)は、図3に示す磁気ディスク5を断面が凹状になるように回転軸6に挿入した状態、図6(f)はビス3を締め付けてリング状治具7とクランプ治具2との間に磁気ディスク5を所定の圧力で挟み込んだ状態である。 6 (e) and 6 (f) are comparative examples, and FIG. 6 (e) shows a state in which the magnetic disk 5 shown in FIG. 3 is inserted into the rotating shaft 6 so that the cross section is concave, and FIG. Is a state in which the magnetic disk 5 is sandwiched between the ring-shaped jig 7 and the clamp jig 2 with a predetermined pressure by tightening the screws 3.
 図6(a)のように断面が凸状に反った状態で本発明の磁気ディスク5を回転軸6に挿入し、ガラス基板1の厚みに応じた圧力にビス3を締め付けると、図6(b)のように磁気ディスク5の反りは矯正され、平坦な状態にすることができる。このことにより、磁気ディスク5の外周部はランプ51の先端部51b、51cと等間隔になり、磁気ディスク5がランプ51と衝突して破損する確率を減らすことができる。 When the magnetic disk 5 of the present invention is inserted into the rotating shaft 6 with the cross-section curved as shown in FIG. 6A, and the screw 3 is tightened to a pressure corresponding to the thickness of the glass substrate 1, FIG. As shown in b), the warp of the magnetic disk 5 is corrected and can be made flat. As a result, the outer peripheral portion of the magnetic disk 5 is equidistant from the tip portions 51b and 51c of the ramp 51, and the probability that the magnetic disk 5 collides with the ramp 51 and is damaged can be reduced.
 なお、ガラス基板1の厚みは0.78mm~2.2mmの範囲にすることが好ましい。ガラス基板1の厚みが2.2mmを越えると、所定の圧力で挟み込んでもガラス基板1の反りはほとんど発生しないので、予め反りを設けなくても良い。しかし、基板の厚みが厚いとガラス基板1とランプ51の先端部51b、51cとの間隔が狭くなり、ランプ51と衝突して破損する確率が増すので、厚みは2.2mm以下にすることが望ましい。 The thickness of the glass substrate 1 is preferably in the range of 0.78 mm to 2.2 mm. When the thickness of the glass substrate 1 exceeds 2.2 mm, the glass substrate 1 hardly warps even when sandwiched at a predetermined pressure. However, if the thickness of the substrate is thick, the distance between the glass substrate 1 and the tip portions 51b and 51c of the lamp 51 is narrowed, and the probability of damage due to collision with the lamp 51 increases. Therefore, the thickness should be 2.2 mm or less. desirable.
 また、ガラス基板1の厚みが0.78mm未満では、所定の圧力で挟み込むとガラス基板1が大きく反るので、予め反り量の大きなガラス基板1を作製する必要がある。ところが、基板の厚みが薄く、反り量の大きなガラス基板1は良品率が低くなるので厚みは0.78mm以上にすることが望ましい。 In addition, when the thickness of the glass substrate 1 is less than 0.78 mm, the glass substrate 1 is greatly warped when sandwiched at a predetermined pressure. Therefore, it is necessary to prepare the glass substrate 1 having a large warp amount in advance. However, since the glass substrate 1 having a thin substrate and a large amount of warpage has a low yield rate, the thickness is preferably 0.78 mm or more.
 また、貫通孔20の近傍における主表面10の周方向TIR(Total Indicated Runout)は0.7μm以下であることが望ましい。 Further, it is desirable that the circumferential direction TIR (Total Induced Runout) of the main surface 10 in the vicinity of the through hole 20 is 0.7 μm or less.
 TIRとは、ガラス基板1の平坦度(うねり量)を表す指標であり、評価面(主表面10a、10b)の最小二乗平面から最高点までの距離と、最小二乗平面から最低点までの距離との合計のことである。本実施形態において、周方向TIRは、ランプ治具2の環状の突起部2aが当接する貫通孔20の近傍の位置における周方向1周分のTIRをいう。 TIR is an index representing the flatness (waviness) of the glass substrate 1, and the distance from the least square plane to the highest point of the evaluation surface ( main surfaces 10a, 10b) and the distance from the least square plane to the lowest point. And the total. In the present embodiment, the circumferential direction TIR refers to a TIR for one round in the circumferential direction at a position in the vicinity of the through hole 20 with which the annular protrusion 2a of the lamp jig 2 contacts.
 貫通孔20の近傍はクランプ治具2の環状の突起部2aが当接するので、周方向TIRが0.7μmより大きいガラス基板1を用いた磁気ディスク5では、クランプ治具2の突起部2aと磁気ディスク5表面の接触が均一にならず、不連続な線接触となってしまう。その結果、クランプ後の磁気ディスク5表面の形状は断面方向によって異なる形状となってしまう。 Since the annular protrusion 2a of the clamp jig 2 abuts in the vicinity of the through hole 20, in the magnetic disk 5 using the glass substrate 1 having a circumferential direction TIR larger than 0.7 μm, the protrusion 2a of the clamp jig 2 Contact on the surface of the magnetic disk 5 is not uniform, resulting in discontinuous line contact. As a result, the shape of the surface of the magnetic disk 5 after clamping becomes different depending on the cross-sectional direction.
 周方向TIRが0.7μm以下のガラス基板1を用いた磁気ディスク5の場合は、クランプ治具2の突起部2aと磁気ディスク5の表面の接触がほぼ均一な円周状になるので、クランプ後の磁気ディスク5の表面の形状は、どの断面においてもほぼ同等になる。したがって、磁気ディスク59がランプ51と衝突して破損する確率を減らすことができる。 In the case of the magnetic disk 5 using the glass substrate 1 having a circumferential direction TIR of 0.7 μm or less, the contact between the protrusion 2a of the clamp jig 2 and the surface of the magnetic disk 5 is a substantially uniform circumferential shape. The shape of the surface of the subsequent magnetic disk 5 is almost the same in any cross section. Therefore, it is possible to reduce the probability that the magnetic disk 59 collides with the lamp 51 and is damaged.
 このような周方向のTIRは、白色光の干渉を利用して表面形状を測定する方式(例えば、Phase Shift Technology社製Optiflat)や、被測定面に対して斜めにレーザー光を入射することで垂直入射方式に比べ高い反射率を得ることができ、粗い面形状においても測定が可能な方式(例えば、TROPEL社製FlatMaster FM100XRA)などにより測定すればよい。 Such TIR in the circumferential direction can be obtained by measuring the surface shape using interference of white light (for example, Optishift manufactured by Phase Shift Technology) or by injecting laser light obliquely with respect to the surface to be measured. What is necessary is just to measure by the system (For example, FlatMaster FM100XRA by TROPEL) etc. which can obtain a high reflectance compared with a normal incidence system, and can also measure in a rough surface shape.
 またさらに、ビス3を締め付ける前の記録媒体の反り量の絶対値α1、ビス3を締め付けて回転軸6に固定した状態での反りの矯正量の絶対値をα2としたときα1≧α2を満たすことが望ましい。 Furthermore, when the absolute value α1 of the warp amount of the recording medium before the screw 3 is tightened and α2 is the absolute value of the correction amount of the warp when the screw 3 is fastened and fixed to the rotary shaft 6, α1 ≧ α2 is satisfied. It is desirable.
 α1<α2の場合では突起部2a近傍のガラス基板1の内部歪が大きくなり、落下衝撃時にドライブ回転軸から伝わる振動をきっかけとしてガラス基板1が割れやすい。 In the case of α1 <α2, the internal distortion of the glass substrate 1 in the vicinity of the projecting portion 2a increases, and the glass substrate 1 is likely to break due to the vibration transmitted from the drive rotation shaft during a drop impact.
 ヤング率Eが84GPa未満の場合は、磁気ディスク5を回転軸6に固定するために所定の圧力で挟み込むと、α1<α2となる傾向があるため、情報記録媒体用のガラス基板1のヤング率E(GPa)は84以上にすることが好ましい。 When the Young's modulus E is less than 84 GPa, there is a tendency that α1 <α2 when the magnetic disk 5 is sandwiched at a predetermined pressure to fix the magnetic disk 5 to the rotating shaft 6. Therefore, the Young's modulus of the glass substrate 1 for information recording media E (GPa) is preferably 84 or more.
 一方、従来の平坦な磁気ディスク59を用いた図6(d)の場合は、クランプ治具2の環状の突起部2aの径Laは、リング状治具7の外径Lbより小なので、ビス3を締めると図7(b)と同様に磁気ディスク59は紙面上向き方向に反ってしまう。そのため、磁気ディスク59の外周部はランプ51の先端部51bと近づき、磁気ディスク59がランプ51と衝突して破損する確率が高くなる。 On the other hand, in the case of FIG. 6D using the conventional flat magnetic disk 59, the diameter La of the annular protrusion 2 a of the clamp jig 2 is smaller than the outer diameter Lb of the ring-shaped jig 7. When 3 is tightened, the magnetic disk 59 is warped in the upward direction on the paper surface as in FIG. Therefore, the outer periphery of the magnetic disk 59 approaches the tip 51b of the lamp 51, and the probability that the magnetic disk 59 collides with the lamp 51 and is damaged increases.
 また、図6(e)のように断面が凹状に反った状態で磁気ディスク5を回転軸6に挿入し、ビス3を締め付けると、図6(f)のように磁気ディスク5の反りはさらに大きくなってしまう。このように磁気ディスク5の挿入方向を間違えると、磁気ディスク5の外周部はランプ51の先端部51bとさらに近づき、磁気ディスク59がランプ51と衝突して破損する確率が非常に高くなる。 Further, when the magnetic disk 5 is inserted into the rotating shaft 6 with the cross-section warped in a concave shape as shown in FIG. 6E and the screw 3 is tightened, the warp of the magnetic disk 5 is further increased as shown in FIG. It gets bigger. Thus, if the insertion direction of the magnetic disk 5 is wrong, the outer peripheral part of the magnetic disk 5 comes closer to the tip 51b of the ramp 51, and the probability that the magnetic disk 59 collides with the ramp 51 and is damaged becomes very high.
 なお、クランプ治具2の環状の突起部2aの径Laがリング状治具7の外径Lbより大の場合は、磁気ディスク5を断面が凹状に反るように回転軸6に挿入し、ビス3を締め付けると、反りを矯正することができる。 When the diameter La of the annular protrusion 2a of the clamp jig 2 is larger than the outer diameter Lb of the ring-shaped jig 7, the magnetic disk 5 is inserted into the rotary shaft 6 so that the cross section is warped concavely, When the screw 3 is tightened, the warp can be corrected.
 次に、第2の実施形態の情報記録媒体用ガラス基板について説明する。 Next, the glass substrate for information recording medium of the second embodiment will be described.
 図8は本発明に係る情報記録媒体用ガラス基板の第2の実施形態を示す断面図である。図9は、図8に示すガラス基板1から作製した磁気ディスク5を回転軸6に固定する状態を示す模式的な断面図である。図9に示すクランプ治具2の環状の突起部2aの径Laは、図7(a)、(b)のようにリング状治具7の外径Lbより小になっている。 FIG. 8 is a sectional view showing a second embodiment of the glass substrate for information recording medium according to the present invention. FIG. 9 is a schematic cross-sectional view showing a state in which the magnetic disk 5 produced from the glass substrate 1 shown in FIG. The diameter La of the annular protrusion 2a of the clamp jig 2 shown in FIG. 9 is smaller than the outer diameter Lb of the ring-shaped jig 7 as shown in FIGS. 7 (a) and 7 (b).
 情報記録媒体用のガラス基板1の全体構成は円盤状のものであり、中心部に貫通孔20があけてある。図1の実施形態と同様に、貫通孔20は、ガラス基板1を回転軸6に固定して当該中心の周りにガラス基板1を回転させるために使用される。ガラス基板1の主表面10a及び主表面10bは平滑な面である。 The entire configuration of the glass substrate 1 for information recording medium is a disk-like one, and a through hole 20 is formed in the center. Similar to the embodiment of FIG. 1, the through hole 20 is used to fix the glass substrate 1 to the rotation shaft 6 and rotate the glass substrate 1 around the center. The main surface 10a and the main surface 10b of the glass substrate 1 are smooth surfaces.
 図8に示すように、ガラス基板1の断面は、貫通孔20から外側面40に向かって凸状に反るとともに、貫通孔20から外側面40に向かって厚みが全体的に薄肉になるように、主表面10a、10bがわずかに傾斜している。 As shown in FIG. 8, the cross section of the glass substrate 1 warps in a convex shape from the through hole 20 toward the outer surface 40, and the thickness decreases from the through hole 20 toward the outer surface 40 as a whole. In addition, the main surfaces 10a and 10b are slightly inclined.
 図9(a)は、このようなガラス基板1から作製した磁気ディスク5を回転軸6に挿入した状態、図9(b)は、ビス3を締め付けてリング状治具7とクランプ治具2との間に磁気ディスク5を所定の圧力で挟み込んだ状態である。 FIG. 9A shows a state in which the magnetic disk 5 manufactured from such a glass substrate 1 is inserted into the rotating shaft 6, and FIG. 9B shows a ring-shaped jig 7 and a clamp jig 2 by tightening the screws 3. Is a state in which the magnetic disk 5 is sandwiched at a predetermined pressure.
 図9(a)のように凸状に反った状態で第2の実施形態の磁気ディスク5を回転軸6に挿入し、ガラス基板1の厚みに応じた圧力でビス3を締め付けると、図9(b)のように磁気ディスク5の反りは矯正され、平坦な状態にすることができる。 When the magnetic disk 5 of the second embodiment is inserted into the rotating shaft 6 with the convex shape as shown in FIG. 9A, and the screw 3 is tightened with a pressure corresponding to the thickness of the glass substrate 1, FIG. As shown in (b), the warp of the magnetic disk 5 is corrected and can be made flat.
 第2の実施形態では、主表面10a、10bが中央部から外側面40に向かって先細に全体的に傾斜していることにより、図6(b)の第1の実施形態の場合よりも磁気ディスク5の外周部とランプ51の先端部51b、51cとの間隔x、xを均等に広くすることができる。また、主表面10aから外側面40への接続をよりなだらかにできるので、応力集中がより発生しにくくなる。これらにより、磁気ディスク59がランプ51と衝突して破損する確率をさらに減らすことができる。 In the second embodiment, the main surfaces 10a and 10b are tapered from the central portion toward the outer surface 40 in an overall tapered manner, so that the magnetic surfaces are more magnetic than those in the first embodiment shown in FIG. The distances x 1 and x 2 between the outer peripheral portion of the disk 5 and the front end portions 51b and 51c of the lamp 51 can be evenly widened. Further, since the connection from the main surface 10a to the outer surface 40 can be made more gentle, stress concentration is less likely to occur. As a result, the probability of the magnetic disk 59 colliding with the lamp 51 and being damaged can be further reduced.
 <ガラス基板の製造工程>
 次に、ガラス基板1の製造工程について説明する。
<Manufacturing process of glass substrate>
Next, the manufacturing process of the glass substrate 1 will be described.
 ガラス基板1の大きさに特に限定はない。例えば、外径が2.5インチ、1.8インチ、1インチ、0.8インチなど種々の大きさのガラス基板1がある。ガラス基板1の厚みは、0.78mm~2.2mmの範囲が好ましい。 There is no particular limitation on the size of the glass substrate 1. For example, there are glass substrates 1 having various sizes such as 2.5 inches, 1.8 inches, 1 inch, and 0.8 inches in outer diameter. The thickness of the glass substrate 1 is preferably in the range of 0.78 mm to 2.2 mm.
 図10は、本発明に係るガラス基板の製造方法の一例の製造工程図である。図10を用いて、実施形態のガラス基板の製造工程について詳しく説明する。 FIG. 10 is a production process diagram of an example of a method for producing a glass substrate according to the present invention. The manufacturing process of the glass substrate of the embodiment will be described in detail with reference to FIG.
 (ガラス溶融工程)
 最初に、ガラス素材を溶融する。
(Glass melting process)
First, the glass material is melted.
 ガラス基板の材料としては、特に制限はない。例えば、SiO、NaO、CaOを主成分としたソーダライムガラス;SiO、Al、RO(R=K、Na、Li)を主成分としたアルミノシリケートガラス;ボロシリケートガラス;LiO-SiO系ガラス;LiO-Al-SiO系ガラス;R’O-Al-SiO系ガラス(R’=Mg、Ca、Sr、Ba)などを使用することができる。中でも、アルミノシリケートガラスやボロシリケートガラスは、耐衝撃性や耐振動性に優れるため特に好ましい。 There is no restriction | limiting in particular as a material of a glass substrate. For example, soda lime glass mainly composed of SiO 2 , Na 2 O, CaO; aluminosilicate glass mainly composed of SiO 2 , Al 2 O 3 , R 2 O (R = K, Na, Li); borosilicate Glass; Li 2 O—SiO 2 glass; Li 2 O—Al 2 O 3 —SiO 2 glass; R′O—Al 2 O 3 —SiO 2 glass (R ′ = Mg, Ca, Sr, Ba) Etc. can be used. Among these, aluminosilicate glass and borosilicate glass are particularly preferable because they are excellent in impact resistance and vibration resistance.
 (プレス成形工程)
 溶融ガラスを下型に流し込み、上型によってプレス成形して円板状のガラス基板前駆体を得る。なお、円板状のガラス基板前駆体は、プレス成形によらず、例えばダウンドロー法やフロート法で形成したシートガラスを研削砥石で切り出して作製してもよい。
(Press molding process)
Molten glass is poured into the lower mold and press-molded with the upper mold to obtain a disk-shaped glass substrate precursor. The disc-shaped glass substrate precursor may be produced by cutting a sheet glass formed by, for example, a downdraw method or a float method with a grinding stone, without using press molding.
 (コアリング加工工程)
 プレス成形したガラス基板前駆体は、カッター部にダイヤモンド砥石等を備えたコアドリル等で中心部に孔を開ける。
(Coring process)
The press-molded glass substrate precursor is drilled at the center with a core drill or the like having a diamond grindstone or the like at the cutter.
 (第1ラッピング工程)
 次に、ガラス基板の両表面をラッピング加工し、ガラス基板の全体形状、すなわち図1に示すガラス基板の形状および厚みを予備調整する。
(First lapping process)
Next, both surfaces of the glass substrate are lapped to preliminarily adjust the overall shape of the glass substrate, that is, the shape and thickness of the glass substrate shown in FIG.
 (内・外径加工工程)
 次に、ガラス基板の外周端面および内周端面を、例えば鼓状のダイヤモンド等の研削砥石により研削することで内・外径加工する。この内・外径加工により、ガラス基板の外径寸法および真円度、貫通孔の内径寸法、並びにガラス基板と貫通孔との同心度を微調整し、また、ガラス基板の内・外周角部を、例えば、0.1mmから0.2mm程度の45°の面取りをする。
(Inner / outer diameter machining process)
Next, the inner and outer diameters are processed by grinding the outer peripheral end surface and the inner peripheral end surface of the glass substrate with a grinding wheel such as a drum-like diamond. By this inner / outer diameter processing, the outer diameter and roundness of the glass substrate, the inner diameter of the through hole, and the concentricity between the glass substrate and the through hole are finely adjusted. For example, chamfering of 45 ° from about 0.1 mm to 0.2 mm is performed.
 (内周端面加工工程)
 この後、ガラス基板の内周端面を、研磨液を使用したブラシ研磨により面取り部の角部を曲面とし、また微細なキズ等を除去する。
(Inner peripheral end face machining process)
Thereafter, the corners of the chamfered portion are curved by brush polishing using a polishing liquid on the inner peripheral end surface of the glass substrate, and fine scratches and the like are removed.
 (第2ラッピング工程)
 次に、ガラス基板の両表面を再びラッピング加工して、ガラス基板の平行度、平坦度および厚みを微調整する。
(Second wrapping process)
Next, the both surfaces of the glass substrate are lapped again to finely adjust the parallelism, flatness and thickness of the glass substrate.
 (外周端面加工工程)
 そして、ガラス基板の外周端面を、研磨液を使用したブラシ研磨により面取り部の角部を曲面とし、また微細なキズ等を除去する。
(Outer peripheral end face machining process)
And the corner | angular part of a chamfering part is made into a curved surface by brush grinding | polishing which uses polishing liquid for the outer peripheral end surface of a glass substrate, and a fine crack etc. are removed.
 なお、コアリング加工以降の第1ラッピング工程から外周端面加工工程までの順序は、図10に示したものに限定されず、状況に応じて適宜変更することができる。例えば、ラッピング工程を一つにして最初に行い、その後、内・外径加工工程、内周、外周端面加工工程を行っても良い。また、第1ラッピング工程、内・外径加工工程の後、第2ラッピング工程、内周、外周端面加工工程を行っても良い。 In addition, the order from the first lapping step after the coring processing to the outer peripheral end surface processing step is not limited to that shown in FIG. 10 and can be changed as appropriate according to the situation. For example, the lapping process may be performed first, and then the inner / outer diameter machining process, the inner circumference, and the outer circumference end face machining process may be performed. Further, after the first lapping step and the inner / outer diameter machining step, a second lapping step, an inner circumference and an outer circumference end face machining step may be performed.
 第1及び第2ラッピング工程にてガラス基板をラッピングする研磨機について説明する。研磨機は、例えばオスカー研磨機と呼ばれる公知の研磨機を使用することができる。 A polishing machine for lapping a glass substrate in the first and second lapping steps will be described. As the polishing machine, for example, a known polishing machine called an Oscar polishing machine can be used.
 図11は、オスカー研磨機の下研磨皿13にガラス基板1を載置した状態を示す説明図、図12は、オスカー研磨機の横断面図、図13は、左右に揺動する上研磨皿14を説明するためのオスカー研磨機の上視図である。 FIG. 11 is an explanatory view showing a state in which the glass substrate 1 is placed on the lower polishing tray 13 of the Oscar polishing machine, FIG. 12 is a cross-sectional view of the Oscar polishing machine, and FIG. FIG. 14 is a top view of an Oscar polishing machine for explaining 14.
 オスカー研磨機は、上研磨皿14と下研磨皿13の間に研磨対象物であるガラス基板1をはめ込み治具12に置いた状態で、下研磨皿13を矢印Uで示すように自転させ上研磨皿14を図13のように左右に揺動させる。図13(a)は、上研磨皿14が下研磨皿13の左側に移動した状態、図13(b)は、上研磨皿14が下研磨皿13と重なる位置に移動した状態、図13(c)は、上研磨皿14が下研磨皿13の右側に移動した状態である。 The Oscar polishing machine rotates the lower polishing dish 13 as indicated by an arrow U with the glass substrate 1 as an object to be polished placed on the jig 12 between the upper polishing dish 14 and the lower polishing dish 13. The polishing dish 14 is swung left and right as shown in FIG. 13A shows a state where the upper polishing plate 14 has moved to the left side of the lower polishing plate 13, FIG. 13B shows a state where the upper polishing plate 14 has moved to a position where it overlaps the lower polishing plate 13, FIG. c) is a state in which the upper polishing plate 14 has moved to the right side of the lower polishing plate 13.
 オスカー研磨機のこのような動作により、研磨対象物であるガラス基板1に上研磨皿14と下研磨皿13の形状を転写するように研磨することができる。さらに、条件によっては連れ回りする研磨対象物の自転を促すことができる。自転させることにより、図1のような点対称形状のガラス基板1を製造することができる。 By such an operation of the Oscar polishing machine, it is possible to perform polishing so as to transfer the shapes of the upper polishing dish 14 and the lower polishing dish 13 to the glass substrate 1 which is an object to be polished. Further, depending on the conditions, rotation of the accompanying polishing object can be promoted. By rotating the glass substrate 1, the point-symmetrical glass substrate 1 as shown in FIG. 1 can be manufactured.
 このような動作している研磨機において、研削液を上研磨皿14とガラス基板1及びが下研磨皿13とガラス基板1との間に供給することでガラス基板1のラッピングを行うことができる。 In such a working polishing machine, the glass substrate 1 can be lapped by supplying the grinding liquid between the upper polishing dish 14 and the glass substrate 1 and between the lower polishing dish 13 and the glass substrate 1. .
 (第1ポリッシュ研磨工程)
 次に、研磨工程に関して説明する。研磨工程では、ガラス基板の表面を精密に仕上げるとともに主表面の外周端部の形状を所望の形状に研磨する。
(1st polishing process)
Next, the polishing process will be described. In the polishing step, the surface of the glass substrate is precisely finished and the shape of the outer peripheral end of the main surface is polished to a desired shape.
 まず、第1ポリッシュ研磨工程では、第2ポリッシュ研磨工程で最終的に必要とされる面粗さを効率よく得ることができるように、面粗さを向上させるとともに最終的に所望の形状を効率よく得ることができる研磨を行う。 First, in the first polish polishing step, the surface roughness is improved and the desired shape is finally made efficient so that the surface roughness finally required in the second polish polishing step can be efficiently obtained. Polishing can be obtained well.
 研磨の方法は、ラッピング工程で使用した研削液に代えて、研磨液を使用する以外は第1及び第2ラッピング工程で使用した研磨機と同一の構成の研磨機を使用する。 The polishing method uses a polishing machine having the same configuration as the polishing machine used in the first and second lapping processes except that the polishing liquid is used instead of the grinding liquid used in the lapping process.
 (第1洗浄工程)
 公知の超音波洗浄機を用いてガラス基板を洗浄し、第1ポリッシュ研磨工程で付着した研磨剤等を除去する。洗浄液には純水などを用いることができる。
(First cleaning process)
The glass substrate is cleaned using a known ultrasonic cleaner, and the abrasive and the like adhering in the first polishing polishing step are removed. Pure water or the like can be used as the cleaning liquid.
 (予熱工程)
 次の化学強化工程で300℃~400℃に加熱された化学強化処理液に浸漬する前に、予熱槽でガラス基板を所定温度に加熱する。予熱温度は例えば200℃以上である。
(Preheating process)
The glass substrate is heated to a predetermined temperature in a preheating tank before being immersed in the chemical strengthening treatment liquid heated to 300 ° C. to 400 ° C. in the next chemical strengthening step. The preheating temperature is, for example, 200 ° C. or higher.
 予熱工程で加熱することにより、加熱された化学強化処理液に浸漬される際の熱衝撃によるガラス基板の割れや微細なクラックの発生を防止することができる。なお、化学強化工程でガラス基板の割れや微細なクラックが発生するおそれが無い場合は、本工程を省略することもできる。 By heating in the preheating step, it is possible to prevent the glass substrate from being cracked or microcracked by thermal shock when immersed in the heated chemical strengthening treatment liquid. In addition, this process can also be abbreviate | omitted when there is no possibility that the glass substrate may be cracked or fine cracks may occur in the chemical strengthening process.
 (化学強化工程)
 第2ポリッシュ研磨工程の前に、化学強化液にガラス基板を浸漬してガラス基板に化学強化層を形成する。化学強化層を形成することでガラス基板の表面状態を改善するとともに、耐衝撃性、耐振動性及び耐熱性等を向上させることができる。
(Chemical strengthening process)
Prior to the second polishing step, the glass substrate is immersed in a chemical strengthening solution to form a chemically strengthened layer on the glass substrate. By forming the chemical strengthening layer, the surface state of the glass substrate can be improved, and impact resistance, vibration resistance, heat resistance, and the like can be improved.
 化学強化工程は、加熱された化学強化処理液にガラス基板を浸漬することによってガラス基板に含まれるリチウムイオン、ナトリウムイオン等のアルカリ金属イオンをそれよりイオン半径の大きなカリウムイオン等のアルカリ金属イオンによって置換するイオン交換法によって行われる。イオン半径の違いによって生じる歪みより、イオン交換された領域に圧縮応力が発生し、ガラス基板の表面が強化される。 In the chemical strengthening step, by immersing the glass substrate in a heated chemical strengthening solution, alkali metal ions such as lithium ions and sodium ions contained in the glass substrate are converted into alkali ions such as potassium ions having a larger ion radius. This is performed by the ion exchange method for substitution. Compressive stress is generated in the ion-exchanged region due to the distortion caused by the difference in ion radius, and the surface of the glass substrate is strengthened.
 化学強化処理液に特に制限はなく、公知の化学強化処理液を用いることができる。通常、カリウムイオンを含む溶融塩又はカリウムイオンとナトリウムイオンを含む溶融塩を用いることが一般的である。カリウムイオンやナトリウムイオンを含む溶融塩としては、カリウムやナトリウムの硝酸塩、炭酸塩、硫酸塩やこれらの混合溶融塩が挙げられる。中でも、融点が低く、ガラス基板の変形を防止できるという観点からは、硝酸塩を用いることが好ましい。 The chemical strengthening treatment liquid is not particularly limited, and a known chemical strengthening treatment liquid can be used. Usually, it is common to use a molten salt containing potassium ions or a molten salt containing potassium ions and sodium ions. Examples of the molten salt containing potassium ions and sodium ions include potassium and sodium nitrates, carbonates, sulfates, and mixed molten salts thereof. Among these, from the viewpoint that the melting point is low and deformation of the glass substrate can be prevented, it is preferable to use nitrate.
 化学強化処理液は、上記の成分が融解する温度よりも高温になるよう加熱される。一方、化学強化処理液の加熱温度が高すぎると、ガラス基板の温度が上がりすぎ、ガラス基板の変形を招く恐れがある。このため、化学強化処理液の加熱温度はガラス基板のガラス転移点(Tg)よりも低い温度が好ましく、ガラス転移点-50℃よりも低い温度とすることが更に好ましい。 The chemical strengthening solution is heated to a temperature higher than the temperature at which the above components melt. On the other hand, when the heating temperature of the chemical strengthening treatment liquid is too high, the temperature of the glass substrate is excessively increased, and the glass substrate may be deformed. For this reason, the heating temperature of the chemical strengthening treatment liquid is preferably lower than the glass transition point (Tg) of the glass substrate, more preferably lower than the glass transition point −50 ° C.
 化学強化層の厚みとしては、ガラス基板の強度向上と研磨工程の時間の短縮との兼ね合いから、5μm~15μm程度の範囲が好ましい。強化層の厚みがこの範囲の場合、平坦度、機械的強度である耐衝撃性が良好なガラス基板とすることができる。 The thickness of the chemically strengthened layer is preferably in the range of about 5 μm to 15 μm in view of improving the strength of the glass substrate and shortening the polishing process time. When the thickness of the reinforcing layer is within this range, a glass substrate having good impact resistance, which is flatness and mechanical strength, can be obtained.
 化学強化工程後の主表面10aの外周端部の形状は、化学強化工程前とほとんど変わらず、上記の5μm~15μm程度の化学強化層がガラス基板の表面全体にほぼ一様に載った状態となる。 The shape of the outer peripheral edge of the main surface 10a after the chemical strengthening step is almost the same as that before the chemical strengthening step, and the above-mentioned chemical strengthening layer of about 5 μm to 15 μm is almost uniformly placed on the entire surface of the glass substrate. Become.
 (第2ポリッシュ研磨工程)
 第2ポリッシュ研磨工程は、第1ポリッシュ研磨工程後のガラス基板の表面を更に精密に研磨する工程である。第2ポリッシュ研磨工程で使用するパッドは、第1ポリッシュ研磨工程で使用するパッドより柔らかい軟質パッド、例えば発泡ウレタンやスウェードを使用するのが好ましい。研磨剤としては、第1ポリッシュ研磨工程と同様の酸化セリウム、コロイダルシリカ、酸化ジルコニウム、酸化チタニウム、酸化マンガン等を用いることができるが、ガラス基板の表面をより滑らかにするため、粒径がより細かくバラツキが少ない研磨剤を用いるのが好ましい。
(Second polishing step)
The second polish polishing step is a step of further precisely polishing the surface of the glass substrate after the first polish polishing step. The pad used in the second polishing step is preferably a soft pad softer than the pad used in the first polishing step, such as urethane foam or suede. As the polishing agent, the same cerium oxide, colloidal silica, zirconium oxide, titanium oxide, manganese oxide, etc. as in the first polishing step can be used, but in order to make the surface of the glass substrate smoother, the particle size is larger. It is preferable to use an abrasive that is fine and has little variation.
 (第2洗浄工程)
 (検査工程)
 第2ポリッシュ研磨工程の終了後、ガラス基板の洗浄及び検査を行い、ガラス基板が完成する。
(Second cleaning process)
(Inspection process)
After completion of the second polishing step, the glass substrate is cleaned and inspected to complete the glass substrate.
 なお、情報記録媒体用ガラス基板の製造方法においては、上記以外の種々の工程を有していても良い。例えば、ガラス基板の内部歪みを緩和するためのアニール工程、ガラス基板の強度の信頼性確認のためのヒートショック工程、種々の検査・評価工程等を有していても良い。 In addition, in the manufacturing method of the glass substrate for information recording media, you may have various processes other than the above. For example, an annealing process for relaxing internal strain of the glass substrate, a heat shock process for confirming the reliability of the strength of the glass substrate, various inspection / evaluation processes, and the like may be included.
 また、第2ポリッシュ研磨工程では、第1ポリッシュ研磨工程で使用した研磨機をそのまま用いるのではなく、同一構成ではあるがそれぞれの工程専用に用意された別の研磨機を用いて研磨を行うのが好ましい。これは、第1ポリッシュ研磨工程で使用した研磨機をそのまま用いると第1ポリッシュ研磨工程で残留した研磨剤等により第2ポリッシュ研磨工程での研磨精度が低下したり、研磨条件を再設定する等の煩雑な作業が必要となり、製造効率が低下するためである。 In the second polishing process, the polishing machine used in the first polishing process is not used as it is, but polishing is performed using another polishing machine that has the same configuration but is prepared for each process. Is preferred. This is because, if the polishing machine used in the first polishing process is used as it is, the polishing accuracy in the second polishing process decreases due to the abrasive remaining in the first polishing process, the polishing conditions are reset, etc. This is because this complicated operation is required and the production efficiency is lowered.
 (ガラス基板の厚みを内周から外周にかけて薄くする工程)
 第2の実施形態では、本工程を行って図8に示すようにガラス基板の厚みを内周から外周にかけて薄くする。
(The process of reducing the thickness of the glass substrate from the inner periphery to the outer periphery)
In the second embodiment, this step is performed to reduce the thickness of the glass substrate from the inner periphery to the outer periphery as shown in FIG.
 図14は、ガラス基板の厚みを内周から外周にかけて薄くする工程を説明する説明図である。図14(a)は加工方法の一例を説明する断面図、図14(b)は加工後の形状を示す断面図である。 FIG. 14 is an explanatory diagram for explaining a process of reducing the thickness of the glass substrate from the inner periphery to the outer periphery. FIG. 14A is a cross-sectional view illustrating an example of a processing method, and FIG. 14B is a cross-sectional view illustrating a shape after processing.
 本工程では、図14(a)に示すように、固定部材20、21によってガラス基板1の内径付近を挟み込んで固定するとともに、ガラス基板1の上下の主表面を弾性のあるスウェード材22で挟み込む。 In this step, as shown in FIG. 14A, the vicinity of the inner diameter of the glass substrate 1 is sandwiched and fixed by the fixing members 20 and 21, and the upper and lower main surfaces of the glass substrate 1 are sandwiched by the elastic suede material 22. .
 次に、図示せぬモータによって固定部材20、21とともにガラス基板1を回転させ、研磨材としてコロイダルシリカを供給しながら研磨を行う。 Next, the glass substrate 1 is rotated together with the fixing members 20 and 21 by a motor (not shown), and polishing is performed while supplying colloidal silica as an abrasive.
 所定時間研磨を行うと、図14(b)のような内周から外周にかけて厚みが薄くなったガラス基板1が得られる。 When the polishing is performed for a predetermined time, the glass substrate 1 having a reduced thickness from the inner periphery to the outer periphery as shown in FIG. 14B is obtained.
 (磁性膜形成工程)
 次に、ガラス基板に設ける磁性膜11について説明する。以下、図3に基づき磁性膜11を設けた磁気ディスク5について説明する。
(Magnetic film forming process)
Next, the magnetic film 11 provided on the glass substrate will be described. Hereinafter, the magnetic disk 5 provided with the magnetic film 11 will be described with reference to FIG.
 磁性膜11の形成方法としては従来の公知の方法を用いることができ、例えば磁性粒子を分散させた熱硬化性樹脂を基板上にスピンコートして形成する方法や、スパッタリング、無電解めっきにより形成する方法が挙げられる。スピンコート法での膜厚は約0.3μm~1.2μm程度、スパッタリング法での膜厚は0.04μm~0.08μm程度、無電解めっき法での膜厚は0.05μm~0.1μm程度であり、薄膜化および高密度化の観点からはスパッタリング法および無電解めっき法による膜形成が好ましい。 As a method for forming the magnetic film 11, a conventionally known method can be used. For example, a method in which a thermosetting resin in which magnetic particles are dispersed is spin-coated on a substrate, a method in which sputtering or electroless plating is used. The method of doing is mentioned. The film thickness by spin coating is about 0.3 μm to 1.2 μm, the film thickness by sputtering is about 0.04 μm to 0.08 μm, and the film thickness by electroless plating is 0.05 μm to 0.1 μm. From the viewpoint of thinning and densification, film formation by sputtering and electroless plating is preferable.
 磁性膜に用いる磁性材料としては、特に限定はなく従来公知のものが使用できるが、高い保持力を得るために結晶異方性の高いCoを基本とし、残留磁束密度を調整する目的でNiやCrを加えたCo系合金などが好適である。具体的には、Coを主成分とするCoPt、CoCr、CoNi、CoNiCr、CoCrTa、CoPtCr、CoNiPtや、CoNiCrPt、CoNiCrTa、CoCrPtTa、CoCrPtB、CoCrPtSiOなどが挙げられる。磁性膜は、非磁性膜(例えば、Cr、CrMo、CrVなど)で分割しノイズの低減を図った多層構成(例えば、CoPtCr/CrMo/CoPtCr、CoCrPtTa/CrMo/CoCrPtTaなど)としてもよい。上記の磁性材料の他、フェライト系、鉄-希土類系や、SiO、BNなどからなる非磁性膜中にFe、Co、FeCo、CoNiPt等の磁性粒子を分散された構造のグラニュラーなどであってもよい。また、磁性膜は、内面型および垂直型のいずれの記録形式であってもよい。 The magnetic material used for the magnetic film is not particularly limited, and a conventionally known material can be used. However, in order to obtain a high coercive force, Ni having a high crystal anisotropy is basically used, and Ni or A Co-based alloy to which Cr is added is suitable. Specific examples include CoPt, CoCr, CoNi, CoNiCr, CoCrTa, CoPtCr, and CoNiPt containing Co as a main component, CoNiCrPt, CoNiCrTa, CoCrPtTa, CoCrPtB, and CoCrPtSiO. The magnetic film may have a multilayer structure (for example, CoPtCr / CrMo / CoPtCr, CoCrPtTa / CrMo / CoCrPtTa) that is divided by a nonmagnetic film (for example, Cr, CrMo, CrV, etc.) to reduce noise. In addition to the above magnetic materials, granular materials such as ferrite, iron-rare earth, and non-magnetic films made of SiO 2 , BN, etc. are dispersed with magnetic particles such as Fe, Co, FeCo, CoNiPt, etc. Also good. Further, the magnetic film may be of any recording type of inner surface type and vertical type.
 また、磁気ヘッドの滑りをよくするために磁性膜の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、例えば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。 In addition, a lubricant may be thinly coated on the surface of the magnetic film in order to improve the sliding of the magnetic head. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a freon-based solvent.
 さらに必要により下地層や保護層を設けてもよい。磁気ディスクにおける下地層は磁性膜に応じて選択される。下地層の材料としては、例えば、Cr、Mo、Ta、Ti、W、V、B、Al、Niなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。Coを主成分とする磁性膜の場合には、磁気特性向上等の観点からCr単体やCr合金であることが好ましい。また、下地層は単層とは限らず、同一又は異種の層を積層した複数層構造としても構わない。例えば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、NiAl/CrV等の多層下地層としてもよい。 Further, if necessary, an underlayer or a protective layer may be provided. The underlayer in the magnetic disk is selected according to the magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni. In the case of a magnetic film containing Co as a main component, Cr alone or a Cr alloy is preferable from the viewpoint of improving magnetic characteristics. Further, the underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked. For example, a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
 磁性膜の摩耗や腐食を防止する保護層としては、例えば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、シリカ層などが挙げられる。これらの保護層は、下地層、磁性膜など共にインライン型スパッタ装置で連続して形成できる。また、これらの保護層は、単層としてもよく、あるいは、同一又は異種の層からなる多層構成としてもよい。なお、上記保護層上に、あるいは上記保護層に替えて、他の保護層を形成してもよい。例えば、上記保護層に替えて、Cr層の上にテトラアルコキシシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して二酸化ケイ素(SiO)層を形成してもよい。 Examples of the protective layer that prevents wear and corrosion of the magnetic film include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus, such as an underlayer and a magnetic film. In addition, these protective layers may be a single layer, or may have a multilayer structure including the same or different layers. Note that another protective layer may be formed on the protective layer or instead of the protective layer. For example, in place of the protective layer, tetraalkoxysilane is diluted with an alcohol solvent on the Cr layer, and then colloidal silica fine particles are dispersed and applied, and then baked to form a silicon dioxide (SiO 2 ) layer. It may be formed.
 <実施例1~4>
 実施例1~4の磁気ディスク5に用いるガラス基板を以下のように作製した。
<Examples 1 to 4>
Glass substrates used for the magnetic disks 5 of Examples 1 to 4 were produced as follows.
 (ガラス基板の作製)
 図10で説明した第1の実施形態の製造工程図に従って、実施例1~3のガラス基板1を各1000枚作製した。また、実施例4では、実施例2と同じ工程の後、(ガラス基板の厚みを内周から外周にかけて薄くする工程)を行って第2の実施形態のガラス基板1を1000枚作製した。
(Production of glass substrate)
According to the manufacturing process diagram of the first embodiment described with reference to FIG. 10, 1000 glass substrates 1 of Examples 1 to 3 were produced. Moreover, in Example 4, after the same process as Example 2, (the process of thinning the thickness of a glass substrate from an inner periphery to an outer periphery) was performed, and 1000 glass substrates 1 of 2nd Embodiment were produced.
 ガラス材料としてアルミノシリケートガラス(Tg:500℃)を用い、溶融ガラスをプレス成形してブランク材を作製した。内外周加工工程、ラッピング工程を経て、外径63.5mm、内径(貫通孔20の径)20mm、基板厚みは0.8mmのガラス基板とした。なお、ここでいう基板厚みとは基板上の任意の複数点で測定した値の平均値である。実施例1の反り量αの目標値は-4μm、実施例2の反り量αの目標値は-5μm、実施例3の反り量αの目標値は-6μm、実施例4の反り量αの目標値は-5μmとした。 An aluminosilicate glass (Tg: 500 ° C.) was used as the glass material, and a molten glass was press-molded to produce a blank material. A glass substrate having an outer diameter of 63.5 mm, an inner diameter (diameter of the through hole 20) of 20 mm, and a substrate thickness of 0.8 mm was obtained through the inner and outer peripheral processing steps and the lapping step. In addition, the board | substrate thickness here is an average value of the value measured in arbitrary several points on a board | substrate. The target value of the warp amount α of Example 1 is −4 μm, the target value of the warp amount α of Example 2 is −5 μm, the target value of the warp amount α of Example 3 is −6 μm, and the warp amount α of Example 4 is The target value was -5 μm.
 (第1ポリッシュ研磨工程)
 オスカー研磨機の上研磨皿14と下研磨皿13の直径は1000mmであり、上研磨皿14と下研磨皿13の対向する面に弾性を有するスウェードを貼り付けた。内径65mm、外径67mm、厚み0.5mmのはめこみ治具12にラッピング工程を経たガラス基板1をはめ込んだもの100セットを、図11のように下研磨皿13に載置する。
(1st polishing process)
The diameters of the upper polishing dish 14 and the lower polishing dish 13 of the Oscar polishing machine were 1000 mm, and an elastic suede was attached to the opposing surfaces of the upper polishing dish 14 and the lower polishing dish 13. One hundred sets of the fitting jig 12 having an inner diameter of 65 mm, an outer diameter of 67 mm, and a thickness of 0.5 mm fitted with the glass substrate 1 after the lapping process are placed on the lower polishing dish 13 as shown in FIG.
 研磨剤としては、酸化セリウムを用い、研磨剤の粒径0.6(μm)とした。 As the abrasive, cerium oxide was used, and the particle size of the abrasive was 0.6 (μm).
 実施例1では、下研磨皿13の回転数50(rpm)で回転させ、上研磨皿14を下研磨皿13の中心から左右500mmの範囲を1分間に25往復で揺動させた。ガラス基板はこのような上下研磨皿の相対動作によってつれ回りして自転する。研磨時間は40分である。 In Example 1, the lower polishing dish 13 was rotated at a rotation speed of 50 (rpm), and the upper polishing dish 14 was swung in a range of 500 mm from the center of the lower polishing dish 13 by 25 reciprocations per minute. The glass substrate rotates along with the relative movement of the upper and lower polishing dishes. The polishing time is 40 minutes.
 実施例2、4では、下研磨皿13の回転数60(rpm)で回転させ、上研磨皿14を下研磨皿13の中心から左右500mmの範囲を1分間に30往復で揺動させた。ガラス基板の自転速度は実施例1より速くなる。研磨時間は30分である。 In Examples 2 and 4, the lower polishing dish 13 was rotated at a rotational speed of 60 (rpm), and the upper polishing dish 14 was swung 30 reciprocations in the range of 500 mm from the center of the lower polishing dish 13 to the left and right. The rotation speed of the glass substrate is faster than that in Example 1. The polishing time is 30 minutes.
 実施例3では、下研磨皿13の回転数70(rpm)で回転させ、上研磨皿14を下研磨皿13の中心から左右500mmの範囲を1分間に35往復で揺動させた。ガラス基板の自転速度は実施例2より速くなる。研磨時間は20分である。 In Example 3, the lower polishing plate 13 was rotated at a rotation speed of 70 (rpm), and the upper polishing plate 14 was swung 35 reciprocations in the range of 500 mm from the center of the lower polishing plate 13 to the left and right. The rotation speed of the glass substrate is faster than that of Example 2. The polishing time is 20 minutes.
 (第1洗浄工程)
 超音波洗浄機で10分間洗浄を行った。
(First cleaning process)
Washing was performed for 10 minutes with an ultrasonic washer.
 (予熱工程)
 予熱温度T0(℃)に加熱した予熱槽でガラス基板を30分間加熱した。
(Preheating process)
The glass substrate was heated for 30 minutes in the preheating tank heated to the preheating temperature T0 (° C.).
 (化学強化工程)
 強化温度T1(℃)に加熱した化学強化処理液にガラス基板を浸漬した。化学強化処理液にはカリウムの硝酸塩を用いた。
(Chemical strengthening process)
The glass substrate was immersed in the chemical strengthening treatment liquid heated to the strengthening temperature T1 (° C.). Potassium nitrate was used for the chemical strengthening treatment solution.
 (第2ポリッシュ研磨工程)
 上研磨皿14と下研磨皿13にスウェードを貼り付けたオスカー研磨機を用い、研磨剤としては、酸化セリウムおよびコロイダルシリカを用い、研磨剤の粒径30(nm)とした。上研磨皿14と下研磨皿13は第1ポリッシュ研磨工程と同じ条件で動作させた。
(Second polishing step)
An Oscar polishing machine in which suede was attached to the upper polishing plate 14 and the lower polishing plate 13 was used, and cerium oxide and colloidal silica were used as the polishing agent, and the particle size of the polishing agent was set to 30 (nm). The upper polishing dish 14 and the lower polishing dish 13 were operated under the same conditions as in the first polishing process.
 (第2洗浄工程)
 第3洗浄工程として、ロールスクラブ機、カップスクラブ機でのブラシ洗浄を行い、その後超音波洗浄機で洗浄を行った。
(Second cleaning process)
As the third cleaning step, brush cleaning was performed with a roll scrub machine and a cup scrub machine, and then cleaning was performed with an ultrasonic cleaner.
 (ガラス基板の厚みを内周から外周にかけて薄くする工程)
 実施例4では、図14で説明した加工方法によって、内周付近の厚みは0.8mmで外周にいくほど薄くなるように研磨し、最外周の厚みを0.7mmにした。
(The process of reducing the thickness of the glass substrate from the inner periphery to the outer periphery)
In Example 4, by the processing method described with reference to FIG. 14, the thickness near the inner periphery was 0.8 mm and the outermost periphery was polished to 0.7 mm so as to become thinner toward the outer periphery.
 (磁性膜形成工程)
 洗浄後のガラス基板1の両表面にCr合金からなる密着層、CoFeZr合金からなる軟磁性層、Ruからなる配向制御下地層、CoCrPt合金からなる垂直磁気記録層、C系の保護層、F系からなる潤滑層を順次、スパッタ装置により基板両面に成膜する。総膜厚は約100nmである。
(Magnetic film forming process)
An adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoFeZr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a C-type protective layer, an F-type on both surfaces of the cleaned glass substrate 1 A lubricating layer made of is sequentially formed on both surfaces of the substrate by a sputtering apparatus. The total film thickness is about 100 nm.
 本実施例では、このように垂直磁気記録用の磁性膜を形成した磁気ディスク5を作製したが、特に限定されるものではなく面内磁気ディスクとして磁性層等を構成してもよい。 In the present embodiment, the magnetic disk 5 on which the magnetic film for perpendicular magnetic recording was formed in this way was manufactured, but the present invention is not particularly limited, and a magnetic layer or the like may be configured as an in-plane magnetic disk.
 <実施例5~9>
 ガラス基板1の厚みを変え実施例5~7の磁気ディスク5を各1000枚作製した。ガラス基板1の厚みは、実施例5は0.635mm、実施例6は0.77mm、実施例7は0.78mm、実施例8は1.5mm、実施例9は2.2mmである。ガラス基板1の厚みによって、適正な締め付けトルクが変わるとともに、固定時の挟み込む力によって発生する反りの量も変わってくる。固定時の挟み込む力によって発生する反りの量に応じて、反り量αの目標値を定めた。
<Examples 5 to 9>
The thickness of the glass substrate 1 was changed, and 1000 magnetic disks 5 of Examples 5 to 7 were produced. The thickness of the glass substrate 1 is 0.635 mm in Example 5, 0.77 mm in Example 6, 0.78 mm in Example 7, 1.5 mm in Example 8, and 2.2 mm in Example 9. The proper tightening torque varies depending on the thickness of the glass substrate 1, and the amount of warpage generated by the clamping force at the time of fixing also varies. The target value of the warpage amount α was determined according to the amount of warpage generated by the clamping force at the time of fixing.
 実施例5の反り量αの目標値は-15μm、実施例6の反り量αの目標値は-10μm、実施例7の反り量αの目標値は-8μm、実施例8の反り量αの目標値は-4μm、実施例9の反り量αの目標値は-2μmとした。目標の反り量αが得られるよう、下研磨皿13の回転数と研磨時間をそれぞれ設定して実施例5~7の磁気ディスク5を作製した。その他の条件は、実施例2と同じ条件である。 The target value of the warp amount α of Example 5 is −15 μm, the target value of the warp amount α of Example 6 is −10 μm, the target value of the warp amount α of Example 7 is −8 μm, and the warp amount α of Example 8 is The target value was −4 μm, and the target value of the warpage amount α in Example 9 was −2 μm. Magnetic disks 5 of Examples 5 to 7 were manufactured by setting the number of rotations of the lower polishing dish 13 and the polishing time so that the target warpage amount α was obtained. Other conditions are the same as those in the second embodiment.
 <実施例10~13>
 貫通孔20近傍のφ22mmの位置における周方向TIRの異なるガラス基板1を用いて、実施例10~13の磁気ディスク5を、実施例3と同じ厚み、同じ工程で各1000枚作製した。実施例10の周方向TIRは0.4μm、実施例11の周方向TIRは0.7μm、実施例12の周方向TIRは0.8μm、実施例13の周方向TIRは1.0μmである。
<Examples 10 to 13>
Using the glass substrate 1 in the circumferential direction TIR at a position of φ22 mm in the vicinity of the through hole 20, 1000 magnetic disks 5 of Examples 10 to 13 were manufactured in the same thickness and in the same process as in Example 3. The circumferential direction TIR of Example 10 is 0.4 μm, the circumferential direction TIR of Example 11 is 0.7 μm, the circumferential direction TIR of Example 12 is 0.8 μm, and the circumferential direction TIR of Example 13 is 1.0 μm.
 周方向TIRの測定は、Phase Shift Technology社製Optiflatを用いて行った。 The measurement of the circumferential direction TIR was performed using an Optiflat manufactured by Phase Shift Technology.
 [比較例]
 <比較例1>
 比較例1では、実施例と同じ工程で条件を変えて目標の反り量αが0μmのガラス基板の作製を行った。
[Comparative example]
<Comparative Example 1>
In Comparative Example 1, a glass substrate having a target warpage amount α of 0 μm was produced by changing the conditions in the same process as in the example.
 比較例1では、各研磨工程において下研磨皿13を0.5rpmで自転させ、上研磨皿14を下研磨皿13の中心から左右300mmの範囲を1分間に2往復させた。研磨時間は150分である。この条件ではガラス基板は上下研磨皿の相対動作によってほとんどつれ回りしないので、上下研磨皿の形状をそのまま転写できる。その他の製造条件は実施例1と同じである。 In Comparative Example 1, the lower polishing dish 13 was rotated at 0.5 rpm in each polishing step, and the upper polishing dish 14 was reciprocated twice in a range of 300 mm from the center of the lower polishing dish 13 in one minute. The polishing time is 150 minutes. Under this condition, the glass substrate hardly rotates due to the relative movement of the upper and lower polishing dishes, so that the shape of the upper and lower polishing dishes can be transferred as it is. Other manufacturing conditions are the same as in Example 1.
 比較例1では、磁気ディスク59を1000枚作製した。 In Comparative Example 1, 1000 magnetic disks 59 were produced.
 <比較例2、3>
 比較例2のガラス基板の厚みは2.3mm、比較例3のガラス基板の厚みは2.5mmであり、厚みが厚いため固定時の挟み込む力によって反りは発生しない。そのため、比較例1と同じ条件でガラス基板の厚みを変えて目標の反り量αが0μmのガラス基板の作製を行った。
<Comparative Examples 2 and 3>
The thickness of the glass substrate of Comparative Example 2 is 2.3 mm, and the thickness of the glass substrate of Comparative Example 3 is 2.5 mm. Since the thickness is thick, no warp is generated by the clamping force at the time of fixing. Therefore, a glass substrate having a target warpage amount α of 0 μm was produced by changing the thickness of the glass substrate under the same conditions as in Comparative Example 1.
 [評価方法]
 ガラス基板の回転軸に情報記録媒体を固定する際に、発生する反りと、ランプの衝突による基板の割れの評価方法について説明する。
[Evaluation methods]
A method of evaluating the warpage that occurs when the information recording medium is fixed to the rotating shaft of the glass substrate and the cracking of the substrate due to the collision of the lamp will be described.
 磁気ディスク5の評価は、図4に示すハードディスク装置200に実施例、比較例の磁気ディスクを取り付けて実験を行った。 The evaluation of the magnetic disk 5 was conducted by attaching the magnetic disks of Examples and Comparative Examples to the hard disk device 200 shown in FIG.
 評価実験に用いたハードディスク装置200のリング状治具7の外径は直径24mm(Lb=12mm)、内径は直径20mm、厚み1.8mmである。クランプ治具2の突起部2aの直径は22mm(La=11mm)である。したがって、突起部2aの径Laはリング状治具7の径Lbより小である。 The outer diameter of the ring-shaped jig 7 of the hard disk device 200 used in the evaluation experiment is 24 mm in diameter (Lb = 12 mm), the inner diameter is 20 mm, and the thickness is 1.8 mm. The diameter of the protrusion 2a of the clamp jig 2 is 22 mm (La = 11 mm). Therefore, the diameter La of the protrusion 2a is smaller than the diameter Lb of the ring-shaped jig 7.
 また、実施例1~4と比較例1の評価実験に用いたランプ51の先端部51bと先端部51cの間隔Dは1.5mmである。実施例1~4、実施例10~13と比較例1の評価実験ではクランプ治具2のビス3を20N・mのトルクで締め付けて磁気ディスク5または磁気ディスク59を回転軸6に固定した。 Further, the distance D between the tip 51b and the tip 51c of the lamp 51 used in the evaluation experiments of Examples 1 to 4 and Comparative Example 1 is 1.5 mm. In the evaluation experiments of Examples 1 to 4, Examples 10 to 13, and Comparative Example 1, the magnetic disk 5 or the magnetic disk 59 was fixed to the rotating shaft 6 by tightening the screw 3 of the clamp jig 2 with a torque of 20 N · m.
 実施例5~9、比較例2、3の評価実験では、先端部51b、51cの隙間の間隔Dが2.6mmのランプ51を用いた。 In the evaluation experiments of Examples 5 to 9 and Comparative Examples 2 and 3, a lamp 51 having a gap D of 2.6 mm between the tip portions 51b and 51c was used.
 反り量の測定は、多機能ディスク用干渉計(オプティフラット Phase Shift Technology.Inc.製)を用いて行い、ガラス基板表面の全面を測定する。測定原理は、ガラス基板の表面に白色光を照射し、位相の異なる参照光と測定光の干渉の強度変化を測定することで、表面の形状を測定する方法である。 The amount of warpage is measured using a multi-function disk interferometer (Optiflat Phase Technology, Inc.) and the entire surface of the glass substrate is measured. The measurement principle is a method of measuring the shape of the surface by irradiating the surface of the glass substrate with white light and measuring the change in the intensity of interference between the reference light and the measurement light having different phases.
 ランプの衝突による基板の割れの評価は、市販の落下衝撃試験機を用いて実施例または比較例の磁気ディスクを取り付けたハードディスク装置200を一定の高さから落下させて行った。実験では1mmの高さからハードディスク装置200を落下させた後、ハードディスク装置200を分解し、磁気ディスクのワレの有無を目視で確認した。 Evaluation of the crack of the substrate due to the collision of the lamp was performed by dropping the hard disk device 200 attached with the magnetic disk of the example or the comparative example from a certain height using a commercially available drop impact tester. In the experiment, after the hard disk device 200 was dropped from a height of 1 mm, the hard disk device 200 was disassembled and the presence or absence of cracking of the magnetic disk was visually confirmed.
 [評価結果]
 実施例1~4と比較例1で作製した各1000枚の磁気ディスクのハードディスク装置200の評価結果を表1に示す。落下試験後のワレ発生率の判定は、発生したワレが1枚以下の場合を◎、2~5枚の場合を○、6枚以上の場合を×としている。
[Evaluation results]
Table 1 shows the evaluation results of the hard disk device 200 for each of the 1000 magnetic disks produced in Examples 1 to 4 and Comparative Example 1. In the determination of the crack occurrence rate after the drop test, the case where the number of cracks generated is 1 or less is marked as ◎, the case of 2-5 sheets is marked as ◯, and the case of cracks of 6 or more is marked as x.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1の固定後の反り量αの平均値は1μm、実施例2の固定後の反り量αの平均値は0μm、実施例3の固定後の反り量αの平均値は-1μm、実施例4の固定後の反り量αの平均値は0μmであった。また、ワレ数は、実施例2が1枚、実施例4が0枚、実施例1、3が3枚であり、ワレ発生率の判定は実施例2、4が◎、実施例1、3が○であった。 As shown in Table 1, the average value of the warping amount α after fixing in Example 1 is 1 μm, the average value of the warping amount α after fixing in Example 2 is 0 μm, and the warping amount α after fixing in Example 3 is The average value was −1 μm, and the average value of the warping amount α after fixing Example 4 was 0 μm. In addition, the number of cracks is 1 in Example 2, 0 in Example 4, and 3 in Examples 1 and 3. The crack occurrence rate is determined in Examples 2 and 4, and Examples 1 and 3 are used. Was ○.
 ランプ51の先端部51b、51cの隙間1.5mmに対して、実施例1~4では磁気ディスク5がほぼ中心に位置していた。実施例1では、先端部51bと磁気ディスク5の間隔xは0.349mm、先端部51cと磁気ディスク5の間隔xは0.351mmであった。また、実施例2では、xは0.350mm、xは0.350mm、実施例3では、xは0.351mm、xは0.349mm、実施例4では、xは0.4mm、xは0.4mmであった。 In the first to fourth embodiments, the magnetic disk 5 was positioned substantially at the center with respect to the gap of 1.5 mm between the tip portions 51b and 51c of the lamp 51. In Example 1, the interval x 1 of the distal end portion 51b and the magnetic disk 5 0.349Mm interval x 2 of the distal end portion 51c and the magnetic disk 5 was 0.351Mm. In Example 2, x 1 is 0.350 mm, x 2 is 0.350 mm, in Example 3, x 1 is 0.351mm, x 2 is 0.349Mm, in Example 4, x 1 is 0. 4mm, x 2 was 0.4mm.
 一方、比較例1では表1に示すように固定後の反り量αの平均値は5μmであった。また、8枚ワレが発生しワレ発生率の判定は×であった。比較例1では、xは0.345mm、xは0.355mmであり、磁気ディスク59とランプ51の先端部51bの間隔が狭くなっていた。 On the other hand, in Comparative Example 1, as shown in Table 1, the average value of the warping amount α after fixing was 5 μm. In addition, eight cracks occurred, and the determination of the crack occurrence rate was x. In Comparative Example 1, x 1 is 0.345mm, x 2 is 0.355 mm, spacing of the tip portion 51b of the magnetic disk 59 and lamp 51 were narrowed.
 このように、実施例1~4ではハードディスク装置200の固定軸6に固定すると反り量αがほぼ0になり、磁気ディスク5をランプ51の先端部51b、51cの隙間のほぼ中心に位置させることができたので、落下試験後のワレの発生が少なかった。特に、実施例4では、ランプ51の先端部51b、51cと磁気ディスク5との間隔を広くできるので落下試験後のワレの発生を0にすることができた。 As described above, in the first to fourth embodiments, the amount of warping α becomes substantially zero when fixed to the fixed shaft 6 of the hard disk device 200, and the magnetic disk 5 is positioned substantially at the center of the gap between the tip portions 51b and 51c of the ramp 51. As a result, there was little cracking after the drop test. In particular, in Example 4, since the space | interval of the front-end | tip parts 51b and 51c of the lamp | ramp 51 and the magnetic disc 5 can be widened, generation | occurrence | production of crack after a drop test was able to be made zero.
 一方、比較例1は、固定後の反り量αの平均値が5μmと大きいため、落下試験後のワレの発生が多かった。 On the other hand, in Comparative Example 1, since the average value of the warping amount α after fixing was as large as 5 μm, there was a lot of cracking after the drop test.
 実施例5~9と比較例2、3で作製した各1000枚の磁気ディスクのハードディスク装置200の評価結果を表2に示す。本実験では、試作時のガラス基板良品率が95%以上の場合を判定◎、良品率が95%未満では○、良品率が60%以下を×としている。 Table 2 shows the evaluation results of the hard disk device 200 of 1000 magnetic disks produced in Examples 5 to 9 and Comparative Examples 2 and 3. In this experiment, it was determined that the glass substrate non-defective rate was 95% or more at the time of prototyping, ◯ when the non-defective rate was less than 95%, and x when the non-defective rate was 60% or less.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例5の固定後の反り量αの平均値は3μm、実施例6の固定後の反り量αの平均値は2μm、実施例7~9の固定後の反り量αの平均値は0μmであった。また、実施例5のワレ数は5枚、実施例6のワレ数は3枚、ワレ発生率の判定は○であり、実施例7~9のワレ数は0枚、ワレ発生率の判定は何れも◎であった。基板良品率は、実施例7~9ではほとんど100%であり判定は◎であるが、実施例5、6は厚みが薄いうえに目標の反り量が大きいため基板良品率が低下し、判定は○になっている。 As shown in Table 2, the average value of the warping amount α after fixing in Example 5 is 3 μm, the average value of the warping amount α after fixing in Example 6 is 2 μm, and the warping amount after fixing in Examples 7 to 9 The average value of α was 0 μm. In addition, the number of cracks in Example 5 is 5, the number of cracks in Example 6 is 3, and the determination of crack occurrence rate is ○, the number of cracks in Examples 7 to 9 is 0, and the determination of crack occurrence rate is Both were ◎. The substrate non-defective rate is almost 100% in Examples 7 to 9, and the judgment is ◎. However, in Examples 5 and 6, the substrate non-defective rate decreases because the target is a thin and the target warpage amount is large. ○.
 一方、比較例2、3の固定後の反り量αの平均値は0μmであるが、基板の厚みが厚くランプ51の先端部51b、51cとの間隔x、xが狭いため、比較例2は7枚、比較例3は6枚のワレが発生し、ワレ発生率の判定は何れも×であった。 On the other hand, the average value of the warping amount α after fixing in Comparative Examples 2 and 3 is 0 μm, but the thickness of the substrate is thick and the distances x 1 and x 2 from the tip portions 51b and 51c of the lamp 51 are narrow. 7 was cracked in 2 and 6 cracks were generated in Comparative Example 3, and the determination of the crack occurrence rate was x.
 次に、実施例10~13で作製した各1000枚の磁気ディスクのハードディスク装置200の評価結果を表3に示す。 Next, Table 3 shows the evaluation results of the hard disk device 200 for each of the 1000 magnetic disks produced in Examples 10-13.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 反り量の評価は、図15に示す断面C-Cとこれと直交する断面D-Dの2個所で行った。図15は、磁気ディスク5の平面図である。 The evaluation of the amount of warpage was performed at two points, a section CC shown in FIG. 15 and a section DD orthogonal to the section CC. FIG. 15 is a plan view of the magnetic disk 5.
 表3に示すように、実施例10、11の固定後の断面C-Cと断面D-Dの反り量αの平均値は何れも-1μmであった。また、ワレ数は、実施例10、11ともに1枚であり、ワレ発生率の判定は何れも◎であった。 As shown in Table 3, the average values of the warpage amounts α of the cross sections CC and DD after fixing Examples 10 and 11 were both −1 μm. Moreover, the number of cracks was one for each of Examples 10 and 11, and the crack occurrence rate was both judged as ◎.
 実施例12の固定後の断面C-Cと断面D-Dの反り量αの平均値はそれぞれ-2μm、-1μm、実施例13の固定後の断面C-Cと断面D-Dの反り量αの平均値はそれぞれ-4μm、+2μmであった。また、ワレ数は、実施例12、13はそれぞれ3枚、5枚であり、ワレ発生率の判定は何れも○であった。 The average values of the warping amounts α of the cross section CC and the cross section DD after fixing in Example 12 are −2 μm and −1 μm, respectively, and the warping amounts of the cross section CC and the cross section DD after fixing in Example 13 are as follows. The average values of α were −4 μm and +2 μm, respectively. In addition, the number of cracks was 3 and 5 in Examples 12 and 13, respectively, and the determination of crack occurrence rate was “good”.
 このように、周方向TIRが0.7μm以下の実施例10、11では、固定後の断面C-Cと断面D-Dの反り量αは同じであり、ワレ発生率の判定も◎であった。これは、磁気ディスク5の主表面10とクランプ治具2の突起部2aとの接触が全周にわたってほぼ均一になるからである。 As described above, in Examples 10 and 11 in which the circumferential direction TIR is 0.7 μm or less, the warping amount α of the cross-section CC and the cross-section DD after fixing is the same, and the determination of the crack occurrence rate is also ◎. It was. This is because the contact between the main surface 10 of the magnetic disk 5 and the protrusion 2a of the clamp jig 2 is substantially uniform over the entire circumference.
 一方、周方向TIRが0.7μmを越える実施例12、13は、固定後の断面C-Cと断面D-Dの反り量αが異なり、ワレ発生率の判定は○であった。これは、磁気ディスク5の主表面10とクランプ治具2の突起部2aとの接触が均一にならず、不連続な線接触となってしまうためと考えられる。 On the other hand, in Examples 12 and 13 in which the circumferential direction TIR exceeded 0.7 μm, the warpage amount α of the cross-section CC after fixation and the cross-section DD was different, and the crack occurrence rate was judged as “good”. This is presumably because the contact between the main surface 10 of the magnetic disk 5 and the protruding portion 2a of the clamp jig 2 is not uniform, resulting in discontinuous line contact.
 以上このように、本発明によれば、従来の情報記録媒体固定機構を用いて回転軸に情報記録媒体を固定する際に、反りが発生しないようにして、ランプの衝突による基板の割れを防止することが可能な情報記録媒体用ガラス基板、情報記録媒体、および該情報記録媒体を用いた情報記録装置を提供することができる。 As described above, according to the present invention, when the information recording medium is fixed to the rotating shaft using the conventional information recording medium fixing mechanism, the substrate is prevented from cracking due to the collision of the lamp so as not to warp. An information recording medium glass substrate, an information recording medium, and an information recording apparatus using the information recording medium can be provided.
 1 ガラス基板
 2 クランプ治具
 3 ビス
 5 磁気ディスク
 6 回転軸
 10 主表面
 11 磁性膜
 12 はめ込み治具
 13 下研磨皿
 14 上研磨皿
 20 貫通孔
 37 アーム
 38 ピボット
 40 外側面
 51 ランプ
 51a 摺動面
 51b、51c 先端部
 52 リフトタブ
 53 記録再生ヘッド
 54 サスペンション
 59 磁気ディスク
 200 ハードディスク装置
 501 筐体
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Clamp jig 3 Screw 5 Magnetic disk 6 Rotating shaft 10 Main surface 11 Magnetic film 12 Inserting jig 13 Lower polishing dish 14 Upper polishing dish 20 Through hole 37 Arm 38 Pivot 40 Outer surface 51 Lamp 51a Sliding surface 51b , 51c Tip 52 Lift tab 53 Recording / reproducing head 54 Suspension 59 Magnetic disk 200 Hard disk device 501 Housing

Claims (7)

  1.  中心部に回転軸を挿入する貫通孔を備え、主表面の前記貫通孔の周縁部を両側から挟み込んで前記回転軸と固定する円盤状の情報記録媒体用ガラス基板であって、
     前記回転軸と固定する際に前記周縁部を両側から挟み込む力によって前記主表面が矯正され平坦になるように、前記貫通孔から外側に向かって凸状または凹状の反りを予め設けていることを特徴とする情報記録媒体用ガラス基板。
    A disc-shaped glass substrate for an information recording medium comprising a through-hole into which a rotation shaft is inserted at a central portion, sandwiching a peripheral portion of the through-hole on the main surface from both sides and fixed to the rotation shaft,
    Protruding or concave warpage is provided in advance from the through hole so that the main surface is corrected and flattened by a force sandwiching the peripheral edge from both sides when fixed to the rotating shaft. A glass substrate for an information recording medium.
  2.  両側の前記主表面の等高線は、
     何れも同心円でありその間隔は等間隔であることを特徴とする請求項1に記載の情報記録媒体用ガラス基板。
    The contours of the main surface on both sides are
    The glass substrate for an information recording medium according to claim 1, wherein all of them are concentric circles and their intervals are equal.
  3.  前記情報記録媒体用ガラス基板の厚みは、
     中央部から外側面に向かって薄くなっていることを特徴とする請求項1または2に記載の情報記録媒体用ガラス基板。
    The thickness of the information recording medium glass substrate is:
    The glass substrate for an information recording medium according to claim 1 or 2, wherein the glass substrate is thinner from the central portion toward the outer surface.
  4.  前記情報記録媒体用ガラス基板の厚みは、
     0.78~2.2mmであることを特徴とする請求項1または2に記載の情報記録媒体用ガラス基板。
    The thickness of the information recording medium glass substrate is:
    3. The glass substrate for information recording medium according to claim 1, wherein the glass substrate is 0.78 to 2.2 mm.
  5.  前記貫通孔の近傍における前記主表面の周方向TIRは、0.7μm以下であることを特徴とする請求項1から4の何れか1項に記載の情報記録媒体用ガラス基板。 5. The glass substrate for an information recording medium according to claim 1, wherein a circumferential direction TIR of the main surface in the vicinity of the through hole is 0.7 μm or less.
  6.  請求項1から5の何れか1項に記載の情報記録媒体用ガラス基板の前記主表面の上に記録層を設けたことを特徴とする情報記録媒体。 An information recording medium comprising a recording layer provided on the main surface of the glass substrate for information recording medium according to any one of claims 1 to 5.
  7.  円筒状のリング治具と、環状の突起部が設けられたクランプ治具と、回転軸を回転させる駆動機構と、を有する情報記録装置であって、
     請求項6に記載の情報記録媒体と、
     前記情報記録媒体の読み書きを行うためのヘッドと、
     先端の位置が前記情報記録媒体の端部に重なるように配置されたランプと、
     前記ランプに退避している前記ヘッドの前記情報記録媒体へのロード及び前記ヘッドの前記ランプへのアンロードを行うためのヘッド駆動機構と、
     を有し、
     前記リング治具、前記情報記録媒体の順に前記回転軸を貫通させ前記クランプ治具の環状の突起部を前記情報記録媒体の表面に圧接させて前記リング治具との間に挟むことにより前記情報記録媒体の反りを矯正して、前記情報記録媒体は前記回転軸に固定されていることを特徴とする情報記録装置。
    An information recording apparatus having a cylindrical ring jig, a clamp jig provided with an annular protrusion, and a drive mechanism for rotating a rotating shaft,
    An information recording medium according to claim 6;
    A head for reading and writing the information recording medium;
    A lamp arranged such that the position of the tip overlaps the end of the information recording medium;
    A head driving mechanism for loading the head retracted on the ramp onto the information recording medium and unloading the head onto the ramp;
    Have
    The information is obtained by penetrating the rotating shaft in the order of the ring jig and the information recording medium and pressing an annular protrusion of the clamp jig against the surface of the information recording medium and sandwiching the information between the ring jig and the information recording medium. An information recording apparatus, wherein the information recording medium is fixed to the rotating shaft by correcting warping of the recording medium.
PCT/JP2011/051432 2010-02-04 2011-01-26 Glass substrate for information recording medium, information recording medium, and information recording device WO2011096311A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011552741A JP5719785B2 (en) 2010-02-04 2011-01-26 GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND INFORMATION RECORDING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010023077 2010-02-04
JP2010-023077 2010-02-04

Publications (1)

Publication Number Publication Date
WO2011096311A1 true WO2011096311A1 (en) 2011-08-11

Family

ID=44355311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051432 WO2011096311A1 (en) 2010-02-04 2011-01-26 Glass substrate for information recording medium, information recording medium, and information recording device

Country Status (2)

Country Link
JP (1) JP5719785B2 (en)
WO (1) WO2011096311A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029777B1 (en) * 2011-11-22 2012-09-19 旭硝子株式会社 GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM AND MAGNETIC RECORDING MEDIUM USING THE GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302251A (en) * 1997-04-28 1998-11-13 Sony Corp Disc-type magnetic recording medium and magnetic recording/reproducing device
JPH11296943A (en) * 1998-04-08 1999-10-29 Sony Corp Clamping device and clamping method of disk substrate
JP2006318583A (en) * 2005-05-13 2006-11-24 Konica Minolta Opto Inc Glass substrate for information recording medium, information recording medium, and information recording device
JP2010080025A (en) * 2008-09-29 2010-04-08 Hoya Corp Substrate for magnetic disk and magnetic disk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302251A (en) * 1997-04-28 1998-11-13 Sony Corp Disc-type magnetic recording medium and magnetic recording/reproducing device
JPH11296943A (en) * 1998-04-08 1999-10-29 Sony Corp Clamping device and clamping method of disk substrate
JP2006318583A (en) * 2005-05-13 2006-11-24 Konica Minolta Opto Inc Glass substrate for information recording medium, information recording medium, and information recording device
JP2010080025A (en) * 2008-09-29 2010-04-08 Hoya Corp Substrate for magnetic disk and magnetic disk

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029777B1 (en) * 2011-11-22 2012-09-19 旭硝子株式会社 GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM AND MAGNETIC RECORDING MEDIUM USING THE GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM
CN102820040A (en) * 2011-11-22 2012-12-12 旭硝子株式会社 Glass substrate used for magnetic recording media, and magnetic recording media using glass substrate used for magnetic recording media
JP2013109806A (en) * 2011-11-22 2013-06-06 Asahi Glass Co Ltd Glass substrate for magnetic recording medium, and magnetic recording medium using the grass substrate for magnetic recording medium
CN102820040B (en) * 2011-11-22 2016-04-27 旭硝子株式会社 Glass base plate for magnetic recording carrier and use the magnetic recording media of this glass base plate for magnetic recording carrier

Also Published As

Publication number Publication date
JPWO2011096311A1 (en) 2013-06-10
JP5719785B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5593224B2 (en) Magnetic disk substrate, manufacturing method thereof, and magnetic disk
JP4998095B2 (en) Manufacturing method of glass substrate for information recording medium, glass substrate for information recording medium and magnetic recording medium
JP5321594B2 (en) Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
WO2010041536A1 (en) Process for producing glass substrate, and process for producing magnetic recording medium
WO2010041537A1 (en) Process for producing glass substrate, and process for producing magnetic recording medium
JP4894678B2 (en) Manufacturing method of glass substrate for information recording medium
JP5536481B2 (en) Manufacturing method of glass substrate for information recording medium and manufacturing method of information recording medium
JP6138113B2 (en) Method for manufacturing glass substrate for information recording medium, method for manufacturing magnetic disk, and carrier for grinding
JP5636508B2 (en) Glass substrate, information recording medium using the glass substrate, and method for producing the glass substrate
WO2011021478A1 (en) Method for manufacturing glass substrate, glass substrate, method for manufacturing magnetic recording medium, and magnetic recording medium
JP5719785B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND INFORMATION RECORDING DEVICE
JP2009087483A (en) Manufacturing method of glass substrate for information recording medium, glass substrate for information recording medium and magnetic recording medium
JP5781845B2 (en) HDD glass substrate, HDD glass substrate manufacturing method, and HDD magnetic recording medium
JP5706250B2 (en) Glass substrate for HDD
JP5755952B2 (en) Inspection and sorting method for HDD glass substrate, manufacturing method of HDD information recording medium, and HDD glass substrate
JP2008204499A (en) Glass substrate for information recording medium and magnetic recording medium
JP5859757B2 (en) Manufacturing method of glass substrate for HDD
WO2013146132A1 (en) Manufacturing method for glass substrate for information recording medium, and information recording medium
WO2013146135A1 (en) Manufacturing method for glass substrate for information recording medium, and information recording medium
WO2014103284A1 (en) Method for producing glass substrate for information recording medium
WO2013146089A1 (en) Glass substrate for magnetic disk, magnetic disk, magnetic disk drive device
JP2012203959A (en) Manufacturing method for glass substrate for magnetic information recording medium
WO2013146134A1 (en) Manufacturing method for glass substrate for information recording medium, and information recording medium
JP2013016217A (en) Glass substrate for hdd, manufacturing method of glass substrate for hdd, and magnetic recording media for hdd
JP2013012282A (en) Method for manufacturing glass substrate for hdd

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739660

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552741

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11739660

Country of ref document: EP

Kind code of ref document: A1