WO2011095245A1 - Hohltrichterförmiger plasmagenerator - Google Patents

Hohltrichterförmiger plasmagenerator Download PDF

Info

Publication number
WO2011095245A1
WO2011095245A1 PCT/EP2010/069123 EP2010069123W WO2011095245A1 WO 2011095245 A1 WO2011095245 A1 WO 2011095245A1 EP 2010069123 W EP2010069123 W EP 2010069123W WO 2011095245 A1 WO2011095245 A1 WO 2011095245A1
Authority
WO
WIPO (PCT)
Prior art keywords
truncated cone
plasma generator
gas guide
guide channel
electrode
Prior art date
Application number
PCT/EP2010/069123
Other languages
English (en)
French (fr)
Inventor
Wolfgang Viöl
Stephan Wieneke
Roland Damm
Stephan BRÜCKNER
Original Assignee
Laser-Laboratorium Göttingen E. V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laser-Laboratorium Göttingen E. V. filed Critical Laser-Laboratorium Göttingen E. V.
Priority to EP10788326.6A priority Critical patent/EP2532214B1/de
Publication of WO2011095245A1 publication Critical patent/WO2011095245A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes

Definitions

  • the invention relates to a plasma generator with the features of the preamble of independent claim 1.
  • a plasma generator is to be understood here as a device with which a physical plasma, ie. H. an energetic excited state of a gas supplied to the plasma generator can be caused.
  • a physical plasma exiting the plasma generator can be used, for example, to activate surfaces.
  • Particulate or filamentary material can be treated with the plasma within the plasma generator.
  • the gas supplied to the plasma generator itself may be the object of the plasma treatment.
  • a plasma generator with the features of the preamble of independent claim 1 is known. It is a plasma spray gun having a tubular anode with partially truncated cone-shaped inner surfaces and a coaxially arranged in the tubular anode cathode.
  • the cathode is solid and has at its free end behind a rounded tip on one of the truncated cone-shaped portions of the tubular cathode opposite truncated cone-shaped surface.
  • In front of the free end of the cathode is a portion of the tubular anode of cylindrical free cross-section which is longer than any truncated cone-shaped portion of the tubular anode.
  • This plasma generator is in DE 694 08 502 T2 as prior art specified.
  • the portion of the tubular anode which is arranged around the truncated cone-shaped surface of the cathode, in the form of a cylinder jacket.
  • a plasma generator having the features of the preamble of independent claim 1, with a solid electrode on the axis of the gas guide channel, which is here designed as an anode, and with a portion of the gas guide channel with a cylindrical free cross section, which adjoins the free end of the electrode also known from EP 0 342 388 A2.
  • 6,986,471 B1 discloses a plasma spraying method in which a plasma is initially generated, which is then mixed in a nozzle arrangement with a carrier gas in which particles are dispersed.
  • This nozzle arrangement has for the carrier gas to a hollow funnel, which tapers to the mouth of an expansion nozzle, from which the plasma exits.
  • a plasma generator for producing a collimated plasma jet in which means for generating a turbulent flow around the axis of the gas guide channel are formed in a gas guide channel formed around a pin electrode.
  • the gas guide channel Before the free end of the pin electrode, the gas guide channel has a portion with a truncated cone-shaped wall until it ends at an annular counter electrode.
  • WO 2007/080102 A1 discloses a method for treating a surface, in particular in order to free it from impurities, the surface being exposed simultaneously to laser light and to a physical plasma induced by electrical high voltage.
  • the laser light is directed together with a free working gas flow between two electrodes of the plasma source into the treatment area.
  • the electrodes are rod-shaped and aligned parallel to each other and parallel to the surface.
  • the plasma generator has an electrode plate with a central opening. This opening forms the output of the plasma generator for plasma and at the same time an exit for one high-energy beam, which is coupled upstream in the plasma generator and to shield the plasma in the radial direction.
  • a plasma ejector is formed around the central opening, through which ejector gas flows.
  • This plasma ejector has a gas guide channel between an outer truncated cone-shaped wall and an inner truncated cone-shaped wall, wherein both truncated cone-shaped walls are formed by the electrode plate and wherein the cone angle of the outer truncated cone-shaped wall is smaller than that of the inner truncated cone-shaped wall.
  • the plasma serves to shield a high-energy beam, for example from a laser.
  • the plasma itself is encased behind the plasma ejector in a vortex generator with a rotating vortex of another fluid.
  • the invention has for its object to provide a plasma generator with the features of the preamble of independent claim 1, in which the area of the emerging from the mouth of the gas guide channel plasma is accessible without disturbing the plasma.
  • the coaxially disposed within the truncated cone-shaped wall electrode extends annularly around the axis along which the gas guide channel extends in its end region and on which the gas guide channel ends.
  • the truncated cone-shaped surface delimiting the gas guide channel within the truncated cone-shaped wall is the surface of an annular element, whereby this annular element can be the electrode.
  • a working channel which is transparent at least for light of one wavelength extends on the axis through the electrode to the gas guide channel. About this working channel and the preceding section of the gas guide channel, the area in which the plasma exits the gas guide channel, accessible from behind at least for the light of this one wavelength.
  • the light can be used simultaneously with the plasma to treat a surface. In the reverse direction, light of this wavelength can be registered from the plasma region to monitor the plasma or surface treatment with the plasma; or the light can give information about the material of the surface.
  • the working channel is transparent not only to light of one wavelength, but to light in a wider range of wavelengths. It is even more preferable if the working channel has a free cross section up to the gas guide channel.
  • gases or particles can also be injected into the gas guide channel or introduced into a plasma formed there via the working channel.
  • the working channel has a free cross-section
  • a cone angle of the frustoconical wall defining the gas guide channel a cone angle of the frustoconical surface disposed within the frustoconical wall, a distance of the frustoconical wall from the frustoconical surface and a free end cross section of the frustoconical wall
  • Measures that contribute to avoiding or at least reducing such a stagnation point consist in a sufficiently small opening angle of the truncated cone-shaped wall and the truncated cone-shaped surface and in a sufficiently free end cross-section of the truncated cone-shaped wall.
  • This free end cross section should not be smaller than the free cross section of the working channel.
  • the truncated cone-shaped wall facing, in turn truncated cone-shaped surface may be at least partially formed by the annular electrode or arranged on the annular electrode dielectric.
  • the electrode is provided at least at the free end of the truncated cone-shaped surface. see. However, it can also extend over the entire extent of the truncated-cone-shaped surface along the axis of the gas guide channel, possibly under a dielectric covering it.
  • the truncated cone-shaped wall of the new plasma generator limiting the gas guide channel to the outside is preferably formed from a dielectric.
  • a truncated cone-shaped counterelectrode can be arranged externally on at least part of the truncated-cone-shaped wall.
  • the plasma in the new plasma generator may be formed between the electrode and the counter electrode and thus in the hollow funnel-shaped portion of the gas guide channel between the frustoconical surface and the truncated cone wall.
  • the truncated cone-shaped wall and the truncated cone-shaped surface may have an at least approximately equal cone angle, so that the distance between the frustoconical wall and the frustoconical surface is substantially constant and correspondingly over the entire surface Form length of the gas guide channel in its hollow funnel-shaped portion about the same field strengths of the electric field between the electrodes.
  • the course of the distance between the frustoconical wall and the frustoconical surface and its influence on the free cross section of the gas guide channel can be used selectively in order to specifically influence the flow through the gas guide channel.
  • the cone angle of the frustoconical wall can be greater or smaller than the cone angle of the truncated cone-shaped surface, so that the distance between the wall and the surface in the direction of flow of the gas guide channel decreases or increases.
  • the gas guide channel of the new plasma generator can end directly with the frustoconical wall.
  • a stable free jet of the gas flowing through the gas guide channel then also sets in, in which the plasma is formed.
  • the exit point of this free jet is only slightly removed from the place of generation of the plasma between the electrode and arranged in the region of the truncated cone-shaped wall counter electrode, so that many energetic received excited species of the plasma in the free jet and not previously undergo a Wiederabregung.
  • At least one gas supply channel with a tangential component can lead into the gas guide channel, in order in this way to influence the flow conditions in the gas guide channel.
  • the at least one gas supply channel can, for example, open directly into the end region of the gas guide channel designed according to the invention or else into an annular space arranged upstream thereof.
  • gas guide elements may be provided which have a guide component in the circumferential direction about the axis of the Gas Installations- channel.
  • the new plasma generator requires an AC high voltage generator to operate, which supplies the electrode with a high voltage alternating voltage.
  • the alternating high voltage preferably has bipolar voltage pulses. Applying the AC high voltage generator voltage pulses for the electrode to earth, against a arranged in the region of the truncated cone-shaped wall of the gas guide channel counter electrode or against a surface to be treated with the plasma.
  • Fig. 1 outlines a first embodiment of the new plasma generator in a first mode of operation.
  • FIG. 2 outlines the embodiment of the plasma generator according to FIG. 1 in a second mode of operation.
  • Fig. 3 outlines a second embodiment of the new plasma generator
  • Fig. 4 outlines a third embodiment of the new plasma generator.
  • Fig. 1 plasma generator 1 is shown without a necessary for its operation AC high voltage generator.
  • This alternating high voltage generator applies a high alternating voltage between a funnel-shaped, ie more precisely truncated cone-shaped, electrode 2 and a likewise funnel-shaped, ie more precisely truncated cone-shaped, counter-electrode 3.
  • a corresponding funnel-shaped dielectric 4 and a hollow funnel-shaped discharge space 5 are arranged between the electrodes 2 and 3, specifically in front of the counterelectrode 3.
  • the alternating high voltage therefore causes a dielectrically impeded discharge in a gas 6 flowing through the discharge space 5.
  • the discharge space 5 is at the same time a gas guide channel 7 for the gas 6, which starts here from an annular space 8, extends along an axis 9 and ends on this axis 9.
  • the gas guide channel 7 is limited to the outside by the dielectric 4 as a truncated cone-shaped wall 10 and inwardly through this wall 10 opposite truncated cone-shaped surface 1 1 of the electrode 2.
  • the electrode 2 is arranged annularly around the axis 9 around and leaves in the area This axis 9 a free working channel 12 which extends with free cross-section to the gas guide channel 7, specifically up to the end 13, at the free end of the truncated cone-shaped wall 10.
  • a gas flow from the annular space 8 through the gas guide channel 7 forms before the end 13 of a free jet 14, which contains plasma-typical energetically excited species.
  • a further gas to be treated or to be added to a plasma treatment particles and / or electromagnetic radiation can be supplied.
  • electromagnetic radiation from the area of the free jet 14 can also be received and analyzed.
  • a ring flow 16 of the gas 7 is formed in the annular space 8 in order to influence the flow of the gas guide channel 7 with the gas 6.
  • the plasma generator 1 of FIG. 1 is used to treat a surface 17 of an object 18.
  • one or more discharge filaments 19 are formed between the surface 17 and the electrode 2.
  • the plasma-generating discharge can also be focused entirely on the area between the electrode 2 and the surface 17 by applying the alternating high voltage with the alternating high voltage generator in between and dispensing with connection of the counter electrode 3 to the alternating high voltage generator.
  • the surface 1 7 can be treated simultaneously with the plasma with laser light, or with the optical fiber 20 light is received from the area of the treatment of the surface 17 with the plasma, for example, to monitor this treatment.
  • FIG. 3 outlines a specific embodiment of the plasma generator 1.
  • the frustoconical wall and the opposing frustoconical surface 1 1 of the electrode 2 each have a cone angle of 60 °.
  • the free diameter of the working channel 12 at its free end is also the same size as the free inner diameter of the truncated cone-shaped wall 10 at its free end.
  • the distance of the truncated cone-shaped wall 10 to the truncated cone-shaped surface 1 1 is tuned so that in the entire gas guide channel 7 to the end 13 no stagnation point is formed by the larger amounts of gas 6 would be pressed into the working channel 12.
  • the embodiment of the plasma generator 1 according to FIG. 4 differs from that according to FIG. 3 in the detail that adjoins the frustoconical wall 10 is a mouth 21 of the gas guide channel 7 with a cylindrical free cross section.
  • a free jet emerging from the plasma generator 1 can be further stabilized, which
  • Such an orifice 21 of the gas guide channel 7 with a cylindrical free cross-section can also be useful for other reasons than beam stabilization, z. B. to provide security against contact with the internal electrode 2 or maintain a desired working distance.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

Bei einem Plasmagenerator (1) mit einem Gasführungskanal (7), der in einem Endbereich längs einer Achse (9) verläuft und auf dieser Achse (9) endet, mit einer zumindest einen Abschnitt des Endbereichs des Gasführungskanals (6) radial nach außen begrenzten kegelstumpfmantelförmigen Wandung (10) und mit einer koaxial innerhalb der kegelstumpfmantelförmigen Wandung (10) angeordneten Elektrode (2), wobei der Gasführungskanal (7) zumindest in dem Abschnitt des Endbereichs nach innen durch eine der kegelstumpfmantelförmigen Wandung (10) zugewandte, koaxial zu dieser angeordnete, kegelstumpfmantelförmige Oberfläche (11) begrenzt ist, erstreckt sich die Elektrode (2) ringförmig um die Achse (9) und erstreckt sich ein zumindest für Licht einer Wellenlänge transparenter Arbeitskanal (12) auf der Achse (9) durch die Elektrode (2) bis zu dem Gasführungskanal (7).

Description

HOHLTRICHTERFÖRMIGER PLASMAGENERATOR
TECHNISCHES GEBIET DER ERFINDUNG
Die Erfindung bezieht sich auf einen Plasmagenerator mit den Merkmalen des Oberbegriffs des unabhängigen Patentanspruchs 1.
Unter einem Plasmagenerator ist hier eine Vorrichtung zu verstehen, mit der ein physikalisches Plasma, d. h. ein energetisch angeregter Zustand eines Gases, das dem Plasmagenerator zugeführt wird, hervorgerufen werden kann. Ein solches aus dem Plasmagenerator austretendes physikalisches Plasma kann zum Beispiel zur Aktivierung von Oberflächen verwendet werden. Innerhalb des Plasmagenerators kann teilchen- oder fadenförmiges Gut mit dem Plasma behandelt werden. Auch das dem Plasmagenerator zugeführte Gas selbst kann das Objekt der Plasmabehandlung sein.
STAND DER TECHNIK
Aus der DE 694 08 502 T2 ist ein Plasmagenerator mit den Merkmalen des Oberbegriffs des unabhängigen Patentanspruchs 1 bekannt. Es handelt sich um eine Plasmaspritzpistole, die eine rohrförmige Anode mit abschnittsweise kegelstumpfmantelförmigen Innenflächen und eine koaxial in der rohrförmigen Anode angeordnete Kathode aufweist. Die Kathode ist massiv ausgebildet und weist an ihrem freien Ende hinter einer abgerundeten Spitze eine einem der kegelstumpfmantelförmigen Abschnitte der rohrförmigen Kathode gegenüberliegende kegel- stumpfmantelförmige Oberfläche auf. Vor dem freien Ende der Kathode befindet sich ein Abschnitt der rohrförmigen Anode mit zylindrischem freiem Querschnitt, der länger als jeder kegelstumpfmantelförmige Abschnitt der rohrförmigen Anode ist. Dieser Plasmagenerator wird in der DE 694 08 502 T2 als Stand der Technik angegeben. Bei der dort als Erfindung beschriebenen Plasmaspritzpistole weist der Abschnitt der rohrförmigen Anode, der um die kegel- stumpfmantelförmige Oberfläche der Kathode angeordnet ist, die Form eines Zylindermantels auf. Ein Plasmagenerator mit den Merkmalen des Oberbegriffs des unabhängigen Patentanspruchs 1 , mit einer massiven Elektrode auf der Achse des Gasführungskanals, die hier als Anode ausgebildet ist, und mit einem Abschnitt des Gasführungskanals mit zylindrischem freiem Querschnitt, der an das freie Ende der Elektrode anschließt, ist auch aus der EP 0 342 388 A2 bekannt. Aus der US 6,986,471 B1 ist ein Plasmasprühverfahren bekannt, bei dem zunächst ein Plasma generiert wird, das dann in einer Düsenanordnung mit einem Trägergas vermischt wird, in welchem Partikel dispergiert sind. Diese Düsenanordnung weist für das Trägergas einen Hohltrichter auf, der auf die Mündung einer Expansionsdüse zuläuft, aus welcher das Plasma austritt.
Aus der DE 20 2009 000 537 U 1 ist ein Plasmagenerator zur Erzeugung eines gebündelten Plasmastrahls bekannt, bei dem in einem um eine Stiftelektrode herum ausgebildeten Gasführungskanal Mittel zur Erzeugung einer Wirbelströmung um die Achse des Gasführungskanals herum ausgebildet sind. Vor dem freien Ende der Stiftelektrode weist der Gasführungskanal einen Abschnitt mit einer kegelstumpfmantelförmigen Wandung auf, bis er an einer ringförmigen Gegenelektrode endet.
Aus der WO 2007/080102 A1 ist ein Verfahren zur Behandlung einer Oberfläche, insbesondere um diese von Verunreinigungen zu befreien, bekannt, wobei die Oberfläche gleichzeitig Laserlicht und einem durch elektrische Hochspannung induzierten physikalischen Plasma ausgesetzt wird. Dabei wird das Laserlicht zusammen mit einem freien Arbeitsgasstrom zwischen zwei Elektroden der Plasmaquelle hindurch in den Behandlungsbereich gerichtet. Die Elektroden sind stabförmig und parallel zueinander sowie parallel zu der Oberfläche ausgerichtet.
Aus der US 2006/0043075 A1 ist eine Vorrichtung mit einem Plasmagenerator bekannt. Der Plasmagenerator weist eine Elektrodenplatte mit einer zentralen Öffnung auf. Diese Öffnung bildet den Augang des Plasmagenerators für Plasma und zugleich einen Austritt für einen einergiereichen Strahl aus, der stromauf in den Plasmagenerator eingekoppelt wird und den das Plasma in radialer Richtung abschirmen soll. In der Elektrodenplatte ist ein Plasmaejektor um die zentrale Öffnung ausgebildet, der von Ejektorgas durchströmt wird. Dieser Plasmaejektor weist einen Gasführungskanal zwischen einer äußeren kegelstumpf- mantelförmigen Wandung und einer inneren kegelstumpfmantelförmigen Wandung auf, wobei beide kegelstumpfmantelförmigen Wandungen von der Elektrodenplatte ausgebildet sind und wobei der Kegelwinkel der äußeren kegelstumpfmantelförmigen Wandung kleiner ist als derjenige der inneren kegelstumpfmantelförmigen Wandung. Bei der bekannten Vorrichtung dient das Plasma zur Abschirmung eines energiereichen Strahls beispielsweise von einem Laser. Das Plasma selbst wird hinter dem Plasmajektor in einem Wirbelgenerator mit einem umlaufenden Wirbel aus einem weiteren Fluid ummantelt.
AUFGABE DER ERFINDUNG
Der Erfindung liegt die Aufgabe zugrunde, einen Plasmagenerator mit den Merkmalen des Oberbegriffs des unabhängigen Patentanspruchs 1 aufzuzeigen, bei dem der Bereich des aus der Mündung des Gasführungskanals austretenden Plasmas ohne Störung des Plasmas zugänglich ist.
LÖSUNG
Die Aufgabe der Erfindung wird durch einen Plasmagenerator mit den Merkmalen des unabhängigen Patentanspruchs 1 gelöst. Bevorzugte Ausführungsformen des neuen Plasma- generators sind in den abhängigen Patentansprüchen definiert.
BESCHREIBUNG DER ERFINDUNG
Bei dem neuen Plasmagenerator erstreckt sich die koaxial innerhalb der kegelstumpfmantelförmigen Wandung angeordnete Elektrode ringförmig um die Achse, längs derer der Gasführungskanal in seinem Endbereich verläuft und auf der der Gasführungskanal endet. Dies ist hier gleichbedeutend damit, dass die den Gasführungskanal innerhalb der kegelstumpfmantelförmigen Wandung begrenzende kegelstumpfmantelförmige Oberfläche die Oberfläche eines ringförmigen Elements ist, wobei dieses ringförmige Element die Elektrode sein kann. In jedem Fall erstreckt sich ein zumindest für Licht einer Wellenlänge transparenter Arbeitskanal auf der Achse durch die Elektrode bis zu dem Gasführungskanal. Über diesen Arbeitskanal und den davor liegenden Abschnitt des Gasführungskanals ist der Bereich, in dem das Plasma aus dem Gasführungskanal austritt, von hinten her zumindest für das Licht dieser einen Wellenlänge zugänglich. Das Licht kann zeitgleich mit dem Plasma zur Behandlung einer Oberfläche verwendet werden. In umgekehrter Richtung kann Licht dieser Wellenlänge aus dem Bereich des Plasmas registriert werden, um das Plasma oder eine Behandlung einer Oberfläche mit dem Plasma zu überwachen; oder das Licht kann Informationen über das Material der Oberfläche geben.
Vorzugsweise ist der Arbeitskanal nicht nur für Licht einer Wellenlänge transparent, sondern für Licht in einem größeren Bereich von Wellenlängen. Noch mehr bevorzugt ist es, wenn der Arbeitskanal bis zu dem Gasführungskanal einen freien Querschnitt aufweist. Damit können über den Arbeitskanal beispielsweise auch Gase oder Partikel in den Gasführungskanal injiziert bzw. in ein dort ausgebildetes Plasma eingebracht werden.
Wenn der Arbeitskanal einen freien Querschnitt aufweist, ist es bevorzugt, einen Kegelwinkel der den Gasführungskanal begrenzenden kegelstumpfmantelförmigen Wandung, einen Kegelwinkel der innerhalb der kegelstumpfmantelförmigen Wandung angeordneten kegelstumpfmantelförmigen Oberfläche, einen Abstand der kegelstumpfmantelförmigen Wandung von der kegelstumpfmantelförmigen Oberfläche und einen freien Endquerschnitt der kegelstumpfmantelförmigen Wandung so zu wählen, dass sich keine oder allenfalls eine verglichen mit der Gesamtgasströmung nur kleine Gasströmung aus dem Gasführungskanal in den Arbeitskanal hinein ausbildet. Idealerweise bildet sich daher kein Staupunkt in dem Gasführungskanal aus, von dem aus ein Druckgefälle zu dem und in den Arbeitskanal verläuft. Maßnahmen, die zur Vermeidung oder zumindest Reduzierung eines solchen Staupunkts beitragen, bestehen in einem ausreichend kleinen Öffnungswinkel der kegelstumpfmantelförmigen Wandung und der kegelstumpfmantelförmigen Oberfläche sowie in einem ausreichend freien Endquerschnitt der kegelstumpfmantelförmigen Wandung. Dieser freie Endquerschnitt sollte auch nicht kleiner als der freie Querschnitt des Arbeitskanals sein.
Die der kegelstumpfmantelförmigen Wandung zugewandte, ihrerseits kegelstumpfmantel- förmige Oberfläche kann zumindest teilweise von der ringförmigen Elektrode oder einem auf der ringförmigen Elektrode angeordneten Dielektrikum ausgebildet sein. Vorzugsweise ist die Elektrode zumindest an dem freien Ende der kegelstumpfmantelförmigen Oberfläche vorge- sehen. Sie kann sich aber auch - ggf. unterhalb eines sie bedeckenden Dielektrikums - über die gesamte Erstreckung der kegelstumpfmantelformigen Oberfläche längs der Achse des Gasführungskanals erstrecken.
Die den Gasführungskanal nach außen begrenzende, kegelstumpfmantelförmige Wandung des neuen Plasmagenerators ist vorzugsweise aus einem Dielektrikum ausgebildet. Dabei kann außen auf zumindest einem Teil der kegelstumpfmantelformigen Wandung eine kegelstumpfmantelförmige Gegenelektrode angeordnet sein. Im Fall des Vorhandenseins einer solchen Gegenelektrode kann das Plasma in dem neuen Plasmagenerator zwischen der Elektrode und der Gegenelektrode und damit in dem hohltrichterförmigen Abschnitt des Gasführungskanals zwischen der kegelstumpfmantelformigen Oberfläche und der kegelstumpfmantelformigen Wandung ausgebildet werden.
Insbesondere dann, wenn an der kegelstumpfmantelformigen Wandung eine Gegenelektrode vorgesehen ist, können die kegelstumpfmantelförmige Wandung und die kegelstumpfmantelförmige Oberfläche einen zumindest in etwa gleichen Kegelwinkel aufweisen, so dass der Abstand der kegelstumpfmantelformigen Wandung von der kegelstumpfmantelformigen Oberfläche im Wesentlichen konstant ist und sich entsprechend über die gesamte Länge des Gasführungskanals in seinem hohltrichterförmigen Abschnitt etwa gleiche Feldstärken des elektrischen Felds zwischen den Elektroden ausbilden. Grundsätzlich kann der Verlauf des Ab- stands zwischen der kegelstumpfmantelformigen Wandung und der kegelstumpfmantelformigen Oberfläche und dessen Einfluss auf den freien Querschnitt des Gasführungskanals aber gezielt genutzt werden, um die Durchströmung des Gasführungskanals gezielt zu beeinflussen. So kann der Kegelwinkel der kegelstumpfmantelformigen Wandung größer oder kleiner als der Kegelwinkel der kegelstumpfmantelförmig Oberfläche sein, so dass der Abstand zwischen der Wandung und der Oberfläche in Durchströmungsrichtung des Gasführungskanals abnimmt oder zunimmt.
Der Gasführungskanal des neuen Plasmagenerators kann unmittelbar mit der kegelstumpfmantelformigen Wandung enden. Überraschenderweise stellt sich auch dann ein stabiler Freistrahl des den Gasführungskanal durchströmenden Gases ein, in dem das Plasma ausgebildet wird. Dabei ist der Austrittspunkt dieses Freistrahls nur wenig von dem Ort der Erzeugung des Plasmas zwischen der Elektrode und einer im Bereich der kegelstumpfmantelformigen Wandung angeordneten Gegenelektrode entfernt, so dass sich viele energetisch angeregte Spezies des Plasmas in dem Freistrahl erhalten und nicht bereits zuvor eine Wiederabregung erfahren.
Bei dem neuen Plasmagenerator kann mindestens ein Gaszufuhrkanal mit einer Tangential- komponente in den Gasführungskanal einmünden, um auf diese Weise die Strömungsver- hältnisse in dem Gasführungskanal zu beeinflussen. Der mindestens eine Gaszufuhrkanal kann zum Beispiel unmittelbar in den erfindungsgemäß ausgebildeten Endbereich des Gasführungskanals oder aber in einen stromauf davon angeordneten Ringraum einmünden. Zusätzlich oder alternativ können in dem Endbereich des Gasführungskanals Gasführungselemente vorgesehen sein, die eine Führungskomponente in Umfangsrichtung um die Achse des Gasführungs- kanals aufweisen.
Neben seinem bisher beschriebenen physikalischen Aufbau benötigt der neue Plasmagenerator zu seinem Betrieb einen Wechselhochspannungsgenerator, der die Elektrode mit einer Wechselhochspannung beaufschlagt. Vorzugsweise weist die Wechselhochspannung bipolare Spannungspulse auf. Aufbringen kann der Wechselhochspannungsgenerator Spannungspulse für die Elektrode gegenüber Erde, gegenüber einer im Bereich der kegelstumpfmantelförmigen Wandung des Gasführungskanals angeordneten Gegenelektrode oder gegenüber einer mit dem Plasma zu behandelnden Oberfläche.
Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Patentansprüchen, der Beschreibung und den Zeichnungen. Die in der Beschreibungseinleitung genannten Vorteile von Merkmalen und von Kombinationen mehrerer Merkmale sind lediglich beispielhaft und können alternativ oder kumulativ zur Wirkung kommen, ohne dass die Vorteile zwingend von erfindungsgemäßen Ausführungsformen erzielt werden müssen. Weitere Merkmale sind den Zeichnungen - insbesondere den dargestellten Geometrien und den relativen Abmessungen mehrerer Bauteile zueinander sowie deren relativer Anordnung und Wirkverbindung - zu entnehmen. Die Kombination von Merkmalen unterschiedlicher Ausführungsformen der Erfindung oder von Merkmalen unterschiedlicher Patentansprüche ist ebenfalls abweichend von den gewählten Rückbeziehungen der Patentansprüche möglich und wird hiermit angeregt. Dies betrifft auch solche Merkmale, die in separaten Zeichnungen dargestellt sind oder bei deren Beschreibung genannt werden. Diese Merkmale können auch mit Merkmalen unterschiedlicher Patentansprüche kombiniert werden. Ebenso können in den Patentansprüchen aufgeführte Merkmale für weitere Ausführungsformen der Erfindung entfallen. KURZBESCHREIBUNG DER FIGUREN
Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert und beschrieben.
Fig. 1 skizziert eine erste Ausführungsform des neuen Plasmagenerators in einer ersten Betriebsweise.
Fig. 2 skizziert die Ausführungsform des Plasmagenerators gemäß Fig. 1 in einer zweiten Betriebsweise.
Fig. 3 skizziert eine zweite Ausführungsform des neuen Plasmagenerators; und
Fig. 4 skizziert eine dritte Ausführungsform des neuen Plasmagenerators.
FIGURENBESCHREIBUNG
Der in Fig. 1 skizzierte Plasmagenerator 1 ist ohne einen zu seinem Betrieb notwendigen Wechselhochspannungsgenerator dargestellt. Dieser Wechselhochspannungsgenerator legt eine Wechselhochspannung zwischen einer trichterförmigen, d. h. genauer kegelstumpfmantel- förmigen Elektrode 2 und einer ebenfalls trichterförmigen, d. h. genauer kegelstumpfmantel- förmigen Gegenelektrode 3 an. Dabei sind zwischen den Elektroden 2 und 3, hier konkret vor der Gegenelektrode 3, ein entsprechend trichterförmiges Dielektrikum 4 und ein hohltrichterförmiger Entladungsraum 5 angeordnet. Die Wechselhochspannung ruft daher in einem durch den Entladungsraum 5 strömenden Gas 6 eine dielektrisch behinderte Entladung hervor. Der Entladungsraum 5 ist zugleich ein Gasführungskanal 7 für das Gas 6, der hier von einem Ringraum 8 ausgeht, sich längs einer Achse 9 erstreckt und auf dieser Achse 9 endet. Dabei wird der Gasführungskanal 7 nach außen durch das Dielektrikum 4 als kegelstumpfmantel- förmige Wandung 10 begrenzt und nach innen durch die dieser Wandung 10 gegenüberliegende kegelstumpfmantelförmige Oberfläche 1 1 der Elektrode 2. Die Elektrode 2 ist ringförmig um die Achse 9 herum angeordnet und belässt im Bereich dieser Achse 9 einen freien Arbeitskanal 12, der sich mit freiem Querschnitt bis zu dem Gasführungskanal 7, konkret bis zu dessen Ende 13, am freien Ende der kegelstumpfmantelförmigen Wandung 10 erstreckt. Bei einer Gasströmung aus dem Ringraum 8 durch den Gasführungskanal 7 bildet sich vor dem Ende 13 ein Freistrahl 14 aus, der Plasma-typische energetisch angeregte Spezies enthält. Über den Arbeitskanal 12 können in Richtung eines Pfeils 15 ein weiteres Gas, zu behandelnde oder einer Plasmabehandlung hinzuzufügende Partikel und/oder elektromagnetische Strahlung zugeführt werden. In umgekehrter Richtung zu dem Pfeil 15 kann auch elektromagnetische Strahlung aus dem Bereich des Freistrahls 14 empfangen und analysiert werden. Weiter ist in Fig. 1 angedeutet, dass in dem Ringraum 8 eine Ringströmung 16 des Gases 7 ausgebildet wird, um hiermit auf die Durchströmung des Gasführungskanals 7 mit dem Gas 6 Einfluss zu nehmen.
Gemäß Fig. 2 wird der Plasmagenerator 1 gemäß Fig. 1 zum Behandeln einer Oberfläche 17 eines Objekts 18 verwendet. Dabei bilden sich - insbesondere dann, wenn die Oberfläche 17 elektrisch leitend ist und auf Erdpotential liegt - zwischen der Oberfläche 17 und der Elektrode 2 ein oder mehrere Entladungsfilamente 19 aus. Die Plasma generierende Entladung kann auch ganz auf den Bereich zwischen der Elektrode 2 und der Oberfläche 17 fokussiert werden, indem die Wechselhochspannung mit dem Wechselhochspannungsgenerator dazwischen angelegt wird und auf eine Verbindung der Gegenelektrode 3 mit dem Wechselhoch- spannungsgenerator verzichtet wird . Ü ber eine optische Faser 20 kann die Oberfläche 1 7 gleichzeitig mit dem Plasma mit Laserlicht behandelt werden, oder mit der optischen Faser 20 wird Licht aus dem Bereich der Behandlung der Oberfläche 17 mit dem Plasma empfangen, um beispielsweise diese Behandlung zu überwachen.
Fig. 3 skizziert eine konkrete Ausführungsform des Plasmagenerators 1 . Hier weisen die kegelstumpfmantelformige Wandung die und die dieser gegenüberliegenden kegelstumpfmantelformige Oberfläche 1 1 der Elektrode 2 jeweils einen Kegelwinkel von 60° auf. Der freie Durchmesser des Arbeitskanals 12 an seinem freien Ende ist zudem genauso groß wie der freie Innendurchmesser der kegelstumpfmantelförmigen Wandung 10 an deren freiem Ende. Zudem ist der Abstand der kegelstumpfmantelförmigen Wandung 10 zu der kegelstumpf- mantelförmigen Oberfläche 1 1 so abgestimmt, dass in dem gesamten Gasführungskanal 7 bis zu dem Ende 13 kein Staupunkt entsteht, durch den größere Mengen des Gases 6 in den Arbeitskanal 12 gedrückt würde.
Die Ausführungsform des Plasmagenerators 1 gemäß Fig. 4 unterscheidet sich von derjenigen gemäß Fig. 3 in dem Detail, dass sich an die kegelstumpfmantelformige Wandung 10 eine Mündung 21 des Gasführungskanals 7 mit zylindrischem freiem Querschnitt anschließt. Hiermit kann ein aus dem Plasmagenerator 1 austretender Freistrahl weiter stabilisiert werden, was jedoch bei günstigen Strömungsverhältnissen des Gases 7 durch den Plasmagenerator 1 in der Regel nicht erforderlich ist. Eine solche Mündung 21 des Gasführungskanals 7 mit zylindrischem freiem Querschnitt kann aber auch aus anderen Gründen als einer Strahlstabilisierung sinnvoll sein, z. B. um Sicherheit gegen einen Kontakt mit der innen liegenden Elektrode 2 bereitzustellen oder einen gewünschten Arbeitsabstand einzuhalten.
BEZUGSZEICHENLISTE
Plasmagenerator
Elektrode
Gegenelektrode
Dielektrikum
Entladungsraum
Gas
Gasführungskanal
Ringraum
Achse
Wandung
Oberfläche
Arbeitskanal
Ende
Freistrahl
Pfeil
Ringströmung
Oberfläche
Objekt
Entladungsfilament
optische Faser
Mündung

Claims

PATENTANSPRÜCHE
1 . Plasmagenerator (1 ) mit einem Gasführungskanal (7), der in einem Endbereich längs einer Achse (9) verläuft und auf dieser Achse (9) endet, mit einer zumindest einen Abschnitt des Endbereichs des Gasführungskanals (7) radial nach außen begrenzenden, kegelstumpf- mantelförmigen Wandung (10) und mit einer koaxial innerhalb der kegelstumpfmantelförmigen Wandung (10) angeordneten Elektrode (2), wobei der Gasführungskanal (7) zumindest in dem Abschnitt des Endbereichs nach innen durch eine der kegelstumpfmantelförmigen Wan- dung (10) zugewandte, koaxial zu dieser angeordnete, kegelstumpfmantelförmige Ober- fläche (1 1 ) begrenzt ist, dadurch gekennzeichnet, dass sich die Elektrode (2) ringförmig um die Achse (9) erstreckt und dass sich ein zumindest für Licht einer Wellenlänge transparenter Arbeitskanal (12) auf der Achse (9) durch die Elektrode (2) bis zu dem Gasführungskanal (7) erstreckt.
2. Plasmagenerator (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass der Arbeits- kanal (12) bis zu dem Gasführungskanal (7) einen freien Querschnitt aufweist.
3. Plasmagenerator (1 ) nach Anspruch 2, dadurch gekennzeichnet, dass ein Kegelwinkel der kegelstumpfmantelförmigen Wandung (10), ein Kegelwinkel der kegelstumpfmantelförmigen Oberfläche (1 1 ), ein Abstand der kegelstumpfmantelförmigen Oberfläche (1 1 ) von der kegel- stumpfmantelförmigen Wandung (10) und ein freier Endquerschnitt der kegelstumpfmantel- förmigen Wandung (10) so gewählt sind, dass sich keine Gasströmung aus dem Gasführungs- kanal (7) in den Arbeitskanal (12) hinein ausbildet.
4. Plasmagenerator (1 ) nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Elektrode (2) oder ein auf der Elektrode (2) angeordnetes Dielektrikum die der kegelstumpfmantelförmigen Wandung (10) zugewandte, kegelstumpf- mantelförmige Oberfläche (1 1 ) zumindest teilweise ausbildet.
5. Plasmagenerator (1 ) nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die kegelstumpfmantelförmige Wandung (10) aus einem Dielektrikum (4) ausgebildet ist.
6. Plasmagenerator (1 ) nach Anspruch 5, dadurch gekennzeichnet, dass außen auf zumindest einem Teil der kegelstumpfmantelformigen Wandung (10) eine kegelstumpfmantel- förmige Gegenelektrode (3) angeordnet ist.
7. Plasmagenerator (1 ) nach mindestens einem der vorhergehenden Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die kegelstumpfmantelförmige Wandung (10) als Gegenelektrode (3) ausgebildet ist.
8. Plasmagenerator (1 ) nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die kegelstumpfmantelförmige Wandung (10) und die kegelstumpfmantelförmige Oberfläche (1 1 ) einen gleichen Kegelwinkel aufweisen.
9. Plasmagenerator (1 ) nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Gasführungskanal (7) mit der kegelstumpfmantelformigen Wandung (10) endet.
10. Plasmagenerator (1 ) nach mindestens einem der vorhergehenden Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sich eine Mündung (21 ) des Gasführungskanals (6) mit zylindrischem freiem Querschnitt an die kegelstumpfmantelförmige Wandung (10) anschließt, wobei ein Innendurchmesser der Mündung und ein minimaler Innendurchmesser der kegelstumpfmantelformigen Wandung (10) gleich groß sind.
1 1 . Plasmagenerator (1 ) nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens ein Gaszufuhrkanal mit einer Tangentialkomponente in den Gasführungskanal (7) einmündet.
12. Plasmagenerator (1 ) nach Anspruch 1 1 , dadurch gekennzeichnet, d a s s der mindestens eine Gaszufuhrkanal in den Endbereich des Gasführungskanals (6) oder in einen stromauf davon angeordneten Ringraum (8) einmündet.
13. Plasmagenerator (1 ) nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in dem Endbereich Gasführungselemente mit einer Führungskomponente in Umfangsrichtung um die Achse (9) vorgesehen sind.
14. Plasmagenerator (1 ) nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Wechselhochspannungsgenerator vorgesehen ist, der die Elek- trode (2) gegenüber Erde oder gegenüber einer Gegenelektrode (3) im Bereich der kegel- stumpfmantelförmigen Wandung (10) oder gegenüber einer zu behandelnden Oberfläche (17) mit einer Wechselhochspannung beaufschlagt.
15. Plasmagenerator (1 ) nach Anspruch 14, dadurch gekennzeichnet, dass der Wechsel- hochspannungsgenerator die Elektrode (2) mit bipolaren Spannungspulsen beaufschlagt.
PCT/EP2010/069123 2010-02-04 2010-12-08 Hohltrichterförmiger plasmagenerator WO2011095245A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10788326.6A EP2532214B1 (de) 2010-02-04 2010-12-08 Hohltrichterförmiger plasmagenerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010001606A DE102010001606A1 (de) 2010-02-04 2010-02-04 Hohltrichterförmiger Plasmagenerator
DE102010001606.3 2010-02-04

Publications (1)

Publication Number Publication Date
WO2011095245A1 true WO2011095245A1 (de) 2011-08-11

Family

ID=43827574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/069123 WO2011095245A1 (de) 2010-02-04 2010-12-08 Hohltrichterförmiger plasmagenerator

Country Status (3)

Country Link
EP (1) EP2532214B1 (de)
DE (1) DE102010001606A1 (de)
WO (1) WO2011095245A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017118652A1 (de) 2017-08-16 2019-02-21 Hochschule Für Angewandte Wissenschaft Und Kunst Hildesheim/Holzminden/Göttingen Plasmageneratormodul und dessen Verwendung
WO2021235912A1 (ko) * 2020-05-22 2021-11-25 이창훈 대기압 플라즈마 발생 장치를 이용한 원통형 및 환형 피처리물의 표면처리 시스템 및 방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342388A2 (de) 1988-05-13 1989-11-23 James A. Browning Plasmaspritzverfahren und -vorrichtung mit hoher Geschwindigkeit und gesteuerter Temperatur
US5705785A (en) * 1994-12-30 1998-01-06 Plasma-Laser Technologies Ltd Combined laser and plasma arc welding torch
DE69408502T2 (de) 1993-08-11 1998-08-27 Miller Thermal Inc Plasmaspritzpistole und deren Anode
WO2003010088A1 (en) * 2001-07-25 2003-02-06 Precisionh2 Inc Production of hydrogen and carbon from natural gas or methane using barrier discharge non-thermal plasma
US20040022669A1 (en) * 2001-05-07 2004-02-05 Regents Of The University Of Minnesota Non-thermal disinfection of biological fluids using non-thermal plasma
WO2004068916A1 (en) * 2003-01-31 2004-08-12 Dow Corning Ireland Limited Plasma generating electrode assembly
US6986471B1 (en) 2002-01-08 2006-01-17 Flame Spray Industries, Inc. Rotary plasma spray method and apparatus for applying a coating utilizing particle kinetics
US20060043075A1 (en) 2004-08-30 2006-03-02 Ady Hershcovitch Shielded beam delivery apparatus and method
WO2007080102A1 (de) 2006-01-14 2007-07-19 Fachhochschule Hildesheim/Holzminden/Göttingen Verfahren und vorrichtung zur behandlung einer oberfläche, insbesondere um diese von verunreinigungen zu befreien
DE202009000537U1 (de) 2009-01-14 2009-04-02 Reinhausen Plasma Gmbh Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719829A (en) * 1970-04-10 1973-03-06 Versar Inc Laser beam techniques
DE10065629C1 (de) * 2000-12-21 2002-08-29 Fraunhofer Ges Forschung Vorrichtung zur Beschichtung eines Substrates mit einem Plasmabrenner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342388A2 (de) 1988-05-13 1989-11-23 James A. Browning Plasmaspritzverfahren und -vorrichtung mit hoher Geschwindigkeit und gesteuerter Temperatur
DE69408502T2 (de) 1993-08-11 1998-08-27 Miller Thermal Inc Plasmaspritzpistole und deren Anode
US5705785A (en) * 1994-12-30 1998-01-06 Plasma-Laser Technologies Ltd Combined laser and plasma arc welding torch
US20040022669A1 (en) * 2001-05-07 2004-02-05 Regents Of The University Of Minnesota Non-thermal disinfection of biological fluids using non-thermal plasma
WO2003010088A1 (en) * 2001-07-25 2003-02-06 Precisionh2 Inc Production of hydrogen and carbon from natural gas or methane using barrier discharge non-thermal plasma
US6986471B1 (en) 2002-01-08 2006-01-17 Flame Spray Industries, Inc. Rotary plasma spray method and apparatus for applying a coating utilizing particle kinetics
WO2004068916A1 (en) * 2003-01-31 2004-08-12 Dow Corning Ireland Limited Plasma generating electrode assembly
US20060043075A1 (en) 2004-08-30 2006-03-02 Ady Hershcovitch Shielded beam delivery apparatus and method
WO2007080102A1 (de) 2006-01-14 2007-07-19 Fachhochschule Hildesheim/Holzminden/Göttingen Verfahren und vorrichtung zur behandlung einer oberfläche, insbesondere um diese von verunreinigungen zu befreien
DE202009000537U1 (de) 2009-01-14 2009-04-02 Reinhausen Plasma Gmbh Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017118652A1 (de) 2017-08-16 2019-02-21 Hochschule Für Angewandte Wissenschaft Und Kunst Hildesheim/Holzminden/Göttingen Plasmageneratormodul und dessen Verwendung
WO2019034496A1 (de) 2017-08-16 2019-02-21 Hochschule Für Angewandte Wissenschaft Und Kunst Hildesheim/Holzminden/Göttingen Plasmageneratormodul und dessen verwendung
US10827598B2 (en) 2017-08-16 2020-11-03 DBD Plasma GmbH Plasma generator module
WO2021235912A1 (ko) * 2020-05-22 2021-11-25 이창훈 대기압 플라즈마 발생 장치를 이용한 원통형 및 환형 피처리물의 표면처리 시스템 및 방법

Also Published As

Publication number Publication date
DE102010001606A1 (de) 2011-08-04
EP2532214B1 (de) 2016-03-23
EP2532214A1 (de) 2012-12-12

Similar Documents

Publication Publication Date Title
DE2059594A1 (de) Verfahren und Vorrichtung zum elektrostatischen Aufstreuen von Farbstoffen,Pulvermaterial,Faserstoffen u.dgl.
DE102007011235A1 (de) Verfahren und Vorrichtung zur Behandlung einer Oberfläche eines Werkstückes
EP1236380A1 (de) Plasmadüse
DE3608415A1 (de) Elektrostatische sprueheinrichtung fuer beschichtungspulver
EP0236794A2 (de) Elektrostatische Sprüheinrichtung für Beschichtungspulver
DE102015121252A1 (de) Vorrichtung zur Erzeugung eines atmosphärischen Plasmastrahls und Verfahren zur Behandlung der Oberfläche eines Werkstücks
WO2005125286A2 (de) Vorrichtung zur bearbeitung eines substrates mittels mindestens eines plasma-jets
EP0994637A2 (de) Verfahren zur Plasmabehandlung von stab- oder fadenförmigem Material
DE102008051801A1 (de) Vorrichtung zum Behandeln einer inneren Oberfläche eines Werkstücks
DE202007018317U1 (de) Vorrichtung zur Erzeugung eines Plasmastrahls
EP3329747B1 (de) Elektrodenanordnung und plasmabehandlungsvorrichtung für eine oberflächenbehandlung eines körpers
DE19962160A1 (de) Vorrichtung zur Erzeugung von Extrem-Ultraviolett- und weicher Röntgenstrahlung aus einer Gasentladung
DE202007018327U1 (de) Vorrichtung zum Erzeugen eines Plasmas
EP2532214B1 (de) Hohltrichterförmiger plasmagenerator
WO2008017172A1 (de) Verfahren zur fragmentierung von material mittels hochspannungsentladungen
DE10053295C2 (de) Hochrotationszerstäuber zur Aufbringung von Pulverlack
DE202009000537U1 (de) Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls
EP2209354B1 (de) Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls
DE102009004968B4 (de) Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls
DE19542863A1 (de) Pulversprüheinrichtung
EP1441578A2 (de) Vorrichtung zum Erzeugen eines breiten Aktivgasstrahls auf Basis eiens Gasentladungsplasmas
DE1907530C3 (de) Elektrostatische Spritzpistole
DE102016201738A1 (de) Beschichtungsvorrichtung
DE102013106315B4 (de) Verfahren und Vorrichtung zum Erzeugen eines physikalischen Plasmas
DE102007024027B4 (de) Verfahren und Vorrichtung zur kombinierten Behandlung einer Oberfläche mit einem Plasma und mit elektromagnetischer Strahlung sowie deren Anwendung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10788326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010788326

Country of ref document: EP