WO2011095016A1 - 功率开关器件串联限压电路 - Google Patents

功率开关器件串联限压电路 Download PDF

Info

Publication number
WO2011095016A1
WO2011095016A1 PCT/CN2010/078206 CN2010078206W WO2011095016A1 WO 2011095016 A1 WO2011095016 A1 WO 2011095016A1 CN 2010078206 W CN2010078206 W CN 2010078206W WO 2011095016 A1 WO2011095016 A1 WO 2011095016A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
circuit
series
power switching
voltage
Prior art date
Application number
PCT/CN2010/078206
Other languages
English (en)
French (fr)
Inventor
范家闩
Original Assignee
深圳市科陆变频器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市科陆变频器有限公司 filed Critical 深圳市科陆变频器有限公司
Priority to JP2012550301A priority Critical patent/JP5554421B2/ja
Priority to EP10845099.0A priority patent/EP2533411B1/en
Publication of WO2011095016A1 publication Critical patent/WO2011095016A1/zh
Priority to US13/489,439 priority patent/US8610483B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08148Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/107Modifications for increasing the maximum permissible switched voltage in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT

Definitions

  • the invention relates to a voltage limiting circuit, in particular to a circuit for automatically limiting the voltage across a power switching device applied in series, and a voltage limiting circuit having an energy recovery function.
  • the form of electric energy supplied to the user by the power grid is usually the power frequency (50Hz or 60Hz) AC power, but the actual use of the user varies widely, such as the use of direct current (such as electrolytic aluminum), the use of high frequency AC (such as induction heating), It is necessary to adjust the frequency and voltage (such as motor frequency control), so it is often necessary to use a converter for power conversion.
  • the power switching device is the core component of the converter, which is a common and effective means to realize the electric energy conversion.
  • the IGBT of the IGBTs currently available in batches has a withstand voltage limit of 1700 volts and 3300 volts. It is not possible to directly process high voltages with a single power switching device, such as 10 kV, 500. KV, etc., also because of the low cost of low-voltage power switching devices. Therefore, in practical applications, low-voltage power switching devices are often connected in series, and multiple series connections are used to solve the problem of insufficient withstand voltage.
  • the turn-on process and the turn-off process of the power switching device may be inconsistent, which may cause the power switching device to be connected in series, the turn-on process.
  • Power switching devices with longer, shorter turn-off processes are subject to higher voltages, and devices with lower leakage currents are subject to higher voltages. Higher voltages are detrimental to the operation of the power switching device, even exceeding the withstand voltage limits of the power switching device, causing breakdown damage. Therefore, when power switching devices are used in series, special measures are required to limit the voltage across them to a safe range, such as within 70% of their withstand voltage limits.
  • the current technical method is to connect a dynamic static voltage equalizing unit circuit in parallel with each power switching device.
  • the unit circuit is composed of a diode, a capacitor and a parallel voltage stabilizing circuit, and can realize a voltage limiting function.
  • the Chinese invention patent application "a series-type power switch bridge arm capable of automatic voltage equalization" (application number: 01108712. 9), announced a voltage limiting circuit for the voltage across the power switching device, the circuit form of which is shown in Figure 1. Show.
  • a power switching device corresponds to a parallel voltage stabilizing circuit
  • the parallel voltage stabilizing circuit uses a large number, a large number of components, and a low utilization rate.
  • Third, the shunt regulator circuit adopts an energy-consumption design and consumes power, resulting in a decrease in the efficiency of the whole machine using this technology. Summary of the invention
  • the technical problem solved by the invention is: overcoming the prior art, the number of parallel voltage stabilizing circuits is large, the number of components is large, and the utilization rate is low. At the same time, each shunt regulator circuit needs to be independently debugged, and when the voltage regulation value is changed , need to change all the parallel regulator circuit, the technical problem of large workload.
  • the present invention also overcomes the technical problems in the prior art that the shunt regulator circuit adopts an energy-consuming design and consumes electric energy, resulting in a decrease in efficiency of the whole machine to which the technology is applied.
  • the technical solution of the present invention is: providing a power switching device series voltage limiting circuit, comprising a power switching device series branch composed of a plurality of power switching devices Q1 QQn, wherein the power switching device comprises a control end, a high end SD and a low
  • the WD, the power switching device series branch, the plurality of power switching devices Q1 QQn are connected in series
  • the high-end SD of one power switching device is sequentially connected in series with the low-end WD of another power switching device
  • each power switching device is connected in parallel with an energy temporary storage circuit
  • the energy temporary storage circuits ⁇ 1 to ⁇ respectively include clamping diodes D1 to Dn, storage capacitors CI ⁇ & ⁇ , and static Piezoresistors R1 R Rn, energy storage return terminals CF1 CFCFn, in each energy temporary storage circuit, the storage capacitors and the static voltage equalizing resistors are connected in parallel to form an energy storage
  • a further technical solution of the present invention is: in the energy temporary storage circuit, after the storage capacitor and the static voltage equalizing resistor are connected in parallel, one end is connected with the cathode of the clamp diode to form an energy storage return end, and the other end is connected to the energy temporary
  • the lower end WD of the power switching device in parallel with the circuit is connected, the anode of the clamping diode being connected to the high end SD of the power switching device in parallel with the energy temporary storage circuit.
  • the energy temporary storage circuit after the storage capacitor and the static voltage equalizing resistor are connected in parallel, one end is connected with the anode of the clamp diode to form an energy storage return end, and the other end is connected to and
  • the energy temporary storage circuit has a high-end SD of a power switching device connected in parallel, and a cathode of the clamping diode is connected to a low-end WD of the power switching device connected in parallel with the energy temporary storage circuit.
  • the centralized voltage limiting circuit H includes a voltage limiting function circuit U and a plurality of energy concentration diodes JD2 J JDn that concentrate the energy temporarily stored in the corresponding energy temporary storage circuit K, the plurality of The anodes and cathodes of the energy concentrated diodes JD2 to JDn are sequentially connected in series, and the anodes of the JD2 to JDn are respectively connected to the corresponding plurality of energy return terminals CF2 to CFn, and the cathode of the JD2 is connected to the first energy return terminal CF1.
  • the concentrated voltage limiting circuit H further includes an energy concentration diode JD1, and the high voltage terminal U+ of the voltage limiting function circuit U is connected to the cathode of the energy concentrated diode JD1, and the low voltage terminal U- and the first power switching device Q1
  • the high-end SD is connected, and the anode of the energy concentrating diode JD1 is connected to the energy return terminal CF1 of the first energy temporary storage circuit K1.
  • the centralized voltage limiting circuit H includes a voltage limiting function circuit U and a plurality of energy concentration diodes JD2 J JDn that concentrate the energy temporarily stored in the corresponding energy temporary storage circuit K, the plurality of An anode and a cathode of the energy concentrated diodes JD2 to JDn are sequentially connected in series, and the JD2 to JDn anodes are respectively connected to a corresponding plurality of energy return terminals CF2 to CFn, and a cathode of the JD2 is connected to a first energy return terminal CF1.
  • the concentrated voltage limiting circuit H further includes an energy concentrated diode JD1, and the low voltage terminal U- of the voltage limiting function circuit U is connected to the anode of the energy concentrated diode JD1, and the high voltage terminal U+ is lower than the last one of the power switching devices Qn.
  • the terminal WD is connected, and the cathode of the energy concentrating diode JD1 is connected to the energy return terminal CFn of the last energy storage circuit Kn.
  • the energy collecting diodes other than the energy concentrating diode JD1 are connected at two ends to the adjacent two energy storage return terminals CF or to one or more energy storage return terminals CF.
  • the voltage limiting function circuit U is a converter that returns the incoming energy to the power supply or to the load.
  • a further technical solution of the present invention is: further comprising a surge absorbing circuit or elements LY1 LY LYn for absorbing the surge voltage of the power switching device, the surge absorbing circuits or components LY1 LY LYn respectively corresponding to the power
  • the switching devices Q1 to Qn are connected in parallel.
  • the energy concentrating diode JD is composed of a diode connected in series with an inductor.
  • the technical effect of the present invention is: Providing a power limiting device series voltage limiting circuit, the voltage limiting circuit uses a centralized voltage limiting circuit to complete the regulating voltage limit value at one time. Simultaneous use of multiple power switches The device uses an energy temporary storage circuit to return the energy flowing into the voltage limiting circuit to the power supply or to the load for efficient use, thereby improving the overall efficiency.
  • FIG. 1 is a circuit diagram of a prior art series power switch bridge arm
  • FIG. 2 is a circuit diagram of the present invention.
  • FIG. 3 is a circuit diagram of another embodiment of the present invention.
  • a specific embodiment of the present invention provides: a power switching device series voltage limiting circuit, comprising a power switching device series branch composed of a plurality of power switching devices Q1 QQn, wherein the power switching device includes Console, high-end SD and low-end WD.
  • the plurality of power switching devices Q1 QQn are connected in series with the high-end SD of one power switching device and the low-end WD of another power switching device in series, gp: the low end of Q1 and the Q2 The high end is connected, the low end of Q2 is connected to the high end of Q3, and so on, and the low end of Qn- ⁇ is connected to the high end of Qn.
  • the utility model further includes a plurality of energy temporary storage circuits K1 to Kn, and two ends of each power switching device are correspondingly connected in parallel with an energy temporary storage circuit for storing the load current of the power switching device to open and close different load currents, and corresponding energy
  • the plurality of energy temporary storage circuits K1, ⁇ 2, ..., ⁇ correspond to both ends of the plurality of the power switching devices Q1, Q2, ..., Qn, respectively.
  • the energy temporary storage circuit K is connected in series, that is, the energy temporary storage circuit K1 is connected in series with the energy temporary storage circuit K2, the energy temporary storage circuit K2 is connected in series with the energy temporary storage circuit K3, and so on, and the energy temporary storage circuit Kn-1 and energy are temporarily suspended.
  • the circuit ⁇ is connected in series.
  • the energy temporary storage circuits ⁇ 1 to ⁇ n respectively include clamp diodes D1 to Dn, storage capacitors C1 to Cn, static voltage equalization resistors R1 to Rn, and energy storage return terminals CF1 to CFn, each of which is stored in the energy storage circuit.
  • the energy storage capacitor and the static voltage equalizing resistor are connected in parallel to form a energy storage return end and then connected in series with the clamp diode, and the energy temporary storage circuit is connected in parallel with the power switching device.
  • the anode of the clamp diode is The high-end SD of the power switching device is connected.
  • a centralized voltage limiting circuit H for limiting the voltage of the power switching device series branch is also included.
  • the centralized voltage limiting circuit H includes a voltage limiting function circuit U and a plurality of the corresponding energy
  • the energy concentration diodes JD1 to JDn of the energy concentration temporarily stored in the circuit K, the anodes and cathodes of the plurality of energy concentration diodes JD1 to JDn are sequentially connected in series, and the plurality of energy concentration diodes JD1 to JDn and the energy storage return terminal CFl ⁇ CFn is connected.
  • the power switching device series voltage limiting circuit adopts an energy temporary storage circuit matched with the power switching device, and the corresponding plurality of energy temporary storage circuits K1, ⁇ 2, ..., ⁇ are respectively connected in parallel to the plurality of said powers
  • the two ends of the switching devices Q 1 , Q ... Qn , the energy temporary storage circuits K1 , ⁇ 2 ... ⁇ ⁇ temporarily store the load current energy of the power switching devices Q l , Q2 ... Qn switching processes asynchronously , in the power switch
  • the temporarily stored energy is transferred to the voltage limiting function circuit U step by step.
  • only one centralized voltage limiting circuit U is used, and the number of components is small, and the voltage limit value can be adjusted at one time, which is very convenient.
  • the centralized voltage limiting circuit H includes a voltage limiting function circuit U and a plurality of energy concentrated diodes for concentrating energy temporarily stored in the corresponding energy temporary storage circuit K.
  • JD2 to JDn, the anodes and cathodes of the plurality of energy concentrated diodes JD2 to JDn are sequentially connected in series, and the JD2 to JDn anodes are respectively connected to the corresponding plurality of energy return terminals CF2 to CFn, and the cathode of the energy concentrated diode JD2 is The energy returning terminal CF1 is connected
  • the centralized voltage limiting circuit H further includes an energy concentrated diode JD1, and the high voltage terminal U+ of the voltage limiting function circuit U is connected to the cathode of the energy concentrated diode JD1, and the voltage limiting function circuit U is low.
  • the voltage terminal U- is connected to the high end SD of the first one of the power switching devices, and the anode of the energy
  • each power switching device is connected in parallel with an energy temporary storage circuit, and all energy temporary storage circuits are in the same form.
  • the i-th energy temporary storage circuit Ki is composed of a clamping diode Di, a storage capacitor Ci, and a static voltage equalization.
  • the resistor Ri is composed of a storage capacitor Ci and a static grading resistor Ri connected in parallel, one end is connected to the cathode of the clamp diode Di to form a storage return terminal CFi, and the other end is connected to the low end of the power switching device Qi, the clamp diode The anode of Di is connected to the high end of the power switching device Qi.
  • the anode of the i-th energy concentrating diode JDi is connected to the energy storage return end CFi of the i-th energy temporary storage circuit, and the cathode is connected to the energy storage return end CFi-l of the i-1th energy temporary storage circuit, And so on.
  • the voltage limiting function circuit U is connected in parallel at both ends of the storage capacitor C1, and the voltage limiting circuit U is a shunt regulator, and the voltage at both ends is substantially unchanged when the electric energy flows in, and there is no energy concentration. Diode JD1.
  • the high voltage terminal U+ of the voltage limiting function circuit U is connected to the cathode of the energy concentrated diode JD1, and the low voltage terminal U- is connected to the first branch of the power switching device.
  • the terminal SD is connected, and the anode of the energy concentrating diode JD1 is connected to the energy storage return terminal CF1 of the first energy temporary storage circuit.
  • the energy temporary storage circuits K1 to Kn respectively include clamp diodes D1 to Dn, storage capacitors C1 to Cn, static voltage equalization resistors R1 to Rn, and storage.
  • the energy storage capacitors and the static voltage equalizing resistors are connected in parallel to form an energy storage return end and then connected in series with the clamp diode, and the energy temporary storage circuit and the The power switching devices are connected in parallel.
  • one end is connected to the anode of the clamp diode to form a storage return end, and the other end is connected to the high end SD of the power switching device, the cathode of the clamp diode and the power The low side WD of the switching device is connected.
  • the centralized voltage limiting circuit H includes a voltage limiting function circuit U and a plurality of energy concentrated diodes JD2 JJDn that concentrate the energy temporarily stored in the corresponding energy temporary storage circuit K, and anodes of the plurality of energy concentrated diodes JD2 to JDn
  • the cathodes are connected in series, and the anodes of the JD2 to JDn are respectively connected to the corresponding plurality of energy return terminals CF2 CFCFn.
  • the concentrated voltage limiting circuit H further includes an energy concentration diode JD1, and the low voltage end of the voltage limiting function circuit U U- is connected to the anode of the energy concentrating diode JD1, and the high voltage terminal U+ of the voltage limiting function circuit U is connected to the lower end WD of the last one of the power switching devices, the cathode of the energy concentrating diode JD1 and the last one
  • the energy return terminal CFn of the energy temporary storage circuit Kn is connected.
  • each power switching device is connected in parallel with an energy temporary storage circuit, and all energy temporary storage circuits are in the same form.
  • the i-th energy temporary storage circuit is composed of a clamping diode Di, a storage capacitor Ci, and a static voltage equalizing resistor.
  • the Ri composition wherein the storage capacitor Ci and the static grading resistor Ri are connected in parallel, one end is connected to the anode of the clamp diode Di to form a storage return terminal CFi, and the other end is connected to the high end of the power switching device Qi, the clamp diode Di
  • the cathode is connected to the lower end of the power switching device Qi.
  • the anode of the i-th energy concentrating diode JDi is connected to the energy storage return end CFi of the i-th energy temporary storage circuit, and the cathode is connected to the energy storage return end CFi-1 of the i-1th energy temporary storage circuit;
  • the voltage limiting circuit U is connected in parallel at both ends of the storage capacitor Cn, and the voltage limiting circuit U is a shunt regulator, and the voltage at both ends is substantially unchanged when the electric energy flows in, and there is no energy concentration. Diode JD1.
  • an energy concentration diode JD1 there is an energy concentration diode JD1, and the high voltage terminal U10 of the voltage limiting function circuit U is connected to the tail terminal TO of the power switching device series branch, and the low voltage terminal U- and the energy concentrated diode JD1 The anode is connected, and the cathode of the energy concentrating diode JD1 is connected to the energy storage return terminal CFn of the last energy temporary storage circuit.
  • multiple series of power switching devices are controlled to be simultaneously turned on.
  • one of the power-on switching devices Qi that has been turned on slowly turns into a conducting state after a short time delay such as 1 microsecond after the other power switching devices have been turned on.
  • the load current is passed through an energy temporary storage circuit connected in parallel across the slow power switching device Qi, accumulating charges in the storage capacitor Ci, resulting in a slight increase in voltage. Examples are as follows: If the load current is 100 amps, the delay time is 1 microsecond, the storage capacitor Ci is 10 microfarads, and the voltage rise is 10 volts, which is 100 amps*1 microseconds/10 microfarads.
  • a fast-switching power switching device Qx When multiple series-connected power switching devices are controlled to be turned off simultaneously, a fast-switching power switching device Qx is turned off before other power switching devices are turned off, after a short time delay such as 1 microsecond. The power switching device also transitions to the off state. During this short time delay, the load current forms a path through an energy temporary storage circuit connected in parallel across the fast-switching power switching device Qx, accumulating charges in the storage capacitor Cx, resulting in a slight increase in voltage. For example: If the load current is 100 amps, the delay time is 1 microsecond, the storage capacitor Cx is 10 microfarads, and the voltage rise is 10 volts, which is 100 amps * 1 microsecond /10 microfarads.
  • the reference point of the centralized voltage limiting function circuit U1 is the high end of the power switch device Q1 of the power switch device series branch, or the low end of the power switch device Qn.
  • conditions are created for a plurality of power switching device series branches sharing a voltage limiting function circuit U.
  • the head end SD of the power switching device series branch is connected in parallel, and the tail end TO is also connected in parallel; and in the boost circuit and the push-pull circuit
  • the tail ends WD of the series branches of the power switching devices are usually connected in parallel.
  • a surge absorber is connected in parallel to each power switching device, numbered from LY1 to LYn, to provide further protection for the fault of the voltage limiting circuit.
  • the clamp voltage of the surge absorber is less than the regulation value of the voltage limiting circuit and is less than the withstand voltage limit of the power switching device.
  • the energy concentrating diode JD is composed of a diode connected in series with an inductor, and the direction of conduction is unchanged.
  • the energy concentrated diode is connected in series with an inductor, which can limit the energy temporarily stored in the storage capacitor Ci, and when the power switching device series branch is stably turned on, the current peak when the energy concentrated diode flows to the concentrated voltage limiting function circuit U1 step by step.
  • the two ends of the energy concentrated diode except the energy concentrated diode JD1 are connected to the adjacent two energy storage return terminals CF or are separated by one or more energy storage return terminals CF.
  • the requirements are: When the power switch device series branch is stably turned on, any one of the energy storage return terminals CFi has a fast energy flow to the centralized voltage limiting function circuit U1.
  • the voltage limiting function circuit U can also be a converter that returns the incoming energy to the power supply or to the load.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Inverter Devices (AREA)
  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Description

功率开关器件串联限压电路 技术领域
本发明涉及一种限压电路, 尤其涉及一种对串联应用的每个功率开关器件 两端电压进行自动幅度限定的电路, 同时具有能量回收功能的限压电路。 背景技术
电网提供给用户的电能形式通常是工频(50Hz或 60Hz )交流电能, 而用户 实际使用的却千差万别, 如使用直流电的(如电解铝)、 有使用高频交流的(如 感应加热), 有需要频率电压可调的(如电动机变频调速)等等, 所以经常需要 用变流器进行电能变换。 其中功率开关器件是变流器的核心部件, 是实现电能 变换的常用和有效手段。
限于目前半导体工业的水平, 例如目前可以批量提供的绝缘栅双极晶体管 IGBT的耐压限值为 1700伏、 3300伏等级, 还无法用单个功率开关器件直接处 理高电压,如 10千伏、 500千伏等, 同时也由于低压功率开关器件的成本较低, 因此, 实际应用中常常将低压功率开关器件串联起来, 使用多只串联来解决耐 压不足的问题。 由于功率开关器件和其控制电路的参数具有离散性, 包括温度 敏感性和时变性,功率开关器件的开通过程、关断过程的时间长短可能不一致, 会造成功率开关器件串联支路中, 开通过程较长、 关断过程较短的功率开关器 件承受较高的电压, 截止时器件漏电流小的承受较高的电压。 较高的电压对功 率开关器件工作不利, 甚至超过功率开关器件的耐压限值而导致其击穿损坏。 所以, 功率开关器件串联应用时, 需要采取特别措施, 限制其两端电压在安全 的范围内, 比如在其耐压限值的 70%以内。
针对功率开关器件串联应用, 目前使用的技术方法是在每个功率开关器件 上并联一个动静态均压吸收单元电路, 该单元电路由二极管、 电容、 并联稳压 电路构成, 可以实现电压限制功能。 如中国发明专利申请 "一种能自动均压的 串联式功率开关桥臂 "(申请号: 01108712. 9 ), 公布了一种功率开关器件两端 电压的限制电路, 其电路形式如图 1所示。
现有使用技术方法存在如下缺陷: 第一, 一个功率开关器件对应一个并联 稳压电路, 并联稳压电路使用的数量多, 元件个数多, 利用率较低。 第二, 而 且每个并联稳压电路需要独立调试, 改变稳压值时, 需要改动所有的并联稳压 电路, 工作量大。 第三, 并联稳压电路采用能量消耗型设计, 需要消耗电能, 导致应用此技术的整机效率下降。 发明内容
本发明解决的技术问题是:克服现有技术中,并联稳压电路使用的数量多, 元件个数多, 利用率较低, 同时, 每个并联稳压电路需要独立调试, 改变稳压 值时, 需要改动所有的并联稳压电路, 工作量大的技术问题。 本发明还克服现 有技术中, 并联稳压电路采用能量消耗型设计, 需要消耗电能, 导致应用此技 术的整机效率下降等技术问题。
本发明的技术方案是: 提供一种功率开关器件串联限压电路, 包括由多个 功率开关器件 Ql〜Qn组成的功率开关器件串联支路,所述功率开关器件包括控 制端、 高端 SD和低端 WD, 所述功率开关器件串联支路中, 多个功率开关器件 Ql〜Qn串联方式为一个功率开关器件的高端 SD与另一个功率开关器件的低端 WD依次串联, 其特征在于, 还包括多个能量暂存电路 Kl〜Kn, 每个功率开关器 件并联一个能量暂存电路,所述能量暂存电路 Κ1〜Κη分别包括箝位二极管 Dl〜 Dn、 储能电容 CI〜& ι、 静态均压电阻 Rl〜Rn、 储能返回端 CFl〜CFn, 每一个 能量暂存电路中, 所述储能电容和静态均压电阻并联后形成储能返回端再与所 述箝位二极管串联, 还包括对所述功率开关器件串联支路进行限压的集中限压 电路 H,所述集中限压电路 H包括限压功能电路 U以及多个将所述相应能量暂存 电路 K暂存的能量集中的能量集中二极管 JD2〜JDn,所述多个能量集中二极管 JD2〜JDn的阳极、 阴极依次串联, 所述多个能量集中二极管 JD2〜JDn的阳极 分别与储能返回端 CF2〜CFn相连,所述能量集中二极管 JD2的阴极与能量返回 端 CF1相连。
本发明的进一步技术方案是: 所述能量暂存电路中, 储能电容和静态均压 电阻并联后, 一端与箝位二极管的阴极连接形成储能返回端, 另一端连接到与 所述能量暂存电路并联的功率开关器件的低端 WD,所述箝位二极管的阳极连接 到与所述能量暂存电路并联的功率开关器件的高端 SD。
本发明的进一步技术方案是: 所述能量暂存电路中, 储能电容和静态均压 电阻并联后, 一端与箝位二极管的阳极连接形成储能返回端, 另一端连接到与 所述能量暂存电路并联的功率开关器件的高端 SD,所述箝位二极管的阴极连接 到与所述能量暂存电路并联的功率开关器件的低端 WD。
本发明的进一步技术方案是: 所述集中限压电路 H包括限压功能电路 U以 及多个将所述相应能量暂存电路 K暂存的能量集中的能量集中二极管 JD2〜 JDn, 所述多个能量集中二极管 JD2〜JDn的阳极、 阴极依次串联, 所述 JD2〜 JDn的阳极分别与相应的多个能量返回端 CF2〜CFn相连,所述 JD2的阴极与第 一个能量返回端 CF1相连, 所述集中限压电路 H还包括能量集中二极管 JD1 , 所述限压功能电路 U的高电压端 U+与能量集中二极管 JD 1的阴极相连,低电压 端 U-与第一个所述功率开关器件 Q1的高端 SD相连, 所述能量集中二极管 JD1 的阳极与第一个所述能量暂存电路 K1的能量返回端 CF1相连。
本发明的进一步技术方案是: 所述集中限压电路 H包括限压功能电路 U以 及多个将所述相应能量暂存电路 K暂存的能量集中的能量集中二极管 JD2〜 JDn , 所述多个能量集中二极管 JD2〜JDn的阳极、 阴极依次串联, 所述 JD2〜 JDn阳极分别与相应的多个能量返回端 CF2〜CFn相连,所述 JD2的阴极与第一 个能量返回端 CF1相连, 所述集中限压电路 H还包括能量集中二极管 JD1, 所 述限压功能电路 U的低电压端 U-与能量集中二极管 JD1的阳极相连,高电压端 U+与最末一个所述功率开关器件 Qn的低端 WD相连, 所述能量集中二极管 JD1 的阴极与最末一个所述能量暂存电路 Kn的能量返回端 CFn相连。
本发明的进一步技术方案是: 所述除能量集中二极管 JD1外的其它能量集 中二极管两端与相邻的两个储能返回端 CF相连或者间隔一个或多个储能返回 端 CF相连。
本发明的进一步技术方案是: 所述限压功能电路 U为将流入的能量返回供 电电源或提供给负载的变换器。
本发明的进一步技术方案是: 还包括用于吸收所述功率开关器件浪涌电压 的浪涌吸收电路或元件 LYl〜LYn, 所述浪涌吸收电路或元件 LYl〜LYn分别与 相应的所述功率开关器件 Ql〜Qn并联。
本发明的进一步技术方案是:所述能量集中二极管 JD由一个二极管串联一 个电感组成。
本发明的技术效果是: 提供一种功率开关器件串联限压电路, 该限压电路 使用一个集中限压电路, 一次完成调节电压限制值。 同时采用多个与功率开关 器件配合使用的能量暂存电路, 将限压电路流入的能量返回供电电源或提供给 负载而得到有效利用, 提高整体效率。 附图说明
图 1为现有技术串联式功率开关桥臂的电路图;
图 2为本发明的电路图。
图 3为本发明另一种实施方式的电路图。
图 4为本发明功率开关器件稳定导通时的等效电原理图。 具体实施方式
下面结合具体实施例, 对本发明技术方案进一步说明。
如图 2所示, 本发明的具体实施方式是: 提供一种功率开关器件串联限压 电路,包括由多个功率开关器件 Ql〜Qn组成的功率开关器件串联支路,所述功 率开关器件包括控制端、 高端 SD和低端 WD。 所述功率开关器件串联支路中, 多个功率开关器件 Ql〜Qn串联方式为一个功率开关器件的高端 SD与另一个功 率开关器件的低端 WD依次串联, gp : Q1的低端与 Q2的高端相连, Q2的低端与 Q3的高端相连, 依次类推, Qn-Ι的低端与 Qn的高端相连。 还包括多个能量暂 存电路 Kl〜Kn,每个功率开关器件的两端对应并联一个用于储存功率开关器件 开、 关不同歩时的负载电流短暂流过能量的能量暂存电路, 相应的多个能量暂 存电路 Kl、 Κ2…… Κη分别对应并联于多个所述功率开关器件 Q 1、 Q2…… Qn 的两端。 所述能量暂存电路 K依次串联, 即能量暂存电路 K1与能量暂存电路 K2串联, 能量暂存电路 K2与能量暂存电路 K3串联, 依次类推, 能量暂存电路 Kn-1与能量暂存电路 Κη串联。所述能量暂存电路 Κ1〜Κη分别包括箝位二极管 Dl〜Dn、 储能电容 Cl〜Cn、 静态均压电阻 Rl〜Rn、 储能返回端 CFl〜CFn, 每 一个能量暂存电路中, 所述储能电容和静态均压电阻并联后形成储能返回端再 与所述箝位二极管串联, 所述能量暂存电路与所述功率开关器件并联。 所述储 能电容和静态均压电阻并联后,一端与箝位二极管的阴极连接形成储能返回端, 另一端接所述功率开关器件的低端 WD ,所述箝位二极管的阳极与所述功率开关 器件的高端 SD相连。还包括对所述功率开关器件串联支路进行限压的集中限压 电路 H。 所述集中限压电路 H包括限压功能电路 U以及多个将所述相应能量暂 存电路 K暂存的能量集中的能量集中二极管 JDl〜JDn,所述多个能量集中二极 管 JDl〜JDn的阳极、 阴极依次串联, 所述多个能量集中二极管 JDl〜JDn分别 与储能返回端 CFl〜CFn相连。 本发明提供的一种功率开关器件串联限压电路, 采用了与功率开关器件配合的能量暂存电路, 相应的多个能量暂存电路 Kl、 Κ2…… Κη分别对应并联于多个所述功率开关器件 Q 1、 Q …… Qn的两端, 能量 暂存电路 Kl、 Κ2…… Κη分别将功率开关器件 Q l、 Q2…… Qn开关过程不同步的 负载电流能量暂时储存起来, 在功率开关器件 Q 1、 Q2…… Qn稳定导通期间, 将暂时储存起来的能量逐级传递到限压功能电路 U中处理。 本发明中, 只使用 了一个集中限压电路 U, 使用元件数量少, 即可一次完成电压限制值的调节, 十分方便。
如图 2所示, 本发明的一种优选实施方式是: 所述集中限压电路 H包括限 压功能电路 U以及多个将所述相应能量暂存电路 K暂存的能量集中的能量集中 二极管 JD2〜JDn, 所述多个能量集中二极管 JD2〜JDn的阳极、 阴极依次串联, 所述 JD2〜JDn阳极分别与相应的多个能量返回端 CF2〜CFn相连, 所述能量集 中二极管 JD2的阴极与能量返回端 CF1相连, 所述集中限压电路 H还包括能量 集中二极管 JD1 , 所述限压功能电路 U的高电压端 U+与能量集中二极管 JD1的 阴极相连,所述限压功能电路 U的低电压端 U-与第一个所述功率开关器件的高 端 SD相连, 所述能量集中二极管 JD1的阳极与第一个能量暂存电路 K1的能量 返回端 CF1相连。
具体来说: 每个功率开关器件两端对应并联一个能量暂存电路, 所有能量 暂存电路的形式一致,第 i个能量暂存电路 Ki由箝位二极管 Di、储能电容 Ci、 静态均压电阻 Ri组成,其中储能电容 Ci和静态均压电阻 Ri并联后,一端与箝 位二极管 Di的阴极连接形成储能返回端 CFi, 另一端接功率开关器件 Qi的低 端, 所述箝位二极管 Di的阳极与功率开关器件 Qi的高端相连。 同时, 本发明 中,第 i个能量集中二极管 JDi的阳极接第 i个能量暂存电路的储能返回端 CFi, 阴极接第 i-1个能量暂存电路的储能返回端 CFi-l, 依次类推。 一种实施例, 所述限压功能电路 U并联在储能电容 C1的两端,所述限压电路 U是一个并联稳 压器, 在流入电能时保持两端电压基本不变, 没有能量集中二极管 JD1。
另一种实施例,有能量集中二极管 JD1,所述限压功能电路 U的高电压端 U+ 与能量集中二极管 JD1的阴极相连,低电压端 U-与功率开关器件串联支路的首 端 SD相连,所述能量集中二极管 JD1的阳极接第一个能量暂存电路的储能返回 端 CF1。
如图 3 所示, 本发明的一种优选实施方式是: 所述能量暂存电路 Kl〜Kn 分别包括箝位二极管 Dl〜Dn、 储能电容 Cl〜Cn、 静态均压电阻 Rl〜Rn、 储能 返回端 CFl〜CFn, 每一个能量暂存电路中, 所述储能电容和静态均压电阻并联 后形成储能返回端再与所述箝位二极管串联, 所述能量暂存电路与所述功率开 关器件并联。 所述储能电容和静态均压电阻并联后, 一端与箝位二极管的阳极 连接形成储能返回端, 另一端接所述功率开关器件的高端 SD, 所述箝位二极管 的阴极与所述功率开关器件的低端 WD相连。所述集中限压电路 H包括限压功能 电路 U以及多个将所述相应能量暂存电路 K暂存的能量集中的能量集中二极管 JD2〜JDn, 所述多个能量集中二极管 JD2〜JDn 的阳极、 阴极依次串联, 所述 JD2〜JDn阳极分别与相应的多个能量返回端 CF2〜CFn相连, 所述集中限压电 路 H还包括能量集中二极管 JD1, 所述限压功能电路 U的低电压端 U-与能量集 中二极管 JD1的阳极相连,所述限压功能电路 U的高电压端 U+与最末一个所述 功率开关器件的低端 WD相连,所述能量集中二极管 JD1的阴极与最末一个所述 能量暂存电路 Kn的能量返回端 CFn相连。
具体来说: 每个功率开关器件两端对应并联一个能量暂存电路, 所有能量 暂存电路的形式一致, 第 i个能量暂存电路由箝位二极管 Di、储能电容 Ci、静 态均压电阻 Ri组成,其中储能电容 Ci和静态均压电阻 Ri并联后,一端与箝位 二极管 Di的阳极连接形成储能返回端 CFi,另一端接功率开关器件 Qi的高端, 所述箝位二极管 Di的阴极与功率开关器件 Qi的低端相连。 同时, 本发明中, 第 i个能量集中二极管 JDi的阳极接第 i个能量暂存电路的储能返回端 CFi, 阴极接第 i-1个能量暂存电路的储能返回端 CFi-1 ; —种实施例中, 所述限压 电路 U并联在储能电容 Cn的两端,所述限压电路 U是一个并联稳压器,在流入 电能时保持两端电压基本不变, 没有能量集中二极管 JD1。
另一种实施例中,有能量集中二极管 JD1,所述限压功能电路 U的高电压端 U十与功率开关器件串联支路的尾端 TO相连,低电压端 U-与能量集中二极管 JD1 的阳极相连, 所述能量集中二极管 JD1的阴极接最后一个能量暂存电路的储能 返回端 CFn。
本发明的具体实施过程中, 在多只串联的功率开关器件受控需要同步开通 时,其中某个开通慢的功率开关器件 Qi在其它功率开关器件已经导通后,经历 短时间延时如 1微秒也转变为导通状态。 在该短时间延时期间, 负载电流通过 并联于该开通慢的功率开关器件 Qi两端的能量暂存电路, 在储能电容 Ci中积 聚电荷, 导致电压微量上涨。 举例如下: 如果负载电流为 100安, 延时时间为 1微秒, 储能电容 Ci为 10微法, 电压上升量为 10伏, 即为 100安 *1微秒 /10 微法。
在多只串联的功率开关器件受控需要同歩关断时, 某个关断快的功率开关 器件 Qx在其它功率开关器件关断前提前关断,经历短时间延时如 1微秒后其它 功率开关器件也转变为关断状态。 在该短时间延时期间, 负载电流通过并联于 该关断快的功率开关器件 Qx两端的能量暂存电路形成通路, 在储能电容 Cx中 积聚电荷, 导致电压微量上涨。 举例如下: 如果负载电流为 100安, 延时时间 为 1微秒, 储能电容 Cx为 10微法, 电压上升量为 10伏, 即为 100安 *1微秒 /10微法。
由于功率开关器件和控制电路的离散性,可能有多个储能电容有电压上升, 上述计算为电压上升最大的两个, 一个对应开通过程, 一个对应关断过程, 最 不利情况的两个过程都是同一个储能电容电压上升最大, 在上述例子中, 电压 上升最大为 20伏。
而在多只串联的功率开关器件受控同歩稳定导通期间, 其等效电路如图 4 所示, 此时, 忽略了功率开关器件的导通压降。 在上述过程中, 暂时储存于储 能电容 Ci、 储能电容 Cx中的能量通过能量集中二极管, 逐级流向限压功能电 路 U, 直至其端电压等于限压功能电路 U的稳压值停止, 此时, 忽略了能量集 中二极管的导通压降。
在增加能量集中二极管 JD1后,使得集中限压功能电路 U1的参考点为功率 开关器件串联支路的首端 SD即功率开关器件 Q1的高端,或尾端 WD即功率开关 器件 Qn的低端, 此时, 为多条功率开关器件串联支路公用一个限压功能电路 U 创造了条件。 通常在单相、 或多相 (如三相) 逆变桥中, 功率开关器件串联支 路的首端 SD是并接的, 尾端 TO也是并接的; 而在升压电路和推挽电路中, 功 率开关器件串联支路的尾端 WD通常是并接的。
为保证功率开关器件串联的端电压不超出限值, 给每个功率开关器件两端 并联浪涌吸收器, 编号从 LY1到 LYn, 为限压电路故障时提供进一步的保护, 浪涌吸收器的箝位电压髙于限压电路的稳压值,小于功率开关器件的耐压限值。 所述能量集中二极管 JD 由一个二极管串联一个电感组成, 导电的方向不 变。能量集中二极管串联一个电感,可以限制暂时储存于储能电容 Ci中的能量, 在功率开关器件串联支路稳定导通时, 通过能量集中二极管逐级流向集中限压 功能电路 U1时的电流峰值。
本发明的具体实施例中, 根据具体情况, 所述除能量集中二极管 JD1外的 其它能量集中二极管两端与相邻的两个储能返回端 CF相连或者间隔一个或多 个储能返回端 CF相连, 其要求是: 在功率开关器件串联支路稳定导通时, 任意 一个储能返回端 CFi都有能量快速流到集中限压功能电路 U1的通路。所述限压 功能电路 U还可以为将流入的能量返回供电电源或提供给负载的变换器。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不 能认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通 技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替 换, 都应当视为属于本发明的保护范围。

Claims

权利要求书
1.一种功率开关器件串联限压电路,包括由多个功率开关器件 Ql〜Qn组成 的功率开关器件串联支路, 所述功率开关器件包括控制端、 高端 SD和低端 WD, 所述功率开关器件串联支路中,多个功率开关器件 Ql〜Qn串联方式为一个功率 开关器件的高端 SD与另一个功率开关器件的低端 WD依次串联, 还包括多个能 量暂存电路 Kl〜Kn, 每个功率开关器件两端并联一个能量暂存电路, 所述能量 暂存电路 Κ1〜Κη分别包括箝位二极管 Dl〜Dn、 储能电容 Cl〜Cn、 静态均压电 阻 Rl〜Rn、储能返回端 CFl〜CFn, 每一个能量暂存电路中, 所述储能电容和静 态均压电阻并联后形成储能返回端再与所述箝位二极管串联, 其特征在于, 还 包括对所述功率开关器件串联支路进行限压的集中限压电路 H,所述集中限压 电路 H包括限压功能电路 U以及多个将所述相应能量暂存电路 K暂存的能量集 中的能量集中二极管 JD2〜JDn, 所述多个能量集中二极管 JD2〜JDn的阳极、 阴极依次串联, 所述多个能量集中二极管 JD2〜JDn 的阳极分别与储能返回端 CF2〜CFn相连, 所述能量集中二极管 JD2的阴极与能量返回端 CF1相连。
2.根据权利要求 1所述功率开关器件串联限压电路, 其特征在于, 所述能 量暂存电路中, 储能电容和静态均压电阻并联后, 一端与箝位二极管的阴极连 接形成储能返回端, 另一端连接到与所述能量暂存电路并联的功率开关器件的 低端 TO,所述箝位二极管的阳极连接到与所述能量暂存电路并联的功率开关器 件的高端 SD。
3.根据权利要求 1所述功率开关器件串联限压电路, 其特征在于, 所述能 量暂存电路中, 储能电容和静态均压电阻并联后, 一端与箝位二极管的阳极连 接形成储能返回端, 另一端连接到与所述能量暂存电路并联的功率开关器件的 高端 SD,所述箝位二极管的阴极连接到与所述能量暂存电路并联的功率开关器 件的低端 。
4.根据权利要求 2所述功率开关器件串联限压电路, 其特征在于, 所述集 中限压电路 H包括限压功能电路 U以及多个将所述相应能量暂存电路 K暂存的 能量集中的能量集中二极管 JD2〜JDn, 所述多个能量集中二极管 JD2〜JDn的 阳极、 阴极依次串联, 所述 JD2〜JDn阳极分别与相应的多个能量返回端 CF2〜 CFn相连, 所述能量集中二极管 JD2的阴极与能量返回端 CF1相连, 所述集中 限压电路 H还包括能量集中二极管 JD1, 所述限压功能电路 U的高电压端 U+与 能量集中二极管 JD1 的阴极相连, 低电压端 U-与第一个所述功率开关器件 Q1 的髙端 SD相连, 所述能量集中二极管 JD1的阳极与第一个能量暂存电路 K1的 能量返回端 CF1相连。
5.根据权利要求 3所述功率开关器件串联限压电路, 其特征在于, 所述集 中限压电路 H包括限压功能电路 U以及多个将所述相应能量暂存电路 K暂存的 能量集中的能量集中二极管 JD2〜JDn, 所述多个能量集中二极管 JD2〜JDn的 阳极、 阴极依次串联, 所述 JD2〜JDn阳极分别与相应的多个能量返回端 CF2〜 CFn相连, 所述能量集中二极管 JD2的阴极与能量返回端 CF1相连, 所述集中 限压电路 H还包括能量集中二极管 JD1, 所述限压功能电路 U的低电压端 U-与 能量集中二极管 JD1的阳极相连,所述限压功能电路 U的高电压端 U+与最末一 个所述功率开关器件 Qn的低端 WD相连, 所述能量集中二极管 JD1的阴极与最 末一个能量暂存电路 Kn的能量返回端 CFn相连。
6.根据权利要求 4或 5所述功率开关器件串联限压电路, 其特征在于, 所 述除能量集中二极管 JD1外的其它能量集中二极管两端与相邻的两个储能返回 端 CF相连或者间隔一个或多个储能返回端 CF相连。
7.根据权利要求 1所述功率开关器件串联限压电路, 其特征在于, 所述限 压功能电路 U为将流入的能量返回供电电源或提供给负载的变换器。
8.根据权利要求 1所述功率开关器件串联限压电路, 其特征在于, 还包括 用于吸收所述功率开关器件浪涌电压的浪涌吸收电路或元件 LYl〜LYn,所述浪 涌吸收电路或元件 LYl〜LYn分别与相应的所述功率开关器件 Ql〜Qn并联
9.根据权利要求 1所述功率开关器件串联限压电路, 其特征在于, 所述能 量集中二极管 JD由一个二极管串联一个电感组成。
PCT/CN2010/078206 2010-02-05 2010-10-28 功率开关器件串联限压电路 WO2011095016A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012550301A JP5554421B2 (ja) 2010-02-05 2010-10-28 パワースイッチング素子直列電圧制限回路
EP10845099.0A EP2533411B1 (en) 2010-02-05 2010-10-28 Voltage limitation circuit for power switch devices connected in series
US13/489,439 US8610483B2 (en) 2010-02-05 2012-06-05 Voltage-limiting circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101100437A CN101984546B (zh) 2010-02-05 2010-02-05 功率开关器件串联限压电路
CN201010110043.7 2010-02-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/489,439 Continuation-In-Part US8610483B2 (en) 2010-02-05 2012-06-05 Voltage-limiting circuit

Publications (1)

Publication Number Publication Date
WO2011095016A1 true WO2011095016A1 (zh) 2011-08-11

Family

ID=43641716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078206 WO2011095016A1 (zh) 2010-02-05 2010-10-28 功率开关器件串联限压电路

Country Status (5)

Country Link
US (1) US8610483B2 (zh)
EP (1) EP2533411B1 (zh)
JP (1) JP5554421B2 (zh)
CN (1) CN101984546B (zh)
WO (1) WO2011095016A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490603A (zh) * 2013-09-16 2014-01-01 王达开 一种功率开关器件串联限压电路

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882390A (zh) * 2012-09-28 2013-01-16 陆东海 整流电路
CN103326550A (zh) * 2013-06-28 2013-09-25 王达开 一种自动限压的功率开关器件串联电路
CN103312138B (zh) * 2013-06-28 2015-12-23 王达开 一种自动限压的功率开关器件串联高压电路
CN103457449B (zh) * 2013-08-07 2016-08-10 王成效 一种具有过压保护功能的功率开关器件串联电路
CN104049146B (zh) * 2014-06-30 2017-01-04 北京四方继保自动化股份有限公司 一种确定链式多电平变流器功率模块静态均压电阻阻值的方法
EP3029833B1 (en) * 2014-12-03 2019-03-13 General Electric Technology GmbH Semiconductor switching circuit
CN108155895B (zh) * 2016-12-05 2021-05-28 上海东软医疗科技有限公司 一种调制电路以及固态脉冲调制器
DE102017203053A1 (de) * 2017-02-24 2018-08-30 Siemens Aktiengesellschaft Vorrichtung zur Spannungsbegrenzung für ein Gleichspannungsnetz
CN108667441B (zh) * 2017-03-31 2022-07-26 通用电气公司 功率半导体器件及其缓冲电路
US11264804B2 (en) 2019-02-14 2022-03-01 Sungrow Power Supply Co., Ltd. Circuit for component voltage limitation, and apparatus for applying the same
CN111565021A (zh) * 2019-02-14 2020-08-21 阳光电源股份有限公司 一种组件限压电路及其应用装置
EP3945669A1 (en) * 2020-07-27 2022-02-02 TRUMPF Huettinger Sp. Z o. o. Hv switch unit, pulsing assembly and method of avoiding voltage imbalances in an hv switch
CN113193864A (zh) * 2021-04-29 2021-07-30 武汉科华动力科技有限公司 一种双钳位的功率管驱动电路及其驱动方法
CN114552619B (zh) * 2022-01-18 2024-05-24 华中科技大学 一种串联二极管器件并联均压电路及参数设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596772A (ja) * 1982-07-01 1984-01-13 Mitsubishi Electric Corp サイリスタ保護回路
JPH03270672A (ja) * 1990-03-16 1991-12-02 Mitsubishi Electric Corp サイリスタバルブ
CN1060601A (zh) * 1990-10-15 1992-04-29 田广才 一种高效解毒药的制造方法
TW220018B (zh) * 1991-06-06 1994-02-01 Mitsubishi Electric Machine
CN1276581A (zh) * 1999-06-03 2000-12-13 赖烈 数码脉冲式安全仪

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209580A (ja) * 1993-01-07 1994-07-26 Fuji Electric Co Ltd 電力変換装置のスナバエネルギー回収回路
JP3002080B2 (ja) * 1993-12-01 2000-01-24 株式会社東芝 多段スナバエネルギー回生回路
JP3270672B2 (ja) * 1995-11-09 2002-04-02 日産ディーゼル工業株式会社 懸架系の減衰力制御装置
JP3262495B2 (ja) * 1996-06-03 2002-03-04 株式会社東芝 マルチレベルインバータ
US6137339A (en) * 1997-08-28 2000-10-24 Lucent Technologies Inc. High voltage integrated CMOS driver circuit
US6043636A (en) * 1997-10-20 2000-03-28 Diversified Technologies, Inc. Voltage transient suppression
SE518070C2 (sv) * 2000-12-20 2002-08-20 Abb Ab VSC-strömriktare
CN1405958A (zh) * 2001-08-09 2003-03-26 吴加林 一种能自动均压的串联式功率开关桥臂
EP1427106A4 (en) * 2001-08-09 2005-11-09 Jialin Wu SERIES POWER SWITCHING BRIDGE CAPABLE OF AUTOMATIC VOLTAGE SHARING
CN1276581C (zh) * 2001-08-09 2006-09-20 吴加林 一种电子功率开关串联桥的保护电路
US6617906B1 (en) * 2002-10-01 2003-09-09 Texas Instruments Incorporated Low-current compliance stack using nondeterministically biased Zener strings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596772A (ja) * 1982-07-01 1984-01-13 Mitsubishi Electric Corp サイリスタ保護回路
JPH03270672A (ja) * 1990-03-16 1991-12-02 Mitsubishi Electric Corp サイリスタバルブ
CN1060601A (zh) * 1990-10-15 1992-04-29 田广才 一种高效解毒药的制造方法
TW220018B (zh) * 1991-06-06 1994-02-01 Mitsubishi Electric Machine
CN1276581A (zh) * 1999-06-03 2000-12-13 赖烈 数码脉冲式安全仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2533411A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490603A (zh) * 2013-09-16 2014-01-01 王达开 一种功率开关器件串联限压电路

Also Published As

Publication number Publication date
CN101984546B (zh) 2013-03-06
US8610483B2 (en) 2013-12-17
EP2533411A4 (en) 2014-09-03
CN101984546A (zh) 2011-03-09
JP2013518544A (ja) 2013-05-20
US20120242391A1 (en) 2012-09-27
JP5554421B2 (ja) 2014-07-23
EP2533411A1 (en) 2012-12-12
EP2533411B1 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2011095016A1 (zh) 功率开关器件串联限压电路
US11201565B2 (en) Conversion circuit, control method, and power supply device
CN211656005U (zh) 一种三电平功率变换电路
CN107210684B (zh) 五电平拓扑单元及五电平逆变器
CN106655853B (zh) 一种三电平逆变器
CN102761269B (zh) 变频器
CN103081324A (zh) 交流-交流转换器
CN109494752B (zh) 一种集中式电阻耗能装置及其控制方法
CN102969881B (zh) 一种均压保护电路和二极管箝位多电平拓扑装置
CN103683469B (zh) 一种不间断电源输入切换的控制方法及设备
CN202231632U (zh) 单相非隔离型低共模电流光伏并网逆变器
CN204517648U (zh) 一种放电电路、充放电电路以及逆变器
CN109617445B (zh) 五电平变流器直流侧充电软启动电路及方法
CN205377695U (zh) 一种高频电解电源
CN203504399U (zh) 一种功率开关器件串联限压电路
CN104057181A (zh) 用于逆变焊机的缺相保护电路
CN204906215U (zh) 具有直流侧故障阻断能力的mmc子模块电路
CN103490603B (zh) 一种功率开关器件串联限压电路
CN203944975U (zh) 用于逆变焊机的缺相保护电路
CN211089129U (zh) 一种暂态电能质量问题模拟系统
CN110649595A (zh) 一种暂态电能质量问题模拟系统及控制方法
CN108011507B (zh) 一种软上电系统、设备及其软上电方法
CN204615684U (zh) 三相交流输入的电源模块和空调器
WO2014206244A1 (zh) 一种自动限压的功率开关器件串联高压电路
CN204145327U (zh) 一种单相三电平逆变器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845099

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012550301

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 6672/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010845099

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010845099

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012137052

Country of ref document: RU