WO2011094913A1 - 垂直轴风力发电机增能翼的位移机构 - Google Patents

垂直轴风力发电机增能翼的位移机构 Download PDF

Info

Publication number
WO2011094913A1
WO2011094913A1 PCT/CN2010/000958 CN2010000958W WO2011094913A1 WO 2011094913 A1 WO2011094913 A1 WO 2011094913A1 CN 2010000958 W CN2010000958 W CN 2010000958W WO 2011094913 A1 WO2011094913 A1 WO 2011094913A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
energizing
vertical axis
disposed
rod
Prior art date
Application number
PCT/CN2010/000958
Other languages
English (en)
French (fr)
Inventor
蒋大龙
盛明凡
许金泉
Original Assignee
国能风力发电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国能风力发电有限公司 filed Critical 国能风力发电有限公司
Priority to AU2010345241A priority Critical patent/AU2010345241A1/en
Priority to JP2012551459A priority patent/JP2013519020A/ja
Priority to EP10844998A priority patent/EP2535562A1/en
Publication of WO2011094913A1 publication Critical patent/WO2011094913A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0436Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor
    • F03D3/0472Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield orientation being adaptable to the wind motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/214Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to the field of wind turbine technology, and provides a component for vertical axis wind power generation, in particular, a vertical axis wind turbine with an energizing wing.
  • the displacement mechanism of the wing BACKGROUND OF THE INVENTION
  • vertical axis wind turbines are increasingly showing advantages such as high efficiency, high power, ease of installation and use, and long life.
  • the rotation speed of the wind wheel cannot be increased proportionally with the wind force. This situation is more prominent when the wind power is not large.
  • a solution to this problem in the prior art is to provide a flow guiding device on the windward side of the wind wheel so that the incoming wind blows the wind wheel according to the passage provided by the flow guiding device to push the wind wheel to rotate, thereby constructing a guiding wind field.
  • This method of introducing natural wind into the diversion channel and then pushing the wind turbine blade to eliminate the wind resistance has the disadvantage of reducing the wind of the natural wind.
  • the wind direction of the natural wind changes frequently if the diversion device does not change with the wind direction. In the direction of the flow, the wind energy loss caused by the flow guiding device will be greater.
  • the applicant of the present application has developed a technique for overcoming the wind resistance torque, that is, on the windward side of the wind wheel
  • An energizing wing that blocks the airflow from acting on the blade is disposed in front of the wind wheel on the side where the resistance is generated. This part of the wind flow field is cut by the energizing wing.
  • the wind direction of nature is changing, so the position of the booster wing relative to the blade is also subject to change.
  • the resistance torque generated by the wind wheel will be small compared with the effective driving torque.
  • a vertical axis wind turbine wind wheel rotatably fixed on a vertical axis central tower and connected to a generator rotor, which is provided with a plurality of blades, and further comprises an energizing wing, which is a windshield, Having a windshield thereon, the booster wing is disposed on a support device for corresponding to a side of the wind wheel in a vertical axis wind power generator, the side surface being a part of the windward side of the wind wheel in use
  • the wind turbine blade corresponding to the windward side of the part is blocked by the action of the incoming air flow, and the energy-increasing wing causes the side to be blocked.
  • the displacement mechanism provided by the present invention is such that the support device can be displaced to accommodate the operation of the wind turbine rotor.
  • the displacement mechanism of the vertical axis wind power generator energizing wing comprises a supporting device and a driving device, the supporting device is disposed on a fixed frame, and the supporting device is further provided with the fixing device.
  • a connecting structure of the booster wing is disposed on the supporting device in a manner of connecting the energizing wing to prevent rotation of the upper wind turbine upper wind wheel, and the windward surface of the booster wing has Corresponding to one side of the wind wheel in the vertical axis wind power generator, the side For a part of the windward side of the wind wheel in use, the wind turbine blade corresponding to the windward side of the part is blocked by the action of the incoming air flow, and the energy-enhancing wing causes the side to be blocked;
  • the driving device is disposed on the fixed frame, and is connected to the supporting device such that the supporting device is displaced such that a wind blocking surface of the energizing wing disposed thereon blocks a difference of the wind wheel side.
  • the support device may be configured to include two upper and lower support rods, one end of each of the support rods being respectively fixed to the upper end and the lower end of the booster wing by the connecting structure, the length of the support rod being such that the connection is
  • the energizing wings thereon are disposed outside the maximum circumferential trajectory of the wind turbine blade turning, and the other ends of the two supporting rods are disposed in the wind power generator through the rotatable connecting structure a stationary central tower of the wind wheel, that is, the fixed frame is rotatably connected; the drive is connected to the rotatable connecting structure of one of the support bars a mechanism that drives the support rod to rotate about the center tower.
  • the supporting device may also be a bracket on which the energizing wing fixing structure is disposed, so that the energizing wing is disposed on the bracket, and the bracket is disposed on the basis of the vertical axis wind turbine wind wheel Forming the fixed frame such that the booster wing is located outside the circumferential track of the rotor blade; the driving device is mounted on the bracket or the fixed frame to drive the bracket relative to the Basic displacement
  • a controller can be connected to the starting component on the drive to control the opening and closing of the drive.
  • the support rod comprises two sections, wherein a section adjacent to the energizing wing is a single pole section, one end of which is connected with the energizing wing, and the other section is a double pole section, including two splitting poles, the two One end of the split rod is provided with the rotatable connecting structure for rotatably connecting with the central tower; a three-way connector is disposed between the single pole section and the two poles, the three The through connector is provided with three connecting portions which are distributed in a Y shape, one connecting portion on one side is connected to the other end of the single rod segment, and the two connecting portions on the other side of the three-way connector are respectively connected to two The other end of the split rod.
  • the connecting structure of the support rod and the booster wing may be: a main connector having two jacks thereon, and the corresponding end of the support rod or the single rod is inserted in one of the plugs
  • the hole is fixed in the hole, and the other socket is fixed in the upper end or the lower end of the booster wing.
  • the supporting device may further include a diagonal pull rod, wherein one end of the connecting structure is provided with a connecting structure fixed to the upper end of the boosting wing, and the other end of the supporting device is provided with a rotatable connecting structure rotatably connected with the central tower column, the diagonal pulling rod
  • the connection structure connected to the center tower is positioned higher than the connection structure between the support rod and the center tower connected to the upper end of the booster wing.
  • the rotatable connecting structure of the diagonal tie rod connected to the central tower is disposed at the top of the central tower.
  • the rotatable connecting structure connecting the support rod to the central tower is a bearing device, and one of the relatively rotatable inner and outer rings of the bearing device is connected with the support rod or the diagonal rod, and the other Used to be fixed on the center tower.
  • the rotatable connecting structure connecting the support rod and the central tower is a bearing device, and the support rod or the split rod is connected with the outer ring of the bearing, and is sleeved on the outer ring An outer sleeve is provided with a socket, and the end of the support rod or the split rod is inserted into the insertion hole to be fixed.
  • the support rod has an elliptical cross section, and the long axis of the elliptical cross section is disposed in a horizontal direction; or, the single rod section and/or the split rod has an elliptical cross section, and the elliptical cross section
  • the long axis is disposed in a horizontal direction; and/or the cross-section of the diagonal tie rod is an elliptical shape, and a long axis of the elliptical cross-section is disposed in a horizontal direction.
  • the ratio of the minor axis to the major axis of the elliptical section of each of the support rods, the single rod section and/or the splitter is in the range of 1/2-3/4.
  • FIG. 1 is a schematic front view showing the structure of a vertical axis wind turbine energizing wing displacement mechanism and a wind turbine type energizing wing thereof;
  • Figure 2 is a schematic plan view of Figure 1;
  • Figure 3 is a schematic bottom view of Figure 1;
  • Figure 4 is a schematic plan view showing the arrangement of a flat-type booster wing on a vertical axis wind turbine rotor
  • Figure 5 is a schematic plan view showing the arrangement of a wind turbine type energizing wing on a vertical axis wind turbine rotor;
  • Figure 6 is a schematic front view showing the vertical axis wind turbine with the energizing wings provided in Figure 5;
  • Fig. 7 is a structural schematic view of a main connector connecting a support rod and an energizing wing.
  • the vertical axis wind turbine booster wing displacement mechanism provided by the present invention is matched with an energizing wing and a vertical axis wind turbine wind turbine matched thereto, the vertical axis wind power generator
  • a vertical blade wind wheel 01 is rotatably mounted on a central tower 9 (shown in Figure 1), and is provided with a plurality of blades 02, the vertical blade wind The blade 02 on the wheel 01 is connected to the hub in the rotor by at least two support rods 05, the hub to which at least one support rod is connected is connected to the rotor in the generator assembly, and the rotor hub not connected to the generator assembly Rotatable The ground is located on the tower column 9.
  • the stator corresponding to the generator rotor is also fixed to the tower 9.
  • the shape of the blade 02 is a vertical columnar body whose horizontal section is the sectional shape of the aircraft wing, that is, the outer surface and the windward end surface are smooth and streamlined curved surfaces, the outer surface and the inner side with respect to the rotating shaft of the wind wheel.
  • the spacing between the surfaces is such that the windward surface spacing of the blades is large, and the spacing is gradually reduced along the downwind direction.
  • the horizontal shape of the cylindrical body is the same in the vertical direction (as shown in Figs. 5 and 6).
  • an energizing wing which may be a flat-plate booster 2 (see Figure 4) or a wind-increasing wing 20 (see Figures 1, 5, 6).
  • the upper and lower sides of the flat-type booster 2 can be provided with two connecting shafts, and the flat surface of the flat plate is a wind-shielding surface.
  • the wind wheel type energizing wing may be a vertical wind wheel which is rotatably disposed on a wind wheel shaft 5, and a wind wheel ⁇ can be arranged on the wind wheel shaft 5 (see Fig. 6), or a plurality of wind wheels 1 can be arranged. (see picture 1 ) .
  • the vane 23 is fixed to the hub 4 via the connecting rod 3, and the hub 4 is sleeved on the wind turbine shaft 5, and a bearing 6 is disposed between the hub 4 and the wind turbine shaft 5.
  • the wind turbine type energizing wing is disposed on an energizing wing displacement mechanism.
  • the displacement mechanism includes a supporting device and a driving device.
  • the supporting device is disposed on a fixed frame, and the supporting device further has a connecting structure for fixing the energizing wings to connect the energizing wings. And disposed on an outer side of the maximum circumferential trajectory a (see FIG.
  • the energizing wing blocks the one side of the windward wind receiving airflow from the windward side of the wind turbine;
  • the driving device is disposed on the fixed frame, and is connected to the supporting device, so that the supporting
  • the displacement of the device causes the windshield of the energizing wings disposed thereon to block different sides of the wind wheel.
  • the booster wing is a wind-shielding object located outside the circular track a of the rotor blade so as not to affect the rotation of the vertical blade wind wheel, and is located in front of the windward side of the wind wheel. Blocking the windward side of one side of the wind wheel causes the generator vertical wind wheel to receive the incoming air flow A such that one side of the blocked rotation is blocked.
  • the connecting structure of the support rod 21 and the booster wing is: comprising a main connector 2, as shown in FIG. 7, having two insertion holes 201, 202, and corresponding ends of the support rods 21 are inserted in One of the jacks is fixed in the jack, and the other jack is fixed in the upper end or the lower end of the booster wing.
  • the rotatable connecting structure of the support rod connected to the central tower is a bearing device, and one of the relatively rotatable inner and outer rings of the bearing device is connected with the support rod or the pole or the diagonal rod The other is for fixing on the center tower.
  • the support rod is connected to the outer ring of the bearing
  • the specific connection structure may be that the support rod is connected to the outer ring of the bearing through a support rod connector, and the support rod connector may be outside
  • An outer sleeve of the outer sleeve is provided with a socket, and the end of the support rod is inserted into the socket and fixed by a set screw.
  • the support rod may further include two segments, wherein a segment adjacent to the energizing wing is a single rod segment, and one end thereof and the energizing wing pass through the main connector described above.
  • the other section is a double pole, including two split rods, such as the split rods 13, 14 fixed in the support rod at the upper end of the booster wing and the split rods 17, 18 fixed in the support rod at the lower end of the booster wing,
  • One end of the two split rods can also be fixed to the outer cymbal of the bearing 11 by the above structure, and the split rods 13, 14 are fixed to the outer ring of the bearing 11 through the support rod connector 15, and the split rods 17, 18 are connected by the support rods.
  • the device 19 is fixed to the outer ring of the bearing 11, that is, two sockets are formed at the corresponding sides of the side walls of the support rod connectors 15 and 19, The ends of the two split rods respectively inserted into one support rod are fixedly connected to the central tower column; a three-way connection is provided between the single pole section and the two split rods
  • the connector 12, 16 is provided with three connecting portions which are distributed in a Y shape, and one connecting portion on one side connects the other end of the single rod segment, and the other end of the three-way connector Two connecting portions respectively connect the other ends of the two of the split rods.
  • the aforementioned support rod including the two-segment rod can decompose the gravity and the resistance it receives, and the structure is stronger and more rigid than the single-rod support rod.
  • the support rod of this structure can be made thinner, so that the resistance of the wind wheel can be reduced.
  • the outer casing of the bearing to which the upper support rod is connected can be connected to a driver 10 which drives the outer casing of the bearing to rotate.
  • the drive is fixed in a hollow central column, which may be a motor whose output shaft is connected to the outer ring of the bearing.
  • the electrical input of the motor can be connected to the grid.
  • the power storage mechanism can obtain power from the wind power generator, or a generator set can be arranged between the wind wheel of the wind turbine type empowerment wing and the wind turbine shaft, and the wind wheel is
  • the power-increasing wing acts as a generator to block the action of the corresponding blade, and the generated electric energy is saved by the power storage mechanism for driving the booster wing rotating mechanism.
  • the supporting device further includes a diagonal pull rod, wherein one end of the connecting structure is provided with a connecting structure fixed to the upper end of the boosting wing, and the other end of the supporting device is provided with a rotatable connecting structure rotatably connected with the central tower column, the diagonal pull rod and The connection structure of the central tower connection is located higher than the connection structure of the support rod connected to the upper end of the booster wing and the central tower.
  • a rib 203 (see FIG. 7) is disposed on an upper portion of the main connector 2 connected to the upper end of the wind turbine shaft 5 of the booster wing 1, and a connecting structure is fixed on the rib 203.
  • One end of the diagonal tie rod 7 , the other end of the diagonal pull rod 7 extends obliquely upward to the central tower column 9 , and is connected with a diagonal pull bearing 8 disposed on the top of the tower column 9 to form a rotatably connected column Connected structure.
  • the respective support rods in the support device and the material such as the main connector, the three-way connector, the support rod connector, and the like are aluminum profiles or aluminum castings.
  • the support device made of lightweight aluminum profiles is light in weight and low in resistance.
  • the support rod or each of the two-piece support rods divided into a single rod segment and a split rod has an elliptical cross section, and the long axis of the elliptical cross section is disposed in a horizontal direction.
  • the cross-section of the diagonal tie rod may also be an elliptical shape, and the long axis of the elliptical cross-section is set in the horizontal direction.
  • the ratio of the minor axis to the major axis of the elliptical cross section of each of the support rods is 1/2-3/4. It is preferably 2:3.
  • Each of the aforementioned bearings disposed on the center column may be a standard member, and various rolling bearings may be selected, such as a roller bearing.
  • a controller can be connected to the starting component on the drive to control the opening and closing of the drive.
  • the mechanism sends a signal to the controller according to the indication of the wind direction, and the controller commands the driver to synchronously rotate the rotating mechanism of the energizer to the windward side or the downwind surface, or rotates to the wind wheel with the change of the wind direction.
  • the controller can use the PLC controller M340.
  • the booster wing may be connected to the central tower or to other fixed brackets near the wind turbine.
  • a track may be arranged on the ground outside the wind turbine wind wheel, and the track may be movably disposed along the track.
  • a bracket is disposed on the bracket, and the relative positional relationship between the plate and the wind turbine blade is the same as that described above, and the wind that blocks the rotation of the wind wheel is blown to the wind turbine blade.
  • the bracket may be provided with a walking wheel, the traveling wheel connector driving mechanism, and the driving mechanism is provided with a braking device.
  • the drive mechanism is activated to move the bracket along the track. When it is moved into position, it can be braked by the brake device provided on the drive mechanism, so that the bracket can be fixed at the set position.
  • the displacement mechanism of the vertical axis wind turbine energizing wing of the present invention is used to change the position of the vertical axis wind turbine energizing wing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description

垂直轴风力发电机增能翼的位移机构 技术领域 本发明属于风力发电机技术领域, 提供一种垂直轴风力发电中的构 件, 尤其是一种带有增能翼的垂直轴风力发电机中增能翼的位移机构。 背景技术 在现有技术中, 垂直轴风力发电机越来越显示出其效率高、 功率大和 便于安装使用、 寿命长等优点。 但是, 在风轮被风吹动旋转时, 风轮的转 动速度并不能随风力成比例增加,在风力不是很大的情况下这一情况更加 突出, 究其原因是, 当来风气流冲击风轮时, 在其迎风面的一侧受到的是 使得风轮转动的有效推力, 而在另一侧受到的则是阻止风轮转动的阻力, 上述两种力的合力是推动风轮旋转作功的有效动力。 由于迎风面上一侧风 阻的存在, 显著降低了垂直轴风轮的有效受风性能, 使得发电机的效率降 低。
现有技术中解决这一问题的方法是在风轮迎风面设置导流装置,使得 来风按照导流装置提供的通道吹向风轮而推动风轮转动,构建一个导流风 场。这种通过将自然风引入导流通道,再推动风轮叶片消除风阻力的方法, 存在降低自然风的风力的缺点, 同时, 自然风的风向会频繁变化, 如果导 流装置不随风向改变导流方向, 导流装置带来的风能损耗将更大, 如果设 计可以随风向变化而改变导流方向的导流装置,势必使得导流装置的结构 变得复杂, 这给在风场这样特定的、 往往也是严酷的环境中的使用、 管理 和维护都会带来不便。
本申请的申请人研制出一种克服风阻力矩的技术,即在风轮的迎风面 的产生阻力矩一侧的风轮前面设置一可阻挡气流作用于叶片的增能翼。通 过增能翼切断这部分风流场。 这样, 就可以明显地提高风轮的转动性能和 发电机的发电功率及效率。 自然界的风向是变化的, 因此, 增能翼的相对 于叶片的位置也是要随之变化。 另外, 当风力较大时, 其对于风轮所产生 的阻力矩与有效推动力矩相比所占比例将会很小, 这时, 就不需要再在风 轮叶片前面设置增能翼了。 此时, 需要将增能翼从风轮的迎风面移动到背 风面或顺风面上, 或者移开风轮。 发明内容 本发明的目的在于提供一种可方便地改变增能翼的位置且结构简单 的垂直轴风力发电机增能翼的位移机构。
一垂直轴风力发电机风轮,其可转动地固设在一垂直轴中心塔柱上并 与发电机转子连接, 其上设有若干叶片, 还包括一增能翼, 为一挡风件, 其上具有一挡风面, 该增能翼设置在一支撑装置上, 用以与一垂直轴风力 发电机中的风轮的一个侧面对应,该侧面为该风轮在使用中迎风面的一部 分, 该部分迎风面对应的风轮叶片由于来风气流作用使转动受阻, 所述增 能翼使得该侧面被挡住。
本发明提供的所述位移机构就是使得该支撑装置可以位移,以适应风 力发电机风轮的运行。
因此,本发明提供的垂直轴风力发电机增能翼的位移机构包括一支撑 装置和一驱动装置, 所述支撑装置设于一固定机架上, 所述支撑装置上还 设有固联所述增能翼的连接结构,以连接所述增能翼以不阻挡所述垂直轴 风力发电机上风轮的转动的方式设置在该支撑装置上,且该增能翼上具有 的一挡风面与与所述垂直轴风力发电机中的风轮的一个侧面对应,该侧面 为该风轮在使用中迎风面的一部分,该部分迎风面对应的风轮叶片由于来 风气流作用使转动受阻, 所述增能翼使得该侧面被挡住;
所述驱动装置设置在所述固定机架上, 其与所述支撑装置相连接, 使 得该支撑装置位移而使设于其上的所述增能翼的挡风面挡住所述风轮的 不同侧面。
所述支撑装置可以是这样的: 包括上下两根支撑杆, 两根该支撑杆的 一端通过所述连接结构分别与所述增能翼的上端和下端固联,该支撑杆的 长度为使得连接在其上的所述增能翼设置于所述风力发电机风轮叶片回 转最大圆周轨迹的外侧, 两根该支撑杆的另一端通过可转动的所述连接结 构与所述风力发电机中设置所述风轮的一静止的中心塔柱即所述固定机 架可转动地连接;在其中一根所述支撑杆的与所述中心塔柱的可转动的所 述连接结构上连接所述驱动机构, 驱动所述支撑杆绕所述中心塔柱转动。
所述支撑装置也可以为一支架, 其上设有所述增能翼固定结构, 使该 增能翼设置在该支架上,所述支架设置在所述垂直轴风力发电机风轮旁边 的基础构成的所述固定机架上,使得所述增能翼位于所述风轮叶片回转圆 周轨迹的外面; 所述驱动装置安装在所述支架或固定机架上, 以驱动所述 支架相对于所述基础位移;
所述驱动器上的启动部件上可以连接一控制器, 控制驱动器的启闭。 所述支撑杆是包括两段, 其中靠近所述增能翼的一段为单根杆段, 其 一端与所述增能翼连接, 另一段为双杆段, 包括两根分杆, 该两根分杆的 一端设有可转动的所述连接结构用于与所述中心塔柱可转动地连接;在所 述单根杆段和两根分杆之间设有一三通连接器,该三通连接器上设有三个 连接部, 其成 Y形分布, 一侧的一个连接部连接所述单根杆段的另一端, 该三通连接器另一侧的两个连接部分别连接两个所述分杆的另一端。 所述支撑杆与所述增能翼的连接结构可以是: 包括一主连接器, 其上 设有两个插孔,所述支撑杆或单根杆的相应的端部插设在其中一个插孔中 固定, 另一个插孔供所述增能翼上端或下端插设其中固定。
所述支撑装置中还可以包括一斜拉杆,其一端设置连接结构与所述增 能翼上端固联,其另一端设置可转动连接结构与所述中心塔柱可转动地连 接,所述斜拉杆与所述中心塔柱连接的所述连接结构位置高于连接在所述 增能翼上端的所述支撑杆与所述中心塔柱之间的所述连接结构的位置。
所述斜拉杆的与所述中心塔柱连接的可转动的所述连接结构设置在 所述中心塔柱的顶部。
所述支撑杆与所述中心塔柱连接的可转动的所述连接结构是轴承装 置,轴承装置中可相对转动的内圈和外圈中的一个与所述支撑杆或斜拉杆 连接, 另一个用于固定在所述中心塔柱上。
所述支撑杆与所述中心塔柱连接的可转动的所述连接结构是轴承装 置, 所述支撑杆或分杆与所述轴承的所述外圈连接, 在所述外圈的外面套 固一外套, 在该外套上设有插孔, 所述支撑杆或分杆的端头插设于该插孔 中固定。
所述支撑杆的横截面为橢圆形, 该椭圆形截面的长轴在水平方向设 置; 或者, 所述单根杆段和 /或分杆的横截面为椭圓形, 该椭圓形截面的 长轴在水平方向设置; 和 /或, 所述斜拉杆的横截面为椭圓形状, 该椭圆 形截面的长轴在水平方向设置。
各个所述支撑杆、 单根杆段和 /或分杆的所述椭圓形截面的短轴和长 轴的比例在 1/2-3/4范围内为宜。
所述支撑杆和各个部件的材质优选为铝型材或铝铸造件,最好为轻质 铝型材和铝铸件。 本发明提供的垂直轴风力发电机增能翼的位移机构结构合理、 筒单, 能够方便地驱动增能翼转动一适应风向、风速的变化调整增能翼与发电机 风轮的相对位置提高风力发电机的效率。 附图概述 图 1 为本发明提供的垂直轴风力发电机增能翼位移机构及其上连接 风轮式增能翼的主视结构示意图;
图 2为图 1的俯视结构示意图;
图 3为图 1的仰视结构示意图;
图 4 为在垂直轴风力发电机风轮上设置平板式增能翼的俯视结构示 意图;
图 5 为在垂直轴风力发电机风轮上设置风轮式增能翼的俯视结构示 意图;
图 6 为图 5提供的带有增能翼的垂直轴风力发电机的主视结构示意 图;
图 7为连接支撑杆和增能翼的主连接器的结构示意图。 本发明的最佳实施方式 本发明提供的垂直轴风力发电机增能翼位移机构是与如下的增能翼 和与之相配的垂直轴风力发电机风轮配用的,该垂直轴风力发电机如图 5、 6所示, 包括一垂直叶片风轮 01, 其可转动地固设在一中心塔柱 9 (如图 1所示)上, 其上设有若干叶片 02, 所述垂直叶片风轮 01上的叶片 02通 过至少两个支撑杆 05连接到风轮中的轮毂上, 至少一根支撑杆连接的轮 毂与发电机组件中的转子相连接,不与发电机组件连接的风轮轮毂可转动 地设在塔柱 9上。 而与发电机转子对应的定子也固设在塔柱 9上。 该叶片 02 的形状为一垂直的柱状体, 其水平截面为飞机机翼的断面形状, 即相 对于风轮的转轴, 其外侧表面和迎风的端面为圓滑过渡的流线型弧面, 外 侧表面和内侧表面之间的间距为, 叶片的迎风面间距较大, 沿顺风方向, 间距逐渐减小, 该柱状体在垂直方向上水平截面大小形状相同 (如图 5、 6所示) 。 还包括一增能翼, 其可以是平板式增能翼 2, (见图 4 ) , 也 可以是风轮式增能翼 20 (见图 1、 5、 6 ) 。 平板式增能翼 2, 的上下可以 设有两才艮连接轴, 该平板的板面即为挡风面。
风轮式增能翼可以是垂直风轮, 其可转动地设置在一根风轮轴 5上, 该风轮轴 5上可以设置一个风轮 Γ (见图 6 ) , 也可以设置多个风轮 1 (见图 1 ) 。 在风轮 1或 Γ 中, 叶片 23通过连接杆 3与轮毂 4固联, 轮 毂 4套设在风轮轴 5上, 轮毂 4与风轮轴 5之间设置轴承 6。
该风轮式增能翼设置在一增能翼位移机构上。该位移机构包括一支撑 装置和一驱动装置, 所述支撑装置设于一固定机架上, 所述支撑装置上还 设有固联所述增能翼的连接结构,以连接所述增能翼设置于所述风力发电 机风轮叶片回转最大圆周轨迹 a (见图 5 ) 的外侧, 且增能翼的挡风面与 所述风轮 01的一部分侧面的叶片 02相对应, 以使得在使用中该增能翼挡 住所述风轮的接受来风气流迎风面的一侧转动受阻的叶片; 所述驱动装置 设置在所述固定机架上, 其与所述支撑装置相连接, 使得该支撑装置位移 而使设于其上的所述增能翼的挡风面挡住所述风轮的不同侧面。通过改变 所述增能翼与风轮的位置关系, 以适应风向和风力的变化。
具体的如图 1、 2、 3、 4、 5、 6所示, 增能翼风轮 1的风轮轴 5的上 下两端分别固联在上下两根支撑扞 21 的一端, 该两根支撑杆的另一端可 转动地固定在中心塔柱 9 上, 该两根支撑杆分别位于所述垂直风轮叶片 02 的上方和下方, 该增能翼为一挡风物体, 其位于所述风轮叶片回转圓 周轨迹 a的外面使之不会影响垂直叶片风轮的旋转,并位于风轮迎风面的 前方, 挡住所述风轮的一侧迎风面, 使得发电机垂直风轮接受来风气流 A 而使得转动受阻的一侧面被挡住。 在两根支撑杆其中之一的与中心塔柱 09 即上述的固定机架的连接结构上连接驱动机构, 驱动所述支撑杆绕中 心塔柱转动, 继而带动所述增能翼转动, 来改变所述增能翼与风轮的位置 关系, 以适应风向的变化。
支撑杆 21 与所述增能翼的连接结构是: 包括一主连接器 2, 如图 7 所示, 其上设有两个插孔 201、 202 , 支撑杆 21的相应的端部插设在其中 一个插孔中固定, 另一个插孔供所述增能翼上端或下端插设其中固定。
所述支撑杆与所述中心塔柱连接的可转动的所述连接结构是轴承装 置,轴承装置中可相对转动的内圏和外圈中的一个与所述支撑杆或分杆或 斜拉杆连接, 另一个用于固定在所述中心塔柱上。
在本具体实施例中, 支撑杆与轴承的外圈连接, 其具体连接结构可以 是, 通过一支撑杆连接器将支撑杆与轴承外圈连接起来, 该支撑杆连接器 可以是在所述外圏的外面套固的一外套, 在该外套上设有插孔, 所述支撑 杆的端头插设于该插孔中通过紧定螺钉固定。
如图 1、 2、 3所示, 所述支撑杆还可以是包括两段, 其中靠近所述增 能翼的一段为单根杆段, 其一端与所述增能翼通过上述的主连接器连接, 另一段为双杆段, 包括两根分杆, 例如固于增能翼上端的支撑杆中的分杆 13、 14和固于增能翼下端的支撑杆中的分杆 17、 18, 该两根分杆的一端 也可以通过上述的结构与轴承 11的外圏固联, 分杆 13、 14通过支撑杆连 接器 15与轴承 11外圈固联, 分杆 17、 18通过支撑杆连接器 19与轴承 11外圈固联, 即在支撑杆连接器 15和 19的侧壁上相应处开设两个插孔, 分别插设一个支撑杆的两个分杆的端头固定, 即可实现其与所述中心塔柱 可转动地连接; 在所述单根杆段和两根分杆之间设有一三通连接器 12、 16 , 该三通连接器上设有三个连接部, 其成 Y形分布, 一侧的一个连接部 连接所述单根杆段的另一端,该三通连接器另一侧的两个连接部分别连接 两个所述分杆的另一端。
前述包括两分杆的支撑杆,可以对其支撑的重力和受到的阻力进行分 解, 这样的结构比起单杆的支撑杆其强度和刚度更大。 在承受同样重力和 阻力时, 这种结构的支撑杆可以做的更加纤细一些, 这样, 还可以降低风 轮的阻力。
如图 1 所示, 在上支撑杆所连接的轴承的外圏可连接一驱动器 10 , 其驱动所述轴承的外圏转动。 该驱动器设置在空心的中心塔柱内固定, 其 可以是一电机, 该电机的输出轴连接轴承的外圈。 该电机的电能输入端可 以连接电网。 也可以连接本风力发电机上设置的蓄电机构, 该蓄电机构可 以从风力发电机上得到电量, 也可以是, 风轮式增能翼的风轮与风轮轴之 间设置发电机组,风轮在用作增能翼起到阻挡相应叶片作用的同时又作为 发电机, 发出的电能由蓄电机构储蓄, 用来驱动增能翼旋转机构。
所述支撑装置中还包括一斜拉杆,其一端设置连接结构与所述增能翼 上端固联, 其另一端设置可转动连接结构与所述中心塔柱可转动地连接, 所述斜拉杆与所述中心塔柱连接的所述连接结构位置高于与所述增能翼 的上端连接的所述支撑杆与所述中心塔柱连接的所述连接结构。
具体的, 如图 1、 6所示, 连接在增能翼 1风轮轴 5上端的主连接器 2的上部设有一加强筋 203 (见图 7 ) , 在该加强筋 203上设连接结构连 接固定斜拉杆 7的一端, 该斜拉杆 7的另一端沿斜上方延至中心塔柱 9, 与设置在塔柱 9塔顶上的一斜拉轴承 8连接,形成可转动地与塔柱 9的连 接结构。通过该斜拉杆,可使得增能翼与中心塔柱的连接更加稳定、牢固。 所述支撑装置中的各个支撑杆和例如主连接器、 三通连接器、 支撑杆 连接器等的材质为铝型材或铝铸造件。轻质铝型材制成的本支撑装置重量 轻、 阻力小。
所述支撑杆或是分成单根杆段和分杆的两段式支撑杆中的各个杆体 的横截面优选为椭圆形, 该椭圆形截面的长轴在水平方向设置。
所述斜拉杆的横截面也可以为椭圓形状,该椭圆形截面的长轴在水平 方向设置
各个所述支撑杆的所述椭圆形截面的短轴和长轴的比例为 1/2-3/4。 优选为 2: 3。
前述设置在中心塔柱上的各个轴承可以是标准件,可以选择各种滚动 轴承即可, 例如为滚柱轴承等。
所述驱动器上的启动部件上可以连接一控制器, 控制驱动器的启闭。 该机构是根据风向的指示标向控制器输送信号, 由控制器给驱动器指令, 使增能器的旋转机构同步旋转到迎风面或是顺风面,或者随风向的变化而 转动到风轮新的迎风面上。 该控制器可以采用 PLC控制器 M340。
所述增能翼可以与中心塔柱连接,也可以与风力发电机近旁的其它固 定支架连接, 例如, 可以在风力发电机风轮之外的地面上设置一轨道, 沿 轨道上可移动地设置一支架, 在该支架上固设板式或风轮式增能翼, 其与 风轮叶片的相对位置关系可以与前述相同,起到阻挡阻碍风轮转动的风吹 到风轮叶片。 该支架上可以设有行走轮, 该行走轮连接器驱动机构, 该驱 动机构上设置刹车装置。 启动该驱动机构, 即可使得支架沿轨道移动。 当 移动到位后, 可以通过驱动机构上设置的刹车装置刹车, 使得该支架能够 在设定位置上固定。 实现增能翼的固定和位移的装置很多, 不能穷举。 上述实施例只是做 说明之用, 不在于对本发明的限定。 工业实用性 本发明的垂直轴风力发电机增能翼的位移机构, 用于改变垂直轴风力 发电机增能翼的位置。

Claims

权利要求
1、 一种垂直轴风力发电机增能翼的位移机构, 其特征在于, 包括一 支撑装置和一驱动装置,
所述支撑装置设于一固定机架上,所述支撑装置上还设有固联所述增 能翼的连接结构, 以连接所述增能翼以不阻挡所述垂直轴风力发电机上风 轮的转动的方式设置在该支撑装置上,且该增能翼上具有的一挡风面与所 述垂直轴风力发电机中的风轮的一个侧面对应,该侧面为该风轮在使用中 迎风面的一部分,该部分迎风面对应的风轮叶片由于来风气流作用使转动 受阻, 所述增能翼使得该侧面被挡住;
所述驱动装置设置在所述固定机架上, 其与所述支撑装置相连接, 使 得该支撑装置位移而使设于其上的所述增能翼的挡风面挡住所述风轮的 不同侧面。
2. 根据权利要求 1所述的垂直轴风力发电机增能翼的位移机构, 其 特征在于, 所述支撑装置包括上下两根支撑杆, 两根该支撑杆的一端通过 所述连接结构分别与所述增能翼的上端和下端固联,该支撑杆的长度为使 得连接在其上的所述增能翼设置于所述风力发电机风轮叶片回转最大圓 周轨迹的外侧, 两根该支撑杆的另一端通过可转动的所述连接结构与所述 固定机架即所述风力发电机中设置所述风轮的一静止的中心塔柱可转动 地连接;在其中一根所述支撑杆的与所述中心塔柱的可转动的所述连接结 构上连接所述驱动机构, 驱动所述支撑杆绕所述中心塔柱转动; 或者, 所述支撑装置为一支架, 其上设有所述增能翼固定结构, 使该增能翼 设置在该支架上,所述支架设置在所述垂直轴风力发电机风轮旁边的基础 构成的所述固定机架上,使得所述增能翼位于所述风轮叶片回转圓周轨迹 的外面; 所述驱动装置安装在所述支架或固定机架上, 以驱动所述支架相 对于所述基础位移; 或者,
所述驱动器上的启动部件上连接一控制器, 以控制驱动器的启闭。
3.根据权利要求 2所述的垂直轴风力发电机增能翼的位移机构,其特 征在于,所述支撑杆是包括两段,其中靠近所述增能翼的一段为单根杆段, 其一端与所述增能翼连接, 另一段为双杆段, 包括两根分杆, 该两根分杆 的一端设有可转动的所述连接结构用于与所述中心塔柱可转动地连接;在 所述单根杆段和两根分杆之间设有一三通连接器,该三通连接器上设有三 个连接部,其成 Y形分布,一侧的一个连接部连接所述单根杆段的另一端, 该三通连接器另一侧的两个连接部分别连接两个所述分杆的另一端。
4.根据权利要求 2或 3所述的垂直轴风力发电机增能翼的位移机构, 其特征在于, 所述支撑杆与所述增能翼的连接结构是: 包括一主连接器, 其上设有两个插孔,所述支撑杆或单根杆段的相应的端部插设在其中一个 插孔中固定, 另一个插孔供所述增能翼上端或下端插设其中固定。
5.根据权利要求 2或 3所述的垂直轴风力发电机增能翼的位移机构, 其特征在于, 所述支撑装置中还包括一斜拉杆, 其一端设置连接结构用于 与所述增能翼上端固联,其另一端设置可转动连接结构与所述中心塔柱可 转动地连接,所述斜拉杆与所述中心塔柱连接的所述连接结构位置高于与 所述增能翼的上端连接的所述支撑杆与所述中心塔柱连接的所述连接结 构。
6.根据权利要求 5所述的垂直轴风力发电机增能翼的位移机构,其特 征在于,所述斜拉杆的与所述中心塔柱连接的可转动的所述连接结构设置 在所述中心塔柱的顶部, 为一轴承装置, 其中内圈和外圏之一连接所述中 心塔柱, 另一个连接所述斜拉杆的一端, 所述斜拉杆的另一端与连接所述 支撑杆和所述增能翼上端的一主连接器固联。
7.根据权利要求 2的所述的垂直轴风力发电机增能翼的位移机构,其 特征在于,所述支撑杆与所述中心塔柱之间的可转动的所述连接结构是轴 承装置, 该轴承装置中的外圏外面套固一外套, 在该外套上设有插孔, 所 述支撑杆的端头插设与该插孔中固定。
8. 根据权利要求 3所述的垂直轴风力发电机增能翼的位移机构, 其 特征在于,所述支撑杆中的两个分杆与所述中心塔柱之间的可转动的所述 连接结构是轴承装置, 所述分杆与所述轴承的所述外圈连接, 在所述外圈 的外面套固一外套, 在该外套上设有两个插孔, 两个所述分杆的端头插设 于该插孔中固定。
9.根据权利要求 2、 3、 5、 6 中任何一项所述的垂直轴风力发电机增 能翼的位移机构, 其特征在于, 所述支撑杆的横截面为椭圓形, 该椭圆形 截面的长轴在水平方向设置; 或者, 所述单根杆段和 /或分杆的横截面为 椭圓形, 该椭圓形截面的长轴在水平方向设置; 和 /或, 所述斜拉杆的横 截面为椭圓形状, 该椭圆形截面的长轴在水平方向设置; 或者,
所述支撑装置的材质为铝型材或铝铸造件。
10.根据权利要求 9所述的垂直轴风力发电机增能翼的位移机构, 其 特征在于, 各个所述支撑杆的所述椭圓形截面的短轴和长轴的比例为 1/2 - 3/4。
PCT/CN2010/000958 2010-02-08 2010-06-28 垂直轴风力发电机增能翼的位移机构 WO2011094913A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2010345241A AU2010345241A1 (en) 2010-02-08 2010-06-28 Displacement mechanism of energy-increasing wing for vertical axis wind power generator
JP2012551459A JP2013519020A (ja) 2010-02-08 2010-06-28 垂直軸風力発電機のブースター翼のための変位構造
EP10844998A EP2535562A1 (en) 2010-02-08 2010-06-28 Displacement mechanism of energy-increasing wing for vertical axis wind power generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010191140696 2010-02-08
CN2010191140696A CN102146885B (zh) 2010-02-08 2010-02-08 垂直轴风力发电机增能翼的位移机构

Publications (1)

Publication Number Publication Date
WO2011094913A1 true WO2011094913A1 (zh) 2011-08-11

Family

ID=44354867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000958 WO2011094913A1 (zh) 2010-02-08 2010-06-28 垂直轴风力发电机增能翼的位移机构

Country Status (4)

Country Link
EP (1) EP2535562A1 (zh)
CN (1) CN102146885B (zh)
AU (1) AU2010345241A1 (zh)
WO (1) WO2011094913A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2207453Y (zh) * 1993-06-30 1995-09-13 北京市西城区新开通用试验厂 一种转门式数控引风风动力装置
US6984899B1 (en) * 2004-03-01 2006-01-10 The United States Of America As Represented By The Secretary Of The Navy Wind dam electric generator and method
JP2008106736A (ja) * 2006-09-26 2008-05-08 Toshiaki Ishizaki 回転翼装置
CN101334005A (zh) * 2007-06-26 2008-12-31 株式会社Kr 用于控制垂直轴风力发电系统的设备和方法
CN201193587Y (zh) * 2008-05-21 2009-02-11 朱筱超 带旋转导风装置的风力机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2207453Y (zh) * 1993-06-30 1995-09-13 北京市西城区新开通用试验厂 一种转门式数控引风风动力装置
US6984899B1 (en) * 2004-03-01 2006-01-10 The United States Of America As Represented By The Secretary Of The Navy Wind dam electric generator and method
JP2008106736A (ja) * 2006-09-26 2008-05-08 Toshiaki Ishizaki 回転翼装置
CN101334005A (zh) * 2007-06-26 2008-12-31 株式会社Kr 用于控制垂直轴风力发电系统的设备和方法
CN201193587Y (zh) * 2008-05-21 2009-02-11 朱筱超 带旋转导风装置的风力机

Also Published As

Publication number Publication date
AU2010345241A1 (en) 2012-07-05
CN102146885B (zh) 2013-04-24
CN102146885A (zh) 2011-08-10
EP2535562A1 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
EP1482172B1 (en) Rotor supporting structure of a windmill
US20110084495A1 (en) Vertical axis wind turbine
US20120051914A1 (en) Cable-stayed rotor for wind and water turbines
KR20070006886A (ko) 발전용 풍력 터빈
JP2010522847A (ja) ブレード変位が可変の多段式風力タービン
JP5679603B2 (ja) 風力駆動機械
CN103807100B (zh) 一种展翼变桨式垂直轴风力发电机组
KR20130129179A (ko) 수직 축 풍력 터빈
WO2011095054A1 (zh) 高效大功率垂直轴风力发电机
JP2008082185A (ja) 風力発電装置
EP3001540A1 (en) Direct-drive wind turbines
JP2005090332A (ja) ダリウス形風車
WO2014161215A1 (zh) 全叶尖风力发电机
CN101988475A (zh) 一种变桨风力发电机
WO2011094913A1 (zh) 垂直轴风力发电机增能翼的位移机构
CN102678460A (zh) 一种垂直轴风力发电机
JP2012528982A (ja) 前方配置型発電機を有する風力発電機
CN202031780U (zh) 一种垂直轴风力发电机
JP2008240591A (ja) 翼端部の周速を機械的に引き出し利用する風力発電装置
WO2009118138A2 (de) Windradanlage zur energieerzeugung
CN202040019U (zh) 一种风力发电装置
CN206830374U (zh) 一种磁悬浮微风发电机
CN104405588B (zh) 轮式直驱风力发电机
CN201851277U (zh) 一种变桨风力发电机
JP2013519020A (ja) 垂直軸風力発電機のブースター翼のための変位構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844998

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010345241

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010844998

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012551459

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2010345241

Country of ref document: AU

Date of ref document: 20100628

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE