CN101334005A - 用于控制垂直轴风力发电系统的设备和方法 - Google Patents

用于控制垂直轴风力发电系统的设备和方法 Download PDF

Info

Publication number
CN101334005A
CN101334005A CNA2008101102897A CN200810110289A CN101334005A CN 101334005 A CN101334005 A CN 101334005A CN A2008101102897 A CNA2008101102897 A CN A2008101102897A CN 200810110289 A CN200810110289 A CN 200810110289A CN 101334005 A CN101334005 A CN 101334005A
Authority
CN
China
Prior art keywords
generator
impeller
wind speed
controller
guide vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008101102897A
Other languages
English (en)
Inventor
李升培
张正翼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KR Co Ltd
Original Assignee
KR Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KR Co Ltd filed Critical KR Co Ltd
Publication of CN101334005A publication Critical patent/CN101334005A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0409Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels surrounding the rotor
    • F03D3/0418Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels surrounding the rotor comprising controllable elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/90Braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • F05B2270/1011Purpose of the control system to control rotational speed (n) to prevent overspeed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • F05B2270/3201"cut-off" or "shut-down" wind speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

提供一种用于控制垂直轴风力发电系统的设备和方法,所述系统根据风向和风速控制导向叶片的旋转,适度地控制进入到叶轮的风向,从而保持产生最大功率的旋转速度,根据风向和风速保持发电机的输出功率为额定功率,并当检测到低于设定值或高于设定值的风速、结构故障、制动单元故障、或导向叶片故障时停止发电机。

Description

用于控制垂直轴风力发电系统的设备和方法
相关专利申请的交叉参考
本申请要求了于2007年6月26日在韩国知识产权局提出的第10-2007-0062798号的韩国专利申请的利益,其公开的内容全部参照于此。
技术领域
本发明涉及一种用于控制垂直轴风力发电系统的设备和方法,更具体地说,本发明涉及一种用于控制垂直轴风力发电系统的设备和方法,所述系统控制包含在具有垂直轴涡轮的垂直轴风力发电系统中的导向叶片的旋转,并适当地调节进入到垂直轴风力发电系统中的风的方向,以便经过转子叶片,从而保持旋转速度并产生最大功率。
背景技术
通常,根据其中有涡轮旋转的轴,风力发电系统基于涡轮机围绕其旋转的轴被分成两种类型,即,水平轴风力涡轮机和垂直轴风力涡轮机。垂直轴风力涡轮机是Darrieus风力涡轮机和Savonius风力涡轮机。Darrieus风力涡轮机利用升力,而Savonius风力涡轮机使用拉力。Darrieus风力涡轮机可以达到最高为0.35的理论效率。
垂直轴风力涡轮机可以利用与风向无关的风,并可以设定比水平轴风力涡轮机更低的切入速度(可以开始产生功率的最小风速),从而以低速产生风能。因此,受风向较少影响并具有较低切入速度的垂直轴风力涡流机适用于由于天气的较大变化而造成风速变化的情况。
图1A是传统的Savonius拖拉型垂直轴风力涡轮机的平面简图,其显示了根据叶轮的位置的垂直轴风力涡轮机的转矩。
参照图1A,在传统的Savonius拖拉型垂直轴风力涡轮机中,其中风穿过的叶片的位置L1、L2和L3改变,使得相关的风速W和进入的相对的风的方向改变,从而改变转矩的大小。水平轴风力涡轮机在所有叶片中产生正转矩,而与叶片的旋转方向无关,而在Savonius拖拉型垂直轴涡轮发电机中,存在出现负转矩的位置,因此产生总体较低的功率系数值。例如,在图1A中,在位置L3处出现负转矩。
虽然具有封闭通道的叶片将进入到叶片上的速度能转换为压力,且因此转矩大小与速度的平方成比例,但Savonius拖拉型垂直轴风力涡轮机也不能控制进入到叶片上的风速。
为此,WO 2004/018872和韩国专利申请第2005-0034732号公开了一种装置,该装置通过安装垂直涡轮增加进入的风的速度,所述垂直涡轮具有围绕其圆周径向设置的分布固定导向叶片,和在叶轮的上游部分(风进入的入口)中的各种类型的入口导向叶片。
然而,由于传统的Savonius拖拉型垂直轴风力涡轮机根据翼末端的旋转速度比具有较大效率波动,所以,需要通过安装入口导向叶片增加进入的风速,并根据测量的进入到叶轮上的风速适当地控制叶轮的转数。
图1B是根据传统技术的,在具有垂直入口导向叶片的喷射轮型涡轮的叶轮周围的流线分布的简图。图1C是根据传统技术的,安装垂直平面型入口导向叶片时的空气流的风量分布的简图。
参照图1B,在传统的Savonius拖拉型垂直轴风力涡轮机中,由于垂直平面型入口导向叶片安装在叶轮的上游部分中,所以产生流线,并且由于叶轮的旋转,所以流线聚集在图1B中的叶轮的右侧上。
参照图1C,尽管入口导向叶片具有较大的入口/出口面积比(大约3.83),然而由于一些空气朝向低阻力的区域流出,所以不是所有的风都流入到入口中,使得流速不会由于入口导向叶片的较大的入口/出口面积比而增加。
发明内容
本发明提供一种用于控制垂直轴风力发电系统的设备和方法,该系统根据风向和风速控制导向叶片的旋转,并适当地控制经过叶轮的风向,从而保持产生最大功率的旋转速度。
本发明还提供一种用于控制垂直轴风力发电系统的设备和方法,该系统根据风向和风速检测发电机的输出功率,保持额定功率,并当检测到在设定值的预定范围外的较高或较低的风速、结构错误、制动单元故障、以及导向叶片故障时,停止发电机,从而保护垂直轴风力发电系统。
根据本发明的一个方面,提供了一种用于控制垂直轴风力发电系统的设备,所述系统包括测量风向和风速的风速仪/风速计、具有多个叶片的垂直叶轮、引导进入的风并使风流过叶轮的一个或多个导向叶片、以及通过风所引起的叶轮的旋转而发电的发电机,并基于从风速仪/风速计接收的数据控制进入到叶轮的风量,所述设备包括:一个或多个结构传感器,所述一个或多个结构传感器感应支撑所述垂直轴风力发电系统中的每个单元的结构的位移;导向叶片驱动/制动单元,所述导向叶片驱动/制动单元旋转驱动或制动一个或多个导向叶片,并控制进入到叶轮的风量;控制器,所述控制器从风速仪/风速计接收风向和风速的数据,将用于控制一个或多个导向叶片的信号发送到导向叶片驱动/制动单元,使得发电机产生预先确定的最大功率,并且如果从所述风速仪/风速计、一个或多个结构传感器、或发电机接收的每条数据处于预先规定的值的范围外,则在一个或多个导向叶片、发电机、或叶轮中产生制动信号,或产生用于机械地连接或断开连接发电机和叶轮的控制信号;以及一个或多个制动单元,所述一个或多个制动单元根据从控制器接收的用于停止发电机的控制信号、用于停止叶轮的控制信号、或用于停止一个或多个导向叶片的控制信号停止发电机、叶轮和导向叶片。
这里,一个或多个导向叶片优选包括入口导向叶片和横侧部导向叶片。
根据本发明的另一方面,提供了一种控制垂直轴风力发电系统的方法,所述方法通过接收由风速仪/风速计测量的风向和风速的当前数据、计算当前数据、并在控制器中控制一个或多个导向叶片的位置运动将风引至垂直轴叶轮,通过进入的风所引起的叶轮旋转的旋转动力驱动发电机,并产生电力,所述方法包括步骤:停顿过程,根据控制器从风速仪/风速计接收的风速数据,在当前风速低于用于准备用于发电机驱动的最小风速、或高于用于停止发电机的最大风速时,制动一个或多个导向叶片、叶轮或发电机,其中控制器执行制动,以及机械地断开发电机和叶轮;等待过程,当由控制器接收的当前风速保持在用于开始发电的最小风速和用于准备停止发电机的最大风速之间时,制动一个或多个导向叶片、叶轮或发电机,并根据主风向移动一个或多个导向叶片,使得具有最大效率的风可以流过叶轮;部分负荷操作过程,在等待过程之后,机械连接发电机和叶轮,并且在当前风速低于用于产生额定功率的风速时,根据主方向移动一个或多个导向叶片,以便产生在当前风速下的最大功率;满负荷操作过程,当由发电机产生的功率高于额定功率时,移动一个或多个导向叶片并限制流过叶轮的风,以便保持额定功率;以及停止过程,在每个过程期间,当控制器检测到每个单元的故障、或当前风速没有保持在用于准备驱动发电机的最小风速和用于停止发电机的最大风速之间时,进入每个单元都停止的停止模式。
附图说明
将从以下的典型实施例的详细说明中,参照附图使本发明的这些和/或其它方面和优点变得更显而易见并更易于理解,其中:
图1A是传统的Savonius拖拉型垂直轴风力涡轮机的平面简图,其显示了根据叶轮的位置的垂直轴风力发电机的转矩;
图1B是根据传统技术的,在具有垂直入口导向叶片的喷射轮型涡轮的叶轮周围的流线分布的简图;
图1C是根据传统技术的,安装垂直平面型入口导向叶片时的空气流的风分布的简图;
图2是用于控制根据本发明的实施例的垂直轴风力发电系统的设备的方框图;
图3是根据在根据本发明的实施例的垂直轴风力发电系统中的风速变化的操作过程的简图;
图4是显示控制根据本发明实施例的垂直轴风力发电系统的过程的流程图;
图5是显示如图4所示的停顿过程的具体流程图;
图6是显示如图4所示的等待过程的具体流程图;
图7是显示如图4所示的运行过程的具体流程图;
图8是显示如图7所示的部分负荷操作过程的具体流程图;
图9是显示如图7所示的满负荷操作过程的具体流程图;
图10是显示控制处于低风速停止模式下的根据本发明的实施例的垂直轴风力发电系统的方法的流程图;
图11是显示控制处于制动单元停止模式下的根据本发明的实施例的垂直轴风力发电系统的方法的流程图;
图12是显示控制处于高风速停止模式下的根据本发明的实施例的垂直轴风力发电系统的方法的流程图;
图13是显示控制处于发电机停止模式下的根据本发明的实施例的垂直轴风力发电系统的方法的流程图;以及
图14是显示控制处于导向叶片停止模式下的根据本发明的实施例的垂直轴风力发电系统的方法的流程图。
具体实施方式
现在将对本发明的典型实施例进行详细地说明,本发明的典型实施例在附图中被示出。
同时,本发明参照的垂直轴风力发电系统的详细结构在韩国专利文件第810990号(公布于2008年3月11日)中被公开,是由本专利申请的申请人所获得的专利。以下将参照上述韩国专利公开中披露的垂直轴风力发电系统的结构说明用于控制根据本发明的垂直轴风力发电系统的设备和方法。
图2是用于控制根据本发明的实施例的垂直轴风力发电系统的设备的方框图。参照图2,用于控制本实施例的垂直轴风力发电系统的设备包括:测量风向和风速的风速仪/风速计101、具有多个叶片111的垂直轴叶轮110、引导进入的风并使所述风流至叶轮110中的第一和第二导向叶片131、传动齿轮单元151,传动齿轮单元151通过与齿轮151a相连接的叶轮的旋转而传动旋转、从传动齿轮单元151接收旋转动力并产生电力的发电机152、检测由于不利的外部条件所造成的压力而导致的支撑垂直轴风力发电系统中的每个单元的结构的位移的第一到第三结构传感器121到123、根据控制信号和经过叶轮110的风量的控制量,旋转驱动或制动第一和第二导向叶片131和132的第一和第二导向叶片驱动/制动单元141和142、以及控制器100,控制器100接收来自风速仪/风速计101的风向和风速数据,并将控制信号发送到第一和第二导向叶片驱动/制动单元141和142,使得发电机152产生预先确定的最大功率。
用于控制本实施例的垂直轴风力发电系统的设备包括停止叶轮110的旋转的主制动单元161、以及使传动齿轮单元151和发电机152停止的辅助制动单元162。主制动单元161设置在叶轮110和传动齿轮单元151之间,且如果控制器100输出停止发电机152和叶轮110的控制信号,则根据控制信号停止发电机152和叶轮110。辅助制动单元162设置在传动齿轮单元151和发电机152之间,并根据控制器100的制动控制信号停止传动齿轮单元151和发电机152。
服务器200远程接收由控制器100接收的每个单元的状态数据和控制器100使用的控制指令数据,储存并监控状态数据和控制指令数据。服务器200可以通过控制器100执行远程控制。
控制器100计算从风速仪/风速计101接收的风速数据,且如果计算的风速数据在可以产生电力的预先确定的风速的范围内,则控制发电机152的速度,以便产生预先确定的最大电力。如果从风速仪/风速计101、第一到第三结构传感器121到123、或发电机152接收的每条数据都在预先确定的值的范围外,则控制器100产生并发送用于第一和第二导向叶片131和132、发电机152或叶轮110的制动控制信号,并将制动控制信号传递到主制动单元161和辅助制动单元162。辅助制动单元162根据控制器100的控制信号连接或中断从发电机152到传动齿轮单元151或从传动齿轮单元151到发电机152的输电线路。
第一到第三结构传感器121到123包括分别设置在叶轮110的垂直中心轴的上和下端中并测量垂直中心轴的倾斜度的第一和第二中心轴传感器121和122、以及测量叶片111的下垂度的叶片位移传感器123。第一到第三结构传感器121到123将垂直中心轴的倾斜数据和叶片111的位移数据传递到控制器100。
第一导向叶片131通过单独的轴承固定到连接至叶轮110的轴的框架,并在控制器100的控制下,根据风向以预定的角度旋转移动。第一导向叶片131为圆形入口导向叶片,并增加或减少进入到叶片111的风的速度,以改变涡轮的转矩。
第二导向叶片132为横侧部导向叶片,并有助于第一导向叶片131的作用。第二导向叶片132根据风向旋转移动,并控制进入到叶片111的风量,以便增加或减少进入的风的速度。
下面将参照图2到图14具体说明用于控制根据本实施例的垂直轴风力发电系统的设备的操作。
参照图2,控制器100根据从风速仪/风速计101和第一到第三结构传感器121到123接收的信息进行计算,并驱动或断开发电机152、第一和第二导向叶片驱动/制动单元141和142、主制动单元161以及辅助制动单元162.
如果从风速仪/风速计101接收的当前的风速较低,则由于不能通过叶轮110的旋转动力驱动发电机152而产生电力,所以,控制器100停止第一和第二导向叶片驱动/制动单元141和142,驱动主制动单元161和辅助制动单元162,并停止发电机152、传动齿轮单元151以及叶轮110。
如果从风速仪/风速计101接收的当前风速较高,则由于与叶轮110的齿轮151a、传动齿轮单元151以及发电机152相连的叶轮110的旋转所产生的旋转动力将使发电机152出现过载。在此情况下,控制器110驱动主制动单元161和辅助制动单元162,停止发电机152、传动齿轮单元151以及叶轮110,控制第一和第二导向叶片驱动/制动单元141和142以便降低叶轮110的旋转能,并停止第一导向叶片131和第二导向叶片132,使得发电机152与垂直风力发电机机械且电学地分离。
当从风速仪/风速计101接收的当前风速保持能够产生风力的预定程度时,控制器100基于从风速仪/风速计101接收的关于风向的信息计算主风向,并驱动第一和第二导向叶片驱动/制动单元141和142,以便产生叶轮110的最大效率,使得第一导向叶片131和第二导向叶片132可以根据主风向移动到最佳位置,并因此发电机152可以产生最大功率。
同时,由于第一和第二导向叶片驱动/制动单元141和142的延迟作用以使风速快速改变而使发电机152的功率超过额定功率时,控制器100直接控制主制动单元161,并制动齿轮151a和传动齿轮单元151,从而减少发电机152的功率。
更具体地,如果当前的风速超过额定风速,则必须通过旋转第一和第二导向叶片131和132减少经过叶轮110的风量,以便保持发电机152的额定旋转速度。然而,由于第一和第二导向叶片131和132具有低旋转速度,所以,不能适当地中止经过叶轮110的风,并因此很难控制发电机152的状态。此时,主制动单元161用于承受能量损失,以便减少传递到发电机152的能量。
第一到第三结构传感器121到123安装在结构中,并将结构的位移信息传递到控制器100。第一和第二结构传感器121和122是固定到叶轮110的垂直中心轴的上和下端的第一和第二中心轴传感器,并将叶轮110的倾斜数据传送到控制器100。第三结构传感器123是设置在叶片111的末端的叶片位移传感器,测量叶片111的下垂度,并将叶片111的位移数据传送到控制器100。
控制器100利用从第一到第三结构传感器121到123接收的信息进行计算操作,以便预测出结构的损坏,且如果预测到结构损坏,则停止垂直轴风力发电系统的所有功能。
另外,当发动机152中有过流流动或发电机152错误操作时,由于传动齿轮单元151、叶轮110和叶片111可能被损坏,所以,控制器100驱动主制动单元161和辅助制动单元162,并停止发电机152、传动齿轮单元151、叶轮110和叶片111。
如果叶轮110旋转,则设置在叶轮110的旋转中心轴的下端中的齿轮151a旋转,并且齿轮151a的旋转动力传递到传动齿轮单元151。
连接到齿轮151a的传动齿轮单元151是根据转数调换齿轮的齿轮箱,该齿轮箱基于连接齿轮比将旋转力传递到发电机152,由此产生风力。
从传动齿轮单元151传递的旋转力通过发电机152输出作为产生风力,并然后通过电力转换系统产生电力。发电机152根据控制器100的控制指令控制发电状态,并将是否执行发电传递到控制器100。安装在发电机152中的传感器(未示出)检测气流状态和操作状态,且当发电机152中有过流流动或发电机152错误操作时,将此信息传递到控制器100。
第一和第二导向叶片驱动/制动单元141和142从控制器100接收与风向相关的第一和第二导向叶片131和132的位置运动控制信号,并移动第一和第二导向叶片131和132,以便控制叶片111的最佳转速。此后,第一和第二导向叶片驱动/制动单元141和142将结果数据传递到控制器100。
同时,感应操作状态的传感器(未显示)安装在第一和第二导向叶片驱动/制动单元141和142中,且如果在第一和第二导向叶片驱动/制动单元141和142中存在过流、或第一和第二导向叶片驱动/制动单元141和142错误操作,则第一和第二导向叶片驱动/制动单元141和142可能被损坏,并因此传感器将此信息传递到控制器100。
风速仪/风速计101、第一和第二导向叶片驱动/制动单元141和142、发电机152、主制动单元161、辅助制动单元162以及第一到第三结构传感器121到123将关于每个操作状态的信息传递到控制器100。控制器100将接收的信息传递到服务器200。服务器200储存和显示接收的信息,且如果需要,通过控制器100在远距离区域内监测和控制整个垂直轴风力发电系统。
图3是根据在根据本发明的实施例的垂直轴风力发电系统中的风速的操作过程的简图。图4是显示控制根据本发明的实施例的垂直轴风力发电系统的过程的流程图。
参照图3,Umin表示用于准备发电机的驱动的最小风速值,且被设定在控制器中。Ucut-in表示用于开始发电的最小风速的规定值。Urated表示在发电系统中产生额定功率的风速的规定值。Ucut-out表示用于停止发电的最大风速的规定值。
参照图4,垂直轴风力发电系统的控制器100相对其每个单元执行自测(步骤102)。在自测过程中(步骤102),打开主制动单元161和辅助制动单元162,并检测每个单元的操作状态。
在进行自测过程(步骤102)之前,控制器100测试主制动单元161和辅助制动单元162的操作状态,将返回到原位的指令发送到第一和第二导向叶片131和132,检测是否已经执行返回到原位的指令,并检测发电机152的操作状态。
如果作为自测结果检测到故障,则主制动单元161和辅助制动单元162保持打开并发出警报。如果作为测试结果没有检测到故障,则执行停顿过程(步骤104)。
当从风速仪/风速计101到控制器101接收的当前风速U低于最小风速Umin或高于最大风速Ucut-out时,执行停顿过程(步骤104)。
在当前风速U高于用于准备驱动发电的最小风速Umin并低于用于开始发电的最小风速Ucut-in时,执行等待过程(步骤106)。
当由控制器100接收的当前风速U高于用于开始发电的最小风速Ucut-in并低于用于停止发电的最大风速Ucut-out时,执行运行过程(步骤108)。
在运行过程中(步骤108),执行部分负荷操作以增加功率,直到当前风速达到用于输出额定功率的额定风速Urated为止,且当发电机152的输出功率达到额定输出功率后,执行额定功率保持过程,使得进入到叶轮110中的风的速度可以保持额定风速(即,发电机152的输出功率可以连续保持额定输出功率)。
在当前风速U超过用于停止发电的最高风速Ucut-out时,当前风速U确定为高风速,且垂直轴风力发电系统进入停止模式。
下面将参照图5到图14详细说明如图4所示的每个操作。
图5是显示如图4所示停顿过程(步骤104)的具体流程图。参照图5,在当前风速U低于最小风速Umin或高于用于停止发电的最大风速Ucut-out时,执行停顿过程。此时,主制动单元161和辅助制动单元162打开以执行制动操作,而发电机152与风力发电机及其负载分离。
当由控制器100接收的当前风速U高于最小风速Umin且低于用于开始发电的最小风速Ucut-in时,计算每秒的风速变化率(du/dt)的增加量,且如果每秒的风速变化被预测为能够发电的规定风速,则执行等待过程(步骤106)。如果当前风速U高于用于停止发电机的最大风速Umax,且每秒的风速变化率(du/dt)的减少量被预测为能够发电的规定风速,则执行等待过程(步骤106)。
图6是显示如图4所示的等待过程的具体流程图。参照图6,在等待过程中(步骤106),主制动单元161和辅助制动单元162中断制动状态,第一和第二导向叶片131和132以通过控制器100规定的预定时间间隔驱动第一和第二导向叶片驱动/制动单元141和142,并根据主风向移动第一和第二导向叶片驱动/制动单元141和142,使得最大量的风可以经过叶轮110。
在等待过程期间,在当前风速U达到用于开始发电的最小风速Ucut-in时开始发电。
图7是显示如图4所示的运行过程(步骤108)的具体流程图。参照图7,在驱动发电机152的运行过程(步骤108)中,发电机152连接到传动齿轮单元151并被激发,以便执行发电,并根据风速执行部分负荷操作或满负荷操作。
根据用于由发电机152产生的额定功率的额定风速Urated,如果当前风速U低于额定风速Urated,则执行部分负荷操作,而如果当前风速U高于额定风速Urated,则执行满负荷操作。
图8是如图7所示的部分负荷操作过程的具体流程图。在部分负荷操作中,负荷功率根据风速变化。参照图8,如果由当前风速U产生的当前功率P小于额定功率Prated,则第一和第二导向叶片131和132根据主风向移动,使得最大风量可以经过叶轮110。
更具体地,垂直轴风力发电系统的当前风速U连续变化。在部分负荷操作期间,保持旋转速度Nrpm*直到产生额定功率Prated为止,旋转速度Nrpm*与当前速度U成比例以便产生最大功率。如果根据当前风速U的增加产生额定功率Prated,则执行满负荷操作。
当由于例如过流、高风速、紧急状态、结构故障、任何其它故障出现故障时,垂直轴风力发电系统进入停止模式。
图9是显示如图7所示的满负荷操作过程的具体流程图。满负荷操作跟随于部分负荷操作,并保持全输出功率,而与当前风速U无关。
参照图9,由于在满负荷操作期间,当前风速U高于额定风速Urated,为了减少由于过度风速造成的过度功率,确定第一和第二导向叶片131和132的位置移动值,然后,移动第一和第二导向叶片131和132的位置,使得减少经过叶轮110的风量。
第一和第二导向叶片131和132用于减少过度风压,从而保持发电机152的旋转速度Nrpm作为额定旋转速度Nrated
同时,在当前风速U低于额定风速Urated并低于额定允许区域风速Urated ±α时,风速变化率(du/dt)小于规定允许值,确定当前风速U超过额定风速Urated,并移动第一和第二导向叶片131和132的位置,以便减少进入到叶轮110中的风量。
在当前风速U低于额定允许区域的风速Urated±α,且风速变化率(du/dt)小于规定的允许值时,确定当前风速U不超过额定风速Urated,从而顺序地执行部分负荷操作。
当由于例如过流、高风速、紧急状态、结构故障、任何其它故障出现故障时,垂直轴风力发电系统进入停止模式。
图10到图14是显示由于例如过流、高风速、紧急状态、结构故障、任何其它故障出现故障时,在垂直轴风力发电系统的等待或运行状态期间,在停止模式下的垂直轴风力发电系统的操作的流程图。
在诸如图4所示的自测过程(步骤102)中,可以进入停止模式,同时执行部分负荷操作或满负荷操作(参见图7)。停止模式可以被分为故障停止模式和紧急停止模式,在故障停止模式下,出现故障并停止垂直轴风力发电系统的操作,在紧急停止模式下,停止垂直轴风力发电系统的操作,以便保护处于紧急状态下的垂直轴风力发电系统,垂直轴风力发电系统在此状态下会由于较高的风速而被损坏。本发明的垂直轴风力发电系统可以根据每个状态选择地进入故障停止模式或紧急停止模式。
参照图10,对于在故障停止模式下的垂直轴风力发电系统的操作,当通过控制器100接收的当前风速U低于用于开始发电的最小风速Ucut-in时,垂直轴风力发电系统处于低风速停止模式。然后,如果从测量结构的位移量的第一到第三结构传感器121到123接收的结构的位移量在预先规定的范围内,则垂直轴风力发电系统进入停止第一和第二导向叶片131和132的导向叶片停止模式。当从主制动单元161和辅助制动单元162接收到故障信号时,垂直轴风力发电系统进入制动单元停止模式。
对于紧急制动模式,如果通过控制器100接收的当前风速U高于用于停止发电的最大风速Ucut-out时,垂直轴风力发电系统进入高风速停止模式,以便保护垂直轴风力发电系统。
当从发电机152接收到故障信号时,垂直轴风力发电系统进入发电机停止模式。如果从第一到第三结构传感器121到123接收的结构的位移量超过预先规定的范围,则垂直轴风力发电系统进入与发电机停止模式相同的停止模式。当从第一和第二导向叶片131和132接收到表示故障的故障信号时,垂直轴风力发电系统进入导向叶片停止模式。
下面将参照图10到图14具体说明每种停止模式的具体操作。
图10是显示根据本发明的实施例,控制在低风速停止模式下的垂直轴风力发电系统的方法的流程图。参照图10,在低风速停止模式下,在当前风速U低于用于开始发电的最小风速Ucut-in时,执行图4中所示的停顿过程(步骤104)。
具体地,如果当前风速U低于用于开始发电的最小风速Ucut-in,则控制器100给出指令(Nrpm*=0)以停止发电机152的旋转,使得电制动被施加到发电机152并且缓慢停止。主制动单元161和辅助制动单元162用于制动垂直轴风力发电系统的每个单元,将发电机系统与风力涡轮机分开,然后执行停顿过程(步骤104)。
图11是显示控制在制动单元停止模式下的根据本发明的实施例的垂直轴风力发电系统的方法的流程图。参照图11,当主制动单元161和辅助制动单元162的制动垫(未示出)损坏、或液压泵或液压电动机(未示出)超出预定的时间周期操作时,垂直轴风力发电系统进入制动单元模式。
第一和第二导向叶片131和132移动预定的角度,以便使经过叶轮110的风量最小化,并根据控制器100的停止指令(Nrpm*=0)电制动发电机152。如果发电机152停止,则发电机152和叶轮110机械地断开,并使第一和第二导向叶片131和132停止。
图12是显示控制在高风速停止模式下的根据本发明的实施例的垂直轴风力发电系统的方法的流程图。高风速停止模式是其中预测到突然有较大的机械应力的紧急停止模式,使得垂直轴风力发电系统必须尽可能快地停止。
参照图12,在高风速停止模式下,如果当前风速U高于用于停止发电的最大风速Ucut-out,则控制器100使第一和第二导向叶片131和132移动预定的角度,因此使经过叶轮110的风量最小化,制动第一和第二导向叶片131和132,并机械地断开发电机152和叶轮110,以及执行停顿过程(步骤104)。
图13是显示当出现诸如在发电机152中出现过流时或从第一到第三结构传感器121到123接收的结构的位移量超过预先规定范围的故障时,在发电机停止模式下控制根据本发明的实施例的垂直轴风力发电系统的方法的流程图。参照图13,当在运行模式(部分载荷运行或满载和运行)期间出现与发电机152中流动的过流一样的电故障时,或当从第一到第三结构传感器121到123接收的结构的位移量超过预先规定的范围时,其被确定为危险状态。控制器100驱动第一制动单元161和辅助制动单元162,以制动发电机152和叶轮110,并制动第一和第二导向叶片131和132,然后机械地断开发电机152和叶轮110。
图14是显示根据本发明的实施例,控制在导向风停止模式下的垂直轴风力发电系统的方法的流程图。参照图14,当出现与例如在第一和第二导向叶片驱动/制动单元141和142中流动的过流或不通电的故障时,由于发电机152没有受到故障的影响,所以,第一到第三结构传感器121到123紧急停止,而发电机152缓慢停止。
具体地,当在第一和第二导向叶片驱动/制动单元141和142中出现故障时,对第一和第二导向叶片131和132进行制动,并且通过接收停止指令(Nrpm*=0)对发电机152电制动。如果发电机152停止,则驱动主制动单元161和辅助制动单元162,对叶轮110和发电机152进行制动,并且使发电机152和叶轮110机械地断开。
如上所述,根据本发明实施例用于控制垂直轴风力发电系统的设备和方法可以根据风向和风速旋转控制导向叶片,并适当地调节经过叶轮的风的方向,从而保持用于产生最大功率的旋转速度,从而可以以低风速有效地发电。
另外,根据本发明用于控制垂直轴风力发电系统的设备和方法可以根据风向和风速检查发电机的输出功率,保持额定功率,并当较低或较高的风速处于设定值范围外时停止发电机,检测结构误差、制动单元故障以及导向叶片故障,从而保护垂直轴风力发电系统。
虽然已经参照其典型实施例具体显示和说明了本发明,但本领域的普通技术人员应该理解,可以在不脱离由权利要求所限定的发明保护范围和主题精神的情况下,在此基础上做出各种形式和细节上的变更。应该认为典型实施例只是用于说明而不是用于限制。因此,本发明的保护范围不由本发明的具体说明限定,而是由附加的权利要求所限定,且在范围内的所有差异都将构成为被包含在本发明中。

Claims (19)

1.一种用于控制垂直轴风力发电系统的设备,所述系统包括测量风向和风速的风速仪/风速计、具有多个叶片的垂直叶轮、引导进入的风并使风流过叶轮的一个或多个导向叶片、以及通过风所引起的叶轮的旋转而发电的发电机,并基于从风速仪/风速计接收的数据控制进入到叶轮的风量,所述设备包括:
一个或多个结构传感器,所述一个或多个结构传感器感应用于支撑所述垂直轴风力发电系统的多个单元中的每一个的结构的位移;
导向叶片驱动/制动单元,所述导向叶片驱动/制动单元旋转驱动或制动一个或多个导向叶片,并控制进入到叶轮的风量;
控制器,所述控制器从风速仪/风速计接收风向和风速的数据,将用于控制所述一个或多个导向叶片的信号发送到导向叶片驱动/制动单元,使得发电机产生预先确定的最大功率,并且如果从所述风速仪/风速计、一个或多个结构传感器、或发电机接收的每条数据处于预先规定的值的范围外,则在所述一个或多个导向叶片、发电机、或叶轮中产生制动信号,或产生用于机械地连接或断开发电机和叶轮连接的控制信号;以及
一个或多个制动单元,所述一个或多个制动单元根据从控制器接收的用于停止发电机的控制信号、用于停止叶轮的控制信号、或用于停止所述一个或多个导向叶片的控制信号停止发电机、叶轮和导向叶片。
2.根据权利要求1所述的设备,其中所述一个或多个结构传感器包括分别设置在叶轮的垂直中心轴的上端和下端的第一和第二中心轴传感器、以及叶片位移传感器,所述叶片位移传感器设置在叶轮叶片的顶端并测量叶片的下垂度,
其中第一和第二中心轴传感器和叶片位移传感器中的每个都将关于垂直中心轴的倾斜的数据和关于叶片的位移的数据传递到控制器。
3.根据权利要求1所述的设备,其中所述一个或多个导向叶片包括入口导向叶片和横侧部导向叶片,而所述导向叶片驱动/制动单元根据控制器的控制信号旋转入口导向叶片和横侧部导向叶片,并移动入口导向叶片和横侧部导向叶片的位置或对所述入口导向叶片和横侧部导向叶片进行制动。
4.根据权利要求1所述的设备,其中根据控制器从风速仪/风速计接收的风速的数据,当当前风速是低于或高于预先确定的风速范围时、当控制器从一个或多个结构传感器接收的关于结构的位移的数据超过规定值时、或当根据控制器从发电机接收的数据检测到发电机中电流过大或发电机的故障时,控制器输出制动控制信号,
其中所述制动控制信号被选择地施加到所述一个或多个导向叶片、发电机、或叶轮,用于制动所述一个或多个导向叶片、发电机、或叶轮,并用于机械地断开发电机和叶轮的连接。
5.根据权利要求4所述的设备,其中当从所述风速仪/风速计接收的风速较低或较高并处于预先确定的风速范围之外时、或当检测到发电机的故障或结构的过大的位移时,控制器产生用于制动发电机和叶轮的控制信号,以及
当从风速仪/风速计接收的风速较高并处于预先确定的风速范围之外、一个或多个制动单元出现故障、发电机出现故障、检测到结构的过大的位移、或导向叶片驱动/制动单元出现故障时,所述控制器产生用于制动所述一个或多个导向叶片的控制信号。
6.根据权利要求1所述的设备,其中所述控制器输出关于控制叶轮旋转的主制动单元、控制发电机的驱动的辅助制动单元、以及制动所述一个或多个导向叶片的导向叶片驱动/制动单元中的至少一个的制动控制信号。
7.根据权利要求1所述的设备,进一步包括服务器,所述服务器通过控制器远距离接收的每个单元的状态数据,并控制由控制器输出的指令数据,储存和监测所述状态数据和控制指令数据,
其中服务器可以通过控制器执行远距离控制。
8.一种控制垂直轴风力发电系统的方法,所述方法通过接收由风速仪/风速计测量的风向和风速的当前数据、计算当前数据、并在控制器中控制一个或多个导向叶片的位置运动将进入的风引至垂直轴叶轮,通过进入的风所引起的叶轮旋转的旋转动力驱动发电机,并产生电力,所述方法包括步骤:
停顿过程,根据控制器从风速仪/风速计接收的风速数据,在当前风速低于用于准备用于发电机驱动的最小风速、或高于用于停止发电机的最大风速时,制动所述一个或多个导向叶片、叶轮或发电机,其中控制器执行制动,以及机械地断开发电机和叶轮的连接;
等待过程,当由控制器接收的当前风速保持在用于开始发电的最小风速和用于准备停止发电机的最大风速之间时,制动所述一个或多个导向叶片、叶轮或发电机,并根据主风向移动所述一个或多个导向叶片,使得具有最大效率的风可以流过叶轮;
部分负荷操作过程,在等待过程之后,机械连接发电机和叶轮,并且在当前风速低于用于产生额定功率的风速时,根据主风向移动所述一个或多个导向叶片,以便产生在当前风速下的最大功率;
满负荷操作过程,当由发电机产生的功率高于额定功率时,移动所述一个或多个导向叶片并限制流过叶轮的风,以便保持额定功率;以及
停止过程,在每个过程期间,当控制器检测到多个单元中的至少一个中的故障、或当前风速没有保持在用于准备驱动发电机的最小风速和用于停止发电机的最大风速之间时,进入停止模式,在所述停止模式中,每个单元都停止。
9.根据权利要求8所述的方法,进一步包括:在停顿过程之前的自测过程,
其中自测过程包括:
测试发电机、叶轮、以及所述一个或多个导向叶片的制动操作状态,其中所述控制器执行测试;
测试一个或多个制动单元的操作状态;
通过产生用于所述一个或多个导向叶片的返回到原位的控制信号测试所述一个或多个导向叶片的驱动;
测试发电机的操作和发电状态;以及
如果在任何一个测试过程期间出现故障,则进入停止模式并产生警报。
10.根据权利要求8所述的方法,其中在停顿过程期间,,在当前风速低于用于使发电机开始发电的最小风速,并预测增加到能够发电的风速值,且通过计算每秒钟的风速变化率而被确定时,执行等待过程,
在当前风速高于用于准备停止发电机的最大风速,并预测为降低到能够发电的风速值,且通过计算每秒钟的风速变化率而被确定时,执行等待过程。
11.根据权利要求8所述的方法,其中所述部分负荷操作过程包括:
根据主风向以预定的角度移动所述一个或多个导向叶片的位置;
根据当前风速的增加,提高发电机的旋转速度;
重复执行所述一个或多个导向叶片的位置的移动和发电机的旋转速度的增加,且如果通过发电机输出的功率成为额定功率,则执行满负荷操作过程;以及
如果在部分负荷操作过程期间检测到故障,则进入停止模式。
12.根据权利要求8所述的方法,其中满负荷操作过程包括:
当由控制器接收的当前风速高于额定风速时,计算所述一个或多个导向叶片的位置运动值,以便减少由过大的风速产生的过大的功率,控制所述一个或多个导向叶片的位置,减少流过叶轮的风量,并使发电机的旋转速度保持为额定旋转速度;
在当前风速低于额定风速、低于额定允许范围的风速、并根据风速变化率值被预测为增加到额定风速时,执行所述一个或多个导向叶片的位置的控制、减少流过叶轮的风量、并使发电机的旋转速度保持为额定旋转速度;
在当前风速低于额定允许范围的风速,或根据风速变化率值被预测为不会增加到额定风速时,执行部分负荷操作过程;以及
在执行控制所述一个或多个导向叶片的位置、减少流过叶轮的风量,和使发电机的旋转速度保持为额定旋转速度时而出现故障的时候,进入停止模式。
13.根据权利要求8所述的方法,其中通过在控制器的控制下制动发电机、所述一个或多个导向叶片、以及叶轮中的至少一个执行停止过程。
14.根据权利要求8到12任何一项所述的方法,其中停止模式包括故障停止模式和紧急停止模式,并且所述故障停止模式和紧急停止模式中的一个在停止模式下被选择,
其中所述故障停止模式包括:低风速停止模式,在低风速停止模式下,通过控制器接收的当前风速低于用于开始发电的最小风速;导向叶片停止模式,在导向叶片停止模式下,通过控制器从一个或多个结构传感器接收的结构的位移值处于预先规定的范围内;以及制动单元停止模式,在制动单元停止模式下,从制动叶轮和发电机以及一个或多个导向叶片驱动/制动单元的主制动单元和辅助制动单元接收制动故障信号,
其中紧急停止模式包括高风速停止模式,在高风速停止模式下,通过控制器接收的当前风速高于用于停止发电机的最大风速;发电机停止模式,在发电机停止模式下,接收发电机的故障信号以及通过控制器从测量结构的位移的一个或多个结构传感器接收的结构的位移值处在预先规定的范围之外;以及导向叶片停止模式,在导向叶片停止模式下,从一个或多个导向叶片接收故障信号。
15.根据权利要求14所述的方法,其中在低风速停止模式下,
在当前风速低于用于准备驱动发电机的最小风速时,产生用于停止发电机的信号并以电力方式停止发电机,其中所述控制器执行停止发电机;
制动发电机和叶轮;以及
机械断开发电机和叶轮的连接,并执行停顿过程。
16.根据权利要求14所述的方法,其中在所述导向叶片停止模式下,
根据控制器的控制信号制动所述一个或多个导向叶片,并输出用于停止发电机的信号,直到发电机被以电力方式停止为止;以及
如果发电机被以电力方式停止,则制动发电机和叶轮,并机械地断开发电机和叶轮的连接。
17.根据权利要求14所述的方法,其中在所述制动单元停止模式下,
移动所述一个或多个导向叶片,并阻断风流过叶轮;
输出用于停止发电机的信号并以电力方式停止发电机;以及
机械地断开发电机和叶轮的连接,并制动所述一个或多个导向叶片。
18.根据权利要求14所述的方法,其中在所述高风速停止模式下,
在当前风速高于用于停止发电的最大风速时,以预定的角度移动所述一个或多个导向叶片,阻断风流过叶轮,并制动所述一个或多个导向叶片;以及
机械地断开发电机和叶轮连接,并进行停顿过程。
19.根据权利要求14所述的方法,其中在所述发电机停止模式下,
当接收到发电机的故障信号,或通过控制器从测量结构的位移的一个或多个结构传感器接收到结构的位移值处于预先规定的范围之外时,制动叶轮、发电机、以及所述一个或多个导向叶片,并机械地断开发电机和叶轮的连接。
CNA2008101102897A 2007-06-26 2008-06-26 用于控制垂直轴风力发电系统的设备和方法 Pending CN101334005A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070062798A KR100883099B1 (ko) 2007-06-26 2007-06-26 수직축 풍력발전시스템의 제어장치 및 방법
KR1020070062798 2007-06-26

Publications (1)

Publication Number Publication Date
CN101334005A true CN101334005A (zh) 2008-12-31

Family

ID=40159495

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008101102897A Pending CN101334005A (zh) 2007-06-26 2008-06-26 用于控制垂直轴风力发电系统的设备和方法

Country Status (4)

Country Link
US (1) US20090001724A1 (zh)
KR (1) KR100883099B1 (zh)
CN (1) CN101334005A (zh)
WO (1) WO2009002107A2 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094754A (zh) * 2009-12-14 2011-06-15 谭宗享 风力发电机电子刹车系统
CN102146885A (zh) * 2010-02-08 2011-08-10 国能风力发电有限公司 垂直轴风力发电机增能翼的位移机构
CN102312778A (zh) * 2010-06-29 2012-01-11 通用电气公司 用于监视风力涡轮机的操作的方法和系统
CN103362745A (zh) * 2012-04-10 2013-10-23 台达电子工业股份有限公司 风力发电系统
CN104016237A (zh) * 2014-06-09 2014-09-03 重庆市特种设备检测研究院 基于预测模型的起重机防风控制系统
CN104103163A (zh) * 2013-04-12 2014-10-15 海尔集团公司 风速感测器的信息推送装置和方法
CN104234933A (zh) * 2013-06-24 2014-12-24 全北大学校产学协力团 风力发电厂的惯性控制方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8086355B1 (en) * 2007-02-28 2011-12-27 Global Embedded Technologies, Inc. Method, a system, a computer-readable medium, and a power controlling apparatus for applying and distributing power
DE102008020154B4 (de) * 2008-04-22 2011-04-28 Repower Systems Ag Verfahren zum Betreiben einer Windenergieanlage
US7888810B2 (en) * 2008-11-21 2011-02-15 Jose Paul Francois Moretto Wind turbine generator system
CN102338036B (zh) * 2010-01-14 2013-06-19 上海倍努利环保科技有限公司 垂直轴风力发电系统及其风叶角度自动调节装置
CA2694111C (en) * 2010-02-10 2013-04-09 Mitsubishi Heavy Industries, Ltd. Wind turbine generator and method of controlling the same
EP2603692B1 (en) * 2010-08-11 2019-05-22 Jupiter Hydro Inc. System and method for generating electrical power from a flowing current of fluid
CN102052255B (zh) * 2010-12-31 2012-03-07 北京恒聚化工集团有限责任公司 冲击式风力发电装置
GB2487715A (en) * 2011-01-18 2012-08-08 Vestas Wind Sys As Method and apparatus for protecting wind turbines from extreme wind direction changes
US8742610B2 (en) 2012-05-04 2014-06-03 Wind Energy Corporation Wind turbine system and method of operating a wind turbine system
WO2014076443A1 (en) * 2012-11-19 2014-05-22 Revoluter Limited Flow optimiser
KR101381303B1 (ko) * 2013-01-08 2014-04-04 박범훈 종축형 풍력발전기 및 그 제어방법
CN107250531A (zh) * 2014-08-12 2017-10-13 蒋素芳 一种风力发电装置和系统
JP6287897B2 (ja) * 2014-08-22 2018-03-07 オムロン株式会社 照明装置、電子機器、フレーム構造、フレーム構造の製造方法
US10634121B2 (en) 2017-06-15 2020-04-28 General Electric Company Variable rated speed control in partial load operation of a wind turbine
CN113915057A (zh) * 2021-11-10 2022-01-11 华能国际电力股份有限公司德州电厂 一种低速风力发电机组切出控制方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US993120A (en) * 1911-02-16 1911-05-23 Clement A Sterner Windmill.
US4142822A (en) * 1977-05-05 1979-03-06 Herbert Frank P Panemone windmill
US4494007A (en) * 1982-09-02 1985-01-15 Gaston Manufacturing, Inc. Wind machine
US4551631A (en) * 1984-07-06 1985-11-05 Trigilio Gaetano T Wind and solar electric generating plant
US4609827A (en) * 1984-10-09 1986-09-02 Nepple Richard E Synchro-vane vertical axis wind powered generator
US4890976A (en) * 1987-11-25 1990-01-02 Peter Jansson Wind turbine
GR910200234U (en) * 1990-05-31 1992-07-30 Mihail Valsamidis Turbine wind machine with a vertical axis
US5038049A (en) * 1990-09-12 1991-08-06 Shuichi Kato Vertical axis wind powered generator
WO1994004819A1 (en) * 1992-08-18 1994-03-03 Four Winds Energy Corporation Wind turbine particularly suited for high-wind conditions
GB9302648D0 (en) * 1993-02-10 1993-03-24 Farrar Austin P Wind powered turbine
US5664418A (en) * 1993-11-24 1997-09-09 Walters; Victor Whirl-wind vertical axis wind and water turbine
US5850108A (en) * 1996-10-04 1998-12-15 Bernard; Samuel Fluid flow power generation system with foil
US6448669B1 (en) * 1998-12-01 2002-09-10 Dillyn M. Elder Water power generation system
US6191496B1 (en) * 1998-12-01 2001-02-20 Dillyn M. Elder Wind turbine system
US6242818B1 (en) * 1999-11-16 2001-06-05 Ronald H. Smedley Vertical axis wind turbine
JP2002070719A (ja) * 2000-08-29 2002-03-08 Itn:Kk 風向風速の変化に対応する風力発電機
US6465899B2 (en) * 2001-02-12 2002-10-15 Gary D. Roberts Omni-directional vertical-axis wind turbine
US7220107B2 (en) * 2001-09-25 2007-05-22 Fumio Kaneda Three blade type vertical windmill device
JP3465246B2 (ja) * 2001-11-08 2003-11-10 学校法人東海大学 流体発電装置
US6674181B2 (en) * 2001-12-31 2004-01-06 Charles C. Harbison Wind-driven twin turbine
EP1515039B1 (en) * 2002-05-16 2014-08-20 Hidemi Kurita Vertical shaft driving device for vertical shaft wind mills or the like, and electric power generator using the same
US6841894B2 (en) * 2003-01-02 2005-01-11 Josep Lluis Gomez Gomar Wind power generator having wind channeling body with progressively reduced section
US6962478B2 (en) * 2003-02-07 2005-11-08 Michael Tsipov Vertical axis windmill
US6984899B1 (en) * 2004-03-01 2006-01-10 The United States Of America As Represented By The Secretary Of The Navy Wind dam electric generator and method
JP4174803B2 (ja) * 2004-10-14 2008-11-05 西芝電機株式会社 流体発電装置のブレーキ制御装置
US7215037B2 (en) * 2004-11-19 2007-05-08 Saverio Scalzi Protective wind energy conversion chamber
CA2602466C (en) * 2005-03-22 2012-09-18 Vinod Kumar Chamanlal Kariya Vertical axis windmill with guiding devices
US7329965B2 (en) * 2005-06-03 2008-02-12 Novastron Corporation Aerodynamic-hybrid vertical-axis wind turbine
US7242108B1 (en) * 2005-10-27 2007-07-10 Dablo Oliver P Wind-actuated electric power alternator
US7230348B2 (en) * 2005-11-04 2007-06-12 Poole A Bruce Infuser augmented vertical wind turbine electrical generating system
US20100278629A1 (en) * 2005-12-29 2010-11-04 Krippene Brett C Vertical Multi-Phased Wind Turbine System
US7288850B2 (en) * 2005-12-29 2007-10-30 Hicks Michael F System and apparatus for emergency backup power generation
US7753644B2 (en) * 2005-12-29 2010-07-13 Krippene Brett C Vertical multi-phased wind turbine system
KR100810990B1 (ko) * 2006-10-18 2008-03-11 주식회사 에어로네트 제트 휠 방식의 수직축 터빈을 채용한 풍력발전시스템
US9062655B2 (en) * 2009-02-24 2015-06-23 Tom Scott Wind turbine generators

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094754A (zh) * 2009-12-14 2011-06-15 谭宗享 风力发电机电子刹车系统
CN102094754B (zh) * 2009-12-14 2013-10-16 谭宗享 风力发电机电子刹车系统
CN102146885A (zh) * 2010-02-08 2011-08-10 国能风力发电有限公司 垂直轴风力发电机增能翼的位移机构
WO2011094913A1 (zh) * 2010-02-08 2011-08-11 国能风力发电有限公司 垂直轴风力发电机增能翼的位移机构
CN102146885B (zh) * 2010-02-08 2013-04-24 国能风力发电有限公司 垂直轴风力发电机增能翼的位移机构
CN102312778A (zh) * 2010-06-29 2012-01-11 通用电气公司 用于监视风力涡轮机的操作的方法和系统
CN102312778B (zh) * 2010-06-29 2015-06-17 通用电气公司 用于监视风力涡轮机的操作的方法和系统
CN103362745A (zh) * 2012-04-10 2013-10-23 台达电子工业股份有限公司 风力发电系统
CN104103163A (zh) * 2013-04-12 2014-10-15 海尔集团公司 风速感测器的信息推送装置和方法
CN104234933A (zh) * 2013-06-24 2014-12-24 全北大学校产学协力团 风力发电厂的惯性控制方法
CN104016237A (zh) * 2014-06-09 2014-09-03 重庆市特种设备检测研究院 基于预测模型的起重机防风控制系统
CN104016237B (zh) * 2014-06-09 2016-05-04 重庆市特种设备检测研究院 基于预测模型的起重机防风控制系统

Also Published As

Publication number Publication date
WO2009002107A2 (en) 2008-12-31
US20090001724A1 (en) 2009-01-01
KR20080113851A (ko) 2008-12-31
KR100883099B1 (ko) 2009-02-11
WO2009002107A3 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
CN101334005A (zh) 用于控制垂直轴风力发电系统的设备和方法
CN102312782B (zh) 风力涡轮、控制系统和用于优化风力涡轮功率生产的方法
US8046109B2 (en) Method and systems for operating a wind turbine
CN101493075B (zh) 停机期间降低风力涡轮机不对称转子载荷的装置和方法
EP2738904B1 (en) Method and systems for operating a wind turbine when recovering from a grid contingency event
CN102472249B (zh) 风力发电装置、风力发电装置的控制方法、风力发电系统及风力发电系统的控制方法
CN102777319B (zh) 用于风力发电的偏航控制系统及其控制方法
US8115330B2 (en) Wind turbine and method for operating a wind turbine
CN101900081B (zh) 在电动机超温条件下操作的风力涡轮机及其操作方法
CN102278278B (zh) 一种风力发电机组安全控制系统及安全控制方法
CN107407259A (zh) 设置成控制支持臂定向的用于具有多个转子的风力涡轮机的控制系统
WO2012089211A2 (en) Control network for wind turbine park
JP2003153595A (ja) 流体発電装置
US20130119660A1 (en) Wind-power generation system and control method for the same
WO2012089213A1 (en) Reactive power management for wind power plant internal grid
CN105909462A (zh) 大型双风轮风力发电机组
CN203835620U (zh) 大型风力发电机组的过转速保护装置
KR20150019461A (ko) 풍력발전시스템 및 그것의 구동 정지 방법
CN101004167A (zh) 花瓣状风叶垂直轴高效风力发电机
KR101271618B1 (ko) 풍력 발전기 및 풍력 발전기의 블레이드 회전 제어 방법
EP3601779A1 (en) Improvements to hydraulic machines during grid disconnections
KR20140083832A (ko) 피치 가변 블레이드를 갖는 풍력발전기
CN202108661U (zh) 用于风力发电的偏航控制系统
CN208106641U (zh) 一种直流控制电源失电情况下的水轮机过速保护系统
CN103475289A (zh) 双馈风机发电系统及轮毂转动的驱动方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20081231