WO2011094909A1 - 用于大功率垂直轴风力发电机的散热装置 - Google Patents

用于大功率垂直轴风力发电机的散热装置 Download PDF

Info

Publication number
WO2011094909A1
WO2011094909A1 PCT/CN2010/000954 CN2010000954W WO2011094909A1 WO 2011094909 A1 WO2011094909 A1 WO 2011094909A1 CN 2010000954 W CN2010000954 W CN 2010000954W WO 2011094909 A1 WO2011094909 A1 WO 2011094909A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical axis
heat dissipation
axis wind
armature
high power
Prior art date
Application number
PCT/CN2010/000954
Other languages
English (en)
French (fr)
Inventor
蒋大龙
盛明凡
王建辉
Original Assignee
国能风力发电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国能风力发电有限公司 filed Critical 国能风力发电有限公司
Publication of WO2011094909A1 publication Critical patent/WO2011094909A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7068Application in combination with an electrical generator equipped with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a heat sink for a high power vertical axis wind power generator, and also relates to a wind power generator using the heat sink, and belongs to the field of wind power generation technology.
  • BACKGROUND OF THE INVENTION Wind energy is a renewable energy source with the greatest application prospects other than water energy, and has been highly valued by countries all over the world. China has become the most active wind power market in the world. In 2009, the newly added wind power installed capacity in the country exceeded 8 million kilowatts, and the cumulative total capacity has reached more than 20 million kilowatts. Therefore, the market prospects of China's wind power equipment manufacturing industry and related fields are very broad.
  • Wind turbines are divided according to the direction of the rotating shaft and can be divided into two types: horizontal axis and vertical axis.
  • horizontal axis wind turbines are widely used, but they are defective in design and manufacture, and the cost is high.
  • the improved design of the vertical axis H-type wind turbine has many advantages such as low starting wind speed, high wind energy utilization and no noise, and has a broader market application prospect.
  • disk-type ironless permanent magnet generators are commonly used for power generation.
  • a disc type wind power generator is disclosed, the stator of which is composed of a winding coil and does not contain a ferromagnetic material.
  • the permanent magnet fixed to the rotor shaft is a rotating body with the rotor shaft as an axis, and corresponds to the permanent magnets fixed in the upper and lower casings, and the opposite faces have the same polarity. Since the wind turbine cancels the iron core, the magnetic resistance is reduced. Since the bearing is eliminated, air suspension is formed between the rotor shaft and the stator, the idle drag torque is reduced, and the efficiency of the motor is improved.
  • the existing disk type wind turbines generally have defects such as difficulty in heat dissipation, and it is difficult to further increase the output power of the fan.
  • the device comprises a water cooling interlayer disposed on the outer wall of the wind turbine casing, a water inlet at the upper portion of the interlayer, and a water outlet at the lower portion of the interlayer, and the inner layer of the wind turbine is radially separated into a plurality of independent radial water flows in the interlayer.
  • the passage, the plurality of water flow passages are connected at the water inlet and the water outlet, and the wind turbine has a fan on at least one side of the inner shaft.
  • the utility model can provide greater cooling capacity, and helps to increase the cold and heat exchange between the hot air inside the motor and the water-cooled machine base, but has the disadvantages of complicated structure, inconvenient installation and maintenance.
  • SUMMARY OF THE INVENTION The technical problem to be solved by the present invention is to provide a heat sink for a high power vertical axis wind power generator.
  • a heat dissipating device for a high-power vertical-axis wind power generator wherein a stator portion and a rotor portion having a planar disc structure are axially arranged in a space surrounded by a central shaft and an end cover of the wind power generator,
  • the stator portion includes an armature extending in a radial direction
  • the rotor portion includes a plurality of permanent magnets, characterized by:
  • a through air passage is provided at a flat gap in the middle of the end cover, and at least one air supply and exhaust fan is disposed in the air passage.
  • a plurality of ventilation holes connected to the air passage are formed through the armature.
  • a plurality of ventilation holes connected to the air passage are also formed through the permanent magnet.
  • a vent is opened at a position on the end cover adjacent to the blower fan.
  • the heat dissipating device provided by the invention has good heat dissipation effect, greatly reduces the critical temperature inside the wind power generator, effectively avoids the occurrence of local overheating phenomenon, thereby facilitating the vertical axis Wind turbines are developing in the direction of high power.
  • Fig. 1 is a cross-sectional view showing a vertical axis wind power generator using a heat dissipating device provided by the present invention
  • Fig. 2 is a partially enlarged schematic view showing the heat dissipating device shown in Fig. 1.
  • BEST MODE FOR CARRYING OUT THE INVENTION In the vertical axis wind power generator provided by the present invention, the permanent magnet generator used is a coreless disc structure generator. As shown in Fig. 1, the generator is enclosed in an enclosed space surrounded by a central shaft 1 and an end cover 6, wherein the stator portion and the rotor portion are both in a planar disc structure and arranged in the axial direction.
  • the stator portion is mainly composed of an armature clamp 3 and an armature 7, wherein the armature clamp 3 is fixed around the center shaft 1, and the armature 7 extends in the radial direction.
  • the rotor portion includes two rotor disks that are vertically symmetrical, and a bearing 2 is mounted between the rotor disk and the center shaft 1.
  • a yoke 4 is also provided at the outer edges of the upper and lower rotor disks to form a closed magnetic circuit.
  • a plurality of magnetic pole alternating permanent magnets 8 are arranged above the two rotor disks, and these permanent magnets are arranged in an annular shape to form an axial exciting magnetic field.
  • a radially extending armature 7 is located between the two rotor disks. The rotor disk rotates with the wind turbine's wind wheel, continuously cutting the magnetic lines of force to generate electrical energy.
  • the generator generates high temperature due to the heat generated by the armature during operation, and needs to be dissipated in time to ensure normal operation.
  • the higher the power of the generator the higher the requirement for heat dissipation, which is one of the reasons why it is difficult for the vertical axis wind turbine to further increase the power.
  • the present invention adopts a method of circulating air supply and exhaust.
  • the armature 7 of the vertical axis wind turbine is a disc flat body, the conventional design is utilized. It is difficult to solve the problem of sending air.
  • the present invention utilizes the flat gap in the middle of the generator end cover 6 as the air supply and exhaust duct 5, which can easily reduce the temperature rise of the armature 7, and achieve the effect of rapid ventilation and temperature reduction.
  • a through air passage 5 is provided between both sides of the upper and lower rotor disks and the end cover 6.
  • a flat gap is formed between the upper half of the end cap 6 and the permanent magnet 8 and the yoke 4 as the upper portion of the duct 5.
  • a flat gap is formed between the lower half of the end cap 6 and the permanent magnet 8 and the yoke 4 as the lower portion of the duct 5.
  • two blower fans 9 are provided between the end cap 6 and the armature clamp 3, respectively.
  • the upper portion of the air duct 5 forms a wind blown to the left, passes through the gap between the armature clamp 3 and the center shaft 1, and enters the lower portion.
  • the side of the blower fan 9 forms a wind that blows to the right.
  • the air flowing inside the duct 5 in the end cover 6 uniformly conducts heat generated by the armature 7 to the end cover 6.
  • the heat transfer characteristics of the metal end cap 6 are used to conduct heat to the external space.
  • a vent (not shown) is opened on the end cover 6 near the blower fan 9, through which the exchange between the internal hot air and the external cold air can be realized, thereby further reducing the armature.
  • the temperature of 7 is guaranteed to work properly.
  • a plurality of vent holes 10 connected to the air duct 5 are formed through the armature 7, and a plurality of vent holes 11 connected to the air duct 5 are formed through the permanent magnets 8.
  • these vent holes 10 and 11 direct penetration of the upper and lower portions of the duct 5 can be achieved. Since the vertical axis wind turbine is running, the permanent magnets 8 rotate at high speed along the upper and lower sides of the armature, so the arrangement of these vent holes can significantly accelerate the air flow in the air duct 5, further improving the ventilation and heat dissipation effect. .
  • blower fan provided in the heat sink is not limited to two. According to the vertical axis wind, one or more blower fans can also be used. It should be noted that the intermediate stator and the disk structure generators of the two sides of the rotor shown in FIG. 1 are only one implementation form of the vertical axis wind power generator. In fact, the vertical axis wind power generator can also adopt an intermediate rotor, an implementation form of the stators on both sides, or an implementation form in which a plurality of stators and a plurality of rotors are alternately arranged in the axial direction.
  • a through air passage is provided between both sides of the upper and lower stators and the end cover.
  • a ventilation duct is provided between the uppermost stator (or rotor) and the upper portion of the end cap, and the lowermost rotor (or stator) and the lower end of the end cap are also Set the air duct.
  • the heat dissipating device for a high-power vertical-axis wind power generator of the present invention is applied to the field of wind power generation, and heats the inside of a high-power vertical-axis wind power generator to effectively avoid local overheating.

Description

用于大功率垂直轴风力发电机的散热装置 技术领域 本发明涉及一种用于大功率垂直轴风力发电机的散热装置,同时也涉 及采用该散热装置的风力发电机, 属于风力发电技术领域。 背景技术 风能是水能之外最具规模应用前景的可再生能源,受到世界各国的高 度重视。 中国已成为世界上最活跃的风电市场。 2009 年全国新增风电装 机容量超过 800万千瓦, 累计总容量已达 2000万千瓦以上。 因此, 我国 风力发电设备制造业及相关领域的市场前景十分广阔。
风力发电机按旋转轴的方向来分, 可分为水平轴和垂直轴两种。 目前 被广泛应用的是水平轴风力发电机, 但其存在设计制造复杂, 造价居高不 下等缺陷。 相比之下, 经过改进设计的垂直轴 H型风力发电机以启动风速 低、 风能利用率高和无噪声等众多优点, 具备更加广阔的市场应用前景。
根据垂直轴风力发电机的结构特点,普遍使用盘式无铁芯永磁发电机 进行发电。 在专利号为 ZL 200610069654. 5的中国发明专利中, 公开了一 种盘式风力发电机, 其定子由绕组线圈组成, 不含铁磁材料。 固定在转子 轴上的永磁体是以转子轴为轴线的回转体, 且与固定在上、 下壳体内的永 磁体相对应, 相对面的极性相同。 由于该风力发电机取消了铁芯, 因此减 少了磁阻力。 由于取消了轴承, 使转子轴与定子之间形成空气悬浮, 减少 了空载阻力矩, 提高了电机的效率。 但是, 现有的盘式风力发电机普遍存 在散热困难等缺陷, 使风机输出功率难以进一步提高。
在专利号为 ZL 200920115365. 3的中国实用新型专利中, 针对单一风 种冷却效果好, 能够提高大功率风力发电机效率的空-水冷却装置。 该装 置包括设置在风力发电机机壳外壁的水冷却夹层, 夹层上部设有进水口, 夹层下部设有出水口, 夹层内沿风力发电机机壳外壁径向分隔成多个独立 的径向水流通道, 多个水流通道在进水口和出水口处连通, 风力发电机内 部转轴上至少一侧设有风扇。 该实用新型能够提供更大的制冷量, 有助于 增加电机内部热空气与水冷机座的冷热交换, 但存在结构较为复杂, 安装 和维修不方便等缺点。 发明内容 本发明所要解决的技术问题在于提供一种用于大功率垂直轴风力发 电机的散热装置。
为实现上述的发明目的, 本发明采用下述的技术方案:
一种用于大功率垂直轴风力发电机的散热装置,在风力发电机的中心 轴和端盖围合而成的空间内轴向排列有呈平面圆盘结构的定子部分和转 子部分, 所述定子部分包括沿径向延伸的电枢, 所述转子部分包括多块永 磁体, 其特征在于:
在所述端盖中间的扁平间隙处设置有贯通的风道,在所述风道内设有 至少一个送排风机。
其中, 所述电枢上贯通开设有多个与所述风道连接的通风孔。
所述永磁体上也贯通开设有多个与所述风道连接的通风孔。
在所述端盖上靠近所述送排风机的位置开设有通风口。
本发明所提供的散热装置具有良好的散热效果,大大降低了风力发电 机内部的临界温度, 有效地避免局部过热现象的发生, 从而有利于垂直轴 风力发电机向大功率方向发展。 附图概述 下面结合附图和具体实施方式对本发明作进一步的详细说明。
图 1为采用本发明所提供的散热装置的垂直轴风力发电机的剖视图; 图 2为图 1中所示的散热装置的局部放大示意图。 本发明的最佳实施方式 在本发明所提供的垂直轴风力发电机中,所使用的永磁发电机为无铁 芯的盘式结构发电机。 如图 1所示, 该发电机封装在由中心轴 1和端盖 6 围合而成的封闭空间内, 其中定子部分和转子部分都呈平面圆盘结构, 沿 轴向排列。 定子部分主要由电枢钳 3和电枢 7组成, 其中电枢钳 3固定在 中心轴 1的周围, 电枢 7沿径向延伸。 转子部分包括上下对称的两个转子 盘, 在转子盘与中心轴 1之间安装有轴承 2。 上下两个转子盘的外缘处还 设有轭铁 4, 以便构成封闭的磁路。 在两个转子盘上面布置有多块磁极交 替的永磁体 8,这些永磁体采用圆环状布置方式, 从而形成轴向励磁磁场。 径向延伸的电枢 7位于两个转子盘之间。转子盘随着风力发电机的风轮旋 转, 不断切割磁力线以产生电能。
众所周知, 发电机在运行过程中由于电枢发热产生高温, 需要及时散 热以保证正常工作。 尤其是发电机的功率越大, 对散热的要求也越高, 这 也是一般垂直轴风力发电机难以进一步提高功率的原因之一。要将电枢发 热产生的高温降低, 一定要采用强制送排风办法, 将局部产生的高热排出 并进行内外循环, 为此本发明采用了循环送排风的办法。
由于垂直轴风力发电机的电枢 7为盘式扁平体,所以利用常规的设计 很难解决送排风问题。 结合该垂直轴风力发电机的结构特点, 本发明利用 发电机端盖 6中间的扁平间隙作为送排风道 5, 这样很容易降低电枢 7的 温升, 实现快速通风降温的作用。
具体而言, 在垂直轴风力发电机运行时, 电枢 7会发热产生高温。 为 了及时排除电枢 7产生的热量, 在上、 下转子盘的两侧与端盖 6之间设置 有贯通的通风道 5。 结合图 2来看, 在端盖 6的上半部分与永磁体 8、 轭 铁 4之间形成有扁平的间隙, 作为风道 5的上部。 同样, 在端盖 6的下半 部分与永磁体 8、 轭铁 4之间也形成有扁平的间隙, 作为风道 5的下部。 在风道 5的上部和下部,端盖 6与电枢钳 3之间分别设置有两个送排风机 9。 在这两个送排风机 9的作用下, 如图 2中的箭头方向所示, 风道 5的 上部形成向左吹的风, 经过电枢钳 3与中心轴 1之间的空隙, 进入下侧的 送排风机 9 , 再形成向右吹的风。 如此循环。 在端盖 6内的风道 5里面流 动的空气, 将电枢 7产生的热量均匀传导给端盖 6。 利用金属端盖 6的良 好的热传导特性, 将热量传导到外部空间。 另一方面, 在端盖 6上靠近送 排风机 9的位置开设有通风口 (图中未示) , 通过该通风口可以实现内部 热空气与外部冷空气之间的交换, 从而进一步降低电枢 7的温度, 保证其 正常工作。
如图 2所示, 在电枢 7上贯通开设有多个与风道 5连接的通风孔 10, 在永磁体 8上贯通开设有多个与风道 5连接的通风孔 11。 利用这些通风 孔 10和 11可以实现风道 5的上部与下部的直接贯通。 由于垂直轴风力发 电机在运转时, 永磁体 8随着转子盘在电枢的上下两侧高速旋转, 因此这 些通风孔的设置可以显著加快风道 5内的空气流动,进一步改善通风散热 的效果。
另外, 在本散热装置中设置的送排风机并不限于两个。 根据垂直轴风 力发电机的结构特点和散热需要, 也可以采用一个或者多个送排风机。 需要说明的是, 图 1所示的中间定子、 两侧转子的盘式结构发电机只 是垂直轴风力发电机的一种实现形式。 实际上, 该垂直轴风力发电机还可 以采用中间转子、 两側定子的实现形式, 或者多个定子、 多个转子轴向交 替排列的实现形式。 在中间转子、 两侧定子的情况下, 上、 下定子的两侧 与端盖之间设置有贯通的通风道。 在多个定子、 多个转子轴向交替排列的 情况下, 最上侧的定子(或转子)与端盖上部之间设置通风道, 最下侧的 转子 (或定子) 与端盖下部之间也设置通风道。 行了详细的说明。 对本领域的技术人员而言, 在不背离本发明实质精神的 前提下对它所做的任何显而易见的改动, 都将构成对本发明专利权的侵 犯, 将承担相应的法律责任。 工业实用性 本发明的用于大功率垂直轴风力发电机的散热装置应用于风力发电 领域, 对大功率垂直轴风力发电机的内部进行散热, 有效避免局部过热。

Claims

权利 要求
1. 一种用于大功率垂直轴风力发电机的散热装置, 在风力发电机的 中心轴和端盖围合而成的空间内轴向排列有呈平面圓盘结构的定子部分 和转子部分, 所述定子部分包括沿径向延伸的电枢, 所述转子部分包括多 块永磁体, 其特征在于:
在所述端盖中间的扁平间隙处设置有贯通的风道,在所述风道内设有 至少一个送排风机。
2. 如权利要求 1所述的散热装置, 其特征在于: '
所述电枢上贯通开设有多个与所述风道连接的通风孔。
3. 如权利要求 1所述的散热装置, 其特征在于:
所述永磁体上贯通开设有多个与所述风道连接的通风孔。
4. 如权利要求 1所述的散热装置, 其特征在于:
在所述端盖上靠近所述送排风机的位置开设有通风口。
5. —种大功率垂直轴风力发电机, 其特征在于:
所述大功率垂直轴风力发电机采用如权利要求 1所述的散热装置。
PCT/CN2010/000954 2010-02-08 2010-06-28 用于大功率垂直轴风力发电机的散热装置 WO2011094909A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201019114064.3 2010-02-08
CN2010191140643A CN102005860A (zh) 2010-02-08 2010-02-08 用于大功率垂直轴风力发电机组的散热装置

Publications (1)

Publication Number Publication Date
WO2011094909A1 true WO2011094909A1 (zh) 2011-08-11

Family

ID=43812999

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2010/000954 WO2011094909A1 (zh) 2010-02-08 2010-06-28 用于大功率垂直轴风力发电机的散热装置
PCT/CN2011/000199 WO2011095065A1 (zh) 2010-02-08 2011-02-09 一种垂直轴盘式外转子电机及其散热结构

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000199 WO2011095065A1 (zh) 2010-02-08 2011-02-09 一种垂直轴盘式外转子电机及其散热结构

Country Status (5)

Country Link
EP (1) EP2536006A1 (zh)
JP (1) JP2013519345A (zh)
CN (2) CN102005860A (zh)
AU (1) AU2011213437A1 (zh)
WO (2) WO2011094909A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184260B (zh) * 2014-07-29 2016-08-17 江苏大学 一种高速矿用潜水泵用湿式电机
EP3046225A1 (de) * 2015-01-16 2016-07-20 Siemens Aktiengesellschaft Elektrische rotierende Maschine mit einseitiger Kühlung und Verfahren zur einseitigen Kühlung
GB2544275B (en) 2015-11-09 2022-02-16 Time To Act Ltd Cooling means for direct drive generators
CN107154714A (zh) * 2017-07-12 2017-09-12 上海僖舜莱机电设备制造有限公司 自控温圆盘式高功率密度发电机
US11139722B2 (en) 2018-03-02 2021-10-05 Black & Decker Inc. Motor having an external heat sink for a power tool
CN117597856A (zh) * 2021-06-24 2024-02-23 加特可株式会社 组件
CN116365788A (zh) * 2023-03-22 2023-06-30 江苏恒久电机科技有限公司 一种盘式永磁发电机
CN116937892B (zh) * 2023-08-23 2024-03-15 中国北方车辆研究所 一种盘式电机风、液混合冷却装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032709A (ja) * 1998-07-09 2000-01-28 Aichi Electric Co Ltd 電動機の冷却装置
CN101534031A (zh) * 2008-03-14 2009-09-16 刘新广 悬浮叶轮式直流电机
CN101546942A (zh) * 2009-05-08 2009-09-30 邓允河 一种垂直风力发电机的冷却装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615898Y2 (zh) * 1976-02-27 1986-02-22
EP0989658A1 (fr) * 1998-09-28 2000-03-29 The Swatch Group Management Services AG Machine électrique asynchrone refroidie par liquide
FR2795458B1 (fr) * 1999-06-24 2002-06-14 Jeumont Ind Motoventilateur de mise en circulation d'un fluide dans une installation d'echange thermique et procede de refroidissement du moteur d'entrainement du motoventilateur
US6727609B2 (en) * 2001-08-08 2004-04-27 Hamilton Sundstrand Corporation Cooling of a rotor for a rotary electric machine
JP3825679B2 (ja) * 2001-10-31 2006-09-27 東芝トランスポートエンジニアリング株式会社 車両用全閉外扇形電動機
CN2652024Y (zh) * 2003-04-10 2004-10-27 肇庆美拉电源技术有限公司 一种永磁发电机冷却系统
JP2006230155A (ja) * 2005-02-21 2006-08-31 Toshiba Corp 回転電機
EP1953896B1 (en) * 2005-11-09 2016-10-19 Kabushiki Kaisha Toshiba Rotor for electric rotating machine and electric rotating machine
JP4982119B2 (ja) * 2006-06-29 2012-07-25 株式会社東芝 回転電機
SI22564A (sl) * 2007-05-08 2008-12-31 Hidria Rotomatika D.O.O. Hlajenje motorja z zunanjim rotorjem s prisilnim vlekom zraka skozi motor
CN101656444B (zh) * 2009-05-27 2012-04-18 陈国宝 自动调速内通风垂直轴永磁风力发电机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032709A (ja) * 1998-07-09 2000-01-28 Aichi Electric Co Ltd 電動機の冷却装置
CN101534031A (zh) * 2008-03-14 2009-09-16 刘新广 悬浮叶轮式直流电机
CN101546942A (zh) * 2009-05-08 2009-09-30 邓允河 一种垂直风力发电机的冷却装置

Also Published As

Publication number Publication date
CN102148550A (zh) 2011-08-10
AU2011213437A1 (en) 2012-07-05
JP2013519345A (ja) 2013-05-23
CN102005860A (zh) 2011-04-06
WO2011095065A1 (zh) 2011-08-11
EP2536006A1 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
WO2011094909A1 (zh) 用于大功率垂直轴风力发电机的散热装置
JP5358667B2 (ja) 永久磁石式発電機
CN102290922B (zh) 一种双馈风力发电机
CN102769356B (zh) 具有空气冷却结构的永磁同步牵引电机及其空气冷却方法
CA2656986C (en) Process and devices for cooling an electric machine
WO2022027742A1 (zh) 一种集成式风冷轴向磁通电机
US20100194221A1 (en) Permanent magnet electrical rotating machine, wind power generating system, and a method of magnetizing a permanent magnet
JP2014033584A (ja) 回転電機の風冷構造
CN104734422B (zh) 一种新型永磁电机
CN108649749A (zh) 一种具有注水型绕组和轴-径-周多向自循环通风系统的开关磁阻电机
WO2009006778A1 (fr) Système de refroidissement pour générateur à aimants permanents
CN202679191U (zh) 双冷却风扇绕线转子三相异步电动机
CN206180727U (zh) 永磁牵引电机混合通风冷却系统
CN202183693U (zh) 一种双馈风力发电机
CN110768414A (zh) 一种永磁电机的冷却结构
CN112383191B (zh) 一种带外置离心风机的自扇冷轴向磁通电机
CN208539671U (zh) 一种自冷却电机转子
CN107086713A (zh) 一种高效散热的风冷定转子电机
CN111969736A (zh) 一种高效水冷水利发电机结构
CN206712589U (zh) 一种高效散热的风冷定转子电机
CN206226187U (zh) 一种具有良好散热功能的电梯电机
CN206004475U (zh) 一种方便散热的电机
CN112383194B (zh) 一种带内置离心风机的自扇冷轴向磁通电机
CN108448818A (zh) 一种基于冷却液的无刷双馈电机冷却结构
CN201238219Y (zh) 一种交流紧凑型电机风路结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844994

Country of ref document: EP

Kind code of ref document: A1