WO2011093673A2 - 리그노셀룰로스계 바이오매스의 가수분해 전처리방법, 상기 방법으로 처리된 바이오매스로부터의 당화합물제조방법 및 바이오에탄올제조방법 - Google Patents

리그노셀룰로스계 바이오매스의 가수분해 전처리방법, 상기 방법으로 처리된 바이오매스로부터의 당화합물제조방법 및 바이오에탄올제조방법 Download PDF

Info

Publication number
WO2011093673A2
WO2011093673A2 PCT/KR2011/000622 KR2011000622W WO2011093673A2 WO 2011093673 A2 WO2011093673 A2 WO 2011093673A2 KR 2011000622 W KR2011000622 W KR 2011000622W WO 2011093673 A2 WO2011093673 A2 WO 2011093673A2
Authority
WO
WIPO (PCT)
Prior art keywords
popping
biomass
lignocellulosic biomass
tank
pretreatment
Prior art date
Application number
PCT/KR2011/000622
Other languages
English (en)
French (fr)
Other versions
WO2011093673A3 (ko
Inventor
배현종
위승곤
신한기
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to CN201180007623.6A priority Critical patent/CN102741419B/zh
Priority to US13/574,403 priority patent/US20120301928A1/en
Publication of WO2011093673A2 publication Critical patent/WO2011093673A2/ko
Publication of WO2011093673A3 publication Critical patent/WO2011093673A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/023Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for spark ignition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/0007Recovery of by-products, i.e. compounds other than those necessary for pulping, for multiple uses or not otherwise provided for
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a hydrolysis pretreatment method of lignocellulosic biomass, and more specifically, to a hydrolysis pretreatment method of lignocellulosic biomass using a combination of wet grinding and popping method.
  • the present invention relates to a method for producing sugar compounds from treated biomass and a method for producing bioethanol.
  • sugar compounds have been produced by cultivation of natural products or microorganisms of plants and seaweeds, and have been used in various fields in food and medicine.
  • glucose is a major substrate used in many fermentation techniques as well as energy demand, and thus various glucose sources are required.
  • 'Saccharification' is the process by which the cellulose component is converted into glucose by the action of an enzyme, the process by which cellulase is adsorbed on the reaction surface of cellulose to convert cellulose into cellobiose, and the cellobiose thus produced is ⁇ It can be divided into the process of conversion to glucose by the enzymatic reaction of -glucosidase ( ⁇ -glucosidase).
  • ⁇ -glucosidase ⁇ -glucosidase
  • 'Fermentation' refers to a process in which glucose produced by saccharification is converted into ethanol and carbon dioxide under anaerobic conditions by microorganisms such as yeast.
  • the lignocellulosic biomass is decomposed or converted to obtain a large amount of substances useful for human life, such as cellulose (cellulose, pulp), glucose, xylose (xylan), purified lignin, and their derivatives ethanol and xylitol.
  • substances useful for human life such as cellulose (cellulose, pulp), glucose, xylose (xylan), purified lignin, and their derivatives ethanol and xylitol.
  • the main factors affecting the biotechnical hydrolysis of lignocellulosic biomass include the degree of crystallinity and porosity of fibrin, and the content of lignin or hemicellulose also plays an important role.
  • the adsorption capacity of the enzyme during biological hydrolysis using the enzyme has a very high correlation with the surface area of cellulose.
  • the rate of hydrolysis increases as the amount of enzyme adsorbed increases and is determined by the crystallinity of the adsorbed enzyme and cellulose.
  • a pretreatment process in order to saccharify lignocellulosic biomass, a pretreatment process is known to be essential.
  • An effective pretreatment process should be to increase the content of cellulose, decrease the crystallinity of the microfibers, and increase the enzyme adsorption per unit area of the biomass, thereby increasing the enzyme hydrolysis capacity by increasing the reactivity of the cellulose.
  • Such pretreatment methods include various physical and chemical methods, such as steam decay, alkali, sulfur dioxide, hydrogen peroxide, supercritical ammonia, weak acid extraction and ammonia freezing, depending on the type of lignocellulosic biomass. Printing methods and the like are known and are actually performed by combining these methods.
  • the steam decay method has a low recovery rate of hemicellulose and has a disadvantage in that a large amount of various and non-recoverable by-products such as acetic acid and furfural, which are fermentation inhibitors, are generated.
  • the vapor decay method is a biomass pretreatment process, and has low glycosylation efficiency.
  • a decomposition catalyst such as weak acid, organic solvent, or liquid ammonia is used as a pretreatment method using base, sulfur dioxide, and hydrogen peroxide, but chemicals are expensive and these chemicals are expensive.
  • the facility cost is increased by adding a device to recover. For this reason, it is hardly put into practical use.
  • the steam explosion method using ammonia which has recently been spotlighted as a pretreatment method, includes a preheating coil, a leaching reactor, a steam jacket, a temperature sensor, a control valve, a trap, an open valve, a lignin discharge valve, an ammonia refill valve, an ammonia recirculation valve, and an ammonia reheater.
  • a preheating coil a leaching reactor
  • a steam jacket a temperature sensor
  • a control valve a trap
  • an open valve a lignin discharge valve
  • an ammonia refill valve an ammonia refill valve
  • an ammonia recirculation valve an ammonia reheater.
  • Numerous devices and ancillary processes such as lignin separator, ammonia capture device, conductivity meter, conductivity controller, pump, etc. are required.
  • steam pretreatment combined with chemical pretreatment and post-treatment uses chemicals such as strong acids and strong alkalis, excluding chemical costs and facility costs, resulting in secondary environment due to waste acid or waste alkali produced after treatment as well as process corrosion. Contamination and process recovery and recovery of media is extremely difficult.
  • the present inventors have made continuous research efforts to develop a technique for lignocellulosic biomass pretreatment process which can further improve the hydrolysis efficiency. As a result, when the biomass is wet milled and popped, the surface area is remarkably increased. It was found that the present invention was completed.
  • an object of the present invention is to reduce the energy consumed compared to the conventionally known pretreatment method, hydrolysis pretreatment method of environmentally friendly lignocellulosic biomass that is not treated with chemicals, sugars from the biomass treated by the method It is to provide a method for producing a compound and a method for producing a bioethanol.
  • the present invention comprises the steps of immersion and swelling lignocellulosic biomass; Wet grinding the swollen biomass; And it provides a hydrolysis pretreatment method of lignocellulosic biomass comprising the step of popping the wet crushed biomass.
  • the step of popping the wet milled biomass is treated in a popping machine under any one or more of a temperature of 150-250 ° C. and a pressure of 5-25 kgf / cm 2.
  • the popping machine comprises a direct burner that directly heats the popping bath; A popping tank containing the wet milled biomass and maintaining a high temperature and high pressure when heated by the burner; A popping material storage tank having a predetermined volume of space and detachably connected so that a portion of the popping tank is introduced into the popping tank to recover the popped biomass from the popping tank; A motor for rotating the popping bath heated by the burner burner to maintain a uniform temperature in the popping bath and vapor diffusion in the embedded biomass; And a control unit for controlling one or more of a pressure and a temperature in the popping tank.
  • the popping tank is installed at least one of a temperature sensor and a pressure sensor therein.
  • the present invention also provides a method for producing a sugar compound from lignocellulosic biomass comprising a saccharification step of saccharifying lignocellulosic biomass obtained by the hydrolysis pretreatment method according to any one of claims 1 to 4. do.
  • the saccharification step is carried out by treating 1 to 20 parts by weight of glycosylase per 100 parts by weight of the biomass.
  • the glycosylase is any one selected from the group consisting of cellulase, xylanase, ⁇ -glucosidase and mixtures thereof.
  • the present invention is a pre-treatment step of treating the lignocellulosic biomass by the hydrolysis pretreatment method of any one of claims 1 to 4; A saccharification step of saccharifying the biomass obtained in the pretreatment step; And it provides a method for producing bioethanol from lignocellulosic biomass comprising a fermentation step of fermenting the sugar compound obtained in the saccharification step.
  • the saccharification step and the fermentation step are carried out simultaneously in a single reactor.
  • Klebsiella oxytoca P2 Bretanomyomyces curstersii, Saccharin, which is a recombinant strain capable of simultaneously glycosylation and fermentation for simultaneous execution of the saccharification step and the fermentation step Either Saccharomyces uvzrun or Candida brassicae are treated.
  • the present invention has the following excellent effects.
  • the hydrolysis pretreatment method of lignocellulosic biomass of the present invention, the sugar compound production method and the bioethanol production method from the biomass treated by the above method is reduced energy consumption compared to the conventionally known pretreatment method, chemicals There is no treatment of the environment.
  • the hydrolysis pretreatment method of the lignocellulosic biomass of the present invention, the sugar compound preparation method from the biomass treated by the above method, and the bioethanol production method have remarkably improved hydrolysis efficiency than the conventionally known pretreatment method.
  • FIG. 1 is a schematic diagram showing a biological conversion process from biomass to ethanol including the pretreatment method of the present invention
  • Figure 2 is an electron micrograph showing the change in shape of rice straw after the hydrolysis pretreatment method according to an embodiment of the present invention
  • Figure 3 is a graph showing the change in the rate of enzyme hydrolysis of rice straw was hydrolysis pretreatment method in the method for producing a sugar compound according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a biological conversion process from biomass to ethanol including a pretreatment method developed by the present inventors
  • Figure 2 is a change in the shape of rice straw after the hydrolysis pretreatment method according to an embodiment of the present invention is performed
  • Figure 3 is an electron micrograph showing
  • Figure 3 is a graph showing the change in the rate of enzyme hydrolysis of rice straw was hydrolyzed pretreatment method in the sugar compound production method according to an embodiment of the present invention.
  • the present invention has its technical feature in the hydrolysis pretreatment method, which is an essential process for producing sugar compounds and / or bioethanol from lignocellulosic biomass. That is, according to the pretreatment method shown in FIG. 1, the finally obtained pretreated biomass can have a surface structure that effectively increases the contact area in contact with the hydrolase, thereby significantly increasing the hydrolysis efficiency. This is because the pretreatment process of popping after wet grinding of cellulose-based biomass may improve the hydrolysis efficiency by 70% or more compared to the pretreatment process of dry grinding after popping.
  • the hydrolysis pretreatment method of the lignocellulosic biomass of the present invention includes the steps of immersion and swelling the lignocellulosic biomass, and wet grinding the swollen biomass; And popping the wet milled biomass.
  • the popping step is performed in a temperature range of 150 to 250 ° C. and / or a pressure range of 5 to 25 kg / cm 2 using a popping machine developed to perform the popping step of the present invention. It is preferably carried out under a temperature range of 170 to 250 ° C. and / or a pressure of 15 to 25 kg / cm 2.
  • the popping machine 100 developed to perform the popping step includes a direct burner 110, a popping tank 120, a popping material storage tank 130, a motor 140, and a controller 150. Consists of.
  • the direct burner 110 is to replace the steam generator used in the steam detonation method. That is, the conventional steam detonation method is an indirect heating method connected to the detonation tank through the steam generator and the steam jacket to maintain a high temperature and high pressure in the detonation tank.
  • the burner burner 110 constituting the popping machine 100 of the present invention directly applies heat to the popping tank 120, such as a gas burner composed of a gas cylinder and a heater, as shown in one example. Since it is a method of maintaining the heat generation and stability compared to the steam generator used in the steam decay method it can be seen that much better.
  • the popping tank 120 is a container in which the wet crushed biomass is contained, and therefore, the popping tank 120 should be stably maintained even under high temperature and high pressure, and thus, is preferably made of a material capable of withstanding high temperature and high pressure and capable of being fired.
  • One side of the popping tank 120 is fixed to include a frame having a known configuration, but not shown to be rotatable by the motor 140, and an opening for inflow and outflow of the sample, that is, the wet milled biomass, to the other end thereof.
  • 121 is installed to be sealed with a cap. At this time, it is preferable that a hatch is provided in the opening so that steam contained in the sample is ejected instantaneously after popping.
  • the inside of the popping tank 120 is installed a temperature sensor (not shown) for sensing the temperature inside the popping tank 120 is configured to deliver the sensed temperature to the controller 150.
  • a pressure sensor may be installed inside the popping tank 120 instead of an externally mounted pressure gauge as shown.
  • the popping reservoir 130 is a component for recovering the popped sample having a space volume of a form, and a portion of the popping vessel 120 is inserted into the popping reservoir 130 as shown to reduce the popping sound. It is preferably connected detachably so as to be introduced. As shown in the figure, an outlet for discharging the popped biomass to the opposite side to which the popping tank 120 of the popping material storage tank 130 is connected may be installed.
  • the motor 140 rotates the popping tank 120 to maintain uniform temperature of the popping tank 120 and vapor diffusion in the sample when the temperature of the popping tank 120 is increased by the burner 110.
  • the controller 150 is installed in the form of a control box having a keypad and a display window to control the motor 140 as well as to block the valve between the gas cylinder and the heater of the fire burner 110 at a set pressure and / or temperature.
  • the temperature can be controlled.
  • the saccharification process of the pretreated biomass may be carried out by acid saccharification according to a conventional method, but in the present invention, enzyme saccharification by a method in which no chemical substance such as acid is added at all. more preferably, by enzymatic saccharification.
  • enzyme saccharification preference is given to using glycosylase selected from the group consisting of, for example, cellulase, xylanase, ⁇ -glucosidase and mixtures thereof.
  • glycosylase selected from the group consisting of, for example, cellulase, xylanase, ⁇ -glucosidase and mixtures thereof.
  • the glycosylase is preferably used in an amount of 1 to 20 parts by weight based on 100 parts by weight of the biomass.
  • the saccharification process is preferably performed for 6 to 24 hours, particularly for 24 hours at a temperature of 40 ⁇ 45 °C.
  • yeast for example, Saccharomyces cerevisiae
  • sugar-resistant strains and enzymes capable of fermentation even at high sugar concentrations.
  • Heat resistant strain capable of converting ethanol even near the optimum temperature of glycosylation recombinant strains capable of simultaneously glycosylation and fermentation to reduce the use of expensive enzymes and produce high concentrations of ethanol, for example, Krebsiella oxy Klebsiella oxytoca P2, Bretanomyces curstersii, Saccharomyces uvzrun, Candida brassicae, etc.
  • the fermentation process is performed separately from the saccharification process, it is preferable to carry out for 12 to 24 hours at a temperature of 25 to 30 ° C., especially 30 ° C., but may be performed simultaneously with the saccharification process.
  • Example 1 The photographs of the pretreatment obtained in Example 1 and Comparative Examples 1 and 2 were observed with an electron microscope, and the photograph is shown in FIG. 2.
  • the chemical components were analyzed and the results are shown in Table 1.
  • the pretreatment (Wet milling + Popping) pre-treated using a popping machine after wet grinding, and the pre-treatment (Ppping) and wet-crushed pretreatment (pulp) after milling after popping treatment is a chemical component
  • the change did not show a big difference, but as shown in FIG. 3, the physical and morphological changes using the electron microscope showed a big difference.
  • Cellulase (600 U / g biomass) and xylanase (300 U / g biomass) were added to 50 mg of rice straw pretreatment (wet grinding + popping) obtained in Example 1, and saccharification step at a temperature of 37 ° C. for 24 hours. To obtain a sugar compound (Wet milling + Popping).
  • Example 4 shows that the comparative sugar (control) shows only 0.1 mg / ml of the produced sugar content, whereas the popping treatment with the popping compound shows a high hydrolysis rate of 3.6 mg / ml.
  • the sugar compound (Wet milling + Popping) obtained by the wet milling and then the popping complex treatment showed a production sugar content of 6.4 mg / ml, 64 times compared to the control sugar (control), compared to the comparative sugar Compared to the compound (Popping), it was found that the hydrolysis rate was nearly doubled by more than 70%.
  • Cellulase 600 U / g biomass
  • xylanase 300 U / g biomass
  • a saccharification process was performed at a temperature of 37 ° C. for 24 hours to obtain a sugar compound, that is, glucose.
  • the concentration of glucose obtained as a sugar compound was concentrated to 10%, and then 15 g / l was added to Saccharomyces cerevisiae as a fermentation strain for bioethanol production, and the fermentation process was performed for 24 hours at a temperature of 30 ° C. Produced.
  • the saccharification process and the fermentation process may be performed at the same time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 리그노셀룰로스계 바이오매스의 가수분해 전처리방법에 관한 것으로, 보다 구체적으로는 습식 마쇄와 팝핑법(popping method)을 복합적으로 이용하는 리그노셀룰로스계 바이오매스의 가수분해 전처리방법, 상기 방법으로 처리된 바이오매스로부터의 당화합물제조방법 및 바이오에탄올제조방법에 관한 것이다. 본 발명에 의하면, 기존에 알려진 가수분해 전처리 방법에 비해 소비되는 에너지가 절감됨과 동시에 화학물질의 처리 없이 친환경적인 방법으로 비교적 간단하게 리그노셀룰로스계 바이스매스를 전처리할 수 있을 뿐만 아니라, 가수분해효율을 효과적으로 향상시킬 수 있다.

Description

리그노셀룰로스계 바이오매스의 가수분해 전처리방법, 상기 방법으로 처리된 바이오매스로부터의 당화합물제조방법 및 바이오에탄올제조방법
본 발명은 리그노셀룰로스계 바이오매스의 가수분해 전처리방법에 관한 것으로, 보다 구체적으로는 습식 마쇄와 팝핑법(popping method)을 복합적으로 이용하는 리그노셀룰로스계 바이오매스의 가수분해 전처리방법, 상기 방법으로 처리된 바이오매스로부터의 당화합물제조방법 및 바이오에탄올제조방법에 관한 것이다.
종래 당화합물은 식물이나 해조류의 천연물 또는 미생물의 배양에 의해 생산되어 식품이나 의약 분야에서 다양하게 이용되어 왔다. 특히 글루코오스는 에너지 수요뿐만 아니라 다수의 발효기술들에서 사용되는 주요 기질이므로 다양한 글루코오스 공급원이 요구된다.
더욱이 최근에는 지구 온난화에 의한 온실효과와 석유고갈 문제를 해결하기 위하여 당화합물을 이용한 바이오에너지(bio-energy) 생산에 많은 관심이 집중되고 있는데, 일반적으로 바이오에너지, 즉 바이오에탄올 생산을 위한 탄수화물원으로서 사탕수수 즙 또는 옥수수 전분이 이용되어 왔다.
이러한 제1세대 옥수수 에탄올 생산을 위한 원료들은 식품 및 가축사료와의 경쟁, 재배 면적의 포화 등 많은 문제에 봉착해 있다. 이를 극복하기 위하여, 목본 및 초본류의 재생가능한 리그노셀룰로스(lignocellulose)로부터 생산하는 제2세대 셀룰로스 에탄올에 관한 연구가 미국을 중심으로 진행되고 있다.
전처리가 끝난 목질계 바이오매스로부터 연료용 에탄올을 생산하는 반응 메커니즘은 크게 두가지로 '당화(saccharification)'와 '발효(fermentation)'라 할 수 있다. '당화'는 셀룰로스 성분이 효소의 작용에 의해 글루코스로 전환되는 과정이며, 셀룰라제(cellulase)가 셀룰로스의 반응표면에 흡착하여 셀룰로스를 셀로바이오스(cellobiose)로 바꾸는 과정과 이렇게 생성된 셀로바이오스가 β-글루코시다제(β-glucosidase)의 효소반응에 의해 글루코스로 전환되는 과정으로 나눌 수 있다. '발효'는 당화 과정에 의해 생성된 글루코스가 효모 등의 미생물에 의해 혐기성 조건 하에서 에탄올과 이산화탄소로 전환되는 과정을 일컫는다.
이와 같이 리그노셀룰로스계 바이오매스를 분해 또는 전환하여 인간생활에 유용한 물질, 즉 섬유소(셀룰로스, 펄프), 포도당, 자일로스(자일란), 정제 리그닌과 이들의 유도물질인 에탄올, 자일리톨 등을 다량 얻을 수 있는데, 리그노셀룰로스계 바이오매스의 생물공학적 가수분해에 주로 영향을 미치는 요소에는 섬유소의 결정화도, 다공성이 있으며, 리그닌이나 헤미셀룰로스의 함량 또한 중요한 변수로 작용한다.
특히, 효소를 이용한 생물학적 가수분해 시 효소의 흡착능은 셀룰로스의 표면적과 매우 높은 상관관계를 가지고 있다. 가수분해 속도는 효소의 흡착량이 증가할수록 증가하며, 흡착된 효소와 섬유소의 결정화도에 의해 결정된다.
한편, 리그노셀룰로스계 바이오매스를 당화시키기 위해서는 전처리 공정이 필수적인 것으로 알려져 있다. 효과적인 전처리 공정은 섬유소의 함량을 증가시키고, 미세섬유의 결정성을 감소시켜, 바이오매스의 단위면적 당 효소의 흡착율을 높임으로써, 섬유소의 반응성 증가에 의해 효소 가수분해 능력을 증가시키는 것이어야 한다. 이러한 전처리 방법으로는 다양한 리그노셀룰로스계 바이오매스의 종류에 따라 다양한 물리적, 화학적 방법, 예를 들어 증기 폭쇄법, 알칼리 처리법, 이산화황 처리법, 과산화수소 처리법, 초임계 암모니아 처리법, 약산 추출 처리법, 암모니아 동결 폭쇄법 등이 알려져 있으며, 실제로 이들 방법을 조합하여 수행하고 있다.
특히 증기 폭쇄법은 헤미셀룰로오스의 회수율이 낮고 이에 기인하는 발효 억제 물질인 초산 및 푸르푸랄 등 다종의 다양하고 회수 이용이 불가능한 부산물 등이 다량 생성되는 단점을 가지고 있다. 또한 증기폭쇄법은 바이오매스의 전처리 공정으로 사용시 당화 효율이 낮아 약산, 유기 용매, 또는 액체 암모니아와 같은 분해 촉매로 염기, 이산화황가스, 과산화수소를 이용한 전처리 방법 등이 있으나 화학약품이 고비용이고 이들 화학약품을 회수하는 장치가 추가 되어 시설비가 증가하는 단점을 가지고 있다. 이러한 이유로 거의 실용화 되지 않고 있다.
한편 최근 전처리방법으로 각광 받고 있는 암모니아를 이용한 증기폭쇄법은 예열코일, 침출 반응기, 증기재킷, 온도센서, 조절 밸브, 트랩, 개폐식 밸브, 리그닌 배출밸브, 암모니아 보충밸브, 암모니아 재순환밸브, 암모니아 재가열기/ 리그닌 분리기, 암모니아 포집장치, 전도도 측정기, 전도도 제어기, 펌프 등 수 많은 장치와 부수적인 공정이 필요하다.
이와 같이 화학전처리 및 후처리를 병행한 증기폭쇄법은 화학약품 비용과 시설비를 제외하고도 강산이나 강알칼리와 같은 화학약품을 사용함으로 공정 부식뿐만 아니라 처리 후 생성되는 폐산 또는 폐알칼리로 인해 2차 환경오염 및 공정상 매질의 회수 및 재생이 대단히 어렵다.
상술된 것처럼 지금까지 알려진 물리적 방법은 공정이 느리고, 에너지 소비가 많아 경제성이 떨어지며, 화학적 방법은 강산이나 강알칼리성 화합물을 사용하여 비용이 높고, 대용량 공정에는 부적합하며, 독성이 높아 환경에 악영향을 미치는 문제점이 있었다.
따라서, 환경문제를 일으키지 않고 소비되는 에너지를 절감할 수 있는 효과적인 전처리 방법이 개발될 필요가 있었다.
본 발명자들은 가수분해 효율을 더욱 향상시킬 수 있는 리그노셀룰로스계 바이오매스 전처리 공정에 대한 기술을 개발하기 위하여 지속적인 연구노력을 수행해온 결과, 바이오매스를 습식마쇄한 후 팝핑하게 되면 현저하게 표면적이 증가하는 것을 알게 되어 본 발명을 완성하였다.
따라서 본 발명의 목적은 종래에 알려진 전처리 방법에 비해 소비되는 에너지가 절감되고, 화학물질이 처리되지 않는 친환경적인 리그노셀룰로스계 바이오매스의 가수분해 전처리방법, 상기 방법으로 처리된 바이오매스로부터의 당화합물제조방법 및 바이오에탄올제조방법을 제공하는 것이다.
본 발명의 다른 목적은 종래에 알려진 전처리 방법 보다 가수분해 효율이 현저하게 향상된 리그노셀룰로스계 바이오매스의 가수분해 전처리방법, 상기 방법으로 처리된 바이오매스로부터의 당화합물제조방법 및 바이오에탄올제조방법을 제공하는 것이다.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 리그노셀룰로스계 바이오매스를 수침하여 팽윤시키는 단계; 상기 팽윤된 바이오매스를 습식마쇄하는 단계; 및 상기 습식마쇄된 바이오매스를 팝핑(popping)하는 단계를 포함하는 리그노셀룰로스계 바이오매스의 가수분해 전처리방법를 제공한다.
바람직한 실시예에 있어서, 상기 팝핑하는 단계는 상기 습식마쇄된 바이오매스를 팝핑기에서 150~250℃ 의 온도 및 5~25 ㎏f/㎠의 압력 중 어느 하나 이상의 조건으로 처리한다.
바람직한 실시예에 있어서, 상기 팝핑기는 팝핑조에 직접 열을 가하는 직화버너; 상기 습식마쇄된 바이오매스가 담겨지고, 상기 직화버너에 의해 가열되면 고온 고압을 유지하기 위한 팝핑조; 일정 형태의 공간체적을 갖고 상기 팝핑조의 일부분이 내부로 도입되도록 탈부착 가능하게 연결되어 상기 팝핑조에서 팝핑된 바이오매스를 회수하는 팝핑물 저장조; 상기 팝핑조내의 온도 및 상기 담겨진 바이오매스 내의 증기 확산을 균일 하게 유지하기 위해 상기 직화버너에 의해 가열되는 상기 팝핑조를 회전시키는 모터; 및 상기 팝핑조의 내의 압력 및 온도 중 하나 이상을 제어하는 제어부를 포함한다.
바람직한 실시예에 있어서, 상기 팝핑조는 그 내부에 온도감지센서 및 압력감지센서 중 하나 이상이 설치된다.
또한, 본 발명은 제 1 항 내지 제 4 항 중 어느 한 항의 가수분해 전처리방법으로 얻어진 리그노셀룰로스계 바이오매스를 당화시키는 당화단계를 포함하는 리그노셀룰로스계 바이오매스로부터의 당화합물 제조방법을 제공한다.
바람직한 실시예에 있어서, 상기 당화단계는 상기 바이오매스 100중량부 당 당화효소 1 내지 20중량부를 처리하여 수행된다.
바람직한 실시예에 있어서, 상기 당화효소는 셀룰라제, 자일라나제, β-글루코시다제 및 이들의 혼합물로 구성된 그룹으로부터 선택되는 어느 하나이다.
또한, 본 발명은 리그노셀룰로스계 바이오매스를 제 1 항 내지 제 4 항 중 어느 한 항의 가수분해 전처리방법으로 처리하는 전처리단계; 상기 전처리단계에서 얻어진 바이오매스를 당화시키는 당화단계; 및 상기 당화단계에서 얻어진 당화합물을 발효시키는 발효단계를 포함하는 리그노셀룰로스계 바이오매스로부터의 바이오에탄올제조방법을 제공한다.
바람직한 실시예에 있어서, 상기 당화 단계와 발효단계는 단일 반응기 내에서 동시에 수행된다.
바람직한 실시예에 있어서, 상기 당화 단계와 발효 단계의 동시 수행을 위해 당화 및 발효가 동시에 가능한 재조합 균주인 크렙시엘라 옥시토카(Klebsiella oxytoca) P2, 브레타노마이세스 커스터시(Brettanomyces curstersii), 사카로마이세스 우브즈런(Saccharomyces uvzrun), 캔디다 브래시카에(Candida brassicae) 중 어느 하나가 처리된다.
본 발명은 다음과 같은 우수한 효과를 갖는다.
본 발명의 리그노셀룰로스계 바이오매스의 가수분해 전처리방법, 상기 방법으로 처리된 바이오매스로부터의 당화합물제조방법 및 바이오에탄올제조방법은 종래에 알려진 전처리 방법에 비해 소비되는 에너지가 절감되고, 화학물질의 처리가 없어 친환경적이다.
본 발명의 리그노셀룰로스계 바이오매스의 가수분해 전처리방법, 상기 방법으로 처리된 바이오매스로부터의 당화합물제조방법 및 바이오에탄올제조방법은 종래에 알려진 전처리 방법 보다 가수분해 효율이 현저하게 향상된다.
도 1은 본 발명의 전처리방법이 포함된 바이오매스로부터 에탄올로의 생물학적 전환공정을 보여주는 모식도이고;
도 2는 본 발명의 일 실시예에 의한 가수분해 전처리방법이 수행된 후 볏짚의 형태 변화를 보여주는 전자현미경 사진이며;
도 3은 본 발명의 일 실시예에 의한 당화합물 제조방법에서 가수분해 전처리방법이 수행된 볏짚의 효소 가수분해율 변화를 나타낸 그래프이다.
본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.
이하, 바람직한 실시예 및 도면을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다. 그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다.
도 1은 본 발명자들이 개발한 전처리방법이 포함된 바이오매스로부터 에탄올로의 생물학적 전환공정을 보여주는 모식도이고, 도 2는 본 발명의 일 실시예에 의한 가수분해 전처리방법이 수행된 후 볏짚의 형태 변화를 보여주는 전자현미경 사진이며, 도 3은 본 발명의 일 실시예에 의한 당화합물 제조방법에서 가수분해 전처리방법이 수행된 볏짚의 효소 가수분해율 변화를 나타낸 그래프이다.
먼저, 본 발명은 리그노셀룰로스계 바이오매스로부터 당화합물 및/또는 바이오에탄올을 생산하기 위해 필수적인 공정인 가수분해 전처리 방법에 그 기술적 특징이 있다. 즉, 도 1에 도시된 전처리 방법에 의하면 최종적으로 얻어지는 전처리된 바이오매스가 가수분해효소와 접촉하는 접촉면적이 효과적으로 증대되는 표면구조를 갖도록 할 수 있어 가수분해 효율을 현저히 높일 수 있는데, 특히 리그노셀룰로스계 바이오매스의 습식마쇄 후 팝핑하는 전처리 공정은 팝핑 후 건식마쇄하는 전처리 공정에 비해 가수분해 효율이 70%이상 향상될 수 있기 때문이다.
따라서, 본 발명의 리그노셀룰로스계 바이오매스의 가수분해 전처리방법은 리그노셀룰로스계 바이오매스를 수침하여 팽윤시키는 단계, 상기 팽윤된 바이오매스를 습식마쇄하는 단계; 및 상기 습식마쇄된 바이오매스를 팝핑(popping)하는 단계를 포함한다. 이 때 팝핑하는 단계는 본 발명의 팝핑단계를 수행하기 위해 개발된 팝핑기(popping machine)를 이용하여 150~250℃의 온도 범위 및/또는 5~25 ㎏/㎠의 압력범위에서 수행되는데, 특히 170~250℃의 온도 범위 및/또는 15~25 ㎏/㎠의 압력 하에서 수행되는 것이 바람직하다.
도 2에 도시된 바와 같이 팝핑단계를 수행하기 위해 개발된 팝핑기(100)는 직화버너(110), 팝핑조(120), 팝핑물 저장조(130), 모터(140) 및 제어부(150)로 구성되어 있다.
먼저, 직화버너(110)는 증기폭쇄법에서 사용하는 증기 발생장치를 대체한 것이다. 즉 종래 알려진 증기 폭쇄법은 증기 발생장치 및 증기 자켓을 통해 폭쇄조로 연결되어 폭쇄조내에 고온고압을 유지하는 간접가열 방식이다. 반면 본원발명의 팝핑기(100)를 구성하는 직화버너(110)는 일예로 도시된 것처럼 가스통과 히터로 구성된 가스버너와 같이 팝핑조(120)에 직접 열을 가하여 팝핑조(120) 내의 고온 고압을 유지하는 방식이므로 증기 폭쇄법에 사용되는 증기 발생장치에 비해 열이용 및 안정성 측면에서 훨씬 우수한 것을 알 수 있다.
팝핑조(120)는 습식 마쇄된 바이오매스가 담겨지는 용기로서, 고온 고압하에서도 안정되게 유지하여야 하므로 고온 고압을 견딜 수 있고 직화가 가능한 재질로 구성되는 것이 바람직하다. 팝핑조(120)의 일측은 모터(140)에 의해 회전가능하도록 도시되지는 않았지만 공지된 구성의 프레임 등을 포함하여 고정되고, 그 타단 측으로 시료 즉 습식 마쇄된 바이오매스의 유입 및 유출을 위한 개구(121)가 캡으로 밀봉될 수 있게 설치된다. 이 때, 팝핑 후 시료내에 함유되어 있는 증기가 순간적으로 분출되도록 개구에 해치가 설치되는 것이 바람직하다.
팝핑조(120)내부에는 팝핑조(120) 내부의 온도를 감지하기 위한 온도감지센서(미도시)가 설치되어 제어부(150)에 감지된 온도를 전달하도록 구성된다. 경우에 따라서는 도시된 바와 같이 외부에 장착된 압력측정기(pressur gauge) 대신 압력감지센서가 팝핑조(120)내부에 설치되도록 구성될 수도 있다.
팝핑물 저장조(130)는 일정 형태의 공간체적을 갖고 팝핑된 시료를 회수하는 구성요소로서 팝핑음을 감소시킬 수 있도록 도시된 바와 같이 팝핑조(120)의 일부분이 팝핑물 저장조(130)내부로 도입되도록 탈부착 가능하게 연결되는 것이 바람직하다. 도시된 바와 같이 팝핑물 저장조(130)의 팝핑조(120)가 연결되는 대향측으로 팝핑된 바이오매스를 배출할 수 있는 배출구가 설치될 수 있다.
모터(140)는 팝핑조(120)를 회전시켜 직화버너(110)에 의한 팝핑조(120)의 온도 상승시 팝핑조(120)내의 온도 및 시료내의 증기 확산을 균일 하게 유지하는 역할을 한다.
제어부(150)는 키패드와 표시창을 구비하는 컨트롤박스 형태로 설치되어 모터(140)를 제어할 뿐만 아니라 설정된 압력 및/또는 온도에서 직화버너(110)의 가스통과 히터 사이의 밸브를 차단함으로써 압력과 온도를 제어할 수 있다.
또한, 상기 전처리된 바이오매스의 당화공정은 통상적인 방법에 따라 산 당화(acid saccharification)에 의해 수행될 수도 있으나, 본 발명에서는 산(acid)과 같은 화학물질이 전혀 첨가되지 않은 방법으로 효소 당화(enzymatic saccharification)에 의해 수행되는 것이 보다 바람직하다. 효소 당화를 위해서, 예를 들어, 셀룰라제, 자일라나제, β-글루코시다제 및 이들의 혼합물로 구성된 그룹으로부터 선택되는 당화효소를 사용하는 것이 바람직하다. 대표적으로, 당화효소로는 중량비 1~2:1~2, 특히 2:1의 셀룰라제와 자일라나제의 혼합효소를 사용하는 것이 바람직할 수 있다. 당화효소는 바이오매스 100 중량부에 대하여 1~20 중량부의 양으로 사용하는 것이 바람직하다. 또한, 당화공정은 40~45 ℃의 온도에서 6~24 시간, 특히 24 시간 동안 수행하는 것이 바람직하다.
또한, 본 발명에서는, 바이오에탄올 생산을 위한 발효균주로는 효모, 예를 들어 사카로마이세스 세레비지에(Saccharomyces cerevisiae)를 사용할 수 있으며, 높은 당 농도에서도 발효를 수행할 수 있는 내당성 균주와 효소 당화의 최적 온도인 40~45 ℃ 부근에서도 에탄올 전환이 가능한 내열성 균주, 고가의 효소 사용량 절감과 고농도의 에탄올 생산을 위해 당화 및 발효를 동시에 수행할 수 있는 재조합 균주, 예를 들어, 크렙시엘라 옥시토카(Klebsiella oxytoca) P2, 브레타노마이세스 커스터시(Brettanomyces curstersii), 사카로마이세스 우브즈런(Saccharomyces uvzrun), 캔디다 브래시카에(Candida brassicae) 등 당업계에 알려진 통상적인 균주 중 어느 것이라도 사용할 수 있다. 발효공정은 당화공정과 별도로 수행 시 25~30 ℃, 특히 30 ℃의 온도에서 12~24 시간 동안 수행하는 것이 바람직하지만, 당화공정과 동시에 수행될 수도 있다.
실시예 1
가을에 추수하고 남은 볏짚 100 g이 침지될 정도의 물을 준비하여 하루 동안 침지시켜 볏짚을 충분히 팽윤시켰다. 그 후, 팽윤된 볏짚과 물을 밀링기로 습식마쇄(wet milling)하여 곱게 갈린 습식마쇄물을 얻었다. 다음으로, 도 2에 도시된 구조를 갖는 팝핑기(popping machine)에 습식마쇄물을 넣고 200℃ 온도, 21 ㎏f/㎠의 압력 하에 팝핑을 수행하여 본 발명에 의해 전처리된 볏짚 전처리물(Wet milling + Popping)을 얻었다.
비교예 1
가을에 추수하고 남은 볏짚 100 ㎎을 하루 동안 충분히 물에 담가 두었다. 그 후 팽윤된 볏짚을 도 2에 도시된 구조를 갖는 팝핑기에 넣고 200℃ 온도, 21 ㎏/㎠의 압력 하에 팝핑을 수행한 다음 분쇄기로 분쇄하여 비교예 전처리물(Popping)을 얻었다.
비교예 2
가을에 추수하고 남은 볏짚 100 ㎎을 하루 동안 충분히 물에 담가 두었다. 그 후, 팽윤된 볏짚과 물을 밀링기로 습식마쇄(wet milling)하여 곱게 갈린 습식마쇄된 대조구전처리물(control)을 얻었다.
실험예 1
실시예1과 비교예1 및 2에서 얻어진 전처리물을 전자현미경으로 관찰하여 그 사진을 도 2에 나타내었으며, 화학성분을 분석하여 그 결과를 표 1에 나타내었다.
표 1
Rahmnose Arabinose Mannose Galactose Xylose Glucose Total
Control 0.1 2.9 0.6 0.7 17.9 48.2 70.4
비교예 1(Popping) 0.1 2.7 0.5 1.4 16.3 46.8 67.8
실시예1(Wet milling+Popping) 0.4 2.9 0.8 1.1 18.1 45.0 68.2
표 1에 나타낸 바와 같이, 습식마쇄 후 팝핑기를 사용하여 전처리된 전처리물(Wet milling+Popping)과, 팝핑 처리 후 분쇄되어 전처리된 전처리물(Popping)과 습식마쇄된 전처리물(control)은 화학적 성분 변화는 큰 차이를 보이지 않았으나, 도 3에 도시된 바와 같이 전자현미경을 사용한 물리적,형태적 변화는 큰 차이를 보이는 것을 알 수 있다.
즉 우측 위에서 아래로 순차적으로 도시된 바와 같이 어떤 처리도 하지 않은 것보다 물에 침지시켜 습식마쇄하여 얻어진 전처리물(control)이, 침지시켜 습식마쇄하여 얻어진 전처리물(control)보다는 침지한 후 팝핑하여 얻어진 전처리물(Popping)이 그 표면적이 더 넓어지는 것을 알 수 있는데, 특히 침지한 다음 습식마쇄한 후 팝핑하여 얻어진 전처리물(Wet milling+Popping)은 그 표면적이 현저하게 넓어지는 것을 확인할 수 있다.
실시예 2
실시예1에서 얻어진 볏짚 전처리물(습식마쇄+팝핑) 50mg에 셀룰라아제 (600 U/g 바이오매스) 및 자일라나제(300 U/g 바이오매스)을 가하고 , 37 ℃의 온도에서 24시간 동안 당화공정을 수행하여 당화합물(Wet milling+Popping)을 얻었다.
비교예 3
비교예1 및 2에서 얻어진 전처리물 각각에 50mg에 셀룰라아제 (600 U/g 바이오매스) 및 자일라나제(300 U/g 바이오매스)을 가하고 , 37 ℃의 온도에서 24시간 동안 당화공정을 수행하여 비교당화합물(Popping)과 비교당화합물(control)을 얻었다.
실험예 2
비교예3에서 얻어진 비교당화합물(Popping)과 비교당화합물(control) 및 실시예2에서 얻어진 당화합물(Wet milling+Popping)의 농도를 HPLC를 사용하여 측정하였고, 그 결과를 도 4에 나타내었다.
도 4로부터, 비교당화합물(control)은 단지 0.1 mg/ml의 생성당 함량을 나타냄에 비해, 비교당화합물(Popping)과 같이 팝핑 처리한 경우는 3.6 mg/ml의 높은 가수분해율을 나타내는 것을 알 수 있으나, 실시예 2와 같이 습식 마쇄후 팝핑 복합처리하여 얻어진 당화합물(Wet milling+Popping)은 6.4 mg/ml의 생성당 함량을 나타내어, 비교당화합물(control)에 비해서는 64배, 비교당화합물(Popping)에 비해서는 70% 이상 거의 두 배에 가까운 높은 가수분해율을 나타내는 것을 알 수 있었다.
이러한 결과는 본 발명의 전처리방법 중 특히 바이오매스를 침지시킨 다음 습식 마쇄 후 팝핑하는 복합 전처리방법이 바이오매스를 침지시킨 다음 팝핑 하여 분쇄하는 전처리방법에 비해 더 우수함을 보여준다. 따라서, 본 발명의 전처리방법 중 바이오매스를 침지시킨 다음 습식 마쇄 후 팝핑하는 복합 전처리방법이 효소를 이용한 생물공학적 공정에 매우 적합한 것임을 명확히 알 수 있다.
실시예 3
바이오 에탄올 생산
1. 가수분해 전처리공정
가을에 추수하고 남은 볏짚 100 g이 침지될 정도의 물을 준비하여 하루 동안 침지시켜 볏짚을 충분히 팽윤시켰다. 그 후, 팽윤된 볏짚과 물을 밀링기로 습식마쇄(wet milling)하여 곱게 갈린 습식마쇄물을 얻었다. 다음으로, 도 2에 도시된 팝핑기(popping machine)에 습식마쇄물을 넣고 200℃, 21 ㎏f/㎠의 압력 하에 팝핑을 수행하여 볏짚 전처리물을 얻었다.
2. 당화공정
볏짚 전처리물 50mg에 셀룰라아제 (600 U/g 바이오매스), 자일라나제(300 U/g 바이오매스)을 각각 가하고, 37 ℃의 온도에서 24시간 동안 당화 공정을 수행하여 당화합물 즉 글루코오스를 얻었다.
3. 발효공정
당화합물로 얻어진 글루코오스 농도를 10%로 농축한 다음, 바이오에탄올 생산을 위한 발효균주로 사카로마이세스 세레비지에 15 g/ℓ를 가하고, 30 ℃의 온도에서 24시간 동안 발효 공정을 수행하여 바이오에탄올을 생산하였다.
이 때, 당화공정과 발효공정은 동시에 수행될 수 있다.
상술된 실시예에서는 리그노셀룰로스계 바이오매스로 가을에 추수하고 남은 볏짚을 사용하였으나, 리그노셀룰로스계 바이오매스이기만 하면 본 발명이 사용될 수 있으므로 본 발명의 범위가 이들로 제한되는 것은 아니다.
본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.

Claims (10)

  1. 리그노셀룰로스계 바이오매스를 수침하여 팽윤시키는 단계;
    상기 팽윤된 바이오매스를 습식마쇄하는 단계; 및
    상기 습식마쇄된 바이오매스를 팝핑(popping)하는 단계를 포함하는 리그노셀룰로스계 바이오매스의 가수분해 전처리방법.
  2. 제 1 항에 있어서,
    상기 팝핑하는 단계는 상기 습식마쇄된 바이오매스를 팝핑기에서 150~250℃ 의 온도 및 5~25 ㎏f/㎠의 압력 중 어느 하나 이상의 조건으로 처리하는 것을 특징으로 하는 리그노셀룰로스계 바이오매스의 가수분해 전처리방법.
  3. 제 2 항에 있어서, 상기 팝핑기는
    팝핑조에 직접 열을 가하는 직화버너;
    상기 습식마쇄된 바이오매스가 담겨지고, 상기 직화버너에 의해 가열되면 고온 고압을 유지하기 위한 팝핑조;
    일정 형태의 공간체적을 갖고 상기 팝핑조의 일부분이 내부로 도입되도록 탈부착 가능하게 연결되어 상기 팝핑조에서 팝핑된 바이오매스를 회수하는 팝핑물 저장조;
    상기 팝핑조내의 온도 및 상기 담겨진 바이오매스 내의 증기 확산을 균일 하게 유지하기 위해 상기 직화버너에 의해 가열되는 상기 팝핑조를 회전시키는 모터; 및
    상기 팝핑조의 내의 압력 및 온도 중 하나 이상을 제어하는 제어부를 포함하는 것을 특징으로 하는 리그노셀룰로스계 바이오매스의 가수분해 전처리방법.
  4. 제 3 항에 있어서,
    상기 팝핑조는 그 내부에 온도감지센서 및 압력감지센서 중 하나 이상이 설치된 것을 특징으로 하는 리그노셀룰로스계 바이오매스로부터의 당화합물 제조방법.
  5. 제 1 항 내지 제 4 항 중 어느 한 항의 가수분해 전처리방법으로 얻어진 리그노셀룰로스계 바이오매스를 당화시키는 당화단계를 포함하는 리그노셀룰로스계 바이오매스로부터의 당화합물 제조방법.
  6. 제 5 항에 있어서,
    상기 당화단계는 상기 바이오매스 100중량부 당 당화효소 1 내지 20중량부를 처리하여 수행되는 것을 특징으로 하는 리그노셀룰로스계 바이오매스로부터의 당화합물 제조방법.
  7. 제 6 항에 있어서,
    상기 당화효소는 셀룰라제, 자일라나제, β-글루코시다제 및 이들의 혼합물로 구성된 그룹으로부터 선택되는 어느 하나인 것을 특징으로 하는 리그노셀룰로스계 바이오매스로부터의 당화합물 제조방법.
  8. 리그노셀룰로스계 바이오매스를 제 1 항 내지 제 4 항 중 어느 한 항의 가수분해 전처리방법으로 처리하는 전처리단계;
    상기 전처리단계에서 얻어진 바이오매스를 당화시키는 당화단계; 및
    상기 당화단계에서 얻어진 당화합물을 발효시키는 발효단계를 포함하는 리그노셀룰로스계 바이오매스로부터의 바이오에탄올제조방법.
  9. 제 8 항에 있어서,
    상기 당화 단계와 발효단계는 단일 반응기 내에서 동시에 수행되는 것을 특징으로 하는 리그노셀룰로스계 바이오매스로부터의 바이오에탄올제조방법.
  10. 제 9 항에 있어서,
    상기 당화 단계와 발효 단계의 동시 수행을 위해 당화 및 발효가 동시에 가능한 재조합 균주인 크렙시엘라 옥시토카(Klebsiella oxytoca) P2, 브레타노마이세스 커스터시(Brettanomyces curstersii), 사카로마이세스 우브즈런(Saccharomyces uvzrun), 캔디다 브래시카에(Candida brassicae) 중 어느 하나가 처리되는 것을 특징으로 하는 리그노셀룰로스계 바이오매스로부터의 바이오에탄올제조방법.
PCT/KR2011/000622 2010-01-29 2011-01-28 리그노셀룰로스계 바이오매스의 가수분해 전처리방법, 상기 방법으로 처리된 바이오매스로부터의 당화합물제조방법 및 바이오에탄올제조방법 WO2011093673A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180007623.6A CN102741419B (zh) 2010-01-29 2011-01-28 水解木质纤维素类生物质的预处理方法及由使用该预处理方法处理的生物质制造糖化合物和生物乙醇的方法
US13/574,403 US20120301928A1 (en) 2010-01-29 2011-01-28 Preprocessing method of hydrolyzing lignocellulosic biomass and methods of manufacturing sugar compound and bioethanol from biomass processed using the preprocessing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100008497A KR101036853B1 (ko) 2010-01-29 2010-01-29 리그노셀룰로스계 바이오매스의 가수분해 전처리방법, 상기 방법으로 처리된 바이오매스로부터의 당화합물제조방법 및 바이오에탄올제조방법
KR10-2010-0008497 2010-01-29

Publications (2)

Publication Number Publication Date
WO2011093673A2 true WO2011093673A2 (ko) 2011-08-04
WO2011093673A3 WO2011093673A3 (ko) 2012-01-05

Family

ID=44320005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000622 WO2011093673A2 (ko) 2010-01-29 2011-01-28 리그노셀룰로스계 바이오매스의 가수분해 전처리방법, 상기 방법으로 처리된 바이오매스로부터의 당화합물제조방법 및 바이오에탄올제조방법

Country Status (4)

Country Link
US (1) US20120301928A1 (ko)
KR (1) KR101036853B1 (ko)
CN (1) CN102741419B (ko)
WO (1) WO2011093673A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160132165A (ko) * 2015-05-06 2016-11-17 서울대학교산학협력단 바이오매스 처리 방법

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101372298B1 (ko) 2012-06-27 2014-03-10 한국과학기술원 미세조류로부터 바이오디젤을 제조하는 방법
US9328312B2 (en) 2012-10-23 2016-05-03 Tyton Biosciences, Llc Subcritical water assisted oil extraction and green coal production from oilseeds
KR101493227B1 (ko) * 2012-12-12 2015-03-02 한국세라믹기술원 리그노셀룰로스계 바이오매스의 전처리 방법 및 이를 이용한 당화합물과 바이오연료의 제조방법
CN103014099B (zh) * 2012-12-27 2015-03-11 山东大学 一种促进水解木质纤维素的方法
KR101449552B1 (ko) 2012-12-28 2014-10-13 한국화학연구원 목질계 바이오매스로부터 발효당을 제조하는 방법
CN103074385B (zh) * 2013-01-29 2014-12-10 大连工业大学 利用木质纤维素分批补料半同步糖化发酵制备乙醇的方法
US9765411B2 (en) * 2013-05-07 2017-09-19 Tyton Biosciences, Llc Green process to hydrolyze carbohydrates from tobacco biomass using subcritical water
KR101554874B1 (ko) 2013-10-28 2015-10-22 한국세라믹기술원 리그노셀룰로스계 바이오매스를 이용한 당화합물의 제조방법
KR101593614B1 (ko) 2014-04-22 2016-02-12 (주)케이엠티알 당화 촉진 조성물을 이용한 바이오 에탄올의 생산방법
CN108031545B (zh) 2015-06-30 2020-12-08 安耐罗技术股份有限公司 具有杂质去除的改善的催化快速热解方法
KR101776906B1 (ko) * 2016-01-28 2017-09-14 건국대학교 산학협력단 목질계 바이오매스의 효소 전처리에서 남은 단백질을 이용한 생물변환 방법
CN108823071A (zh) * 2018-09-10 2018-11-16 北京鑫泽清源植物秸秆技术有限公司 植物秸秆工业化热动水解单糖与醇脂工艺系统
CN115322815A (zh) * 2022-07-18 2022-11-11 中润油新能源股份有限公司 一种生物基甲醇汽油及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010048481A (ko) * 1999-11-26 2001-06-15 손재익 섬유소계(목질계) 바이오매스의 약산 추출후 증기 폭쇄방법 및 그 장치
WO2003071025A2 (en) * 2002-02-22 2003-08-28 Gilles Gervais Process of treating lignocellulosic material to produce bio-ethanol
WO2007009463A2 (en) * 2005-07-19 2007-01-25 Holm Christensen Biosystemer Aps Method and apparatus for conversion of cellulosic material to ethanol
KR20090037078A (ko) * 2007-10-11 2009-04-15 전남대학교산학협력단 팝핑법을 이용한 리그노셀룰로스계 바이오매스의 전처리방법, 및 이를 이용한 당화합물 및 바이오에탄올의생산방법
JP2010004825A (ja) * 2008-06-27 2010-01-14 Honda Motor Co Ltd リグノセルロース系バイオマス原料の前処理方法及び装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120236A (en) * 1977-10-25 1978-10-17 The Popper's Choice Company Corn popper
CN100365099C (zh) * 2006-02-27 2008-01-30 淮北市辉克药业有限公司 全新的生物质生产液体燃料技术
US7666637B2 (en) * 2006-09-05 2010-02-23 Xuan Nghinh Nguyen Integrated process for separation of lignocellulosic components to fermentable sugars for production of ethanol and chemicals
CN101307159B (zh) * 2007-05-18 2011-06-15 杜昱光 一种以秸秆为原料制备吸附能力强的纤维的方法
US9988651B2 (en) * 2009-06-15 2018-06-05 Cavitation Technologies, Inc. Processes for increasing bioalcohol yield from biomass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010048481A (ko) * 1999-11-26 2001-06-15 손재익 섬유소계(목질계) 바이오매스의 약산 추출후 증기 폭쇄방법 및 그 장치
WO2003071025A2 (en) * 2002-02-22 2003-08-28 Gilles Gervais Process of treating lignocellulosic material to produce bio-ethanol
WO2007009463A2 (en) * 2005-07-19 2007-01-25 Holm Christensen Biosystemer Aps Method and apparatus for conversion of cellulosic material to ethanol
KR20090037078A (ko) * 2007-10-11 2009-04-15 전남대학교산학협력단 팝핑법을 이용한 리그노셀룰로스계 바이오매스의 전처리방법, 및 이를 이용한 당화합물 및 바이오에탄올의생산방법
JP2010004825A (ja) * 2008-06-27 2010-01-14 Honda Motor Co Ltd リグノセルロース系バイオマス原料の前処理方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160132165A (ko) * 2015-05-06 2016-11-17 서울대학교산학협력단 바이오매스 처리 방법
KR101699610B1 (ko) 2015-05-06 2017-01-25 서울대학교산학협력단 바이오매스 처리 방법

Also Published As

Publication number Publication date
CN102741419A (zh) 2012-10-17
WO2011093673A3 (ko) 2012-01-05
KR101036853B1 (ko) 2011-05-25
CN102741419B (zh) 2014-10-29
US20120301928A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
WO2011093673A2 (ko) 리그노셀룰로스계 바이오매스의 가수분해 전처리방법, 상기 방법으로 처리된 바이오매스로부터의 당화합물제조방법 및 바이오에탄올제조방법
US10513714B2 (en) Lignocellulosic conversion process comprising sulfur dioxide and/or sulfurous acid pretreatment
Negro et al. Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass
Cardona et al. Production of bioethanol from sugarcane bagasse: status and perspectives
Kuhad et al. Bioethanol production from Lantana camara (red sage): pretreatment, saccharification and fermentation
KR101657100B1 (ko) 리그노셀룰로오스계 바이오매스의 분별방법 및 분별장치
CA2694875C (en) Cellulase enzyme based method for the production of alcohol and glucose from pretreated lignocellulosic feedstock
Xu et al. Pretreatment on corn stover with low concentration of formic acid
Wang et al. Deconstructing recalcitrant Miscanthus with alkaline peroxide and electrolyzed water
US20100285534A1 (en) Combined thermochemical pretreatment and refining of lignocellulosic biomass
US20190032094A1 (en) Method for preparing sugar, bioethanol or microbial metabolite from lignocellulosic biomas
KR20100119018A (ko) 리그노셀룰로오스계 바이오매스의 전처리 방법
Jafari et al. Efficient bioconversion of whole sweet sorghum plant to acetone, butanol, and ethanol improved by acetone delignification
BRPI0904538B1 (pt) Processo de tratamento de biomassa vegetal
US20240175060A1 (en) Processes for co-producing xylitol with ethanol or other fermentation products
KR100965851B1 (ko) 팝핑법을 이용한 리그노셀룰로스계 바이오매스의 전처리방법, 및 이를 이용한 당화합물 및 바이오에탄올의생산방법
KR101037708B1 (ko) 목본식물계 및 다년생초본 식물계 바이오매스 가수분해 전처리방법, 상기 전 처리된 바이오매스로부터의 당화합물 및 바이오에탄올제조방법
Wang et al. Pretreatment and conversion of distiller's dried grains with solubles for acetone-butanol-ethanol (ABE) production
ES2706395T3 (es) Procedimiento de producción de etanol a partir de biomasa celulósica o lignocelulósica con el reciclaje de un vino etílico obtenido a partir de la fermentación de pentosas
BR112021012936A2 (pt) Método de tratamento de uma biomassa lignocelulósica
KR101585747B1 (ko) 목질계 바이오매스의 전처리 방법 및 장치
CN105647980B (zh) 一种木质纤维素酶解发酵产丁醇的方法
WO2010008189A2 (ko) 바이오에탄올의 제조 방법
Hanchar et al. Separation of glucose and pentose sugars by selective enzyme hydrolysis of AFEX-treated corn fiber
Jamal et al. Ball milling pretreatment of bagasse for ethanol production by enzymatic saccharification and fermentation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007623.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737312

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13574403

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11737312

Country of ref document: EP

Kind code of ref document: A2