WO2011093391A1 - 高誘電率樹脂シート、積層体、および高誘電率樹脂シートの製造方法 - Google Patents
高誘電率樹脂シート、積層体、および高誘電率樹脂シートの製造方法 Download PDFInfo
- Publication number
- WO2011093391A1 WO2011093391A1 PCT/JP2011/051633 JP2011051633W WO2011093391A1 WO 2011093391 A1 WO2011093391 A1 WO 2011093391A1 JP 2011051633 W JP2011051633 W JP 2011051633W WO 2011093391 A1 WO2011093391 A1 WO 2011093391A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dielectric constant
- resin sheet
- high dielectric
- less
- elastomer
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/16—Layered products comprising a layer of natural or synthetic rubber comprising polydienes homopolymers or poly-halodienes homopolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/302—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
- B32B27/322—Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/54—Yield strength; Tensile strength
Definitions
- the present invention relates to a resin sheet having a high dielectric constant used for a radio wave control member or the like.
- resin sheets having a predetermined dielectric property are widely used.
- a laminate in which a conductor layer is installed on one side or both sides of a resin sheet is used for a radio wave control member at a high frequency of a microwave band or higher.
- the resin sheet has been required to have a higher dielectric constant.
- the resin sheet is required to have flexibility and durability in order to expand its application.
- Patent Documents 1 to 3 disclose high dielectric constant materials using an elastomer.
- Japanese Unexamined Patent Publication No. 2008-291206 Japanese Unexamined Patent Publication No. 2005-89686 Japanese Patent No. 3485391 Japanese Unexamined Patent Publication No. 2006-1989 Japanese Unexamined Patent Publication No. 2005-94068
- Elastomers used for high dielectric constant materials as described above generally have a characteristic that the coefficient of linear expansion is relatively large.
- an elastomer an ethylene propylene rubber having a linear expansion coefficient of 24 ⁇ 10 ⁇ 5 / ° C., a chlorinated rubber of 19 ⁇ 10 ⁇ 5 / ° C., a butyl rubber of 18 ⁇ 10 ⁇ 5 / ° C., and 25 ⁇ 10 ⁇ 5 / ° C. butadiene rubber, silicone rubber 25 ⁇ 40 ⁇ 10 -5 / °C used.
- Patent Document 4 describes that one or two thermoplastic resins are blended within a range that does not impair the elasticity of the elastomer, but the linear expansion coefficient is suppressed to 10 ⁇ 10 ⁇ 5 / ° C. or less.
- Patent Document 5 proposes a composite material composed only of a synthetic resin and a dielectric ceramic, but it is difficult to suppress the tensile elastic modulus to 5000 MPa or less with the composition.
- the present invention has been made in view of such problems, and an object of the present invention is to provide a resin sheet having a high dielectric constant that hardly causes peeling even when a conductor layer is provided on the surface.
- the present invention relates to the following (1) to (12).
- the high dielectric constant resin sheet according to (1) which has a breaking elongation of 1% or more and 50% or less.
- thermoplastic resin has a C—H bond or a C—F bond as a basic skeleton.
- thermoplastic resin includes syndiotactic polystyrene.
- ⁇ r relative dielectric constant
- tan ⁇ dielectric loss tangent
- thermoplastic resin elastomer and filler
- B heating and kneading the thermoplastic resin, elastomer and strontium titanate to form a mixture
- C molding the mixture into a sheet-like molded body
- a method for producing a high dielectric constant resin sheet comprising: The high dielectric constant resin sheet contains a thermoplastic resin, an elastomer, and strontium titanate, has a relative dielectric constant ( ⁇ r ) of 3.0 or more, a tensile elastic modulus of 5 MPa or more and 5000 MPa or less, A method for producing a high dielectric constant resin sheet having a linear expansion coefficient of 10 ⁇ 10 ⁇ 5 / ° C.
- the high dielectric constant resin sheet has a relative dielectric constant ( ⁇ r ) of 5.0 or more and 30 or less and a dielectric loss tangent (tan ⁇ ) of 0.01 or less (7) or ( The method for producing a high dielectric constant resin sheet according to 8).
- step (d) The method for manufacturing a laminate according to (10), wherein the step (d) is performed by thermocompression bonding a conductor to the surface of the molded body. (12) After step (d), (E) patterning the conductor layer; (10) The manufacturing method of the laminated body as described in (11) characterized by having.
- FIG. 1 is a diagram showing a schematic flow of an example of a method for producing a high dielectric constant resin sheet according to the present invention.
- FIG. 2 is a diagram schematically showing an example of a manufacturing machine for continuously manufacturing a laminate according to the present invention.
- FIG. 3 is a diagram schematically showing a side surface of a jig for measuring the minimum radius of curvature of the resin sheet.
- FIG. 4 is a diagram showing the shape of a test piece used when measuring the tensile modulus and elongation at break of a resin sheet.
- the elastomers described in Patent Documents 1 to 3 used as a high dielectric constant material generally have a problem that the linear expansion coefficient is relatively large.
- the linear expansion coefficient is greatly different between the conductor layer and the resin sheet.
- the conductor layer tends to be peeled when the conductor layer is installed on the surface of the resin sheet or when the resin sheet is used.
- a resin sheet having a high dielectric constant and flexibility is provided, and this resin sheet includes a thermoplastic resin having a linear expansion coefficient of 10 ⁇ 10 ⁇ 5 / ° C. or less.
- a thermoplastic resin having a linear expansion coefficient of 10 ⁇ 10 ⁇ 5 / ° C. or less is provided, and this resin sheet includes a thermoplastic resin having a linear expansion coefficient of 10 ⁇ 10 ⁇ 5 / ° C. or less.
- the elongation at break of an elastomer tends to increase as the linear expansion coefficient increases.
- the elongation at break of the elastomer is remarkably increased, there may be a problem that the accuracy of the processing dimension of the resin sheet is lowered.
- the linear expansion coefficient of the thermoplastic resin is suppressed to 10 ⁇ 10 ⁇ 5 / ° C. or less. For this reason, the problem that the precision of the processing dimension of a resin sheet falls is reduced.
- high dielectric constant means a relative dielectric constant of 3.0 or more.
- the high dielectric constant resin sheet of the present invention has a thickness. May be in the range of 0.2 mm to 2 mm, and may have a relative dielectric constant of 5.0 to 30.
- the dielectric loss tangent (tan ⁇ ) is preferably 0.01 or less.
- the tensile elastic modulus of the resin sheet is 5 MPa or more and 5000 MPa or less.
- the tensile elastic modulus is less than 5 MPa, the rigidity becomes low and processing such as cutting becomes difficult.
- the tensile elastic modulus exceeds 5000 MPa, the rigidity becomes too high and it becomes difficult to mount on an uneven surface.
- the thermoplastic resin preferably has a C—H bond or a C—F bond as a basic skeleton.
- the thermoplastic resin having a C—H bond as a basic skeleton include syndiotactic polystyrene and polypropylene.
- examples of the thermoplastic resin having a C—F bond as a basic skeleton include polyvinylidene fluoride and an ethylenetetrafluoroethylene copolymer.
- the mixing ratio of syndiotactic polystyrene and elastomer is, for example, in the range of 40:60 to 60:40 (volume ratio). It is.
- thermoplastic resin is defined as a thermoplastic resin that does not include an elastomer described later.
- elastomers examples include polystyrene elastomers, olefin elastomers, and urethane elastomers.
- natural rubber, butadiene rubber, styrene butadiene rubber, acrylonitrile rubber, butyl rubber and so-called synthetic rubbers are also in this category.
- the linear expansion coefficient of the elastomer is preferably 15 ⁇ 10 ⁇ 5 / ° C. or more.
- thermoplastic resin in the high dielectric constant resin sheet according to the present invention is subjected to a chemical partial cross-linking treatment such as addition of a peroxide or a mechanical partial cross-linking treatment such as electron beam (EB) irradiation, thereby thermoplasticity.
- a chemical partial cross-linking treatment such as addition of a peroxide or a mechanical partial cross-linking treatment such as electron beam (EB) irradiation, thereby thermoplasticity.
- EB electron beam
- the high dielectric constant resin sheet according to the present invention is constituted by dispersing strontium titanate (SrTiO 3 ) as a filler in a mixture of a thermoplastic resin and an elastomer.
- strontium titanate (SrTiO 3 ) may be used alone or in combination with other fillers.
- examples of such fillers include strontium (Sr), barium (Ba), zirconium (Zr), silicon (Si), titanium (Ti), magnesium (Mg), lanthanum (La), neodymium (Nd), bismuth.
- Ni calcium (Ca), cobalt (Co), palladium (Pd), zinc (Zn), beryllium (Be), cadmium (Cd), tin (Sn), lithium (Li), niobium (Nb), cerium Oxide particles containing at least one of (Ce), tantalum (Ta), sodium (Na), samarium (Sm), and aluminum (Al) may be used.
- the particle size of the oxide particles used as the filler is not particularly limited.
- the particle size (diameter) of the oxide particles is, for example, in the range of 0.1 ⁇ m to 10 ⁇ m (for example, 0.9 to 1.0 ⁇ m).
- thermoplastic resin and the elastomer and the filler is not particularly limited, but is, for example, in the range of 50:50 to 70:30 (volume ratio), for example, 60:40 ( Volume ratio).
- FIG. 1 an example of the manufacturing method of the high dielectric constant resin sheet by this invention is shown.
- the manufacturing method of the high dielectric constant resin sheet according to the present invention is as follows. (A) preparing a thermoplastic resin, an elastomer and a filler (step S110); (B) heating and kneading the thermoplastic resin, elastomer and filler to form a mixture (step S120); (C) forming the mixture into a sheet (step S130); Thus, a high dielectric constant resin sheet having a linear expansion coefficient of 10 ⁇ 10 ⁇ 5 / ° C. or less can be obtained.
- the manufacturing method of the laminate according to the present invention further includes: (D) A step of installing a conductor layer on at least one surface of the molded body obtained in step (c) (S140). including.
- the method for producing the laminate of the present invention includes: (E) Patterning the conductor layer (S150) May further be included.
- thermoplastic resin an elastomer, and a filler are prepared.
- the thermoplastic resin, the elastomer and the filler the materials as described above can be used.
- thermoplastic resin, the elastomer, and the filler are sufficiently dried before use.
- the drying conditions are not particularly limited.
- the drying may be performed by holding at 60 ° C. to 90 ° C. for about 12 hours to 48 hours.
- Step S120 Next, the prepared thermoplastic resin, elastomer, and filler are mixed at a predetermined volume ratio and heated and kneaded.
- the number of rotations during kneading is not particularly limited. The number of rotations may be in the range of 10 rpm to 200 rpm, for example.
- the kneading temperature varies depending on the thermoplastic resin and elastomer used, but is approximately in the range of 150 ° C to 350 ° C.
- the treatment temperature is preferably in the range of 220 ° C. to 320 ° C.
- Such a mixture may be used in the subsequent steps in the molten state, or may be used after solidifying into a pellet.
- Step S130 Next, the obtained mixture (which may be in the form of a melt or a pellet) is formed into a desired sheet shape using an extruder or the like to form a formed body. Moreover, a high dielectric constant resin sheet is obtained by cooling this molded object.
- Step S140 Through the above steps, it is possible to produce a high dielectric constant resin sheet according to the present invention. Further, a conductive layer such as a metal is provided on one side or both sides of the obtained resin sheet to obtain a laminate. May be configured. Such a structure can be used for a radio wave control member that requires a high dielectric constant.
- the installation method of the conductor layer on the resin sheet surface is not particularly limited, and various film forming methods such as a thermocompression bonding method, a plating method, a vapor deposition method, and a sputtering method can be used.
- the treatment temperature may be in the range of 150 ° C. to 350 ° C.
- the pressure during the pressure bonding may be in the range of 5 MPa to 50 MPa.
- a laminate may be configured by interposing an adhesive between the conductor layer and the resin sheet.
- the adhesive may be either liquid or solid (tape).
- the conductor layer installed on the surface of the resin sheet may be patterned in a desired arrangement if necessary.
- the patterning method is not particularly limited, and the conductor layer may be patterned by, for example, a normal etching process.
- each step may be performed batchwise or continuously.
- a single high dielectric constant resin sheet or laminate is obtained.
- the highly efficient resin sheet according to the present invention can be mass-produced efficiently.
- the above-described steps S130 to S140 that is, the step of forming the sheet-like formed body to the step of installing the conductor layer may be performed continuously.
- FIG. 2 schematically shows an example of a manufacturing machine for continuously manufacturing a laminate.
- the manufacturing machine 1 includes an extrusion process unit 100, a cooling process unit 120, a thermocompression bonding process unit 140, and a cutting process unit 160.
- the extrusion process part 100 is a part for extruding the compound 101 containing a thermoplastic resin, an elastomer and a filler.
- the extrusion process unit 100 includes an input machine 102 for inputting a pellet-shaped compound 101 and an extruder 104.
- the extruder 104 is, for example, a single-screw extruder, and a T-shaped die 106 is provided on the outlet side.
- the cooling process part 120 is a part for cooling the sheet-like molded body 122 extruded from the extrusion process part 100 while maintaining it in a predetermined thickness range.
- the cooling process unit 120 includes a plurality of shaping rollers 124.
- the thermocompression bonding process part 140 is a part for installing a conductive foil 146 to be a conductive layer later on both surfaces (upper and lower surfaces) 143 and 144 of the cooled sheet-like molded body 142.
- the thermocompression bonding process unit 140 includes a feeding machine 150, a backup roller 152, and a thermocompression bonding roller 154.
- a roll body composed of two layers of a base layer and a conductive foil is attached to the feeding machine 150.
- the conductor foil 146 of the roll body becomes a conductor layer formed on the surface of the resin sheet later.
- the base layer 159 is a substrate for supporting the conductor foil 146.
- the feeding machine 150 has a function of peeling the conductor foil 146 from the base layer 159 of the roll body.
- the backup roller 152 plays a role of winding the base layer 159 peeled off from the roll body. That is, the base layer 159 peeled off by the feeding machine 150 is wound around the backup roller 152 via the roller 151.
- the roller 153 has a role of drawing the conductor foil 146 peeled from the roll body and supplying it to the thermocompression roller 154.
- the heat press roller 154 draws the conductor foil 146 supplied from the roller 153 and presses the conductor foil 146 to the respective surfaces 143 and 144 of the sheet-like molded body 142.
- the laminated body 162 is discharged from the outlet side of the heat press roller 154.
- the cutting process part 160 is a part which cut
- the cutting process unit 160 includes a take-up machine 164, a vertical cutting cutter 166, and a cutting cutter 168.
- the take-up machine 164 has a function of conveying the laminate 162 obtained in the thermocompression bonding process unit 140 to the cutting process unit 160.
- the vertical cutting cutter 166 cuts the laminated body 162 along the vertical direction (flow direction of the laminated body 162).
- the cutting cutter 168 cuts the laminated body 162 into a final shape.
- a compound 101 containing a thermoplastic resin, an elastomer, and a filler is supplied to the charging machine 102 of the extrusion process unit 100.
- the compound 101 is melted in the extruder 104 and discharged from the T-shaped die 106 in a molten state.
- the discharged sheet-like molded body 122 is conveyed to the cooling process unit 120.
- the sheet-like molded body 122 is adjusted to a predetermined thickness range by the shaping roller 124 and cooled.
- the cooled sheet-like molded body 142 is conveyed to the thermocompression bonding process section 140.
- the conductor foil 146 supplied from the roll body in the feeder 150 is placed on both surfaces 143 and 144 of the cooled sheet-like molded body 142.
- the conductor foil 146 passes between the thermocompression-bonding roller 154 together with the cooled sheet-like molded body 142, whereby the conductor foil 146 is crimped to the surfaces 143 and 144 of the cooled sheet-like molded body 142.
- a laminate 162 is formed.
- the laminate 162 is conveyed to the cutting process unit 160 by the take-up machine 164.
- the laminate 162 is finished to a final shape after being cut by the vertical cutting cutter 166 and the cutting cutter 168.
- the continuous manufacturing method of the laminate using the manufacturing machine of FIG. 2 is an example, and the laminate may be continuously manufactured by other methods. .
- Example 1 A high dielectric constant resin sheet according to the present invention was manufactured by the following method.
- thermoplastic resin 2.7 g of syndiotactic polystyrene (SPS) was prepared as a thermoplastic resin, and 3.1 g of a polystyrene-based elastomer (trade name Dynalon, manufactured by JSR) was prepared as an elastomer.
- SPS syndiotactic polystyrene
- polystyrene-based elastomer trade name Dynalon, manufactured by JSR
- the linear expansion coefficient of SPS was 8.6 ⁇ 10 ⁇ 5 / ° C.
- the linear expansion coefficient of the polystyrene-based elastomer was 9.5 ⁇ 10 ⁇ 5 / ° C.
- the thermoplastic resin and the elastomer were subjected to a drying treatment by holding at 80 ° C. for 24 hours before use.
- thermoplastic resin elastomer and filler particles were kneaded by the following method.
- SPS and polystyrene elastomer were put into a kneader and kneaded by heating.
- the rotational speed of the kneader was about 100 rpm.
- the temperature of the kneader was kept at 300 ° C. Due to the kneading process, the supplied thermoplastic resin and elastomer were completely melted after several minutes.
- the strontium titanate particles were supplied to the kneader in several batches, and further kneaded. This mixture was cooled to room temperature to obtain 22 g of a mixture in which the thermoplastic resin, elastomer and strontium titanate particles were uniformly dispersed.
- the measurement was performed by a cavity resonator perturbation method using a network analyzer (Agilent 8722ES) and a cavity resonator (AET 2.4 GHz).
- the TM 010 mode resonance frequency f 0 and the no-load Q (Q u0 ) before inserting the sample into the cavity resonator are read from the network analyzer.
- the sample is inserted into the cavity resonator, and similarly, the resonance frequency f 1 of TM 010 mode and the unloaded Q (Q u1 ) are read from the network analyzer.
- V is the volume of the cavity resonator
- dV is the volume of the inserted sample.
- ⁇ 1 is a coefficient given by the following equation (3).
- J 1 (x) is a first-order Bessel function of the first type
- j 01 is 0 of the first type. This is the first root of the next Bessel function.
- the relative dielectric constant ( ⁇ r ′) and dielectric loss tangent (tan ⁇ ) of the resin sheet according to Example 1 by this method the relative dielectric constant ( ⁇ r ′) is 12, and the dielectric loss tangent (tan ⁇ ) was 0.003.
- the minimum curvature radius measurement was implemented using the sample which cut the resin sheet which concerns on Example 1 into length 100mm and width 10mm.
- FIG. 3 shows the side of each jig.
- the curvature radius (R) of the curved surface of each jig is different.
- R min the minimum radius of curvature
- the minimum radius of curvature R min was 5 mm.
- a cylindrical container, a piping pipe, or a housing of an electronic device can be considered as an object to be attached having a curvature. Therefore, it is preferable that the minimum imaginary radius is at least 5 mm.
- a tensile tester Tensilon RTC-1210 type manufactured by Orientec Co., Ltd. was used, and measurement was performed based on JIS-K7161 (plastic-tensile property test method).
- the sample was fixed to a tensile tester with a distance between marked lines of 10 mm.
- the tensile speed was 50 mm / min.
- ⁇ 1 and ⁇ 2 are strains
- L 0 is the distance between the marked lines of the sample (mm)
- ⁇ L 0 is the increment (mm) of the distance between the marked lines of the sample.
- the tensile elastic modulus Et was 400 MPa. Further, the tensile elongation at break ⁇ B (tensile strain corresponding to the tensile fracture stress) was 30%.
- Example 2 A high dielectric constant resin sheet according to the present invention was continuously produced by the following method.
- syndiotactic polystyrene (SPS) and a polystyrene-based elastomer (trade name Dynalon, manufactured by JSR Corporation) were prepared.
- spherical particles (average particle diameter of 1 ⁇ m) of strontium titanate (SrTiO 3 ) were prepared as fillers.
- the SPS and the polystyrene-based elastomer were subjected to a drying treatment by being held at 80 ° C. for 24 hours before use.
- each material was put into a separate hopper with a quantitative feed mechanism and continuously supplied to a twin screw extruder having a screw diameter of 15 mm.
- the supply weight ratio of each material was adjusted to be 1: 1.1: 7.4 (SPS: polystyrene elastomer: strontium titanate).
- the total raw material charging rate was 7 g / min.
- the temperature of the extruder was 290 ° C.
- the mixture melt-kneaded in the extruder was shaped into a strand having a diameter of 3 mm on the outlet side of the extruder. After cooling, this strand was continuously cut every 3 mm in length, and a pellet-like compound was formed at a molding speed of 7 g / min.
- a laminate (resin sheet with conductor layers installed on both sides) was formed from the obtained pellet-like compound by a continuous process using the manufacturing machine 1 shown in FIG.
- the extruder 104 having a screw diameter of 20 mm was used, and the outlet shape of the T-shaped die 106 was a rectangular shape having a width of 150 mm and a height of 0.6 mm.
- the temperature in the extruder 104 was 290 ° C.
- the extrusion speed was 110 g / min.
- thermocompression bonding section 140 a copper foil having a thickness of 3 ⁇ m was used for the conductor foil 146 installed on both surfaces 143 and 144 of the cooled sheet-like molded body 142.
- the obtained laminate was cut into a size of 20 mm ⁇ 50 mm in the cutting process section 160.
- a resin sheet sample in which the installation of the conductor layer on the resin sheet in the thermocompression bonding process unit 140 was omitted was manufactured as a prototype. Further, using these samples, the relative dielectric constant ( ⁇ r ′) and the dielectric loss tangent (tan ⁇ ) were measured by the method described above. Samples were taken from samples after 5 minutes, 30 minutes, and 60 minutes after the operation of the manufacturing machine was started and the supply of the completed resin sheet was stabilized.
- the relative dielectric constants ( ⁇ r ′) of the resin sheet after 5 minutes, 30 minutes, and 60 minutes were 12.4, 12.0, and 11.6, respectively. Stable values were obtained regardless of the timing.
- the dielectric loss tangent (tan ⁇ ) is 0.0029 (after 5 minutes), 0.0032 (after 30 minutes), and 0.0029 (after 60 minutes), respectively. Stable values were obtained regardless of the timing of sampling.
- the present invention can be applied to a high dielectric material of an electromagnetic wave control device such as an RFID tag and a mobile phone.
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
本発明は、熱可塑性樹脂とエラストマーおよびフィラーとしてチタン酸ストロンチウムを含み、比誘電率(εr)が3.0以上であり、引張弾性率が5MPa以上5000MPa以下である高誘電率樹脂シートであって、前記熱可塑性樹脂の線膨張係数は、10×10-5/℃以下であることを特徴とする高誘電率樹脂シートに関する。
Description
本発明は、電波制御部材等に使用される高い誘電率を有する樹脂シートに関する。
携帯電話機器や非接触式認証装置等の電波通信機器分野等において、所定の誘電特性を有する樹脂シートが広く使用されている。例えば、マイクロ波帯以上の高周波数における電波制御部材には、樹脂シートの片面または両面に、導電体層が設置された積層体が使用される。
しかしながら、近年、これらの装置のさらなる小型化、軽量化の要望に伴い、樹脂シートには、さらなる高誘電率化が求められるようになっている。また、樹脂シートには、その適用用途の拡大のため、柔軟性および耐久性が要求されるようになってきている。
このような背景の下、例えば特許文献1~3には、エラストマーを使用した高誘電率材料が開示されている。
前述のような高誘電率材料に使用されるエラストマーは、全般に、線膨張係数が比較的大きいという特徴を有する。例えば特許文献1では、エラストマーとして、線膨張係数が24×10-5/℃のエチレンプロピレンゴム、19×10-5/℃の塩化ゴム、18×10-5/℃のブチルゴム、25×10-5/℃のブタジエンゴム、25~40×10-5/℃のシリコーンゴムが使用される。
しかしながら、例えば、導電体層が表面に設置された樹脂シートの材料に、このようなエラストマーを使用した場合、導電体層と樹脂シートの間で線膨張係数が大きく異なってしまう。線膨張係数に大きな差異があると、樹脂シートの表面に導電体層を設置する際、あるいは樹脂シートの使用時等に、導電体層の剥離が生じやすくなるという問題がある。
また、特許文献4にはエラストマーの持つ弾力性を損なわない範囲内で熱可塑性樹脂の1種または2種を配合するとの記載があるが、線膨張係数を10×10-5/℃以下に抑えるためには、エラストマー性を損なう程の添加量、例えばエラストマー40wt%に対して60wt%の合成樹脂を添加する必要があった。一方、特許文献5には合成樹脂と誘電体セラミックスのみの複合材料が提案されているが、その組成では引張弾性率を5000MPa以下に抑える事は困難であった。
また、特許文献4にはエラストマーの持つ弾力性を損なわない範囲内で熱可塑性樹脂の1種または2種を配合するとの記載があるが、線膨張係数を10×10-5/℃以下に抑えるためには、エラストマー性を損なう程の添加量、例えばエラストマー40wt%に対して60wt%の合成樹脂を添加する必要があった。一方、特許文献5には合成樹脂と誘電体セラミックスのみの複合材料が提案されているが、その組成では引張弾性率を5000MPa以下に抑える事は困難であった。
本発明は、このような課題に鑑みなされたものであり、本発明では、表面に導電体層を設置しても、剥離が生じにくい高誘電率の樹脂シートを提供することを目的とする。
すなわち、本発明は以下の(1)~(12)に関する。
(1)熱可塑性樹脂とエラストマーおよびフィラーとしてチタン酸ストロンチウムを含み、比誘電率(εr)が3.0以上であり、引張弾性率が5MPa以上5000MPa以下である高誘電率樹脂シートであって、
前記熱可塑性樹脂の線膨張係数は、10×10-5/℃以下であることを特徴とする高誘電率樹脂シート。
(2)1%以上50%以下の破断伸びを有することを特徴とする(1)に記載の高誘電率樹脂シート。
(3)前記熱可塑性樹脂は、C-H結合またはC-F結合を基本骨格とすることを特徴とする(1)に記載の高誘電率樹脂シート。
(4)前記熱可塑性樹脂は、シンジオタクティックポリスチレンを含むことを特徴とする(1)に記載の高誘電率樹脂シート。
(5)比誘電率(εr)が5.0以上30以下であり、誘電正接(tanδ)が0.01以下であることを特徴とする(1)に記載の高誘電率樹脂シート。
(6)高誘電率樹脂シートの片面または両面に、導電体層が設置された積層体であって、
前記高誘電率樹脂シートは、(1)乃至(5)のいずれか一つに記載の高誘電率樹脂シートであることを特徴とする積層体。
(7)(a)熱可塑性樹脂、エラストマーおよびフィラーとしてチタン酸ストロンチウムを準備するステップと、
(b)前記熱可塑性樹脂、エラストマーおよびチタン酸ストロンチウムを加熱混練して、混合物を形成するステップと、
(c)前記混合物をシート状の成形体に成形するステップと、
を有する高誘電率樹脂シートの製造方法であって、
前記高誘電率樹脂シートが熱可塑性樹脂、エラストマーおよびチタン酸ストロンチウムを含み、比誘電率(εr)が3.0以上であり、引張弾性率が5MPa以上5000MPa以下であり、前記熱可塑性樹脂の線膨張係数が10×10-5/℃以下である高誘電率樹脂シートの製造方法。
(8)前記高誘電率樹脂シートは、1%以上50%以下の破断伸びを有することを特徴とする(7)に記載の高誘電率樹脂シートの製造方法。
(9)前記高誘電率樹脂シートは、比誘電率(εr)が5.0以上30以下であり、誘電正接(tanδ)が0.01以下であることを特徴とする(7)または(8)に記載の高誘電率樹脂シートの製造方法。
(10)(7)乃至(9)のいずれか一つに記載の高誘電率樹脂シートの製造方法、及び、
(d)前記ステップ(c)において得られた成形体の少なくとも一つの表面に、導電体層を設置するステップ、
を含む、積層体の製造方法。
(11)前記ステップ(d)は、前記成形体の前記表面に、導電体を加熱圧着することにより行われることを特徴とする(10)に記載の積層体の製造方法。
(12)前記ステップ(d)の後、
(e)前記導電体層をパターン化するステップ、
を有することを特徴とする(10)または(11)に記載の積層体の製造方法。
(1)熱可塑性樹脂とエラストマーおよびフィラーとしてチタン酸ストロンチウムを含み、比誘電率(εr)が3.0以上であり、引張弾性率が5MPa以上5000MPa以下である高誘電率樹脂シートであって、
前記熱可塑性樹脂の線膨張係数は、10×10-5/℃以下であることを特徴とする高誘電率樹脂シート。
(2)1%以上50%以下の破断伸びを有することを特徴とする(1)に記載の高誘電率樹脂シート。
(3)前記熱可塑性樹脂は、C-H結合またはC-F結合を基本骨格とすることを特徴とする(1)に記載の高誘電率樹脂シート。
(4)前記熱可塑性樹脂は、シンジオタクティックポリスチレンを含むことを特徴とする(1)に記載の高誘電率樹脂シート。
(5)比誘電率(εr)が5.0以上30以下であり、誘電正接(tanδ)が0.01以下であることを特徴とする(1)に記載の高誘電率樹脂シート。
(6)高誘電率樹脂シートの片面または両面に、導電体層が設置された積層体であって、
前記高誘電率樹脂シートは、(1)乃至(5)のいずれか一つに記載の高誘電率樹脂シートであることを特徴とする積層体。
(7)(a)熱可塑性樹脂、エラストマーおよびフィラーとしてチタン酸ストロンチウムを準備するステップと、
(b)前記熱可塑性樹脂、エラストマーおよびチタン酸ストロンチウムを加熱混練して、混合物を形成するステップと、
(c)前記混合物をシート状の成形体に成形するステップと、
を有する高誘電率樹脂シートの製造方法であって、
前記高誘電率樹脂シートが熱可塑性樹脂、エラストマーおよびチタン酸ストロンチウムを含み、比誘電率(εr)が3.0以上であり、引張弾性率が5MPa以上5000MPa以下であり、前記熱可塑性樹脂の線膨張係数が10×10-5/℃以下である高誘電率樹脂シートの製造方法。
(8)前記高誘電率樹脂シートは、1%以上50%以下の破断伸びを有することを特徴とする(7)に記載の高誘電率樹脂シートの製造方法。
(9)前記高誘電率樹脂シートは、比誘電率(εr)が5.0以上30以下であり、誘電正接(tanδ)が0.01以下であることを特徴とする(7)または(8)に記載の高誘電率樹脂シートの製造方法。
(10)(7)乃至(9)のいずれか一つに記載の高誘電率樹脂シートの製造方法、及び、
(d)前記ステップ(c)において得られた成形体の少なくとも一つの表面に、導電体層を設置するステップ、
を含む、積層体の製造方法。
(11)前記ステップ(d)は、前記成形体の前記表面に、導電体を加熱圧着することにより行われることを特徴とする(10)に記載の積層体の製造方法。
(12)前記ステップ(d)の後、
(e)前記導電体層をパターン化するステップ、
を有することを特徴とする(10)または(11)に記載の積層体の製造方法。
本発明では、表面に導電体層を設置しても、剥離が生じにくい高誘電率の樹脂シートを提供することができる。
以下、本発明について詳しく説明する。
前述のように、高誘電率材料として使用される、特許文献1~3に記載のエラストマーには、全般に、線膨張係数が比較的大きいという問題がある。このようなエラストマーを、導電体層が表面に設置される樹脂シートの材料として使用した場合、導電体層と樹脂シートの間で線膨張係数が大きく異なってしまう。また、線膨張係数に大きな差異があると、樹脂シートの表面に導電体層を設置する際、あるいは樹脂シートの使用時等に、導電体層の剥離が生じやすくなるという問題がある。
これに対して、本発明では、高誘電率かつ可撓性のある樹脂シートが提供され、この樹脂シートは、線膨張係数が10×10-5/℃以下の熱可塑性樹脂を含むという特徴を有する。この特徴のため、本発明の「高誘電率」樹脂シートでは、表面に導電体層を設置した場合、導電体層と樹脂シートの間の線膨張係数の差異を小さくすることができる。従って、本発明では、樹脂シートと導電体層との間に、良好な耐剥離性を得ることができる。
また、一般に、エラストマーの破断伸びは、線膨張係数が大きくなるとともに増大する傾向にある。しかしながら、エラストマーの破断伸びが著しく大きくなると、樹脂シートの加工寸法の精度が低下するという問題が生じ得る。
しかしながら、本発明の樹脂シートの場合、熱可塑性樹脂の線膨張係数は、10×10-5/℃以下に抑えられている。このため、樹脂シートの加工寸法の精度が低下するという問題が軽減される。
ここで、本願において、「高誘電率」とは、3.0以上の比誘電率を意味する。特に、RFIDタグおよび携帯電話のような電磁波制御装置の高誘電体部材(以下、これらをまとめて「電波制御部材」とも称する)を考慮した場合、本発明の高誘電率樹脂シートは、厚さを0.2mm~2mmの範囲と仮定して、5.0以上30以下の比誘電率を有しても良い。なお、この場合、誘電正接(tanδ)は、0.01以下であることが好ましい。
また、樹脂シートの引張弾性率は、5MPa以上5000MPa以下である。引張弾性率が5MPaを下回ると、剛性が低くなり、切断等の加工が難しくなる。一方、引張弾性率が5000MPaを超えると、剛性が高くなりすぎて、凹凸のある表面への装着が難しくなる。
熱可塑性樹脂は、基本骨格としてC-H結合またはC-F結合を有するものが好ましい。基本骨格としてC-H結合を有する熱可塑性樹脂としては、シンジオタクティックポリスチレン、ポリプロピレン等が挙げられる。また、基本骨格としてC-F結合を有する熱可塑性樹脂としては、ポリフッ化ビニリデン、エチレンテトラフルオロエチレン共重合体等が挙げられる。
熱可塑性樹脂として、例えば、シンジオタクティックポリスチレンを使用する場合、シンジオタクティックポリスチレンとエラストマーの混合比(シンジオタクティックポリスチレン:エラストマー)は、例えば、40:60~60:40(体積比)の範囲である。
なお、本明細書において、「熱可塑性樹脂」という用語は、後述するエラストマーを含まない熱可塑性樹脂として定義されるものとする。
エラストマーとしては、ポリスチレン系エラストマー、オレフィン系エラストマーおよびウレタン系エラストマーなどが挙げられる。また、天然ゴムやブタジエンゴム、スチレンブタジエンゴム、アクリルニトリルゴムおよびブチルゴム等の合成ゴムと呼ばれているものもこの範疇に入る。エラストマーの線膨張係数は15×10-5/℃以上が好ましい。
また、本発明による高誘電率樹脂シート中の熱可塑性樹脂に過酸化物添加などによる化学的な部分架橋処理または電子線(EB)照射等による機械的な部分架橋処理を施すことによって、熱可塑性樹脂の線膨張係数を10×10-5/℃以下に抑えても良い。
また、本発明による高誘電率樹脂シートは、熱可塑性樹脂及びエラストマーの混合物中にフィラーとしてのチタン酸ストロンチウム(SrTiO3)を分散させることにより構成されている。
フィラーとしては、チタン酸ストロンチウム(SrTiO3)を単独で使用しても、その他のフィラーと組み合わせて使用してもよい。そのようなフィラーとしては、例えば、ストロンチウム(Sr)、バリウム(Ba)、ジルコニウム(Zr)、シリコン(Si)、チタン(Ti)、マグネシウム(Mg)、ランタン(La)、ネオジウム(Nd)、ビスマス(Bi)、カルシウム(Ca)、コバルト(Co)、パラジウム(Pd)、亜鉛(Zn)、ベリリウム(Be)、カドミウム(Cd)、スズ(Sn)、リチウム(Li)、ニオブ(Nb)、セリウム(Ce)、タンタル(Ta)、ナトリウム(Na)、サマリウム(Sm)およびアルミニウム(Al)のうちの少なくとも一つを含む酸化物の粒子が使用されても良い。
フィラーとして使用される酸化物粒子の粒径は、特に限られない。酸化物粒子の粒径(直径)は、例えば0.1μm~10μmの範囲(例えば0.9~1.0μm)である。
熱可塑性樹脂及びエラストマーとフィラーの混合比(熱可塑性樹脂及びエラストマー:フィラー)は、特に限られないが、例えば、50:50~70:30(体積比)の範囲であり、例えば60:40(体積比)である。
(本発明による高誘電率樹脂シートの製造方法)
次に、本発明による高誘電率樹脂シートの製造方法の一例について説明する。
次に、本発明による高誘電率樹脂シートの製造方法の一例について説明する。
図1には、本発明による高誘電率樹脂シートの製造方法の一例を示す。図1に示すように、本発明による高誘電率樹脂シートの製造方法は、
(a)熱可塑性樹脂、エラストマーおよびフィラーを準備するステップ(ステップS110)と、
(b)前記熱可塑性樹脂、エラストマーおよびフィラーを加熱混練して、混合物を形成するステップ(ステップS120)と、
(c)前記混合物をシート状に成形するステップ(ステップS130)と、
を有し、これにより、線膨張係数が10×10-5/℃以下の高誘電率樹脂シートを得ることができる。
(a)熱可塑性樹脂、エラストマーおよびフィラーを準備するステップ(ステップS110)と、
(b)前記熱可塑性樹脂、エラストマーおよびフィラーを加熱混練して、混合物を形成するステップ(ステップS120)と、
(c)前記混合物をシート状に成形するステップ(ステップS130)と、
を有し、これにより、線膨張係数が10×10-5/℃以下の高誘電率樹脂シートを得ることができる。
なお、本発明による積層体の製造方法は、前記高誘電率樹脂シートの製造方法に加え、さらに、
(d)前記ステップ(c)において得られた成形体の少なくとも一つの表面に、導電体層を設置するステップ(S140)
を含む。
また、本発明の積層体の製造方法は、
(e)前記導電体層をパターン化するステップ(S150)
をさらに有しても良い。
(d)前記ステップ(c)において得られた成形体の少なくとも一つの表面に、導電体層を設置するステップ(S140)
を含む。
また、本発明の積層体の製造方法は、
(e)前記導電体層をパターン化するステップ(S150)
をさらに有しても良い。
以下、各ステップについて説明する。
(ステップS110)
まず、熱可塑性樹脂、エラストマーおよびフィラーが準備される。熱可塑性樹脂、エラストマーおよびフィラーとしては、前述のような材料を用いることができる。
まず、熱可塑性樹脂、エラストマーおよびフィラーが準備される。熱可塑性樹脂、エラストマーおよびフィラーとしては、前述のような材料を用いることができる。
なお、熱可塑性樹脂、エラストマーおよびフィラーは、使用前に十分乾燥されることが好ましい。乾燥条件は、特に限られないが、例えば、60℃~90℃で、12時間~48時間程度保持することにより、乾燥を行っても良い。
(ステップS120)
次に、準備された熱可塑性樹脂、エラストマーおよびフィラーが所定の体積比で混合され、加熱混練される。混練の際の回転数は、特に限られない。回転数は、例えば10rpm~200rpmの範囲であっても良い。
次に、準備された熱可塑性樹脂、エラストマーおよびフィラーが所定の体積比で混合され、加熱混練される。混練の際の回転数は、特に限られない。回転数は、例えば10rpm~200rpmの範囲であっても良い。
混練処理温度は、使用する熱可塑性樹脂やエラストマーによっても変化するが、おおよそ150℃~350℃の範囲である。例えば、熱可塑性樹脂としてシンジオタクティックポリスチレンを用い、エラストマーと混合される場合、処理温度は、220℃~320℃の範囲であることが好ましい。
これにより、フィラー粒子を含む混合物が得られる。このような混合物は、溶融状態のまま次以降の工程に使用しても良いし、一旦ペレット状に固化させて使用しても良い。
(ステップS130)
次に、押出機等を用いて、得られた混合物(溶融物またはペレットの形態であっても良い)を所望のシート形状に成形し、成形体を形成する。また、この成形体を冷却することにより、高誘電率樹脂シートが得られる。
次に、押出機等を用いて、得られた混合物(溶融物またはペレットの形態であっても良い)を所望のシート形状に成形し、成形体を形成する。また、この成形体を冷却することにより、高誘電率樹脂シートが得られる。
(ステップS140)
以上の工程により、本発明による高誘電率樹脂シートを製造することが可能であるが、さらに、得られた樹脂シートの片面または両面に、金属のような導電体層を設置して、積層体を構成しても良い。このような構成体は、高誘電率が必要な電波制御部材等に利用することができる。
以上の工程により、本発明による高誘電率樹脂シートを製造することが可能であるが、さらに、得られた樹脂シートの片面または両面に、金属のような導電体層を設置して、積層体を構成しても良い。このような構成体は、高誘電率が必要な電波制御部材等に利用することができる。
ここで、樹脂シート表面への導電体層の設置方法は、特に限られず、加熱圧着法、めっき法、蒸着法、スパッタ法等の各種成膜方法が利用できる。加熱圧着法の場合、処理温度は、150℃~350℃の範囲であり、圧着の際の圧力は、5MPa~50MPaの範囲であっても良い。
また、導電体層と樹脂シートの間に接着剤を介在させて、積層体を構成しても良い。接着剤は、液体状および固体(テープ)状のいずれのものを使用しても良い。
(ステップS150)
樹脂シートの表面に設置された導電体層は、必要な場合、所望の配置にパターン化されても良い。パターン化の方法は、特に限られず、例えば、通常のエッチング処理等により、導電体層をパターン化しても良い。
樹脂シートの表面に設置された導電体層は、必要な場合、所望の配置にパターン化されても良い。パターン化の方法は、特に限られず、例えば、通常のエッチング処理等により、導電体層をパターン化しても良い。
なお、前述のような本発明による高誘電率樹脂シートの製造方法において、各工程は、バッチ式に行われても、連続的に行われても良い。各工程がバッチ式に行われる場合、単一の高誘電率樹脂シートまたは積層体が得られる。
これに対して、各工程を連続的に行った場合、本発明による高効率樹脂シートを効率的に量産することができる。例えば、前述のステップS130~ステップS140の工程、すなわちシート状成形体の成形工程~導電体層の設置工程までを連続的に行っても良い。
図2には、積層体を連続的に製造する製造機の一例を概略的に示す。
この製造機1は、押出工程部100、冷却工程部120、加熱圧着工程部140、および切断工程部160とで構成される。
押出工程部100は、熱可塑性樹脂、エラストマーおよびフィラーを含むコンパウンド101を押出成形するための部分である。押出工程部100は、ペレット状のコンパウンド101を投入するための投入機102と、押出機104とを備える。押出機104は、例えば1軸式の押出機であり、出口側には、T型ダイス106が備え付けられている。
冷却工程部120は、押出工程部100から押し出されたシート状の成形体122を、所定の厚さ範囲に維持しながら、冷却するための部分である。冷却工程部120は、複数の賦形ローラ124を有する。
加熱圧着工程部140は、冷却されたシート状成形体142の両表面(上下面)143および144に、後に導電体層となる導電体の箔146を設置するための部分である。加熱圧着工程部140は、繰り出し機150と、バックアップローラ152と、加熱圧着ローラ154とを有する。
繰り出し機150には、下地層と導電体箔の2層で構成されるロール体が取り付けられている。このロール体の導電体箔146は、後に樹脂シートの表面に形成された導電体層となるものである。一方、下地層159は、この導電体箔146を支持するための基板である。繰り出し機150は、ロール体の下地層159から導電体箔146を剥離する機能を有する。
バックアップローラ152は、ロール体から剥離された下地層159を巻き取る役割を果たす。すなわち、繰り出し機150において剥離された下地層159は、ローラ151を介してバックアップローラ152に巻き取られる。
一方、ローラ153は、ロール体から剥離された導電体箔146を引き寄せ、これを加熱圧着ローラ154の方に供給する役割を有する。
加熱圧着ローラ154は、ローラ153から供給される導電体箔146を引き寄せるとともに、この導電体箔146をシート状成形体142の各表面143、144に圧着する。
従って、加熱圧着ローラ154の出口側からは、積層体162が排出される。
切断工程部160は、積層体162を所望の寸法に切断する部分である。切断工程部160は、引取機164と、縦切カッター166と、裁断カッター168とを備える。引取機164は、加熱圧着工程部140において得られた積層体162を、切断工程部160まで搬送する機能を有する。縦切カッター166は、積層体162を縦方向(積層体162の流れ方向)に沿って切断する。裁断カッター168は、積層体162を最終形状に切断する。
次に、このような製造機1の動作について、簡単に説明する。
まず、押出工程部100の投入機102に、熱可塑性樹脂、エラストマーおよびフィラーを含むコンパウンド101が供給される。このコンパウンド101は、押出機104内で溶融され、T型ダイス106から溶融した状態で排出される。
排出されたシート状成形体122は、冷却工程部120に搬送される。冷却工程部120では、シート状成形体122は、賦形ローラ124により、所定の厚さ範囲に調整され、冷却される。
次に、冷却されたシート状成形体142は、加熱圧着工程部140に搬送される。ここでは、冷却されたシート状成形体142の両表面143、144に、繰り出し機150内のロール体から供給された導電体箔146が置載される。また、この導電体箔146は、冷却されたシート状成形体142とともに加熱圧着ローラ154の間を通り、これにより、導電体箔146が冷却されたシート状成形体142の表面143、144に圧着され、積層体162が形成される。
次に、積層体162は、引取機164により、切断工程部160に搬送される。切断工程部160では、積層体162は、縦切カッター166および裁断カッター168による切断を経て、最終形状に仕上げられる。
なお、図2の製造機を用いた積層体の連続製造法は、一例であって、積層体をその他の方法で、連続的に製造しても良いことは、当業者には、明らかである。
以下、本発明の実施例について説明する。
(実施例1)
以下の方法により、本発明による高誘電率樹脂シートを製作した。
以下の方法により、本発明による高誘電率樹脂シートを製作した。
まず、熱可塑性樹脂として、シンジオタクティックポリスチレン(SPS)2.7g、およびエラストマーとしてポリスチレン系エラストマー(商品名ダイナロン、JSR社製)3.1gを準備した。SPSの線膨張係数は、8.6×10-5/℃であった。ポリスチレン系エラストマーの線膨張係数は、9.5×10-5/℃であった。前記熱可塑性樹脂及びエラストマーは、水分を除去するため、使用前に、80℃で24時間保持することにより乾燥処理を行った。
また、フィラーとして、チタン酸ストロンチウムの球状粒子(平均粒径1μm)を20g準備した。
次に、以下の方法により、熱可塑性樹脂、エラストマー及びフィラー粒子を混練した。
まず、SPSおよびポリスチレン系エラストマーを混練機に投入し、加熱混練した。混練機の回転数は、100rpm程度とした。混練機の温度は、300℃に保持した。混練処理により、数分後には、供給した熱可塑性樹脂及びエラストマーが完全に溶融した。
次に、チタン酸ストロンチウム粒子を混練機に数回に分けて供給し、さらに混練処理を行った。この混合物を室温まで冷却し、熱可塑性樹脂、エラストマー及びチタン酸ストロンチウム粒子が均一に分散された混合物22gを得た。
この混合物約15gを、溝寸法が100×100×0.6mmのプレス金型内に入れ、プレス金型を、300℃に保持した50トンプレス機を用いて、面圧20MPaで5分間、加圧した。これにより、概略寸法が100×100×0.6mmの樹脂シート(以下、実施例1に係る樹脂シートと称する。)を得た。
(誘電率測定)
実施例1に係る樹脂シートを、長さ100mm、幅4mmにカットしたサンプルを用いて、比誘電率(εr')および誘電正接(tanδ)を測定した。
実施例1に係る樹脂シートを、長さ100mm、幅4mmにカットしたサンプルを用いて、比誘電率(εr')および誘電正接(tanδ)を測定した。
測定は、ネットワークアナライザ(Agilent社製8722ES)と、空洞共振器(AET社製、2.4GHz)とを用いた空洞共振器摂動法により実施した。
まず、サンプルを空洞共振器に挿入する前のTM010モードの共振周波数f0と、無負荷Q(Qu0)とを、ネットワークアナライザから読み取る。次に、サンプルを空洞共振器に挿入して、同様に、TM010モードの共振周波数f1、および無負荷Q(Qu1)を、ネットワークアナライザから読み取る。
得られた各値を用いて、以下の式(1)~(2)より、比誘電率(εr')および誘電正接(tanδ)を算定した。
ここで、Vは、空洞共振器の体積、dVは、挿入したサンプルの体積である。また、α1は、以下の式(3)で与えられる係数であり、式(3)において、J1(x)は、第1種1次ベッセル関数であり、j01は、第1種0次ベッセル関数の1番目の根である。
この方法により、実施例1に係る樹脂シートの比誘電率(εr')および誘電正接(tanδ)を求めた結果、比誘電率(εr')は、12であり、誘電正接(tanδ)は、0.003であった。
(最小曲率半径測定)
実施例1に係る樹脂シートを、長さ100mm、幅10mmにカットしたサンプルを用いて、最小曲率半径測定を実施した。
実施例1に係る樹脂シートを、長さ100mm、幅10mmにカットしたサンプルを用いて、最小曲率半径測定を実施した。
測定には、図3に示すような湾曲面(幅20mm)を有する複数の治具を使用した。図3には、各冶具の側面が示されている。図から明らかなように、各冶具の湾曲面の曲率半径(R)は、異なっている。測定の際には、各治具の表面の曲面に沿うようにしてサンプルを当て、サンプルが破断しないときの最小曲率半径(Rmin)を求めた。
測定の結果、最小曲率半径Rminは、5mmであった。
曲率を持った貼り付け対象物として円筒状の容器、配管パイプあるいは電子機器の筐体などが考えられる。そのため、最小虚率半径は、少なくとも5mmであることが好ましい。
曲率を持った貼り付け対象物として円筒状の容器、配管パイプあるいは電子機器の筐体などが考えられる。そのため、最小虚率半径は、少なくとも5mmであることが好ましい。
(引張弾性率および破断伸びの測定)
実施例1に係る樹脂シートを、図4の形状(全長63.5mm、最大幅9.5mm、最小幅3mmのダンベル形状)に切断した試験片を用いて、引張弾性率および破断伸びの測定を行った。
実施例1に係る樹脂シートを、図4の形状(全長63.5mm、最大幅9.5mm、最小幅3mmのダンベル形状)に切断した試験片を用いて、引張弾性率および破断伸びの測定を行った。
試験には、引張試験機テンシロンRTC-1210型((株)オリエンテック社製)を用い、JIS-K7161(プラスチック-引張特性の試験方法)に基づいて測定を行った。サンプルは、標線間距離10mmで、引張試験機に固定した。引張速度は、50mm/分とした。
引張弾性率Et(MPa)は、以下の式(4)で求められる:
Et=(σ2-σ1)/(ε2-ε1) (4)
ここで、ε1、ε2は、ひずみであり、σ1は、ひずみε1=0.0005のときの引張応力(MPa)であり、σ2は、ひずみε2=0.0025のときの引張応力(MPa)である。なお、ひずみε1、ε2は、以下の式(5)で求められる:
ε=ΔL0/L0 (5)
ここで、L0は、サンプルの標線間距離(mm)であり、ΔL0は、サンプルの標線間距離の増加分(mm)である。
Et=(σ2-σ1)/(ε2-ε1) (4)
ここで、ε1、ε2は、ひずみであり、σ1は、ひずみε1=0.0005のときの引張応力(MPa)であり、σ2は、ひずみε2=0.0025のときの引張応力(MPa)である。なお、ひずみε1、ε2は、以下の式(5)で求められる:
ε=ΔL0/L0 (5)
ここで、L0は、サンプルの標線間距離(mm)であり、ΔL0は、サンプルの標線間距離の増加分(mm)である。
測定の結果、引張弾性率Etは、400MPaであった。また、引張破断伸びεB(引張破壊応力に対応する引張ひずみ)は、30%であった。
(実施例2)
以下の方法により、本発明による高誘電率樹脂シートを連続的に製作した。
以下の方法により、本発明による高誘電率樹脂シートを連続的に製作した。
まず、シンジオタクティックポリスチレン(SPS)、およびポリスチレン系エラストマー(商品名ダイナロン、JSR社製)を準備した。また、フィラーとしてチタン酸ストロンチウム(SrTiO3)の球状粒子(平均粒径1μm)を準備した。なお、SPSおよびポリスチレン系エラストマーは、水分を除去するため、使用前に、80℃で24時間保持することにより乾燥処理を行った。
次に、各材料を別々の定量フィード機構付きホッパーに投入し、15mmのスクリュー径を有する二軸押出機に連続的に供給した。その際、それぞれの材料の供給重量比率は、1:1.1:7.4(SPS:ポリスチレン系エラストマー:チタン酸ストロンチウム)となるように調整した。総原料の投入速度は、7g/分とした。押出機の温度は、290℃とした。
押出機内で溶融混練された混合物は、押出機の出口側で、直径3mmのストランドに賦形した。このストランドは、冷却後、長さ3mm毎に連続的に切断され、7g/分の成形速度で、ペレット状のコンパウンドが形成された。
次に、得られたペレット状のコンパウンドから、図2に示した製造機1を用いた連続プロセスにより、積層体(導電体層が両面に設置された樹脂シート)を形成した。
押出機104には、スクリュー直径が20mmのものを用い、T型ダイス106の出口形状は、幅150mm、高さ0.6mmの矩形状とした。押出機104内の温度は、290℃とした。押出速度は、110g/分とした。
加熱圧着工程部140において、冷却されたシート状成形体142の両表面143、144に設置される導電体箔146には、厚さが3μmの銅箔を使用した。
得られた積層体は、切断工程部160において、20mm×50mmの寸法に切断した。
この方法で得られた各積層体において、導電体層の剥離等は、認められなかった。また、正確に所望の寸法に加工された積層体を得ることができた。
なお、同製造機において、加熱圧着工程部140での樹脂シートへの導電体層の設置を省略した樹脂シートサンプルを試作した。また、これらのサンプルを用いて、前述の方法により、比誘電率(εr')および誘電正接(tanδ)の測定を行った。サンプルは、製造機の運転を開始し、完成した樹脂シートの供給が安定してから、5分後、30分後、および60分後のものから採取した。
測定の結果、5分後、30分後、および60分後の樹脂シートの比誘電率(εr')は、それぞれ、12.4、12.0および11.6であり、サンプルの採取のタイミングに関わらず、安定した値が得られた。また、誘電正接(tanδ)は、それぞれ、0.0029(5分後)、0.0032(30分後)、および0.0029(60分後)であり、誘電正接(tanδ)に関しても、サンプルの採取のタイミングに関わらず、安定した値が得られた。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
本出願は、2010年1月29日出願の日本特許出願2010-019608に基づくものであり、その内容はここに参照として取り込まれる。
本出願は、2010年1月29日出願の日本特許出願2010-019608に基づくものであり、その内容はここに参照として取り込まれる。
本発明は、RFIDタグおよび携帯電話のような電磁波制御装置の高誘電体等に適用することができる。
1 製造機
100 押出工程部
101 コンパウンド
102 投入機
104 押出機
106 T型ダイス
120 冷却工程部
122 シート状成形体
124 賦形ローラ
140 加熱圧着工程部
142 冷却されたシート状成形体
143、144 表面
146 導電体箔
150 繰り出し機
151 ローラ
152 バックアップローラ
153 ローラ
154 加熱圧着ローラ
159 下地層
160 切断工程部
162 積層体
164 引取機
166 縦切カッター
168 裁断カッター
100 押出工程部
101 コンパウンド
102 投入機
104 押出機
106 T型ダイス
120 冷却工程部
122 シート状成形体
124 賦形ローラ
140 加熱圧着工程部
142 冷却されたシート状成形体
143、144 表面
146 導電体箔
150 繰り出し機
151 ローラ
152 バックアップローラ
153 ローラ
154 加熱圧着ローラ
159 下地層
160 切断工程部
162 積層体
164 引取機
166 縦切カッター
168 裁断カッター
Claims (12)
- 熱可塑性樹脂とエラストマーおよびフィラーとしてチタン酸ストロンチウムを含み、比誘電率(εr)が3.0以上であり、引張弾性率が5MPa以上5000MPa以下である高誘電率樹脂シートであって、
前記熱可塑性樹脂の線膨張係数は、10×10-5/℃以下であることを特徴とする高誘電率樹脂シート。 - 1%以上50%以下の破断伸びを有することを特徴とする請求項1に記載の高誘電率樹脂シート。
- 前記熱可塑性樹脂は、C-H結合またはC-F結合を基本骨格とすることを特徴とする請求項1に記載の高誘電率樹脂シート。
- 前記熱可塑性樹脂は、シンジオタクティックポリスチレンを含むことを特徴とする請求項1に記載の高誘電率樹脂シート。
- 比誘電率(εr)が5.0以上30以下であり、誘電正接(tanδ)が0.01以下であることを特徴とする請求項1に記載の高誘電率樹脂シート。
- 高誘電率樹脂シートの片面または両面に、導電体層が設置された積層体であって、
前記高誘電率樹脂シートは、請求項1乃至5のいずれか一つに記載の高誘電率樹脂シートであることを特徴とする積層体。 - (a)熱可塑性樹脂、エラストマーおよびフィラーとしてチタン酸ストロンチウムを準備するステップと、
(b)前記熱可塑性樹脂、エラストマーおよびチタン酸ストロンチウムを加熱混練して、混合物を形成するステップと、
(c)前記混合物をシート状の成形体に成形するステップと、
を有する高誘電率樹脂シートの製造方法であって、
前記高誘電率樹脂シートが熱可塑性樹脂、エラストマーおよびチタン酸ストロンチウムを含み、比誘電率(εr)が3.0以上であり、引張弾性率が5MPa以上5000MPa以下であり、前記熱可塑性樹脂の線膨張係数が10×10-5/℃以下である高誘電率樹脂シートの製造方法。 - 前記高誘電率樹脂シートは、1%以上50%以下の破断伸びを有することを特徴とする請求項7に記載の高誘電率樹脂シートの製造方法。
- 前記高誘電率樹脂シートは、比誘電率(εr)が5.0以上30以下であり、誘電正接(tanδ)が0.01以下であることを特徴とする請求項7または8に記載の高誘電率樹脂シートの製造方法。
- 請求項7乃至9のいずれか一つに記載の高誘電率樹脂シートの製造方法、及び、
(d)前記ステップ(c)において得られた成形体の少なくとも一つの表面に、導電体層を設置するステップ、
を含む、積層体の製造方法。 - 前記ステップ(d)は、前記成形体の前記表面に、導電体を加熱圧着することにより行われることを特徴とする請求項10に記載の積層体の製造方法。
- 前記ステップ(d)の後、
(e)前記導電体層をパターン化するステップ、
を有することを特徴とする請求項10または11に記載の積層体の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-019608 | 2010-01-29 | ||
JP2010019608A JP2013075928A (ja) | 2010-01-29 | 2010-01-29 | 高誘電率樹脂シート、積層体、および高誘電率樹脂シートの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011093391A1 true WO2011093391A1 (ja) | 2011-08-04 |
Family
ID=44319374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/051633 WO2011093391A1 (ja) | 2010-01-29 | 2011-01-27 | 高誘電率樹脂シート、積層体、および高誘電率樹脂シートの製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013075928A (ja) |
WO (1) | WO2011093391A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000185251A (ja) * | 1998-12-22 | 2000-07-04 | Idemitsu Petrochem Co Ltd | マスキングカバー |
JP2001310428A (ja) * | 2000-04-28 | 2001-11-06 | Idemitsu Petrochem Co Ltd | 積層フィルムおよびその用途 |
JP2003342431A (ja) * | 2002-05-28 | 2003-12-03 | Matsushita Electric Works Ltd | 熱可塑性樹脂組成物及び成形品 |
JP2005123209A (ja) * | 2000-10-18 | 2005-05-12 | Murata Mfg Co Ltd | 複合誘電体成形物 |
JP2008022416A (ja) * | 2006-07-14 | 2008-01-31 | Mitsubishi Gas Chem Co Inc | 高誘電体を用いたアンテナ |
WO2008090947A1 (ja) * | 2007-01-26 | 2008-07-31 | Daikin Industries, Ltd. | 高耐電圧を有する高誘電体フィルム |
-
2010
- 2010-01-29 JP JP2010019608A patent/JP2013075928A/ja active Pending
-
2011
- 2011-01-27 WO PCT/JP2011/051633 patent/WO2011093391A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000185251A (ja) * | 1998-12-22 | 2000-07-04 | Idemitsu Petrochem Co Ltd | マスキングカバー |
JP2001310428A (ja) * | 2000-04-28 | 2001-11-06 | Idemitsu Petrochem Co Ltd | 積層フィルムおよびその用途 |
JP2005123209A (ja) * | 2000-10-18 | 2005-05-12 | Murata Mfg Co Ltd | 複合誘電体成形物 |
JP2003342431A (ja) * | 2002-05-28 | 2003-12-03 | Matsushita Electric Works Ltd | 熱可塑性樹脂組成物及び成形品 |
JP2008022416A (ja) * | 2006-07-14 | 2008-01-31 | Mitsubishi Gas Chem Co Inc | 高誘電体を用いたアンテナ |
WO2008090947A1 (ja) * | 2007-01-26 | 2008-07-31 | Daikin Industries, Ltd. | 高耐電圧を有する高誘電体フィルム |
Also Published As
Publication number | Publication date |
---|---|
JP2013075928A (ja) | 2013-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3361487B1 (en) | Magnetic sheet, module comprising same, and portable device comprising same | |
EP0845148B1 (en) | Surface mount conductive polymer devices and method for manufacturing such devices | |
EP1530223B1 (en) | High thermal conductivity insulating member and its manufacturing method, electromagnetic coil, and electromagnetic device | |
EP1200509B1 (en) | Composites of powdered fillers and polymer matrix and process for preparing them | |
EP2767986B1 (en) | Insulated wire | |
US5849129A (en) | Continuous process and apparatus for manufacturing conductive polymer components | |
CN106832877A (zh) | 一种垂直取向氮化硼/高聚物绝缘导热材料的制备方法 | |
WO2011122202A1 (ja) | 成形体製造装置および成形体の製造方法 | |
EP2775589A1 (en) | Transmission sheet, transmission unit, and non-contact electric-power transmission system provided therewith | |
WO2001082311A1 (fr) | Ceramique dielectrique, composite de resine ceramique, pieces electriques, antenne et procede de fabrication correspondant | |
EP1767582A1 (en) | Highly dielectric elastomer composition and dielectric antenna | |
EP3499561A1 (en) | Heat transfer sheet and method for producing same | |
CN103153614B (zh) | 表面导电性多层片材 | |
US20120091615A1 (en) | Method and apparatus for providing reinforced composite materials with emi shielding | |
US20020187318A1 (en) | Lead frame and production process thereof and production process of thermally conductive substrate | |
US8524133B2 (en) | Method for manufacturing resin film for thin film-capacitor and the film therefor | |
WO2011093391A1 (ja) | 高誘電率樹脂シート、積層体、および高誘電率樹脂シートの製造方法 | |
CN100508716C (zh) | 电磁波吸收材料 | |
CN115926413B (zh) | 高分子聚合物制品及其制备方法和应用 | |
KR20170043157A (ko) | 전자파 차폐성과 흡수능을 갖는 고분자 복합체 및 그 제조방법 | |
JP5341417B2 (ja) | 改質ペロブスカイト型複合酸化物、その製造方法及び複合誘電体材料 | |
JP4158893B2 (ja) | 樹脂−セラミックス粉末複合材 | |
WO2020213527A1 (ja) | 樹脂フィルム、高周波回路基板及びその製造方法 | |
JP4496858B2 (ja) | 電子部品及び多層基板 | |
WO2021256340A1 (ja) | 樹脂フィルム及びその製造方法、プリント配線板、カバーレイ、並びに積層体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11737102 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11737102 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |