WO2011093301A1 - 基地局及び基地局での基準タイミングの調整方法 - Google Patents

基地局及び基地局での基準タイミングの調整方法 Download PDF

Info

Publication number
WO2011093301A1
WO2011093301A1 PCT/JP2011/051408 JP2011051408W WO2011093301A1 WO 2011093301 A1 WO2011093301 A1 WO 2011093301A1 JP 2011051408 W JP2011051408 W JP 2011051408W WO 2011093301 A1 WO2011093301 A1 WO 2011093301A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
reference timing
timing
unit
interference wave
Prior art date
Application number
PCT/JP2011/051408
Other languages
English (en)
French (fr)
Inventor
哲生 岡本
岩見 昌志
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN2011800069887A priority Critical patent/CN102763357A/zh
Priority to US13/575,350 priority patent/US9172576B2/en
Publication of WO2011093301A1 publication Critical patent/WO2011093301A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2681Details of algorithms characterised by constraints
    • H04L27/2688Resistance to perturbation, e.g. noise, interference or fading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0059Out-of-cell user aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • H04L27/2665Fine synchronisation, e.g. by positioning the FFT window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2669Details of algorithms characterised by the domain of operation
    • H04L27/2672Frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay

Definitions

  • the present invention relates to a reference timing adjustment technique in a base station that communicates with a plurality of communication terminals.
  • Patent Document 1 discloses a technique for reducing intersymbol interference and intercarrier interference in a receiving apparatus.
  • Non-Patent Document 1 describes a standard for the next generation PHS (Personal Handyphone System). This standard is called XGP (eXtended Global Platform).
  • the base station is connected to multiple communication terminals in the frequency domain using the OFDMA (Orthogonal Frequency Division Multiple Multiple Access) OFDM (Orthogonal Frequency Division Multiplexing) signal, which is a combination of multiple orthogonal subcarriers.
  • OFDMA Orthogonal Frequency Division Multiple Multiple Access
  • OFDM Orthogonal Frequency Division Multiplexing
  • the base station communicates with each communication terminal based on the reference timing defined in its own device, the base station and the communication terminal are not synchronized, and the communication terminal signals at its own timing.
  • the base station may not be able to perform FFT processing on the signal from the communication terminal at an appropriate FFT (Fast Fourier Transform) window position. As a result, the base station may not be able to accurately acquire data included in the received signal from the communication terminal.
  • FFT Fast Fourier Transform
  • the base station since the base station employs the OFDMA scheme, when the base station communicates with a plurality of communication terminals, one OFDM signal is composed of signals from the plurality of communication terminals. Therefore, in the base station, when the reception timings for the signals from the plurality of communication terminals do not match, the orthogonality between the reception signals from the plurality of communication terminals is lost, and the base station There is a possibility that the contained data cannot be obtained accurately.
  • a ranging process is performed between the two.
  • the base station obtains a delay amount from the reference timing defined by the own device with respect to the reception timing of the signal from the communication terminal, based on the known signal transmitted from the communication terminal.
  • the base station controls the transmission timing of the communication terminal based on the obtained delay amount.
  • the base station can receive all signals from the plurality of communication terminals at the reference timing.
  • the base station can perform FFT processing on signals from each communication terminal at an appropriate FFT window position, and can ensure orthogonality between signals from a plurality of communication terminals. Therefore, the base station can more appropriately acquire data included in the signal from each communication terminal.
  • next generation PHS a plurality of base stations communicate with communication terminals in synchronization with each other. Then, each base station obtains the signal level of the interference wave based on the result of performing the FFT process on the received signal, and based on the signal level of the interference wave, the radio resource not used by the neighboring base stations Has been identified.
  • each base station communicates with a communication terminal using radio resources that are not used by neighboring base stations, signal interference among a plurality of base stations can be suppressed.
  • each base station controls the transmission timing of the communication terminal so as to receive a signal from the communication terminal at the reference timing of its own device. Therefore, when paying attention to a certain base station, the target base station is a communication terminal communicating with a peripheral base station that is synchronized with the base station, and is a communication terminal that is located closer to its own device than the peripheral base station.
  • the target base station receives a signal from the communication terminal at a timing earlier than the reference timing.
  • the FFT window position with respect to the received signal is shifted, so that in the base station of interest, the frequency band used by the neighboring base stations Interference waves are also detected in other frequency bands. For this reason, there is a possibility that interference between carriers due to the shift of the FFT window position occurs. As a result, the communication quality of the base station of interest may be degraded.
  • the present invention has been made in view of the above points, and an object thereof is to provide a technology capable of improving the communication quality of a base station.
  • a base station is a base station of a wireless communication system in which a plurality of base stations communicate with a communication terminal in synchronization with each other, and each of the plurality of base stations is on a time-frequency plane.
  • a plurality of specified unit radio resources are shared among a plurality of communication terminals to communicate with a plurality of communication terminals based on a reference timing, and the one base station combines a plurality of carriers orthogonal to each other.
  • a receiving unit that receives the multicarrier signal, an FFT processing unit that performs FFT (Fast Fourier Transform) processing on the multicarrier signal received by the receiving unit, and each of a plurality of candidate timings for the reference timing Interference signal level acquisition for obtaining the signal level of the interference wave in the unit radio resource unused in the one base station based on the output signal of the FFT processing unit
  • a reference timing adjusting unit which determines the new timing of the reference timing from the plurality of candidate timings.
  • the reference timing adjustment unit has the largest number of unit radio resources whose signal level of the interference wave is equal to or less than a threshold value among the plurality of candidate timings. Such timing is set as a new timing of the reference timing.
  • the communication terminal in communication with the one base station according to the change amount of the reference timing
  • a transmission timing control unit that generates a control signal for adjusting the transmission timing, and a transmission unit that transmits the control signal to the communicating communication terminal are further provided.
  • a reference timing adjustment method in a base station is a reference timing adjustment method in one base station of a wireless communication system in which a plurality of base stations communicate with a communication terminal in synchronization with each other.
  • Each of the plurality of base stations shares a plurality of unit radio resources specified on a time-frequency plane among a plurality of communication terminals, communicates with the plurality of communication terminals based on a reference timing,
  • a step of performing FFT processing on the signal and
  • a result of the FFT processing in the step (a) in the one base station that performs communication operation at the one candidate timing is a result of the FFT processing in the step (a) in the one base station that performs communication operation at the one candidate timing.
  • the method further includes the step of determining a new timing of the reference timing from the plurality of candidate timings based on the signal level of the interference wave obtained in the step (b) at the plurality of candidate timings.
  • the communication quality of the base station can be improved.
  • FIG. 1 is a diagram showing a configuration of a wireless communication system 100 including a base station 1 according to the present embodiment.
  • the wireless communication system 100 is, for example, a next-generation PHS, and includes a plurality of base stations 1 that communicate with the communication terminal 2 in synchronization with each other.
  • Each base station 1 communicates with the communication terminal 2 based on the reference timing defined by the own device.
  • Each base station 1 is connected to the network 3 by an optical fiber or the like.
  • Each base station 1 transmits data received from the communication terminal 2 to the network 3, and transmits data received from the network 3 to the communication terminal 2.
  • each base station 1 performs wireless communication with a plurality of communication terminals 2 by the TDMA / TDD method (Time Division Multiple Access / Time Division Duplexing).
  • TDMA / TDD Time Division Multiple Access / Time Division Duplexing
  • a reception period composed of four slots and a transmission period composed of four slots appear alternately.
  • the OFDMA scheme is also employed as a multiple access scheme.
  • an OFDM signal that is a multicarrier signal in which a plurality of carrier waves orthogonal to each other are combined is used.
  • Each base station 1 shares a plurality of unit radio resources specified on a time-frequency plane (this unit radio resource is called “PRU (Physical Resourse Unit)”) among a plurality of communication terminals 2. Then, multiple access communication is performed with a plurality of communication terminals 2 in the time domain and the frequency domain.
  • PRU Physical Resourse Unit
  • FIG. 2 shows an arrangement example of the base stations 1.
  • FIG. 2 shows two base stations 1A and 1B among a plurality of base stations 1 included in the wireless communication system 100.
  • the service area of the base station 1A is “service area 10A” and the service area of the base station 1B. Are indicated as “service area 10B”.
  • the base station 1A communicates with two communication terminals 2 (communication terminals 2A and 2B), and the base station 1B communicates with one communication terminal 2 (communication terminal 2C).
  • each base station 1 is arranged such that its service area partially overlaps the service area of the adjacent base station 1.
  • the signal transmitted by the communication terminal 2B is as indicated by the dashed arrow.
  • the interference wave is received by the base station 1B.
  • FIG. 3 is a diagram showing the configuration of each base station 1.
  • the base station 1 includes a wireless communication unit 11 having a reception unit 12 and a transmission unit 13, an A / D conversion unit 15, an FFT processing unit 16, an IFFT processing unit 17, a D / D An A conversion unit 18, a control unit 19, and a network connection unit 20 are provided.
  • the receiving unit 12 and the transmitting unit 13 share the transmitting / receiving antenna 14.
  • the receiving unit 12 performs amplification processing and down-conversion on the OFDM signal received by the transmission / reception antenna 14, converts the OFDM signal into a baseband signal, and outputs the baseband signal.
  • the A / D converter 15 converts the analog baseband signal output from the receiver 12 into a digital baseband signal.
  • the FFT processing unit 16 performs FFT processing on the baseband signal output from the A / D conversion unit 15 and separates and outputs a plurality of subcarriers included in the baseband signal. Specifically, for each of a plurality of subcarriers included in the baseband signal, a complex symbol that modulates the subcarrier is output from the FFT processing unit 16.
  • the control unit 19 includes, for example, a CPU and a memory, and manages the operation of the entire base station 1 in an integrated manner.
  • the control unit 19 performs descrambling processing, Viterbi decoding processing, and the like on the complex symbol output from the FFT processing unit 16 to reproduce the bit data transmitted from the communication terminal 2.
  • the control unit 19 inputs data to be transmitted to the network 3 among the reproduced data to the network connection unit 20.
  • control unit 19 generates transmission data toward the communication terminal 2 based on data input from the network connection unit 20 and generates a plurality of complex symbols corresponding to the generated transmission data. Then, the control unit 19 performs a convolutional coding process, a scramble process, and the like on the generated plurality of complex symbols and inputs them to the IFFT processing unit 17.
  • the IFFT processing unit 17 performs IFFT (Inverse FFT) processing on the plurality of input complex symbols, and outputs a baseband signal in which a plurality of subcarriers modulated by the plurality of complex symbols are combined.
  • IFFT Inverse FFT
  • the D / A converter 18 converts the digital baseband signal output from the IFFT processor 17 into an analog baseband signal.
  • the transmission unit 13 performs up-conversion and amplification processing on the baseband signal output from the D / A conversion unit 18 and then inputs the baseband signal to the transmission / reception antenna 14. Thereby, the OFDM signal in the carrier wave band is wirelessly transmitted from the transmission / reception antenna 14 toward the communication terminal 2.
  • the network connection unit 20 transmits data input from the control unit 19 to the network 3 and outputs data input from the network 3 to the control unit 19.
  • the control unit 19 has various functions in addition to the functions described above. As illustrated in FIG. 3, the control unit 19 includes a reference timing adjustment unit 190, a window position setting unit 191, a delay amount acquisition unit 192, a transmission timing control unit 193, and an interference wave level acquisition unit 194 as functional blocks. Yes.
  • the reference timing adjustment unit 190 adjusts the reference timing at the base station 1.
  • the window position setting unit 191 sets the FFT window position in the FFT process executed by the FFT processing unit 16.
  • the interference wave level acquisition unit 194 obtains the signal level of the interference wave received by the reception unit 12.
  • the signal level of the interference wave may be referred to as “interference wave level”.
  • the delay amount acquisition unit 192 obtains a delay amount from the reference timing with respect to the reception timing of the signal from the communication terminal 2 based on the known signal from the communication terminal 2 that is not synchronized with the base station 1.
  • the transmission timing control unit 193 generates a transmission timing control signal for adjusting the transmission timing of the communication terminal 2 based on the delay amount acquired by the delay amount acquisition unit 192.
  • This transmission timing control signal is included in the transmission OFDM signal and transmitted from the transmission unit 13 to the communication terminal 2.
  • the communication terminal 2 adjusts its own transmission timing based on the transmission timing control signal received from the base station 1. As a result, the base station 1 can receive signals from the respective communication terminals 2 at the reference timing.
  • the FFT processing unit 16 can perform the FFT processing on the signal from each communication terminal 2 at an appropriate FFT window position, and the orthogonality between the signals from the plurality of communication terminals 2 can be obtained. Can be secured. Therefore, the base station 1 can accurately acquire the data included in the signal from each communication terminal 2.
  • FIG. 4 is a diagram showing a configuration of the TDMA / TDD frame 200.
  • the TDMA / TDD frame 200 is specified on a time-frequency plane with time and frequency on the horizontal and vertical axes, respectively.
  • One TDMA / TDD frame 200 includes a reception frame 200r for the base station 1 to receive a signal from the communication terminal 2 and a transmission frame 200s for transmitting a signal from the base station 1 to the communication terminal 2. ing.
  • Each of the reception frame 200r and the transmission frame 200s includes a first slot SL1 to a fourth slot SL4 in the time direction and a first subchannel SCH1 to an i-th subchannel SCHi (i ⁇ 2) in the frequency direction.
  • each of the reception frame 200r and the transmission frame 200s includes the first subchannel SCH1 to the ninth subchannel SCH9 in the frequency direction.
  • slot SL when there is no need to particularly distinguish the first slot SL1 to the fourth slot SL4
  • each may be simply referred to as “slot SL”.
  • slot SL when there is no need to particularly distinguish the first subchannel SCL1 to the ninth subchannel SCH9, each may be simply referred to as “subchannel SCH”.
  • the TDD / TDMA frame 200 may be simply referred to as “frame”.
  • the time width of one slot SL is set to 625 ⁇ s. Therefore, the time length of each of the reception frame 200r and the transmission frame 200s is 2.5 ms, and the time length of one TDMA / TDD frame 200 is 5 ms. Further, the bandwidth of one subchannel SCH is 900 kHz, and one subchannel SCH is composed of 24 subcarriers.
  • One slot SL and one subchannel SCH constitute a PRU (Physical Resourse Unit) 210 that is a unit radio resource. Communication between the base station 1 and the communication terminal 2 is performed in units of the PRU 210. For example, in the base station 1, radio resources are allocated to the communication terminal 2 in units of PRU 210. In each of the reception frame 200r and the transmission frame 200s, four PRUs 210 are arranged in the time direction, and in the entire TDMA / TDD frame 200, eight PRUs 210 are arranged in the time direction. Further, in the TDMA / TDD frame 200, nine PRUs 210 having the same number as the number of subchannels are arranged in the frequency direction.
  • PRU Physical Resourse Unit
  • the base station 1 When receiving signals from a plurality of communication terminals 2, the base station 1 shares 32 PRUs 210 in the reception frame 200 r among the plurality of communication terminals 2 and transmits signals to the plurality of communication terminals 2. In doing so, the 32 PRUs 210 in the transmission frame 200 s are shared among the plurality of communication terminals 2. For each of the reception frame 200r and the transmission frame 200s, the control unit 19 of the base station 1 transmits at least one PRU 210 of the 32 PRUs 210 to each of the plurality of communication terminals 2 to be communicated. The terminal 2 is assigned so as not to overlap.
  • the same communication terminal 2 is assigned the PRU 210 at the same place in the reception frame 200r and the transmission frame 200s.
  • the PRU 210 including the second slot SL2 and the sixth subchannel SCH6 and the PRU 210 including the third slot SL3 and the sixth subchannel SCH6 are allocated to a certain communication terminal 2 in the reception frame 200r
  • the PRU 210 including the second slot SL2 and the sixth subchannel SCH6 and the PRU 210 including the third slot SL3 and the sixth subchannel SCH6 are allocated to the communication terminal 2 in the transmission frame 200s.
  • the control unit 19 assigns the PRU 210 to the communication terminal 2, the PRU 210 that is not used in the own apparatus and the neighboring base station 1 in each of the reception frame 200r and the transmission frame 200s (hereinafter, “free PRU 210”). Is assigned to the communication terminal 2. Specifically, in the interference wave level acquisition unit 194, the control unit 19 determines the interference wave level in each PRU 210 that is not used by the own apparatus in the reception frame 200r based on the signal output from the FFT processing unit 16. Ask. The control unit 19 sets the PRU 210 whose interference wave level obtained by the interference wave level acquisition unit 194 is equal to or less than the threshold value as an empty PRU 210.
  • the control unit 19 assigns at least one of the free PRUs 210 to the communication terminal 2 for reception.
  • the same communication terminal 2 is assigned the PRU 210 at the same location in the reception frame 200r and the transmission frame 200s. Therefore, in the transmission frame 200s, the reception frame 200r The PRU 210 at the same location as the empty PRU 210 becomes the empty PRU 210. Therefore, the empty PRU 210 is also assigned to the communication terminal 2 for the transmission frame 200s.
  • the wireless communication unit 11 communicates with each communication terminal 2 to be communicated using the assigned PRU 210.
  • the control unit 19 of the newly installed base station 1 Based on a control signal from the communicable peripheral base station 1, the reference timing in the peripheral base station 1 is specified. Then, the control unit 19 communicates with the communication terminal 2 using the identified reference timing at the neighboring base station 1 as the reference timing at its own device. As a result, the newly installed base station 1 operates in synchronization with the peripheral base station 1.
  • the communication terminal 2B that communicates with the base station 1A is located closer to the surrounding base station 1B than the base station 1A.
  • the base station 1A adjusts the transmission timing of the communication terminal 2B so that the signal from the communication terminal 2B is received at the reference timing.
  • their reference timings coincide with each other. Therefore, in the base station 1A, although the signal from the communication terminal 2B is received at the reference timing, the base station In the base station 1B present at a location closer to the station 1A, the signal from the communication terminal 2B is received at a timing earlier than the reference timing. Therefore, in the base station 1B, when performing the FFT process on the received signal from the communication terminal 2B, the FFT window position set based on the reference timing is shifted from the received signal.
  • FIG. 5 is a diagram showing the relationship between the OFDM signal from the communication terminal 2B received as an interference wave in the base station 1B and the FFT window position set in the OFDM signal in the base station 1B.
  • an OFDM symbol 300 which is an OFDM signal for one symbol, is composed of an effective symbol 301, which is an original signal for one symbol, and a guard interval 302 added to the head thereof.
  • the guard interval 302 is a copy of the latter half of the effective symbol 301.
  • the target OFDM symbol 300 can be accurately demodulated.
  • the FFT window is set so as to extend over the OFDM symbol 300 to be processed and the OFDM symbol 300 that follows it, the OFDM symbol 300 to be processed is accurately set. Cannot be demodulated. Therefore, when the base station 1B receives the received signal from the communication terminal 2B earlier than the reference timing and the FFT window is set so as to be shifted from the OFDM symbol 300 of the received signal as shown in FIG. Interference waves are also detected in frequency bands other than the frequency band of the received signal. As a result, the received signal in a frequency band other than the frequency band of the received signal deteriorates.
  • the base station 1A and the communication terminal 2B are communicating using the PRU 210 including the first slot SL1 and the second subchannel SCH2
  • the base station 1B has the first slot SL1 and the second subchannel.
  • the PRU 210 having SCH2 but also two PRUs 210 adjacent to the PRU 210 in the frequency direction, that is, the PRU 210 including the first slot SL1 and the first subchannel SCH1, and the PRU 210 including the first slot SL1 and the third subchannel SCH3.
  • Interference waves are also detected. Therefore, as shown in FIG. 6, the signals received by the two PRUs 210 deteriorate.
  • FIG. 6 the signals received by the two PRUs 210 deteriorate.
  • FIG. 7 is a diagram illustrating a result of performing FFT processing on a signal from the communication terminal 2B in the base station 1B.
  • the signal power is large in the frequency bands BW2 and BW3 adjacent to the frequency band BW1 of the received signal from the communication terminal 2B. This is because an interference wave is detected in the adjacent frequency bands BW2 and BW3.
  • an interference wave is detected in a frequency band other than the frequency band of the interference wave from the communication terminal 2B, so that the frequency band other than the frequency band of the interference wave from the communication terminal 2B is detected.
  • the signal from the communication terminal 2 to be communicated is received using, the received signal deteriorates.
  • the base station 1 adjusts the reference timing so that an appropriate FFT window position can be set for the interference wave from the communication terminal 2 communicating with the neighboring base station 1. Thereby, it can suppress that an interference wave is detected in frequency bands other than the frequency band of the interference wave from the communication terminal 2.
  • FIG. 2 For example, in the example of FIG. 2, when the base station 1A and the communication terminal 2B communicate using the PRU 210 including the first slot SL1 and the second subchannel SCH2, the base station 1B As shown, an interference wave is detected only by the PRU 210 having the first slot SL1 and the second subchannel SCH2.
  • a reference timing adjustment method in the base station 1 will be described in detail.
  • FIG. 9 is a flowchart showing the reference timing adjustment operation in the base station 1.
  • a new reference timing is determined from a plurality of candidate timings.
  • the plurality of candidate timings are, for example, the current timing of the reference timing, the first forward timing that is approximately several ⁇ s ahead of the current timing, and the second forward timing that is approximately several ⁇ s ahead of the first forward timing. It consists of and. Therefore, as shown in FIG. 10, the FFT window 400 when the base station 1 operates at the second forward timing as the reference timing is the FFT window 401 when the base station 1 operates at the first forward timing as the reference timing. It is located forward about several ⁇ s.
  • the FFT window 401 when the base station 1 operates at the first forward timing as the reference timing is positioned about several ⁇ s ahead of the FFT window 402 when the base station 1 operates at the current reference timing.
  • the OFDM symbol length that is, the symbol period is set to 30 ⁇ s or 33.33 ⁇ s.
  • step s1 the reference timing adjustment unit 190 maintains the current reference timing and causes the base station 1 to perform a communication operation at the current reference timing.
  • step s2 the interference wave level acquisition unit 194 obtains the interference wave level in each PRU 210 not used by the own apparatus in the reception frame 200r based on the output signal from the FFT processing unit 16.
  • the reference timing adjustment unit 190 changes the reference timing to the first forward timing and causes the base station 1 to perform a communication operation at the first forward timing.
  • the interference wave level acquisition unit 194 obtains the interference wave level in each PRU 210 not used by the own apparatus in the reception frame 200r based on the output signal from the FFT processing unit 16.
  • the reference timing adjustment unit 190 changes the reference timing to the second forward timing and causes the base station 1 to perform a communication operation at the second forward timing.
  • the interference wave level acquisition unit 194 obtains the interference wave level in each PRU 210 that is not used by the own apparatus in the reception frame 200 r based on the output signal from the FFT processing unit 16.
  • the reference timing adjustment unit 190 includes an interference wave level acquisition unit 194 among a plurality of candidate timings, that is, the current reference timing, the first front timing, and the second front timing.
  • the candidate timing with the largest number of PRUs 210 (empty PRUs 210) having the interference wave level obtained in step ⁇ the threshold value is specified. That is, the reference timing adjustment unit 190 identifies a candidate timing that is least affected by the interference wave in the base station 1 among the plurality of candidate timings.
  • the reference timing adjustment unit 190 sets the identified candidate timing as a new reference timing.
  • the control unit 19 periodically performs the series of processes from the above steps s1 to s8, for example, every several tens of frames.
  • the control unit 19 When the reference timing is changed in the reference timing adjustment unit 190 while the base station 1 is communicating with the communication terminal 2, the control unit 19 is communicating with the base station 1 according to the change amount of the reference timing.
  • the transmission timing of the communication terminal 2 is controlled. Specifically, the transmission timing control unit 193 generates a transmission timing control signal for adjusting the transmission timing at the communication terminal 2 in communication with the base station 1 according to the amount of change in the reference timing.
  • This transmission timing control signal is included in the transmission OFDM signal and transmitted from the transmission unit 13 to the communication terminal 2 communicating with the base station 1.
  • the communication terminal 2 in communication with the base station 1 adjusts the transmission timing based on the received transmission timing control signal. Thereby, the base station 1 can receive the OFDM signal from the communication terminal 2 in communication at the reference timing even after the reference timing is changed. Therefore, the base station 1 can accurately acquire data from the communication terminal 2 in communication even after changing the reference timing.
  • each of a plurality of candidate timings with respect to the reference timing is unused in base station 1 when base station 1 performs communication operation at the candidate timing.
  • the signal level of the interference wave in the PRU 210 is obtained based on the output signal of the FFT processing unit 16.
  • the base station 1 determines a new reference timing from a plurality of candidate timings based on the obtained signal level of the interference wave. Therefore, the base station 1 can set an appropriate FFT window position for the interference wave from the communication terminal 2 that communicates with the neighboring base station 1.
  • the FFT window 400 at the second forward timing is within one OFDM symbol 300, the FFT window 400 is at an appropriate position for the interference wave from the communication terminal 2.
  • the base station 1 since it can suppress that an interference wave is detected in frequency bands other than the frequency band of the interference wave from the communication terminal 2 which communicates with the periphery base station 1, the received signal in the said frequency band deteriorates Can be prevented. As a result, the communication quality of the base station 1 can be improved.
  • the interference wave level at one candidate timing is obtained in one TDMA / TDD frame 200.
  • the interference wave level at each of the three candidate timings may be obtained in one TDMA / TDD frame 200.
  • the base station 1 uses the OFDM symbol 300 in the first 5 symbol periods out of 19 symbol periods for each PRU 210 that is not used by the base station 1 in the received frame 200r. Find the interference wave level at. Using the OFDM symbols 300 in the subsequent five symbol periods, the interference wave level at the first forward timing is obtained. Further, the interference wave level at the second forward timing is obtained by using the OFDM symbol 300 in the subsequent five symbol periods.
  • interference levels at a plurality of candidate timings may be obtained in parallel.
  • three sets of FFT processing units 16 and interference wave level acquisition units 194 are provided, and FFT window positions based on different candidate timings are set for the three FFT processing units 16.
  • interference wave levels at a plurality of candidate timings are obtained in parallel in one TDMA / TDD frame 200.
  • the base station 1 can operate based on the new reference timing from the next TDMA / TDD frame 200.
  • FIG. 11 is a flowchart showing the reference timing adjustment operation in the base station 1 in this case.
  • the reference timing adjustment unit 190 maintains the current reference timing and causes the base station 1 to perform a communication operation at the current reference timing.
  • the interference wave level acquisition unit 194 obtains the interference wave level in each PRU 210 not used by the own device in the slot SL for each of the first slot SL1 to the fourth slot SL4 of the received frame 200r. .
  • the reference timing adjustment unit 190 changes the reference timing to the first forward timing and causes the base station 1 to perform a communication operation at the first forward timing.
  • the interference wave level acquisition unit 194 obtains the interference wave level in each PRU 210 that is not used by the own apparatus in the slot SL for each of the first slot SL1 to the fourth slot SL4 of the received frame 200r. .
  • the reference timing adjustment unit 190 changes the reference timing to the second forward timing and causes the base station 1 to perform a communication operation at the second forward timing.
  • the interference wave level acquisition unit 194 obtains the interference wave level in each PRU 210 not used by the own device in the slot SL for each of the first slot SL1 to the fourth slot SL4 of the received frame 200r. .
  • the reference timing adjustment unit 190 uses the interference wave levels obtained in steps s12, s14, and s16 for each of the first slot SL1 to the fourth slot SL4. Among the plurality of candidate timings, the candidate timing with the largest number of empty PRUs 210 is identified. In step s18, the reference timing adjustment unit 190 sets the identified candidate timing for each of the first slot SL1 to the fourth slot SL4 as a new timing of the reference timing in the slot SL.
  • the control unit 19 periodically performs a series of processes from the above steps s11 to s18, for example, every several tens of frames.
  • the communication terminal 2 that communicates with the base station 1 adjusts the transmission timing in units of slots SL by the base station 1. It will be.
  • the base station 1 is individually appropriate for each of the interference waves received in the plurality of slots SL.
  • a simple FFT window position can be set. For example, as shown in FIG. 12, the base station 1 receives interference waves from one communication terminal 2 or a plurality of communication terminals 2 communicating with the neighboring base station 1 in the first slot SL1 and the third slot SL3. In this case, an appropriate FFT window position can be set individually for the interference wave received in the first slot SL1 and the interference wave received in the third slot SL1.
  • the first slot SL1 and the third slot SL3 as shown in FIG.
  • the FFT window position is set based on the common reference timing with respect to the interference wave received at 1.
  • the interference waves received in the first slot SL1 and the third slot SL3 are transmitted from the same communication terminal 2, in the base station 1, the relationship between the reception timing of these interference waves and the reference timing is almost the same. It becomes. Therefore, in the base station 1, even if the FFT window position is set based on the common reference timing for these interference waves, no particular problem occurs.
  • the base station 1 when the interference waves received in the first slot SL1 and the third slot SL3 are transmitted from different communication terminals 2, the base station 1 has a different relationship between the reception timing of these interference waves and the reference timing. It is normal. Therefore, if the FFT window position is set for these interference waves based on the common reference timing, the FFT window can be set to an appropriate position to some extent for each interference wave. It is difficult to set the FFT window at the best position for both.
  • the FFT window position can be individually set for the interference wave received in the plurality of slots SL. Therefore, it is possible to set the FFT window at a more appropriate position for each interference wave. it can. Therefore, in the base station 1, it can further suppress that an interference wave is detected in frequency bands other than the frequency band of the interference wave from the communication terminal 2 which communicates with the periphery base station 1, and further improves the communication quality of the base station 1 can do.
  • the interference wave level at one candidate timing is obtained in one TDMA / TDD frame 200.
  • the 19 By dividing the symbol period into three or more groups, the interference wave level at each of the three candidate timings in one TDMA / TDD frame 200 may be obtained.
  • the base station 1 uses the OFDM symbol 300 in five symbol periods among the 19 symbol periods included in the slot SL, at the current reference timing. Obtain the interference wave level.
  • the interference wave level at the first forward timing is obtained.
  • the interference wave level at the second forward timing is obtained.
  • interference levels at a plurality of candidate timings may be obtained in parallel.
  • three sets of the FFT processing unit 16 and the interference wave level acquisition unit 194 are provided, and FFT window positions based on different candidate timings are set for the three FFT processing units 16.
  • interference wave levels at a plurality of candidate timings are obtained in parallel for each slot SL in one TDMA / TDD frame 200.
  • the base station 1 can operate based on the new reference timing from the next TDMA / TDD frame 200.
  • the base station 1 uses a common reference timing in the first slot SL1 to the fourth slot SL4 according to the operation state in the own device, or individually in each of the first slot SL1 to the fourth slot SL4. Whether to use the reference timing may be automatically selected. That is, the base station 1 may be able to select whether to perform the adjustment operation of FIG. 9 or the adjustment operation of FIG.
  • the base station 1 selects whether to perform the adjustment operation of FIG. 9 or the adjustment operation of FIG. 11 according to the radio resource allocation status for the communication terminal 2 in its own device. Specifically, when the base station 1 communicates with one communication terminal 2C (see FIG. 2), a plurality of PRUs 210 belonging to the plurality of slots SL of the reception frame 200r are transmitted to the one communication terminal 2C. Is assigned, the adjustment operation shown in FIG. 9 is performed.
  • FIG. 13 is a diagram illustrating an example of a state in which a plurality of PRUs 210 belonging to a plurality of slots SL are allocated to the communication terminal 2C. In the example of FIG. 13, a plurality of PRUs 210 belonging to the first slot SL1 and the third slot SL3 are allocated to the communication terminal 2C.
  • FIG. 14 is a diagram illustrating an example of a state in which, when the base station 1 communicates with the communication terminals 2C to 2E, PRUs 210 belonging to different slots SL are assigned to the communication terminals 2C to 2E.
  • the PRU 210 belonging to the first slot SL1 is allocated to the communication terminal 2C
  • the PRU 210 belonging to the second slot SL2 is allocated to the communication terminal 2D
  • the PRU 210 belonging to the second slot SL2 is allocated to the communication terminal 2E.
  • a PRU 210 belonging to 4 slots SL4 is allocated.
  • the candidate timing having the largest number of PRUs 210 whose interference wave level is equal to or lower than the threshold among the plurality of candidate timings is set as a new timing of the reference timing.
  • the candidate timing with the smallest sum of the interference wave levels in the plurality of unused PRUs 210 in the base station 1 may be set as a new reference timing.
  • the candidate timing having the smallest average value of the interference wave levels in the plurality of unused PRUs 210 in the base station 1 may be set as a new timing of the reference timing.
  • the present invention can be applied to other communication systems as long as the communication system adopts the OFDMA scheme. Naturally applicable.
  • the present invention can also be applied to LTE (Long Term Evolution) or WiMAX (Worldwide Interoperability for Microwave Access).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 FFT処理部(16)は、受信部(12)で受信されたOFDM信号に対してFFT処理を行う。干渉波レベル取得部(194)は、基地局(1)での基準タイミングについての複数の候補タイミングのそれぞれについて、基地局(1)で未使用の単位無線リソースでの干渉波の信号レベルを、FFT処理部(16)の出力信号に基づいて求める。基準タイミング調整部(190)は、干渉波レベル取得部(194)で求められた干渉波の信号レベルに基づいて、複数の候補タイミングから基準タイミングの新たなタイミングを決定する。

Description

基地局及び基地局での基準タイミングの調整方法
 本発明は、複数の通信端末と通信を行う基地局での基準タイミングの調整技術に関する。
 従来から無線通信技術に関して様々な技術が提案されている。例えば特許文献1には、受信装置でのシンボル間干渉及びキャリア間干渉を低減する技術が開示されている。また非特許文献1には、次世代PHS(Personal Handyphone System)についての規格が記載されている。この規格はXGP(eXtended Global Platform)と呼ばれている。
特開2004-208254号公報
"OFDMA/TDMA TDD Broadband Wireless Access System(Next Generation PHS) ARIB STANDARD"、ARIB STD-T95 Version1.1、平成20年6月6日、社団法人電波産業会
 次世代PHSでは、直交する複数のサブキャリアが合成されたOFDM(Orthogonal Frequency Division Multiplexing)信号を用いたOFDMA(Orthogonal Frequency Division Multiple Access)方式によって、基地局は複数の通信端末と周波数領域で多元接続通信を行っている。基地局は、自装置内で規定された基準タイミングに基づいて各通信端末と通信を行うことから、基地局と通信端末との間で同期が取れておらず、通信端末が独自のタイミングで信号を送信すると、基地局では、通信端末からの信号に対して適切なFFT(Fast Fourier Transform)窓位置でFFT処理を行うことができないことがある。その結果、基地局は、通信端末からの受信信号に含まれるデータを正確に取得できないことがある。さらに、基地局ではOFDMA方式が採用されているため、基地局が複数の通信端末と通信する際には、当該複数の通信端末からの信号で1つのOFDM信号が構成される。そのため、基地局において、複数の通信端末からの信号に対する受信タイミングが一致していない場合には、複数の通信端末からの受信信号の間の直交性が崩れてしまい、基地局では当該受信信号に含まれるデータを正確に取得できなくなる可能性がある。
 このような問題を解決するために、基地局と通信端末とが通信を開始する際には、両者の間でレンジング処理が行われる。このレンジング処理では、基地局は、通信端末から送信される既知信号に基づいて、通信端末からの信号の受信タイミングについての、自装置で規定されている基準タイミングからの遅延量を求める。そして、基地局は、求めた遅延量に基づいて通信端末の送信タイミングを制御する。これにより、基地局は、複数の通信端末からの信号をすべて基準タイミングで受信することができる。その結果、基地局では、各通信端末からの信号に対して適切なFFT窓位置でFFT処理を行うことができるとともに、複数の通信端末からの信号の間の直交性を確保することができる。よって、基地局は、各通信端末からの信号に含まれるデータをより適切に取得することが可能となる。
 また次世代PHSでは、複数の基地局は互いに同期して通信端末と通信を行っている。そして、各基地局は、受信信号に対してFFT処理を行った結果に基づいて干渉波の信号レベルを求めて、その干渉波の信号レベルに基づいて、周辺基地局が使用していない無線リソースを特定している。各基地局が、周辺基地局が使用していない無線リソースを使用して通信端末との通信を行うことにより、複数の基地局間での信号干渉を抑制することができる。
 上述のように、各基地局は、自装置での基準タイミングで通信端末からの信号を受信するように通信端末の送信タイミングを制御している。したがって、ある基地局に注目すると、その注目基地局が、それと同期している周辺基地局と通信している通信端末であって、当該周辺基地局よりも自装置に近い位置に存在する通信端末からの信号を干渉波として受信する場合には、注目基地局では、その基準タイミングよりも早いタイミングで当該通信端末からの信号を受信するようになる。基地局が、基準タイミングよりも早いタイミングで通信端末からの信号を受信する場合には、その受信信号に対するFFT窓位置がずれることから、注目基地局では、周辺基地局が使用している周波数帯域以外の周波数帯域においても干渉波が検出されることになる。そのため、FFT窓位置のずれに起因したキャリア間干渉が生じる可能性がある。その結果、注目基地局の通信品質が低下する可能性がある。
 そこで、本発明は上述の点に鑑みて成されたものであり、基地局の通信品質を向上することが可能な技術を提供することを目的とする。
 本発明に係る基地局は、複数の基地局が互いに同期して通信端末と通信を行う無線通信システムの一の基地局であって、前記複数の基地局のそれぞれは、時間-周波数平面上で特定される複数の単位無線リソースを複数の通信端末の間で共用して、基準タイミングに基づいて複数の通信端末と通信を行い、前記一の基地局は、互いに直交する複数の搬送波が合成されたマルチキャリア信号を受信する受信部と、前記受信部で受信された前記マルチキャリア信号に対してFFT(Fast Fourier Transform)処理を行うFFT処理部と、前記基準タイミングについての複数の候補タイミングのそれぞれについて、前記一の基地局で未使用の単位無線リソースでの干渉波の信号レベルを、前記FFT処理部の出力信号に基づいて求める干渉波レベル取得部と、前記干渉波レベル取得部で求められた干渉波の信号レベルに基づいて、前記複数の候補タイミングから前記基準タイミングの新たなタイミングを決定する基準タイミング調整部とを備える。
 また、本発明に係る基地局の一態様では、前記基準タイミング調整部は、前記複数の候補タイミングのうち、前記干渉波の信号レベルがしきい値以下となる単位無線リソースの数が最も大きくなるようなタイミングを、前記基準タイミングの新たなタイミングとする。
 また、本発明に係る基地局の一態様では、前記基準タイミング調整部において前記基準タイミングが変更されると、前記基準タイミングの変更量に応じて前記一の基地局と通信中の通信端末での送信タイミングを調整するための制御信号を生成する送信タイミング制御部と、前記制御信号を前記通信中の通信端末に送信する送信部とがさらに設けられている。
 また、本発明に係る基地局での基準タイミングの調整方法は、複数の基地局が互いに同期して通信端末と通信を行う無線通信システムの一の基地局での基準タイミングの調整方法であって、前記複数の基地局のそれぞれは、時間-周波数平面上で特定される複数の単位無線リソースを複数の通信端末の間で共用して、基準タイミングに基づいて複数の通信端末と通信を行い、(a)前記基準タイミングについての複数の候補タイミングの一の候補タイミングで通信動作する前記一の基地局において、当該一の基地局で受信される、互いに直交する複数の搬送波が合成されたマルチキャリア信号に対してFFT処理を行う工程と、(b)前記一の候補タイミングで通信動作する前記一の基地局において、前記工程(a)でのFFT処理の結果に基づいて、当該一の基地局で未使用の単位無線リソースでの干渉波の信号レベルを求める工程とを備え、前記工程(a)及び(b)は、前記複数の候補タイミングのそれぞれについて実行され、(c)前記複数の候補タイミングにおいて前記工程(b)で求められた干渉波の信号レベルに基づいて、前記複数の候補タイミングから前記基準タイミングの新たなタイミングを決定する工程をさらに備える。
 本発明によれば、基地局の通信品質を向上することができる。
 この発明の目的、特徴、局面、及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
実施の形態に係る基地局を含む無線通信システムの構成を示す図である。 実施の形態に係る基地局の配置例を示す図である。 実施の形態に係る基地局の構成を示すブロック図である。 実施の形態に係るTDMA/TDDフレームの構成を示す図である。 OFDMシンボルに対してFFT窓位置がずれている様子を示す図である。 干渉波に対するFFT窓位置のずれによって、当該干渉波の周波数帯域以外の周波数帯域で信号劣化が生じている様子を示す図である。 干渉波に対するFFT窓位置のずれによって、当該干渉波の周波数帯域以外の周波数帯域でも干渉波が検出されている様子を示す図である。 基準タイミングが調整されることにより、干渉波の周波数帯域以外の周波数帯域での信号劣化が抑制されている様子を示す図である。 実施の形態に係る基地局での基準タイミングの調整動作を示すフローチャートである。 OFDMシンボルと複数の候補タイミングでのFFT窓との位置関係を示す図である。 実施の形態に係る基地局の変形例での基準タイミングの調整動作を示すフローチャートである。 基地局において干渉波が複数のスロットで受信される様子を示す図である。 通信端末に対するPRUの割り当て例を示す図である。 通信端末に対するPRUの割り当て例を示す図である。
 図1は本実施の形態に係る基地局1を含む無線通信システム100の構成を示す図である。無線通信システム100は、例えば次世代PHSであって、互いに同期して通信端末2と通信を行う複数の基地局1を備えている。各基地局1は、自装置で規定された基準タイミングに基づいて通信端末2との通信を行う。また、各基地局1は、光ファイバ等でネットワーク3に接続されている。各基地局1は、通信端末2から受信するデータをネットワーク3に送信し、ネットワーク3から受信するデータを通信端末2に送信する。
 無線通信システム100では、各基地局1が、TDMA/TDD方式(Time Division Multiple Access/Time Division Duplexing)で複数の通信端末2と無線通信を行う。このTDMA/TDD方式では、4つのスロットで構成された受信期間と4つのスロットで構成された送信期間とが交互に現れるようになっている。また、無線通信システム100では、多元接続方式としてOFDMA方式も採用されている。OFDMA方式では、互いに直交する複数の搬送波が合成されたマルチキャリア信号であるOFDM信号が使用される。各基地局1は、時間-周波数平面上で特定される複数の単位無線リソース(この単位無線リソースは「PRU(Physical Resourse Unit)」と呼ばれている)を複数の通信端末2の間で共用して、時間領域及び周波数領域で複数の通信端末2と多元接続通信を行う。
 図2は基地局1の配置例を示している。図2では、無線通信システム100が備える複数の基地局1のうちの2つの基地局1A,1Bが示されており、基地局1Aのサービスエリアが「サービスエリア10A」、基地局1Bのサービスエリアが「サービスエリア10B」としてそれぞれ示されている。図2の例では、基地局1Aは2つの通信端末2(通信端末2A,2B)と通信しており、基地局1Bは1つの通信端末2(通信端末2C)と通信している。
 図2に示されるように、各基地局1は、そのサービスエリアが、隣接する基地局1のサービスエリアと部分的に重なるように配置される。図2の例では、基地局1Aと通信中の通信端末2Bは、基地局1Bのサービスエリア10Bにも存在していることから、破線矢印で示されるように、通信端末2Bが送信する信号は干渉波として基地局1Bで受信される。
 図3は各基地局1の構成を示す図である。図3に示されるように、基地局1は、受信部12及び送信部13を有する無線通信部11と、A/D変換部15と、FFT処理部16と、IFFT処理部17と、D/A変換部18と、制御部19と、ネットワーク接続部20とを備えている。受信部12及び送信部13は送受信アンテナ14を共有している。
 受信部12は、送受信アンテナ14で受信されるOFDM信号に対して増幅処理やダウンコンバートを行って、当該OFDM信号をベースバンド信号に変換して出力する。
 A/D変換部15は、受信部12から出力されるアナログ形式のベースバンド信号をデジタル形式のベースバンド信号に変換する。
 FFT処理部16は、A/D変換部15から出力されるベースバンド信号に対してFFT処理を行って、当該ベースバンド信号に含まれる複数のサブキャリアを分離して出力する。具体的には、FFT処理部16からは、ベースバンド信号に含まれる複数のサブキャリアのそれぞれについて、当該サブキャリアを変調する複素シンボルが出力される。
 制御部19は、例えばCPU及びメモリなどで構成されており、基地局1全体の動作を統括的に管理する。制御部19は、FFT処理部16から出力される複素シンボルに対してデスクランブル処理やビタビ復号処理等を行って、通信端末2から送信されたビットデータを再生する。制御部19は、再生したデータうちネットワーク3に送信すべきデータをネットワーク接続部20に入力する。
 また、制御部19は、ネットワーク接続部20から入力されるデータ等に基づいて、通信端末2に向けての送信データを生成し、生成した送信データに対応する複数の複素シンボルを生成する。そして、制御部19は、生成した複数の複素シンボルに対して畳み込み符号化処理やスクランブル処理等を行ってIFFT処理部17に入力する。
 IFFT処理部17は、入力された複数の複素シンボルに対してIFFT(Inverse FFT)処理を行って、当該複数の複素シンボルで変調された複数のサブキャリアが合成されたベースバンド信号を出力する。
 D/A変換部18は、IFFT処理部17から出力されるデジタル形式のベースバンド信号をアナログ形式のベースバンド信号に変換する。
 送信部13は、D/A変換部18から出力されるベースバンド信号を、アップコンバート及び増幅処理を行った後、送受信アンテナ14に入力する。これにより、送受信アンテナ14からは、通信端末2に向かって搬送波帯域のOFDM信号が無線送信される。
 ネットワーク接続部20は、制御部19から入力されるデータをネットワーク3に送信し、ネットワーク3から入力されるデータを制御部19に出力する。
 本実施の形態に係る制御部19は、上述の機能以外にも様々な機能を有している。図3に示されるように、制御部19は、機能ブロックとして、基準タイミング調整部190、窓位置設定部191、遅延量取得部192、送信タイミング制御部193及び干渉波レベル取得部194を備えている。
 基準タイミング調整部190は、基地局1での基準タイミングを調整する。窓位置設定部191は、FFT処理部16で実行されるFFT処理でのFFT窓位置を設定する。干渉波レベル取得部194は、受信部12で受信される干渉波の信号レベルを求める。以後、干渉波の信号レベルを「干渉波レベル」と呼ぶことがある。
 遅延量取得部192は、基地局1と同期が取れていない通信端末2からの既知信号に基づいて、当該通信端末2からの信号の受信タイミングについての基準タイミングからの遅延量を求める。送信タイミング制御部193は、遅延量取得部192で取得された遅延量に基づいて、通信端末2の送信タイミングを調整するための送信タイミング制御信号を生成する。この送信タイミング制御信号は、送信用のOFDM信号に含められて送信部13から通信端末2に向けて送信される。通信端末2は、基地局1から受信した送信タイミング制御信号に基づいて、自装置の送信タイミングを調整する。これにより、基地局1では、各通信端末2からの信号を基準タイミングで受信できるようになる。その結果、基地局1では、FFT処理部16において各通信端末2からの信号を適切なFFT窓位置でFFT処理を行うことができるとともに、複数の通信端末2からの信号の間の直交性を確保することができる。よって、基地局1では、各通信端末2からの信号に含まれるデータを正確に取得することができる。
 次に基地局1が通信端末2との通信に使用するTDMA/TDDフレーム200の構成について説明する。図4はTDMA/TDDフレーム200の構成を示す図である。図4に示されるように、TDMA/TDDフレーム200は、横軸及び縦軸に時間及び周波数をそれぞれ示す時間-周波数平面上で特定される。1つのTDMA/TDDフレーム200は、基地局1が通信端末2からの信号を受信するための受信フレーム200rと、基地局1から通信端末2へ信号を送信するための送信フレーム200sとで構成されている。受信フレーム200r及び送信フレーム200sのそれぞれは、時間方向に第1スロットSL1~第4スロットSL4、周波数方向に第1サブチャネルSCH1~第iサブチャネルSCHi(i≧2)を含んでいる。本実施の形態では、例えばi=9であって、図4に示されるように、受信フレーム200r及び送信フレーム200sのそれぞれは、周波数方向に第1サブチャネルSCH1~第9サブチャネルSCH9を含んでいる。以後、第1スロットSL1~第4スロットSL4を特に区別する必要がない場合には、それぞれを単に「スロットSL」と呼ぶことがある。また、第1サブチャネルSCL1~第9サブチャネルSCH9を特に区別する必要が無い場合には、それぞれを単に「サブチャネルSCH」と呼ぶことがある。また、TDD/TDMAフレーム200を単に「フレーム」と呼ぶことがある。
 TDMA/TDDフレーム200では、1つのスロットSLの時間幅は625μsに設定されている。したがって、受信フレーム200r及び送信フレーム200sのそれぞれの時間長は2.5msとなり、1つのTDMA/TDDフレーム200の時間長は5msとなる。また、1つのサブチャネルSCHの帯域幅は900kHzであって、1つのサブチャネルSCHは24本のサブキャリアで構成されている。
 1つのスロットSLと1つのサブチャネルSCHとで、単位無線リソースであるPRU(Physical Resourse Unit)210が構成されている。基地局1と通信端末2との通信はこのPRU210単位で行われる。例えば、基地局1では、通信端末2に対する無線リソースの割り当てはPRU210単位で行われる。受信フレーム200r及び送信フレーム200sのそれぞれには、時間方向に沿って4つのPRU210が並び、TDMA/TDDフレーム200全体では、時間方向に沿って8つのPRU210が並んでいる。またTDMA/TDDフレーム200では、周波数方向には、サブチャネルの数と同数の9個のPRU210が並んでいる。
 基地局1は、複数の通信端末2からの信号を受信する際には、受信フレーム200rにおける32個のPRU210を当該複数の通信端末2の間で共用し、複数の通信端末2に信号を送信する際には、送信フレーム200sにおける32個のPRU210を当該複数の通信端末2の間で共用する。基地局1の制御部19は、受信フレーム200r及び送信フレーム200sのそれぞれについて、通信対象の複数の通信端末2のそれぞれに対して32個のPRU210のうちの少なくとも1つのPRU210を、当該複数の通信端末2の間で重複しないように割り当てる。次世代PHSに準拠した本実施の形態に係る基地局1では、同一の通信端末2に対しては、受信フレーム200r及び送信フレーム200sにおいて同じ場所のPRU210が割り当てられる。例えば、受信フレーム200rにおいて、第2スロットSL2及び第6サブチャネルSCH6を含むPRU210と、第3スロットSL3及び第6サブチャネルSCH6を含むPRU210とが、ある通信端末2に割り当てられる際には、当該通信端末2に対して、送信フレーム200sにおいて、第2スロットSL2及び第6サブチャネルSCH6を含むPRU210と、第3スロットSL3及び第6サブチャネルSCH6を含むPRU210とが割り当てられる。
 また、制御部19は、通信端末2に対してPRU210を割り当てる際には、受信フレーム200r及び送信フレーム200sのそれぞれにおいて、自装置及び周辺基地局1で使用されていないPRU210(以後、「空きPRU210」と呼ぶ)を通信端末2に割り当てる。具体的には、制御部19は、干渉波レベル取得部194において、FFT処理部16から出力される信号に基づいて、受信フレーム200rにおいて自装置が使用していない各PRU210での干渉波レベルを求める。制御部19は、干渉波レベル取得部194で求められた干渉波レベルがしきい値以下であるPRU210を空きPRU210とする。そして、制御部19は、空きPRU210のうちの少なくとも1つを受信用として通信端末2に割り当てる。上述のように、各基地局1においては、同一の通信端末2に対しては、受信フレーム200r及び送信フレーム200sにおいて同じ場所のPRU210が割り当てられるため、送信フレーム200sにおいては、受信フレーム200rでの空きPRU210と同じ場所のPRU210が空きPRU210となる。よって、送信フレーム200sについても、空きPRU210が通信端末2に割り当てられる。
 このようにして通信対象の各通信端末2に対してPRU210が割り当てられると、無線通信部11は、通信対象の各通信端末2と、割り当てられたPRU210を使用して通信を行う。
 以上のような無線通信システム100においては、基地局1が新たに設置されて当該基地局1の電源が投入されると、この新たに設置された基地局1の制御部19は、自装置と通信可能な周辺基地局1からの制御信号に基づいて、当該周辺基地局1での基準タイミングを特定する。そして、制御部19は、特定した周辺基地局1での基準タイミングを自装置での基準タイミングとして通信端末2との通信を行う。これにより、新たに設置された基地局1は周辺基地局1と同期して動作するようになる。
 無線通信システム100においては、上述の図2の例に示されるように、基地局1Aと通信を行う通信端末2Bが、基地局1Aよりも、その周辺の基地局1Bに近い場所に存在することがある。一方で、基地局1Aは、通信端末2Bからの信号が基準タイミングで受信されるように通信端末2Bの送信タイミングを調整している。互いに同期している基地局1A,1Bにおいて、それらの基準タイミングが一致しているため、基地局1Aでは、通信端末2Bからの信号は基準タイミングで受信されるものの、通信端末2Bに対して基地局1Aよりも近い場所に存在する基地局1Bにおいては、通信端末2Bからの信号は基準タイミングよりも早いタイミングで受信されることになる。したがって、基地局1Bでは、通信端末2Bからの受信信号に対してFFT処理を行う際には、基準タイミングに基づいて設定されるFFT窓位置が当該受信信号に対してずれることになる。
 図5は、基地局1Bにおいて干渉波として受信される通信端末2BからのOFDM信号と、基地局1BにおいてそのOFDM信号に設定されるFFT窓位置との関係を示す図である。図5に示されるように、1シンボル分のOFDM信号であるOFDMシンボル300は、本来の1シンボル分の信号である有効シンボル301と、その先頭に付加されたガードインターバル302とで構成されている。ガードインターバル302は、有効シンボル301の後半部分をコピーしたものである。
 FFT窓が、処理対象のOFDMシンボル300内に収まるように設定される場合には、その対象のOFDMシンボル300を正確に復調することができる。
 一方で、図5に示されるように、FFT窓が、処理対象のOFDMシンボル300と、その後に続くOFDMシンボル300とにまたがるように設定される場合には、その処理対象のOFDMシンボル300を正確に復調することができない。したがって、基地局1Bにおいて、通信端末2Bからの受信信号が基準タイミングよりも早く受信されて、当該受信信号のOFDMシンボル300に対してFFT窓が図5のようにずれて設定された場合には、当該受信信号の周波数帯域以外の周波数帯域においても干渉波が検出される。その結果、当該受信信号の周波数帯域以外の周波数帯域での受信信号が劣化する。
 例えば、基地局1Aと通信端末2Bとが、第1スロットSL1及び第2サブチャネルSCH2を含むPRU210を用いて通信している際には、基地局1Bでは、第1スロットSL1及び第2サブチャネルSCH2を有するPRU210だけではなく、当該PRU210に周波数方向で隣接する2つのPRU210、つまり、第1スロットSL1及び第1サブチャネルSCH1を含むPRU210及び第1スロットSL1及び第3サブチャネルSCH3を含むPRU210においても干渉波が検出される。よって、図6に示されるように、当該2つのPRU210で受信される信号が劣化する。図7は基地局1Bにおいて通信端末2Bからの信号をFFT処理した結果を示す図である。図7の波線丸印で囲まれた部分に示されるように、通信端末2Bからの受信信号の周波数帯域BW1に隣接する周波数帯域BW2,BW3においては、信号電力が大きくなっている。これは、当該隣接する周波数帯域BW2,BW3において干渉波が検出されたためである。
 以上のように、基地局1Bにおいては、通信端末2Bからの干渉波の周波数帯域以外の周波数帯域においても干渉波が検出されることから、通信端末2Bからの干渉波の周波数帯域以外の周波数帯域を使用して、通信対象の通信端末2からの信号を受信すると、その受信信号が劣化する。
 そこで、本実施の形態に係る基地局1では、周辺基地局1と通信を行っている通信端末2からの干渉波に対して適切なFFT窓位置を設定できるように基準タイミングを調整する。これにより、通信端末2からの干渉波の周波数帯域以外の周波数帯域で干渉波が検出されることを抑制できる。例えば、図2の例において、基地局1Aと通信端末2Bとが、第1スロットSL1及び第2サブチャネルSCH2を含むPRU210を用いて通信している際には、基地局1Bでは、図8に示されるように、第1スロットSL1及び第2サブチャネルSCH2を有するPRU210だけで干渉波が検出されるようになる。以下に、基地局1での基準タイミングの調整方法について詳細に説明する。
 図9は基地局1での基準タイミングの調整動作を示すフローチャートである。本実施の形態では、基準タイミングの新たなタイミングは複数の候補タイミングから決定される。この複数の候補タイミングは、例えば、基準タイミングの現在のタイミングと、当該現在のタイミングよりも数μs程度前方の第1前方タイミングと、当該第1前方タイミングよりも数μs程度前方の第2前方タイミングとで構成されている。したがって、図10に示されるように、基地局1が基準タイミングとして第2前方タイミングで動作する際のFFT窓400は、基地局1が基準タイミングとして第1前方タイミングで動作する際のFFT窓401よりも数μs程度前方に位置する。そして、基地局1が基準タイミングとして第1前方タイミングで動作する際のFFT窓401は、基地局1が現在の基準タイミングで動作する際のFFT窓402よりも数μs程度前方に位置する。なお次世代PHSでは、OFDMシンボル長、つまりシンボル期間は、30μsあるいは33.33μsに設定される。
 図9に示されるように、ステップs1において、基準タイミング調整部190は、現在の基準タイミングを維持して、基地局1を現在の基準タイミングで通信動作させる。そしてステップs2において、干渉波レベル取得部194は、受信フレーム200rにおいて自装置が使用していない各PRU210での干渉波レベルを、FFT処理部16からの出力信号に基づいて求める。
 次のTDMA/TDDフレーム200になると、ステップs3において、基準タイミング調整部190は、基準タイミングを第1前方タイミングに変更して、基地局1を第1前方タイミングで通信動作させる。そしてステップs4において、干渉波レベル取得部194は、受信フレーム200rにおいて自装置が使用していない各PRU210での干渉波レベルを、FFT処理部16からの出力信号に基づいて求める。
 次のTDMA/TDDフレーム200になると、ステップs5において、基準タイミング調整部190は、基準タイミングを第2前方タイミングに変更して、基地局1を第2前方タイミングで通信動作させる。そしてステップs6において、干渉波レベル取得部194は、受信フレーム200rにおいて自装置が使用していない各PRU210での干渉波レベルを、FFT処理部16からの出力信号に基づいて求める。
 次のTDD/TDMAフレーム200になると、ステップs7において、基準タイミング調整部190は、複数の候補タイミング、つまり現在の基準タイミング、第1前方タイミング及び第2前方タイミングのうち、干渉波レベル取得部194で求められた干渉波レベルがしきい値以下のPRU210(空きPRU210)の数が最も多い候補タイミングを特定する。つまり、基準タイミング調整部190は、複数の候補タイミングのうち、基地局1において最も干渉波の影響を受けない候補タイミングを特定する。そして、ステップs8において、基準タイミング調整部190は、特定した候補タイミングを基準タイミングの新たなタイミングとする。
 制御部19は、以上のステップs1~s8までの一連の処理を、定期的に、例えば数十フレームごとに行う。
 制御部19は、基地局1が通信端末2と通信している状態において、基準タイミング調整部190において基準タイミングが変更されると、基準タイミングの変更量に応じて、基地局1が通信中の通信端末2の送信タイミングを制御する。具体的には、送信タイミング制御部193が、基準タイミングの変更量に応じて基地局1と通信中の通信端末2での送信タイミングを調整するための送信タイミング制御信号を生成する。この送信タイミング制御信号は、送信用のOFDM信号に含められて送信部13から基地局1と通信中の通信端末2に送信される。基地局1と通信中の通信端末2は、受信した送信タイミング制御信号に基づいて送信タイミングを調整する。これにより、基地局1では、基準タイミングを変更した後であっても、通信中の通信端末2からのOFDM信号を基準タイミングで受信することができる。よって、基地局1では、基準タイミングを変更した後も、通信中の通信端末2からのデータを正確に取得することができる。
 以上のように、本実施の形態に係る基地局1では、基準タイミングについての複数の候補タイミングのそれぞれについて、当該候補タイミングで基地局1が通信動作した際の、当該基地局1で未使用のPRU210での干渉波の信号レベルを、FFT処理部16の出力信号に基づいて求めている。そして、基地局1では、求めた干渉波の信号レベルに基づいて、複数の候補タイミングから基準タイミングの新たなタイミングを決定している。したがって、基地局1では、周辺基地局1と通信を行う通信端末2からの干渉波に対して適切なFFT窓位置を設定することができる。図10の例においては、第2前方タイミングにおけるFFT窓400が、1つのOFDMシンボル300内に収まっているため、FFT窓400が、通信端末2からの干渉波に対しては適切な位置となっている。よって、基地局1において、周辺基地局1と通信する通信端末2からの干渉波の周波数帯域以外の周波数帯域で干渉波が検出されることを抑制できるため、当該周波数帯域での受信信号が劣化することを防止できる。その結果、基地局1の通信品質を向上することができる。
 なお、上記の例では、1つのTDMA/TDDフレーム200において1つの候補タイミングでの干渉波レベルを求めていたが、各PRU210では時間軸方向において19個のシンボル期間が並んでいることから、この19個のシンボル期間を3つ以上のグループに分けることによって、1つのTDMA/TDDフレーム200において、3つの候補タイミングのそれぞれでの干渉波レベルを求めてもよい。例えば、基地局1は、受信フレーム200rにおいて自装置が使用していない各PRU210について、19個のシンボル期間のうち、最初の5個のシンボル期間でのOFDMシンボル300を使用して現在の基準タイミングでの干渉波レベルを求める。その後の5個のシンボル期間でのOFDMシンボル300を使用して、第1前方タイミングでの干渉波レベルを求める。さらにその後の5個のシンボル期間でのOFDMシンボル300を使用して第2前方タイミングでの干渉波レベルを求める。
 また、1つのTDMA/TDDフレーム200において、複数の候補タイミングでの干渉レベルを並列的に求めても良い。例えば、FFT処理部16及び干渉波レベル取得部194を3組設けて、この3つのFFT処理部16に対して互いに異なった候補タイミングに基づくFFT窓位置を設定する。そして、3組のFFT処理部16及び干渉波レベル取得部194を用いて、複数の候補タイミングでの干渉波レベルを1つのTDMA/TDDフレーム200において並列的に求める。これにより、基地局1は、次のTDMA/TDDフレーム200から、新たな基準タイミングに基づいて動作することができる。
 <変形例>
 上記の例では、第1スロットSL1~第4スロットSL4のそれぞれにおいて個別に基準タイミングを調整することはできないが、それができるようにしても良い。図11はこの場合の基地局1での基準タイミングの調整動作を示すフローチャートである。
 図11に示されるように、ステップs11において、基準タイミング調整部190は、現在の基準タイミングを維持して、基地局1を現在の基準タイミングで通信動作させる。そしてステップs12において、干渉波レベル取得部194は、受信フレーム200rの第1スロットSL1~第4スロットSL4のそれぞれについて、当該スロットSLにおいて自装置が使用していない各PRU210での干渉波レベルを求める。
 次のTDMA/TDDフレーム200になると、ステップs13において、基準タイミング調整部190は、基準タイミングを第1前方タイミングに変更して、基地局1を第1前方タイミングで通信動作させる。そしてステップs14において、干渉波レベル取得部194は、受信フレーム200rの第1スロットSL1~第4スロットSL4のそれぞれについて、当該スロットSLにおいて自装置が使用していない各PRU210での干渉波レベルを求める。
 次のTDMA/TDDフレーム200になると、ステップs15において、基準タイミング調整部190は、基準タイミングを第2前方タイミングに変更して、基地局1を第2前方タイミングで通信動作させる。そしてステップs16において、干渉波レベル取得部194は、受信フレーム200rの第1スロットSL1~第4スロットSL4のそれぞれについて、当該スロットSLにおいて自装置が使用していない各PRU210での干渉波レベルを求める。
 次のTDD/TDMAフレーム200になると、ステップs17において、基準タイミング調整部190は、ステップs12,s14,s16で求めた干渉波レベルを用いて、第1スロットSL1~第4スロットSL4のそれぞれについて、複数の候補タイミングのうち空きPRU210の数が最も多い候補タイミングを特定する。そして、ステップs18において、基準タイミング調整部190は、第1スロットSL1~第4スロットSL4のそれぞれについて、特定した候補タイミングを、当該スロットSLでの基準タイミングの新たなタイミングとする。
 制御部19は、以上のステップs11~s18までの一連の処理を、定期的に、例えば数十フレームごとに行う。
 なお本変形例では、基地局1はスロットSL単位で基準タイミングを調整することから、当該基地局1と通信を行う通信端末2は、当該基地局1によってスロットSL単位で送信タイミングが調整されることになる。
 このように、第1スロットSL1~第4スロットSL4のそれぞれにおいて個別に基準タイミングを調整できるようにすることによって、基地局1が複数のスロットSLで受信する干渉波のそれぞれに対して個別に適切なFFT窓位置を設定することができる。例えば、図12に示されるように、基地局1が、第1スロットSL1及び第3スロットSL3において、周辺基地局1と通信する1つの通信端末2あるいは複数の通信端末2からの干渉波を受信する場合には、第1スロットSL1で受信する干渉波と、第3スロットSL1で受信する干渉波とに対して、個別に適切なFFT窓位置を設定することができる。
 これに対して、上述の実施の形態のように、第1スロットSL1~第4スロットSL4において共通の基準タイミングが使用される場合には、図12のように第1スロットSL1及び第3スロットSL3で受信される干渉波に対して、共通の基準タイミングに基づいてFFT窓位置が設定される。第1スロットSL1及び第3スロットSL3で受信される干渉波が同一の通信端末2から送信される場合には、基地局1では、それらの干渉波の受信タイミングと基準タイミングとの関係はほぼ同一となる。したがって、基地局1においては、それらの干渉波に対して、共通の基準タイミングに基づいてFFT窓位置が設定されたとしても、特に問題が生じることはない。
 しかしながら、第1スロットSL1及び第3スロットSL3で受信される干渉波が異なる通信端末2から送信される場合には、基地局1では、それらの干渉波の受信タイミングと基準タイミングとの関係が異なることが通常である。したがって、それらの干渉波に対して、共通の基準タイミングに基づいてFFT窓位置が設定されると、各干渉波に対してある程度は適切な位置にFFT窓を設定できるものの、それらの干渉波の両方に対して最も良い位置にFFT窓を設定することは困難である。
 上記の変形例では、複数のスロットSLで受信される干渉波に対して個別にFFT窓位置を設定することができるため、各干渉波に対してより適切な位置にFFT窓を設定することはできる。よって、基地局1において、周辺基地局1と通信する通信端末2からの干渉波の周波数帯域以外の周波数帯域で干渉波が検出されることをさらに抑制でき、基地局1の通信品質をさらに向上することができる。
 なお、上記の例では、1つのTDMA/TDDフレーム200において1つの候補タイミングでの干渉波レベルを求めていたが、各スロットSLは19個のシンボル期間を含んでいることから、この19個のシンボル期間を3つ以上のグループに分けることによって、1つのTDMA/TDDフレーム200において3つの候補タイミングのそれぞれでの干渉波レベルを求めてもよい。例えば、基地局1は、受信フレーム200rの各スロットSLについて、当該スロットSLに含まれる19個のシンボル期間のうち、5個のシンボル期間でのOFDMシンボル300を使用して現在の基準タイミングでの干渉波レベルを求める。その後の5個のシンボル期間でのOFDMシンボル300を使用して、第1前方タイミングでの干渉波レベルを求める。さらにその後の5個のシンボル期間でのOFDMシンボル300を使用して、第2前方タイミングでの干渉波レベルを求める。
 また、1つのTDMA/TDDフレーム200において、複数の候補タイミングでの干渉レベルを並列的に求めても良い。例えば、上述のように、FFT処理部16及び干渉波レベル取得部194を3組設けて、この3つのFFT処理部16に対して互いに異なった候補タイミングに基づくFFT窓位置を設定する。そして、3組のFFT処理部16及び干渉波レベル取得部194を用いて、複数の候補タイミングでの干渉波レベルを1つのTDMA/TDDフレーム200においてスロットSLごとに並列的に求める。これにより、基地局1は、次のTDMA/TDDフレーム200から、新たな基準タイミングに基づいて動作することができる。
 また、基地局1は、自装置での動作状態に応じて、第1スロットSL1~第4スロットSL4で共通の基準タイミングを使用するか、第1スロットSL1~第4スロットSL4のそれぞれにおいて個別の基準タイミングを使用するかを自動的に選択しても良い。つまり、基地局1が、図9の調整動作を行うか、図11の調整動作を行うかを選択できるようにしても良い。
 例えば、基地局1は、自装置での通信端末2に対する無線リソースの割り当て状況に応じて、図9の調整動作を行うか、図11の調整動作を行うかを選択する。具体的には、基地局1が、1つの通信端末2Cと通信を行う場合に(図2参照)、当該1つの通信端末2Cに対して、受信フレーム200rの複数のスロットSLに属する複数のPRU210を割り当てる際には、図9の調整動作を行う。図13は、通信端末2Cに対して、複数のスロットSLに属する複数のPRU210が割り当てられている様子の一例を示す図である。図13の例では、通信端末2Cに対して、第1スロットSL1及び第3スロットSL3に属する複数のPRU210が割り当てられている。
 また、基地局1が、複数の通信端末2と通信を行う場合に、当該複数の通信端末2に対して、互いに異なるスロットSLに属するPRU210を割り当てる際には、図11の調整動作を行う。図14は、基地局1が通信端末2C~2Eと通信する場合に、当該通信端末2C~2Eに対して互いに異なるスロットSLに属するPRU210が割り当てられている様子の一例を示す図である。図14の例では、通信端末2Cに対しては第1スロットSL1に属するPRU210が割り当てられ、通信端末2Dに対しては第2スロットSL2に属するPRU210が割り当てられ、通信端末2Eに対しては第4スロットSL4に属するPRU210が割り当てられている。
 また、上記の実施の形態及び変形例では、複数の候補タイミングのうち、干渉波レベルがしきい値以下のPRU210の数が最も多い候補タイミングを、基準タイミングの新たなタイミングとしていたが、複数の候補タイミングのうち、基地局1での未使用の複数のPRU210での干渉波レベルの総和が最も小さい候補タイミングを、基準タイミングの新たなタイミングとしても良い。また、複数の候補タイミングのうち、基地局1での未使用の複数のPRU210での干渉波レベルの平均値が最も小さい候補タイミングを、基準タイミングの新たなタイミングとしても良い。
 また、上記の実施の形態及びその変形例では、本発明を次世代PHSで使用する場合について説明したが、本発明は、OFDMA方式が採用された通信システムであれば、他の通信システムにも当然に適用できる。例えばLTE(Long Term Evolution)やWiMAX(Worldwide Interoperability for Microwave Access)にも本発明を適用することができる。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1,1A,1B 基地局
 2,2A~2C 通信端末
 12 受信部
 13 送信部
 16 FFT処理部
 190 基準タイミング調整部
 193 送信タイミング制御部
 194 干渉波レベル取得部

Claims (4)

  1.  複数の基地局が互いに同期して通信端末と通信を行う無線通信システムの一の基地局であって、
     前記複数の基地局のそれぞれは、時間-周波数平面上で特定される複数の単位無線リソースを複数の通信端末の間で共用して、基準タイミングに基づいて複数の通信端末と通信を行い、
     前記一の基地局は、
     互いに直交する複数の搬送波が合成されたマルチキャリア信号を受信する受信部と、
     前記受信部で受信された前記マルチキャリア信号に対してFFT(Fast Fourier Transform)処理を行うFFT処理部と、
     前記基準タイミングについての複数の候補タイミングのそれぞれについて、前記一の基地局で未使用の単位無線リソースでの干渉波の信号レベルを、前記FFT処理部の出力信号に基づいて求める干渉波レベル取得部と、
     前記干渉波レベル取得部で求められた干渉波の信号レベルに基づいて、前記複数の候補タイミングから前記基準タイミングの新たなタイミングを決定する基準タイミング調整部と
    を備える、基地局。
  2.  請求項1に記載の基地局であって、
     前記基準タイミング調整部は、前記複数の候補タイミングのうち、前記干渉波の信号レベルがしきい値以下となる単位無線リソースの数が最も大きくなるようなタイミングを、前記基準タイミングの新たなタイミングとする、基地局。
  3.  請求項1に記載の基地局であって、
     前記基準タイミング調整部において前記基準タイミングが変更されると、前記基準タイミングの変更量に応じて前記一の基地局と通信中の通信端末での送信タイミングを調整するための制御信号を生成する送信タイミング制御部と、
     前記制御信号を前記通信中の通信端末に送信する送信部と
    をさらに備える、基地局。
  4.  複数の基地局が互いに同期して通信端末と通信を行う無線通信システムの一の基地局での基準タイミングの調整方法であって、
     前記複数の基地局のそれぞれは、時間-周波数平面上で特定される複数の単位無線リソースを複数の通信端末の間で共用して、基準タイミングに基づいて複数の通信端末と通信を行い、
     (a)前記基準タイミングについての複数の候補タイミングの一の候補タイミングで通信動作する前記一の基地局において、当該一の基地局で受信される、互いに直交する複数の搬送波が合成されたマルチキャリア信号に対してFFT処理を行う工程と、
     (b)前記一の候補タイミングで通信動作する前記一の基地局において、前記工程(a)でのFFT処理の結果に基づいて、当該一の基地局で未使用の単位無線リソースでの干渉波の信号レベルを求める工程と
    を備え、
     前記工程(a)及び(b)は、前記複数の候補タイミングのそれぞれについて実行され、
     (c)前記複数の候補タイミングにおいて前記工程(b)で求められた干渉波の信号レベルに基づいて、前記複数の候補タイミングから前記基準タイミングの新たなタイミングを決定する工程
    をさらに備える、基地局での基準タイミングの調整方法。
PCT/JP2011/051408 2010-01-26 2011-01-26 基地局及び基地局での基準タイミングの調整方法 WO2011093301A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800069887A CN102763357A (zh) 2010-01-26 2011-01-26 基站及基站中基准定时的调整方法
US13/575,350 US9172576B2 (en) 2010-01-26 2011-01-26 Base station and method of adjusting reference timing on base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-014685 2010-01-26
JP2010014685A JP5415308B2 (ja) 2010-01-26 2010-01-26 基地局及び基地局での基準タイミングの調整方法

Publications (1)

Publication Number Publication Date
WO2011093301A1 true WO2011093301A1 (ja) 2011-08-04

Family

ID=44319288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051408 WO2011093301A1 (ja) 2010-01-26 2011-01-26 基地局及び基地局での基準タイミングの調整方法

Country Status (4)

Country Link
US (1) US9172576B2 (ja)
JP (1) JP5415308B2 (ja)
CN (1) CN102763357A (ja)
WO (1) WO2011093301A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8964877B2 (en) * 2012-06-19 2015-02-24 Texas Instruments Incorporated Changing power to first transmission signals upon detecting ISM band
CN108471338B (zh) * 2018-06-29 2021-05-18 武汉虹信科技发展有限责任公司 一种用于td-lte的时间同步保持方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001251273A (ja) * 2000-03-06 2001-09-14 Sanyo Electric Co Ltd ディジタル放送受信機
JP2004336279A (ja) * 2003-05-06 2004-11-25 Toshiba Corp Ofdm受信装置および受信方法
JP2007312114A (ja) * 2006-05-18 2007-11-29 Toshiba Corp 無線通信システム及び無線通信方法
JP2008182668A (ja) * 2006-12-27 2008-08-07 Hitachi Communication Technologies Ltd Ofdm無線通信方法及び無線通信装置
JP2008244860A (ja) * 2007-03-27 2008-10-09 Toshiba Corp 無線通信システム、基地局および端末
WO2009110756A1 (en) * 2008-03-05 2009-09-11 Lg Electronics Inc. Method of measuring interference
JP2009260772A (ja) * 2008-04-18 2009-11-05 Kyocera Corp 移動局装置および送信電力制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3321419B2 (ja) * 1998-09-17 2002-09-03 松下電器産業株式会社 通信端末装置および無線通信方法
JP4298320B2 (ja) 2002-11-08 2009-07-15 富士通株式会社 Ofdm伝送方式における受信装置
EP1852987A4 (en) * 2005-03-18 2012-01-18 Panasonic Corp MOBILE STATION APPARATUS AND WIRELESS COMMUNICATION METHOD
JP4809373B2 (ja) * 2006-01-31 2011-11-09 三菱電機株式会社 通信制御方法、受信局装置、送信局装置および通信システム
US7525472B2 (en) 2006-12-27 2009-04-28 Semiconductor Energy Laboratory Co., Ltd. Integration type and converter and device including same
JP4579266B2 (ja) * 2007-04-26 2010-11-10 京セラ株式会社 移動通信システム、基地局装置およびその制御方法
JP4920010B2 (ja) * 2008-05-28 2012-04-18 京セラ株式会社 受信装置および適応変調方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001251273A (ja) * 2000-03-06 2001-09-14 Sanyo Electric Co Ltd ディジタル放送受信機
JP2004336279A (ja) * 2003-05-06 2004-11-25 Toshiba Corp Ofdm受信装置および受信方法
JP2007312114A (ja) * 2006-05-18 2007-11-29 Toshiba Corp 無線通信システム及び無線通信方法
JP2008182668A (ja) * 2006-12-27 2008-08-07 Hitachi Communication Technologies Ltd Ofdm無線通信方法及び無線通信装置
JP2008244860A (ja) * 2007-03-27 2008-10-09 Toshiba Corp 無線通信システム、基地局および端末
WO2009110756A1 (en) * 2008-03-05 2009-09-11 Lg Electronics Inc. Method of measuring interference
JP2009260772A (ja) * 2008-04-18 2009-11-05 Kyocera Corp 移動局装置および送信電力制御方法

Also Published As

Publication number Publication date
JP5415308B2 (ja) 2014-02-12
CN102763357A (zh) 2012-10-31
US20120294138A1 (en) 2012-11-22
US9172576B2 (en) 2015-10-27
JP2011155398A (ja) 2011-08-11

Similar Documents

Publication Publication Date Title
JP6869289B2 (ja) フレキシブルなサブキャリア間隔およびシンボル期間を有するofdmのためのシステムおよび方法
CN114531330B (zh) 用于在无线通信系统中发送初始接入信号的方法和装置
CN110463130B (zh) 在无线通信系统中分配相位跟踪参考信号的方法及其装置
US10142968B2 (en) Control channel detection method and apparatus of MIMO system
AU2012259546B2 (en) Control channel transmission method and apparatus for transmitting dedicated reference signal in wireless communication system
CN111149402A (zh) 用于无线通信系统中的控制资源集配置的方法和装置
JP2010011496A (ja) 通信方法および無線送信機
JP6907313B2 (ja) ヌメロロジーに応じた下りリンク制御チャネルのマッピング
JPWO2008020623A1 (ja) 無線通信基地局装置および制御チャネル配置方法
CN114667787A (zh) 用于无线通信的灵活帧结构
JP5415308B2 (ja) 基地局及び基地局での基準タイミングの調整方法
US20130215859A1 (en) Communication apparatus and communication method
KR20180073329A (ko) Ofdm 및 noma을 결합한 통신 방법을 이용한 데이터 전송 방법
CN111162806A (zh) 一种无线宽带系统的窄带干扰检测及消除方法和系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006988.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13575350

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11737014

Country of ref document: EP

Kind code of ref document: A1