WO2011093082A1 - 変形性関節症治療剤または予防剤を製造するための使用 - Google Patents

変形性関節症治療剤または予防剤を製造するための使用 Download PDF

Info

Publication number
WO2011093082A1
WO2011093082A1 PCT/JP2011/000454 JP2011000454W WO2011093082A1 WO 2011093082 A1 WO2011093082 A1 WO 2011093082A1 JP 2011000454 W JP2011000454 W JP 2011000454W WO 2011093082 A1 WO2011093082 A1 WO 2011093082A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
osteoarthritis
fas
igm
cartilage
Prior art date
Application number
PCT/JP2011/000454
Other languages
English (en)
French (fr)
Inventor
西岡久寿樹
和雄 遊道
Original Assignee
Axis株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axis株式会社 filed Critical Axis株式会社
Priority to EP11736797.9A priority Critical patent/EP2529752A4/en
Priority to CN2011800075746A priority patent/CN102811738A/zh
Priority to JP2011551767A priority patent/JPWO2011093082A1/ja
Priority to US13/575,632 priority patent/US20130034563A1/en
Publication of WO2011093082A1 publication Critical patent/WO2011093082A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2878Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the present invention relates to the use of an IgM-type anti-Fas antibody for producing a therapeutic or prophylactic agent for osteoarthritis.
  • Osteoarthritis is caused by aging and mechanical stress, the destruction of the surface of the articular cartilage and the accompanying proliferation of new cartilage at the joint margin, joint deformation, compatibility It is a disease that progresses to inflammation of the joint synovium.
  • RA rheumatoid arthritis
  • Fibroblast proliferation is increased, inflammatory synovial granulation tissue is formed, bone and cartilage destruction progresses, and irreversible damage is caused to the joint.
  • rheumatoid arthritis is an autoimmune disease called an inflammatory disease
  • osteoarthritis OA
  • therapeutic agents used to treat rheumatoid arthritis have no therapeutic effect in osteoarthritis.
  • NSAIDs non-steroidal drugs having anti-inflammatory and analgesic effects
  • Other treatments include reducing joint fluid by injection, or injecting protective agents for joint cartilage, such as corticosteroids, sodium chondoitin sulfate, and hyaluronic acid (HA). It was.
  • a p21-activated kinase (PAK) inhibitor Japanese translations of PCT publication No. 2007-537134 (see Patent Document 2)
  • PAK p21-activated kinase
  • Patent Document 2 Japanese translations of PCT publication No. 2007-537134 (see Patent Document 2)
  • Patent Document 3 Japanese Patent Publication No. 2008-516593 (see Patent Document 3)
  • therapeutic drug development targeting factors that promote cartilage regeneration such as interleukin (IL) -1) and factors that induce cartilage repair and regeneration are applied as drugs. Attempts have been made, but satisfactory results have not been obtained.
  • IL interleukin
  • JP 2004-59582 A Special Table 2007-537134 JP 2008-516593 A JP-A-8-40897 JP 2006-151843 A JP 2007-51077 A
  • An object of the present invention is to provide a therapeutic agent or a method for producing a prophylactic agent for treating or preventing osteoarthritis.
  • the present invention is based on the finding that by using an IgM anti-Fas antibody, cartilage degeneration can be suppressed in osteoarthritis. Specifically, the present invention is based on the finding that the production of cartilage matrix degrading enzyme can be suppressed by using an IgM anti-Fas antibody. Further, the present invention is based on the finding that the ability to produce cartilage matrix can be improved by using an IgM anti-Fas antibody. In addition, the present invention is based on the finding that apoptosis of macrophages induced by osteoarthritis can be promoted. The fact that an IgM anti-Fas antibody can be used for osteoarthritis is the first knowledge obtained this time.
  • the first aspect of the present invention relates to the use of an IgM type anti-Fas antibody for producing a therapeutic agent or a prophylactic agent for treating or preventing a disease classified from an early stage to an advanced stage of osteoarthritis.
  • the present invention relates to a method for producing a therapeutic or preventive agent for a disease classified from an early stage to an advanced stage of osteoarthritis containing an IgM anti-Fas antibody as an active ingredient. That is, by adding an appropriate pharmaceutically acceptable carrier to an IgM anti-Fas antibody as an active ingredient and adjusting the drug, diseases classified from the early stage to the advanced stage of osteoarthritis A therapeutic or prophylactic agent for treating or preventing is produced.
  • each stage of osteoarthritis is classified according to the osteoarthritis ICRS classification, Kellgren-Lawrence classification, Outerbridge classification, or modified Mankin score.
  • the disease targeted by the agent of the present invention is (1) a disease classified as grade 1 to 3 in the ICRS classification of osteoarthritis, (2) Diseases classified in grades 1 to 3 in the Kellgren-Lawrence classification of osteoarthritis, (3) Diseases classified in grades 1 to 3 in the Outerbridge classification of osteoarthritis, or (4)
  • the disease is classified as a score of 1 to 7 in the modified Mankin score for osteoarthritis.
  • the therapeutic agent, prophylactic agent or pharmaceutical composition produced by the use of the present invention is particularly effective for early osteoarthritis related to the hip joint, knee joint, or knee cartilage. I found it.
  • the IgM antibody of the present invention can suppress cartilage degeneration. Therefore, the agent of the present invention containing an IgM anti-Fas antibody as an active ingredient can be effectively used for treating or preventing a disease associated with cartilage degeneration. That is, the agent of the present invention can be effectively used for treating or preventing a disease classified from an early stage to an advanced stage of osteoarthritis.
  • the IgM anti-Fas antibody can suppress the production of matrix metalloproteinase (MMP) -1 and MMP-3 which are mediators of cartilage degeneration.
  • MMP matrix metalloproteinase
  • Cartilage matrix-degrading enzymes degrade articular cartilage and can cause osteoarthritis or worsen the symptoms of osteoarthritis. Therefore, since the IgM anti-Fas antibody can suppress the production of MMP, it can be suitably used as a therapeutic or prophylactic agent for diseases associated with cartilage degeneration. Further, as shown in Examples described later, the IgM anti-Fas antibody can improve the ability to synthesize cartilage matrix proteoglycans.
  • Osteoarthritis is also caused by the destruction of articular cartilage.
  • the agent of the present invention can be effectively used for treating or preventing a disease classified from an early stage to an advanced stage of osteoarthritis accompanied by cartilage degeneration. That is, the present invention also provides a cartilage destruction inhibitor containing an IgM anti-Fas antibody as an active ingredient.
  • the IgM type anti-Fas antibody has the same or one amino acid residue as the extracellular domain of Fas antigen (amino acid sequence described in the 26th to 173rd positions of SEQ ID NO: 1).
  • the method for producing an agent according to the above which is an antibody against a peptide comprising an amino acid sequence substituted, deleted, added or inserted.
  • a preferred embodiment of the first aspect of the present invention is the agent according to any one of the above, wherein the IgM anti-Fas antibody is CH11 or 7C11.
  • CH11 or C711 can effectively suppress the production of MMP1 and MMP3.
  • CH11 can improve the synthetic ability of proteoglycan which is a cartilage matrix. Therefore, the agent of the present invention containing an IgM anti-Fas antibody is preferably used as a therapeutic agent or preventive agent for treating or preventing a disease classified from an early stage to an advanced stage of osteoarthritis accompanied by cartilage degeneration. Can be used.
  • a method for producing a therapeutic agent and a preventive agent for osteoarthritis can be provided.
  • FIG. 1 is a drawing showing the pathophysiology of articular cartilage for each ICRS grade.
  • FIG. 1A shows grade 0 normal cartilage.
  • FIG. 1B shows the cartilage in a state in which a gentle depression is formed in the surface layer of grade 1 cartilage.
  • FIG. 1C shows a state in which cracks and cracks are formed in the surface layer of grade 1 cartilage.
  • FIG. 1D shows a grade 2 cartilage defect that has expanded to a depth of 50% or less of the cartilage.
  • FIG. 1E shows a grade 3 cartilage defect that has expanded to a depth of 50% or more of the cartilage.
  • FIG. 1F shows a grade 3 cartilage defect extending to the calcified layer.
  • FIG. 1H shows a state in which grade 3 swelling was caused.
  • FIG. 2 is a graph instead of a drawing showing the effect of an anti-Fas IgM antibody on the ability of chondrocytes to produce matrix metalloproteinase (MMP).
  • FIG. 2A is a graph instead of a drawing showing the effect of an IgM anti-Fas antibody on the ability of chondrocytes to produce MMP1.
  • FIG. 2B is a graph instead of a drawing showing the effect of an IgM anti-Fas antibody on the ability of chondrocytes to produce MMP3.
  • MMP matrix metalloproteinase
  • FIG. 3 is a graph instead of a drawing showing the effect of the IgM anti-Fas antibody on the reduction in cartilage matrix (proteoglycan) production ability.
  • FIG. 4 is a graph instead of a drawing showing the apoptosis-inhibiting effect of the IgM anti-Fas antibody.
  • FIG. 5 is a graph instead of a drawing showing the effect of an IgM type anti-Fas antibody or IgG type anti-Fas antibody on the ability of chondrocytes to produce matrix metalloproteinase (MMP).
  • MMP matrix metalloproteinase
  • FIG. 5A is a graph instead of a drawing showing the effect of an IgM type anti-Fas antibody or IgG type anti-Fas antibody on the ability of chondrocytes to produce MMP1.
  • FIG. 5B is a graph instead of a drawing showing the effect of an IgM type anti-Fas antibody or IgG type anti-Fas antibody on the ability of chondrocytes to produce MMP3.
  • FIG. 6 is a graph instead of a drawing showing the apoptosis-suppressing effect of an IgM-type anti-Fas antibody or IgG-type anti-Fas antibody.
  • FIG. 7 is a graph instead of a drawing showing the pathological tissue score of arthropathy in osteoarthritis model rats.
  • FIG. 7A shows the results of Safranin O staining.
  • FIG. 7B shows the result of chondrocyte deficiency.
  • FIG. 7C shows the result of the cartilage structure.
  • FIG. 8 is a photograph replacing a drawing showing a knee joint histopathology specimen of an osteoarthritis model rat 12 weeks after treatment.
  • 8A to 8F show knee joint histopathology specimens of control osteoarthritis model rats.
  • 8G to 8J show knee joint histopathology specimens of osteoarthritis model rats in the CH-11 low dose administration group (CH-11: 1.0 ng / ml administration).
  • 8K to 8N show knee joint histopathology specimens of osteoarthritis model rats in the CH-11 high dose administration group (CH-11: 10.0 ng / ml administration).
  • FIG. 8O shows a knee joint histopathology specimen of a control osteoarthritis model rat.
  • FIG. 8P shows knee joint histopathology specimens of osteoarthritis model rats in the CH-11 low dose administration group (CH-11: 1.0 ng / ml administration).
  • FIG. 9 is a photograph replacing a drawing showing a knee joint histopathology specimen of an osteoarthritis model rat 24 weeks after treatment.
  • 9A to 9H show knee joint histopathology specimens of control osteoarthritis model rats.
  • 9I to 9L show knee joint histopathology specimens of osteoarthritis model rats in the CH-11 low-dose administration group (CH-11: 1.0 ng / ml administration).
  • 9M to 9P show knee joint histopathology specimens of osteoarthritis model rats in the CH-11 high dose administration group (CH-11: 10.0 ng / ml administration).
  • 9B, 9D, 9F, 9H, 9I, 9K, 9M, and 9O are shown in FIGS. 9A, 9C, 9E, 9G, 9J, 9L, 9N, and 9P, respectively.
  • the first aspect of the present invention relates to the use of an IgM anti-Fas antibody for producing a therapeutic agent or a prophylactic agent for treating or preventing a disease classified into an early stage to an advanced stage of osteoarthritis.
  • This therapeutic agent and prophylactic agent contains an IgM anti-Fas antibody as an active ingredient.
  • Osteoarthritis is a disease that occurs in the interphalangeal joint, the first carpal joint, the cervical or lumbar disc, the first metatarsal joint, the hip joint, and the knee joint.
  • the agent of the present invention can be used for such sites. In these, it is preferable to use the agent of this invention for a hip joint, a knee joint, or a knee cartilage.
  • the disease targeted by the agent of the present invention is a disease classified into an early stage to an advanced stage with cartilage degeneration in osteoarthritis.
  • the stages of osteoarthritis are classified as shown in Tables 1 to 4 below based on the pathology.
  • the stages of osteoarthritis will be described using the osteoarthritis progression criteria shown in Tables 1 to 4 below.
  • Table 1 shows grading (hereinafter also referred to as “ICRS classification”) of cartilage defects caused by ICRS (International Cartridge Repair Society) in osteoarthritis.
  • osteoarthritis is classified as grade 0-4.
  • grade 0 is a stage where osteoarthritis has not developed.
  • Grade 1 is the early stage of osteoarthritis.
  • Grades 2-3 are advanced stages of osteoarthritis.
  • Grade 4 is the end stage of osteoarthritis.
  • the target of the agent of the present invention is a disease classified into an early stage to an advanced stage of osteoarthritis. That is, the target of the agent of the present invention is a disease classified into any one of grades 1 to 3 in the ICRS classification of osteoarthritis.
  • FIG. 1 shows the state of cartilage indicated by each grade of ICRS classification of osteoarthritis.
  • Cartilage has a layered structure consisting of a surface layer, an intermediate layer, a deep layer, and a calcified layer (FIG. 1A). The cartilage is connected to bone (subchondral bone) through a calcified layer.
  • FIG. 1A shows grade 0 normal cartilage.
  • FIG. 1B shows the cartilage in a state in which a gentle depression is formed in the surface layer of grade 1 cartilage.
  • FIG. 1C shows a state in which cracks and cracks are formed in the surface layer of grade 1 cartilage.
  • FIG. 1D shows a grade 2 cartilage defect that has expanded to a depth of 50% or less of the cartilage.
  • FIG. 1A shows grade 0 normal cartilage.
  • FIG. 1B shows the cartilage in a state in which a gentle depression is formed in the surface layer of grade 1 cartilage.
  • FIG. 1C shows a state in which cracks and
  • the agent of the present invention treats and prevents cartilage degeneration.
  • the agent of the present invention is suitable for the treatment of osteoarthritis corresponding to Great 1 to Great 3 (early to advanced stages of osteoarthritis) in the classification of cartilage defects by ICRS. Suppress the condition. Therefore, the agent of the present invention can be used for treating or preventing a disease classified into an early stage to an advanced stage of osteoarthritis.
  • Table 2 shows the Kellgren-Lawrence classification (hereinafter also referred to as “KL classification”) of osteoarthritis.
  • the target of the agent of the present invention is a disease classified into an early stage to an advanced stage of osteoarthritis accompanied by cartilage degeneration. That is, the target of the agent of the present invention is a disease classified into any one of grades 1 to 3 in the KL classification of osteoarthritis.
  • grades 0 to 4 of the KL classification correspond to grades 0 to 4 of the ICRS classification, respectively.
  • Table 3 shows the Outerbridge classification (hereinafter also referred to as “OB classification”) of osteoarthritis.
  • osteoarthritis is classified into grades 0-4.
  • grade 0 is a stage where osteoarthritis has not developed.
  • Grade 1 is the early stage of osteoarthritis.
  • Grades 2-3 are advanced stages of osteoarthritis.
  • Grade 4 is the end stage of osteoarthritis.
  • the target of the agent of the present invention is a disease classified into an early stage to an advanced stage of osteoarthritis. That is, the target of the agent of the present invention is a disease classified into any one of grades 1 to 3 in the OB classification of osteoarthritis.
  • grades 0 to 4 of the OB classification correspond to grades 0 to 4 of the ICRS classification, respectively.
  • Table 4 shows the classification of osteoarthritis by the modified Mankin score.
  • safranin O-fast green staining classifies osteoarthritis according to the degree of staining when the articular cartilage tissue is stained. In chondrocyte defects, osteoarthritis is classified according to the amount of chondrocytes stained. In terms of structure, osteoarthritis is classified according to the degree of tears in the articular cartilage.
  • scores 1 to 3 are the initial stages of osteoarthritis and correspond to grade 1 of the ICRS classification. Scores 4 to 5 are advanced stages of osteoarthritis and correspond to ICRS grade 2. Scores 6-8 are also advanced stages of osteoarthritis and correspond to ICRS grade 3 grade.
  • the target of the agent of the present invention is a disease classified into an early stage to an advanced stage of osteoarthritis. That is, the target of the agent of the present invention is a disease classified into any one of grades 1 to 7 in the modified Mankin score of osteoarthritis.
  • the IgM anti-Fas antibody can suppress osteoarthritis symptoms (cartilage degeneration) having a modified Mankin score of 2 to 7.
  • the IgM anti-Fas antibody can suppress cartilage matrix deficiency.
  • the IgM anti-Fas antibody can improve cartilage matrix production ability.
  • the Mankin score of 2 to 7 is an early stage to advanced stage of osteoarthritis with cartilage degeneration as its pathological condition. Therefore, the IgM anti-Fas antibody can be effectively used as a therapeutic or prophylactic agent for diseases classified from the early stage to the advanced stage of osteoarthritis.
  • the IgM anti-Fas antibody can suppress osteoarthritis symptoms (cartilage degeneration) having a modified Mankin score of 2 to 7.
  • the IgM anti-Fas antibody can suppress cartilage matrix deficiency.
  • the IgM anti-Fas antibody can improve cartilage matrix production ability.
  • the Mankin score of 2 to 7 is an early stage to advanced stage of osteoarthritis with cartilage degeneration as its pathological condition. Therefore, the IgM anti-Fas antibody can be effectively used as a therapeutic or prophylactic agent for diseases classified from the early stage to the advanced stage of osteoarthritis.
  • the agent of the present invention can also function as a therapeutic or prophylactic agent for osteoarthritic arthritis containing an IgM anti-Fas antibody as an active ingredient.
  • Osteoarthritic arthritis is a secondary inflammatory response caused by osteoarthritis.
  • peripheral cells can be stimulated by the destruction of the surface of the articular cartilage, the growth of new cartilage at the joint margin, and the deformation of the joint, and a secondary inflammatory reaction can be induced.
  • the agent of the present invention can be suitably used as a therapeutic or prophylactic agent for such osteoarthritic arthritis.
  • the agent of the present invention can be used as a cartilage matrix degrading enzyme production inhibitor containing an IgM anti-Fas antibody as an active ingredient, a cartilage matrix production agent, and an apoptosis inducer for macrophages induced by osteoarthritis.
  • the IgM anti-Fas antibody is preferably CH11 or 7C11.
  • such an IgM type anti-Fas antibody is effective as an inhibitor of cartilage matrix degrading enzyme production, a cartilage matrix producing agent, and an apoptosis inducer for macrophages induced by osteoarthritis. Can be used.
  • an antibody is a protein induced in a living organism.
  • Examples of such organisms are mammals and birds.
  • Examples of the antibody of the present invention are anti-Fas antibodies derived from mammals such as humans, mice, and rats.
  • the antibody of the present invention can be used as an animal medicine for dogs, cats and the like in addition to humans.
  • antibodies derived from the organism to be administered are preferably used.
  • Examples of types of antibodies to be administered to humans are mouse antibodies, chimeric antibodies, humanized antibodies, and (fully) human antibodies.
  • Such an antibody can be produced by a known method (for example, Takenobu Tadaomi, Protein Experiment Handbook, 2003, p86-p105, published by Yodosha Co., Ltd.).
  • a protein or peptide, which is an antigen to which an antibody binds is injected into an immunized animal that produces the antibody.
  • immunized animal known animals used as immunized animals such as mice, rats, hamsters, rabbits, and goats can be used.
  • the injection of the antigen into the immunized animal is performed once or twice or more regularly (for example, every 2 to 4 weeks).
  • an antibody derived from an immunized animal (a mouse antibody in the case of a mouse) can be obtained.
  • the chimeric antibody is a mouse antibody variable region linked to a human antibody constant region, and can be produced by a known method (for example, JP-A-7-194384).
  • a humanized antibody is an antibody in which a complementary determining region (CDR) of a mouse antibody is transplanted into a variable region of a human antibody.
  • CDR complementary determining region
  • Known methods Japanese Patent No. 2828340, Japanese Patent Laid-Open No. 11-4694, etc.
  • a human antibody is an antibody produced by introducing a human immunoglobulin gene into a knockout animal in which the immunoglobulin originally possessed by the immunized animal has been disrupted, and is a known method (Japanese Patent Laid-Open No.
  • a fully human antibody is an antibody produced from human cells, and is a known method (JP 2007-141, JP 2005-034154, etc.).
  • a person skilled in the art can produce the antibody of the present invention by appropriately adopting a known production method of such an antibody.
  • Fas antigen is a transmembrane glycoprotein and is also called APO-1, CD95, ALPS1A, APT1, Fas1, FasL receptor, TNF receptor superfamily member 6 (TNF receptor superfamily member 6), TNFR6, and the like. Fas antigen expressed on the cell surface is known to function as a receptor that induces apoptosis in the cell by being stimulated with Fas ligand (FasL) or anti-Fas antibody (Fas-mediated). Apoptosis). The Fas antigen is widely distributed in cells constituting each tissue in the living body. Fas antigen is also expressed in inflammation-related cells such as macrophages, natural killer (NK) cells, B cells, T cells, granulocytes, and monocytes.
  • NK natural killer
  • FasL has been reported to be expressed in T cells, NK cells, effector cells, and the like.
  • Fas ligand or an anti-Fas antibody binds to the Fas antigen
  • the Fas antigen forms a trimer.
  • the intracellular domain of Fas antigen is also trimerized to transmit an apoptosis signal into the cell.
  • the Fas ligand forms a trimer, and the trimerized Fas ligand binds to the Fas antigen, so that the trimer of the intracellular domain of the Fas antigen. It is thought that apoptotic signals are transmitted.
  • anti-Fas antibody examples include an antibody that induces Fas-mediated apoptosis (agonist antibody) and an antibody that inhibits Fas-mediated apoptosis (antagonist antibody).
  • a preferred anti-Fas antibody in the present invention is an antibody (agonist antibody) that induces Fas-mediated apoptosis.
  • examples of such an anti-Fas antibody include an antibody against a peptide consisting of an amino acid sequence identical to the amino acid sequence set forth in SEQ ID NO: 1, or consisting of an amino acid sequence in which 1 to 10 amino acid residues are substituted, deleted, added or inserted. It is done.
  • SEQ ID NO: 1 is an amino acid sequence representing human Fas antigen.
  • the number of substituted, deleted, added or inserted amino acid residues is 1 to 10, preferably 1 to 5, more preferably 1 to Two, more preferably one.
  • the agent containing the anti-Fas antibody of the present invention can be used not only for humans but also for animals such as dogs and cats. When the agent containing the anti-Fas antibody of the present invention is used as such an animal medicine, the anti-Fas antibody is identical to the amino acid sequence shown in SEQ ID NO: 1 indicating a human-derived Fas antigen, or 1 to 10 amino acids.
  • the amino acid sequence constituting the Fas antigen derived from the animal to be administered is identical or 1 to 10 amino acid residues are substituted. It is preferable to use an antibody against a peptide consisting of a deleted, added or inserted amino acid sequence.
  • the amino acid sequence constituting such an animal-derived Fas antigen may be obtained using a known site such as GenBank.
  • the anti-Fas antibody is an antibody that recognizes the extracellular domain of the Fas antigen. Specifically, it is an antibody against a peptide consisting of an amino acid sequence identical to the amino acid sequence described in the 26th to 173rd positions of SEQ ID NO: 1 or having an amino acid sequence in which 1 to 5 amino acid residues are substituted, deleted, added or inserted .
  • the number of amino acid residues substituted, deleted, added or inserted is 1 to 5, preferably 1 to 2, More preferably, it is one.
  • a preferred anti-Fas antibody in the present invention is an antibody that induces Fas-mediated apoptosis. That is, the anti-Fas antibody of the present invention is preferably an antibody that can bind to the Fas antigen, cause trimerization of the Fas antigen, and transmit an apoptosis signal into the cell.
  • the anti-Fas antibody of the present invention as an antibody against the extracellular domain of the Fas antigen, when an agent containing the anti-Fas antibody is administered, it preferably binds to the Fas antigen and causes its trimerization, Communication can be facilitated. Therefore, a therapeutic effect can be obtained effectively.
  • the anti-Fas antibody of the present invention may be a polyclonal antibody or a monoclonal antibody.
  • polyclonal antibodies are difficult to stabilize the antibody titer. Therefore, it is preferable to use a monoclonal antibody having a stable antibody titer.
  • the isotype of the antibody immunoglobulin (Ig) molecule
  • the antibody of the present invention is preferably an IgG type antibody, an IgA type antibody, or an IgM type antibody. , IgA type antibodies or IgM type antibodies are more preferable, and IgM type antibodies are more preferable.
  • Such an antibody can be produced by a method described later, but is not limited to the production method described later, and can be produced by a known production method.
  • An antibody immunoglobulin (Ig) molecule
  • IgG, IgM, IgA, IgE, IgD has a molecular weight of 50,000 to 70,000 and a molecular weight of 2-2. It is composed of 50,000 light chains.
  • the H chain has a characteristic structure for each isotype, and is called ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ chain corresponding to IgG, IgM, IgA, IgD, and IgE, respectively.
  • Two types of L-chains, L-type and K-type, are known and are called ⁇ and ⁇ chains, respectively.
  • peptide chain structure of the basic structure two homologous H chains and L chains are linked by a disulfide bond (SS bond) and a non-covalent bond.
  • the two L chains can be paired with any H chain.
  • the combinations of ⁇ , ⁇ , and ⁇ chains are ⁇ 2 ⁇ 2 and ⁇ 2 ⁇ 2 .
  • a loop is formed for every 100 to 110 amino acid residues. Call it.
  • a domain called the variable region (V) (represented as V H and V L ) exists in the domain located on the N-terminal side.
  • the amino acid sequence on the C-terminal side is a domain called a constant region (C) having a substantially constant amino acid sequence in each isotype (represented as C H 1, C H 2, C H 3, C L ).
  • C constant region
  • the antigen binding site (epitope) of an antibody is composed of V H and V L , and the specificity of the antigen varies depending on the sequence of this site. And such an antibody takes a polymerized structure which changes with isotypes.
  • an IgM type antibody is an antibody composed of two H ⁇ chains and two L chains, and a polypeptide called J chain is further bound to exist as a pentamer or hexamer.
  • An IgA-type antibody is an antibody composed of two H ⁇ chains and two L chains, but exists as a monomer, dimer, or trimer. The dimer or trimer of the IgA antibody is bound by a J chain or a secretory piece. IgG type antibodies exist as monomers. Each of these types of antibodies can be used as the anti-Fas antibody of the present invention.
  • trimer Fas ligand binds to Fas antigen, so that trimerization of the intracellular domain of Fas antigen is promoted and an apoptosis signal is transmitted.
  • the IgM type antibody since the IgM type antibody has a polymerized structure (pentamer or hexamer), the IgM type antibody binds to grab three or more Fas antigens. Thereby, trimerization of Fas antigen occurs efficiently and an apoptotic signal is transmitted. Therefore, from such a viewpoint, it is preferable to use an IgM type antibody as the anti-Fas antibody in the present invention.
  • a polyclonal antibody can be prepared by injecting an antigen (immunogen) into the immunized animal.
  • an antigen (immunogen) to be injected into an immunized animal antigen-expressing cells, (crude) purified protein, recombinant protein, or synthetic peptide can be used.
  • antigen include a peptide consisting of an amino acid sequence identical to the amino acid sequence set forth in SEQ ID NO: 1 above, or having an amino acid sequence in which 1 to 10 amino acid residues are substituted, deleted, added or inserted.
  • the antigen is the same as the amino acid sequence described in the 26th to 173rd positions of SEQ ID NO: 1, or 1 to 5 amino acids. It is preferably a peptide consisting of an amino acid sequence in which residues are substituted, deleted, added or inserted, and the number of amino acid residues substituted, deleted, added or inserted into the amino acid sequence is more than 1 to 2 Preferably, more preferably.
  • the anti-Fas antibody of the present invention is an antibody that binds to the Fas antigen and induces Fas-mediated apoptosis
  • the peptide (antigen) used in the production of the antibody is located at positions 26 to 173 of SEQ ID NO: 1.
  • a peptide shorter than the peptide consisting of the described amino acid sequence may be used. Those skilled in the art can appropriately adjust the length of the peptide.
  • the antigen When producing a polyclonal antibody, the antigen is mixed with adjuvant and injected into the immunized animal.
  • adjuvant refers to a substance used for the purpose of enhancing an immune response to an antigen, and examples thereof include aluminum adjuvant, complete (incomplete) Freund adjuvant, and pertussis adjuvant.
  • the antigen is injected into the immunized animal every 2 to 4 weeks. After two or more injections, blood is collected 1 to 2 weeks after the injection date, and an antibody titer check is performed. The amount of injection into the immunized animal and the number of injections (number of immunizations) vary depending on the type of immunized animal and the individual.
  • a person skilled in the art can adjust appropriately according to the result of the antibody titer test.
  • whole blood is extracted and serum is separated using a known method such as centrifugation.
  • Serum is purified to remove endogenous antibodies contained in the serum.
  • a purification method for example, a known method such as affinity chromatography can be used. In this way, a polyclonal antibody can be prepared.
  • the antigen-expressing cell used as the antigen is preferably a cell in which a protein serving as the antigen is expressed on a cell membrane such as a cultured cell.
  • Such antigen-expressing cells can be prepared by a known method. Specifically, DNA encoding a protein serving as an antigen may be introduced into a cultured cell and expressed.
  • the cultured cells that express the antigen (hereinafter also referred to as “host”) are not particularly limited, and known cells may be used. Examples include B cells and dendritic cells that are used as antigen-presenting cells.
  • an antigen expression vector incorporating a DNA encoding the protein serving as an antigen is prepared and introduced into a cell that expresses the antigen.
  • the DNA to be incorporated into the expression vector does not include a cell membrane domain sequence, it is preferable to include a cell membrane domain sequence possessed by the host into which the expression vector is introduced. By including such a sequence, a protein (antigen) can be efficiently expressed on the cell membrane.
  • a cell membrane domain sequence By including such a sequence, a protein (antigen) can be efficiently expressed on the cell membrane.
  • Those skilled in the art can appropriately obtain such a cell membrane domain sequence and include it in a DNA sequence to be incorporated into an expression vector.
  • a vector containing a promoter, enhancer, splicing signal, poly A addition signal, selection marker, SV40 replication origin, and the like can be used.
  • the promoter include SR ⁇ promoter, SV40 promoter, HIV / LTR promoter, CMV promoter, HSV-TK promoter and the like.
  • the selection marker include a dihydrofolate reductase gene (methotrexate (MTX) resistance), an ampicillin resistance gene, a neomycin resistance gene (G418 resistance), a hydromycin resistance gene, a blasticidin resistance gene, and the like.
  • an expression vector a known one may be used, and those skilled in the art can appropriately select depending on the host.
  • a method for introducing the antigen expression vector a known method such as a calcium phosphate method, a lipofection method, or an electroporation method can be used.
  • a known method such as immunostaining may be used as appropriate for confirming that the antigen is expressed in the cells.
  • the cells expressing the antigen in this way can be collected by a known method and used as an antigen to be injected into an immunized animal.
  • the (crude) purified protein used as an antigen is a protein purified from cultured cells and the like. Such a protein may be expressed by stimulating cultured cells or the like with a drug or factor that acts on a cell signal transduction pathway or acts on a transcription factor.
  • the expressed protein can be purified by a known method and used as a purified protein. For example, if it is a secreted protein, the culture supernatant can be collected and purified by, for example, salting out, column chromatography, membrane treatment or the like.
  • column chromatography examples include ion exchange chromatography, gel filtration chromatography, affinity chromatography, hydrophobic chromatography and the like, and those skilled in the art can appropriately use them according to the properties of the protein. If the protein is not secreted outside the cell, the cultured cell can be collected, and the protein can be collected by disrupting the cell by ultrasonic treatment or the like. Then, the protein may be purified by the method described above. Methods for obtaining such purified proteins are known, and those skilled in the art can appropriately use them in accordance with the characteristics of the protein.
  • a recombinant protein used as an antigen can be prepared by a known method. Specifically, DNA encoding a recombinant protein used as an antigen is inserted into a vector by a known method and introduced into a host for expressing the recombinant protein.
  • a known vector may be used, and those skilled in the art can select it according to the host to be introduced.
  • known hosts such as bacteria, insect cells, plant cells, and animal cells can be used.
  • a method for introducing a vector into a host a known method can be appropriately used depending on the host, such as an electroporation method, a calcium phosphate method, or a lipofection method.
  • the recombinant protein may be a fusion protein with a tag such as GST (glutathin transfer), HA (hemagglutinin), or (oligo) histidine.
  • a tag such as GST (glutathin transfer), HA (hemagglutinin), or (oligo) histidine.
  • a tag may be bound to the N-terminal side or C-terminal side of the DNA encoding the target antigen.
  • the expressed protein can be easily purified.
  • the protein expressed in the host can be recovered, for example, by recovering the culture supernatant if it is a secreted protein, or by disrupting the host cell by sonication or the like if it is not a secreted protein.
  • HPLC or an affinity column can be used for protein purification.
  • recombinant proteins can be obtained using in vitro protein expression systems and living organisms such as insects, animals and plants. Such a method is publicly known, and those skilled in the art can make appropriate changes.
  • Synthetic peptides Examples of methods for synthesizing peptides include a solid phase method and a liquid phase method.
  • a stepwise extension method in which the target amino acid sequence is sequentially linked from the N-terminal or C-terminal, or a fragment in which the amino acid sequence is divided into appropriate fragments and these fragments are condensed to synthesize the target peptide Examples of the condensation method.
  • a solid phase method in which an amino acid is bonded to an insoluble resin, an amino acid is bonded one by one on the resin, and a chain is extended based on amino acid sequence information.
  • a liquid phase method that does not use s.
  • synthesize combine efficiently combining those methods.
  • Such a method is known and can be appropriately used by those skilled in the art to synthesize a target amino acid sequence.
  • the synthesized peptide may be purified.
  • known methods such as precipitation, HPLC, ion exchange chromatography, gel filtration chromatography and the like can be used.
  • a cross-linking agent for example, MBS (m-maleimidobenzoic acid) ester, DMS (DMS (DMS (ester))
  • BSA Bovine Serum Albumin
  • KLH Keyhole Limetic Hemoyanin. dimethyl sublimate
  • a monoclonal antibody can be produced by a known method. Specifically, the above-mentioned antigen is injected (immunized) into an immunized animal (eg, a mouse) at intervals of 2 to 4 weeks for 1 to 6 months, and an antibody titer assay is performed in the same manner as the polyclonal antibody production method. When the desired antibody titer is obtained by the assay, the spleen is isolated from the immunized animal. The isolated spleen is suspended in a serum-free medium (for example, Iskov medium (GIBCO)) to obtain a spleen cell suspension.
  • a serum-free medium for example, Iskov medium (GIBCO)
  • Spleen cells and myeloma cells are mixed, and polyethylene glycol (PEG) is added to fuse the cells.
  • PEG polyethylene glycol
  • only hybridomas are grown by culturing in hypoxanthine-aminopterine-thymidine (HAT) selective medium.
  • HAT hypoxanthine-aminopterine-thymidine
  • the test-positive hybridoma is cloned simultaneously with the presence or absence of the target antibody. By repeating this operation several times, a cloned hybridoma producing the target antibody can be obtained.
  • the cloned hybridoma is injected into the peritoneal cavity of the immunized animal, and ascites is collected after 2 to 4 weeks and purified to obtain a monoclonal antibody.
  • ascites a known method may be used, and examples thereof include affinity chromatography and gel filtration chromatography.
  • the antibody of the present invention may be a recombinant antibody.
  • Recombinant antibodies are recombinant monoclonal antibodies that do not use hybridomas in the antibody production process. Examples include those that have only the minimum antigen binding site, those that have a multivalent antigen binding site, those that combine and secrete IgG and IgA, and chimera and humanization between different animals The thing which gave it is given.
  • Such a recombinant antibody can be obtained by expressing an immunoglobulin gene of each isotype in a host. Examples of production systems using such a host include a method using Escherichia coli, a method using cultured cells, a method for producing in plants, and a method for producing in transgenic mice.
  • Such a recombinant antibody can be produced by a known method.
  • a specific example is a phage display method (for example, a Ricombinant antibody expression system (Amersham Biosciences)).
  • the phage display method is a system in which a foreign gene is expressed as a fusion protein in a coat protein of a filamentous phage such as M13, which is a kind of E. coli virus, so that the infectivity of the phage is not lost.
  • a phage is a virus that infects bacteria. If a foreign gene is incorporated into its DNA, it has the ability to enter the host and propagate upon infection.
  • phage display method An example of a method for producing a monoclonal antibody by the phage display method is given below, but the present invention is not limited to the following production method, and those skilled in the art will appropriately change each step using other known methods. can do. In addition, those skilled in the art can appropriately set and change parameters such as temperature, reaction time, use solution concentration, use solution amount, etc. in each step.
  • a monoclonal antibody is prepared by first preparing a phage antibody library and then screening antibody-producing phages.
  • mRNA is extracted from B cells and RT-PCR is performed to prepare a cDNA library.
  • B cells may be collected from mice or humans.
  • AGPC method Acid-Guanidinium-Phenol-Chloroform method
  • a guanidine thiocyanate solution is added to B cells and homogenized.
  • sodium acetate, phenol, and chloroform is added to the cell homogenate solution, mix, and centrifuge. After centrifugation, collect the aqueous layer of the solution. Add isopropanol to the collected aqueous layer, mix and centrifuge to precipitate RNA.
  • RNA The precipitate (RNA) is again dissolved in guanidine thiocyanate solution, and then shaken with sodium acetate, phenol and chloroform. After shaking, centrifuge and collect the aqueous layer again. Add isopropanol to the collected aqueous layer again and centrifuge to precipitate RNA.
  • Total RNA Total RNA (total RNA) can be obtained by adding 70% ethanol to the precipitated RNA, suspending it and centrifuging it again to precipitate the RNA.
  • mRNA is extracted from the total RNA by amplifying the mRNA by PCR using a primer (oligo dT primer) that binds to the poly A sequence present on the C-terminal side of the mRNA, and an oligo dT column (eg, QIAGEN). For example).
  • a primer oligo dT primer
  • an oligo dT column eg, QIAGEN
  • extraction and purification may be performed by affinity chromatography using magnetic beads coated with oligo dT (for example, manufactured by Nacalai Tesque).
  • a cDNA library can be prepared by PCR in a reaction solution containing reverse transcriptase.
  • V H and V L which are variable regions of the H chain and L chain of an antibody (immunoglobulin (Ig) molecule), can be obtained from, for example, GenBank.
  • IgA human antibody VL and VH sequences of human IgA are obtained, primer design is performed to increase these sequences, and both sequences are obtained by PCR using the above cDNA as a template. What is necessary is just to amplify. A person skilled in the art can appropriately design primers depending on what kind of antibody is obtained, and can also determine conditions such as PCR as appropriate. It was amplified V L and V H may be purified by known methods.
  • the phagemid vector is a plasmid vector in which an origin of replication (IG region) necessary for the production of single-stranded DNA of M13 phage or f1 phage is incorporated.
  • a phagemid vector has characteristics as a plasmid and a single-stranded DNA phage, and can be operated as a normal double-stranded DNA plasmid, but also contains a linear strand containing one DNA strand of the plasmid. Phage particles can be produced.
  • a publicly known phagemid vector may be used (for example, pCANTAB5E (manufactured by Amersham Biosciences)).
  • antibody gene fragments are amplified by PCR using primers specific to the antibody H chain Fd portion (V H and C H 1 regions) and the L chain portion, and these gene fragments are converted into a phagemid vector.
  • a gene library corresponding to the antibody Fab may be constructed by insertion.
  • antigen-specific phage antibody-producing phage
  • ELISA ELISA
  • the antibody-producing phage is reacted with an ELISA plate coated with the purified antigen, and the reactivity (binding property) with the purified antigen is examined.
  • phages producing monoclonal antibodies can be obtained.
  • a monoclonal antibody can be obtained by growing such a phage in E. coli and recovering the antibody.
  • Such an antibody can be purified using a known purification method such as affinity chromatography.
  • osteoarthritis or osteoarthritic arthritis therapeutic or preventive agent cartilage matrix degrading enzyme production inhibitor, cartilage matrix producing agent, and apoptosis against macrophages induced by osteoarthritis
  • the present invention relates to a method for treating osteoarthritis; a method for treating osteoarthritic arthritis; use of an IgM-type anti-Fas antibody for producing a cartilage matrix degrading enzyme production inhibitor; Also provided is the use of an anti-Fas antibody of IgM for producing an apoptosis inducer against macrophages induced by osteoarthritis. And in using this IgM type
  • the agent of the present invention may be produced by a method known to those skilled in the art.
  • the agent of the present invention can be produced as an oral preparation and a parenteral preparation, but is preferably a parenteral preparation.
  • Such parenteral preparations may be liquids (aqueous liquids, non-aqueous liquids, suspension liquids, emulsion liquids, etc.), or solid preparations (powder-filled preparations, freeze-dried preparations, etc.).
  • the agent of the present invention may be a sustained release preparation.
  • the method for producing the liquid agent can be produced by a known method.
  • it can be produced by dissolving an antibody in a pharmaceutically acceptable solvent and filling a sterilized liquid container.
  • the pharmaceutically acceptable solvent include water for injection, distilled water, physiological saline, electrolyte solution and the like, and it is preferable to use a sterilized solvent.
  • sterilized liquid containers include ampoules, vials, bags, and the like.
  • known containers such as glass and plastic can be used.
  • plastic containers include those using materials such as polyvinyl chloride, polyethylene, polypropylene, ethylene / vinyl acetate copolymer, and the like.
  • container and solvent sterilization methods include heating methods (flame method, drying method, high temperature steam method, flow steam method, boiling method, etc.), filtration method, irradiation method (radiation method, ultraviolet method, high frequency method, etc.), gas method , Chemical solution method and so on.
  • heating methods flame method, drying method, high temperature steam method, flow steam method, boiling method, etc.
  • filtration method irradiation method (radiation method, ultraviolet method, high frequency method, etc.), gas method , Chemical solution method and so on.
  • irradiation method radiation method, ultraviolet method, high frequency method, etc.
  • gas method Chemical solution method and so on.
  • a known method such as freeze-drying method, spray-drying (spray-drying) method, aseptic recrystallization method can be used.
  • a freeze-drying agent can be manufactured through the following steps. (1) The crystallized antibody is placed at room temperature 4 ° C. and normal pressure for 2 to 3 hours and cooled (cooling step). (2) Place at room temperature-50 ° C. under normal pressure for 12-15 hours and freeze (freezing step). (3) Recrystallize at room temperature-20 ° C under normal pressure for 4-6 hours. (Recrystallization step). (4) Place at room temperature-50 ° C. under normal pressure for 14-16 hours and refreeze (refreezing step). (5) Place at room temperature-13 ° C.
  • the freeze-drying method involves freezing at low temperature and sublimating moisture (ice) under high vacuum.
  • the freeze-drying agent of the present invention can be produced by the above method, but is not limited to this production method, and can be appropriately changed by those skilled in the art. In addition, it is possible to appropriately change parameters such as temperature, pressure, and time of each process.
  • the present invention can also be provided as a kit product in which an agent containing the IgM anti-Fas antibody of the present invention and a medical device are combined.
  • an agent containing the IgM anti-Fas antibody of the present invention is pre-filled in a medical device such as a syringe, and one soft bag is filled with a solid agent on one side and a solvent is filled on the other side.
  • a medical device such as a syringe
  • one soft bag is filled with a solid agent on one side and a solvent is filled on the other side.
  • the agent containing the IgM anti-Fas antibody of the present invention can be administered using known administration methods such as intravenous administration, intraarterial administration, intramuscular administration, subcutaneous administration, intraperitoneal administration, intranasal administration and the like. Preferably, administration is by injection, and infusion is possible. Further, the agent of the present invention may be directly injected into the affected area (for example, a joint), or can be administered by opening the affected area by surgery.
  • the agent of the present invention can be prepared as an oral preparation and a parenteral preparation, but is preferably a parenteral preparation.
  • parenteral preparations may be liquids (aqueous liquids, non-aqueous liquids, suspension liquids, emulsion liquids, etc.), or solid preparations (powder-filled preparations, freeze-dried preparations, etc.).
  • the solid preparation is used by dissolving or suspending it in a desired concentration with a pharmaceutically acceptable solvent at the time of administration.
  • parenteral preparations can be used by administration methods such as injection and infusion.
  • an agent containing the IgM anti-Fas antibody of the present invention When formulating an agent containing the IgM anti-Fas antibody of the present invention, it can be formulated in appropriate combination with a pharmaceutically acceptable carrier or medium. In addition, drugs may be included.
  • the agent containing the IgM anti-Fas antibody of the present invention may contain a protein that does not inhibit the action of the antibody of the present invention, such as albumin, lipoprotein, or globulin. By including the protein in this way, the stability of the antibody contained in the solution can be improved.
  • a protein may be contained in a liquid preparation when the agent of the present invention is formulated as a liquid preparation.
  • the protein When formulating as a solid agent, the protein may be contained when the anti-Fas antibody of the present invention is solidified, or the protein may be contained in a solvent that dissolves the solid agent.
  • the content of such protein is 0.01 to 5 parts by weight when the liquid volume at the time of administration is 100 parts by weight.
  • Those skilled in the art will include the amount of antibody to be administered and others. It can be appropriately adjusted according to the substance to be used.
  • Pharmaceutically acceptable carriers or vehicles are pharmaceuticals such as excipients, stabilizers, solubilizers, emulsifiers, suspending agents, buffers, isotonic agents, antioxidants, or preservatives. Examples of acceptable substances.
  • a polymer material such as polyethylene glycol (PEG) or a conjugated anti-protective material such as cyclodextrin may be used.
  • PEG polyethylene glycol
  • cyclodextrin conjugated anti-protective material
  • this invention is not limited to them, A well-known thing can be used.
  • the excipient those having no pharmacological action themselves such as starch and lactose are preferable.
  • Stabilizers include albumin, gelatin, sorbitol, mannitol, lactose, sucrose, trehalose, maltose, glucose and the like. Of these, sucrose or trehalose is preferred.
  • solubilizers include ethanol, glycerin, propylene glycol, and polyethylene glycol.
  • the emulsifier include lecithin, aluminum stearate, sorbitan sesquioleate, and the like.
  • the suspending agent include macrogol, polyvinyl pyrrolidone (PVP), and carmellose (CMC).
  • isotonic agents include sodium chloride and glucose.
  • the buffer include citrate, acetate, boric acid, and phosphate.
  • Antioxidants include ascorbic acid, sodium bisulfite, sodium pyrosulfite and the like.
  • Preservatives include phenol, thimerosal, benzalkonium chloride and the like.
  • drugs combined with the antibody of the present invention include known drugs used for joint diseases such as joint disease therapeutic agents, anti-inflammatory agents, analgesics, bone regenerative agents, bone resorption inhibitors, antibiotics, or growth agents. Further, when an agent containing the anti-Fas antibody of the present invention is administered by injection or the like, pain due to injection may occur, and thus a soothing agent may be included. Such drugs may be used alone or in combination.
  • Articular cartilage extracellular matrix degradation inhibitor (WO 2004/017996 pamphlet), corticosteroid agent, sodium chondoitin sulfate, hyaluronic acid (hyaluronic acid (HA)), etc.
  • Examples thereof include p21-activated kinase (PAK) inhibitors (Japanese Patent Publication No. 2007-537134) which are signal transduction system inhibitors.
  • PAK p21-activated kinase
  • anti-inflammatory agents examples include steroidal anti-inflammatory agents and non-steroidal anti-inflammatory agents (NSAIDs).
  • steroidal anti-inflammatory agents include dexamethasone, cortisone, hydrocortisone, prednisolone, methylprednisolone, betamethasone, triamcinolone, triamcinolone acetonide, fluocinolone acetonide, fluocinonide, beclomethasone, ethenamide.
  • Non-steroidal anti-inflammatory agents include, for example, aspirin, ibuprofen, naproxen, diclofenac, indomethacin, nabutome, phenylbutazone, rofecoxib, celecoxib, oxicam, piroxicam, pyrazolone, azapropazone and the like.
  • opioid analgesics in addition to NSAIDs that are anti-inflammatory analgesics, opioid analgesics and the like can be mentioned.
  • opioid analgesics include endorphin, dynorphin, enkephalin, codeine, dihydrocodeine, dextropropoxyphene, and the like.
  • the bone resorption inhibitor one or a mixture of two or more of estrogen, calcitonin and bisphosphonate can be mentioned.
  • Antibiotics include penicillin antibiotics, cephem antibiotics, aminoglycoside antibiotics, macrolide antibiotics, tetracycline antibiotics, peptide antibiotics and the like.
  • Penicillin antibiotics include benzylpenicillin, phenoxymethylpenicillin, methicillin, flucloxacillin, amoxicillin, ampicillin, piperacillin, azulocillin, ticarcillin and the like.
  • cephem antibiotics include cefazolin, cefuroxime, cefamandole, cefotaxime, cefoperazone, cefpyramide, cephalexin, cefaclor, cefixime, and cefteram.
  • aminoglycoside antibiotics examples include gentamicin, netilmicin, tobramycin, streptomycin, neomycin, kanamycin, amikacin and the like.
  • Macrolide antibiotics include erythromycin, clarithromycin, roxithromycin, rokitamicin, clindamycin, azithromycin and the like.
  • Tetracycline antibiotics include tetracycline, minocycline, doxycycline and the like.
  • Other ⁇ -lactam antibiotics include latamoxef, flomoxef, azuleonam, imipenem, and panipenem.
  • vancomycin, rifampicin, chloramphenicol and the like can be mentioned.
  • BMP bone morphogenetic factor
  • BGF bone growth factor
  • PDGF platelet derived growth factor
  • bFGF basic fibroblast growth factor
  • IGF insulin-like growth factor
  • TGF transforming growth factor
  • the soothing agent uses different drugs depending on whether the pain caused by injection occurs when the pH and osmotic pressure of the liquid are significantly different from those of the body fluid or due to the action of the drug itself.
  • a liquid containing a buffer or an isotonic agent is preferable.
  • a local anesthetic should be used. Examples of the local anesthetic include benzyl alcohol, chlorobutanol, procaine hydrochloride, lidocaine hydrochloride, dibucaine hydrochloride, mepivacaine hydrochloride and the like, and known drugs may be used.
  • an agent containing the IgM anti-Fas antibody of the present invention produced as described above as an active ingredient should be used as a therapeutic or preventive method for administering an effective amount to osteoarthritis or osteoarthritic arthritis patients. Can do.
  • the agent containing the IgM anti-Fas antibody of the present invention as an active ingredient suppresses the production of cartilage matrix degrading enzyme, promotes or improves the production of cartilage matrix, and prevents macrophage induced by osteoarthritis. In order to induce apoptosis induction, it can be used as a therapeutic or preventive method in which an effective amount is administered to a patient.
  • the present invention relates to a method for treating or preventing osteoarthritis by administering an effective amount of an IgM anti-Fas antibody to a subject; a method for treating osteoarthritic arthritis by administering an effective amount of an IgM anti-Fas antibody to a subject.
  • a method for inhibiting cartilage matrix degrading enzyme production by administering an effective amount of an IgM anti-Fas antibody to a subject; a method for producing a cartilage matrix by administering an effective amount of an IgM anti-Fas antibody to a subject; against macrophages induced by osteoarthritis A method for inducing apoptosis is also provided. And in using this IgM type
  • the agent of the present invention is used as an oral or parenteral preparation, but is preferably used as a parenteral preparation such as an injection or infusion.
  • the administration method of the parenteral preparation may be a known method and is not particularly limited. For example, intravenous injection, arterial injection, subcutaneous injection, intramuscular injection, infusion and the like can be mentioned. Further, the agent of the present invention may be directly injected into the affected area (for example, a joint), or can be administered by opening the affected area by surgery. A person skilled in the art can appropriately select an administration method suitable for the patient.
  • the IgM anti-Fas antibody which is the main component of the agent of the present invention, may be contained in an effective amount in the agent of the present invention.
  • the proportion of the IgM anti-Fas antibody contained in the agent of the present invention may be 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 parts by weight when the total weight is 100 parts by weight, and 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 ⁇ 1 parts by weight is preferable, and 5 ⁇ 10 ⁇ 2 to 5 ⁇ 10 ⁇ 1 parts by weight is more preferable.
  • the dose varies depending on the subject, age, and symptoms. In general, the daily dose is 1 ng to 100 ⁇ g, preferably 10 ng to 10 ⁇ g, and more preferably 100 ng to 1 ⁇ g per individual for the active ingredient of the antibody.
  • 10 pg to 2 ⁇ g per 1 kg of body weight is mentioned, preferably 100 pg to 200 ng, more preferably 1 ng to 20 ng.
  • the daily dose is divided into 2 to 5 doses.
  • a known method may be used.
  • Administration in divided doses or sustained release preparations makes it easier to maintain a constant drug concentration in the body, making it easier to obtain sustained effects and reducing side effects, reducing the burden on patients be able to.
  • osteochondral tissue and peripheral blood are collected from the surgical tissue of osteoarthritis patients, and synovial fibroblasts, chondrocytes, and macrophages are collected by the following method. did.
  • synovial tissue is collected from the surgical tissue of osteoarthritis patients, minced, and then cut into liquid low glucose containing 1.0 mg / ml collagenase (collagenase)
  • the cells were treated overnight (37 ° C.) in a Dulbecco's modified Eagle's medium (DMEM, manufactured by Gibco) to isolate cultured synovial fibroblasts.
  • DMEM Dulbecco's modified Eagle's medium
  • the cells were cultured in a culture flask (culture area 25 cm 2 ), and when used for experiments, were cultured in a polyethylene culture dish (diameter 6 cm).
  • FBS Fetal Bovine Serum
  • TRACE Heat-inactivated fetal bovine serum
  • DMEM medium 10% of the medium volume
  • streptomycin were added, and the reaction was carried out in a CO 2 incubator (normal oxygen concentration environment) set at 37 ° C. under saturation and 5% CO 2 + 95% air.
  • PBS phosphate buffer
  • cartilage tissue was collected from the surgical tissue of osteoarthritis patients, minced, and then cut into liquid low-glucose Dulbecco 'containing 1.5 mg / ml collagenase B (collagenase B).
  • the cultured chondrocytes were separated by treatment overnight in a s modified Eagle's medium (DMEM, Gibco) medium (37 ° C.).
  • DMEM s modified Eagle's medium
  • the cells were cultured in a culture flask (culture area 25 cm 2 ), and when used for experiments, were cultured in a polyethylene culture dish (diameter 6 cm).
  • inactivated fetal bovine serum (FBS, manufactured by TRACE) was added to DMEM medium at 10% of the volume of the medium, and 2 mM L-glutamine, 25 mM HEPES, 100 units / ml penicillin and streptomycin were added.
  • the test was carried out in a CO 2 incubator (normal oxygen concentration environment) set to 5% CO 2 + 95% air at 37 ° C. under saturation.
  • PBS phosphate buffer
  • IgM anti-Fas antibody Various concentrations (0.1, 1.0, 10.0 ng / ml) of IgM anti-Fas antibody were added to the upper layer of the chamber or not added, and inflammatory cytokines (TNF- ⁇ : 10 ng / ml or IL-1 ⁇ : 10 ng / ml) was added and cultured for 48 hours. The culture supernatant and cells were collected over time, and various cell activities were analyzed by the following experimental methods.
  • TNF- ⁇ 10 ng / ml
  • IL-1 ⁇ 10 ng / ml
  • IgM type anti-Fas antibody on cartilage matrix degrading enzyme (MMP) production IgM type anti-Fas antibody (CH-11 (mouse antibody)) against cartilage matrix degrading enzyme production enhanced by cartilage catabolism inducing factor TNF- ⁇ ( The influence of MBL)) was analyzed using enzyme-linked immunoassay (ELISA).
  • the IgM anti-Fas antibody (CH-11) used for the study is an antibody produced from a hybridoma obtained by fusing mouse myeloma cell NS-1 and the spleen of a Balb / c mouse.
  • the hybridoma was prepared from an antigen derived from a human diploid fibroblast cell line FS-7.
  • Chondrocytes separated and cultured by the above method were seeded at 1 ⁇ 10 6 cells / well in the lower layer of the transwell chamber and synovial fibroblasts in the upper layer.
  • TNF- ⁇ 10 ng / ml was added to the upper layer.
  • various concentrations 0.1, 1.0, 5.0, 10.0 ng / ml
  • IgM anti-Fas antibody or hyaluronic acid preparation HA
  • HA hyaluronic acid preparation
  • TNF- ⁇ concentration of TNF- ⁇ (+) is 10 ng / ml.
  • concentration unit of HA is mg / ml, and the concentration unit of IgM anti-Fas antibody CH-11 is ng / ml.
  • No. in Table 1 1 is a negative control (Negative control). 2 is a positive control.
  • the cartilage matrix degrading enzyme matrix metalloproteinase (MMP) -1, MMP-3 concentration in the culture supernatant is determined by ELISA kit (MMP-1, MMP-3: R & D) which is a standard technique currently known in the art. Determined).
  • MMP-1, MMP-3: R & D a standard technique currently known in the art. Determined.
  • HRP horseradish peroxidase
  • H + L horseradish peroxidase
  • TMB tetramethylbenzidine
  • the measured concentrations were calibrated using a control lyophilized reagent and a significant difference test was performed.
  • the results are shown in FIG.
  • * indicates the rejection rate (P value) of the significant difference test is less than 0.05 (P ⁇ 0.05)
  • ** indicates the rejection rate (P value) of the significant difference test is less than 0.01 (P ⁇ 0.01) (hereinafter the same).
  • FIG. 2A is a graph instead of a drawing showing the influence of an IgM anti-Fas antibody on the ability of chondrocytes to produce MMP1.
  • the vertical axis of FIG. 2A shows MMP1 produced from chondrocytes at a concentration per 1 ml of culture medium.
  • MMP1 cartilage matrix degrading enzyme
  • FIG. 2B is a graph instead of a drawing showing the effect of an IgM type anti-Fas antibody on the ability of chondrocytes to produce MMP3.
  • the vertical axis in FIG. 2B indicates MMP3 produced from chondrocytes at a concentration per 1 ml of culture medium.
  • MMP3 cartilage matrix degrading enzyme
  • FIG. 2 shows that the IgM anti-Fas antibody effectively suppresses the production of MMP, which is a cartilage matrix degrading enzyme.
  • MMP degrades articular cartilage. Therefore, MMP may cause osteoarthritis or worsen the symptoms of osteoarthritis.
  • the IgM anti-Fas antibody suppresses MMP production.
  • the IgM anti-Fas antibody can suppress the onset of osteoarthritis and can suppress the deterioration of the symptoms of osteoarthritis. Therefore, the IgM anti-Fas antibody can be suitably used as a prophylactic agent for osteoarthritis.
  • the IgM anti-Fas antibody suppresses the production of MMP1 and MMP3, thereby causing osteoarthritis induced after the onset of osteoarthritis. It can also be used as a prophylactic or therapeutic agent for arthritis.
  • TNF- ⁇ 10 ng / ml or IL-1 ⁇ : 10 ng / ml was added.
  • various concentrations (1.0, 10.0 ng / ml) of IgM type anti-Fas antibody were added to the upper layer or cultured for 48 hours under non-addition conditions, and then the culture solution was collected.
  • the amount (concentration) of cartilage matrix (proteoglycan) produced in the culture supernatant was determined using an ELISA kit (Proteoglycan: manufactured by Biosource), which is a standard technique currently known in the art. The results are shown in FIG.
  • FIG. 3 is a graph instead of a drawing showing the effect of IgM anti-Fas antibody on the reduction in cartilage matrix (proteoglycan) production ability.
  • shaft of FIG. 3 shows proteoglycan production amount. The higher the value on the vertical axis, the more proteoglycan is produced. That is, it shows that the ability to synthesize proteoglycan suppressed by TNF- ⁇ was improved by the IgM anti-Fas antibody. As a result, it was found that the IgM type anti-Fas antibody can improve the ability to synthesize cartilage matrix (proteoglycan) suppressed by TNF- ⁇ and IL-1 ⁇ .
  • FIG. 3 shows that the IgM anti-Fas antibody improves the synthesis of cartilage matrix (proteoglycan).
  • cartilage matrix proteoglycan
  • the IgM anti-Fas antibody can improve the synthesis of cartilage matrix (proteoglycan) necessary for regeneration of articular cartilage destroyed by osteoarthritis, and is therefore suitable as a therapeutic agent for osteoarthritis. Can be used.
  • IgM-type anti-Fas antibody has anti-apoptotic effect against the apoptosis of chondrocytes induced by cartilage catabolism-inducing factor TNF- ⁇ .
  • the presence or absence of an inhibitory effect of IgM-type anti-Fas antibody was determined using the ApoStand ELISA Apotosis Detection Kit (Biomol International). We examined using. This is a kit capable of quantitatively detecting apoptosis by specifically denaturing the DNA of apoptotic cells with formamide and detecting the denatured DNA with an anti-single-stranded DNA antibody.
  • chondrocytes in the lower layer of the transwell chamber and macrophages in the upper layer at 1 ⁇ 10 6 cells / well, respectively. Sowing. TNF- ⁇ : 10 ng / ml was added to the upper layer.
  • IgM anti-Fas antibody (10.0 ng / ml) was cultured for 48 hours with or without the addition of the upper layer. The medium and inducer were removed, and the cells were fixed by adding the cell fixing solution supplied with the kit. Then, after removing and drying the solution, formamide was added and heated at 56 ° C.
  • FIG. 4 is a graph instead of a drawing showing the anti-apoptotic effect of the IgM anti-Fas antibody.
  • the vertical axis in FIG. 4 represents the percentage (%) of apoptosis in the cell nucleus. In other words, the lower the value, the more apoptosis was suppressed.
  • the IgM type anti-Fas antibody can suppress the apoptosis of chondrocytes caused by TNF- ⁇ .
  • TNF- ⁇ is induced. Therefore, according to this example, it was shown that the IgM anti-Fas antibody can suppress the apoptosis of chondrocytes caused by osteoarthritis.
  • FIG. 4 shows that the IgM anti-Fas antibody suppresses chondrocyte death by macrophages. Therefore, the IgM anti-Fas antibody is considered to suppress cartilage degeneration and can be suitably used as a therapeutic or prophylactic agent for osteoarthritis. In addition, these actions are considered to be because the IgM anti-Fas antibody induced apoptosis of macrophages. Macrophages are known to induce inflammatory cytokines. Therefore, the IgM anti-Fas antibody suppresses the release of inflammatory cytokines from macrophages and suppresses the inflammatory response by inducing apoptosis of macrophages. Therefore, the IgM anti-Fas antibody can be used as a preventive agent and a therapeutic agent for secondary inflammatory reaction (osteoarthritic arthritis) that can be caused by osteoarthritis.
  • secondary inflammatory reaction osteoarthritic arthritis
  • the difference in potential due to the difference in antibody isotype was evaluated in an in vitro experimental system.
  • UB2 manufactured by MBL
  • ZB4 manufactured by MBL
  • IgG type antibodies As the IgM type antibody, CH-11 (manufactured by MBL) and 7C11 (manufactured by Beckman Coulter) were used.
  • IgG isotype control Manufactured by Southern Biotech
  • IgM isotype control manufactured by Southern Biotech
  • Fas antibodies or isotype controls were added to the upper layer of the chamber or not added, and inflammatory cytokine (TNF- ⁇ : 10 ng / ml) was added to the upper layer and cultured for 48 hours. The culture supernatant and cells were collected over time, and various cell activities were analyzed by the following experimental methods.
  • FIG. 5A is a graph instead of a drawing showing the effect of an IgM anti-Fas antibody or IgG anti-Fas antibody on the ability of chondrocytes to produce MMP1.
  • the vertical axis of FIG. 5A shows MMP1 produced from chondrocytes at a concentration per 1 ml of culture medium.
  • FIG. 1 is a negative control (Negative control), No. 1; 2 shows positive control (Positive control).
  • MMP1 cartilage matrix degrading enzyme
  • FIG. 5B is a graph instead of a drawing showing the effect of an IgM anti-Fas antibody or IgG anti-Fas antibody on the ability of chondrocytes to produce MMP3.
  • the vertical axis of FIG. 5B indicates MMP3 produced from chondrocytes at a concentration per 1 ml of culture medium.
  • FIG. 1 is a negative control (Negative control), No. 1; 2 shows positive control (Positive control).
  • MMP3 cartilage matrix degrading enzyme
  • TNF- ⁇ stimulation is higher than that of IgG anti-Fas antibody (No. 5-6), compared with IgM anti-Fas antibody (No. 7- 8) was found to be higher. Therefore, it can be said that the IgM anti-Fas antibody can effectively suppress the production of MMP3.
  • FIG. 5 shows that the IgM anti-Fas antibody effectively suppresses the production of MMP, which is a cartilage matrix degrading enzyme.
  • MMP degrades articular cartilage. Therefore, MMP may cause osteoarthritis or worsen the symptoms of osteoarthritis.
  • the IgM anti-Fas antibody suppresses MMP production.
  • the IgM anti-Fas antibody can suppress the onset of osteoarthritis and can suppress the deterioration of the symptoms of osteoarthritis. Therefore, the IgM anti-Fas antibody can be suitably used as a prophylactic agent for osteoarthritis.
  • the IgM anti-Fas antibody suppresses the production of MMP1 and MMP3, thereby causing osteoarthritis induced after the onset of osteoarthritis. It can also be used as a prophylactic or therapeutic agent for arthritis.
  • Anti-Fas anti-Fas antibody-specific anti-apoptotic effect ApoStand ELISA Apoptosis Detection Kit (Biomol International) was used to determine the anti-Fas antibody-specific anti-Fas antibody inhibitory effect on the apoptosis of chondrocytes induced by TNF- ⁇ . We examined using.
  • cell culture was performed using a two-layer transwell chamber. Chondrocytes were seeded at the lower layer of the transwell chamber and macrophages were seeded at 1 ⁇ 10 5 cells / well in the upper layer. To the upper layer, TNF- ⁇ : 10 ng / ml was added. Furthermore, various anti-Fas antibodies (0.01 nM) were cultured for 48 hours with or without addition to the upper layer. The medium and inducer were removed, and the cells were fixed by adding the cell fixing solution in the kit. Then, after removing and drying the solution, formamide was added and heated at 56 ° C. to thermally denature the DNA of the cells in which apoptosis occurred.
  • FIG. 6 is a graph instead of a drawing showing the apoptosis-suppressing effect of an IgM-type anti-Fas antibody or IgG-type anti-Fas antibody.
  • the vertical axis in FIG. 6 represents the percentage (%) of apoptosis in the cell nucleus. In other words, the lower the value, the more apoptosis was suppressed.
  • FIG. 1 is a negative control (Negative control), No. 1; 2 shows positive control (Positive control).
  • the IgM anti-Fas antibody can suppress the apoptosis of chondrocytes caused by TNF- ⁇ as compared with the IgG anti-Fas antibody.
  • TNF- ⁇ is induced. Therefore, it was shown that the IgM type anti-Fas antibody can suppress the apoptosis of chondrocytes caused by osteoarthritis.
  • FIG. 6 shows that the IgM anti-Fas antibody effectively suppresses chondrocyte death by macrophages. Therefore, the IgM anti-Fas antibody is considered to effectively suppress cartilage degeneration and can be suitably used as a therapeutic or prophylactic agent for osteoarthritis. In addition, these actions are considered to be because the IgM anti-Fas antibody induced apoptosis of macrophages. Macrophages are known to induce inflammatory cytokines. Therefore, the IgM anti-Fas antibody suppresses the release of inflammatory cytokines from macrophages and suppresses the inflammatory response by inducing apoptosis of macrophages. Therefore, the IgM anti-Fas antibody can be used as a preventive agent and a therapeutic agent for secondary inflammatory reaction (osteoarthritic arthritis) that can be caused by osteoarthritis.
  • secondary inflammatory reaction osteoarthritic arthritis
  • the skin inside the knee joint is incised, the medial collateral ligament is cut, the joint capsule is confirmed and incised, and the medial meniscus is exposed and completely removed.
  • the tissue surrounding the joint capsule and the epidermis were sutured.
  • the surgical site was washed with physiological saline (500 mg (titer) / 20 ml) containing antibiotics (sodium ampicillin for injection).
  • the prepared osteoarthritis model rats were divided into subgroups as shown in Table 6 below, and the test substance or the target solution was injected intra-articularly once a week for 24 weeks using a 27 gauge needle.
  • Pathological examination Five animals every 4 weeks were necropsied after being euthanized by exsanguination under deep anesthesia with pentobarbetal Na (intravenous administration). For planned autopsy cases at weeks 8, 12, and 24, left and right knee joint tissues, heart, lung, liver, spleen, kidney, brain, testis, and seminal vesicle were collected and fixed with 4% paraformaldehyde solution. . The joint tissue was decalcified with Planck-Lycro decalcification solution, neutralized, embedded in paraffin and sliced, and hematoxylin-eosin staining and safranin O staining were performed. For other organs, paraffin-embedded and sliced specimens were stained with hematoxylin and eosin, and histopathological examination was performed using a light microscope.
  • Arthritis and arthropathy pathology were observed at 4 weeks, 8 weeks, 12 weeks, 16 weeks and 24 weeks after treatment, and the difference between the two groups was measured by Student's T Statistically compared by the method. In both groups, the right knee joint was not treated, and the incidence and progression of arthritis were compared and observed. The results are shown in FIG. Note that the modified Mankin score shown in Table 4 was used as the pathological tissue score of arthropathy.
  • FIG. 7A shows the results of Safranin O staining.
  • FIG. 7B shows the result of chondrocyte deficiency.
  • FIG. 7C shows the result of the cartilage structure. 7A to 7C, the vertical axis represents each score, and the horizontal axis represents the change with time.
  • the degree of cartilage degeneration (modified Mankin score) of the rat knee joint in the control group was observed to increase with time in each of the score items (Table 4: AC), and arthropathy induction And exacerbation (transition from the early stage to the advanced stage of osteoarthritis) was confirmed.
  • the score of the CH-11 administration group tends to be lower than the average score of the control group from the 8th week after the start of administration, and the CH-11 low dose administration group after 12 weeks, There was a statistically significant difference in the CH-11 high dose group. Therefore, it was shown that the IgM anti-Fas antibody CH-11 suppresses cartilage degeneration in osteoarthritis model rats in the early to advanced stages. Therefore, it was shown that the IgM type anti-Fas antibody can be effectively used for the treatment of diseases classified into the early stage to the advanced stage of osteoarthritis accompanied by cartilage degeneration.
  • FIG. 8 is a photograph replacing a drawing showing a histopathologic specimen of a knee joint of a rat model of osteoarthritis 12 weeks after the treatment.
  • 8A to 8F show knee joint histopathology specimens of control osteoarthritis model rats.
  • 8G to 8J show knee joint histopathology specimens of osteoarthritis model rats in the CH-11 low dose administration group (CH-11: 1.0 ng / ml administration).
  • 8K to 8N show knee joint histopathology specimens of osteoarthritis model rats in the CH-11 high dose administration group (CH-11: 10.0 ng / ml administration).
  • FIG. 8O shows a knee joint histopathology specimen of a control osteoarthritis model rat.
  • FIG. 8A to 8F show knee joint histopathology specimens of control osteoarthritis model rats.
  • 8G to 8J show knee joint histopathology specimens of osteoarthritis model rats in the CH-11 low dose administration group (CH-11: 1.0 ng /
  • 8P shows knee joint histopathology specimens of osteoarthritis model rats in the CH-11 low dose administration group (CH-11: 1.0 ng / ml administration).
  • 8B, FIG. 8D, FIG. 8F, FIG. 8G, FIG. 8I, FIG. 8K and FIG. 8M are the portions enclosed by squares in FIG. 8A, FIG. 8C, FIG. 8E, FIG. It is the photograph replaced with the enlarged drawing.
  • the control group (FIGS. 8A to 8F and FIG. 8O) has cartilage degeneration (chondrocyte clustering and chondrocytes as compared with the CH-11 administration group (FIGS. 8G to 8N and FIG. 8P)). Disappearance).
  • clustering of chondrocytes can be determined from the increase in the number of staining sites with safranin O.
  • the disappearance of chondrocytes can be determined from the decrease in safranin O (SO) staining as shown in FIGS. 8O and 8P. From these results, it was shown that administration of CH-11 can suppress cartilage degeneration, so that CH-11 can treat or prevent osteoarthritis associated with cartilage degeneration.
  • FIG. 9 is a photograph replacing a drawing showing a histopathological specimen of a knee joint osteoarthritis model rat 24 weeks after treatment.
  • 9A to 9H show knee joint histopathology specimens of control osteoarthritis model rats.
  • 9I to 9L show knee joint histopathology specimens of osteoarthritis model rats in the CH-11 low-dose administration group (CH-11: 1.0 ng / ml administration).
  • FIGS. 9M to 9P show knee joint histopathology specimens of osteoarthritis model rats in the CH-11 high dose administration group (CH-11: 10.0 ng / ml administration).
  • 9B, 9D, 9F, 9H, 9I, 9K, 9M, and 9O are shown in FIGS. 9A, 9C, 9E, 9G, 9J, 9L, 9N, and 9P, respectively.
  • the intra-articular administration group of CH-11 was significantly inhibited in secondary synovitis (inflammation) and cartilage degeneration compared to the control rat group. Further, in the intra-articular administration group of CH-11, almost no bone proliferative change (osteophyte) observed in the control rats in the later stage of the test was observed. For organs other than the knee joint (heart, lung, liver, spleen, kidney, brain, testis, and seminal vesicle), no histological differences were found between the control group and the CH-11 administration group. It was. Therefore, it has been clarified that CH-11, which is an IgM anti-Fas antibody, can specifically suppress diseases classified into the early stage to the advanced stage of osteoarthritis even in animals.
  • the therapeutic agent or prophylactic agent of the present invention can be used in the pharmaceutical industry.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Rheumatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 【課題】 本発明は,初期の変形性関節症の治療剤又は予防剤に関する有効成分の使用を提供することを目的とする。 【解決手段】 本発明は,IgM型抗Fas抗体を用いることで,初期の変形性関節症の症状を緩和することができるという知見に基づくものである。具体的には,本発明は,IgM型抗Fas抗体を用いることで,軟骨基質分解酵素産生を抑制することができるという知見に基づくものである。また,本発明は,IgM型抗Fas抗体を用いることで,軟骨基質産生能を改善できるという知見に基づくものである。 

Description

変形性関節症治療剤または予防剤を製造するための使用
 本発明は,変形性関節症の治療剤又は予防剤を製造するためのIgM型抗Fas抗体の使用などに関する。
 変形性関節症(osteoarthritis(OA))は,加齢や機械的ストレスが原因となって,関節軟骨表面の崩壊と,これに伴う関節辺縁の新たな軟骨の増殖,関節の変形,適合性の破綻をきたし,さらに関節滑膜の炎症へと進行する疾患である。一方,代表的な関節症である関節リウマチ(rheumatoid arthritis(RA))では,免疫異常や感染症が原因となって,滑膜に炎症性細胞が湿潤し,さらに,血管新生にともなって滑膜繊維芽細胞の増殖が亢進して,炎症性滑膜肉芽組織が形成され,骨や軟骨の破壊が進み,関節に不可逆的な障害がもたらされる。このため,関節リウマチ(RA)が炎症性疾患とよばれる自己免疫疾患であるのに対し,変形性関節症(OA)は非炎症性疾患とよばれている。よって,関節リウマチの治療に用いられる治療薬は,変形性関節症では治療効果がないと一般的に考えられている。
 従来,関節リウマチ(RA)の治療を目的として様々な医薬組成物が開発されてきた。そのうちの1つとして抗Fas抗体があげられる(特開2004-59582号公報(特許文献1参照))。しかしながら,抗Fas抗体は,関節リウマチ(RA)の患者から採取した滑膜細胞に対してはアポトーシス誘導効果があるものの,変形性関節症(OA)の患者から採取した滑膜細胞に対してはアポトーシス誘導効果がないことが報告されている(NAKAJIMA et al.,“APOPTOSIS AND FUNCTIONAL FAS ANTIGEN IN RHEUMATOID ARTHRITIS SYNOVICYTES”,ARTHRITIS&RHEUMATISM,38(4),1995,p485-p491(非特許文献1参照)。
 一方,変形性関節症の治療には,抗炎症・鎮痛効果のある非ステロイド系の薬剤(NSAIDs)が使用されてきた。また,この他にも関節液を注射などで減らしたり,副腎皮質ホルモン剤やコンドイチン硫酸ナトリウム,ヒアルロン酸(hyaluronic acid(HA))などの関節軟骨の保護剤を注射したりする治療が行われてきた。
 また,このような関節変性疾患に対する治療薬として,シグナル伝達系阻害剤であるp21活性化キナーゼ(PAK)阻害剤(特表2007-537134号公報(特許文献2参照))やアンチセンスポリヌクレオチド,リボザイム及び低分子干渉RNAなどを含む医薬組成物(特表2008-516593号公報(特許文献3参照))が用いられているが,十分な効果が得られていないのが現状である。
 この他に,現在行われている治療薬開発では,軟骨再生の促進因子(インターロイキン(IL)-1など)をターゲットとした治療薬開発や軟骨修復・再生を誘導する因子を薬剤として応用する試みが行われているが,満足のいく結果が得られていないのが現状である。
特開2004-59582号公報 特表2007-537134号公報 特表2008-516593号公報 特開平8-40897号公報 特開2006-151843号公報 特開2007-51077号公報
NAKAJIMA et al.,"APOPTOSIS AND FUNCTIONAL FAS ANTIGEN IN RHEUMATOID ARTHRITIS SYNOVICYTES",ARTHRITIS&RHEUMATISM,38(4),1995,p485-p491 ARTHRITIS RHEUM,2001, VOL.44, NO.8, P.1800-1807
 本発明は,変形性関節症を治療又は予防するための治療剤又は予防剤の製造方法を提供することを目的とする。
 本発明は,IgM型抗Fas抗体を用いることで,変形性関節症において軟骨変性を抑制することができるという知見に基づくものである。具体的には,本発明は,IgM型抗Fas抗体を用いることで,軟骨基質分解酵素産生を抑制することができるという知見に基づくものである。また,本発明は,IgM型抗Fas抗体を用いることで,軟骨基質産生能を改善できるという知見に基づくものである。また,本発明は,変形性関節症によって誘導されるマクロファージのアポトーシスを促進することができるという知見に基づくものである。変形性関節症にIgM型抗Fas抗体を用いることができるということは,今回初めて得られた知見である。
 本発明の第1の側面は,変形性関節症の初期段階から進行期段階に分類される疾患を治療又は予防するための治療剤又は予防剤を製造するためのIgM型抗Fas抗体の使用に関する。この発明は,IgM型抗Fas抗体を有効成分として含有する変形性関節症の初期段階から進行期段階に分類される疾患の治療剤又は予防剤の製造方法に関する。すなわち,有効成分としてのIgM型抗Fas抗体に適宜薬学的に許容される担体などを添加して,薬剤を調整し,これにより変形性関節症の初期段階から進行期段階に分類される疾患を治療又は予防するための治療剤又は予防剤を製造する。変形性関節症の初期段階から進行期段階の各段階は,変形性関節症のICRS分類,Kellgren-Lawrence分類,Outerbridge分類,又は修正Mankinスコアによって分類される。上記分類によって変形性関節症の初期段階から進行期段階を分類すると,本発明の剤がターゲットとする疾患は,(1)変形性関節症のICRS分類においてグレード1~3に分類される疾患,(2)変形性関節症のKellgren-Lawrence分類においてグレード1~3までに分類される疾患,(3)変形性関節症のOuterbridge分類においてグレード1~3までに分類される疾患,又は(4)変形性関節症の修正Mankinスコアにおいてスコア1~7までに分類される疾患である。なお,本発明者らは,本発明の使用により製造される治療剤,予防剤又は医薬組成物が,股関節,膝関節,又は膝軟骨に関する早期の変形性関節症用に特に有効であることを見出した。
 変形性関節症において,上記グレード又はスコアに分類される疾患は,病状として軟骨変性をともなう。後述するとおり,本発明のIgM型抗体は,軟骨変性を抑制することができる。よって,IgM型抗Fas抗体を有効成分として含有する本発明の剤は,軟骨変性を伴う疾患を治療又は予防するために効果的に用いることができる。すなわち,本発明の剤は,変形性関節症の初期段階から進行期段階に分類される疾患を治療又は予防するために効果的に用いることができる。
 また,後述する実施例で示されたとおり,IgM型抗Fas抗体は,軟骨変性のメディエーターであるマトリックスメタロプロテアーゼ(MMP)-1,及びMMP-3の産生を抑制することができる。MMPは軟骨基質分解酵素の1種である。軟骨基質分解酵素は,関節軟骨を分解してしまうため,変形性関節症を惹起したり,変形性関節症の症状を悪化させたりする原因となりうる。よって,IgM型抗Fas抗体は,MMPの産生を抑制することができるので,軟骨変性を伴う疾患の治療剤または予防剤として好適に用いることができる。また,後述する実施例で示されたとおり,IgM型抗Fas抗体は軟骨基質プロテオグリカンの合成能を改善させることができる。変形性関節症では,関節軟骨が破壊されることも原因となる。軟骨基質であるプロテオグリカンの合成能を改善させることで,破壊された関節軟骨は再生される。よって,本発明の剤は,軟骨変性を伴う変形性関節症の初期段階から進行期段階に分類される疾患を治療又は予防するために効果的に用いることができる。すなわち,本発明は,IgM型抗Fas抗体を有効成分として含有する軟骨破壊抑制剤をも提供する。
 本発明の第1の側面の好ましい態様は,IgM型抗Fas抗体がFas抗原の細胞外ドメイン(配列番号1の26~173番目に記載のアミノ酸配列)と同一,又は1個のアミノ酸残基が置換,欠失,付加または挿入されたアミノ酸配列からなるペプチドに対する抗体である,上記に記載の剤の製造方法である。
 本発明の第1の側面の好ましい態様は,IgM型抗Fas抗体がCH11又は7C11である,上記いずれかに記載の剤である。後述する実施例で示されたとおり,CH11又はC711は,MMP1及びMMP3の産生を効果的に抑制することができる。そして,CH11は軟骨基質であるプロテオグリカンの合成能を改善することができる。よって,IgM型抗Fas抗体を含む本発明の剤は,軟骨変性を伴う変形性関節症の初期段階から進行期段階に分類される疾患を治療又は予防するための治療剤又は予防剤として好適に用いることができる。
 本発明によれば,変形性関節症に対する治療剤および予防剤の製造方法を提供することができる。
図1は,ICRSグレード毎の関節軟骨の病態を示す図面である。図1Aは,グレード0の正常な状態の軟骨を示す。図1Bは,グレード1の軟骨表層にゆるやかな窪みができた状態の軟骨を示す。図1Cは,グレード1の軟骨の表層にひび割れや亀裂ができた状態を示す。図1Dは,グレード2の軟骨欠損が軟骨の50%以下の深さにまで拡張した状態を示す。図1Eは,グレード3の軟骨欠損が軟骨の50%以上の深さにまで拡張した状態を示す。図1Fは,グレード3の軟骨欠損が石灰化層にまで拡張した状態を示す。図1Hは,グレード3の腫脹が引き起こされた状態を示す。図1I及び図1Jは,グレード4の病変が軟骨下骨にまで拡張した状態を示す。 図2は,IgM型抗Fas抗体が軟骨細胞のマトリックスメタロプロテアーゼ(MMP)の産生能に与える影響を示す図面に替わるグラフである。図2Aは,IgM型抗Fas抗体が軟骨細胞のMMP1産生能に与える影響を示す図面に替わるグラフである。図2Bは,IgM型抗Fas抗体が軟骨細胞のMMP3産生能に与える影響を示す図面に替わるグラフである。 図3は,IgM型抗Fas抗体による軟骨基質(プロテオグリカン)産生能低下に対する効果を示す図面に替わるグラフである。 図4は,IgM型抗Fas抗体のアポトーシス抑制効果を示す図面に替わるグラフである。 図5は,IgM型抗Fas抗体又はIgG型抗Fas抗体が軟骨細胞のマトリックスメタロプロテアーゼ(MMP)の産生能に与える影響を示す図面に替わるグラフである。図5AはIgM型抗Fas抗体又はIgG型抗Fas抗体が軟骨細胞のMMP1産生能に与える影響を示す図面に替わるグラフである。図5BはIgM型抗Fas抗体又はIgG型抗Fas抗体が軟骨細胞のMMP3産生能に与える影響を示す図面に替わるグラフである。 図6はIgM型抗Fas抗体又はIgG型抗Fas抗体のアポトーシス抑制効果を示す図面に替わるグラフである。 図7は変形性関節症モデルラットの関節症病理組織スコアを示す図面に替わるグラフである。の図7AはサフラニンO染色の結果を示す。図7Bは軟骨細胞欠損の結果を示す。図7Cは軟骨構造の結果を示す。 図8は,処置後12週目の変形性関節症モデルラットの膝関節組織病理標本を示す図面に替わる写真である。図8A~図8Fはコントロールの変形性関節症モデルラットの膝関節組織病理標本を示す。図8G~図8JはCH-11低用量投与群(CH-11:1.0ng/ml投与)の変形性関節症モデルラットの膝関節組織病理標本を示す。図8K~図8NはCH-11高用量投与群(CH-11:10.0ng/ml投与)の変形性関節症モデルラットの膝関節組織病理標本を示す。図8Oはコントロールの変形性関節症モデルラットの膝関節組織病理標本を示す。図8PはCH-11低用量投与群(CH-11:1.0ng/ml投与)の変形性関節症モデルラットの膝関節組織病理標本を示す。 図9は,処置後24週目の変形性関節症モデルラットの膝関節組織病理標本を示す図面に替わる写真である。図9A~図9Hはコントロールの変形性関節症モデルラットの膝関節組織病理標本を示す。図9I~図9LはCH-11低用量投与群(CH-11:1.0ng/ml投与)の変形性関節症モデルラットの膝関節組織病理標本を示す。図9M~図9PはCH-11高用量投与群(CH-11:10.0ng/ml投与)の変形性関節症モデルラットの膝関節組織病理標本を示す。図9B,図9D,図9F,図9H,図9I,図9K,図9M及び図9Oは,それぞれ図9A,図9C,図9E,図9G,図9J,図9L,図9N及び図9P中,四角で囲った部分を拡大した図面に替わる写真である。
 以下,本発明について説明する。本発明の第1の側面は,変形性関節症の初期段階~進行期段階に分類される疾患を治療又は予防するための治療剤又は予防剤を製造するためのIgM型抗Fas抗体の使用に関する。この治療剤及び予防剤は,IgM型抗Fas抗体を有効成分として含有する。変形性関節症は,指節間関節,第1手根中手関節,頸椎または腰椎の椎間板,第1中足趾節関節,股関節,膝関節に起こる疾患である。本発明の剤は,このような部位に用いることができる。これらの中では,本発明の剤は,股関節,膝関節,又は膝軟骨に用いることが好ましい。
 本発明の剤がターゲットとする疾患は,変形性関節症において,軟骨変性を伴う発症初期段階~進行期段階に分類される疾患である。変形性関節症の段階は,その病態に基づいて,下記表1~4で示したように分類される。以下,変形性関節症の段階について,下記表1~表4に示した変形性関節症の進行度分類基準を用いて説明する。
 表1は,変形性関節症において,ICRS(International Cartilage Repair Society)による軟骨欠損のgrading(以下,「ICRS分類」ともいう)を示す。
Figure JPOXMLDOC01-appb-T000001
 ICRS分類では,変形性関節症はグレード0~4に分類される。ICRS分類において,グレード0は,変形性関節症を発症していない段階である。グレード1は変形性関節症の初期段階である。グレード2~3は,変形性関節症の進行期段階である。グレード4は変形性関節症の末期段階である。上記のとおり,本発明の剤のターゲットは,変形性関節症の初期段階~進行期段階に分類される疾患である。すなわち,本発明の剤のターゲットは,変形性関節症のICRS分類においてグレード1~3のいずれか1つに分類される疾患である。
 変形性関節症のICRS分類の各グレードで示される軟骨の状態を図1に示した。軟骨は,表層,中間層,深層,及び石灰化層からなる層状構造をとっている(図1A)。そして,軟骨は,石灰化層を介して骨(軟骨下骨)と連結している。図1Aは,グレード0の正常な状態の軟骨を示す。図1Bは,グレード1の軟骨表層にゆるやかな窪みができた状態の軟骨を示す。図1Cは,グレード1の軟骨の表層にひび割れや亀裂ができた状態を示す。図1Dは,グレード2の軟骨欠損が軟骨の50%以下の深さにまで拡張した状態を示す。図1Eは,グレード3の軟骨欠損が軟骨の50%以上の深さにまで拡張した状態を示す。図1Fは,グレード3の軟骨欠損が石灰化層にまで拡張した状態を示す。図1Hは,グレード3の腫脹が引き起こされた状態を示す。図1I及び図1Jは,グレード4の病変が軟骨下骨にまで拡張した状態を示す。上記のとおり,本発明の剤は,軟骨変性を治療及び予防するものである。後述する実施例で示されたとおり,本発明の剤は,ICRSによる軟骨欠損の分類では,グレート1~グレート3(変形性関節症の初期段階~進行期段階)に相当する変形性関節症の病状を抑制する。よって,本発明の剤は,変形関節症の初期段階~進行期段階に分類される疾患を治療又は予防するために用いることができる。
 表2は,変形性関節症のKellgren-Lawrence分類(以下,「KL分類」ともいう)を示す。
Figure JPOXMLDOC01-appb-T000002
 KL分類では,変形性関節症はグレード0~4に分類される。KL分類において,グレード0は,変形性関節症を発症していない段階である。グレード1は変形性関節症の初期段階である。グレード2~3は,変形性関節症の進行期段階である。グレード4は変形性関節症の末期段階である。なお,KL分類において,関節裂隙の狭小化は軟骨細胞の消滅など軟骨の変性によるものである。上記のとおり,本発明の剤のターゲットは,軟骨変性を伴う変形性関節症の初期段階~進行期段階に分類される疾患である。すなわち,本発明の剤のターゲットは,変形性関節症のKL分類においてグレード1~3のいずれか1つに分類される疾患である。なお,表2において,KL分類のグレード0~4は,それぞれICRS分類のグレード0~4に相当する。
 表3は,変形性関節症のOuterbridge分類(以下,「OB分類」ともいう)を示す。
Figure JPOXMLDOC01-appb-T000003
 OB分類では,変形性関節症はグレード0~4に分類される。OB分類において,グレード0は,変形性関節症を発症していない段階である。グレード1は変形性関節症の初期段階である。グレード2~3は,変形性関節症の進行期段階である。グレード4は変形性関節症の末期段階である。上記のとおり,本発明の剤のターゲットは,変形性関節症の初期段階~進行期段階に分類される疾患である。すなわち,本発明の剤のターゲットは,変形性関節症のOB分類においてグレード1~3のいずれか1つに分類される疾患である。なお,表3において,OB分類のグレード0~4は,それぞれICRS分類のグレード0~4に相当する。
 表4は,変形性関節症の修正Mankinスコアによる分類を示す。
Figure JPOXMLDOC01-appb-T000004
 修正Mankinスコアにおいて,サフラニンO-ファストグリーン染色では,関節軟骨組織を染色した時の染色程度によって変形性関節症が分類される。軟骨細胞欠損では,染色された軟骨細胞量によって変形性関節症が分類される。そして,構造では,関節軟骨に生じる裂け目の程度によって変形性関節症が分類される。表4において,スコア1~3は変形性関節症の初期段階であり,ICRS分類のグレード1に相当する。スコア4~5は,変形性関節症の進行期段階であり,ICRS分類のグレード2に相当する。スコア6~8も変形性関節症の進行期段階であり,ICRS分類のグレード3に相当する。上記のとおり,本発明の剤のターゲットは,変形性関節症の初期段階~進行期段階に分類される疾患である。すなわち,本発明の剤のターゲットは,変形性関節症の修正Mankinスコアにおいてグレード1~7のいずれか1つに分類される疾患である。
 後述する実施例で示されたとおり,IgM型抗Fas抗体は,修正Mankinスコア2~7の変形性関節症の症状(軟骨変性)を抑制することができる。また,後述する実施例で示されたとおり,IgM型抗Fas抗体は,軟骨基質の欠損を抑制することができる。また,IgM型抗Fas抗体は,軟骨基質産生能を改善することができる。上記のとおり,Mankinスコア2~7は,その病態として軟骨変性を伴う変形性関節症の初期~進行期段階である。よって,IgM型抗Fas抗体は,変形性関節症の初期段階~進行期段階に分類される疾患の治療剤又は予防剤として効果的に用いることができる。
 後述する実施例で示されたとおり,IgM型抗Fas抗体は,修正Mankinスコア2~7の変形性関節症の症状(軟骨変性)を抑制することができる。また,後述する実施例で示されたとおり,IgM型抗Fas抗体は,軟骨基質の欠損を抑制することができる。また,IgM型抗Fas抗体は,軟骨基質産生能を改善することができる。上記のとおり,Mankinスコア2~7は,その病態として軟骨変性を伴う変形性関節症の初期~進行期段階である。よって,IgM型抗Fas抗体は,変形性関節症の初期段階~進行期段階に分類される疾患の治療剤又は予防剤として効果的に用いることができる。
 本発明の剤は,IgM型抗Fas抗体を有効成分として含有する変形性関節症性関節炎の治療剤又は予防剤としても機能しうる。変形性関節症性関節炎は,変形性関節症から惹起される2次炎症反応である。変形性関節症では,関節軟骨表面の崩壊や,これに伴う関節辺縁の新たな軟骨の増殖,関節の変形などによって,周辺の細胞が刺激を受け,2次炎症反応が惹起されうる。本発明の剤は,このような変形性関節症性関節炎の治療剤または予防剤として好適に用いることができる。
 さらに,本発明の剤は,IgM型抗Fas抗体を有効成分として含有する軟骨基質分解酵素産生抑制剤,軟骨基質産生剤,及び変形性関節症で誘導されるマクロファージに対するアポトーシス誘導剤として用いることができる。そして,IgM型抗Fas抗体は,CH11,又は7C11であることが好ましい。後述する実施例で示されたとおり,このようなIgM型抗Fas抗体は,軟骨基質分解酵素産生抑制剤,軟骨基質産生剤,及び変形性関節症で誘導されるマクロファージに対するアポトーシス誘導剤として効果的に用いることができる。
 本明細書において,抗体とは,生物体内に誘導されるタンパク質である。このような生物の例は,哺乳類,及び鳥類である。本発明の抗体の例は,ヒト,マウス,及びラットなど哺乳動物由来の抗Fas抗体である。本発明の抗体は,ヒト以外にも,イヌやネコなどの動物医薬として用いることもできる。投与後の副作用を避けるため,投与する生物由来の抗体とすることが好ましい。ヒトに投与する抗体のタイプの例は,マウス抗体,キメラ抗体,ヒト化抗体,及び(完全)ヒト抗体である。
 このような抗体は,公知の方法で製造することができる(例えば,竹縄忠臣編,タンパク質実験ハンドブック,2003,p86-p105,(株)羊土社発行)。抗体が結合する抗原であるタンパク質やペプチドを,抗体を産生する免疫動物に注射する。免疫動物は,マウス,ラット,ハムスター,ウサギ,及びヤギなど免疫動物として利用される公知の動物を用いることができる。免疫動物への抗原の注入は,1回又は2回以上で定期的(例えば,2~4週間ごと)に行う。抗原の注入後,一定期間ごと(例えば1~2週間),採血を行い,目的とする抗体が産生されていることを確認する(抗体価を調べる)。抗体価を調べる方法は,公知の方法を用いることができる。たとえば,ウエスタンブロッティング,ELISAなどがあげられる。このような方法を用いることで,免疫動物由来の抗体(マウスであれば,マウス抗体)を得ることができる。
 キメラ抗体とは,マウス抗体の可変領域をヒト抗体の定常領域に連結したもので,公知の方法(例えば,特開平7-194384号公報など)によって製造することができる。ヒト化抗体とは,マウス抗体の相補鎖決定領域(complementarity determining region:CDR)をヒト抗体の可変領域に移植した抗体であり,公知の方法(特許2828340号公報,特開平11-4694号公報など)で製造することができる。ヒト抗体は,免疫動物が本来有している免疫グロブリンを破壊したノックアウト動物に,ヒト免疫グロブリン遺伝子を導入し,産生させた抗体であり,公知の方法(特開平10-146194号公報,特開平10-155492号公報など)で,製造することができる。完全ヒト抗体とは,ヒトの細胞から産生される抗体であり,公知の方法(特開2007-141号公報,特開2005-034154号公報など)。当業者であれば,このような抗体の公知の製造方法を適宜採用して,本発明の抗体を製造することができる。
 Fas抗原は,細胞膜貫通型の糖タンパク質であり,APO-1,CD95,ALPS1A,APT1,Fas1,FasLレセプター,TNFレセプタースーパーファミリーメンバー6(TNF receptor superfamily member6),TNFR6などともよばれる。細胞表面上に発現しているFas抗原は,Fasリガンド(FasL)や抗Fas抗体などで刺激されることで,その細胞にアポトーシスを誘導するレセプターとして機能することが知られている(Fas介在性アポトーシス)。Fas抗原は,生体内の各組織を構成する細胞に広く分布している。また,Fas抗原は,マクロファージ,ナチュラルキラー(NK)細胞,B細胞,T細胞,顆粒球,単球などの炎症関連細胞にも発現する。FasLは,T細胞,NK細胞,エフェクター細胞などに発現することが報告されている。Fas抗原にFasリガンドや抗Fas抗体が結合すると,Fas抗原は3量体(trimer)を形成する。さらにFas抗原の細胞内ドメインも3量体化することで,細胞内にアポトーシスシグナルを伝達していくことが知られている。また,生体内において,Fasリガンドは3量体を形成していることが報告されており,3量体化したFasリガンドがFas抗原に結合することで,Fas抗原の細胞内ドメインの3量体化が起こり,アポトーシスシグナルが伝達されると考えられている。
 抗Fas抗体としては,Fas介在性アポトーシスを誘導する抗体(アゴニスト抗体)や,Fas介在性アポトーシスを阻害する抗体(アンタゴニスト抗体)などがある。本発明において好ましい抗Fas抗体は,Fas介在性アポトーシスを誘導する抗体(アゴニスト抗体)である。このような抗Fas抗体として,例えば,配列番号1に記載のアミノ酸配列と同一,又は1~10個のアミノ酸残基が置換,欠失,付加又は挿入されたアミノ酸配列からなるペプチドに対する抗体があげられる。配列番号1はヒトのFas抗原を示すアミノ酸配列である。配列番号1に記載のアミノ酸配列中,置換,欠失,付加又は挿入されたアミノ酸残基の数は,1~10個があげられるが,好ましくは1~5個であり,より好ましくは1~2個であり,さらに好ましくは1個である。本発明の抗Fas抗体を含む剤は,ヒト以外にも,イヌやネコなどの動物を対象とすることも可能である。このような動物医薬として,本発明の抗Fas抗体を含む剤を用いるときは,抗Fas抗体は,ヒト由来のFas抗原を示す配列番号1に記載のアミノ酸配列と同一,又は1~10個のアミノ酸残基が置換,欠失,付加又は挿入されたアミノ酸配列からなるペプチドに対する抗体よりも,投与する動物由来のFas抗原を構成するアミノ酸配列と同一,又は1~10個のアミノ酸残基が置換,欠失,付加又は挿入されたアミノ酸配列からなるペプチドに対する抗体とすることが好ましい。このような動物由来のFas抗原を構成するアミノ酸配列は,たとえばGenBankなど公知のサイトを使用して入手すればよい。
 本発明の好ましい態様は,抗Fas抗体は,Fas抗原の細胞外ドメインを認識する抗体である。具体的には,配列番号1の26~173番目に記載のアミノ酸配列と同一,又は1~5個のアミノ酸残基が置換,欠失,付加又は挿入されたアミノ酸配列からなるペプチドに対する抗体である。配列番号1の26~173番目に記載のアミノ酸配列中,置換,欠失,付加又は挿入されたアミノ酸残基の数は,1~5個があげられるが,好ましくは1~2個であり,より好ましくは1個である。このような置換等されるアミノ酸残基の例としては,UniProt(the universal protein resource(http://www.pir.uniprot.org/))アセッションNo.P25445に記載のものがあげられる。配列番号1の26~173番目に記載のアミノ酸配列は,Fas抗原の細胞外ドメインを示す配列である。本発明において好ましい抗Fas抗体は,Fas介在性アポトーシスを誘導する抗体である。すなわち,本発明の抗Fas抗体は,Fas抗原に結合し,Fas抗原の3量体化を引き起こし,アポトーシスシグナルを細胞内に伝達しうる抗体であることが好ましい。本発明の抗Fas抗体をFas抗原の細胞外ドメインに対する抗体とすることで,抗Fas抗体を含む剤を投与した際,好適にFas抗原と結合し,その3量体化を引き起こし,細胞内シグナル伝達を促進することができうる。よって,効果的に治療効果を得ることができうる。
 本発明の抗Fas抗体は,ポリクローナル抗体であっても,モノクローナル抗体であってもよい。しかしながら,ポリクローナル抗体は抗体価が安定しにくい。よって,抗体価の安定したモノクローナル抗体を用いる方が好ましい。抗体(免疫グロブリン(Ig)分子)のアイソタイプとしては,IgG,IgM,IgA,IgE,IgDがあげられるが,本発明の抗体は,IgG型抗体,IgA型抗体又はIgM型抗体であることが好ましく,IgA型抗体又はIgM型抗体であることがより好ましく,IgM型抗体がさらに好ましい。このような抗体は,後述する方法で製造することができるが,後述する製造方法に限定されるものではなく,公知の製造方法で製造することができる。
 抗体(免疫グロブリン(Ig)分子)は,各アイソタイプ(IgG,IgM,IgA,IgE,IgD)に共通の基本構造を有し,分子量5~7万のH鎖(Heavy chain)と分子量2~2.5万のL鎖(Light chain)から構成されている。そして,H鎖は,アイソタイプごとに特徴的な構造を有し,IgG,IgM,IgA,IgD,及びIgEに対応して,それぞれγ,μ,α,δ,及びε鎖とよばれる。L鎖もL型とK型の2種が知られており,それぞれλ,κ鎖とよばれる。基本構造のペプチド鎖構造は,それぞれ相同な2本のH鎖およびL鎖が,ジスルフィド結合(S-S結合)および非共有結合によって結合している。2種のL鎖はどのH鎖とも対をなすことができる。たとえばIgM型の場合,μ,λ,κ鎖の組み合わせは,μλ,およびμκとなる。鎖内のジスルフィド結合は,H鎖に4つ(μ,ε鎖は5つ),L鎖には2つあり,アミノ酸100~110残基ごとに1つのループを形成し,この単位をドメインとよぶ。H鎖及びL鎖には,N末端側に位置するドメインに,可変領域(V)とよばれるドメイン(VおよびVと表わされる)が存在する。そして,これよりC末端側のアミノ酸配列は,各アイソタイプでほぼ一定のアミノ酸配列を有する定常領域(C)とよばれるドメイン(C1,C2,C3,Cと表わされる)を有する。抗体の抗原結合部位(エピトープ)は,VおよびVによって構成され,この部位の配列によって抗原の特異性が変わってくる。そして,このような抗体は,アイソタイプによって異なる重合構造をとる。たとえば,IgM型抗体は,Hμ鎖2本とL鎖2本からなる抗体であるが,さらにJ鎖とよばれるポリペプチドが結合し,5量体または6量体の形で存在している。IgA型抗体は,Hα2本とL鎖2本からなる抗体であるが,単量体,2量体,または3量体で存在する。そして,IgA型抗体の2量体または3量体は,J鎖や分泌片(secretory piece)によって結合している。IgG型抗体は単量体で存在している。本発明の抗Fas抗体としては,このような各タイプの抗体を用いることができる。また,上記したとおり,Fas介在性アポトーシスでは,3量体のFasリガンドがFas抗原に結合することで,Fas抗原の細胞内ドメインの3量体化が促進され,アポトーシスシグナルが伝達する。上記のとおり,IgM型抗体は重合構造(5量体または6量体)をとるため,IgM型抗体は3個以上のFas抗原をつかむように結合する。これにより,Fas抗原の3量体化が効率的に起こり,アポトーシスシグナルが伝達される。よって,このような観点から,本発明における抗Fas抗体として,IgM型抗体を用いることが好ましい。
[ポリクローナル抗体]
 ポリクローナル抗体の製造方法の例を以下にあげるが,当業者にとって公知の方法を用いて適宜変更することができる。ポリクローナル抗体は,上記した免疫動物に抗原(免疫原)を注入することで作製することができる。免疫動物に注入する抗原(免疫原)としては,抗原発現細胞,(粗)精製タンパク質,組換えタンパク質,又は合成ペプチドなどを用いることができる。このような抗原として上記した配列番号1に記載のアミノ酸配列と同一,又は1~10個のアミノ酸残基が置換,欠失,付加又は挿入されたアミノ酸配列からなるペプチドがあげられる。上記したように,本発明の抗Fas抗体は,Fas介在アポトーシスを誘導する抗体であるため,抗原は,配列番号1の26~173番目に記載のアミノ酸配列と同一,又は1~5個のアミノ酸残基が置換,欠失,付加又は挿入されたアミノ酸配列からなるペプチドであることが好ましく,前記アミノ酸配列に置換,欠失,付加又は挿入されるアミノ酸残基の数は1~2個がより好ましく,さらに好ましくは1個である。また,本発明の抗Fas抗体は,Fas抗原と結合し,Fas介在性アポトーシスを誘導する抗体であるため,抗体を製造する際に用いるペプチド(抗原)は,配列番号1の26~173番目に記載のアミノ酸配列からなるペプチドよりも短いペプチドを用いてもよい。ペプチドの長さは,当業者であれば適宜調整することが可能である。
 ポリクローナル抗体を製造する際,抗原は,アジュバンドと混合して免疫動物に注入する。ここで,アジュバンドとは,抗原に対する免疫応答を強化する目的で用いられる物質をさし,例えば,アルミニウムアジュバンド,完全(不完全)フロイントアジュバンド,百日咳菌アジュバンドなどである。免疫動物への抗原の注入は,2~4週間ごとに行う。2回以上注入をした後,注入日後1~2週間後に採血を行い,抗体価検定(antibody titer check)を行う。免疫動物への注入量,注入回数(免疫回数)は,免疫動物の種類やその個体ごとに異なる。当業者であれば,抗体価検定の結果に応じて,適宜調整することができる。免疫終了後,全血を搾取し,遠心分離など公知の方法を用いて,血清を分離する。血清は,血清中に含まれる内在性の抗体などを取り除くため,精製を行う。精製方法は,たとえばアフィニティークロマトグラフィーなど公知の方法を用いることができる。このようにしてポリクローナル抗体を作製することができる。
[抗原発現細胞]
 抗原として用いる抗原発現細胞は,培養細胞などの細胞膜上に抗原となるタンパク質が発現した細胞が好ましい。このような抗原発現細胞は,公知の方法で作製することができる。具体的には,抗原となるタンパク質をコードするDNAを培養細胞に導入し発現させればよい。抗原を発現させる培養細胞(以下,「宿主」ともよぶ)は,特に限定されず公知の細胞を用いればよい。たとえば,抗原提示細胞としてしられるB細胞や樹状細胞などがあげられる。このような細胞に抗原となるタンパク質を発現させる方法としては,抗原となるタンパク質をコードするDNAを組み込んだ抗原発現ベクターを作製し,抗原を発現させる細胞に導入する。発現ベクターに組み込むDNAが細胞膜ドメイン配列を含まない場合には,発現ベクターを導入する宿主が有する細胞膜ドメインの配列を含ませておくことが好ましい。このような配列を含むことで,効率的に細胞膜上にタンパク質(抗原)を発現させることができる。このような細胞膜ドメイン配列は,当業者であれば,適宜取得し,発現ベクターに組み込むDNA配列に含ませることができる。このような発現ベクターとしては,プロモーター,エンハンサー,スプライシングシグナル,ポリA付加シグナル,選択マーカー,SV40複製オリジンなどを含有しているものを用いることができる。宿主が動物細胞である場合,プロモーターとしては,例えば,SRαプロモーター,SV40プロモーター,HIV・LTRプロモーター,CMVプロモーター,HSV-TKプロモーターなどがあげられる。選択マーカーとしては,例えば,ジヒドロ葉酸還元酵素遺伝子(メソトレキサート(MTX)耐性),アンピシリン耐性遺伝子,ネオマイシン耐性遺伝子(G418耐性),ハイドロマイシン耐性遺伝子,ブラストサイジン耐性遺伝子等があげられる。このような発現ベクターは,公知のものを使用すればよく,当業者であれば,宿主に応じて適宜選択することができる。抗原発現ベクターを導入する方法としては,リン酸カルシウム法,リポフェクション法,エレクトロポレーション法など公知の方法を用いることができる。細胞に抗原が発現していることを確認する方法は,免疫染色法など公知の方法を適宜用いればよい。このように抗原を発現させた細胞は,公知の方法で回収し,免疫動物に注入する抗原として用いることができる。
[(粗)精製タンパク質]
 抗原として用いる(粗)精製タンパク質は,培養細胞などが発現するタンパク質を精製したものである。このようなタンパク質は,細胞のシグナル伝達経路に作用したり,転写因子に作用したりする薬剤や因子で培養細胞などを刺激することによって発現させればよい。発現したタンパク質は,公知の方法で精製し,精製タンパク質として用いることができる。たとえば,分泌タンパク質であれば,培養上清を回収し,例えば塩析やカラムクロマトグラフィー,膜処理などで精製することができる。カラムクロマトグラフィーとしては,イオン交換クロマトグラフィー,ゲル濾過クロマトグラフィー,アフィニティークロマトグラフィー,疎水性クロマトグラフィーなどがあげられ,当業者であれば,タンパク質の性質に応じて適宜使用することができる。細胞外に分泌されないタンパク質であれば,培養細胞を回収し,超音波処理などで細胞を破砕し,タンパク質を回収することができる。そして,上記した方法でタンパク質を精製すればよい。このような精製タンパク質を取得する方法は,公知であり,当業者であればタンパク質の特性に合わせて適宜用いることができる。
[組換えタンパク質]
 抗原として用いる組換えタンパク質は,公知の方法で作製することができる。具体的には,抗原として用いる組換えタンパク質をコードするDNAを公知の方法でベクターに挿入し,組換えタンパク質を発現させる宿主に導入する。ベクターは公知のものを用いればよく,当業者であれば導入する宿主に応じて選択することができる。このような宿主としては,細菌,昆虫細胞,植物細胞,動物細胞など公知の宿主を用いることができる。そして,宿主にベクターを導入する方法は,エレクトロポレーション法,リン酸カルシウム法,リポフェクション法など,宿主に応じて,適宜公知の方法を用いることができる。組換えタンパク質は,GST(glutathion S transferase),HA(hemagglutinin),又は(オリゴ)ヒツチジンなどのタグとの融合タンパク質としてもよい。このようなタグは,目的とする抗原をコードするDNAのN末端側又はC末端側に結合させればよい。このようなタグを結合させた融合タンパク質とすることで,発現したタンパク質を簡単に精製することが可能になる。宿主に発現させたタンパク質は,例えば分泌タンパク質であれば培養上清を回収することによって,分泌タンパク質でなければ,超音波処理などで宿主細胞を破砕するなどして回収することができる。タンパク質の精製方法は,上記したように,たとえば,HPLCやアフィニティーカラムなどを用いることができる。また,インビトロでのタンパク発現系や昆虫,動物,植物などの生体を用いて組換えタンパク質を得ることもできる。このような方法は,公知であり,当業者であれば,適宜変更を加えることができる。
[合成ペプチド]
 ペプチドを合成する方法として,固相法や液相法などがあげられる。ペプチド合成では,目的とするアミノ酸配列をN末端またはC末端から逐次結合させていくステップワイズ延長法,またはアミノ酸配列を適当なフラグメントに分け,それらのフラグメントを縮合させて目的のペプチドを合成するフラグメント縮合法があげられる。また,ペプチド合成法として不溶性の樹脂にアミノ酸を結合し,アミノ酸配列情報に基づいて,その樹脂上でアミノ酸を1個ずつ結合させていき鎖を伸長させていく固相法や,樹脂などの担体を用いない液相法があげられる。さらにそれらの方法を組み合わせて効率的に合成することも可能である。このような方法は公知であり,当業者であれば,目的のアミノ酸配列を合成するために,適宜用いることができる。また,合成したペプチドは,精製を行ってもよい。合成ペプチドの精製は,沈殿法,HPLC,イオン交換クロマトグラフィー,ゲル濾過クロマトグラフィーなど公知の方法を用いることができる。抗原として合成ペプチドを用いる場合は,そのままでは抗原性に乏しいので,BSA(Bovine Serum Albumin)やKLH(Keyhole Limpet Hemocyanin)などのキャリアに架橋剤(例えば,MBS(m-maleimidobenxoic acid)エステル,DMS(dimethyl suberimidate)など)を用いて共有結合させて用いる方がよい。
[モノクローナル抗体]
 モノクローナル抗体は,公知の方法で製造することができる。具体的には,免疫動物(例えば,マウスなど)に上記した抗原を2~4週間間隔で1~6ヶ月間注入(免疫)し,ポリクローナル抗体の製造方法と同様に,抗体価検定を行う。検定により所望する抗体価が得られたら,免疫動物から脾臓を単離する。単離した脾臓は無血清培地(例えば,イスコフ培地(GIBCO社製))で懸濁し,脾臓細胞懸濁液とする。脾臓細胞とミエローマ細胞(骨髄腫細胞)を混合し,ポリエチレングリコール(PEG)を加えて,細胞を融合させる。その後,ヒポキサンチン(hypoxanthine)-アミノプテリン(aminopterine)-チミジン(thymidine)(HAT)選択培地で培養することで,ハイブリドーマ(脾臓細胞とミエローマ細胞が融合した細胞)のみを増殖させる。さらに,目的とする抗体を産生するハイブリドーマを選択するために,目的とする抗体の有無の検定と同時に,検定陽性ハイブリドーマのクローニングを行う。この操作を数回繰り返すことによって,目的とする抗体を産生するクローン化ハイブリドーマを得ることができる。その後,クローン化ハイブリドーマを免疫動物の腹腔内に注射し,2~4週間後に腹水を回収し,精製することでモノクローナル抗体を得ることができる。腹水を精製する方法は,公知の方法を用いればよく,たとえばアフィニティークロマトグラフィーやゲル濾過クロマトグラフィーなどがあげられる。
[リコンビナント抗体の製造方法]
 また,本発明の抗体は,リコンビナント抗体としてもよい。リコンビナント抗体とは,抗体産生工程でハイブリドーマを用いない組換え型モノクローナル抗体である。例として最小の抗原結合部位のみを有したもの,多価型の抗原結合部位を具有したもの,IgGとIgAを組み合わせ分泌型にしたもの,異種動物間でのキメラやヒューマニゼーション(humanization)を施したものなどがあげられる。このようなリコンビナント抗体は,各アイソタイプの免疫グロブリン遺伝子を宿主で発現させることによって得ることができる。このような宿主を用いる産生系のとしては,大腸菌を用いる方法,培養細胞を用いる方法,植物に産生させる方法,トランスジェニックマウスに産生させる方法などがあげられる。
 このようなリコンビナント抗体の製造は公知の方法を用いればよい。具体的な例として,ファージディスプレイ法(例えば,Ricombinant antibody expression system(Amersham Biosciences)など)があげられる。ファージディスプレイ法は,大腸菌ウイルスの一種であるM13などの繊維状ファージのコートタンパク質にファージの感染能を失わないように外来遺伝子を融合タンパクとして発現させるシステムである。ファージとは,細菌に感染するウイルスであり,そのDNAに外来性遺伝子を組み込めば感染に際して宿主内に侵入し,増殖する能力を有する。
[ファージディスプレイ法]
 ファージディスプレイ法によるモノクローナル抗体の作製方法の1例を以下にあげるが,本発明は以下の作製方法に限定されるものではなく,当業者は各工程を他の公知の方法を用いて,適宜変更することができる。また,当業者であれば,それぞれの工程において,温度,反応時間,使用溶液濃度,使用溶液量などのパラメータを適宜設定して,また変更を加えて実施することができる。ファージディスプレイ法では,まずファージ抗体ライブラリーの作製を行い,その後抗体産生ファージのスクリーニングを行うことで,モノクローナル抗体を作製する。
ファージ抗体ライブラリーの作製
(1)B細胞からmRNAを抽出し,RT-PCRを行って,cDNAライブラリーを作製する。
 B細胞は,マウスやヒトなどから採取した細胞を用いればよい。B細胞のRNAの抽出は,例えば,AGPC法(Acid-Guanidinium-Phenol-Chloroform法)などを用いることができる。AGPC法では,まずB細胞にグア二ジンチオシアネイト溶液を加えて,ホモジナイズする。その後,細胞のホモジネート溶液に酢酸ナトリウム,フェノール,クロロホルムを加えて混和し,遠心する。遠心後,溶液の水層を回収する。回収した水層にイソプロパノールを加え,混和後,遠心し,RNAを沈殿させる。沈殿物(RNA)は再度グア二ジンチオシアネイト溶液に溶解後,酢酸ナトリウム,フェノール,クロロホルムを加えて振とうする。振とう後,遠心して再度水層を回収する。回収した水層に再度イソプロパノールを加えて遠心し,RNAを沈殿させる。沈殿させたRNAに70%エタノールを加え,懸濁し再度遠心して,RNAを沈殿させることで,トータルRNA(totalRNA)を得ることができる。次に,トータルRNAからmRNAの抽出は,mRNAのC末端側に存在するポリA配列に結合するプライマー(オリゴdTプライマー)を用いて,PCRにてmRNAを増幅させ,オリゴdTカラム(例えば,QIAGEN社製)などで抽出・精製することができる。また,オリゴdTがコーティングされた磁性ビーズ(例えば,ナカライテスク社製)を用いたアフィニティクロマトグラフィーなどで抽出・精製してもよい。精製したmRNAは,逆転写酵素を含む反応溶液中で,PCRによってcDNAライブラリーを作製することができる。
(2)L鎖(Light chain)とH鎖(Heavy chain)の可変領域に特異的なプライマーを用いてそれぞれPCRで増幅する。
 抗体(免疫グロブリン(Ig)分子)のH鎖およびL鎖の可変領域であるV及びVの配列は,たとえばGenBankなどから入手することができる。たとえばIgA型のヒト抗体を得るには,ヒトのIgAのV及びV配列を入手し,それら配列を増やすためのプライマー設計を行い,テンプレートとして上記cDNAを用いて,PCRにて両配列を増幅させればよい。当業者であれば,どのような抗体を得るかによって,プライマー設計は適宜行うことができ,またPCR等の条件も適宜決めることができる。増幅させたVとVは,公知の方法で精製すればよい。
(3)ライブラリーの構築
 精製したVとVは,それぞれをリンカーでつなぎ,一本鎖とし,ファージミドベクターに挿入して,一本鎖Fv(可変領域断片)遺伝子ライブラリーを構築する。リンカーとは,各断片を接続する配列である。このようなリンカーとしては,リンカーとして公知の配列を用いればよい。ファージミドベクターとは,M13ファージあるいはf1ファージの一本鎖DNAの生成に必要な複製起点(IG領域)を組み込んだプラスミドベクターである。ファージミドベクターは,プラスミドとしての特性と一本鎖DNAファージとしての特性を備えており,通常の二本鎖DNAプラスミドとして操作することが可能なだけでなく,プラスミドの一方のDNA鎖を含む線状ファージ粒子を産生させることができる。ファージミドベクターとしては,公知のものを用いればよい(例えば,pCANTAB5E(Amersham Biosciences社製))。また,別の方法として,抗体H鎖Fd部分(VおよびC1領域)及びL鎖部分に特異的なプライマーを用いてPCRにより抗体遺伝子断片を増幅し,これらの遺伝子断片をファージミドベクターに挿入することにより抗体Fabに対応する遺伝子ライブラリーを構築してもよい。
抗体産生ファージのスクリーニング
(4)抗体提示ファージライブラリーの濃縮
 ファージミドベクターを用いて構築した抗体遺伝子ライブラリーを大腸菌に導入し,ヘルパーファージ(M13KO7,VCSM13など)を感染させることにより,抗体提示ファージライブラリーを作製する。この抗体提示ファージライブラリーの濃縮方法としては,パニング法があげられる。この方法によって,精製した抗原(上記方法などにより精製した抗原)を用いて固相法によりファージライブラリーから目的とする抗体を提示するファージ集団を濃縮することができる。パニング法では,固相化抗原とファージライブラリーの反応,洗浄(固相化抗原と結合しないファージライブラリーの除去),抗原結合ファージの溶出,大腸菌への感染による増幅というステップを数回(例えば4~5回)繰り返す。これにより抗原特異的ファージ(抗体産生ファージ)を濃縮することができる。
(5)抗原特異的ファージクローンの選択及びモノクローナル抗体の取得
 抗原特異的ファージクローンの選択法としては,例えばELISA法などを用いることができる。精製抗原をコートしたELISAプレートに,抗体産生ファージを反応させ,精製抗原との反応性(結合性)を調べる。この工程を繰り返し,クローンを選別していくことで,モノクローナル抗体を産生するファージを得ることができる。そして,このようなファージを大腸菌で増殖させ,抗体を回収することでモノクローナル抗体を取得することができる。このような抗体は,たとえばアフィニティークロマトグラフィーなどの公知の精製方法を用いて精製することが可能である。
 本発明の好ましい態様として,変形性関節症もしくは変形性関節症性関節炎の治療剤又は予防剤,軟骨基質分解酵素産生抑制剤,軟骨基質産生剤,及び変形性関節症で誘導されるマクロファージに対するアポトーシス誘導剤を製造のために本発明の抗体を使用することがあげられる。すなわち,本発明は,変形性関節症治療方法;変形性関節症性関節炎治療方法;軟骨基質分解酵素産生抑制剤を製造するためのIgM型抗Fas抗体の使用;軟骨基質産生剤を製造するためのIgM型抗Fas抗体の使用;変形性関節症により誘導されるマクロファージに対するアポトーシス誘導剤を製造するためのIgM型抗Fas抗体の使用をも提供する。そして,このIgM型抗Fas抗体の使用において,先に説明したそれぞれのパターンを組み合わせて用いることができる。
 本発明の剤は,当業者に公知の方法で製造すればよい。本発明の剤は,経口用製剤および非経口用製剤として製造することができるが,好ましくは非経口用製剤である。このような非経口用製剤は,液剤(水性液剤,非水性液剤,懸濁性液剤,乳濁性液剤など)としてもよいし,固形剤(粉末充填製剤,凍結乾燥製剤など)としてもよい。また,本発明の剤は,徐放製剤としてもよい。
 液剤を製造する方法は,公知の方法で製造することができる。例えば,抗体を薬学的に許容された溶剤に溶解し,滅菌された液剤用の容器に充填することで製造することができる。薬学的に許容された溶剤としては,たとえば,注射用水,蒸留水,生理食塩水,電解質溶液剤などがあげられ,滅菌された溶剤を用いることが好ましい。滅菌された液剤用の容器としては,アンプル,バイアル,バッグ,などがあげられる。これら容器は,ガラス製やプラスチック製など公知の容器を用いることができる。具体的には,プラスチック製容器としては,ポリ塩化ビニル,ポリエチレン,ポリプロピレン,エチレン・酢酸ビニル・コポリマーなどの材質を用いたものがあげられる。これら容器や溶剤の滅菌法は,加熱法(火炎法,乾燥法,高温蒸気法,流通蒸気法,煮沸法など),濾過法,照射法(放射線法,紫外線法,高周波法など),ガス法,薬液法などがあげられる。このような滅菌法は,容器の材質,溶剤の性質に応じて,当業者であれば適宜選択して用いることができる。
 固形剤を製造する方法は,凍結乾燥法,スプレードライ(噴霧乾燥)法,無菌再結晶法など,公知の方法を用いることができる。例えば,凍結乾燥剤は,以下の工程を経ることで製造することができる。(1)結晶化させた抗体を室温4℃,常圧下に2~3時間置き,冷却する(冷却工程)。(2)室温-50℃,常圧下に12~15時間置き,凍結させる(凍結工程)。(3)室温-20℃,常圧下に4~6時間置き再結晶化させる。(再結晶化工程)。(4)室温-50℃,常圧下に14~16時間置き,再凍結させる(再凍結工程)。(5)室温-13℃,圧力10~20kPa下(高真空下)に24~26時間置く(第1乾燥工程)。(6)室温24℃,圧力10~20kPa下(高真空下)に10~121時間置く(第2乾燥工程)。(7)室温24℃,常圧下に置く。このように凍結乾燥法では,低温で凍結させ,高真空下で水分(氷)を昇華させて除いていく。本発明の凍結乾燥剤は,上記の方法で製造できるが,この製造方法に限定されず,当業者であれば,適宜変更することができる。また,適宜各工程の温度,圧力,時間などのパラメータに変更を加えることができる。
 また,本発明は,本発明のIgM型抗Fas抗体を含む剤と医療用具を組み合わせたキット製品として提供することも可能である。例えば,本発明のIgM型抗Fas抗体を含む剤を注射筒等の医療用具にあらかじめ充填したもの,1つのソフトバックに離壁を介して一方に固形剤を,他方に溶剤を充填し,使用時に離壁を開通して混合できるようにしたものなどがあげられる。このようにすることで,使用時に医療従事者が調製する負担を軽減できるだけでなく,細菌汚染や異物混入などを防止することができ,好適に使用することができる。このような注射筒やソフトバックは公知であるので,医療従事者であれば適宜使用することができる。
 本発明のIgM型抗Fas抗体を含む剤は,静脈内投与,動脈内投与,筋肉内投与,皮下投与,腹腔内投与,鼻腔内投与などの公知の投与方法を用いて投与することができる。好ましくは,注射による投与であり,点滴によって注入することも可能である。また,本発明の剤は,患部(例えば関節)に直接注射してもよく,また外科手術により患部を開口し投与することも可能である。本発明の剤は,経口用製剤および非経口用製剤として調整することができるが,好ましくは非経口用製剤である。このような非経口用製剤は,液剤(水性液剤,非水性液剤,懸濁性液剤,乳濁性液剤など)としてもよいし,固形剤(粉末充填製剤,凍結乾燥製剤など)としてもよい。固形剤は,投与する際に,薬学的に許容された溶剤で所望濃度に用時溶解または懸濁化して用いる。このような非経口用製剤は,注射や点滴などの投与方法で用いることができる。
 本発明のIgM型抗Fas抗体を含む剤を製剤化する場合,薬学的に許容される担体又は媒体などと適宜組み合わせて製剤化することもできる。さらに,薬剤を含ませてもよい。また,本発明のIgM型抗Fas抗体を含む剤は,アルブミン,リポタンパク質,グロブリンなどの本発明の抗体の作用を阻害しないタンパク質を含ませてもよい。このようにタンパク質を含ませることで,液剤中に含まれる抗体の安定性向上させることができる。このようなタンパク質は,液剤として本発明の剤を製剤化する場合は,液剤中に含ませればよい。固形剤として,製剤化する場合は,本発明の抗Fas抗体を固形化するときに上記タンパク質を含ませてもよいし,固形剤を溶解する溶剤に上記タンパク質を含ませてもよい。このようなタンパク質の含量は,投与時の液量を100重量部としたときに,0.01重量部~5重量部があげられ,当業者であれば,投与する抗体の量やその他に含まれる物質に応じて適宜調整することができる。
[薬学的に許容される担体又は媒体]
 薬学的に許容される担体又は媒体は,例えば,賦形剤,安定化剤,溶解補助剤,乳化剤,懸濁化剤,緩衝剤,等張化剤,抗酸化剤,又は保存剤など薬学的に許容される物質があげられる。また,ポリエチレングリコール(PEG)などの高分子材料やシクロデキストリン等の抱合化防物を使用することもできる。以下,具体例をあげるが,本発明はそれらに限定されるものではなく,公知のものを使用することができる。賦形剤としては,デンプンや乳糖などそれ自体が薬理作用を有さないものが好ましい。安定化剤としては,アルブミン,ゼラチン,ソルビトール,マンニトール,乳糖,ショ糖,トレハロース,マルトース,グルコースなどがあげられる。これらのうちでは,ショ糖又はトレハロースが好ましい。溶解補助剤としては,エタノール,グリセリン,プロピレングリコール,ポリエチレングリコールなどがあげられる。乳化剤としては,レシチン,ステアリン酸アルミニウム,またはセスキオレイン酸ソルビタンなどがあげられる。懸濁化剤としては,マクロゴール,ポリビニルピロリドン(PVP),またはカルメロース(CMC)などがあげられる。等張化剤としては,塩化ナトリウム,グルコースなどがあげられる。緩衝剤としては,クエン酸塩,酢酸塩,ホウ酸,またはリン酸塩などがあげられる。抗酸化剤としては,アスコルビン酸,亜硫酸水素ナトリウム,ピロ亜硫酸ナトリウムなどがあげられる。保存剤としては,フェノール,チメロサール,塩化ベンザルコニウムなどがあげられる。
 本発明の抗体と組み合わせる薬剤として,関節疾患治療剤,抗炎症剤,鎮痛剤,骨再生剤,骨吸収抑制剤,抗生物質,または成長剤など,関節疾患に用いられる公知の薬剤があげられる。また,本発明の抗Fas抗体を含む剤を注射などによって投与する際,注射による疼痛が起こりうるので,無痛化剤を含ませてもよい。このような薬剤は1種または2種以上組み合せてもよい。
 関節疾患治療剤として,例えば関節軟骨細胞外マトリックス分解阻害剤(WO2004/017996号パンフレット),副腎皮質ホルモン剤やコンドイチン硫酸ナトリウム,ヒアルロン酸(hyaluronic acid(HA))などの関節軟骨の保護剤,又はシグナル伝達系阻害剤であるp21活性化キナーゼ(PAK)阻害剤(特表2007-537134号公報)などがあげられる。
 抗炎症剤として,ステロイド性抗炎症剤や非ステロイド性抗炎症剤(NSAIDs)などがあげられる。ステロイド性抗炎症剤は,たとえば,デキサメタゾン,コルチゾン,ヒドロコルチゾン,プレドニゾロン,メチルプレドニゾロン,ベタメタゾン,トリアムシノロン,トリアムシノロンアセトニド,フルオシノロンアセトニド,フルオシノニド,ベクロメタゾン,エテンザミドなどがあげられる。非ステロイド性抗炎症剤として,たとえば,アスピリン,イブプロフェン,ナプロキセン,ジクロフェナク,インドメタシン,ナブトメン,フェニルブタゾン,ロフェコキシブ,セレコキシブ,オキシカム,ピロキシカム,ピラゾロン,アザプロパゾンなどがあげられる。
 鎮痛剤として,消炎鎮痛薬でもあるNSAIDsに加えて,オピオイド系鎮痛薬などがあげられる。オピオイド系鎮痛薬としては,たとえば,エンドルフィン,ダイノルフィン,エンケファリン,コデイン,ジヒドロコデイン,デキストロプロポキシフェンなどがあげられる。
 骨吸収抑制剤として,エストロゲン剤,カルシトニン及びビスホスホネートのいずれか1種又は2種以上の混合物があげられる。
 抗生物質として,ペニシリン系抗生物質,セフェム系抗生物質,アミノグリコシド系抗生物質,マクロライド系抗生物質,テトラサイクリン系抗生物質,ペプチド系抗生物質などの抗生物質があげられる。ペニシリン系抗生物質としては,ベンジルペニシリン,フェノキシメチルペニシリン,メチシリン,フルクロキサシリン,アモキシシリン,アンピシリン,ピペラシリン,アズロシリン,チカルシリンなどがあげられる。セフェム系抗生物質としては,セファゾリン,セフロキシム,セファマンドール,セフォタキシム,セフォペラゾン,セフピラミド,セファレキシン,セファクロール,セフィキシム,セフテラムなどがあげられる。アミノグリコシド系抗生物質としては,ゲンタマイシン,ネチルマイシン,トブラマイシン,ストレプトマイシン,ネオマイシン,カナマイシン,アミカシンなどがあげられる。マクロライド系抗生物質としては,エリスロマイシン,クラリスロマイシン,ロキシスロマイシン,ロキタマイシン,クリンダマイシン,アジスロマイシンなどがあげられる。テトラサイクリン系抗生物質として,テトラサイクリン,ミノサイクリン,ドキシサイクリンなどがあげられる。この他に,β-ラクタム系抗生物質として,ラタモキセフ,フロモキセフ,アズスレオナム,イミペネム,パニペネムがあげられる。また,この他にバンコマイシン,リファンピシン,クロラムフェニコールなどがあげられる。
 成長剤として,骨形成因子(BMP),骨増殖因子(BGF),血小板由来増殖因子(PDGF),塩基性繊維芽細胞増殖因子(bFGF),インスリン,インスリン様増殖因子(IGF),ホルモン,サイトカイン,又はトランスフォーミング増殖因子(TGF)などがあげられる。これらの成長剤は,1種または2種以上含ませることができ,また更に他の薬効を有する公知の薬剤と組み合わせてもよい。
 無痛化剤は,注射による疼痛が,液剤のpH及び浸透圧が体液と著しく異なる場合であるのか,薬剤にそのものの作用によって起こるのかによって異なる薬剤を使用する。疼痛がpH,浸透圧によって起こりうる場合は,緩衝剤や等張化剤などを含む液剤とすることが好ましい。一方,薬剤そのものの作用によって疼痛が起こりうる場合は,局所麻酔剤などをもちいるとよい。局所麻酔剤としては,例えば,ベンジルアルコール,クロロブタノール,塩酸プロカイン,塩酸リドカイン,塩酸ジブカイン,塩酸メピバカインなどがあげられ,公知の薬剤を用いればよい。
 上記のように製造された本発明のIgM型抗Fas抗体を有効成分として含む剤は,変形性関節症もしくは変形性関節症性関節炎の患者に有効量投与する治療方法又は予防方法として利用することができる。また,本発明のIgM型抗Fas抗体を有効成分として含む剤は,軟骨基質分解酵素産生を抑制するため,軟骨基質の産生を促進又は改善させるため,及び変形性関節症で誘導されるマクロファージにアポトーシス誘導を誘導させるために,患者に有効量を投与する治療方法または予防方法として利用することができる。すなわち,本発明は,対象に有効量のIgM型抗Fas抗体を投与する変形性関節症を治療又は予防方法;対象に有効量のIgM型抗Fas抗体を投与する変形性関節症性関節炎治療方法;対象に有効量のIgM型抗Fas抗体を投与する軟骨基質分解酵素産生抑制方法;対象に有効量のIgM型抗Fas抗体を投与する軟骨基質産生方法;変形性関節症により誘導されるマクロファージに対するアポトーシス誘導方法をも提供する。そして,これのIgM型抗Fas抗体の使用において,先に説明したそれぞれのパターンを組み合わせて用いることができる。
 本発明の剤は,経口用,または非経口用製剤として用いられるが,注射剤,点滴剤などの非経口用製剤として用いられるのが好ましい。非経口用製剤の投与方法は,公知の方法を用いればよく,特に限定されない。例えば,静脈注射,動脈注射,皮下注射,筋肉注射,点滴等があげられる。また,本発明の剤は,患部(例えば関節)に直接注射してもよく,また外科手術により患部を開口し投与することも可能である。当業者であれば,適宜,患者に適した投与方法を選択することができる。本発明の剤の主成分であるIgM型抗Fas抗体は,本発明の剤に有効量含まれていればよい。本発明の剤に含まれるIgM型抗Fas抗体の割合は,全重量を100重量部としたときに,1×10-3~1×10重量部であればよく,1×10-2~1×10-1重量部が好ましく,5×10-2~5×10-1重量部がより好ましい。投与量は,投与する対象,年齢,症状などによって変化する。一般的には,1日の投与量は,抗体の有効成分で個体あたり1ng~100μgがあげられ,好ましくは10ng~10μgであり,より好ましくは100ng~1μgである。または,体重1kg当たり10pg~2μgがあげられ,好ましくは100pg~200ngであり,より好ましくは1ng~20ngである。好ましくは,1日分の投与量を2~5回に分けて投与することが好ましい。また,本発明の剤を徐放製剤として,1日当たりの投与回数を減らすことも可能である。このような徐放製剤とするには,公知の方法を利用すればよい。分けて投与したり,徐放製剤としたりすることで,生体内の薬剤濃度を一定に保ちやすくなるので,持続した薬効が得やすくなり,さらに副作用が軽減されうるので,患者への負担を減らすことができる。
 以下,本発明について具体的に実施例に基づいて説明するが,本発明は実施例に限定されるものではない。
培養細胞の樹立
 インフォームド-コンセントを得た後,変形性関節症患者の手術組織から骨軟骨組織と末梢血を採取し,下記の方法により,滑膜繊維芽細胞,軟骨細胞,マクロファージを採取した。
滑膜繊維芽細胞
 インフォームド-コンセントを得た後,変形性関節症患者の手術組織から滑膜組織を採取し,細切したのち1.0mg/mlコラゲナーゼ(collagenase)を含有する液体低グルコースDulbecco’s modified Eagle’s medium(DMEM,Gibco社製)培地内(37℃)で一晩処理し,培養滑膜繊維芽細胞を分離した。通常,細胞は培養フラスコ(培養面積25cm)で培養し,実験に使用する際にはポリエチレン製培養皿(直径6cm)で培養した。細胞培養はDMEM培地に非働化ウシ胎児血清(Fetal Bovine Serum(FBS),Heat-inactivated,TRACE社製)を培地容量の10%添加し,さらに2mM L-グルタミン,25mM HEPES,100units/mlのペニシリンとストレプトマイシンを添加したものを使用し,37℃,飽湿下,5%CO+95%airに設定したCOインキュベーター(正常酸素濃度環境)で行った。細胞の継代は,リン酸緩衝液(PBS,ニッスイ社製)で洗浄後,0.25%トリプシン-PBS液(Gibco社製)を用いて細胞を剥離させ,ピペッティングで細胞を分散させた後,培地で適当な濃度に希釈した。
軟骨細胞
 インフォームド-コンセントを得た後,変形性関節症患者の手術組織から軟骨組織を採取し,細切したのち1.5mg/mlコラゲナーゼB(collagenase B)を含有する液体低グルコースDulbecco’s modified Eagle’s medium(DMEM,Gibco社製)培地内(37℃)で一晩処理し,培養軟骨細胞を分離した。通常,細胞は培養フラスコ(培養面積25cm)で培養し,実験に使用する際にはポリエチレン製培養皿(直径6cm)で培養した。細胞培養はDMEM培地に非働化ウシ胎児血清(FBS,TRACE社製)を培地容量の10%添加し,さらに2mM L-グルタミン,25mM HEPES,100units/mlのペニシリンとストレプトマイシンを添加したものを使用し,37℃,飽湿下,5%CO+95%airに設定したCOインキュベーター(正常酸素濃度環境)で行った。細胞の継代は,リン酸緩衝液(PBS,ニッスイ社製)で洗浄後,0.25%トリプシン-PBS液(Gibco社製)を用いて細胞を剥離させ,ピペッティングで細胞を分散させた後,培地で適当な濃度に希釈した。
マクロファージ
 インフォームド-コンセントを得た後,上記手術検体を採取した患者から50mlの採血を行い,1%へパリン加血を得た。この血液をリンパ球分離液に重層した遠心管を1500回転/分で30分遠心して,リンパ球とマクロファージをそれぞれ分離した。細胞培養はRPMI培地に非働化ウシ胎児血清(FBS,TRACE社製)を培地容量の10%添加し,さらに2mM L-グルタミン,25mM HEPES,100units/mlのペニシリンとストレプトマイシンを添加したものを使用し,37℃,飽湿下,5%CO+95%airに設定したCOインキュベーター(正常酸素濃度環境)で行った。
2層式トランスウェルチャンバーを用いた細胞培養
 3μmポアサイズの多孔フィルターで仕切られた2層式トランスウェルチャンバー(東洋紡)の上層部に滑膜繊維芽細胞(1×10個/ウェル)又はマクロファージ(1×10個/ウェル)を,下層部に軟骨細胞(1×10個/ウェル)を播種し培養した。この培養系の上層(炎症性細胞培養層)は滑膜炎に相当し,下層(軟骨培養層)は軟骨組織に相当する。各種濃度(0.1,1.0,10.0ng/ml)のIgM型抗Fas抗体をチャンバー上層に添加または非添加の条件下で,上層に炎症性サイトカイン(TNF-α:10ng/mlまたはIL-1β:10ng/ml)を添加して,48時間培養した。経時的に培養上清と細胞を回収して,下記の実験方法によって各種の細胞活性を解析した。
IgM型抗Fas抗体による軟骨基質分解酵素(MMP)産生の抑制作用の検討
 軟骨異化誘導因子TNF-αにより増強する軟骨基質分解酵素産生に対する,IgM型抗Fas抗体(CH-11(マウス抗体)(MBL社製))の影響を,酵素結合イムノアッセイ法(ELISA)を用いて解析した。検討に用いたIgM型抗Fas抗体(CH-11)は,マウスミエローマ細胞NS-1とBalb/cマウスの脾臓を融合して得られたハイブリドーマから産生される抗体である。ハイブリドーマはヒト2倍体繊維芽細胞株(Human diploid fibroblast cell line)FS-7由来の抗原から作製されたものである。
 上記の方法で分離培養した軟骨細胞をトランスウェルチャンバーの下層に,滑膜繊維芽細胞を上層にそれぞれ1×10個/ウェルで播種した。上層にはTNF-α:10ng/mlを添加した。さらに各種濃度(0.1,1.0,5.0,10.0ng/ml)のIgM型抗Fas抗体,またはヒアルロン酸製剤(HA)を上層に下記表1の組み合わせとなるように添加し,48時間培養した後,培養液を回収した。また,比較対照としてヒアルロン酸製剤(HA)(0.1,1.0mg/ml)を用いた。検討条件の組み合わせを下記の表5に示した。表5中,TNF-α(+)のTNF-α濃度は,10ng/mlである。HAの濃度単位はmg/ml,IgM型抗Fas抗体CH-11の濃度単位はng/mlである。表1のNo.1はネガティブコントロール(Negative control)を,No.2はポジティブコントロール(Positive control)である。
Figure JPOXMLDOC01-appb-T000005
 培養上清中の軟骨基質分解酵素マトリックスメタロポロテアーゼ(MMP)-1,MMP-3濃度は,当技術分野で現在既知の標準的な技術であるELISAキット(MMP-1,MMP-3:R&D社製)を用いて決定した。このELISAは以下の標準的方法によって行った。ELISAは例数6(n=6)で行った。希釈した培養上清サンプルを感作プレート1ウェルあたり100μl添加し,室温に1時間静置した(1次反応)。1次反応後,洗浄瓶を用いて,各ウェルをPBSで4回以上,十分に洗浄した。0.1%Tween20-PBSで3000倍希釈したホースラディッシュ・ペルオキシダーゼ(Horseradish Peroxidase:HRP)標識ヤギ抗ウサギIgG(H+L)抗体を各ウェルに100μlずつ分注し,室温に1時間静置した(2次反応)。2次反応後,同様に,PBSで洗浄した後,0.8mM TMB(テトラメチルベンジジン:Tetramethylbenzidine)溶液を1ウェルあたり100μl添加し,30℃で5~20分間発色させた(発色反応)。1.5N HPOを1ウェルあたり100μlずつ加えて発色反応を停止させ,マイクロタイタープレートリーダー(microtiter plate reader)を用いて,450nmにおける吸光度を測定した。製造元によって提供された説明書に従って,コントロール凍結乾燥試薬を用いて測定濃度を較正し,有意差検定を行った。その結果を図2に示した。図中,*は有意差検定の棄却率(P値)が0.05未満(P<0.05)を示し,**は有意差検定の棄却率(P値)が0.01未満(P<0.01)であったことを示す(以下,同じ)。
 図2AはIgM型抗Fas抗体が軟骨細胞のMMP1産生能に与える影響を示す図面に替わるグラフである。図2Aの縦軸は,軟骨細胞から産生されたMMP1を,培養培地1mlあたりの濃度で示している。結果,TNF-α刺激により増強される軟骨基質分解酵素(MMP1)産生に対する抑制能は,HA単独(No.3及び4)に比べて,IgM型抗Fas抗体(No.5~8)の方が高いことが分かった。よって,IgM型抗Fas抗体は,MMP1産生を効果的に抑制することができることが示された。
 図2BはIgM型抗Fas抗体が軟骨細胞のMMP3産生能に与える影響を示す図面に替わるグラフである。図2Bの縦軸は,軟骨細胞から産生されたMMP3を,培養培地1mlあたりの濃度で示している。結果,TNF-α刺激により増強される軟骨基質分解酵素(MMP3)産生に対する抑制能は,HA単独(No.3及び4)に比べて,IgM型抗Fas抗体(No.5~8)の方が高いことが分かった。よって,IgM型抗Fas抗体は,MMP3産生を効果的に抑制することができることが示された。
 図2において,IgM型抗Fas抗体は,軟骨基質分解酵素であるMMPの産生を効果的に抑制することが示された。上記したとおり,MMPは関節軟骨を分解する。そのため,MMPは変形性関節症を惹起したり,変形性関節症の症状を悪化させたりする原因となりうる。本実施例で示したとおり,IgM型抗Fas抗体は,MMPの産生を抑制する。これにより,IgM型抗Fas抗体は,変形性関節症の惹起を抑制でき,また変形性関節症の症状の悪化を抑制することができる。よって,IgM型抗Fas抗体は,変形性関節症の予防剤として好適に用いることができる。さらに,MMP1及びMMP3は,免疫応答にも関与しているので,IgM型抗Fas抗体は,MMP1及びMMP3の産生を抑制することで,変形性関節症の発症後に惹起される変形性関節症性関節炎の予防剤または治療剤としても用いることができる。
IgM型抗Fas抗体による軟骨基質産生能低下に対する改善作用の検討
 軟骨異化誘導因子TNF-αまたはIL-1βにより低下する軟骨基質(プロテオグリカン)産生能に対する,IgM型抗Fas抗体の抑制効果の有無をELISAを用いて解析した。
 上記IgM型抗Fas抗体による軟骨基質分解酵素酸性の抑制作用の検討で用いた方法と同様に,トランスウェルチャンバーの下層には軟骨細胞を,上層にはマクロファージをそれぞれ1×10個/ウェルで播種した。上層にはTNF-α:10ng/mlまたはIL-1β:10ng/mlを添加した。さらに各種濃度(1.0,10.0ng/ml)のIgM型抗Fas抗体を上層に添加又は非添加条件下で48時間培養した後,培養液を回収した。培養上清中の軟骨基質(プロテオグリカン)産生量(濃度)は,当技術分野で現在既知の標準的な技術であるELISAキット(プロテオグリカン:Biosource社製)を用いて決定した。その結果を図3に示した。
 図3は,IgM型抗Fas抗体による軟骨基質(プロテオグリカン)産生能低下に対する効果を示す図面に替わるグラフである。図3の縦軸は,プロテオグリカン産生量を示す。縦軸の値が高いほど,プロテオグリカンが産生されている。すなわち,IgM型抗Fas抗体によってTNF-αによって抑制されるプロテオグリカン合成能が改善されたことを示す。結果,IgM型抗Fas抗体は,TNF-α及びIL-1βによって抑制される軟骨基質(プロテオグリカン)合成能を改善することができることが分かった。
 図3において,IgM型抗Fas抗体は,軟骨基質(プロテオグリカン)の合成を改善することが示された。変形性関節症では,病態として関節軟骨の破壊が観察される。よって,IgM型抗Fas抗体は,変形性関節症で破壊されている関節軟骨の再生に必要な軟骨基質(プロテオグリカン)の合成を改善することができるので,変形性関節症の治療剤として好適に用いることができる。
IgM型抗Fas抗体の対アポトーシス抑制効果
 軟骨異化誘導因子TNF-αにより誘導される軟骨細胞のアポトーシスに対する,IgM型抗Fas抗体の抑制効果の有無を,ApoStand ELISA Apotosis Detection Kit(Biomol International社)を用いて検討した。これは,アポトーシスを起こした細胞のDNAをホルムアミドで特異的に変性させ,変性したDNAを抗single-stranded DNA抗体で検出することにより,アポトーシスを定量的に検出することのできるキットである。
 上記IgM型抗Fas抗体による軟骨基質分解酵素酸性の抑制作用の検討で用いた方法と同様に,トランスウェルチャンバーの下層には軟骨細胞を,上層にはマクロファージをそれぞれ1×10個/ウェルで播種した。上層にはTNF-α:10ng/mlを添加した。さらにIgM型抗Fas抗体(10.0ng/ml)を上層に添加または非添加下で48時間培養した。培地・誘導物質を除去し,キットに付属の細胞固定液を加えて細胞を固定した。その後,溶液を除去・乾燥後,ホルムアミドを加え,56℃で加熱し,アポトーシスを起こした細胞のDNAを熱変性させた。冷却後,ホルムアミドを除去してブロッキング溶液(Blocking solution)を加え,ブロッキングを行った。ブロッキング溶液を除去し,抗single-stranded DNA(ssDNA)抗体を加えて,室温で4時間培養した。PBSで3回洗浄後,Peroxidase substrateを加えて405nmの吸光度をマイクロプレートリーダーで測定した。その結果を図4に示した。
 図4は,IgM型抗Fas抗体のアポトーシス抑制効果を示す図面に替わるグラフである。図4の縦軸は,細胞の核のアポトーシスの割合(%)を示す。すなわち,値が低いほど,アポトーシスが抑制されたことを示す。その結果,IgM型抗Fas抗体は,TNF-αによって引き起こされる軟骨細胞のアポトーシスを抑制することができることが分かった。なお,変形性関節症では,TNF-αが誘導された状態であることが知られている。よって,本実施例によって,IgM型抗Fas抗体は,変形性関節症で引き起こされる軟骨細胞のアポトーシスを抑制できることが示された。
 図4において,IgM型抗Fas抗体が,マクロファージによる軟骨細胞死を抑制することが示された。よって,IgM型抗Fas抗体は,軟骨変性を抑制すると考えられ,変形性関節症の治療剤または予防剤として好適に用いることができる。また,これらの作用は,IgM型抗Fas抗体がマクロファージのアポトーシスを誘導したためと考えられる。マクロファージは炎症性サイトカインを誘導することが知られている。よって,IgM型抗Fas抗体は,マクロファージのアポトーシスを誘導することで,マクロファージからの炎症性サイトカインの放出を抑制し,炎症反応を抑制する。よって,IgM型抗Fas抗体は,変形性関節症によって惹起されうる2次炎症反応(変形性関節症性関節炎)に対する予防剤及び治療剤として用いることができる。
 アポトーシス誘導能のあるアゴニスト抗Fas抗体のOA治療薬としてのポテンシャルについて,抗体のアイソタイプ(IgG型とIgM型)の違いによる該ポテンシャルの違いをin vitro実験系において評価した。IgG型抗体は,UB2(MBL社製)及びZB4(MBL社製)を用いた。IgM型抗体は,CH-11(MBL社製)及び7C11(Beckman Coulter社製)を用いた。それぞれのコントロールは,IgG isotype control(SouthernBiotech社製)及びIgM isotype control(SouthernBiotech社製)を用いた。
培養細胞の樹立
 インフォームド-コンセントを得た後,変形性関節症患者5名(n=5)の手術組織から骨軟骨組織と末梢血を採取し,実施例1と同様の方法により滑膜繊維芽細胞,軟骨細胞,及びマクロファージを採取した。
2層式トランスウェルチャンバーを用いた細胞培養
 3mmポアサイズの多孔フィルターで仕切られた2層式トランスウェル チャンバー(東洋紡社製)の上層部に滑膜線維芽細胞(1×10個/ウェル)またはマクロファージ(1×10個/ウェル)を,下層部に軟骨細胞(1×10個/ウェル)を播種し培養した。この培養系の上層(炎症性細胞培養層)は滑膜炎に相当し,下層(軟骨培養層)は軟骨組織に相当する。
 各種の上記Fas抗体またはisotype controlをチャンバー上層へ添加下または非添加下で,上層に炎症性サイトカイン(TNF-α:10ng/ml)を添加して48時間培養した。経時的に培養上清と細胞を回収して,下記の実験方法によって各種の細胞活性を解析した。
アイソタイプ別抗Fas抗体による軟骨基質分解酵素(MMP)産生の抑制作用
 軟骨異化誘導因子TNF-αにより増強する軟骨基質分解酵素産生に対する,アイソタイプ別の抗Fas抗体の影響を,酵素結合イムノアッセイ法(ELISA)を用いて解析した。
 上記の方法で分離培養した軟骨細胞をトランスウェルチャンバーの下層に,滑膜線維芽細胞を上層にそれぞれ1×10細胞/ウェルで播種した。上層にはTNF-α:10ng/mlを添加した。さらに各種濃度(0.01nM)の各種Fas抗体を上層に添加下または非添加下に48時間培養した後,培養液を回収した。
 培養上清中の軟骨基質分解酵素マトリックスメタロポロテアーゼ(MMP)-1,MMP-3濃度は,当技術分野で現在既知の標準的な技術であるELISAキット(MMP-1,MMP-3(R&D社製))を用いて決定した。なお,ELISAは上記した方法と同様に行った。その結果を図5に示した。
 図5AはIgM型抗Fas抗体又はIgG型抗Fas抗体が軟骨細胞のMMP1産生能に与える影響を示す図面に替わるグラフである。図5Aの縦軸は,軟骨細胞から産生されたMMP1を,培養培地1mlあたりの濃度で示している。図5A中,No.1はネガティブコントロール(Negative control),No.2はポジティブコントロール(Positive control)を示す。その結果,TNF-α刺激により増強される軟骨基質分解酵素(MMP1)産生に対する抑制能は,IgG型抗Fas抗体(No.5~6)に比べて,IgM型抗Fas抗体(No.7~8)の方が高いことが分かった。よって,IgM型抗Fas抗体は,MMP1産生を効果的に抑制することができるといえる。
 図5BはIgM型抗Fas抗体又はIgG型抗Fas抗体が軟骨細胞のMMP3産生能に与える影響を示す図面に替わるグラフである。図5Bの縦軸は,軟骨細胞から産生されたMMP3を,培養培地1mlあたりの濃度で示している。図5B中,No.1はネガティブコントロール(Negative control),No.2はポジティブコントロール(Positive control)を示す。その結果,TNF-α刺激により増強される軟骨基質分解酵素(MMP3)産生に対する抑制能は,IgG型抗Fas抗体(No.5~6)に比べて,IgM型抗Fas抗体(No.7~8)の方が高いことが分かった。よって,IgM型抗Fas抗体は,MMP3産生を効果的に抑制することができるといえる。
 図5において,IgM型抗Fas抗体は,軟骨基質分解酵素であるMMPの産生を効果的に抑制することが示された。上記したとおり,MMPは関節軟骨を分解する。そのため,MMPは,変形性関節症を惹起したり,変形性関節症の症状を悪化させたりする原因となりうる。本実施例で示したとおり,IgM型抗Fas抗体は,MMPの産生を抑制する。これにより,IgM型抗Fas抗体は,変形性関節症の惹起を抑制でき,また変形性関節症の症状の悪化を抑制することができる。よって,IgM型抗Fas抗体は,変形性関節症の予防剤として好適に用いることができる。さらに,MMP1及びMMP3は,免疫応答にも関与しているので,IgM型抗Fas抗体は,MMP1及びMMP3の産生を抑制することで,変形性関節症の発症後に惹起される変形性関節症性関節炎の予防剤または治療剤としても用いることができる。
アイソタイプ別抗Fas抗体の対アポトーシス抑制効果
 軟骨異化誘導因子TNF-αにより誘導される軟骨細胞のアポトーシスに対する,アイソタイプ別抗Fas抗体の抑制効果の有無を,ApoStand ELISA Apoptosis Detection Kit(Biomol International社)を用いて検討した。
 上記の方法と同様に,2層式トランスウェルチャンバーを用いて細胞培養を行った。トランスウェルチャンバーの下層には軟骨細胞を,上層にはマクロファージをそれぞれ1×10細胞/ウェルで播種した。上層にはTNF-α:10ng/mlを添加した。さらに各種の抗Fas抗体(0.01nM)を上層に添加下または非添加下に48時間培養した。培地・誘導物質を除去し,キット内の細胞固定液を加えて細胞を固定した。その後,溶液を除去・乾燥後,ホルムアミドを加え,56℃で加熱し,アポトーシスを起こした細胞のDNAを熱変性させた。冷却後,ホルムアミドを除去してブロッキング溶液(Blocking solution)を加え,ブロッキングを行った。ブロッキング溶液を除去し, 抗single-stranded DNA(ssDNA)抗体を加えて室温で4時間培養した。PBSで3回洗浄後,Peroxidase substrateを加えて405nmの吸光度をマイクロプレートリーダーで測定した。その結果を図6に示した。
 図6は,IgM型抗Fas抗体又はIgG型抗Fas抗体のアポトーシス抑制効果を示す図面に替わるグラフである。図6の縦軸は,細胞の核のアポトーシスの割合(%)を示す。すなわち,値が低いほど,アポトーシスが抑制されたことを示す。図6中,No.1はネガティブコントロール(Negative control),No.2はポジティブコントロール(Positive control)を示す。その結果,IgM型抗Fas抗体は,IgG型抗Fas抗体と比較して,TNF-αによって引き起こされる軟骨細胞のアポトーシスを抑制することができることが分かった。なお,変形性関節症では,TNF-αが誘導された状態であることが知られている。よって,IgM型抗Fas抗体は,変形性関節症で引き起こされる軟骨細胞のアポトーシスを抑制できることが示された。
 図6において,IgM型抗Fas抗体が,マクロファージによる軟骨細胞死を効果的に抑制することが示された。よって,IgM型抗Fas抗体は,軟骨変性を効果的に抑制すると考えられ,変形性関節症の治療剤または予防剤として好適に用いることができる。また,これらの作用は,IgM型抗Fas抗体がマクロファージのアポトーシスを誘導したためと考えられる。マクロファージは炎症性サイトカインを誘導することが知られている。よって,IgM型抗Fas抗体は,マクロファージのアポトーシスを誘導することで,マクロファージからの炎症性サイトカインの放出を抑制し,炎症反応を抑制する。よって,IgM型抗Fas抗体は,変形性関節症によって惹起されうる2次炎症反応(変形性関節症性関節炎)に対する予防剤及び治療剤として用いることができる。
変形性関節症モデルラットに対するIgM型抗Fas抗体の効果
 変形性関節症を誘導したラットを用いて,IgM型抗Fas抗体CH-11の薬効評価試験を行った。
変形性関節症モデルラットの作製
 ラット(Wister rat,体重200g~250g)を約1週間検疫・馴化飼育した後,塩酸ケタミン(ファイザー(株)社製,ケタラール100)及びキシラジン塩酸塩の併用麻酔(筋肉内投与),麻酔効果が弱い場合は上記混合麻酔溶液またはペントバルビタール・Naを静脈内投与下で左右の膝関節部位を除毛し,ヨード系消毒液であるイソジンで消毒した。消毒後,膝関節内側の表皮を切開,内側側副靱帯を切断した後,関節包を確認・切開し,内側半月板を露出・全摘出する。関節包の周囲組織及び表皮を縫合した。縫合の際には抗生物質(注射用アンピシリンナトリウム)を含む生理食塩水(500mg(力価)/20ml)で術部を洗浄した。
 作製した変形性関節症モデルラットは下記表6に示したようにサブグループに分けて,被験物質又は対象液を27ゲージの注射針を用いて,週1回24週にわたり関節内注射した。
Figure JPOXMLDOC01-appb-T000006
病理学的検査
 4週毎に5匹ずつ,ペントバルベタール・Na(静脈内投与)の深麻酔下で放血により安楽死させた後に剖検した。8,12,及び24週目の計画剖検例については,左右膝関節組織,心臓,肺,肝臓,脾臓,腎臓,脳,精巣,及び精嚢を採取し,4%パラフォルムアルデヒド溶液で固定した。関節組織についてはプランク・リュクロ脱灰液で脱灰,中和後,パラフィン包埋,薄切りした標本について,ヘマトキシリン-エオジン染色及びサフラニンO染色を行った。その他の器官についてはパラフィン包埋,薄切りした標本について,ヘマトキシリン-エオジン染色を行い,光学顕微鏡による病理組織学的検査を実施した。
IgM型抗Fas抗体投与による関節症病理組織スコアへの影響
 作製した変形性関節症モデルラットを3群に分け,コントロール群(表3中A及びB)の左膝関節には生食またはコントロール抗体溶液(10.0ng/ml)50.0μlを,CH-11投与群(表3中C及びD)の左膝関節にはCH-11(低用量投与群:1.0ng/ml,高用量投与群:10.0ng/ml)50.0μlを,micro-needle注射シリンジを用いて週1回注入した。各群は例数4(n=4)で行った。関節炎及び関節症の病勢(関節症病理組織スコア)は,処置後4週目,8週目,12週目,16週目及び24週目に観察し,2群間の差をStudent’s T法で統計学的に比較した。両群とも右膝関節は無処置として,関節炎の発症と進行の程度を比較観察した。その結果を図7に示した。なお,関節症病理組織スコアは,上記表4に示した修正Mankinスコアを用いた。
 図7AはサフラニンO染色の結果を示す。図7Bは軟骨細胞欠損の結果を示す。図7Cは軟骨構造の結果を示す。図7A~図7Cの縦軸は各スコアを示し,横軸は経時変化を示す。図7A~図7Cの結果,コントロール群のラット膝関節の軟骨変性度(修正Mankinスコア)は,スコアの各項目(表4:A~C)ともに経時的な増強が観察され,関節症の誘導と増悪(変形性関節症の初期段階から進行期段階への移行)が確認された。これに対して,CH-11投与群のスコアは,投与開始後8週目からコントロール群の平均スコアに比べて低値を示す傾向にあり,12週目以降ではCH-11低用量投与群,CH-11高用量投与群ともに統計学的有意差がみられた。よって,IgM型抗Fas抗体CH-11は,初期~進行期段階の変形性関節症モデルラットにおいて,軟骨変性を抑制することが示された。よって,IgM型抗Fas抗体は,軟骨変性をともなう変形性関節症の初期段階~進行期段階に分類される疾患の治療に効果的に用いることができることが示された。
IgM型抗Fas抗体投与による病理組織への影響
 変形性関節症モデルラットにIgM型抗Fas抗体を投与した時の各組織への影響を,上記の病理組織学的検査によって調べた。変形性関節症モデルラットは,処置後12週目及び24週目のラットを用いた。それぞれのラットの膝関節組織の病理標本を光学顕微鏡で観察・撮影した結果を図8及び図9に示した。図8及び図9中,「×40」及び「×200」は,光学得顕微鏡の倍率を示す。
 図8は,処置後12週目の変形性関節症モデルラットの膝関節組織病理標本を示す図面に替わる写真である。図8A~図8Fはコントロールの変形性関節症モデルラットの膝関節組織病理標本を示す。図8G~図8JはCH-11低用量投与群(CH-11:1.0ng/ml投与)の変形性関節症モデルラットの膝関節組織病理標本を示す。図8K~図8NはCH-11高用量投与群(CH-11:10.0ng/ml投与)の変形性関節症モデルラットの膝関節組織病理標本を示す。図8Oはコントロールの変形性関節症モデルラットの膝関節組織病理標本を示す。図8PはCH-11低用量投与群(CH-11:1.0ng/ml投与)の変形性関節症モデルラットの膝関節組織病理標本を示す。図8B,図8D,図8F,図8G,図8I,図8K及び図8Mは,それぞれ図8A,図8C,図8E,図8H,図8J,図8L及び図8N中,四角で囲った部分を拡大した図面に替わる写真である。
 図8の結果から,コントロール群(図8A~図8F及び図8O)では,CH-11投与群(図8G~図8N及び図8P)と比較して,軟骨変性(軟骨細胞のクラスタリングや軟骨細胞の消失)が認められた。なお,軟骨細胞のクラスタリングは,サフラニンOによる染色箇所の増加から判断することができる。そして,軟骨細胞の消失は,図8O及び図8Pで示したとおり,サフラニンO(SO)の染色性低下から判断することができる。この結果から,CH-11を投与することによって,軟骨変性を抑制することができるので,CH-11は軟骨変性を伴う変形性関節症を治療又は予防することができることが示された。
 図9は,処置後24週目の変形性関節症モデルラットの膝関節組織病理標本を示す図面に替わる写真である。図9A~図9Hはコントロールの変形性関節症モデルラットの膝関節組織病理標本を示す。図9I~図9LはCH-11低用量投与群(CH-11:1.0ng/ml投与)の変形性関節症モデルラットの膝関節組織病理標本を示す。図9M~図9PはCH-11高用量投与群(CH-11:10.0ng/ml投与)の変形性関節症モデルラットの膝関節組織病理標本を示す。図9B,図9D,図9F,図9H,図9I,図9K,図9M及び図9Oは,それぞれ図9A,図9C,図9E,図9G,図9J,図9L,図9N及び図9P中,四角で囲った部分を拡大した図面に替わる写真である。
 図9の結果から,コントロール群(図9A~図9H)では,CH-11投与群(図9I~図9P)と比較して,軟骨変性(軟骨細胞の消失や軟骨基質構造変性)が認められた。このことから,CH-11を投与することによって,軟骨変性を抑制することができるので,CH-11は軟骨変性をともなう変形性関節症の初期段階~進行期段階に分類される疾患を治療又は予防することができることが示された。
 さらに,本変形性関節症モデルラットでは,CH-11の関節内投与群は,コントロールラット群と比較して,有意に二次性滑膜炎(炎症)並びに軟骨変性の抑制が観察された。さらにCH-11の関節内投与群は,試験後期にコントロールラットで観察される骨増殖性変化(骨棘)がほとんど観察されなかった。なお,膝関節以外の臓器(心臓,肺,肝臓,脾臓,腎臓,脳,精巣及び精嚢)については,コントロール群とCH-11投与群との間に組織学的な相違は特に見られなかった。よって,IgM型抗Fas抗体であるCH-11は,動物においても変形性関節症の初期段階~進行期段階に分類される疾患を特異的に抑制することができることが明らかとなった。
 本発明の治療剤または予防剤は,医薬産業で使用されうる。

Claims (8)

  1.  変形性関節症のICRS分類においてグレード1~3のいずれかに分類される疾患を治療又は予防するための治療剤又は予防剤を製造するためのIgM型抗Fas抗体の使用。
  2.  前記IgM型抗Fas抗体は,
      Fas抗原の細胞外ドメインに対するIgM型抗Fas抗体である,
     請求項1に記載の使用。
  3.  前記IgM型抗Fas抗体は,
      CH11又は7C11である,
     請求項1に記載の使用。
  4.  前記IgM型抗Fas抗体は,モノクローナル抗体である請求項1に記載の使用。
  5.  前記IgM型抗Fas抗体は,ヒト型Fas抗原と特異的に反応するモノクローナル抗体である請求項1に記載の使用。
  6.  前記変形性関節症は,股関節,膝関節,又は膝軟骨における変形性関節症である,請求項1に記載の使用。
  7.  変形性関節症のケルグレン-ローレンス(Kellgren-Lawrence)分類においてグレード1~3のいずれかに分類される疾患を治療又は予防するための治療剤又は予防剤を製造するためのIgM型抗Fas抗体の使用。
  8.  IgM型抗Fas抗体を有効成分として含有し,さらに薬学的に許容される担体を含む,変形性関節症のアウターブリッジ(Outerbridge)分類においてグレード1~3のいずれかに分類される疾患を治療又は予防するための治療剤又は予防剤を製造するためのIgM型抗Fas抗体の使用。
     
PCT/JP2011/000454 2010-01-29 2011-01-27 変形性関節症治療剤または予防剤を製造するための使用 WO2011093082A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11736797.9A EP2529752A4 (en) 2010-01-29 2011-01-27 USE FOR PRODUCTION OF THERAPEUTIC AGENT OR PROPHYLACTIC AGENT FOR OSTEO ARTHRITIS
CN2011800075746A CN102811738A (zh) 2010-01-29 2011-01-27 制备骨关节炎治疗剂及预防剂的用途
JP2011551767A JPWO2011093082A1 (ja) 2010-01-29 2011-01-27 変形性関節症治療剤または予防剤を製造するための使用
US13/575,632 US20130034563A1 (en) 2010-01-29 2011-01-27 Use for production of therapeutic agent or prophylactic agent for osteoarthritis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-018601 2010-01-29
JP2010018601A JP2012246222A (ja) 2010-01-29 2010-01-29 変形性関節症治療剤または予防剤を製造するための使用

Publications (1)

Publication Number Publication Date
WO2011093082A1 true WO2011093082A1 (ja) 2011-08-04

Family

ID=44319076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000454 WO2011093082A1 (ja) 2010-01-29 2011-01-27 変形性関節症治療剤または予防剤を製造するための使用

Country Status (6)

Country Link
US (1) US20130034563A1 (ja)
EP (1) EP2529752A4 (ja)
JP (2) JP2012246222A (ja)
KR (1) KR20120116475A (ja)
CN (1) CN102811738A (ja)
WO (1) WO2011093082A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2750661T3 (es) 2014-04-25 2020-03-26 Translate Bio Inc Métodos para la purificación de ARN mensajero
US10413707B2 (en) * 2016-09-02 2019-09-17 Lake Region Manufacturing, Inc. Transseptal crossing guidewire with faceted piercing head

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194384A (ja) 1983-04-08 1995-08-01 Genentech Inc 免疫グロブリンdna含有発現ベクター及び組換え宿主細胞
JPH0840897A (ja) 1994-07-06 1996-02-13 Eli Lilly & Co 骨損失の抑制用医薬組成物
JPH10146194A (ja) 1990-01-12 1998-06-02 Abjenics Inc 異種抗体の生成
JP2828340B2 (ja) 1988-12-28 1998-11-25 プロテイン デザイン ラブス,インコーポレイティド IL―2レセプターのp55 Tacタンパク質に特異的なキメラ免疫グロブリン
JP2004059582A (ja) 2002-06-07 2004-02-26 Sankyo Co Ltd 骨破壊の治療または予防剤組成物の併用効果
WO2004017996A1 (ja) 2002-08-20 2004-03-04 Yamanouchi Pharmaceutical Co., Ltd. 関節軟骨細胞外マトリクス分解阻害剤
JP2005034154A (ja) 2003-07-16 2005-02-10 Ccl Holdings Co Ltd 完全ヒト抗体の調製
JP2006151843A (ja) 2004-11-26 2006-06-15 Shimada Kagaku Kogyo Kk カテプシンk阻害剤およびその機能が付与された食品
JP2007000141A (ja) 2005-05-25 2007-01-11 Tokyo Univ Of Science 完全ヒト抗体産生ハイブリドーマの作製方法、及び融合ミエローマ細胞
JP2007051077A (ja) 2005-08-17 2007-03-01 Nippon Barrier Free:Kk 変形性関節症の予防及び治療用組成物
JP2007537134A (ja) 2003-07-18 2007-12-20 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 関節病を治療するためのpak阻害剤の使用
JP2008516593A (ja) 2004-10-15 2008-05-22 ガラパゴス・ナムローゼ・フェンノートシャップ 関節変性疾患及び炎症性疾患の治療に有用な分子標的及び化合物、並びにそれらの同定方法
WO2010013498A1 (ja) * 2008-08-01 2010-02-04 学校法人聖マリアンナ医科大学 変形性関節症治療剤又は予防剤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2342325A1 (en) * 1998-08-31 2000-03-09 Kyowa Hakko Kogyo Co., Ltd. An agent for inducing apoptosis
US6927044B2 (en) * 1998-09-25 2005-08-09 Regeneron Pharmaceuticals, Inc. IL-1 receptor based cytokine traps

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194384A (ja) 1983-04-08 1995-08-01 Genentech Inc 免疫グロブリンdna含有発現ベクター及び組換え宿主細胞
JP2828340B2 (ja) 1988-12-28 1998-11-25 プロテイン デザイン ラブス,インコーポレイティド IL―2レセプターのp55 Tacタンパク質に特異的なキメラ免疫グロブリン
JPH114694A (ja) 1988-12-28 1999-01-12 Protein Design Labs Inc IL−2レセプターのp55Tacタンパク質に特異的なキメラ免疫グロブリン
JPH10146194A (ja) 1990-01-12 1998-06-02 Abjenics Inc 異種抗体の生成
JPH10155492A (ja) 1990-01-12 1998-06-16 Abjenics Inc 異種抗体の生成
JPH0840897A (ja) 1994-07-06 1996-02-13 Eli Lilly & Co 骨損失の抑制用医薬組成物
JP2004059582A (ja) 2002-06-07 2004-02-26 Sankyo Co Ltd 骨破壊の治療または予防剤組成物の併用効果
WO2004017996A1 (ja) 2002-08-20 2004-03-04 Yamanouchi Pharmaceutical Co., Ltd. 関節軟骨細胞外マトリクス分解阻害剤
JP2005034154A (ja) 2003-07-16 2005-02-10 Ccl Holdings Co Ltd 完全ヒト抗体の調製
JP2007537134A (ja) 2003-07-18 2007-12-20 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 関節病を治療するためのpak阻害剤の使用
JP2008516593A (ja) 2004-10-15 2008-05-22 ガラパゴス・ナムローゼ・フェンノートシャップ 関節変性疾患及び炎症性疾患の治療に有用な分子標的及び化合物、並びにそれらの同定方法
JP2006151843A (ja) 2004-11-26 2006-06-15 Shimada Kagaku Kogyo Kk カテプシンk阻害剤およびその機能が付与された食品
JP2007000141A (ja) 2005-05-25 2007-01-11 Tokyo Univ Of Science 完全ヒト抗体産生ハイブリドーマの作製方法、及び融合ミエローマ細胞
JP2007051077A (ja) 2005-08-17 2007-03-01 Nippon Barrier Free:Kk 変形性関節症の予防及び治療用組成物
WO2010013498A1 (ja) * 2008-08-01 2010-02-04 学校法人聖マリアンナ医科大学 変形性関節症治療剤又は予防剤

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"APOPTOSIS AND FUNCTIONAL FAS ANTIGEN IN RHEUMATOID ARTHRITIS SYNOVICYTES", ARTHRITIS &RHEUMATISM, vol. 38, no. 4, 1995, pages 485 - 491
AKIRA FUKUDA ET AL.: "Henkeisei Kansetsusho Kenkyu no Genjo OA to Hakotsu Saibo - OA Chiryoyaku no Aratana Target", SHUKAN IGAKU NO AYUMI, vol. 211, no. 4, 2004, pages 285 - 288, XP008142967 *
ARTHRITIS RHEUM, vol. 44, no. 8, 2001, pages 1800 - 1807
NAKAJIMA ET AL.: "APOPTOSIS AND FUNCTIONAL FAS ANTIGEN IN RHEUMATOID ARTHRITIS SYNOVICYTES", ARTHRITIS & RHEUMATISM, vol. 38, no. 4, 1995, pages 485 - 491
See also references of EP2529752A4
TADAOMI TAKENAWA: "Protein Experiment Handbook", 2003, YODOSHA CO., LTD., pages: 86 - 105

Also Published As

Publication number Publication date
CN102811738A (zh) 2012-12-05
US20130034563A1 (en) 2013-02-07
EP2529752A1 (en) 2012-12-05
JPWO2011093082A1 (ja) 2013-05-30
JP2012246222A (ja) 2012-12-13
KR20120116475A (ko) 2012-10-22
EP2529752A4 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
RU2769352C2 (ru) Антитела и полипептиды, направленные против cd127
JP4560822B2 (ja) 変形性関節症治療剤又は予防剤
CN111356701B (zh) 抗α-突触核蛋白抗体及其用途
WO2011093082A1 (ja) 変形性関節症治療剤または予防剤を製造するための使用
WO2011093083A1 (ja) 変形性関節症治療又は予防用医薬組成物及びその製造方法
JP5792636B2 (ja) 変形性関節症治療剤を含有する注射剤
WO2010058550A1 (ja) 抗ヒトggt抗体による肝疾患治療剤又は予防剤
WO2015125922A1 (ja) 抗rankl抗体
US20240025985A1 (en) Agent for Preventing or Treating Frontotemporal Lobar Degeneration
JP2012219022A (ja) 抗体を有効成分として含む血友病の治療剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007574.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736797

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551767

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011736797

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127021017

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13575632

Country of ref document: US