WO2011089997A1 - Waste heat recovery power generation device and ship with same - Google Patents

Waste heat recovery power generation device and ship with same Download PDF

Info

Publication number
WO2011089997A1
WO2011089997A1 PCT/JP2011/050652 JP2011050652W WO2011089997A1 WO 2011089997 A1 WO2011089997 A1 WO 2011089997A1 JP 2011050652 W JP2011050652 W JP 2011050652W WO 2011089997 A1 WO2011089997 A1 WO 2011089997A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat recovery
exhaust heat
exhaust
heat
organic fluid
Prior art date
Application number
PCT/JP2011/050652
Other languages
French (fr)
Japanese (ja)
Inventor
雅幸 川見
芳弘 市来
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN2011800057305A priority Critical patent/CN102713167A/en
Publication of WO2011089997A1 publication Critical patent/WO2011089997A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/32Arrangements of propulsion power-unit exhaust uptakes; Funnels peculiar to vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/02Ventilation; Air-conditioning
    • B63J2/04Ventilation; Air-conditioning of living spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/02Adaptations for driving vehicles, e.g. locomotives
    • F01D15/04Adaptations for driving vehicles, e.g. locomotives the vehicles being waterborne vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • B63J2002/125Heating; Cooling making use of waste energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2260/00Recuperating heat from exhaust gases of combustion engines and heat from cooling circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Definitions

  • the present invention relates to an exhaust heat recovery power generation apparatus that recovers exhaust heat from an internal combustion engine to generate electric power, and a ship equipped with the same.
  • Patent Document 1 listed below discloses an exhaust heat recovery power generation apparatus that generates power by an organic Rankine cycle using exhaust heat from a diesel generator as a heat source.
  • An object of the present invention is to provide an exhaust heat recovery power generator and a ship equipped with the same.
  • the exhaust heat recovery power generation apparatus of the present invention and a ship equipped with the same adopt the following means. That is, the exhaust heat recovery power generator according to the first aspect of the present invention includes an exhaust heat recovery device that recovers heat by exchanging heat between a heat medium having a boiling point higher than that of water and exhaust heat of an internal combustion engine, and the heat medium.
  • An evaporator that evaporates the organic fluid by exchanging heat with the organic fluid
  • a turbine driven by the organic fluid evaporated by the evaporator
  • a generator that generates electric power by the rotational output of the turbine
  • a turbine And a condenser for condensing the organic fluid that has passed through.
  • the organic fluid is evaporated in an evaporator, then expanded in a turbine, and condensed in a condenser, that is, an organic Rankine cycle is performed.
  • an organic Rankine cycle is performed.
  • the exhaust heat of the internal combustion engine is recovered by a heat medium having a boiling point higher than that of water, and the organic fluid is evaporated by the heat medium.
  • the exhaust heat of the internal combustion engine is not recovered by water, but is recovered by using a heat medium having a boiling point higher than that of water.
  • the pressure does not increase as in the case of water. Therefore, it is not necessary to make the heat medium path a high-pressure specification, and it can be configured at a low cost.
  • a typical example of the internal combustion engine is a marine diesel engine (main engine). However, it is not limited to marine use but may be a land-use internal combustion engine used for power generation, for example.
  • exhaust heat of an internal combustion engine exhaust gas is typically used. Further, exhaust heat from an air cooler for cooling the compressed air of a supercharger provided in the internal combustion engine, or in the case of a water-cooled internal combustion engine, exhaust heat of engine cooling water can be used.
  • the exhaust heat of the exhaust gas, the air cooler, and the engine cooling water may be used alone or in combination as appropriate, such as exhaust gas and an air cooler.
  • a heating medium oil is preferable.
  • Barreltherm which is a synthetic high boiling point high temperature heating medium oil available from Matsumura Oil Co., Ltd. Is used.
  • the barrel thermo 400 has a boiling point of 390 ° C.
  • the exhaust heat recovery device is provided in the internal combustion engine, a first exhaust heat recovery device that recovers heat from the exhaust gas exhausted from the internal combustion engine.
  • a second exhaust heat recovery unit that recovers heat from an air cooler that cools the compressed air of the supercharger, and / or a third exhaust heat recovery unit that recovers heat from engine cooling water that cools the internal combustion engine are preferably provided.
  • An exhaust heat recovery unit was provided. As a result, a large amount of exhaust heat can be recovered from the internal combustion engine, and the power generation efficiency can be increased.
  • the timing for performing heat recovery by the exhaust heat recovery device can be switched.
  • the evaporator, the turbine, the generator, and the condenser are housed in the same casing.
  • the exhaust heat recovery power generator can be configured compactly. Further, even if the heat medium or the organic fluid leaks out, the outflow of the heat medium or the organic fluid can be stopped in the housing, so that a highly safe exhaust heat recovery power generator can be provided.
  • the ship according to the second aspect of the present invention is provided with the above-described exhaust heat recovery power generation device.
  • exhaust heat is recovered using a heat medium having a boiling point higher than that of water, so that the pressure does not increase as in water even when the exhaust heat of the internal combustion engine becomes high temperature. Therefore, it is not necessary to set the heat medium path to a high-pressure specification, and the exhaust heat recovery power generator can be configured at low cost.
  • FIG. 1 schematically shows a fluid path of the exhaust heat recovery power generator according to this embodiment.
  • the exhaust heat recovery apparatus 10 will be described as a configuration in which the exhaust heat recovery apparatus 10 is installed as exhaust heat recovery for a marine propulsion main engine (diesel engine).
  • the exhaust heat recovery device 10 recovers heat from a first exhaust heat recovery device 1 that is an exhaust gas economizer that recovers heat from exhaust gas discharged from a diesel engine, and an air cooler 3 of a supercharger provided in the diesel engine.
  • the second exhaust heat recovery unit 5 the heat medium path 7 through which the heat medium that receives the exhaust heat from the exhaust heat recovery units 1 and 5 circulates, receives heat from the heat medium in the heat medium path 7, and receives the organic Rankine cycle (Organic And an organic fluid path 9 constituting a Rankine Cycle).
  • the extraction pipe 15 is provided in the flue 13 through which the exhaust gas discharged from the diesel engine flows.
  • the exhaust gas extracted from the extraction pipe 15 flows into the exhaust gas introduction pipe 17 of the exhaust heat recovery power generation apparatus 10.
  • the exhaust gas introduction pipe 17 is provided with a first exhaust gas control valve 18.
  • the exhaust gas guided by the exhaust gas introduction pipe 17 is supplied to the first exhaust heat recovery device 1.
  • the exhaust gas temperature supplied to the first exhaust heat recovery device 1 is, for example, about 230 ° C.
  • An exhaust gas exhaust pipe 19 is connected to the first exhaust heat recovery device 1.
  • the exhaust gas discharge pipe 19 is provided with a second exhaust gas control valve 20.
  • the exhaust gas temperature after heat exchange in the first exhaust heat recovery device 1 is, for example, about 150 ° C.
  • the exhaust gas after heat exchange passes through the exhaust gas discharge pipe 19, returns to the flue 13 through the exhaust gas return pipe 21 connected to the flue 13, and then is discharged from the chimney 23 to the atmosphere.
  • An exhaust gas bypass pipe 25 having an exhaust gas bypass control valve 27 is provided between the exhaust gas introduction pipe 17 and the exhaust gas discharge pipe 19.
  • the opening degrees of the first exhaust gas control valve 18, the second exhaust gas control valve 20 and the exhaust gas bypass control valve 27 the amount of heat recovered by the first exhaust heat recovery device 1 is controlled. Specifically, the temperature, pressure, flow rate, etc. of the exhaust gas entering and exiting the first exhaust heat recovery unit 1 are detected by a sensor (not shown), and the control valves 18, 20, 27 are opened so that the desired heat recovery amount is obtained. Control the degree.
  • the first exhaust heat control valve 18 and the second exhaust gas control valve 20 are closed and the exhaust gas bypass control valve 27 is opened. The exhaust gas supply to the collector 1 is stopped.
  • the air cooler 3 provided in the turbocharger of the diesel engine is used for removing the compression heat of the air compressed by the supercharger.
  • a first heat transfer pipe 34 through which cooling water flows and a second heat transfer pipe 36 through which cooling water flows are provided in order from the low temperature side (from the lower side in FIG. 1). ing.
  • fresh water or seawater used in a cooling system in the ship is used as the cooling water guided to the first heat transfer pipe 34 and the second heat transfer pipe 36.
  • the temperature of the air supplied from the supercharger to the air cooler 3 is, for example, about 170 ° C.
  • the temperature of the air that has finished heat exchange in the air cooler 3 is, for example, about 30 ° C.
  • the cooling water for exhaust heat recovery that introduces the cooling water whose heat exchange is completed in the second heat transfer pipe 36 to the second exhaust heat recovery unit 5 is introduced.
  • the temperature of the cooling water flowing into the second exhaust heat recovery unit 5 is, for example, about 150 ° C.
  • the temperature of the cooling water after the heat exchange in the second exhaust heat recovery unit 5 is, for example, 120 ° C.
  • the first cooling water valve 42 is provided in the cooling water introduction pipe 38 for exhaust heat recovery.
  • the upstream end of the cooling water return pipe 44 is connected to the upstream side of the first cooling water valve 42.
  • the cooling water that has passed through the cooling water return pipe 44 is returned to the cooling water return line.
  • the cooling water return pipe 44 is provided with a second cooling water valve 45.
  • the cooling water discharge pipe 40 for exhaust heat recovery is provided with a cooling water circulation pump P2 and a third cooling water valve 47. Cooling water is circulated between the second exhaust heat recovery device 5 and the third heat transfer pipe 36 by the cooling water circulation pump P2.
  • connection pipe 49 One end of a connection pipe 49 is connected to the downstream side of the third cooling water valve 47.
  • the other end of the connection pipe 49 is connected to the second heat transfer pipe cooling water introduction pipe 53.
  • the connection pipe 49 is provided with a fourth cooling water valve 51.
  • the downstream end of the second heat transfer pipe cooling water introduction pipe 53 is connected to a midway position of the cooling water return pipe 44 located downstream of the second cooling water valve 45.
  • the second heat transfer tube cooling water introduction pipe 53 is provided with a fifth cooling water valve 55.
  • the first to fifth cooling water valves 42, 45, 47, 51, 55 operate as follows.
  • the first cooling water valve 42 and the third cooling water valve 47 are opened, and the second exhaust heat recovery unit 5 and the second heat transfer pipe 36 are opened. Circulate cooling water.
  • the second cooling water valve 45 and the fourth cooling water valve 51 are closed, the fifth cooling water valve 55 is opened, and the cooling water introduced from the first heat transfer pipe 34 is introduced into the second heat transfer pipe cooling water. It passes through the pipe 53, passes through the fifth cooling water valve 55, passes through the cooling water return pipe 44, and is returned to the cooling water return line.
  • the first cooling water valve 42 and the third cooling water valve 47 are closed. Then, the second cooling water valve 45 and the fourth cooling water valve 51 are opened, and the fifth cooling water valve 55 is closed. Thereby, the cooling water led from the first heat transfer pipe 34 passes through the second heat transfer pipe cooling water introduction pipe 53 and the connection pipe 49 and is led to the second heat transfer pipe 36, and then the exhaust heat recovery cooling water. It flows through the introduction pipe 38 and the cooling water return pipe 44 to the cooling water return line.
  • heat medium path 7 As the heat medium flowing through the heat medium path 7, a heat medium having a boiling point higher than that of water is used, and heat medium oil is preferably used. Specifically, Barrel Therm (registered trademark), which is a heat medium oil for synthetic high boiling point and high temperature available from Matsumura Oil Co., Ltd., is used.
  • the barrel thermo 400 has a boiling point of 390 ° C.
  • the heat medium path 7 is a closed circuit, and a heat medium circulation pump P1 for circulating the heat medium is provided.
  • a heat medium circulation pump P1 for circulating the heat medium is provided.
  • the heat medium is circulated so as to exchange heat with the first exhaust heat recovery device 1, the evaporator 60, and the second exhaust heat recovery device 5.
  • the heat medium inlet temperature of the evaporator 60 is, for example, about 210 ° C., and the heat medium outlet temperature is, for example, about 100 ° C.
  • the organic fluid is evaporated by the heat medium.
  • the inlet temperature of the organic fluid in the evaporator 60 is, for example, about 90 ° C., and the outlet temperature is, for example, about 200 ° C.
  • the organic fluid path 9 As the organic fluid flowing through the organic fluid path 9, low molecular hydrocarbons such as isopentane, butane and propane, R134a and R245fa used as refrigerants, and the like can be used.
  • the organic fluid path 9 is a closed circuit, and an organic fluid circulation pump P0 for circulating the organic fluid is provided.
  • the organic fluid circulates while repeating the phase change so as to pass through the evaporator 60, the power turbine 62, the preheater 64, and the condenser 66.
  • the power turbine 62 is rotationally driven by a heat drop (enthalpy drop) of the organic fluid evaporated by the evaporator 60.
  • the rotational power of the power turbine 62 is transmitted to the generator 68, and electric power is obtained by the generator 68.
  • the electric power obtained by the generator 68 is supplied to the inboard system via a power line (not shown).
  • the organic fluid (gas phase) that has finished the work in the power turbine 68 preheats the organic fluid (liquid phase) sent from the organic fluid circulation pump P0 by the preheater 64.
  • the organic fluid that has passed through the preheater 64 is cooled by seawater in the condenser 66 to be condensed and liquefied.
  • the condensed and liquefied organic fluid is sent to the preheater 64 and the evaporator 60 by the organic fluid circulation pump P0.
  • the organic fluid path 9 constitutes an organic Rankine cycle together with the evaporator 60, the power turbine 62, the preheater 64, and the condenser 66.
  • FIG. 2 shows an arrangement example of a main part of the exhaust heat recovery power generator 10 shown in FIG.
  • each device is accommodated in the housing 11.
  • the inside of the housing 11 is a closed space.
  • all of the heat medium circulation pump P 1, a part of the heat medium path 7 connected to the heat medium circulation pump P 1, and the organic fluid path 9 are evaporated.
  • a vessel 60, a power turbine 62, a generator 68, a preheater 64, a condenser 66, and an organic fluid circulation pump P0 are provided.
  • the principal part of an exhaust-heat recovery electric power generation apparatus can be unitized. Thereby, it can be made compact and the installation property to an existing ship etc. can be improved.
  • a ventilation fan 70 is provided on the upper surface of the housing 11 so that the heat medium and the organic fluid flowing into the housing 11 can be discharged to the outside.
  • the operation of the exhaust heat recovery power generation apparatus 10 having the above configuration will be described with reference to FIG.
  • a part of the exhaust gas from the diesel engine is extracted and guided to the first exhaust heat recovery unit 1.
  • the heat medium circulating in the heat medium path 7 and the exhaust gas are heat-exchanged, and the sensible heat of the exhaust gas is recovered in the heat medium.
  • the air compressed by the supercharger is cooled by the second heat transfer tube 36 of the air cooler 3.
  • the cooling water flowing in the second heat transfer tube 36 is heated by the air to recover heat from the air.
  • the cooling water heated by the second heat transfer tube 36 is guided to the second exhaust heat recovery device 5.
  • the heat medium circulating in the heat medium path 7 and the cooling water are heat-exchanged, and the sensible heat of the cooling water is recovered to the heat medium.
  • the exhaust heat is recovered by the second exhaust heat recovery device 5 and the exhaust heat is recovered by the first exhaust heat recovery device 1, and the heat medium that has reached a high temperature is led to the evaporator 60 and passes through the organic fluid path 9. Exchanges heat with circulating organic fluid.
  • the organic fluid is heated and evaporated by the sensible heat of the heat medium in the evaporator 60.
  • the organic fluid that has evaporated to high enthalpy is guided to the power turbine 62, and the power turbine 62 is driven to rotate by the heat drop. Rotational output of the power turbine 62 is obtained, and power generation is performed by the generator 68.
  • the organic fluid (gas phase) that has finished work in the power turbine 62 is preheated to the organic fluid (liquid phase) before flowing into the evaporator 60 by the pre-heater 64, and then led to the condenser 66, It is condensed and liquefied when cooled.
  • the first exhaust heat recovery device 1 can be operated without exhaust heat recovery. Further, by switching the cooling water valves 42, 45, 47, 51, 55, the second exhaust heat recovery unit 5 can be operated without recovering the exhaust heat. Thus, since the timing of the heat recovery by the first exhaust heat recovery device 1 or the second exhaust heat recovery device 5 can be switched, whether or not the exhaust heat recovery is necessary according to the operating state of the diesel engine, the onboard power demand, etc. Can be decided. Thereby, a highly flexible power generation system can be constructed.
  • the exhaust heat is recovered by the first exhaust heat recovery device 1 and the second exhaust heat recovery device 5, but as shown in FIG.
  • the exhaust heat recovery may be omitted and only the exhaust heat recovery from the exhaust gas using the first exhaust heat recovery device 1 may be performed.
  • the exhaust heat recovery from the exhaust gas of the diesel engine may be omitted, and only the exhaust heat recovery from the supercharger using the second exhaust heat recovery device 5 may be performed.
  • the air cooler is divided into a first air cooler 3a and a second air cooler 3b, and the second exhaust heat is supplied from the first air cooler 3a located on the upstream side of the air flow.
  • a configuration in which exhaust heat recovery is performed by the recovery unit 5 may be adopted. With such a configuration, the cooling water circulation pump P2 is driven only when exhaust heat recovery is performed, and the cooling water circulation pump P2 is stopped when exhaust heat recovery is not performed. Thereby, each cooling water valve 42, 45, 47, 51, 55 shown in FIG. 1 is omissible.
  • the first air cooler 3a can be independently designed as a heat exchanger having a capacity necessary for operating the organic Rankine cycle.
  • the above-described exhaust heat recovery power generation apparatus 10 of the present embodiment has been described by way of example as applied to a ship.
  • the present invention is not limited to this, and may be applied to, for example, a land-use internal combustion engine used for power generation or the like. it can.
  • exhaust heat from engine cooling water can be used as the third exhaust heat recovery unit.
  • the third exhaust heat recovery unit may be used in combination with the first exhaust heat recovery unit 1 and the second exhaust heat recovery unit 5, or the second exhaust heat recovery unit 5 in FIG.
  • Three exhaust heat recovery devices may be used. Or it replaces with the 2nd waste heat recovery device 5 of Drawing 4, and a 3rd waste heat recovery device can also be used independently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A waste heat recovery power generation device comprises: waste heat recovery devices (1, 5) for recovering heat by causing heat exchange between the waste heat from an internal combustion engine and a heat medium having a higher boiling point than water; a vaporizer (60) for vaporizing an organic fluid by causing heat exchange between the heat medium and the organic fluid; a power turbine (62) driven by the organic fluid which is vaporized by the vaporizer (60); a generator (68) for generating electric power by the rotational output of the power turbine (62); a pre-heater (64) for pre-heating the organic fluid which flows into the evaporator, the pre-heating being performed by the organic fluid having passed through the power turbine (62); and a condenser (66) for condensing the organic fluid.

Description

排熱回収発電装置およびこれを備えた船舶Waste heat recovery power generator and ship equipped with the same
 本発明は、内燃機関の排熱を回収して発電する排熱回収発電装置およびこれを備えた船舶に関するものである。 The present invention relates to an exhaust heat recovery power generation apparatus that recovers exhaust heat from an internal combustion engine to generate electric power, and a ship equipped with the same.
 従来より、内燃機関の排ガス等の排熱を回収して発電する技術が種々提案されている。下記特許文献1には、ディーゼル発電機からの排熱を熱源とする有機ランキンサイクル(Organic Rankine Cycle)によって発電する排熱回収発電装置が開示されている。 Conventionally, various technologies for recovering exhaust heat such as exhaust gas from an internal combustion engine to generate electric power have been proposed. Patent Document 1 listed below discloses an exhaust heat recovery power generation apparatus that generates power by an organic Rankine cycle using exhaust heat from a diesel generator as a heat source.
実用新案登録第3044386号公報Utility Model Registration No. 3044386
 しかし、上記特許文献1では、ディーゼルエンジンの排ガスから熱回収する際の熱媒体として水を用いている。水を熱媒体とした場合、ディーゼルエンジンの排ガスが高温(例えば250℃以上)になると、水または水蒸気の圧力が高圧となってしまう。したがって、水循環経路を高圧仕様にする必要があり、これでは高価なシステムとなってしまう。 However, in the above-mentioned Patent Document 1, water is used as a heat medium when recovering heat from exhaust gas of a diesel engine. When water is used as the heat medium, when the exhaust gas of the diesel engine reaches a high temperature (for example, 250 ° C. or higher), the pressure of water or water vapor becomes high. Therefore, it is necessary to set the water circulation path to a high pressure specification, which results in an expensive system.
 本発明は、このような事情に鑑みてなされたものであって、内燃機関からの排熱温度が高温となった場合であっても高圧仕様の熱媒経路を導入することなく排熱回収できる排熱回収発電装置およびこれを備えた船舶を提供することを目的とする。 The present invention has been made in view of such circumstances, and even when the exhaust heat temperature from the internal combustion engine becomes high, exhaust heat can be recovered without introducing a high-temperature heat medium path. An object of the present invention is to provide an exhaust heat recovery power generator and a ship equipped with the same.
 上記課題を解決するために、本発明の排熱回収発電装置およびこれを備えた船舶は以下の手段を採用する。
 すなわち、本発明の第1の態様にかかる排熱回収発電装置は、沸点が水よりも高い熱媒と内燃機関の排熱とを熱交換させて熱回収する排熱回収器と、前記熱媒と有機流体とを熱交換させて該有機流体を蒸発させる蒸発器と、該蒸発器によって蒸発させられた前記有機流体によって駆動されるタービンと、該タービンの回転出力によって発電する発電機と、タービンを通過した前記有機流体を凝縮させる凝縮器とを備えている。
In order to solve the above-mentioned problems, the exhaust heat recovery power generation apparatus of the present invention and a ship equipped with the same adopt the following means.
That is, the exhaust heat recovery power generator according to the first aspect of the present invention includes an exhaust heat recovery device that recovers heat by exchanging heat between a heat medium having a boiling point higher than that of water and exhaust heat of an internal combustion engine, and the heat medium. An evaporator that evaporates the organic fluid by exchanging heat with the organic fluid, a turbine driven by the organic fluid evaporated by the evaporator, a generator that generates electric power by the rotational output of the turbine, and a turbine And a condenser for condensing the organic fluid that has passed through.
 有機流体は、蒸発器にて蒸発された後、タービンで膨張し、凝縮器で凝縮するサイクル、即ち有機ランキンサイクル(Organic Rankine Cycle)を行う。本発明では、有機ランキンサイクルを行う際に、内燃機関の排熱を沸点が水よりも高い熱媒で熱回収し、そしてこの熱媒によって有機流体を蒸発させることとした。このように、内燃機関の排熱を水によって熱回収するのではなく、沸点が水よりも高い熱媒を用いて排熱回収することとしたので、内燃機関の排熱が高温(例えば250℃以上)となっても水のように圧力が高くなることがない。したがって、熱媒経路を高圧仕様にする必要がなく、安価に構成することができる。
 内燃機関としては、典型的には舶用ディーゼルエンジン(主機)が挙げられる。ただし、舶用に限らず、例えば発電等に用いられる陸用の内燃機関であっても良い。
 内燃機関の排熱としては、排ガスが典型的に用いられる。また、内燃機関に設けられた過給機の圧縮空気を冷却する空気冷却器からの排熱や、水冷式の内燃機関の場合にはエンジン冷却水の排熱を用いることができる。なお、これら排ガス、空気冷却器およびエンジン冷却水の排熱は、それぞれ単独で用いても良いし、排ガスと空気冷却器といったように適宜組み合わせて用いても良い。
 沸点が水よりも高い熱媒としては、熱媒体油が好適であり、具体的には、松村石油株式会社から入手可能な合成系高沸点高温度用熱媒体油であるバーレルサーム(登録商標)が用いられる。例えば、バーレルサーム400は沸点が390℃とされる。
 また、蒸発器の上流側に、有機流体を予熱するプレヒータを設ければ好適である。
The organic fluid is evaporated in an evaporator, then expanded in a turbine, and condensed in a condenser, that is, an organic Rankine cycle is performed. In the present invention, when the organic Rankine cycle is performed, the exhaust heat of the internal combustion engine is recovered by a heat medium having a boiling point higher than that of water, and the organic fluid is evaporated by the heat medium. In this way, the exhaust heat of the internal combustion engine is not recovered by water, but is recovered by using a heat medium having a boiling point higher than that of water. The pressure does not increase as in the case of water. Therefore, it is not necessary to make the heat medium path a high-pressure specification, and it can be configured at a low cost.
A typical example of the internal combustion engine is a marine diesel engine (main engine). However, it is not limited to marine use but may be a land-use internal combustion engine used for power generation, for example.
As exhaust heat of an internal combustion engine, exhaust gas is typically used. Further, exhaust heat from an air cooler for cooling the compressed air of a supercharger provided in the internal combustion engine, or in the case of a water-cooled internal combustion engine, exhaust heat of engine cooling water can be used. The exhaust heat of the exhaust gas, the air cooler, and the engine cooling water may be used alone or in combination as appropriate, such as exhaust gas and an air cooler.
As the heating medium having a boiling point higher than that of water, a heating medium oil is preferable. Specifically, Barreltherm (registered trademark), which is a synthetic high boiling point high temperature heating medium oil available from Matsumura Oil Co., Ltd. Is used. For example, the barrel thermo 400 has a boiling point of 390 ° C.
Further, it is preferable to provide a preheater for preheating the organic fluid on the upstream side of the evaporator.
 本発明の第1の態様にかかる排熱回収発電装置においては、前記排熱回収器は、前記内燃機関から排出される排ガスから熱回収を行う第1排熱回収器と、前記内燃機関に設けられた過給機の圧縮空気を冷却する空気冷却器から熱回収を行う第2排熱回収器、及び/又は、前記内燃機関を冷却するエンジン冷却水から熱回収を行う第3排熱回収器とを備えていることが好ましい。 In the exhaust heat recovery power generator according to the first aspect of the present invention, the exhaust heat recovery device is provided in the internal combustion engine, a first exhaust heat recovery device that recovers heat from the exhaust gas exhausted from the internal combustion engine. A second exhaust heat recovery unit that recovers heat from an air cooler that cools the compressed air of the supercharger, and / or a third exhaust heat recovery unit that recovers heat from engine cooling water that cools the internal combustion engine Are preferably provided.
 排ガスから熱回収する第1排熱回収器と、過給機の空気冷却器から熱回収する第2排熱回収器、及び/又は、内燃機関を冷却するエンジン冷却水から熱回収を行う第3排熱回収器とを備えることとした。これにより、内燃機関から多くの排熱を回収することができ、発電効率を上げることができる。 A first exhaust heat recovery unit that recovers heat from the exhaust gas, a second exhaust heat recovery unit that recovers heat from the air cooler of the supercharger, and / or a third unit that recovers heat from engine cooling water that cools the internal combustion engine An exhaust heat recovery unit was provided. As a result, a large amount of exhaust heat can be recovered from the internal combustion engine, and the power generation efficiency can be increased.
 さらに、本発明の第1の態様にかかる排熱回収発電装置においては、前記排熱回収器による熱回収を行うタイミングが切り替え可能とされていることが好ましい。 Furthermore, in the exhaust heat recovery power generation apparatus according to the first aspect of the present invention, it is preferable that the timing for performing heat recovery by the exhaust heat recovery device can be switched.
 排熱回収器による熱回収のタイミングを切り替え可能としたので、内燃機関の運転状態や電力需要等に応じて排熱回収の要否を決めることができる。これにより、柔軟性の高い発電システムを構築することができる。 Since the timing of heat recovery by the exhaust heat recovery device can be switched, the necessity of exhaust heat recovery can be determined according to the operating state of the internal combustion engine, power demand, and the like. Thereby, a highly flexible power generation system can be constructed.
 さらに、本発明の第1の態様にかかる排熱回収発電装置においては、前記蒸発器、前記タービン、前記発電機、及び前記凝縮器は、同一の筐体内に収納されていることが好ましい。 Furthermore, in the exhaust heat recovery power generator according to the first aspect of the present invention, it is preferable that the evaporator, the turbine, the generator, and the condenser are housed in the same casing.
 蒸発器、タービン、発電機、及び凝縮器を同一の筐体内に収納することにより、排熱回収発電装置をコンパクトに構成することができる。また、仮に熱媒や有機流体が漏出した場合であっても、筐体内で熱媒や有機流体の流出を止めることができるので、安全性の高い排熱回収発電装置を提供することができる。 By storing the evaporator, turbine, generator, and condenser in the same casing, the exhaust heat recovery power generator can be configured compactly. Further, even if the heat medium or the organic fluid leaks out, the outflow of the heat medium or the organic fluid can be stopped in the housing, so that a highly safe exhaust heat recovery power generator can be provided.
 また、本発明の第2の態様にかかる船舶は、上述の排熱回収発電装置を備えたものである。 Further, the ship according to the second aspect of the present invention is provided with the above-described exhaust heat recovery power generation device.
 上記のいずれかの排熱回収発電装置を備えているので、有効に排熱回収できる省エネルギー性の高い船舶を提供することができる。 Since any of the above-described exhaust heat recovery power generation devices is provided, it is possible to provide a highly energy-saving ship that can effectively recover exhaust heat.
 本発明によれば、沸点が水よりも高い熱媒を用いて排熱回収することとしたので、内燃機関の排熱が高温となっても水のように圧力が高くなることがない。したがって、熱媒経路を高圧仕様にする必要がなく、安価に排熱回収発電装置を構成することができる。 According to the present invention, exhaust heat is recovered using a heat medium having a boiling point higher than that of water, so that the pressure does not increase as in water even when the exhaust heat of the internal combustion engine becomes high temperature. Therefore, it is not necessary to set the heat medium path to a high-pressure specification, and the exhaust heat recovery power generator can be configured at low cost.
本発明の一実施形態にかかる排熱回収発電装置の流体経路を概略的に示した図である。It is the figure which showed roughly the fluid path | route of the waste heat recovery electric power generating apparatus concerning one Embodiment of this invention. 本発明の一実施形態にかかる排熱回収発電装置の要部の配置を示した斜視図である。It is the perspective view which showed arrangement | positioning of the principal part of the waste heat recovery electric power generating apparatus concerning one Embodiment of this invention. 図1の変形例を示した図である。It is the figure which showed the modification of FIG. 図1の他の変形例を示した図である。It is the figure which showed the other modification of FIG. 図1の第2排熱回収器周りの変形例を示した図である。It is the figure which showed the modification around the 2nd waste heat recovery device of FIG.
 以下に、本発明にかかる一実施形態について、図面を参照して説明する。
 図1には、本実施形態の排熱回収発電装置の流体経路が概略的に示されている。本実施形態では、排熱回収装置10が船舶の推進用主機(ディーゼルエンジン)の排熱回収として設置された構成として説明する。
 排熱回収装置10は、ディーゼルエンジンから排出される排ガスから熱回収する排ガスエコノマイザとされた第1排熱回収器1と、ディーゼルエンジンに設けられた過給機の空気冷却器3から熱回収する第2排熱回収器5と、これら排熱回収器1,5から排熱を受け取る熱媒が循環する熱媒経路7と、熱媒経路7の熱媒から熱を受け取り、有機ランキンサイクル(Organic Rankine Cycle)を構成する有機流体経路9とを備えている。
Hereinafter, an embodiment according to the present invention will be described with reference to the drawings.
FIG. 1 schematically shows a fluid path of the exhaust heat recovery power generator according to this embodiment. In the present embodiment, the exhaust heat recovery apparatus 10 will be described as a configuration in which the exhaust heat recovery apparatus 10 is installed as exhaust heat recovery for a marine propulsion main engine (diesel engine).
The exhaust heat recovery device 10 recovers heat from a first exhaust heat recovery device 1 that is an exhaust gas economizer that recovers heat from exhaust gas discharged from a diesel engine, and an air cooler 3 of a supercharger provided in the diesel engine. The second exhaust heat recovery unit 5, the heat medium path 7 through which the heat medium that receives the exhaust heat from the exhaust heat recovery units 1 and 5 circulates, receives heat from the heat medium in the heat medium path 7, and receives the organic Rankine cycle (Organic And an organic fluid path 9 constituting a Rankine Cycle).
 ディーゼルエンジンから排出された排ガスが流れる煙道13には抽気配管15が設けられている。この抽気配管15から抽気された排ガスは、排熱回収発電装置10の排ガス導入配管17へと流れ込む。排ガス導入配管17には第1排ガス制御弁18が設けられている。排ガス導入配管17によって導かれた排ガスは第1排熱回収器1へと供給される。第1排熱回収器1へ供給される排ガス温度は例えば約230℃とされる。 The extraction pipe 15 is provided in the flue 13 through which the exhaust gas discharged from the diesel engine flows. The exhaust gas extracted from the extraction pipe 15 flows into the exhaust gas introduction pipe 17 of the exhaust heat recovery power generation apparatus 10. The exhaust gas introduction pipe 17 is provided with a first exhaust gas control valve 18. The exhaust gas guided by the exhaust gas introduction pipe 17 is supplied to the first exhaust heat recovery device 1. The exhaust gas temperature supplied to the first exhaust heat recovery device 1 is, for example, about 230 ° C.
 第1排熱回収器1には排ガス排出配管19が接続されている。排ガス排出配管19には第2排ガス制御弁20が設けられている。第1排熱回収器1にて熱交換した後の排ガス温度は、例えば約150℃とされる。
 熱交換後の排ガスは、排ガス排出配管19を通って、煙道13に接続された排ガス返送配管21を介して煙道13へと戻された後、煙突23から大気へと排出される。
An exhaust gas exhaust pipe 19 is connected to the first exhaust heat recovery device 1. The exhaust gas discharge pipe 19 is provided with a second exhaust gas control valve 20. The exhaust gas temperature after heat exchange in the first exhaust heat recovery device 1 is, for example, about 150 ° C.
The exhaust gas after heat exchange passes through the exhaust gas discharge pipe 19, returns to the flue 13 through the exhaust gas return pipe 21 connected to the flue 13, and then is discharged from the chimney 23 to the atmosphere.
 排ガス導入配管17と排ガス排出配管19との間には、排ガスバイパス制御弁27を備えた排ガスバイパス配管25が設けられている。
 第1排ガス制御弁18、第2排ガス制御弁20及び排ガスバイパス制御弁27の各開度を制御することにより、第1排熱回収器1にて熱回収する熱量が制御される。具体的には、第1排熱回収器1に出入りする排ガスの温度、圧力、流量等を図示しないセンサで検出し、所望の熱回収量となるように各制御弁18,20,27の開度を制御する。
 また、第1排熱回収器1にて熱回収を行わない場合には、第1排ガス制御弁18及び第2排ガス制御弁20を閉じ、排ガスバイパス制御弁27を開くことによって、第1排熱回収器1への排ガス供給を停止させる。
An exhaust gas bypass pipe 25 having an exhaust gas bypass control valve 27 is provided between the exhaust gas introduction pipe 17 and the exhaust gas discharge pipe 19.
By controlling the opening degrees of the first exhaust gas control valve 18, the second exhaust gas control valve 20 and the exhaust gas bypass control valve 27, the amount of heat recovered by the first exhaust heat recovery device 1 is controlled. Specifically, the temperature, pressure, flow rate, etc. of the exhaust gas entering and exiting the first exhaust heat recovery unit 1 are detected by a sensor (not shown), and the control valves 18, 20, 27 are opened so that the desired heat recovery amount is obtained. Control the degree.
When heat recovery is not performed by the first exhaust heat recovery device 1, the first exhaust heat control valve 18 and the second exhaust gas control valve 20 are closed and the exhaust gas bypass control valve 27 is opened. The exhaust gas supply to the collector 1 is stopped.
 ディーゼルエンジンの過給機に設けられた空気冷却器3は、過給機によって圧縮された空気の圧縮熱を除去するために用いられる。この空気冷却器3内には、低温度側から順に(図1において下方から)、内部に冷却水が流れる第1伝熱管34と、内部に冷却水が流れる第2伝熱管36とが設けられている。第1伝熱管34及び第2伝熱管36へと導かれる冷却水としては、船内の冷却系で用いられる清水または海水が用いられる。過給機から空気冷却器3へ供給される空気温度は例えば約170℃とされ、空気冷却器3にて熱交換を終えた空気温度は例えば約30℃とされる。 The air cooler 3 provided in the turbocharger of the diesel engine is used for removing the compression heat of the air compressed by the supercharger. In the air cooler 3, a first heat transfer pipe 34 through which cooling water flows and a second heat transfer pipe 36 through which cooling water flows are provided in order from the low temperature side (from the lower side in FIG. 1). ing. As the cooling water guided to the first heat transfer pipe 34 and the second heat transfer pipe 36, fresh water or seawater used in a cooling system in the ship is used. The temperature of the air supplied from the supercharger to the air cooler 3 is, for example, about 170 ° C., and the temperature of the air that has finished heat exchange in the air cooler 3 is, for example, about 30 ° C.
 第2伝熱管36と第2排熱回収器5との間には、第2伝熱管36にて熱交換を終えた冷却水を第2排熱回収器5に導く排熱回収用冷却水導入配管38と、第2排熱回収器5にて熱交換を終えた冷却水を流す排熱回収用冷却水排出配管40とが設けられている。第2排熱回収器5に流入する冷却水温度は例えば約150℃とされ、第2排熱回収器5にて熱交換を終えた冷却水温度は例えば120℃とされる。 Between the second heat transfer pipe 36 and the second exhaust heat recovery unit 5, the cooling water for exhaust heat recovery that introduces the cooling water whose heat exchange is completed in the second heat transfer pipe 36 to the second exhaust heat recovery unit 5 is introduced. A pipe 38 and a cooling water discharge pipe 40 for exhaust heat recovery through which the cooling water whose heat exchange has been completed in the second exhaust heat recovery unit 5 are provided. The temperature of the cooling water flowing into the second exhaust heat recovery unit 5 is, for example, about 150 ° C., and the temperature of the cooling water after the heat exchange in the second exhaust heat recovery unit 5 is, for example, 120 ° C.
 排熱回収用冷却水導入配管38には、第1冷却水弁42が設けられている。この第1冷却水弁42の上流側には、冷却水返送配管44の上流端が接続されている。冷却水返送配管44を通過した冷却水は、冷却水戻りラインへと返送される。冷却水返送配管44には第2冷却水弁45が設けられている。 The first cooling water valve 42 is provided in the cooling water introduction pipe 38 for exhaust heat recovery. The upstream end of the cooling water return pipe 44 is connected to the upstream side of the first cooling water valve 42. The cooling water that has passed through the cooling water return pipe 44 is returned to the cooling water return line. The cooling water return pipe 44 is provided with a second cooling water valve 45.
 排熱回収用冷却水排出配管40には、冷却水循環ポンプP2及び第3冷却水弁47が設けられている。冷却水循環ポンプP2により、第2排熱回収器5と第3伝熱管36との間で冷却水が循環される。 The cooling water discharge pipe 40 for exhaust heat recovery is provided with a cooling water circulation pump P2 and a third cooling water valve 47. Cooling water is circulated between the second exhaust heat recovery device 5 and the third heat transfer pipe 36 by the cooling water circulation pump P2.
 第3冷却水弁47の下流側には、接続配管49の一端が接続されている。接続配管49の他端は、第2伝熱管用冷却水導入配管53と接続されている。接続配管49には第4冷却水弁51が設けられている。第2伝熱管用冷却水導入配管53の下流端は、第2冷却水弁45の下流側に位置する冷却水返送配管44の中途位置に接続されている。第2伝熱管用冷却水導入配管53には、第5冷却水弁55が設けられている。 One end of a connection pipe 49 is connected to the downstream side of the third cooling water valve 47. The other end of the connection pipe 49 is connected to the second heat transfer pipe cooling water introduction pipe 53. The connection pipe 49 is provided with a fourth cooling water valve 51. The downstream end of the second heat transfer pipe cooling water introduction pipe 53 is connected to a midway position of the cooling water return pipe 44 located downstream of the second cooling water valve 45. The second heat transfer tube cooling water introduction pipe 53 is provided with a fifth cooling water valve 55.
 第1~第5冷却水弁42,45,47,51,55は、以下のように動作する。
 第2排熱回収器5にて熱回収する場合には、第1冷却水弁42及び第3冷却水弁47を開とし、第2排熱回収器5と第2伝熱管36との間で冷却水を循環させる。この場合、第2冷却水弁45及び第4冷却水弁51を閉とし、第5冷却水弁55を開として、第1伝熱管34から導かれた冷却水は第2伝熱管用冷却水導入配管53を通り、第5冷却水弁55を経て冷却水返送配管44を通り冷却水戻りラインへと返送される。
The first to fifth cooling water valves 42, 45, 47, 51, 55 operate as follows.
When heat recovery is performed by the second exhaust heat recovery unit 5, the first cooling water valve 42 and the third cooling water valve 47 are opened, and the second exhaust heat recovery unit 5 and the second heat transfer pipe 36 are opened. Circulate cooling water. In this case, the second cooling water valve 45 and the fourth cooling water valve 51 are closed, the fifth cooling water valve 55 is opened, and the cooling water introduced from the first heat transfer pipe 34 is introduced into the second heat transfer pipe cooling water. It passes through the pipe 53, passes through the fifth cooling water valve 55, passes through the cooling water return pipe 44, and is returned to the cooling water return line.
 第2排熱回収器5にて熱回収しない場合には、第1冷却水弁42及び第3冷却水弁47を閉とする。そして、第2冷却水弁45及び第4冷却水弁51を開とし、第5冷却水弁55を閉とする。これにより、第1伝熱管34から導かれた冷却水は、第2伝熱管用冷却水導入配管53、接続配管49を通り、第2伝熱管36へ導かれた後、排熱回収用冷却水導入配管38及び冷却水返送配管44を通り冷却水戻りラインへと流れる。 When the second exhaust heat recovery unit 5 does not recover heat, the first cooling water valve 42 and the third cooling water valve 47 are closed. Then, the second cooling water valve 45 and the fourth cooling water valve 51 are opened, and the fifth cooling water valve 55 is closed. Thereby, the cooling water led from the first heat transfer pipe 34 passes through the second heat transfer pipe cooling water introduction pipe 53 and the connection pipe 49 and is led to the second heat transfer pipe 36, and then the exhaust heat recovery cooling water. It flows through the introduction pipe 38 and the cooling water return pipe 44 to the cooling water return line.
 次に、熱媒経路7について説明する。
 熱媒経路7を流れる熱媒は、沸点が水よりも高い熱媒が用いられ、好適には熱媒体油が用いられる。具体的には、松村石油株式会社から入手可能な合成系高沸点高温度用熱媒体油であるバーレルサーム(登録商標)が用いられる。例えば、バーレルサーム400は沸点が390℃とされる。
Next, the heat medium path 7 will be described.
As the heat medium flowing through the heat medium path 7, a heat medium having a boiling point higher than that of water is used, and heat medium oil is preferably used. Specifically, Barrel Therm (registered trademark), which is a heat medium oil for synthetic high boiling point and high temperature available from Matsumura Oil Co., Ltd., is used. For example, the barrel thermo 400 has a boiling point of 390 ° C.
 熱媒経路7は閉回路とされており、熱媒体を循環させるための熱媒循環ポンプP1が設けられている。この熱媒循環ポンプP1により、熱媒は、第1排熱回収器1、蒸発器60及び第2排熱回収器5と熱交換するように循環する。 The heat medium path 7 is a closed circuit, and a heat medium circulation pump P1 for circulating the heat medium is provided. By this heat medium circulation pump P1, the heat medium is circulated so as to exchange heat with the first exhaust heat recovery device 1, the evaporator 60, and the second exhaust heat recovery device 5.
 蒸発器60の熱媒入口温度は例えば約210℃とされ、熱媒出口温度は例えば約100℃とされる。この蒸発器60にて、熱媒によって有機流体が蒸発させられる。蒸発器60における有機流体の入口温度は例えば約90℃とされ、出口温度は例えば約200℃とされる。 The heat medium inlet temperature of the evaporator 60 is, for example, about 210 ° C., and the heat medium outlet temperature is, for example, about 100 ° C. In the evaporator 60, the organic fluid is evaporated by the heat medium. The inlet temperature of the organic fluid in the evaporator 60 is, for example, about 90 ° C., and the outlet temperature is, for example, about 200 ° C.
 次に、有機流体経路9について説明する。
 有機流体経路9を流れる有機流体としては、イソペンタン、ブタン、プロパン等の低分子炭化水素や冷媒として用いられるR134a、R245fa等を用いることができる。
 有機流体経路9は閉回路とされており、有機流体を循環させるための有機流体循環ポンプP0が設けられている。有機流体は、蒸発器60、パワータービン62、プレヒータ64、凝縮器66を通過するように相変化を繰り返しながら循環する。
Next, the organic fluid path 9 will be described.
As the organic fluid flowing through the organic fluid path 9, low molecular hydrocarbons such as isopentane, butane and propane, R134a and R245fa used as refrigerants, and the like can be used.
The organic fluid path 9 is a closed circuit, and an organic fluid circulation pump P0 for circulating the organic fluid is provided. The organic fluid circulates while repeating the phase change so as to pass through the evaporator 60, the power turbine 62, the preheater 64, and the condenser 66.
 パワータービン62は、蒸発器60によって蒸発した有機流体の熱落差(エンタルピー落差)によって回転駆動される。パワータービン62の回転動力は発電機68に伝達され、発電機68にて電力が得られるようになっている。発電機68で得られた電力は、図示しない電力線を介して船内系統へと供給される。 The power turbine 62 is rotationally driven by a heat drop (enthalpy drop) of the organic fluid evaporated by the evaporator 60. The rotational power of the power turbine 62 is transmitted to the generator 68, and electric power is obtained by the generator 68. The electric power obtained by the generator 68 is supplied to the inboard system via a power line (not shown).
 パワータービン68にて仕事を終えた有機流体(気相)は、プレヒータ64にて、有機流体循環ポンプP0から送られた有機流体(液相)を予熱する。
 プレヒータ64を通過した有機流体は、凝縮器66にて海水によって冷却されて凝縮液化する。凝縮液化した有機流体は、有機流体循環ポンプP0によってプレヒータ64及び蒸発器60へと送られる。
 このように、有機流体経路9は、蒸発器60、パワータービン62、プレヒータ64及び凝縮器66とともに有機ランキンサイクルを構成する。
The organic fluid (gas phase) that has finished the work in the power turbine 68 preheats the organic fluid (liquid phase) sent from the organic fluid circulation pump P0 by the preheater 64.
The organic fluid that has passed through the preheater 64 is cooled by seawater in the condenser 66 to be condensed and liquefied. The condensed and liquefied organic fluid is sent to the preheater 64 and the evaporator 60 by the organic fluid circulation pump P0.
Thus, the organic fluid path 9 constitutes an organic Rankine cycle together with the evaporator 60, the power turbine 62, the preheater 64, and the condenser 66.
 図2には、図1に示した排熱回収発電装置10の要部の配置例が示されている。なお、図の簡略化のために、第2排熱回収器5に関連する経路については省略されている。
 同図に示されているように、各機器が筐体11内に収納されている。筐体11内は閉空間とされており、この筐体11内に、熱媒循環ポンプP1、熱媒循環ポンプP1に接続される熱媒経路7の一部、有機流体経路9の全て、蒸発器60、パワータービン62、発電機68、プレヒータ64、凝縮器66、有機流体循環ポンプP0が設けられている。このように同一の筐体11内に収納することにより、排熱回収発電装置の要部をユニット化することができる。これによりコンパクト化され、既存の船舶等への設置性をも高めることができる。
FIG. 2 shows an arrangement example of a main part of the exhaust heat recovery power generator 10 shown in FIG. In addition, about the path | route relevant to the 2nd waste heat recovery device 5, it is abbreviate | omitted for the simplification of a figure.
As shown in the figure, each device is accommodated in the housing 11. The inside of the housing 11 is a closed space. In this housing 11, all of the heat medium circulation pump P 1, a part of the heat medium path 7 connected to the heat medium circulation pump P 1, and the organic fluid path 9 are evaporated. A vessel 60, a power turbine 62, a generator 68, a preheater 64, a condenser 66, and an organic fluid circulation pump P0 are provided. Thus, by storing in the same housing | casing 11, the principal part of an exhaust-heat recovery electric power generation apparatus can be unitized. Thereby, it can be made compact and the installation property to an existing ship etc. can be improved.
 また、仮に熱媒や有機流体が筐体11内に漏出した場合であっても、筐体11内で熱媒や有機流体の流出を止めることができるので、安全性の高い排熱回収発電装置を提供することができる。さらに、筐体11の上面には、ベンチレーションファン70が設けられており、筐体11内に流出した熱媒や有機流体を外部へ排出できるようになっている。 Further, even if a heat medium or an organic fluid leaks into the housing 11, the outflow of the heat medium or the organic fluid can be stopped in the housing 11, so that a highly safe exhaust heat recovery power generator Can be provided. Further, a ventilation fan 70 is provided on the upper surface of the housing 11 so that the heat medium and the organic fluid flowing into the housing 11 can be discharged to the outside.
 次に、上記構成の排熱回収発電装置10の動作について図1を用いて説明する。
 排熱回収の際には、ディーゼルエンジンからの排ガスの一部が抽気されて第1排熱回収器1へと導かれる。第1排熱回収器1では、熱媒経路7を循環する熱媒と排ガスとが熱交換され、排ガスの顕熱が熱媒に回収される。
 また、過給機によって圧縮された空気が空気冷却器3の第2伝熱管36によって冷却される。この際に第2伝熱管36内を流れる冷却水は空気によって加熱されることにより、空気から熱を回収する。第2伝熱管36にて加熱された冷却水は第2排熱回収器5へと導かれる。第2排熱回収器5では、熱媒経路7を循環する熱媒と冷却水とが熱交換され、冷却水の顕熱が熱媒に回収される。
Next, the operation of the exhaust heat recovery power generation apparatus 10 having the above configuration will be described with reference to FIG.
At the time of exhaust heat recovery, a part of the exhaust gas from the diesel engine is extracted and guided to the first exhaust heat recovery unit 1. In the first exhaust heat recovery device 1, the heat medium circulating in the heat medium path 7 and the exhaust gas are heat-exchanged, and the sensible heat of the exhaust gas is recovered in the heat medium.
Further, the air compressed by the supercharger is cooled by the second heat transfer tube 36 of the air cooler 3. At this time, the cooling water flowing in the second heat transfer tube 36 is heated by the air to recover heat from the air. The cooling water heated by the second heat transfer tube 36 is guided to the second exhaust heat recovery device 5. In the second exhaust heat recovery device 5, the heat medium circulating in the heat medium path 7 and the cooling water are heat-exchanged, and the sensible heat of the cooling water is recovered to the heat medium.
 第2排熱回収器5で排熱を回収し、さらに第1排熱回収器1で排熱を回収して高温となった熱媒は、蒸発器60へと導かれ、有機流体経路9を循環する有機流体と熱交換する。有機流体は、蒸発器60にて熱媒の顕熱によって加熱され蒸発気化する。蒸発気化して高エンタルピとなった有機流体は、パワータービン62へと導かれ、その熱落差によってパワータービン62を回転駆動させる。パワータービン62の回転出力を得て、発電機68にて発電が行われる。
 パワータービン62にて仕事を終えた有機流体(気相)は、プレヒータ64にて蒸発器60流入前の有機流体(液相)に予熱を与えた後、凝縮器66へと導かれ、海水によって冷却されることにより凝縮液化する。
The exhaust heat is recovered by the second exhaust heat recovery device 5 and the exhaust heat is recovered by the first exhaust heat recovery device 1, and the heat medium that has reached a high temperature is led to the evaporator 60 and passes through the organic fluid path 9. Exchanges heat with circulating organic fluid. The organic fluid is heated and evaporated by the sensible heat of the heat medium in the evaporator 60. The organic fluid that has evaporated to high enthalpy is guided to the power turbine 62, and the power turbine 62 is driven to rotate by the heat drop. Rotational output of the power turbine 62 is obtained, and power generation is performed by the generator 68.
The organic fluid (gas phase) that has finished work in the power turbine 62 is preheated to the organic fluid (liquid phase) before flowing into the evaporator 60 by the pre-heater 64, and then led to the condenser 66, It is condensed and liquefied when cooled.
 以上の通り、本実施形態によれば、以下の作用効果を奏する。
 第1排熱回収器1及び第2排熱回収器5で排熱を回収する際に、沸点が水よりも高い熱媒で熱回収し、そしてこの熱媒によって有機流体を蒸発させることとした。このように、ディーゼルエンジンからの排熱を水によって熱回収するのではなく、沸点が水よりも高い熱媒を用いて排熱回収することとしたので、ディーゼルエンジンの排熱が高温(例えば150℃以上)となっても水のように圧力が高くなることがない。したがって、熱媒経路7を高圧仕様にする必要がなく、安価に構成することができる。
As described above, according to the present embodiment, the following operational effects are obtained.
When exhaust heat is recovered by the first exhaust heat recovery device 1 and the second exhaust heat recovery device 5, heat recovery is performed with a heat medium having a boiling point higher than that of water, and the organic fluid is evaporated by this heat medium. . In this way, the exhaust heat from the diesel engine is not recovered by water, but is recovered by using a heat medium having a boiling point higher than that of water. Even when the temperature is higher than [° C.], the pressure does not increase like water. Therefore, it is not necessary to set the heat medium path 7 to a high-pressure specification, and it can be configured at a low cost.
 制御弁19,20,27を制御することによって、第1排熱回収器1にて排熱回収しない運転が可能とされている。また、各冷却水弁42,45,47,51,55を切り替えることによって、第2排熱回収器5にて排熱回収しない運転が可能とされている。このように、第1排熱回収器1や第2排熱回収器5による熱回収のタイミングを切り替えることができるので、ディーゼルエンジンの運転状態や船内電力需要等に応じて排熱回収の要否を決めることができる。これにより、柔軟性の高い発電システムを構築することができる。 By controlling the control valves 19, 20, and 27, the first exhaust heat recovery device 1 can be operated without exhaust heat recovery. Further, by switching the cooling water valves 42, 45, 47, 51, 55, the second exhaust heat recovery unit 5 can be operated without recovering the exhaust heat. Thus, since the timing of the heat recovery by the first exhaust heat recovery device 1 or the second exhaust heat recovery device 5 can be switched, whether or not the exhaust heat recovery is necessary according to the operating state of the diesel engine, the onboard power demand, etc. Can be decided. Thereby, a highly flexible power generation system can be constructed.
 なお、図1に示した実施形態では、第1排熱回収器1及び第2排熱回収器5によって排熱を回収することとしたが、図3に示すように、空気冷却器3からの排熱回収を省略して、第1排熱回収器1を用いた排ガスからの排熱回収のみとしても良い。あるいは、図4に示すように、ディーゼルエンジンの排ガスからの排熱回収を省略して、第2排熱回収器5を用いた過給機からの排熱回収のみとしても良い。 In the embodiment shown in FIG. 1, the exhaust heat is recovered by the first exhaust heat recovery device 1 and the second exhaust heat recovery device 5, but as shown in FIG. The exhaust heat recovery may be omitted and only the exhaust heat recovery from the exhaust gas using the first exhaust heat recovery device 1 may be performed. Alternatively, as shown in FIG. 4, the exhaust heat recovery from the exhaust gas of the diesel engine may be omitted, and only the exhaust heat recovery from the supercharger using the second exhaust heat recovery device 5 may be performed.
 また、図5に示したように、空気冷却器を第1空気冷却器3aと第2空気冷却器3bとに分割し、空気流れ上流側に位置する第1空気冷却器3aから第2排熱回収器5にて排熱回収を行う構成としても良い。このような構成とすることにより、排熱回収を行うときのみ冷却水循環ポンプP2を駆動し、排熱回収を行わないときは冷却水循環ポンプP2を停止するという運転が可能となる。これにより、図1で示した各冷却水弁42,45,47,51,55を省略することができる。また、第1空気冷却器3aは有機ランキンサイクルを動作させるのに必要な容量の熱交換器として単独に設計することが可能となる。 Further, as shown in FIG. 5, the air cooler is divided into a first air cooler 3a and a second air cooler 3b, and the second exhaust heat is supplied from the first air cooler 3a located on the upstream side of the air flow. A configuration in which exhaust heat recovery is performed by the recovery unit 5 may be adopted. With such a configuration, the cooling water circulation pump P2 is driven only when exhaust heat recovery is performed, and the cooling water circulation pump P2 is stopped when exhaust heat recovery is not performed. Thereby, each cooling water valve 42, 45, 47, 51, 55 shown in FIG. 1 is omissible. Further, the first air cooler 3a can be independently designed as a heat exchanger having a capacity necessary for operating the organic Rankine cycle.
 上述した本実施形態の排熱回収発電装置10は、船舶への適用を例として説明したが、本発明はこれに限定されず、例えば発電等に用いられる陸用の内燃機関に適用することもできる。
 また、第3排熱回収器として、水冷式の内燃機関の場合にはエンジン冷却水(ジャケット冷却水)の排熱を用いることができる。この場合には、第3排熱回収器を第1排熱回収器1及び第2排熱回収器5と組み合わせて用いても良いし、図1の第2排熱回収器5に代えて第3排熱回収器を用いても良い。あるいは、図4の第2排熱回収器5に代えて第3排熱回収器を単独で用いることもできる。
The above-described exhaust heat recovery power generation apparatus 10 of the present embodiment has been described by way of example as applied to a ship. However, the present invention is not limited to this, and may be applied to, for example, a land-use internal combustion engine used for power generation or the like. it can.
In the case of a water-cooled internal combustion engine, exhaust heat from engine cooling water (jacket cooling water) can be used as the third exhaust heat recovery unit. In this case, the third exhaust heat recovery unit may be used in combination with the first exhaust heat recovery unit 1 and the second exhaust heat recovery unit 5, or the second exhaust heat recovery unit 5 in FIG. Three exhaust heat recovery devices may be used. Or it replaces with the 2nd waste heat recovery device 5 of Drawing 4, and a 3rd waste heat recovery device can also be used independently.
 1 第1排熱回収器
 3 空気冷却器
 5 第2排熱回収器
 7 熱媒経路
 9 有機流体経路
 10 排熱回収発電装置
 11 筐体
 60 蒸発器
 62 パワータービン(タービン)
 66 凝縮器
 68 発電機
 P0 有機流体循環ポンプ
 P1 熱媒循環ポンプ
DESCRIPTION OF SYMBOLS 1 1st exhaust heat recovery device 3 Air cooler 5 2nd exhaust heat recovery device 7 Heat medium path 9 Organic fluid path 10 Waste heat recovery power generation device 11 Case 60 Evaporator 62 Power turbine (turbine)
66 Condenser 68 Generator P0 Organic fluid circulation pump P1 Heat medium circulation pump

Claims (5)

  1.  沸点が水よりも高い熱媒と内燃機関の排熱とを熱交換させて熱回収する排熱回収器と、
     前記熱媒と有機流体とを熱交換させて該有機流体を蒸発させる蒸発器と、
     該蒸発器によって蒸発させられた前記有機流体によって駆動されるタービンと、
     該タービンの回転出力によって発電する発電機と、
     タービンを通過した前記有機流体を凝縮させる凝縮器と、
    を備えている排熱回収発電装置。
    An exhaust heat recovery device that recovers heat by exchanging heat between the heat medium having a boiling point higher than that of water and the exhaust heat of the internal combustion engine;
    An evaporator for evaporating the organic fluid by exchanging heat between the heat medium and the organic fluid;
    A turbine driven by the organic fluid evaporated by the evaporator;
    A generator for generating electricity by the rotational output of the turbine;
    A condenser for condensing the organic fluid that has passed through the turbine;
    An exhaust heat recovery power generation device.
  2.  前記排熱回収器は、
     前記内燃機関から排出される排ガスから熱回収を行う第1排熱回収器と、
     前記内燃機関に設けられた過給機の圧縮空気を冷却する空気冷却器から熱回収を行う第2排熱回収器、及び/又は、前記内燃機関を冷却するエンジン冷却水から熱回収を行う第3排熱回収器と、
    を備えている請求項1に記載の排熱回収発電装置。
    The exhaust heat recovery device is
    A first exhaust heat recovery unit that recovers heat from exhaust gas discharged from the internal combustion engine;
    A second exhaust heat recovery unit that recovers heat from an air cooler that cools compressed air of a supercharger provided in the internal combustion engine; and / or a second heat recovery unit that recovers heat from engine cooling water that cools the internal combustion engine. 3 waste heat recovery device,
    The exhaust heat recovery power generator according to claim 1 provided with.
  3.  前記排熱回収器による熱回収を行うタイミングが切り替え可能とされている請求項1又は2に記載の排熱回収発電装置。 The exhaust heat recovery power generator according to claim 1 or 2, wherein the timing of heat recovery by the exhaust heat recovery device is switchable.
  4.  前記蒸発器、前記タービン、前記発電機、及び前記凝縮器は、同一の筐体内に収納されている請求項1から3のいずれかに記載の排熱回収発電装置。 The exhaust heat recovery power generator according to any one of claims 1 to 3, wherein the evaporator, the turbine, the generator, and the condenser are housed in the same casing.
  5.  請求項1から4のいずれかに記載の排熱回収発電装置を備えている船舶。 A ship equipped with the exhaust heat recovery power generator according to any one of claims 1 to 4.
PCT/JP2011/050652 2010-01-21 2011-01-17 Waste heat recovery power generation device and ship with same WO2011089997A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800057305A CN102713167A (en) 2010-01-21 2011-01-17 Waste heat recovery power generation device and ship with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-011319 2010-01-21
JP2010011319A JP2011149332A (en) 2010-01-21 2010-01-21 Exhaust heat recovery power generating device and ship with the same

Publications (1)

Publication Number Publication Date
WO2011089997A1 true WO2011089997A1 (en) 2011-07-28

Family

ID=44306799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050652 WO2011089997A1 (en) 2010-01-21 2011-01-17 Waste heat recovery power generation device and ship with same

Country Status (4)

Country Link
JP (1) JP2011149332A (en)
KR (1) KR20120103669A (en)
CN (1) CN102713167A (en)
WO (1) WO2011089997A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510243A (en) * 2011-11-12 2012-06-20 张英华 Power generating device by waste heat of automobiles
WO2013038563A1 (en) * 2011-09-16 2013-03-21 川崎重工業株式会社 Solar thermal power generation facility, solar thermal power generation method, heat medium supply device, and heat medium heating device
CN103017132A (en) * 2013-01-06 2013-04-03 徐海军 Electric steam boiler system
CN104196585A (en) * 2014-09-02 2014-12-10 叶金辉 Magnetic-levitation ORC low-grade waste heat power generation system
CN105626267A (en) * 2016-01-08 2016-06-01 东莞新奥燃气有限公司 Multi-generation natural gas power generation device and method
EP3093456A1 (en) * 2015-04-09 2016-11-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Heat energy recovery system
EP2529096A4 (en) * 2010-01-26 2017-12-06 TMEIC Corporation Energy recovery system and method
EP3418524A1 (en) * 2017-06-22 2018-12-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Waste heat recovery system
JP2019007379A (en) * 2017-06-22 2019-01-17 株式会社神戸製鋼所 Heat energy recovery system and ship equipped with the same
EP3569829A1 (en) * 2018-04-18 2019-11-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thermal energy recovery device and method for installation of thermal energy recovery device
CN112260316A (en) * 2020-10-20 2021-01-22 浙江大学 Off-grid type multifunctional complementary combined cooling, heating and power and humidity system and method thereof
US11274629B2 (en) 2016-12-05 2022-03-15 Orean Energy AG System and method for energy recovery in industrial faciliiies
IT202200014326A1 (en) * 2022-07-06 2024-01-06 Sondag Energy Srl Solar thermodynamic plant to generate high temperature steam for electricity production

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101290289B1 (en) 2012-05-31 2013-07-26 한국해양대학교 산학협력단 Apparatus for ship's orc power generating system
JP2014015143A (en) * 2012-07-10 2014-01-30 Mitsubishi Heavy Ind Ltd Organic rankine cycle waste heat recovery power generator utilizing housing
CN102777221A (en) * 2012-07-27 2012-11-14 江苏科技大学 Waste gas waste heat power generation system of ship diesel generator based on organic Rankine cycle
JP5976498B2 (en) * 2012-10-26 2016-08-23 三菱重工業株式会社 INTERNAL COMBUSTION ENGINE SYSTEM, SHIP HAVING THE SAME, AND METHOD FOR OPERATING INTERNAL COMBUSTION ENGINE SYSTEM
CN102996194B (en) * 2012-12-06 2014-12-10 西安交通大学 Comprehensive energy recycling system based on liquefied natural gas automobile
CN103133070B (en) * 2013-01-27 2015-03-04 南京瑞柯徕姆环保科技有限公司 Vapor Rankine-low boiling point working medium Rankine combined cycle power generation device
JP6070224B2 (en) * 2013-01-31 2017-02-01 アイシン精機株式会社 Power generator
JP6214252B2 (en) * 2013-07-12 2017-10-18 日立造船株式会社 Boiler system
JP6214253B2 (en) * 2013-07-12 2017-10-18 日立造船株式会社 Boiler system
JP6194274B2 (en) 2014-04-04 2017-09-06 株式会社神戸製鋼所 Waste heat recovery system and waste heat recovery method
CN104847525B (en) * 2015-04-10 2016-04-20 北京工业大学 Based on the automobile-used organic Rankine bottoming cycle residual neat recovering system of operating mode automatic switchover mode of operation
CN104806333A (en) * 2015-04-30 2015-07-29 天津大学 Ship engine waste heat power generation comprehensive utilization method
JP2018155099A (en) * 2017-03-15 2018-10-04 株式会社神戸製鋼所 Supercharged air cooling unit
KR102016415B1 (en) * 2018-03-09 2019-08-30 삼성중공업 주식회사 Compressed air generating apparatus
JP2024143501A (en) 2023-03-30 2024-10-11 三浦工業株式会社 Marine Power Generation Systems
JP2024143497A (en) 2023-03-30 2024-10-11 三浦工業株式会社 Marine Power Generation Systems
JP2024143496A (en) 2023-03-30 2024-10-11 三浦工業株式会社 Marine Power Generation Systems
JP2024143499A (en) 2023-03-30 2024-10-11 三浦工業株式会社 Marine Power Generation Systems
JP2024143500A (en) 2023-03-30 2024-10-11 三浦工業株式会社 Marine Power Generation Systems
JP2024143498A (en) 2023-03-30 2024-10-11 三浦工業株式会社 Marine Power Generation Systems
CN116576039A (en) * 2023-05-05 2023-08-11 杭州途搏能源科技有限公司 Waste heat recycling structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149802A (en) * 1984-01-18 1985-08-07 住友重機械工業株式会社 Two system type waste heat recovery system
JPH01166747U (en) * 1988-05-16 1989-11-22
JPH03264712A (en) * 1990-03-15 1991-11-26 Nippon Seimitsu Keisoku Kk Composite power generating equipment
JP3044386U (en) * 1997-06-13 1997-12-22 ネプコ・インコーポレーテッド Power generator
JP2004131024A (en) * 2002-10-15 2004-04-30 Mitsubishi Heavy Ind Ltd Marine vessel, reliquefying system, and method for reliquefying boiloff gas in marine vessel
JP2005320938A (en) * 2004-05-11 2005-11-17 Yanmar Co Ltd Exhaust heat recovery device and exhaust heat recovery method
JP2007255363A (en) * 2006-03-24 2007-10-04 Osaka Gas Co Ltd Power system
JP2008175108A (en) * 2007-01-17 2008-07-31 Yanmar Co Ltd Rankine cycle power recovery device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133728A (en) * 2006-11-27 2008-06-12 Sanden Corp Waste heat utilization device for internal combustion engine
WO2009133619A1 (en) * 2008-05-01 2009-11-05 サンデン株式会社 Waste heat utilization device for internal combustion
JP5482669B2 (en) * 2011-01-07 2014-05-07 株式会社デンソー Silicon carbide single crystal manufacturing equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149802A (en) * 1984-01-18 1985-08-07 住友重機械工業株式会社 Two system type waste heat recovery system
JPH01166747U (en) * 1988-05-16 1989-11-22
JPH03264712A (en) * 1990-03-15 1991-11-26 Nippon Seimitsu Keisoku Kk Composite power generating equipment
JP3044386U (en) * 1997-06-13 1997-12-22 ネプコ・インコーポレーテッド Power generator
JP2004131024A (en) * 2002-10-15 2004-04-30 Mitsubishi Heavy Ind Ltd Marine vessel, reliquefying system, and method for reliquefying boiloff gas in marine vessel
JP2005320938A (en) * 2004-05-11 2005-11-17 Yanmar Co Ltd Exhaust heat recovery device and exhaust heat recovery method
JP2007255363A (en) * 2006-03-24 2007-10-04 Osaka Gas Co Ltd Power system
JP2008175108A (en) * 2007-01-17 2008-07-31 Yanmar Co Ltd Rankine cycle power recovery device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2529096A4 (en) * 2010-01-26 2017-12-06 TMEIC Corporation Energy recovery system and method
WO2013038563A1 (en) * 2011-09-16 2013-03-21 川崎重工業株式会社 Solar thermal power generation facility, solar thermal power generation method, heat medium supply device, and heat medium heating device
CN102510243A (en) * 2011-11-12 2012-06-20 张英华 Power generating device by waste heat of automobiles
CN103017132A (en) * 2013-01-06 2013-04-03 徐海军 Electric steam boiler system
CN103017132B (en) * 2013-01-06 2014-11-05 徐海军 Electric steam boiler system
CN104196585A (en) * 2014-09-02 2014-12-10 叶金辉 Magnetic-levitation ORC low-grade waste heat power generation system
US10047638B2 (en) 2015-04-09 2018-08-14 Kobe Steel, Ltd. Heat energy recovery system
EP3093456A1 (en) * 2015-04-09 2016-11-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Heat energy recovery system
CN105626267A (en) * 2016-01-08 2016-06-01 东莞新奥燃气有限公司 Multi-generation natural gas power generation device and method
US11274629B2 (en) 2016-12-05 2022-03-15 Orean Energy AG System and method for energy recovery in industrial faciliiies
EP3418524A1 (en) * 2017-06-22 2018-12-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Waste heat recovery system
JP2019007379A (en) * 2017-06-22 2019-01-17 株式会社神戸製鋼所 Heat energy recovery system and ship equipped with the same
EP3569829A1 (en) * 2018-04-18 2019-11-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thermal energy recovery device and method for installation of thermal energy recovery device
CN112260316A (en) * 2020-10-20 2021-01-22 浙江大学 Off-grid type multifunctional complementary combined cooling, heating and power and humidity system and method thereof
CN112260316B (en) * 2020-10-20 2022-05-03 浙江大学 Off-grid type multifunctional complementary combined cooling, heating and power and humidity system and method thereof
IT202200014326A1 (en) * 2022-07-06 2024-01-06 Sondag Energy Srl Solar thermodynamic plant to generate high temperature steam for electricity production

Also Published As

Publication number Publication date
CN102713167A (en) 2012-10-03
JP2011149332A (en) 2011-08-04
KR20120103669A (en) 2012-09-19

Similar Documents

Publication Publication Date Title
WO2011089997A1 (en) Waste heat recovery power generation device and ship with same
WO2011136118A1 (en) Exhaust heat recovery power generation device and vessel provided therewith
KR101290289B1 (en) Apparatus for ship's orc power generating system
JP2012149541A (en) Exhaust heat recovery power generating apparatus and marine vessel
JP5339193B2 (en) Exhaust gas heat recovery device
KR101185444B1 (en) system for recovering waste heat from engine of ship applying exhaust gas recirculation
JP2013180625A (en) Exhaust heat recovery type ship propulsion device, and operation method therefor
JP5801449B1 (en) Marine waste heat recovery system
KR102220071B1 (en) Boiler system
WO2017051450A1 (en) Waste heat recovery equipment, internal combustion engine system, ship, and waste heat recovery method
KR20140085001A (en) Energy saving system for using waste heat of ship
JP7057323B2 (en) Thermal cycle system
WO2014096892A1 (en) Engine arrangement comprising a separate heat storage device
JP5527513B2 (en) Fluid machine drive system
US11008899B2 (en) Internal combustion engine with evaporative cooling and waste heat utilization
JP2005273543A (en) Waste heat utilization device
KR20140085002A (en) Energy saving system for using waste heat of ship
US11624307B2 (en) Bottoming cycle power system
CN109779709A (en) A kind of cold and hot charge-coupled devices of LNG Power Vessel
WO2023049674A1 (en) Systems and methods associated with bottoming cycle power systems for generating power and capturing carbon dioxide
KR20150007950A (en) Boiler system
KR20140085003A (en) Energy saving system for using waste heat of ship
KR200456118Y1 (en) Energy saving ship with power generation system using orc
JP2014218922A (en) Prime motor system
US11415052B1 (en) Systems and methods associated with bottoming cycle power systems for generating power and capturing carbon dioxide

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180005730.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127017192

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734603

Country of ref document: EP

Kind code of ref document: A1