JP2008175108A - Rankine cycle power recovery device - Google Patents

Rankine cycle power recovery device Download PDF

Info

Publication number
JP2008175108A
JP2008175108A JP2007008061A JP2007008061A JP2008175108A JP 2008175108 A JP2008175108 A JP 2008175108A JP 2007008061 A JP2007008061 A JP 2007008061A JP 2007008061 A JP2007008061 A JP 2007008061A JP 2008175108 A JP2008175108 A JP 2008175108A
Authority
JP
Japan
Prior art keywords
steam
pressure
expander
rankine cycle
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007008061A
Other languages
Japanese (ja)
Other versions
JP4714159B2 (en
Inventor
Yasuyuki Hamachi
康之 濱地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2007008061A priority Critical patent/JP4714159B2/en
Publication of JP2008175108A publication Critical patent/JP2008175108A/en
Application granted granted Critical
Publication of JP4714159B2 publication Critical patent/JP4714159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To keep Rankine cycle efficiency generally constant without wastefully using steam even if the heat quantity of the steam is changed, in a Rankine cycle power recovery device. <P>SOLUTION: This Rankine cycle power recovery device comprises: displacement expanders 5-1 or the like; steam opening/closing valves 15-1 or the like for the displacement expanders; a steam pressure detection means 30 for detecting the pressure of the steam generated by a steam generator 3; a recognizing means for recognizing the quantity of the operating displacement expanders 5-1 or the like; and a control device 31 for controllably increasing or decreasing the quantity of the operating displacement expanders. The steam pressure detected by the steam pressure detection means 30 is compared with a set pressure range corresponding to the quantity of the operating expanders recognized by the recognizing means. When the detected steam pressure exceeds the upper limit value of the appropriate steam pressure range, the quantity of the operating expanders is increased. When it is lower than the lower limit value, the quantity is controlled to be decreased. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、一つの蒸気発生器に対し、蒸気により駆動する複数の膨張機を接続し、該各膨張機の出力を、回転数が拘束される共通の負荷部に利用するランキンサイクル動力回収装置に関する。   The present invention relates to a Rankine cycle power recovery device in which a plurality of expanders driven by steam are connected to a single steam generator, and the output of each expander is used for a common load portion whose rotation speed is restricted. About.

蒸気により駆動する膨張機を備えたランキンサイクル動力回収装置は、発電装置又は空気圧縮機等に利用されており、膨張機としては、一般に蒸気タービンが用いられている(特許文献1)。蒸気タービンを備えていると、出力が100MWレベルの発電装置のように大形の動力回収装置には適しているが、内燃機関の排気熱等を利用するような小出力の装置として用いる場合には、タービン効率が低下するため、ランキンサイクル効率が低くなり、不向きである。   A Rankine cycle power recovery device including an expander driven by steam is used in a power generator or an air compressor, and a steam turbine is generally used as the expander (Patent Document 1). When equipped with a steam turbine, it is suitable for a large power recovery device, such as a power generation device with an output of 100 MW level, but when used as a small output device utilizing the exhaust heat of an internal combustion engine, etc. Is not suitable because Rankine cycle efficiency is low because turbine efficiency is low.

これとは別に、図9に示すように、スクロール形膨張機等の容積形膨張機206を備えたランキンサイクル動力回収装置があり、前記蒸気タービンを備えている装置に比べ、小出力でも効率良く作動する。図9の装置を説明すると、内燃機関201の排気装置202に蒸気発生器203が接続され、該蒸気発生器203の蒸気出口203bに絞り弁205を介して容積形膨張機206の蒸気入口206aが接続されている。容積形膨張機206の蒸気出口206bは凝縮器210の入口210aに接続され、凝縮器210の出口210bは復水ポンプ211を介して蒸気発生器203の蒸気入口203aに接続されている。蒸気発生器203の蒸気出口203bと容積形膨張機206の蒸気出口206bとの間にはバイパス通路215が設けられ、該バイパス通路215にはバイパス弁216が配置されると共に、別の蒸気使用機器218が接続されている。容積形膨張機206の動力取出部217には、負荷部として、たとえば空気圧縮機218が連結されると共に、回転速度検出装置219が設けられており、検出された回転速度を制御装置220に入力し、回転速度に応じて絞り弁205の開度を制御するようになっている。
特許第3166033号
Apart from this, as shown in FIG. 9, there is a Rankine cycle power recovery device provided with a positive displacement expander 206 such as a scroll expander, which is more efficient even with a small output than the device equipped with the steam turbine. Operate. 9, the steam generator 203 is connected to the exhaust device 202 of the internal combustion engine 201, and the steam inlet 206 a of the displacement expander 206 is connected to the steam outlet 203 b of the steam generator 203 via the throttle valve 205. It is connected. The steam outlet 206 b of the positive displacement expander 206 is connected to the inlet 210 a of the condenser 210, and the outlet 210 b of the condenser 210 is connected to the steam inlet 203 a of the steam generator 203 via the condensate pump 211. A bypass passage 215 is provided between the steam outlet 203b of the steam generator 203 and the steam outlet 206b of the positive displacement expander 206. A bypass valve 216 is disposed in the bypass passage 215, and another steam using device is used. 218 is connected. For example, an air compressor 218 is connected to the power take-out unit 217 of the positive displacement expander 206 as a load unit, and a rotation speed detection device 219 is provided, and the detected rotation speed is input to the control device 220. Then, the opening degree of the throttle valve 205 is controlled according to the rotational speed.
Japanese Patent No. 3166033

容積形膨張機の一般的な特徴を簡単に説明すると、蒸気入口と蒸気出口の容積比が決まっているので、蒸気の吸入行程終了後と排出開始直前の圧力の比は決まる。従って容積形膨張機の蒸気出口圧力が一定で、蒸気入口圧力が低下すると、蒸気圧力は、容積形膨張機内部で、一旦、蒸気出口圧力以下に下がってから、排出開始時に出口圧力に戻る。いわゆる過膨張の状態になって不必要な仕事が必要になる。従って、図11のグラフに示すように、容積形膨張機の蒸気入口の蒸気圧力が設計圧(点C)より低下すると、容積形膨張機の有効効率比は低下する。図11は、回転速度が一定の条件において、1台の容積形膨張機の設計点外性能を示すグラフであり、縦軸は有効効率比、横軸は容積形膨張機の蒸気入口の蒸気圧力、点Cは前述のように設計点である。容積形膨張機に蒸気が供給され始めた後、蒸気圧力が作動開始圧力P1に達すると、有効効率比が0から正の値に変化し、蒸気圧力の上昇により有効効率比は1.0近くまで急激に立ち上がり、その後、緩やかに1に近づき、設計点Cに達する。そして、蒸気入口の蒸気圧力が設計点Cから低下すると、前述のように、有効効率比は低下する。   The general features of the positive displacement expander will be briefly described. Since the volume ratio of the steam inlet and the steam outlet is determined, the ratio of the pressure after the end of the steam intake stroke and immediately before the start of discharge is determined. Therefore, when the steam outlet pressure of the positive displacement expander is constant and the steam inlet pressure decreases, the steam pressure once falls below the steam outlet pressure inside the positive displacement expander, and then returns to the outlet pressure at the start of discharge. In a so-called overexpanded state, unnecessary work is required. Therefore, as shown in the graph of FIG. 11, when the steam pressure at the steam inlet of the positive displacement expander falls below the design pressure (point C), the effective efficiency ratio of the positive displacement expander decreases. FIG. 11 is a graph showing the out-of-design performance of one positive displacement expander under a constant rotational speed. The vertical axis represents the effective efficiency ratio, and the horizontal axis represents the steam pressure at the steam inlet of the positive displacement expander. Point C is a design point as described above. After the steam starts to be supplied to the positive displacement expander, when the steam pressure reaches the operation start pressure P1, the effective efficiency ratio changes from 0 to a positive value, and the effective efficiency ratio is close to 1.0 due to the increase of the steam pressure. It rises rapidly until it reaches the design point C. When the steam pressure at the steam inlet decreases from the design point C, the effective efficiency ratio decreases as described above.

また、容積形膨張機は、一回転当たりに吸入される蒸気の体積が一定であるため、容積形膨張機の蒸気入口の体積流量は回転速度にほぼ比例する。回転速度が一定の場合には、膨張機入口圧力に拘わらず入口体積流量は一定になる。しかし、蒸気発生器に一個の容積形膨張機が接続されている場合には、図12のように、排気熱量等が減少して蒸気熱量が少なくなれば、回転速度を下げない限り、容積形膨張機の蒸気入口の蒸気圧は低下する。図12は、回転速度が一定の条件において、1台の容積形膨張機の蒸気熱量の変化に対する蒸気圧及び蒸気出口圧力の変化を示すグラフであり、縦軸は蒸気圧及び蒸気出口体積流量、横軸は蒸気熱量である。   Moreover, since the volume of the vapor | steam suck | inhaled per rotation is constant in a positive displacement expander, the volume flow rate of the vapor | steam inlet of a positive displacement expander is substantially proportional to a rotational speed. When the rotational speed is constant, the inlet volume flow is constant regardless of the expander inlet pressure. However, when one positive displacement expander is connected to the steam generator, as shown in FIG. 12, if the exhaust heat amount or the like decreases and the steam heat amount decreases, the positive displacement expander is used unless the rotational speed is reduced. The steam pressure at the steam inlet of the expander decreases. FIG. 12 is a graph showing changes in steam pressure and steam outlet pressure with respect to changes in steam heat amount of one positive displacement expander under a constant rotational speed, and the vertical axis shows the steam pressure and steam outlet volume flow rate, The horizontal axis is the amount of steam heat.

図9の従来例は、絞り弁205の開度を調節することにより、膨張機206に供給する蒸気圧力を調節しており、蒸気圧力が膨張機206の適正蒸気圧力範囲の上限値を越えれば、余剰の蒸気は、バイパス弁216を介してバイパスされ、あるいは捨てられるようになっており、排気熱を有効に回収しているとは言えない。また、他の蒸気使用機器218での蒸気使用量が増加し、膨張機206の入口圧力が低下した場合には、図13のように、理論仕事量の低下と膨張機有効効率の低下により、ランキンサイクル効率が急激に下がり、動力回収が困難になる。つまり蒸気発生器203よる蒸気の発生量と消費量とにずれがある場合には、効率良く動力回収できない。そのため、蒸気発生器203による発生蒸気量が膨張機206の能力に比べて圧倒的に大きくて、他の蒸気使用機器218と併用される場合に適用されることが殆どである。   9 adjusts the steam pressure supplied to the expander 206 by adjusting the opening of the throttle valve 205, and if the steam pressure exceeds the upper limit value of the proper steam pressure range of the expander 206. The surplus steam is bypassed or discarded via the bypass valve 216, and it cannot be said that exhaust heat is effectively recovered. Further, when the amount of steam used in the other steam-using device 218 increases and the inlet pressure of the expander 206 decreases, as shown in FIG. 13, due to a decrease in theoretical work and a decrease in expander effective efficiency, Rankine cycle efficiency drops rapidly, making power recovery difficult. That is, when there is a difference between the amount of steam generated and consumed by the steam generator 203, the power cannot be recovered efficiently. Therefore, the amount of steam generated by the steam generator 203 is overwhelmingly larger than the capacity of the expander 206, and is mostly applied when used in combination with other steam using devices 218.

[発明の目的]
本発明は、蒸気発生器により発生する蒸気熱量(蒸気量)が増減しても、ランキンサイクル効率を低下させることなく、無駄なく動力回収できるランキンサイクル動力回収装置を提供することである。
[Object of the invention]
An object of the present invention is to provide a Rankine cycle power recovery device that can recover power without waste without reducing Rankine cycle efficiency even if the amount of steam heat (steam amount) generated by the steam generator increases or decreases.

上記課題を解決するため、本願請求項1記載の発明は、一つの蒸気発生器に対し、蒸気により駆動する複数の膨張機を接続し、該各膨張機の出力を、回転数が拘束される共通の負荷部に利用するランキンサイクル動力回収装置において、前記膨張機として、前記蒸気発生器に並列に接続される複数の容積形膨張機を備え、前記各容積形膨張機の蒸気入口の蒸気上流側に蒸気開閉弁をそれぞれ備え、前記蒸気発生器により発生する蒸気の圧力を検出する蒸気圧力検出手段を備え、前記容積形膨張機の運転台数を認識する膨張機運転台数認識手段を備え、前記各蒸気開閉弁を開閉することにより膨張機運転台数を制御する制御装置を備え、該制御装置は、膨張機運転台数毎に適正蒸気圧力範囲が予め記憶されており、前記蒸気圧力検出手段により検出した蒸気圧力と、前記膨張機運転台数認識手段によって認識された膨張機運転台数に対応する前記適正蒸気圧力範囲とを比較し、前記検出蒸気圧力が前記適正蒸気圧力範囲の上限値を超えた場合は膨張機運転台数を増加させ、前記検出蒸気圧力が前記適正蒸気圧力範囲の下限値を下回った場合は膨張機運転台数を減らすように、前記蒸気開閉弁の開閉を制御する。   In order to solve the above-mentioned problem, in the invention according to claim 1 of the present application, a plurality of expanders driven by steam are connected to one steam generator, and the rotational speed of the output of each expander is restricted. In the Rankine cycle power recovery device used for a common load section, the expander includes a plurality of positive displacement expanders connected in parallel to the steam generator, and the steam upstream of the steam inlet of each positive displacement expander A steam on-off valve on each side, steam pressure detecting means for detecting the pressure of steam generated by the steam generator, and expander operation number recognition means for recognizing the number of operation of the positive displacement expander, A control device is provided for controlling the number of expander operations by opening and closing each steam on-off valve. The control device stores in advance an appropriate steam pressure range for each number of expander operations, and the steam pressure detection means Comparing the generated steam pressure with the appropriate steam pressure range corresponding to the number of expander operating units recognized by the expander operating unit number recognizing means, the detected steam pressure exceeded the upper limit value of the appropriate steam pressure range In this case, the number of expander operating units is increased, and when the detected steam pressure falls below the lower limit value of the appropriate steam pressure range, the opening / closing of the steam on / off valves is controlled so as to decrease the number of expander operating units.

上記構成によると、熱源となる内燃機関等の熱量が変動し、蒸気発生器による蒸気発生量が変動しても、蒸気発生量の変動に応じて膨張機運転台数を増減することにより、容積形膨張機に供給される蒸気の圧力を略一定に保つことができる。特に、容積形膨張機の他に蒸気使用機器が蒸気発生器に接続されている場合、該他の蒸気使用機器の蒸気使用量が変動しても、容積形膨張機に供給される蒸気の圧力は略一定に保たれる。それにより、ランキンサイクルの理論効率も当初の計画値付近に保つことができ、回転速度が拘束される負荷部に電力等を供給する場合に最適である。また、容積形膨張機の有効効率の低下を抑制するので、実際のランキンサイクル効率、すなわち、理論回収動力×膨張機有効効率(=回収動力)/入熱量を高く保つことができる。つまり、ランキンサイクル動力回収装置で使用できる蒸気量が変動しても、回収動力/入熱量を高い値に保つことができるので、排気熱等を効率良く動力に変化できるのである。   According to the above configuration, even if the amount of heat of the internal combustion engine or the like that serves as a heat source fluctuates and the amount of steam generated by the steam generator fluctuates, the volume type is increased or decreased according to the fluctuation of the amount of steam generated. The pressure of the steam supplied to the expander can be kept substantially constant. In particular, when a steam using device is connected to the steam generator in addition to the positive displacement expander, the pressure of the steam supplied to the positive displacement expander even if the steam usage of the other steam using device fluctuates. Is kept approximately constant. As a result, the theoretical efficiency of the Rankine cycle can also be maintained near the original planned value, which is optimal when supplying electric power or the like to a load portion where the rotational speed is restricted. Further, since the decrease in the effective efficiency of the positive displacement expander is suppressed, the actual Rankine cycle efficiency, that is, the theoretical recovery power x the expander effective efficiency (= recovery power) / heat input can be kept high. In other words, even if the amount of steam that can be used in the Rankine cycle power recovery device varies, the recovered power / heat input can be kept at a high value, so that the exhaust heat or the like can be efficiently converted into power.

請求項2記載の発明は、請求項1記載のランキンサイクル動力回収装置において、前記蒸気発生器の熱源として内燃機関の排気熱を前記蒸気発生器内に導入し、前記内燃機関の出力部と前記各容積形膨張機の動力取出部とを、前記各容積形膨張機側から前記内燃機関側へのみ動力伝達可能なワンウエイクラッチ及び動力伝達機構により連結している。   According to a second aspect of the present invention, in the Rankine cycle power recovery device according to the first aspect, exhaust heat of the internal combustion engine is introduced into the steam generator as a heat source of the steam generator, and the output portion of the internal combustion engine and the A power take-out portion of each positive displacement expander is connected by a one-way clutch and a power transmission mechanism capable of transmitting power only from the positive displacement expander side to the internal combustion engine side.

上記構成によると、ワンウエイクラッチを介して容積形膨張機側から内燃機関の出力部へ動力伝達するので、容積形膨張機が内燃機関に対して正の仕事をする時のみつながり、0または負の仕事しか出来ない時は、内燃機関側から容積形膨張機側が駆動されることはない。従って内燃機関によって定められた回転速度と供給される蒸気の圧力に見合った出力が回収できる。すなわち、内燃機関の広い負荷範囲において効率よく動力回収ができ、内燃機関が一定回転の機械負荷や発電機負荷を駆動している場合に適している。   According to the above configuration, since power is transmitted from the positive displacement expander side to the output portion of the internal combustion engine via the one-way clutch, it is connected only when the positive displacement expander performs positive work with respect to the internal combustion engine. When only work is possible, the positive displacement expander side is not driven from the internal combustion engine side. Therefore, the output corresponding to the rotation speed determined by the internal combustion engine and the pressure of the supplied steam can be recovered. That is, the power can be efficiently recovered over a wide load range of the internal combustion engine, which is suitable when the internal combustion engine is driving a mechanical load or a generator load with constant rotation.

請求項3記載の発明は、請求項1記載のランキンサイクル動力回収装置において、前記蒸気発生器の熱源として内燃機関の排気熱を前記蒸気発生器内に導入し、前記内燃機関の出力部と前記各容積形膨張機の動力取出部とを、電磁クラッチ及び動力伝達機構により連結している。   According to a third aspect of the present invention, in the Rankine cycle power recovery device according to the first aspect, exhaust heat of the internal combustion engine is introduced into the steam generator as a heat source of the steam generator, and the output portion of the internal combustion engine and the The power take-out part of each positive displacement expander is connected by an electromagnetic clutch and a power transmission mechanism.

上記構成によると、容積形膨張機の回転速度が、所定の値に達すればクラッチを入れて負荷をかけるので、内燃機関によって定められた回転速度と供給される蒸気の圧力に見合った出力が回収できる。これも内燃機関が一定回転の機械負荷や発電機負荷を駆動している場合に適している。   According to the above configuration, if the rotational speed of the positive displacement expander reaches a predetermined value, the clutch is engaged and a load is applied. Therefore, the output corresponding to the rotational speed determined by the internal combustion engine and the pressure of the supplied steam is recovered. it can. This is also suitable when the internal combustion engine is driving a constant rotation mechanical load or generator load.

請求項4記載の発明は、請求項2又は3記載のランキンサイクル動力回収装置において、前記内燃機関の出力部と前記各容積形膨張機の動力取出部との間に、動力伝達機構及び電磁クラッチ又はワンウエイクラッチに加え、変速機構を設けている。   According to a fourth aspect of the present invention, in the Rankine cycle power recovery device according to the second or third aspect, a power transmission mechanism and an electromagnetic clutch are provided between the output part of the internal combustion engine and the power take-out part of each positive displacement expander. Alternatively, a speed change mechanism is provided in addition to the one-way clutch.

上記構成によると、内燃機関の回転速度が変わっても、容積形膨張機の回転速度が一定になるように変速機構により変速比を変えるので、船舶推進用のプロペラ等を駆動する舶用主機関等に適している。   According to the above configuration, even if the rotational speed of the internal combustion engine changes, the speed ratio is changed by the speed change mechanism so that the rotational speed of the positive displacement expander becomes constant, so a marine main engine that drives a propeller for ship propulsion etc. Suitable for

請求項5記載の発明は、請求項1記載のランキンサイクル動力回収装置において、前記蒸気発生器の熱源として内燃機関の排気熱を前記蒸気発生器内に導入し、前記各容積形膨張機の動力取出部に誘導発電機をそれぞれ連結し、前記共通の負荷部として、前記内燃機関に発電装置を連結し、前記各誘導発電機を前記発電装置に電気的に接続している。   According to a fifth aspect of the present invention, in the Rankine cycle power recovery device according to the first aspect, exhaust heat of an internal combustion engine is introduced into the steam generator as a heat source of the steam generator, and the power of each positive displacement expander is An induction generator is connected to the take-out portion, and a power generation device is connected to the internal combustion engine as the common load portion, and each induction generator is electrically connected to the power generation device.

上記構成は、部分負荷運転もあるような舶用補機関等の発電装置に適用すると、効果的である。   The above configuration is effective when applied to a power generation apparatus such as a marine auxiliary engine that also has partial load operation.

請求項6記載の発明は、請求項5記載のランキンサイクル動力回収装置において、前記内燃機関として水冷式内燃機関を備え、前記内燃機関に、冷却水を蒸発させる低圧系蒸気発生器を備え、前記低圧系蒸気発生器に並列に接続される複数の低圧系容積形膨張機を備え、前記各低圧系容積形膨張機の蒸気入口の蒸気上流側に低圧系蒸気開閉弁をそれぞれ備え、前記内燃機関の内部で発生した冷却水の蒸気の圧力を検出する低圧系蒸気圧力検出手段を備え、前記低圧系容積形膨張機の運転台数を認識する低圧系膨張機運転台数認識手段を備え、前記制御装置は、低圧系膨張機運転台数毎に適正蒸気圧力範囲が予め記憶されており、前記低圧系蒸気圧力検出手段により検出した蒸気圧力と、前記低圧系膨張機運転台数認識手段によって認識された低圧系膨張機運転台数に対応する前記適正蒸気圧力範囲とを比較し、前記検出蒸気圧力が前記適正蒸気圧力範囲の上限値を超えた場合は低圧系膨張機運転台数を増加させ、前記検出蒸気圧力が前記適正蒸気圧力範囲の下限値を下回った場合は低圧系膨張機運転台数を減らすように、前記各低圧系蒸気開閉弁を制御する。   The invention according to claim 6 is the Rankine cycle power recovery device according to claim 5, wherein the internal combustion engine is provided with a water-cooled internal combustion engine, the internal combustion engine is provided with a low-pressure steam generator for evaporating cooling water, A plurality of low-pressure volume displacement expanders connected in parallel to the low-pressure steam generator, each having a low-pressure steam on-off valve on the steam upstream side of the steam inlet of each of the low-pressure displacement expanders; A low-pressure system steam pressure detecting means for detecting the pressure of the cooling water steam generated inside, and a low-pressure system expander operating number recognition means for recognizing the number of operating low-pressure volumetric expanders, The appropriate steam pressure range is stored in advance for each number of low-pressure system expander operating units, and the steam pressure detected by the low-pressure system steam pressure detecting unit is recognized by the low-pressure system expander operating unit number recognizing unit. Compared with the appropriate steam pressure range corresponding to the number of operating pressure system expanders, if the detected steam pressure exceeds the upper limit of the appropriate steam pressure range, the number of operating low pressure system expanders is increased, the detected steam When the pressure falls below the lower limit value of the appropriate steam pressure range, the low-pressure system steam on / off valves are controlled so as to reduce the number of low-pressure system expanders operated.

上記構成によると、一つの内燃機関の排気熱と冷却水の廃熱とを有効に利用できると共に、内燃機関の負荷変動に応じて、排気熱を利用した高圧系のランキンサイクルシステムからも、冷却水の廃熱を利用した低圧系のランキンサイクルシステムからも効率良く電力回収することができる。   According to the above configuration, the exhaust heat of one internal combustion engine and the waste heat of the cooling water can be used effectively, and the cooling is also performed from the high-pressure Rankine cycle system using the exhaust heat according to the load fluctuation of the internal combustion engine. Power can also be efficiently recovered from a low-pressure Rankine cycle system that uses waste heat of water.

[第1の実施の形態]
図1〜図3は、本発明によるランキンサイクル動力回収装置の第1の実施の形態であり、これらの図面に基づいて前記第1の実施の形態を説明する。
[First Embodiment]
1 to 3 show a first embodiment of a Rankine cycle power recovery device according to the present invention, and the first embodiment will be described with reference to these drawings.

図1はランキンサイクル動力回収装置の配管略図であり、ランキンサイクル動力回収装置は、単一の内燃機関1と、該内燃機関1の排気装置2に接続された単一の蒸気発生器3と、複数台、たとえば6台の容積形膨張機(スクロール形膨張機等)5-1、5-2、…5-6、と、1個の凝縮器7と、1個の復水ポンプ8等と、を備え、各容積形膨張機5-1、5-2、…5-6の動力取出部には誘導発電機9-1、9-2、…9-6がそれぞれ連結され、各誘導発電機9-1、9-2、…9-6は、それぞれ電気スイッチ10-1、10-2、…10-6を介して共通の負荷部11、たとえば工場用電力等の商用系統電力ラインに電気的に接続されている。なお、前記6台の容積形膨張機5-1、5-2、…5-6、6台の誘導発電機9-1、9-2、…9-6、並びに6個の電気スイッチ10-1、10-2、…10-6は、図面の簡略化のため、3台及び3個ずつ図示しており、残り3台及び3個は省略している。   FIG. 1 is a schematic diagram of piping of a Rankine cycle power recovery device. The Rankine cycle power recovery device includes a single internal combustion engine 1, a single steam generator 3 connected to an exhaust device 2 of the internal combustion engine 1, A plurality of, for example, six positive displacement expanders (such as scroll expanders) 5-1, 5-2,... 5-6, one condenser 7, one condensate pump 8, etc. , And 5-6, induction generators 9-1, 9-2,..., 6-6 are connected to the power take-out portions of the positive displacement expanders 5-1, 5-2,. The machines 9-1, 9-2,..., 9-6 are connected to a common load section 11, for example, a commercial power line such as factory power, via the electric switches 10-1, 10-2,. Electrically connected. The six positive displacement expanders 5-1, 5-2,... 5-6, the six induction generators 9-1, 9-2,. 1, 10-2,..., 10-6 are shown as three and three for simplification of the drawing, and the remaining three and three are omitted.

蒸気発生器3の蒸気出口3bに接続された蒸気通路13は、6本の膨張機用の分岐通路13aと、一本の安全弁用の分岐通路13bと、一本の他の蒸気使用機器18用の分岐通路13cとに分岐しており、各膨張機用の分岐通路13aは蒸気開閉弁15-1、15-2、…15-6を介して各容積形膨張機5-1、5-2、…5-6の蒸気入口にそれぞれ接続され、安全弁用の分岐通路13bは蒸気開閉弁16を介して安全弁17に接続され、他の蒸気使用機器18用の分岐通路13cは他の蒸気使用機器18に接続されている。   The steam passage 13 connected to the steam outlet 3b of the steam generator 3 includes six branch passages 13a for the expander, one branch passage 13b for the safety valve, and one other steam-using device 18. The branch passages 13a for the expanders are respectively connected to the positive displacement expanders 5-1, 5-2 via the steam on-off valves 15-1, 15-2,. ,..., 5-6 are respectively connected to the steam inlets, the branch passage 13b for the safety valve is connected to the safety valve 17 via the steam on / off valve 16, and the branch passage 13c for the other steam using device 18 is the other steam using device. 18 is connected.

各容積形膨張機5-1、5-2、…5-6及び安全弁17の蒸気出口に接続された蒸気通路20a、20bは、1本の蒸気通路20に集合して凝縮器7の蒸気入口に接続され、凝縮器7の出口は復水ポンプ8の入口に接続され、復水ポンプ8の出口は蒸気発生器3の蒸気入口3aに接続されている。   Vapor passages 20a and 20b connected to the respective positive displacement expanders 5-1, 5-2,... 5-6 and the vapor outlet of the safety valve 17 are gathered into one vapor passage 20 to be the vapor inlet of the condenser 7. The outlet of the condenser 7 is connected to the inlet of the condensate pump 8, and the outlet of the condensate pump 8 is connected to the steam inlet 3 a of the steam generator 3.

各誘導発電機9-1、9-2、…9-6は、周知のように、同期回転速度Nsに対する実回転速度(容積形膨張機の動力取出部の回転速度)Nの変化によって、発電機、電動機及び制動機のいずれかの機能を発揮するように構成されており、具体的には、すべりS=(Ns−N)/Nsの値によって、いずれの機器として機能する。たとえば、実回転速度Nが同期回転速度Nsより高く、すべりS<0の場合は、発電機として機能し、実回転速度Nが同期回転速度Nsより低く、0<すべりS<1の場合は、電動機として機能し、さらに、実回転速度Nが同期回転速度Nsより低く、1<すべりSの場合は制動機として機能する。   As is well known, each induction generator 9-1, 9-2,... It is configured to exhibit any of the functions of the machine, the electric motor, and the brake, and specifically, it functions as any device depending on the value of the slip S = (Ns−N) / Ns. For example, when the actual rotational speed N is higher than the synchronous rotational speed Ns and the slip S <0, it functions as a generator, and when the actual rotational speed N is lower than the synchronous rotational speed Ns and 0 <slip S <1, It functions as an electric motor, and further functions as a brake when the actual rotational speed N is lower than the synchronous rotational speed Ns and 1 <slip S.

本実施の形態では、誘導発電機9-1、9-2、…9-6を、発電機として利用するため、すべりSが−0.03〜(−0.05)(すべり率が−3〜−5%)程度となるように回転速度を拘束している。たとえば、60ヘルツの条件下で、同期回転速度Nsが1800rpmとすると、容積形膨張機5-1、5-2、…5-6の実回転速度Nは、1854rpm〜1890pm程度の回転速度に拘束されるように構成される。   In this embodiment, since the induction generators 9-1, 9-2,... 9-6 are used as generators, the slip S is −0.03 to (−0.05) (the slip rate is −3. The rotational speed is constrained to be about -5%. For example, if the synchronous rotational speed Ns is 1800 rpm under the condition of 60 Hz, the actual rotational speed N of the positive displacement expanders 5-1, 5-2,... 5-6 is restricted to a rotational speed of about 1854 rpm to 1890 pm. Configured to be.

(制御系)
蒸気発生器3の蒸気出口3bに接続された蒸気通路13には、前記蒸気発生器3により発生する蒸気の圧力を検出する蒸気圧力検出手段30が配置され、該蒸気圧力検出手段30は制御装置31に電気的に接続され、検出した蒸気圧力を制御装置31に入力するようになっている。
(Control system)
In the steam passage 13 connected to the steam outlet 3b of the steam generator 3, a steam pressure detecting means 30 for detecting the pressure of the steam generated by the steam generator 3 is arranged. The steam pressure detecting means 30 is a control device. The detected steam pressure is input to the control device 31.

前記制御装置31には、前記各蒸気開閉弁15-1、15-2、…15-6及び16が電気的に接続されており、制御装置31からの開閉指令信号により、各蒸気開閉弁15-1、15-2、…15-6及び16の開閉を制御するようになっている。また、各蒸気開閉弁15-1、15-2、…15-6は、膨張機運転台数認識手段としての役目を果たすために、各々の開閉状態を制御装置31に入力するようになっており、制御装置31は、開状態の膨張機用の蒸気開閉弁15-1等の数をカウントすることにより、容積形膨張機運転台数を認識する。なお、膨張機運転台数認識手段として、上記のように開状態の蒸気開閉弁の数をカウントする方法の他に、容積形膨張機5-1、5-2、…5-6の動力取出部が回転しているか否かを検出し、回転している場合には運転状態であると認識する方法を採用することも可能である。   The steam on / off valves 15-1, 15-2,... 15-6 and 16 are electrically connected to the control device 31, and each steam on / off valve 15 is controlled by an open / close command signal from the control device 31. -1, 15-2, ... 15-6 and 16 are controlled to be opened and closed. In addition, each of the steam on-off valves 15-1, 15-2,... 15-6 is configured to input the open / closed state of the steam on / off valves 15-1, 15-2,. The control device 31 recognizes the number of displacement-type expander operating units by counting the number of the steam opening / closing valves 15-1 for the expander in the open state. In addition to the method of counting the number of open steam on-off valves as described above, the power take-out section of the positive displacement expanders 5-1, 5-2,. It is also possible to adopt a method of detecting whether or not the vehicle is rotating and recognizing that it is in an operating state when rotating.

(制御内容)
制御装置31内の記憶部には、容積形膨張機5-1、5-2、…5-6の運転台数毎に、予め設定された適正蒸気圧力範囲が記憶されており、制御装置31内の演算部により、前記蒸気圧力検出手段30により検出した蒸気圧力と、前記膨張機運転台数認識手段によって認識された容積形膨張機5-1、5-2、…5-6の運転台数に対応する前記適正蒸気圧力範囲とを比較し、前記検出蒸気圧力が前記適正蒸気圧力範囲の上限値を超えた場合は容積形膨張機5-1、5-2、…5-6の運転台数を一台増加させ、前記検出蒸気圧力が前記適正蒸気圧力範囲の下限値を下回った場合は容積形膨張機の運転台数を一台減らすように、各蒸気開閉弁15-1、15-2、…15-6の開閉を制御するようにプログラムされている。すなわち、前記検出蒸気圧力が前記適正蒸気圧力範囲の上限値を超えた場合は、閉状態の蒸気開閉弁を新たに一個開き、前記検出蒸気圧力が前記適正蒸気圧力範囲の下限値を下回った場合は、開状態の蒸気開閉弁を一個閉じるように、指令信号を出す。
(Control content)
The storage unit in the control device 31 stores an appropriate steam pressure range that is set in advance for each of the operating units of the positive displacement expanders 5-1, 5-2,. To the steam pressure detected by the steam pressure detecting means 30 and the number of operating capacity expansion machines 5-1, 5-2,... 5-6 recognized by the expanding machine operating number recognition means. When the detected steam pressure exceeds the upper limit value of the proper steam pressure range, the number of the capacity expansion machines 5-1, 5-2,. When the detected steam pressure falls below the lower limit value of the appropriate steam pressure range, the steam on / off valves 15-1, 15-2,... It is programmed to control the opening and closing of -6. That is, when the detected steam pressure exceeds the upper limit value of the appropriate steam pressure range, a new closed steam on-off valve is opened, and the detected steam pressure falls below the lower limit value of the appropriate steam pressure range. Outputs a command signal to close one open steam on-off valve.

図2は、図1のランキンサイクル動力回収装置における蒸気熱量(蒸気量)と、検出された蒸気圧力及び膨張機運転台数との関係をグラフ化したものである。グラフX1は蒸気発生器3の蒸気出口3bの蒸気圧力の変化を示しており、実線は圧力上昇時の変化、破線は圧力下降時の変化である。グラフX2は膨張機運転台数の変化を示しており、実線は圧力上昇時の変化、破線は圧力下降時の変化である。   FIG. 2 is a graph showing the relationship between the amount of steam heat (steam amount), the detected steam pressure, and the number of operating expanders in the Rankine cycle power recovery device of FIG. Graph X1 shows the change in the steam pressure at the steam outlet 3b of the steam generator 3, the solid line shows the change when the pressure rises, and the broken line shows the change when the pressure drops. Graph X2 shows the change in the number of operating expanders. The solid line shows the change when the pressure rises, and the broken line shows the change when the pressure drops.

PH1とPL1は、膨張機運転台数が1台の時の蒸気圧上限値と蒸気圧下限値、PH2とPL2は、膨張機運転台数が2台の時の蒸気圧上限値と蒸気圧下限値、PH3とPL3は、膨張機運転台数が3台の時の蒸気圧上限値と蒸気圧下限値、PH4とPL4は、膨張機運転台数が4台の時の蒸気圧上限値と蒸気圧下限値、PH5とPL5は、膨張機運転台数が5台の時の蒸気圧上限値と蒸気圧下限値、PH6とPL6は、膨張機運転台数が6台の時の蒸気圧上限値と蒸気圧下限値である。すなわち、PH1とPL1の間の圧力範囲が、膨張機運転台数が1台の時の適正蒸気圧力範囲であり、PH2とPL2の間の圧力範囲が、膨張機運転台数が2台の時の適正蒸気圧力範囲であり、PH3とPL3の間の圧力範囲が、膨張機運転台数が3台の時の適正蒸気圧力範囲であり、PH4とPL4の間の圧力範囲が、膨張機運転台数が1台の時の適正蒸気圧力範囲であり、PH5とPL5の間の圧力範囲が、膨張機運転台数が1台の時の適正蒸気圧力範囲であり、PH6とPL6の間の圧力範囲が、膨張機運転台数が1台の時の適正蒸気圧力範囲である。   PH1 and PL1 are the upper limit of steam pressure and the lower limit of steam pressure when one expander is operating, PH2 and PL2 are the upper limit of steam pressure and the lower limit of steam pressure when two expanders are operating, PH3 and PL3 are the upper limit of steam pressure and the lower limit of steam pressure when three expanders are operating, PH4 and PL4 are the upper limit of steam pressure and the lower limit of steam pressure when four expanders are operating, PH5 and PL5 are the vapor pressure upper limit and vapor pressure lower limit when the number of expanders operating is 5, and PH6 and PL6 are the vapor pressure upper limit and vapor pressure lower limit when the number of expanders is 6 is there. That is, the pressure range between PH1 and PL1 is the proper steam pressure range when the number of expander units is one, and the pressure range between PH2 and PL2 is the appropriate range when the number of expander units is two The steam pressure range, the pressure range between PH3 and PL3 is the proper steam pressure range when the number of expander units is 3, and the pressure range between PH4 and PL4 is 1 unit of expanders Is the proper steam pressure range at the time of, the pressure range between PH5 and PL5 is the proper steam pressure range when the number of expander operation is one, and the pressure range between PH6 and PL6 is the expander operation This is the proper steam pressure range when the number is one.

該実施の形態では、各蒸気圧上限値PH1、PH2、PH3、PH4、PH5、PH6は略同じ値に設定されており、一方、蒸気圧下限値は、PL1<PL2<PL3<PL4<PL5<PL6となるように設定されている。また、各蒸気圧下限値PL2、PL3、PL4、PL5、PL6は、膨張機運転台数を1台増加した時点で低下した各蒸気圧力値PD2、PD3、PD4、PD5、PD6より、少し低い値に設定されている。たとえば、膨張機運転台数を追加した各時点での蒸気熱量(蒸気量)QH1、QH2、QH3、QH4、QH5、QH6、に対して、5%程度少ない蒸気熱量に対応する膨張機入口圧力に、蒸気下限値PL2、PL3、PL4、PL5、PL6を設定している。具体例を挙げて説明すると、運転台数が1台から2台に増加する時の蒸気熱量(蒸気量)をQH1とすると、該蒸気熱量QH1よりも略5%少ない熱量QL2に対応する蒸気圧力PL2を、膨張機運転台数を2台から1台へ減少させる下限値としている。他の下限値PL3、PL4、PL5、PL6もPL2と同様に設定される。ただし、1台から0台に減少する下限値PL1については、図示のように蒸気圧力0に設定しているが、図11の運転開始圧力値P1を下限値PL1に設定することも可能である。   In this embodiment, the vapor pressure upper limit values PH1, PH2, PH3, PH4, PH5, and PH6 are set to substantially the same value, while the vapor pressure lower limit value is PL1 <PL2 <PL3 <PL4 <PL5 <. It is set to be PL6. In addition, each steam pressure lower limit value PL2, PL3, PL4, PL5, PL6 is a little lower than each steam pressure value PD2, PD3, PD4, PD5, PD6 that decreased when the number of expander units increased by one. Is set. For example, the amount of steam heat (steam amount) QH1, QH2, QH3, QH4, QH5, QH6 at each point of time when the number of expander operating units is added to the expander inlet pressure corresponding to about 5% less steam heat, Steam lower limit values PL2, PL3, PL4, PL5, and PL6 are set. Explaining with a specific example, if the steam heat amount (steam amount) when the number of operating units is increased from one to two is QH1, the steam pressure PL2 corresponding to the heat amount QL2 which is approximately 5% less than the steam heat amount QH1. Is the lower limit for reducing the number of expander operations from two to one. Other lower limit values PL3, PL4, PL5, and PL6 are set similarly to PL2. However, the lower limit value PL1 that decreases from one to zero is set to the steam pressure 0 as shown, but the operation start pressure value P1 in FIG. 11 can also be set to the lower limit value PL1. .

また、図1において、6個の蒸気開閉弁15-1、15-2、…15-6は、蒸気発生器3で発生する蒸気熱量の増加に伴い、蒸気開閉弁15-1から上記順序で開き、また、蒸気発生器3で発生する蒸気熱量の減少に伴い、上記とは逆の順序で閉じるように設定されている。さらに、安全弁17の蒸気開閉弁16は、第6の容積形膨張機9-6の蒸気開閉弁15-6が開いた後、図2において、蒸気圧力が膨張機運転台数6台の蒸気圧上限値PH6に達した時点で、開くように設定されている。   Further, in FIG. 1, six steam on-off valves 15-1, 15-2,... 15-6 are arranged in the above order from the steam on-off valve 15-1 as the amount of steam heat generated in the steam generator 3 increases. It is set so that it opens and closes in the reverse order with the decrease in the amount of steam heat generated in the steam generator 3. Further, the steam on / off valve 16 of the safety valve 17 is configured so that the steam pressure in FIG. 2 after the steam on / off valve 15-6 of the sixth positive displacement expander 9-6 is opened is the upper limit of the steam pressure of six expander units. It is set to open when the value PH6 is reached.

(作動)
(1)まず、図1により、ランキンサイクル動力回収装置の基本的な作動を説明する。復水ポンプ8から単一の蒸気発生器3内に供給される凝縮水は、蒸気発生器3内において、内燃機関1の排気装置2に排出された排気ガスの熱により加熱され、蒸発し、蒸気出口3bから蒸気通路13に排出される。
(Operation)
(1) First, the basic operation of the Rankine cycle power recovery device will be described with reference to FIG. The condensed water supplied from the condensate pump 8 into the single steam generator 3 is heated and evaporated in the steam generator 3 by the heat of the exhaust gas discharged to the exhaust device 2 of the internal combustion engine 1. The steam is discharged from the steam outlet 3b to the steam passage 13.

(2)6個の膨張機用蒸気開閉弁15-1、15-2、…15-6のうち、たとえば、n個の膨張機用蒸気開閉弁15-1、…15-nが開いているとすると、蒸気通路13内の蒸気は、それら開いている膨張機用蒸気開閉弁15-1,…15−nを通って対応する膨張機5−1、…5-nにそれぞれ供給され、各容積形膨張機5-1、…5-n内で膨張することにより、動力取出軸を回転させ、それにより、対応する誘導発電機9-1、…9-nを駆動し、発電する。発電された電力は、電気スイッチ10−1、…,10−nを介して共通負荷部11に供給される。 (2) Among the six expander steam on-off valves 15-1, 15-2,... 15-6, for example, n expander steam on-off valves 15-1,. Then, the steam in the steam passage 13 is supplied to the corresponding expanders 5-1,..., 5-n through the open expander steam opening / closing valves 15-1,. By expanding in the positive displacement expanders 5-1,..., 5-n, the power take-out shaft is rotated, thereby driving the corresponding induction generators 9-1,. The generated electric power is supplied to the common load unit 11 via the electric switches 10-1,..., 10-n.

(3)運転中、各膨張機5-1、…5-n内で膨張した蒸気は、各分岐通路20aを介して一つの蒸気通路20に集められ、凝縮器7に供給される。該凝縮器7内で冷却され、凝縮した凝縮水は、再び復水ポンプ8に送られる。 (3) During operation, the steam expanded in each of the expanders 5-1,..., 5-n is collected in one steam path 20 through each branch path 20 a and supplied to the condenser 7. The condensed water that has been cooled and condensed in the condenser 7 is sent to the condensate pump 8 again.

(制御)
(1)ランキンサイクル動力回収装置を運転中、内燃機関1の排気装置2に排出される排気ガスの熱量の変動や、他の蒸気使用機器18の蒸気消費量の変動により、容積形膨張機5-1、…5-nで使用できる蒸気熱量、すなわち単一の蒸気発生器3により発生する蒸気熱量(蒸気量)は変動する。このような蒸気発生器3で発生する蒸気熱量の変動等に伴い、蒸気出口3bにおける蒸気圧力も変動するが、この蒸気圧力の変動を蒸気圧力検出手段30で検出し、制御装置31に入力する。
(control)
(1) While operating the Rankine cycle power recovery device, the positive displacement expander 5 is caused by fluctuations in the amount of heat of the exhaust gas discharged to the exhaust device 2 of the internal combustion engine 1 or fluctuations in the steam consumption of other steam-using devices 18. The amount of steam heat that can be used in -1,..., 5-n, that is, the amount of steam heat (steam amount) generated by the single steam generator 3 varies. The steam pressure at the steam outlet 3b also fluctuates with such a variation in the amount of steam heat generated by the steam generator 3, and the variation in the steam pressure is detected by the steam pressure detecting means 30 and input to the control device 31. .

一方、各蒸気開閉弁15-1、15-2、…15-6からは、それらの開閉状態が制御装置31に入力され、それにより、膨張機運転台数nが認識されている。   On the other hand, from each of the steam on-off valves 15-1, 15-2,... 15-6, their open / closed state is input to the control device 31, and thereby the number of expander operation n is recognized.

(2)制御装置31内では、演算部により、予め記憶された膨張機運転台数nに対応する適正蒸気圧範囲(PHn〜PLn)と、検出された蒸気圧力とを比較し、検出された蒸気圧が適正蒸気圧範囲の上限値PHnを越える場合は、(n+1)個目の蒸気開閉弁15-(n+1)に開弁の指令信号を送り、該蒸気開閉弁15-(n+1)を開き、それにより膨張機運転台数を1台追加(n+1)する。反対に、検出された蒸気圧が適正蒸気圧範囲の下限値PLnを下回る場合は、n個目の蒸気開閉弁15-nに閉弁の指令信号を送り、該蒸気開閉弁15-n)を閉じ、それにより膨張機運転台数を1台減少させ、(n−1)台とする。なお、膨張機運転台数がnからn+1に増加した時点では、図2に示すように蒸気圧力はPDnまで急激に下降するが、蒸気圧下限値PHLnまでは下降しないように前記蒸気圧下限値PLnを設定しているので、膨張機運転台数が増加した直後に膨張機運転台数が減少する事態は避けることができる。 (2) In the control device 31, the arithmetic unit compares an appropriate steam pressure range (PHn to PLn) corresponding to the number of expander operating units n stored in advance with the detected steam pressure, and detects the detected steam. When the pressure exceeds the upper limit value PHn of the appropriate steam pressure range, an opening command signal is sent to the (n + 1) th steam on / off valve 15- (n + 1), and the steam on / off valve 15- (n + 1) is turned on. Open, thereby adding one (n + 1) expander operation unit. On the contrary, when the detected steam pressure is lower than the lower limit value PLn of the appropriate steam pressure range, a close command signal is sent to the nth steam on / off valve 15-n, and the steam on / off valve 15-n) is turned on. Close, thereby reducing the number of expander units by one to (n-1) units. When the number of expander units increased from n to n + 1, the steam pressure rapidly decreases to PDn as shown in FIG. 2, but the steam pressure lower limit value PLn so as not to decrease to the steam pressure lower limit value PHLn. Therefore, it is possible to avoid a situation in which the number of expander operations decreases immediately after the number of expander operations increases.

(3)また、6台の容積形膨張機5-1、5-2、…5-6の全部が作動中、検出された蒸気圧が膨張機運転台数6台に対応する適正蒸気圧力範囲の上限値PH6を越える場合は、安全弁17に接続された蒸気開閉弁16を開き、余分な蒸気を凝縮器7へバイパスする。 (3) In addition, when all of the six positive displacement expanders 5-1, 5-2,... 5-6 are operating, the detected steam pressure is within the proper steam pressure range corresponding to the number of expander units. When the upper limit value PH6 is exceeded, the steam on-off valve 16 connected to the safety valve 17 is opened, and excess steam is bypassed to the condenser 7.

(実施の形態の効果)
内燃機関1の排気ガスの熱量の変動や、他の蒸気使用機器18の蒸気の消費量の変動により、蒸気発生器3で発生する蒸気熱量(蒸気量)が変動しても、蒸気熱量に応じて、膨張機運転台数を増減するので、各容積形膨張機に供給される蒸気の蒸気圧を概ね一定に保つことができる。それにより、図3に示すように、ランキンサイクルの理論効率も計画値付近に保つことができ、また膨張機の有効効率もあまり低下しないので、実際のランキンサイクル効率(理論回収動力×膨張機有効効率(=回収動力)/入熱量)を高く保つことができる。つまり、ランキンサイクル動力回収装置で使用できる蒸気量が変動しても、回収動力/入熱量は高い値に保つことができ、熱を効率良く動力に変換できる。
(Effect of embodiment)
Even if the amount of steam generated by the steam generator 3 (steam amount) fluctuates due to fluctuations in the amount of heat of the exhaust gas of the internal combustion engine 1 or fluctuations in the amount of steam consumed by the other steam-using equipment 18, it depends on the amount of steam heat. Thus, since the number of operating expanders is increased or decreased, the vapor pressure of the steam supplied to each positive displacement expander can be kept substantially constant. As a result, as shown in FIG. 3, the theoretical efficiency of the Rankine cycle can be maintained near the planned value, and the effective efficiency of the expander does not decrease so much, so the actual Rankine cycle efficiency (theoretical recovery power × expander effective) Efficiency (= recovery power) / heat input) can be kept high. That is, even if the amount of steam that can be used in the Rankine cycle power recovery device varies, the recovered power / heat input can be maintained at a high value, and heat can be efficiently converted into power.

[第2の実施の形態]
図4は本発明の第2の実施の形態であり、ディーゼル機関、ガスエンジン、ガスタービン等の内燃機関1の排気ガスの熱から、機械動力を内燃機関1の出力軸44に戻す構成であり、前記図1と同じ部品及び部材には、同じ符号(番号)を付し、詳しい説明は省略する。
[Second Embodiment]
FIG. 4 shows a second embodiment of the present invention in which mechanical power is returned to the output shaft 44 of the internal combustion engine 1 from the heat of the exhaust gas of the internal combustion engine 1 such as a diesel engine, gas engine, gas turbine or the like. The same parts and members as those in FIG. 1 are denoted by the same reference numerals (numbers), and detailed description thereof is omitted.

図4において、内燃機関1の原動軸(クランク軸等)は、減速機43を介して出力軸44に連結されており、該出力軸44は、一定の回転速度で回転することが要求される負荷部(たとえば送風ファン等)45に連結されている。前記出力軸44には回転速度検出手段47が設けられ、該回転速度検出手段47は内燃機関1の燃料調量装置46に接続され、出力軸44の回転速度が略一定値となるように燃料を調量する。   In FIG. 4, a driving shaft (crank shaft or the like) of the internal combustion engine 1 is connected to an output shaft 44 via a speed reducer 43, and the output shaft 44 is required to rotate at a constant rotational speed. It is connected to a load portion (for example, a blower fan) 45. The output shaft 44 is provided with a rotational speed detecting means 47, which is connected to the fuel metering device 46 of the internal combustion engine 1 so that the rotational speed of the output shaft 44 becomes a substantially constant value. Weigh out.

前記出力軸44に補助動力を付与するために、各容積形膨張機5-1、…、5-6の動力取出部には、ワンウエイクラッチ40-1、…40-6がそれぞれ連結され、各ワンウエイクラッチ40-1、…40-6は、チェーン又はベルト等を利用した巻掛式動力伝達機構41を介して減速機43の出力軸44に連結されている。前記ワンウエイクラッチ40-1、…40-6は、出力軸44に対して正の仕事をするときのみ、膨張機側から減速機43の出力軸44側へ動力を伝達し、反対に、減速機43の出力軸44に対して膨張機側からの動力が0または負の仕事しか出来ないときは、減速機43の出力軸44側から膨張機側へは動力が伝達されないように構成されている。   In order to give auxiliary power to the output shaft 44, one-way clutches 40-1,... 40-6 are connected to the power take-out portions of the positive displacement expanders 5-1,. The one-way clutches 40-1,... 40-6 are connected to the output shaft 44 of the speed reducer 43 via a winding power transmission mechanism 41 using a chain or a belt. The one-way clutch 40-1,... 40-6 transmits power from the expander side to the output shaft 44 side of the speed reducer 43 only when doing positive work with respect to the output shaft 44. When the power from the expander side is 0 or only negative work is possible with respect to the output shaft 44 of 43, the power is not transmitted from the output shaft 44 side of the speed reducer 43 to the expander side. .

また、蒸気発生器3には、復水ポンプ8から供給された水の量を検出する液面検出装置49が装着されており、該液面検出装置49により検出した液面データを制御装置31に入力するようになっている。制御装置31は、検出した液面データに基づき、所定の液面を保つように、復水ポンプ8に作動指令を出し、復水ポンプ8による吐出量を制御する。   The steam generator 3 is equipped with a liquid level detection device 49 for detecting the amount of water supplied from the condensate pump 8, and the liquid level data detected by the liquid level detection device 49 is controlled by the control device 31. To enter. Based on the detected liquid level data, the control device 31 issues an operation command to the condensate pump 8 so as to maintain a predetermined liquid level, and controls the discharge amount by the condensate pump 8.

なお、各容積形膨張機5-1、…5-6の運転に関し、各容積形膨張機5-1、…5-6が、変速機43の出力軸44に対して正の仕事をする状態になるまでは、対応する蒸気開閉弁15-1、…15-6は開かないようになっている。   Regarding the operation of each positive displacement expander 5-1,..., 5-6, each positive displacement expander 5-1,... 5-6 performs positive work on the output shaft 44 of the transmission 43. The corresponding steam on-off valves 15-1,... 15-6 are not opened until.

本実施の形態によると、内燃機関1によって定められた出力軸44の回転速度と供給される蒸気圧に見合った出力(機械動力)が回収でき、また、内燃機関1の排気熱量が減少してもそれに見合った量の蒸気量が蒸気通路13及び分岐通路13a内を安定的に流れ、内燃機関の広い負荷範囲において効率よく動力回収ができる。なお、本実施の形態は、内燃機関が一定回転の機械負荷や発電機負荷を駆動している場合に適している。   According to the present embodiment, the output (mechanical power) corresponding to the rotation speed of the output shaft 44 determined by the internal combustion engine 1 and the supplied steam pressure can be recovered, and the exhaust heat quantity of the internal combustion engine 1 is reduced. However, the amount of steam commensurate with it flows stably in the steam passage 13 and the branch passage 13a, and power can be recovered efficiently over a wide load range of the internal combustion engine. The present embodiment is suitable when the internal combustion engine is driving a mechanical load or a generator load with a constant rotation.

[第3の実施の形態]
図5は第3の実施の形態であり、前記図4の第2の実施の形態のワンウエイクラッチに代えて、電磁クラッチ51-1、…51-6を、対応する容積形膨張機5−1、…5−6の動力取出部にそれぞれ連結した構造であり、各電磁クラッチ51-1、…51-6は制御装置31に電気的に接続されている。また、前記図4と同じ部品及び部材には、同じ符号(番号)を付し、詳しい説明は省略する。
[Third Embodiment]
FIG. 5 shows a third embodiment. Instead of the one-way clutch of the second embodiment shown in FIG. 4, the electromagnetic clutches 51-1 to 51-6 are replaced with corresponding positive displacement expanders 5-1. ,..., 5-6 are connected to the power take-out portions, and the electromagnetic clutches 51-1 to 51-6 are electrically connected to the control device 31. The same parts and members as those in FIG. 4 are denoted by the same reference numerals (numbers), and detailed description thereof is omitted.

各容積形膨張機5−1、…5−6の動力取出部には回転速度検出手段52-1、…52-6がそれぞれ設けられ、検出した各容積形膨張機5−1、…5−6の回転速度を制御装置31に入力するようになっている。   Rotational speed detecting means 52-1 to 52-6 are respectively provided in the power take-out portions of the positive displacement expanders 5-1,... 5-6, and the detected positive displacement expanders 5-1,. 6 is input to the control device 31.

制御装置31は、回転速度検出手段52-1、…52-6により検出した回転速度が、所定の回転速度、たとえば減速機43の出力軸44に正の仕事を行うことができる回転速度に達した時に、対応する電磁クラッチ51-1等を接続し、変速機43の出力軸44に巻掛動力伝達機構41を介して動力を伝達する。   In the control device 31, the rotational speed detected by the rotational speed detecting means 52-1 to 52-6 reaches a predetermined rotational speed, for example, a rotational speed at which the output shaft 44 of the speed reducer 43 can perform positive work. At this time, the corresponding electromagnetic clutch 51-1 or the like is connected, and power is transmitted to the output shaft 44 of the transmission 43 via the winding power transmission mechanism 41.

この実施の形態の構造も、前記第2の実施の形態と同様、内燃機関が一定回転の機械負荷や発電機負荷を駆動している場合に適する。   Similar to the second embodiment, the structure of this embodiment is also suitable when the internal combustion engine is driving a mechanical load or a generator load of constant rotation.

[第4の実施の形態]
図6は第4の実施の形態であり、前記図4の第2の実施の形態の構成に加え、動力伝達機構41の被駆動部と内燃機関1の減速機43の出力軸44との間に、ベルト式等の無段変速機60を配置すると共に、動力伝達機構41に回転速度検出手段61を設けている。該回転速度検出手段61及び無段変速機60は、制御装置31に電気的に接続されている。前記図4と同じ部品及び部材には、同じ符号(番号)を付し、詳しい説明は省略する。
[Fourth Embodiment]
FIG. 6 shows a fourth embodiment. In addition to the configuration of the second embodiment shown in FIG. 4, the distance between the driven portion of the power transmission mechanism 41 and the output shaft 44 of the speed reducer 43 of the internal combustion engine 1. In addition, a continuously variable transmission 60 such as a belt type is disposed, and a rotational speed detecting means 61 is provided in the power transmission mechanism 41. The rotational speed detecting means 61 and the continuously variable transmission 60 are electrically connected to the control device 31. The same parts and members as those in FIG. 4 are denoted by the same reference numerals (numbers), and detailed description thereof is omitted.

各回転速度検出手段47、61により、内燃機関1の出力軸44の回転速度と動力伝達機構41の駆動部側の回転速度とを検出し、制御装置31により、両回転速度を比較し、動力伝達機構41の回転速度が、内燃機関の1の出力軸44の回転速度と一致又は少し大きくなる速度まで変速するように、無段変速機60の変速比を変更する。   The rotational speed detection means 47 and 61 detect the rotational speed of the output shaft 44 of the internal combustion engine 1 and the rotational speed on the drive unit side of the power transmission mechanism 41, and the control device 31 compares both rotational speeds to determine the power. The gear ratio of the continuously variable transmission 60 is changed so that the rotational speed of the transmission mechanism 41 shifts to a speed that matches or slightly increases the rotational speed of the output shaft 44 of the internal combustion engine 1.

すなわち、内燃機関1の出力軸44の回転速度が変化した場合でも、無段変速機60の変速比を変更することにより、容積形膨張機5-1、…5-6の回転速度を変えることなく、動力を効率良く回収できるようになっている。   That is, even when the rotational speed of the output shaft 44 of the internal combustion engine 1 is changed, the rotational speed of the positive displacement expander 5-1,... 5-6 is changed by changing the speed ratio of the continuously variable transmission 60. The power can be recovered efficiently.

該実施の形態は、船舶推進用のプロペラ等を駆動する舶用主機関に適している。すなわち、負荷部45としてプロペラを備え、船舶の航行速度を変更するために、プロペラ45の回転速度を変更しても、内燃機関1の排気熱を効率良く回収できるのである。   The embodiment is suitable for a marine main engine that drives a propeller for marine propulsion and the like. In other words, even if the rotation speed of the propeller 45 is changed in order to change the navigation speed of the ship with a propeller as the load portion 45, the exhaust heat of the internal combustion engine 1 can be efficiently recovered.

[第5の実施の形態]
図7は第5の実施の形態であり、各容積形膨張機5-1…5-6の動力を、電気出力として回収する構成である。内燃機関1は同期発電機70に連結されており、該同期発電機70はスイッチ71を介して電力供給ライン72に電気的に接続されている。同期発電機70には、該同期発電機70の回転速度を検出するための回転速度検出装置73が設けられ、該回転速度検出手段73は内燃機関1の燃料調量装置46に接続され、同期発電機70の回転速度が略一定値となるように燃料を調量する。各容積形膨張機5-1、…5-6の動力取出部には誘電発電機9-1、…9-6がそれぞれ連結され、各誘電発電機9-1、…9-6はそれぞれスイッチ10-1、…10-6を介して電力供給ライン72に接続されている。各誘電発電機9-1、…9-6には、回転速度検出手段75-1、…75-6がそれぞれ設けられ、検出した発電機回転速度を制御装置31に入力するようになっている。その他の構造は、図1の第1の実施の形態と同じであり、同じ部品には同じ符号を付してある。
[Fifth Embodiment]
FIG. 7 shows a fifth embodiment in which the power of each positive displacement expander 5-1 to 5-6 is collected as an electrical output. The internal combustion engine 1 is coupled to a synchronous generator 70, and the synchronous generator 70 is electrically connected to a power supply line 72 via a switch 71. The synchronous generator 70 is provided with a rotational speed detection device 73 for detecting the rotational speed of the synchronous generator 70, and the rotational speed detection means 73 is connected to the fuel metering device 46 of the internal combustion engine 1 to synchronize. The fuel is metered so that the rotational speed of the generator 70 becomes a substantially constant value. Dielectric generators 9-1,... 9-6 are respectively connected to the power take-out portions of the positive displacement expanders 5-1,... 5-6, and the dielectric generators 9-1,. 10-1 through 10-6 are connected to the power supply line 72. Each of the dielectric generators 9-1,... 9-6 is provided with rotational speed detecting means 75-1,... 75-6, and the detected generator rotational speed is input to the control device 31. . Other structures are the same as those of the first embodiment in FIG. 1, and the same components are denoted by the same reference numerals.

同期発電機70は、一定の周波数を得るために、前述のように同期発電機70に設けられた回転速度検出手段73から得られた回転速度と燃料調量装置46とにより、負荷に応じて燃料量を調整し、一定回転速度で内燃機関1を運転する。   In order to obtain a constant frequency, the synchronous generator 70 depends on the load by the rotational speed obtained from the rotational speed detecting means 73 provided in the synchronous generator 70 and the fuel metering device 46 as described above. The internal combustion engine 1 is operated at a constant rotational speed by adjusting the fuel amount.

必要な発電量の増減に伴い、内燃機関1の排気装置2に排出される排気ガスの温度が上下し、蒸気発生器3内で発生する蒸気量は増減する。このような蒸気量の増減に対し、前記第1の実施の形態で説明した作用と同様に、蒸気開閉弁15-1、…15-6の開く個数を増減し、膨張機運転台数を増減する。たとえば、蒸気量が増加して、蒸気開閉弁5-1、…5-6のうち、新たに一個の蒸気開閉弁15-(n+1)を開いた時に、新たに追加される膨張機5-(n+1)に連結された誘導発電機9-(n+1)の回転速度を、回転速度検出手段75-(n+1)により検出し、同期速度付近まで上昇した時に、電気スイッチ10-(n+1)を入れるように制御する。反対に、蒸気量が減少して、蒸気開閉弁5-1、…5-6のうち、一個の蒸気開閉弁15-nを閉じた時には、対応するスイッチ10-nを切断する。   As the required power generation amount increases or decreases, the temperature of the exhaust gas discharged to the exhaust device 2 of the internal combustion engine 1 increases or decreases, and the amount of steam generated in the steam generator 3 increases or decreases. For such an increase / decrease in the amount of steam, similarly to the operation described in the first embodiment, the number of the open / close valves 15-1,. . For example, when the amount of steam is increased and one of the steam on / off valves 5-1 to 5-6 is newly opened, the expander 5- ( The rotational speed of the induction generator 9- (n + 1) connected to n + 1) is detected by the rotational speed detecting means 75- (n + 1), and when the speed rises to near the synchronous speed, the electric switch 10- (n + 1) is turned on. To control. On the other hand, when the amount of steam decreases and one of the steam on / off valves 5-1 to 5-6 is closed, the corresponding switch 10-n is disconnected.

この実施の形態は、部分負荷運転もあるような、舶用補機関などの発電装置に適している。   This embodiment is suitable for a power generation apparatus such as a marine auxiliary engine that has partial load operation.

[第6の実施の形態]
図8は第6の実施の形態であり、前記図7の第5の実施の形態のように、内燃機関1の排気熱から電気出力を回収する高圧系のランキンサイクルシステムを備えると共に、内燃機関1の冷却水の廃熱から電気出力を回収する低圧系のランキンサイクルシステムを備えている。前記図7と同じ部品には同じ符号を付し、詳しい説明は省略する。
[Sixth Embodiment]
FIG. 8 shows a sixth embodiment. As in the fifth embodiment shown in FIG. 7, the internal combustion engine includes a high-pressure Rankine cycle system that recovers electrical output from the exhaust heat of the internal combustion engine 1. It has a low-pressure Rankine cycle system that recovers electrical output from the waste heat of one cooling water. The same parts as those in FIG.

内燃機関1の冷却水を利用した低圧系のランキンサイクルシステムは、前記排気熱を利用した高圧系と同様に、たとえば6台の容積形膨張機85-1、…85-6と、各容積形膨張機用の6個の蒸気開閉弁86-1、…86-6と、1個の凝縮器87と、1個の復水ポンプ88と、を備え、各容積形膨張機85-1、…85-6の動力取出部には誘導発電機89-1、…89-6がそれぞれ連結され、各誘導発電機89-1、…89-6は、それぞれ電気スイッチ90-1、…90-6を介して共通の電力供給ライン72に電気的に接続されている。また、前記各容積形膨張機85-1、…85-6と並列に、安全弁91及び安全弁用蒸気開閉弁92が備えられ、制御機器として、各誘導発電機89-1、…89-6にはそれぞれ回転速度検出手段93-1、…93-6が設けられている。   The low-pressure Rankine cycle system using the cooling water of the internal combustion engine 1 has, for example, six positive displacement expanders 85-1,... 85-6, and each positive displacement type, similar to the high-pressure system using the exhaust heat. Six steam on-off valves 86-1 for the expander, 86-6, ... 86-6, one condenser 87, and one condensate pump 88, each of the positive displacement expanders 85-1, ... 85-6 are connected to induction generators 89-1, ... 89-6, respectively, and the induction generators 89-1, ... 89-6 are connected to electrical switches 90-1, ... 90-6, respectively. Are electrically connected to a common power supply line 72. In addition, a safety valve 91 and a safety valve steam opening / closing valve 92 are provided in parallel with the positive displacement expanders 85-1,... 85-6, and the induction generators 89-1,. Are provided with rotational speed detecting means 93-1,... 93-6, respectively.

低圧系の蒸気発生器として、内燃機関1の冷却が必要な機関部分(シリンダ等)81より上部に、蒸発タンク(蒸気発生器)82が設けられ、機関内部で発生した蒸気を蒸発タンク82内に導くようにしてある。蒸発タンク82は蒸気通路84を介して前記各蒸気開閉弁86-1、…86-6、91に接続されている。また、蒸発タンク82には液面検出装置83が取り付けられており、該液面検出装置83からの液面信号により、復水ポンプ88の流量を制御するようになっている。   As a low-pressure steam generator, an evaporation tank (steam generator) 82 is provided above an engine portion (cylinder or the like) 81 that requires cooling of the internal combustion engine 1, and the steam generated inside the engine is stored in the evaporation tank 82. To guide you. The evaporation tank 82 is connected to each of the steam on-off valves 86-1,... 86-6, 91 through a steam passage 84. A liquid level detector 83 is attached to the evaporation tank 82, and the flow rate of the condensate pump 88 is controlled by a liquid level signal from the liquid level detector 83.

低圧系の複数の蒸気開閉弁86-1、…86-6、92の開閉制御は、内燃機関1の排気熱を利用した高圧系の膨張機5-1、5-2、…5-6の制御と同じである。   The open / close control of the plurality of low-pressure steam on-off valves 86-1,... 86-6, 92 is performed by the high-pressure expanders 5-1, 5-2,. Same as control.

該実施の形態によると、単一の内燃機関1を備えたランキンサイクル動力回収システムにおいて、内燃機関1の負荷変動に応じて、排気熱を利用した高圧系のランキンサイクルシステムからも、冷却水の廃熱を利用した低圧系のランキンサイクルシステムからも、効率良く電力回収ができる。   According to this embodiment, in the Rankine cycle power recovery system including a single internal combustion engine 1, the cooling water is also supplied from the high-pressure Rankine cycle system using exhaust heat according to the load fluctuation of the internal combustion engine 1. Power can also be efficiently recovered from low-pressure Rankine cycle systems that use waste heat.

[その他の実施の形態]
(1)前記図1の第1の実施の形態では、図2に示すように、各膨張機運転台数に対応する蒸気圧上限値PH1、PH2、PH3、PH4、PH5、PH6を、略等しい値に設定しているが、PH1<PH2<PH3<PH4<PH5<PH6の関係に設定することも可能である。すなわち、PH1からPH6にいくに従い、蒸気上限値が少しずつ高くなるように設定することも可能である。
[Other embodiments]
(1) In the first embodiment of FIG. 1, as shown in FIG. 2, the vapor pressure upper limit values PH1, PH2, PH3, PH4, PH5, PH6 corresponding to the number of operating expanders are substantially equal. However, it is also possible to set the relationship PH1 <PH2 <PH3 <PH4 <PH5 <PH6. That is, it is possible to set the steam upper limit value to be gradually increased as it goes from PH1 to PH6.

(2)前記各実施の形態は、容積形膨張機で利用した蒸気を凝縮し、再度利用する蒸気循環型であるが、本発明は、凝縮器を利用せずに、容積形膨張機で利用した蒸気は廃棄し、蒸気発生器へ新たな蒸気を供給する開放型にも適用可能である。 (2) Although each said embodiment is a steam circulation type which condenses the vapor | steam utilized with the positive displacement expander and uses again, this invention is utilized with a positive displacement expander without utilizing a condenser. It is also applicable to an open type that discards the steam and supplies new steam to the steam generator.

(2)図8及び図9の第5及び第6の実施の形態では、蒸気発生器3及び蒸発タンク83により発生した蒸気の全てを容積形膨張機5-1、5-2、…5-6にて使用する構成であるが、その他の蒸気使用機器と並列に使う場合にも適用できる。その場合は、電力変換効率の高い熱電可変システムとなる。 (2) In the fifth and sixth embodiments shown in FIGS. 8 and 9, all the steam generated by the steam generator 3 and the evaporation tank 83 is removed from the positive displacement expanders 5-1, 5-2,. Although it is the structure used in No. 6, it is applicable also when using in parallel with other steam using equipment. In that case, it becomes a thermoelectric variable system with high power conversion efficiency.

本発明によるランキンサイクル動力回収装置の第1の実施の形態を示す配管略図である。1 is a schematic piping diagram showing a first embodiment of a Rankine cycle power recovery device according to the present invention. 蒸気熱量の変化に対する蒸気圧力及び膨張機運転台数の変化を示す図である。It is a figure which shows the change of the steam pressure with respect to the change of steam calorie | heat amount, and the number of expansion machine operation. 複数の膨張機を備えたランキンサイクル動力回収システムにおける蒸気熱量の変化に対するランキンサイクル効率の変化を示しており、理論効率と膨張機有効効率を考慮したランキンサイクル効率とを比較した図である。It is the figure which showed the change of Rankine cycle efficiency with respect to the change of steam calorie | heat amount in the Rankine cycle power recovery system provided with the some expander, and compared the Rankine cycle efficiency in consideration of the expander effective efficiency. 本発明によるランキンサイクル動力回収装置の第2の実施の形態を示す配管略図である。It is piping schematic which shows 2nd Embodiment of the Rankine cycle power recovery device by this invention. 本発明によるランキンサイクル動力回収装置の第3の実施の形態を示す配管略図である。It is piping schematic which shows 3rd Embodiment of the Rankine cycle power recovery device by this invention. 本発明によるランキンサイクル動力回収装置の第4の実施の形態を示す配管略図である。It is piping schematic which shows 4th Embodiment of the Rankine cycle power recovery device by this invention. 本発明によるランキンサイクル動力回収装置の第5の実施の形態を示す配管略図である。It is piping schematic which shows 5th Embodiment of the Rankine cycle power recovery device by this invention. 本発明によるランキンサイクル動力回収装置の第6の実施の形態を示す配管略図である。It is piping schematic which shows 6th Embodiment of the Rankine cycle power recovery device by this invention. 従来例の配管略図である。It is a piping schematic diagram of a conventional example. 別の従来例の配管略図である。It is a piping schematic diagram of another conventional example. 容積形膨張機の一般的な設計点外性能を示す図である。It is a figure which shows the general off-design performance of a positive displacement expander. 回転速度が一定の条件において、1台の容積形膨張機の蒸気熱量の変化に対する蒸気圧及び蒸気出口圧力の変化を示す図である。It is a figure which shows the change of the vapor | steam pressure with respect to the change of the steam calorie | heat amount of one positive displacement expander on conditions with a constant rotational speed, and a steam exit pressure. 単一の膨張機を備えたランキンサイクル動力回収システムにおける蒸気熱量の変化に対するランキンサイクル効率の変化を示しており、理論効率と膨張機有効効率を考慮したランキンサイクル効率とを比較した図である。It is the figure which showed the change of Rankine cycle efficiency with respect to the change of steam calorie | heat amount in the Rankine cycle power recovery system provided with the single expander, and compared the Rankine cycle efficiency which considered the expander effective efficiency.

符号の説明Explanation of symbols

1 内燃機関
2 排気装置
3 蒸気発生器
7 凝縮器
8 復水ポンプ
5-1、5-2、…5-6 容積形膨張機
9-1、9-2、…9-6 誘導発電機
10-1、10-2、…10-6 スイッチ
15-1、15-2、…15-6 蒸気開閉弁
30 蒸気圧検出手段
31 制御装置
82 低圧系の蒸発タンク(低圧系蒸気発生器)
85-1、…85-6 低圧系の容積形膨張機
86-1、…86-6 低圧系の蒸気開閉弁
87 低圧系の凝縮器
88 低圧系の復水ポンプ
89-1、89-2、…89-6 低圧系の誘導発電機
90-1、90-2、…90-6 低圧系のスイッチ
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Exhaust device 3 Steam generator 7 Condenser 8 Condensate pump 5-1, 5-2, ... 5-6 Positive displacement expander 9-1, 9-2, ... 9-6 Induction generator 10- DESCRIPTION OF SYMBOLS 1, 10-2, ... 10-6 switch 15-1, 15-2, ... 15-6 Steam on-off valve 30 Steam pressure detection means 31 Control apparatus 82 Low pressure system evaporation tank (low pressure system steam generator)
85-1, ... 85-6 Low-pressure type positive displacement expander 86-1, ... 86-6 Low-pressure system steam on-off valve 87 Low-pressure system condenser 88 Low-pressure system condensate pump 89-1, 89-2, ... 89-6 Low voltage system induction generator 90-1, 90-2, ... 90-6 Low voltage system switch

Claims (6)

一つの蒸気発生器に対し、蒸気により駆動する複数の膨張機を接続し、該各膨張機の出力を、回転数が拘束される共通の負荷部に利用するランキンサイクル動力回収装置において、
前記膨張機として、前記蒸気発生器に並列に接続される複数の容積形膨張機を備え、
前記各容積形膨張機の蒸気入口の蒸気上流側に蒸気開閉弁をそれぞれ備え、
前記蒸気発生器により発生する蒸気の圧力を検出する蒸気圧力検出手段を備え、
前記容積形膨張機の運転台数を認識する膨張機運転台数認識手段を備え、
前記各蒸気開閉弁を開閉することにより膨張機運転台数を制御する制御装置を備え、
該制御装置は、膨張機運転台数毎に適正蒸気圧力範囲が予め記憶されており、前記蒸気圧力検出手段により検出した蒸気圧力と、前記膨張機運転台数認識手段によって認識された膨張機運転台数に対応する前記適正蒸気圧力範囲とを比較し、前記検出蒸気圧力が前記適正蒸気圧力範囲の上限値を超えた場合は膨張機運転台数を増加させ、前記検出蒸気圧力が前記適正蒸気圧力範囲の下限値を下回った場合は膨張機運転台数を減らすように、前記蒸気開閉弁の開閉を制御することを特徴とするランキンサイクル動力回収装置。
In a Rankine cycle power recovery device that connects a plurality of expanders driven by steam to a single steam generator, and uses the output of each expander for a common load portion in which the rotational speed is restricted,
As the expander, comprising a plurality of positive displacement expanders connected in parallel to the steam generator,
A steam on-off valve is provided on the steam upstream side of the steam inlet of each positive displacement expander,
Steam pressure detection means for detecting the pressure of the steam generated by the steam generator;
An expander operation number recognition means for recognizing the number of operation of the positive displacement expander;
Comprising a control device for controlling the number of expander operations by opening and closing each of the steam on-off valves,
The controller stores in advance an appropriate steam pressure range for each number of expander operations, and determines the steam pressure detected by the steam pressure detection means and the number of expander operations recognized by the expander operation number recognition means. Compared with the corresponding appropriate steam pressure range, if the detected steam pressure exceeds the upper limit value of the appropriate steam pressure range, the number of expander operation is increased, the detected steam pressure is the lower limit of the appropriate steam pressure range A Rankine cycle power recovery device that controls the opening and closing of the steam on-off valves so as to reduce the number of operating expanders when the value is below the value.
請求項1記載のランキンサイクル動力回収装置において、
前記蒸気発生器の熱源として内燃機関の排気熱を前記蒸気発生器内に導入し、
前記内燃機関の出力部と前記各容積形膨張機の動力取出部とを、前記各容積形膨張機側から前記内燃機関側へのみ動力伝達可能なワンウエイクラッチ及び動力伝達機構により連結していることを特徴とするランキンサイクル動力回収装置。
In the Rankine cycle power recovery device according to claim 1,
Introducing exhaust heat of the internal combustion engine into the steam generator as a heat source of the steam generator;
The output part of the internal combustion engine and the power take-out part of each positive displacement expander are connected by a one-way clutch and a power transmission mechanism capable of transmitting power only from the positive displacement expander side to the internal combustion engine side. Rankine cycle power recovery device characterized by.
請求項1記載のランキンサイクル動力回収装置において、
前記蒸気発生器の熱源として内燃機関の排気熱を前記蒸気発生器内に導入し、
前記内燃機関の出力部と前記各容積形膨張機の動力取出部とを、電磁クラッチ及び動力伝達機構により連結していることを特徴とするランキンサイクル動力回収装置。
In the Rankine cycle power recovery device according to claim 1,
Introducing exhaust heat of the internal combustion engine into the steam generator as a heat source of the steam generator;
The Rankine cycle power recovery device, wherein an output part of the internal combustion engine and a power take-off part of each positive displacement expander are connected by an electromagnetic clutch and a power transmission mechanism.
請求項2又は3記載のランキンサイクル動力回収装置において、
前記内燃機関の出力部と前記各容積形膨張機の動力取出部との間に、動力伝達機構及び電磁クラッチ又はワンウエイクラッチに加え、変速機構を設けていることを特徴とするランキンサイクル動力回収装置。
In the Rankine cycle power recovery device according to claim 2 or 3,
A Rankine cycle power recovery device comprising a transmission mechanism in addition to a power transmission mechanism and an electromagnetic clutch or a one-way clutch between an output section of the internal combustion engine and a power take-out section of each positive displacement expander .
請求項1記載のランキンサイクル動力回収装置において、
前記蒸気発生器の熱源として内燃機関の排気熱を前記蒸気発生器内に導入し、
前記各容積形膨張機の動力取出部に誘導発電機をそれぞれ連結し、
前記共通の負荷部として、前記内燃機関に発電装置を連結し、
前記各誘導発電機を前記発電装置に電気的に接続していることを特徴とするランキンサイクル動力回収装置。
In the Rankine cycle power recovery device according to claim 1,
Introducing exhaust heat of the internal combustion engine into the steam generator as a heat source of the steam generator;
An induction generator is connected to the power take-out part of each positive displacement expander,
As the common load portion, a power generator is connected to the internal combustion engine,
The Rankine cycle power recovery device, wherein each induction generator is electrically connected to the power generator.
請求項5記載のランキンサイクル動力回収装置において、
前記内燃機関として水冷式内燃機関を備え、
前記内燃機関に、冷却水を蒸発させる低圧系蒸気発生器を備え、
前記低圧系蒸気発生器に並列に接続される複数の低圧系容積形膨張機を備え、
前記各低圧系容積形膨張機の蒸気入口の蒸気上流側に低圧系蒸気開閉弁をそれぞれ備え、
前記内燃機関の内部で発生した冷却水の蒸気の圧力を検出する低圧系蒸気圧力検出手段を備え、
前記低圧系容積形膨張機の運転台数を認識する低圧系膨張機運転台数認識手段を備え、
前記制御装置は、低圧系膨張機運転台数毎に適正蒸気圧力範囲が予め記憶されており、前記低圧系蒸気圧力検出手段により検出した蒸気圧力と、前記低圧系膨張機運転台数認識手段によって認識された低圧系膨張機運転台数に対応する前記適正蒸気圧力範囲とを比較し、前記検出蒸気圧力が前記適正蒸気圧力範囲の上限値を超えた場合は低圧系膨張機運転台数を増加させ、前記検出蒸気圧力が前記適正蒸気圧力範囲の下限値を下回った場合は低圧系膨張機運転台数を減らすように、前記各低圧系蒸気開閉弁を制御することを特徴とするランキンサイクル動力回収装置。
In the Rankine cycle power recovery device according to claim 5,
A water-cooled internal combustion engine is provided as the internal combustion engine,
The internal combustion engine includes a low-pressure steam generator that evaporates cooling water,
Comprising a plurality of low-pressure volumetric expanders connected in parallel to the low-pressure steam generator;
A low-pressure system steam on-off valve on the steam upstream side of the steam inlet of each low-pressure system positive displacement expander,
Low pressure system steam pressure detecting means for detecting the pressure of the steam of the cooling water generated inside the internal combustion engine,
Comprising low-pressure expander operating unit number recognizing means for recognizing the number of operating low-pressure type volume expanders,
In the control device, an appropriate steam pressure range is stored in advance for each number of operating low-pressure system expanders, and the steam pressure detected by the low-pressure system steam pressure detecting means is recognized by the low-pressure system expander operating number recognition means. Compared with the appropriate steam pressure range corresponding to the number of low-pressure system expanders operating, if the detected steam pressure exceeds the upper limit value of the appropriate steam pressure range, increase the number of low-pressure expander operations and detect A Rankine cycle power recovery device that controls each of the low-pressure system steam on / off valves so as to reduce the number of low-pressure system expanders when the steam pressure falls below a lower limit value of the appropriate steam pressure range.
JP2007008061A 2007-01-17 2007-01-17 Rankine cycle power recovery system Active JP4714159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008061A JP4714159B2 (en) 2007-01-17 2007-01-17 Rankine cycle power recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008061A JP4714159B2 (en) 2007-01-17 2007-01-17 Rankine cycle power recovery system

Publications (2)

Publication Number Publication Date
JP2008175108A true JP2008175108A (en) 2008-07-31
JP4714159B2 JP4714159B2 (en) 2011-06-29

Family

ID=39702305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008061A Active JP4714159B2 (en) 2007-01-17 2007-01-17 Rankine cycle power recovery system

Country Status (1)

Country Link
JP (1) JP4714159B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073951A1 (en) * 2008-12-25 2010-07-01 三菱重工業株式会社 Control method and control device for exhaust heat recovery system for marine vessel
JP2010216448A (en) * 2009-03-19 2010-09-30 Sanden Corp Waste heat utilization device for internal combustion engine
WO2011089997A1 (en) * 2010-01-21 2011-07-28 三菱重工業株式会社 Waste heat recovery power generation device and ship with same
WO2012053112A1 (en) * 2010-10-22 2012-04-26 三菱重工業株式会社 Propulsion device and ship with same
WO2013133174A1 (en) * 2012-03-07 2013-09-12 ヤンマー株式会社 Waste heat recovery system for vessel
WO2014104307A1 (en) * 2012-12-28 2014-07-03 三菱重工業株式会社 Power generation system and power generation method
WO2014104335A1 (en) * 2012-12-28 2014-07-03 三菱重工業株式会社 Power generation system
WO2014104297A1 (en) * 2012-12-28 2014-07-03 三菱重工業株式会社 Power generation system, and maintenance method for power generation system
WO2015119081A1 (en) * 2014-02-07 2015-08-13 いすゞ自動車株式会社 Waste heat recovery system
US20160376932A1 (en) * 2014-03-12 2016-12-29 Orcan Energy Ag Orc stack-system control
EP3112622A1 (en) 2015-06-30 2017-01-04 Anest Iwata Corporation Binary power generation system and binary power generation method
JP2017015016A (en) * 2015-07-01 2017-01-19 アネスト岩田株式会社 Power generation system and power generation method
JP2018035794A (en) * 2016-09-02 2018-03-08 株式会社Ihi回転機械エンジニアリング Binary power generation system
KR20180124229A (en) * 2017-05-11 2018-11-21 현대자동차주식회사 Waste heat recovery expander apparatus and waste heat recovery system
CN114562346A (en) * 2022-03-07 2022-05-31 天津大学 Parallel configuration power system of expansion machine
CN114753891A (en) * 2022-03-25 2022-07-15 北京精密机电控制设备研究所 Ultrahigh-speed turbine load self-adaptive speed stabilization control system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169402A (en) * 1980-05-31 1981-12-26 Toshiba Corp Frequency converting circuit
JPH05294861A (en) * 1992-04-14 1993-11-09 Shinenerugii Sangyo Gijutsu Sogo Kaihatsu Kiko Alcohol distillation unit equipped with both thermal recovery and mechanical power recovery devices
JP2001227616A (en) * 1999-12-08 2001-08-24 Honda Motor Co Ltd Driving device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169402A (en) * 1980-05-31 1981-12-26 Toshiba Corp Frequency converting circuit
JPH05294861A (en) * 1992-04-14 1993-11-09 Shinenerugii Sangyo Gijutsu Sogo Kaihatsu Kiko Alcohol distillation unit equipped with both thermal recovery and mechanical power recovery devices
JP2001227616A (en) * 1999-12-08 2001-08-24 Honda Motor Co Ltd Driving device

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073951A1 (en) * 2008-12-25 2010-07-01 三菱重工業株式会社 Control method and control device for exhaust heat recovery system for marine vessel
CN102265003A (en) * 2008-12-25 2011-11-30 三菱重工业株式会社 control method and control device for exhaust heat recovery system for marine vessel
JPWO2010073951A1 (en) * 2008-12-25 2012-06-14 三菱重工業株式会社 Control method and control device for marine exhaust heat recovery system
JP5047367B2 (en) * 2008-12-25 2012-10-10 三菱重工業株式会社 Control method and control device for marine exhaust heat recovery system
JP2010216448A (en) * 2009-03-19 2010-09-30 Sanden Corp Waste heat utilization device for internal combustion engine
WO2011089997A1 (en) * 2010-01-21 2011-07-28 三菱重工業株式会社 Waste heat recovery power generation device and ship with same
JP2011149332A (en) * 2010-01-21 2011-08-04 Mitsubishi Heavy Ind Ltd Exhaust heat recovery power generating device and ship with the same
WO2012053112A1 (en) * 2010-10-22 2012-04-26 三菱重工業株式会社 Propulsion device and ship with same
CN103052769A (en) * 2010-10-22 2013-04-17 三菱重工业株式会社 Propulsion device and ship with same
KR20140143390A (en) * 2012-03-07 2014-12-16 얀마 가부시키가이샤 Waste heat recovery system for vessel
CN104159820A (en) * 2012-03-07 2014-11-19 洋马株式会社 Waste heat recovery system for vessel
KR101973231B1 (en) 2012-03-07 2019-04-26 얀마 가부시키가이샤 Waste heat recovery system for vessel
CN104159820B (en) * 2012-03-07 2020-12-15 洋马动力科技有限公司 Waste heat recovery system for ship
WO2013133174A1 (en) * 2012-03-07 2013-09-12 ヤンマー株式会社 Waste heat recovery system for vessel
JP2013184566A (en) * 2012-03-07 2013-09-19 Yanmar Co Ltd Waste heat recovery system for vessel
US20150052896A1 (en) * 2012-03-07 2015-02-26 Yanmar Co., Ltd. Waste heat recovery system for vessel
US9598164B2 (en) * 2012-03-07 2017-03-21 Yanmar Co., Ltd. Waste heat recovery system for vessel
JP2014129798A (en) * 2012-12-28 2014-07-10 Mitsubishi Heavy Ind Ltd Power generation system
JP2014129797A (en) * 2012-12-28 2014-07-10 Mitsubishi Heavy Ind Ltd Power generation system and power generation method
JP2014129800A (en) * 2012-12-28 2014-07-10 Mitsubishi Heavy Ind Ltd Power generating system, and maintenance method of power generating system
WO2014104297A1 (en) * 2012-12-28 2014-07-03 三菱重工業株式会社 Power generation system, and maintenance method for power generation system
WO2014104335A1 (en) * 2012-12-28 2014-07-03 三菱重工業株式会社 Power generation system
CN104870760A (en) * 2012-12-28 2015-08-26 三菱重工业株式会社 Power generation system, and maintenance method for power generation system
US20150330259A1 (en) * 2012-12-28 2015-11-19 Mitsubishi Heavy Industries, Ltd. Power generation system, and maintenance method for power generation system
WO2014104307A1 (en) * 2012-12-28 2014-07-03 三菱重工業株式会社 Power generation system and power generation method
US9957844B2 (en) 2012-12-28 2018-05-01 Mitsubishi Heavy Industries, Ltd. Power generation system, and maintenance method for power generation system
US9810089B2 (en) 2012-12-28 2017-11-07 Mitsubishi Heavy Industries, Ltd. Power generation system
WO2015119081A1 (en) * 2014-02-07 2015-08-13 いすゞ自動車株式会社 Waste heat recovery system
US9819193B2 (en) 2014-02-07 2017-11-14 Isuzu Motors Limited Waste heat recovery system
JP2015148203A (en) * 2014-02-07 2015-08-20 いすゞ自動車株式会社 waste heat recovery system
CN105593476A (en) * 2014-02-07 2016-05-18 五十铃自动车株式会社 Waste heat recovery system
US10570782B2 (en) * 2014-03-12 2020-02-25 Orcan Energy Ag ORC stack-system control
US20160376932A1 (en) * 2014-03-12 2016-12-29 Orcan Energy Ag Orc stack-system control
EP3112622A1 (en) 2015-06-30 2017-01-04 Anest Iwata Corporation Binary power generation system and binary power generation method
JP2017015016A (en) * 2015-07-01 2017-01-19 アネスト岩田株式会社 Power generation system and power generation method
JP2018035794A (en) * 2016-09-02 2018-03-08 株式会社Ihi回転機械エンジニアリング Binary power generation system
KR20180124229A (en) * 2017-05-11 2018-11-21 현대자동차주식회사 Waste heat recovery expander apparatus and waste heat recovery system
KR102348113B1 (en) 2017-05-11 2022-01-07 현대자동차주식회사 Waste heat recovery expander apparatus and waste heat recovery system
CN114562346A (en) * 2022-03-07 2022-05-31 天津大学 Parallel configuration power system of expansion machine
CN114562346B (en) * 2022-03-07 2023-10-10 天津大学 Parallel configuration power system of expander
CN114753891A (en) * 2022-03-25 2022-07-15 北京精密机电控制设备研究所 Ultrahigh-speed turbine load self-adaptive speed stabilization control system and method
CN114753891B (en) * 2022-03-25 2024-02-09 北京精密机电控制设备研究所 Self-adaptive speed stabilizing control system and method for load of ultra-high speed turbine

Also Published As

Publication number Publication date
JP4714159B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4714159B2 (en) Rankine cycle power recovery system
US9926813B2 (en) Heat energy distribution systems and methods for power recovery
US9890664B2 (en) Integrated power, cooling, and heating apparatus utilizing waste heat recovery
CA2589781C (en) Method and apparatus for power generation using waste heat
US20050056001A1 (en) Power generation plant
US7637108B1 (en) Power compounder
KR101234466B1 (en) Turbo compound system and method for operating same
US20060112692A1 (en) Rankine cycle device having multiple turbo-generators
CN104220715A (en) Method of driving a CO2 compressor of a CO2-capture system using waste heat from an internal combustion engine
JP5829814B2 (en) Marine power generation system
JP6489856B2 (en) Waste heat recovery device, waste heat recovery type ship propulsion device, and waste heat recovery method
EP3093456B1 (en) Heat energy recovery system
KR101814878B1 (en) Ship propulsion system and method of operation of ship and ship propulsion system
EP3354869B1 (en) Waste heat recovery equipment, internal combustion engine system, ship, and waste heat recovery method
US10669898B2 (en) Control of ORC processes by injecting unevaporated fluid
WO2013151079A1 (en) Rankine cycle device
JP5563052B2 (en) Waste heat recovery system and waste heat recovery method
JP6552913B2 (en) Control device for power generation system, power generation system, and power generation method
EP2824029A1 (en) Waste heat recovery system for vessel
US20120038173A1 (en) Method, system and apparatus for providing water to a heat engine via a dammed water source
KR101922026B1 (en) Energy saving system for using waste heat of ship
JP2711085B2 (en) Gas turbine equipment
CN103089353A (en) Method and control unit for operating a line circuit for waste heat utilization of an internal combustion engine
JP2019094802A (en) Exhaust heat recovery system of marine engine, and control method of exhaust heat recovery system of marine engine
WO2020241543A1 (en) Gas turbine, method for controlling same, and combined cycle plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110325