WO2011089330A1 - Dispositif de post - traitement des gaz d'echappement d'un moteur a combustion interne - Google Patents

Dispositif de post - traitement des gaz d'echappement d'un moteur a combustion interne Download PDF

Info

Publication number
WO2011089330A1
WO2011089330A1 PCT/FR2010/052765 FR2010052765W WO2011089330A1 WO 2011089330 A1 WO2011089330 A1 WO 2011089330A1 FR 2010052765 W FR2010052765 W FR 2010052765W WO 2011089330 A1 WO2011089330 A1 WO 2011089330A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
nitrogen oxides
selective catalytic
catalytic reduction
reducing agent
Prior art date
Application number
PCT/FR2010/052765
Other languages
English (en)
Inventor
Thomas Le Tallec
Julien Chapel
Nicolas Ferrand
Mehdi Ferhan
Original Assignee
Peugeot Citroën Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43631991&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011089330(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from FR1050453A external-priority patent/FR2955612B1/fr
Priority claimed from FR1054080A external-priority patent/FR2960593B1/fr
Application filed by Peugeot Citroën Automobiles SA filed Critical Peugeot Citroën Automobiles SA
Priority to CN201080065803.5A priority Critical patent/CN102822464B/zh
Priority to EP10809286.7A priority patent/EP2529091B1/fr
Priority to ES10809286.7T priority patent/ES2569923T3/es
Publication of WO2011089330A1 publication Critical patent/WO2011089330A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/40Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a hydrolysis catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • F01N2340/02Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the distance of the apparatus to the engine, or the distance between two exhaust treating apparatuses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to the field of means for treating pollutants from the exhaust gases of combustion engines.
  • An oxidation catalyst allows the treatment of carbon monoxide, unburned hydrocarbons, and under certain conditions nitrogen oxides; a particulate filter can be used for the treatment of soot particles.
  • After-treatment means of the exhaust gases.
  • a specific post-treatment system can be introduced into the exhaust line of vehicles, including vehicles equipped with diesel engines.
  • SCR selective catalytic reduction technologies
  • a reducing agent or a precursor of such a reducing agent
  • It may for example be a urea solution, the decomposition of which will make it possible to obtain ammonia which will serve as a reducing agent, but also of a reducing agent or a precursor of such a reducing agent. gaseous form.
  • a "reducing agent” will generally be used to designate a reducing agent or a reducing agent precursor.
  • the reducing agent generated makes it possible to reduce the nitrogen oxides by reaction in an SCR catalyst, that is to say a substrate carrying a catalytic impregnation able to promote the reduction of NOx by the reducing agent.
  • the selective catalytic reduction technologies have the advantage of allowing a very high level of conversion of the nitrogen oxides.
  • SCR catalysis requires the addition of a catalytic substrate in the exhaust line, as well as a means for introducing the reducer into the exhaust gas, which may for example be an injector reducer.
  • the SCR catalyst is placed under the vehicle body, away from the engine because the injected reducer needs a long path in the exhaust line to decompose on the one hand, and sufficient free volumes for to set up on the other hand. If the distance traveled by the reducer is not sufficient the risk of clogging of the exhaust line is important.
  • the SCR catalyst may not be active from the first seconds of operation of the vehicle, and then let pass a large amount of untreated nitrogen oxides.
  • the gearbox injector which requires reaching a certain temperature level to be operational (sufficient initiation of decomposition of the urea precursor (Adblue®) or preheating of the reducer delivery system (gas) ), suffers from this distance from the outlet of the exhaust manifold.
  • this problem is solved by proposing a set of post-treatment grouping in a compact module the treatment of HC and CO, and the treatment of NOx by selective catalytic reduction, and allowing, according to the variant of the invention. considered, implantation in the space under the bonnet of a motor vehicle.
  • this device is optimized in the invention to prevent watering of the oxidation catalyst by reducing agent by adopting an SCR pre-catalyst positioned between the oxidation catalyst and the gearing introduction means. in the exhaust /
  • the invention relates to a device for post-treatment of the exhaust gases of a combustion engine comprising, according to the direction of flow of the engine exhaust gas:
  • a mouth of a reducing agent introducing means or precursor of a reducing agent for the selective catalytic reduction of nitrogen oxides which may for example be the head of an injector.
  • a compact nitrogen oxide treatment device is thus proposed in a single "canning" or envelope.
  • Such a configuration contributes to reducing the installation volume of all the post-processing means of a combustion engine, which is fundamental for example in an automotive application.
  • the post-processing device can for example be installed in the under-bonnet of a motor vehicle. This leads to a reconciliation of the engine after-treatment device, generating a virtuous circle in the design of the device: the elements of the after-treatment device, being arranged near the outlet of the combustion chambers of the engine (under hood and not underbody in an automotive application), enjoy thermal conditions favorable to optimal operation, which allows to reduce the size to achieve the same processing efficiency, compared to a device implanted under the box.
  • the device further comprises a pre-catalyst for selective catalytic reduction of nitrogen oxides between the oxidation catalyst and the mouth.
  • the pre-catalyst for the selective catalytic reduction of the nitrogen oxides thus disposed allows the reduction of at least a portion of the nitrogen oxides present in the exhaust gas by the catalytic bread located upstream of the mouthpiece means for introducing reducing agent or reducing precursor, namely the selective catalytic reduction pre-catalyst and no longer the oxidation catalyst.
  • the selective catalytic reduction pre-catalyst nitrogen oxides consists of a bread of a length (measured in the direction of flow of the exhaust gas) less than 30mm, and preferably between 20 mm and 30 mm. This length being generally lower than the other dimensions of the bread, one can also speak of "thickness" of the pre-catalyst.
  • the pre-catalyst for the selective catalytic reduction of nitrogen oxides may in particular have a thickness of 1 inch (25.4 mm), a unit of length generally used in the field of post-treatment of automobile exhaust gases. Such a short length is nevertheless sufficient to cancel the risk of contact of the reducer on the oxidation catalyst, hydrolyze the reducing precursor which would be injected at reflux, while remaining within industrial feasibility limits.
  • the pre-catalyst may in particular have the same general characteristics (substrate material and / or cell density and / or wall thickness and / or catalytic coating) as the selective reduction catalyst of nitrogen oxides used in the process. 'invention.
  • the reducing agent precursor in the context of a selective catalytic reduction device of the nitrogen oxides involving urea, in contact with this catalytic wafer is then hydrolysed and which then allows its conversion into NH 3 which will, in turn, be used for NOx post-treatment.
  • the pre-catalyst may also allow, depending on the application in question, to reduce the length of the selective catalytic reduction catalyst of the nitrogen oxides (because part of the treatment is supported by the catalytic reduction pre-catalyst selective).
  • the oxidation catalyst has a cell density of between 62 and 140 cells per square centimeter, and preferably of the order of 93 cells per square centimeter.
  • the cell density corresponds to the number of cells or "channels" formed in the catalyst per unit area, is observed in a cross section of the catalyst, substantially orthogonal to the axis in which the gases can pass through the catalyst.
  • a cross section to the main axis of the catalyst.
  • the channel density is observed on the inlet or outlet face of the catalyst.
  • the oxidation catalyst has a wall thickness of between 50 ⁇ and 165 ⁇ . By wall thickness is meant the thickness of the walls separating two channels of a catalyst.
  • the catalyst for selective catalytic reduction of nitrogen oxides has a cell density of between 62 and 140 cells per square centimeter, and preferably of the order of 93 cells per square centimeter.
  • the catalyst for selective catalytic reduction of nitrogen oxides has a wall thickness of between 50 ⁇ and 165 ⁇ .
  • the use of high densities of cells, typically 600 CPSI (cells per square inch) is of the order of 93 cells per cm 2 , and / or small wall thicknesses, typically between 2 thousandths of an inch ( approximately 50 ⁇ ) and 6.5 thousandths of an inch (approximately 165 ⁇ ) on the SCR catalyst makes it possible to increase its efficiency in conversion of the nitrogen oxides.
  • the production of a selective catalytic reduction catalyst for the nitrogen oxides is particularly advantageous.
  • two consecutive SCR catalysts are positioned in the device, at least one of which has high cell densities (600 cells per square inch (about 93 cells per cm 2 ) and / or small thicknesses). of walls (2 thousandths of an inch (about 50 ⁇ ), 3.5 thousandths of an inch (about 89 ⁇ ), 7 thousandths of an inch (about 178 ⁇ )) in order to increase its conversion efficiency.
  • a variant of the invention have a heterogeneous catalytic impregnation to optimize efficiency or to improve the holding (performance) over time.
  • the mixer is of a type having a path length for gases passing through it at least twice the length it occupies longitudinally in the envelope.
  • the purpose of the mixer is to homogenize the mixture between the exhaust gas and the reducing agent, and, if a precursor of a reducing agent is introduced, to promote the decomposition of the reducing agent precursor into a reducing agent.
  • the use of a mixer imposing on the exhaust gas a relatively long path compared to the length of the gearbox, for example of a type imposing on gas a substantially helical path, is particularly suitable for the invention. It makes it possible, by obtaining an exhaust path distance greater than its own dimensions, the use in a compact device of a urea-based solution as an ammonia precursor, even though the Hydrolysis of urea in the exhaust gas requires a significant time.
  • the mixer allows in particular the injection of reductant precursor in an exhaust section equal to the section of the catalysis bars, that is to say in an envelope with no particular section restriction to the point introduction of the reducer. It also makes it possible to obtain these performances by generating only small losses of charges.
  • the mixer has a length less than 100mm and preferably less than 70mm.
  • the mixture of the reductant with a distribution of 95% of the same amount in species over the entire inlet area of the SCR catalyst and / or the complete decomposition of a reducing precursor can be achieved at the outlet mixer with a gas imposing mixer a substantially helical path of a length, measured longitudinally in the casing of the device, of the order of 70mm.
  • such a mixer allows in the context of an SCR system involving a urea-based reducing agent precursor, by positioning the device in an area. thermally favorable, to limit the risk of fouling by crystallized urea (taking advantage of a favorable thermal)
  • the envelope is provided with a convergent output having a lateral output, substantially orthogonal to its input.
  • a convergent output having a lateral output, substantially orthogonal to its input.
  • the single envelope is substantially in the form of a cylinder provided with a diverging inlet and a converging output, a total length of less than 700mm.
  • the application of the features proposed in the invention allow, alone or in combination, to contain the length of the envelope (and therefore of the entire device) to a length of about 700 mm, compatible with the implantation in an underhood of a motor vehicle.
  • the introduction means is a solenoid type actuator or piezoelectric or mechanical or hydropneumatic.
  • the level of injection pressure used is adapted according to the efficiency of the elements in interface (typically from 4 to 30 bar).
  • the injector precursor reducer or reducer has, in the present invention, optimized functional and geometric characteristics, which participate in the compacting of the device according to the invention.
  • the use of a solenoid or piezoelectric or mechanical or hydropneumatic actuator-type injector whose level of injection pressure will depend on the efficiency of the elements in interface.
  • an injection pressure of 4 to 30 bar for the introduction of a liquid reductant (or precursor) allows in particular a drop size of the order of 30 to 100 microns compatible of the invention.
  • It also makes it possible to obtain a penetration speed of the spray, measured at the injector outlet, of the order of 10 to 30 m / s compatible with the invention.
  • the injector is positioned so as to promote the mixing of the reducer in the exhaust gas.
  • the integrating capacity of the precursor injector in the available geometrical environment may furthermore necessitate offsetting the axis of the injection spray from the axis of the injector, by an angle of the order of 15 ° to + 15 °.
  • the gearbox introduction means is positioned opposite a shell section identical to the cross section of the selective catalytic reduction catalyst.
  • Such an arrangement enabled by the combination of an efficient mixer and the optimization of the gearbox introduction means, makes it possible to obtain an envelope geometry, and therefore a device, which is simple and compact.
  • the device comprises a particle filter in the single envelope.
  • a device for treating all the pollutants regulated in an automotive application CO, HC, NOx, and particles is obtained.
  • the particulate filter is positioned downstream of the selective catalytic reduction catalyst.
  • a single substrate is used for the selective catalytic reduction catalyst and the particulate filter. In this way, a particularly optimized device is obtained in the invention in terms of bulk space and cost price.
  • the use of a single substrate for particle filtering and catalytic impregnation for SCR allows these functions to be performed in a much smaller volume than by employing two separate substrates.
  • the filtration and storage capacity of the particulate filter is only slightly impacted by the presence of SCR impregnation, while a particle filter type substrate is perfectly adapted to carry SCR catalytic impregnation.
  • the use of a heterogeneous SCR impregnation then makes perfect sense, in particular to guarantee a good maintenance of the SCR's efficiency over time, in spite of important thermal stresses related to the regeneration of the particulate filter.
  • the invention also relates to an assembly comprising an exhaust manifold, a post-treatment device as described in the invention, and a conduit connecting the exhaust manifold to the after-treatment device, characterized in that the duct has a length of at most 30 cm.
  • an assembly thus makes it possible to take advantage of thermal conditions favorable to the efficiency (or to the reduction of volume for the same efficiency) of the various elements of the post-treatment device.
  • the oxidation catalyst has a faster temperature rise and has a better conversion efficiency, the same goes for the SCR catalyst, mixing and the possible decomposition of the reducing agent is favored, and the particulate filter - for the variants of the invention which are provided with it - is regenerated more efficiently.
  • the duct between the exhaust manifold and the device according to the invention may further comprise one or more turbocharger turbines in the context of a supercharged engine, and, in particular, the device according to the invention may be connected directly to the casing of a turbocharger, at the outlet of a turbine.
  • the invention also relates to a vehicle with a motor compartment and an assembly according to the invention, characterized in that the assembly is contained in the engine compartment.
  • the use of an assembly according to the invention makes it possible, in the space under the hood, to obtain a powerful means of depollution while offering numerous advantages in terms of the general architecture of the vehicle, by releasing underfloor volumes commonly used to house aftertreatment elements of the exhaust gases.
  • the invention is described in more detail below and with reference to the figures schematically showing the system in its preferred embodiment.
  • Figure 1 schematically shows a motor and its exhaust line comprising a device according to a first embodiment of the invention.
  • Figure 2 schematically shows a motor and its exhaust line comprising a device according to a second variant of the invention.
  • Figure 3 schematically shows a motor and its exhaust line comprising a device according to a third embodiment of the invention.
  • Figure 4 shows an external view of an assembly according to the invention.
  • a device for treating the exhaust gas of a motor 1 comprises, in the same envelope 2 (which can also be referred to as the English word "canning") and according to the flow directions, an oxidation catalyst 3, a mouth 41 of a reducing agent introduction means 4 (or a reducing agent precursor), a mixer 5, and an SCR catalyst 6 ( catalyst for catalytic selective reduction of nitrogen oxides).
  • the exhaust line further comprises a particulate filter 7 for trapping the soot particles of the exhaust gas.
  • the exhaust gas first pass through the oxidation catalyst 3. Carbon monoxide (CO) and unburned hydrocarbons (HC) are thus removed from the exhaust gas.
  • the oxidation catalyst 3 also makes it possible to convert part of the nitrogen monoxide (NO) into nitrogen dioxide (NO 2), this transformation is necessary to improve the selective catalytic reduction of the nitrogen oxides (NOx) the SCR catalyst 6.
  • NOx nitrogen oxides
  • the oxidation catalyst therefore converts CO and HC, but especially, in the present invention, produces a NO 2 / NOx ratio. close to 50% as often as possible. This functionality is achieved with a small footprint through the use of particular geometries on cell density and wall thickness.
  • An oxidation catalyst having about 600 CPSI (cells per square inch) or about 93 cells per square centimeter, and a wall thickness of about 2 mil (about 50 ⁇ ) to 6, is preferably used. 5 thousandths of an inch (about 165 ⁇ ) [0050]
  • the introduction means gear 4 allows to introduce into the exhaust line, through its mouth 41, a reducer or precursor reducer, reducing necessary to ensure the reaction reduction of oxides of nitrogen on the catalyst SCR 6.
  • the reductant is provided by a source (not shown) which can be a source of liquid reductant (urea solution, guanidine formate), gaseous (ammonia type under pressure). ), and solid (ammonia salts).
  • the reducer is decomposed in the mixer 5, over a very short distance.
  • a mixer which has a high efficiency, for example in that it imposes on the gases passing through it a travel distance which is much greater than its external dimensions, and / or in that it generates turbulences in the gas flow which promotes the mixture.
  • tests have made it possible to obtain a sufficient mixture with a mixer having a dimension of 69 mm (measured longitudinally in the envelope) and generating a pressure drop limited to about 100 millibars.
  • the soot particles accumulate on the particulate filter 7, thus reducing their presence at the exhaust outlet.
  • FIG. 2 shows a device very similar to that represented in FIG. 1, with the difference that it also has a selective catalytic reduction pre-catalyst for the nitrogen oxides 61 between the oxidation catalyst 3 and the mouth 41.
  • the pre-catalyst SCR 61 corresponds to a catalytic bread SCR preferably of short length, of the order of 1 inch (25.4 mm). It may have the same characteristics as the SCR catalyst 6, especially with regard to catalytic impregnation.
  • the pre-catalyst SCR 61 makes it possible to prevent a part of the reducing agent (or of the reducing agent precursor) introduced into the exhaust line from coming into contact with the oxidation catalyst, on which it could be converted into NOx (in the case of a urea-based reducer, in particular). This phenomenon can in particular occur, under certain conditions of use, when the gearbox introduction means 4 is an injector having a large injection cone.
  • the introduction of the pre-catalyst SCR 61 may also allow, depending on the application in question, to reduce the volume of the SCR 6 catalyst, part of the selective catalytic reduction treatment of the nitrogen oxides being supported by the pre-catalyst.
  • Such a pre-catalyst may advantageously be employed in all the variants of the invention, especially when the means for introducing reducing agent 4 is such as to induce a risk of watering the oxidation catalyst 3 with water. reducer.
  • FIG. 3 there is shown schematically a motor 1 and its exhaust line, comprising a device according to a variant of the invention.
  • the configuration is close to that shown in FIG. 1, but differs in that the exhaust line is provided with a device according to a variant of the invention in which the particle filter 7 is disposed in the single envelope 2, downstream of the catalyst SCR 6.
  • FIG. 4 shows a device very similar to that represented in FIG. 3, with the difference that it furthermore has a selective catalytic reduction pre-catalyst for the nitrogen oxides 61 between the oxidation catalyst 3 and the mouth 41.
  • FIG 5 there is shown schematically a motor 1 and its exhaust line, comprising a device according to a variant of the invention.
  • the configuration is close to those presented above, but differs in the presence of a single substrate 6 ', fulfilling both the role of particulate filter and SCR catalyst.
  • the single envelope 2 is disposed in the under-hood space accommodating the engine 1.
  • one (or more) turbocharger turbine may be arranged between the output of the engine (generally an exhaust manifold) and the device according to the invention contained in the single envelope 2.
  • the conduit connecting the motor output to the input into the single envelope 2 is the shortest possible.
  • the conduit connecting the outlet of an exhaust manifold of the engine 1 to the inlet of the in the post-processing device according to the invention is less than 30 cm.
  • FIG. 6 shows a device very similar to that represented in FIG. 5, with the difference that it furthermore has a selective catalytic reduction pre-catalyst for the nitrogen oxides 61 between the oxidation catalyst 3 and the mouth 41.
  • Figure 7 is shown an external view of a post-processing device according to a variant of the invention.
  • the single envelope 2 of the device has an inlet divergent 21 through which are introduced the exhaust gas to be treated, and an outlet converge 22 through which the treated gases in the device out of it.
  • the diverging 21 or entry cone is optimized in volume, while preserving the loss of load criterion of the entire system. Its geometry is also intended to optimize the watering of the oxidation catalyst.
  • the convergent output geometry 22, or output cone is optimized to reduce the length, while preserving the loss of load criterion of the entire system.
  • the output convergent has a flattened shape, with a lateral output substantially orthogonal to the main axis of the device, which here has the general shape of a cylinder.
  • the gearbox introduction means 4 takes the form of a solenoid or piezoelectric or mechanical or hydropneumatic actuator-type injector whose injection pressure level will depend on the efficiency of the interface elements (typically 4 to 30 bar), the mouth of which at the injector head is contained in the common envelope 2.
  • the injector therefore opens into an exhaust section substantially equal to the section of the catalysis bars, having no particular section restriction.
  • attachment means of the injector on the single envelope 2 can take the form of a base imposing a predefined angle between the injector and the direction of the gas flow in the device (or the main axis of the device , or any other geometrical reference), the angle being optimized empirically or with the aid of simulation means to obtain an appropriate compromise between the improvement of the mixture of the reducer in the exhaust gas and the reduction of the volume necessary for the implantation of the gearbox introduction means 4.
  • the invention thus has multiple technical advantages. It offers a particularly compact post-processing device, which can in particular allow integration into the space under the hood of a motor vehicle, for example on the front panel.
  • An under-hood integration offers greater architectural freedom in vehicle design, releasing many underfloor volumes.
  • the device as described in the invention generates a virtuous circle in the design of the post-processing device.
  • the optimization provided by allowing a close installation of the engine output, increases the efficiency of all the post-processing elements involved, which makes it possible to reduce the volume to obtain a level of efficiency. given efficiency.
  • the solution developed in the invention makes it possible to bring the elements of depollution of the engine, and therefore of the source of heat, and thus increase its efficiency.
  • this solution makes it possible to reduce the total volume of the pollution control elements to be loaded onto the vehicle.
  • the dimensional reduction of the post-processing elements also has advantages in terms of costs and mass.
  • the invention allows the reduction of the length of the metal cannings, and the reduction of the amount of precious metals carried in particular by the oxidation catalyst.
  • the nitrogen oxide reduction function on the particulate filter - SCR requires a good conversion of nitrogen monoxide (NO) to nitrogen dioxide (NO 2) by the oxidation catalyst. This transformation is dependent on the amount of precious metals embedded on the oxidation catalyst.
  • the optimization of the reduction of nitrogen oxides brought about by bringing the SCR catalyst closer to the hot source, reduces the dependence of this function on the conversion of NO to NO2 by the diesel oxidation catalyst, and therefore reduces the amount precious metals to ship on the latter.
  • the invention further allows:
  • the invention also makes it possible to envisage the easy introduction of the selective catalytic reduction technology of nitrogen oxides in motor vehicles, having a diesel engine of small or medium displacement (typically less than 2.2L). of displacement).
  • the introduction of selective catalytic reduction technology in vehicles also makes it possible to authorize higher nitrogen oxide emissions by Engine output, allowing the adoption of combustion modes reducing the engine consumption and its C0 2 emissions.
  • the variant of the invention providing for the use of a single substrate for the particulate filter and SCR catalyst functions makes it possible to obtain a post-treatment device for the treatment of the assembly. regulated pollutants from the exhaust gases of a motor vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

L'invention porte sur un dispositif de post-traitement des gaz d'échappement d'un moteur à combustion (1 ) caractérisé en ce qu'il comporte, selon le sens d'écoulement des gaz d'échappement du moteur; Un catalyseur d'oxydation (3); Une embouchure (41 ) d'un moyen d'introduction (4) de réducteur ou de précurseur d'un réducteur pour la réduction catalytique sélective des oxydes d'azote; Un mélangeur (5) pour le mélange des gaz d'échappement et du réducteur et/ou la conversion du précurseur en réducteur; Un catalyseur de réduction catalytique sélective des oxydes d'azote (6); et en ce que les éléments précités sont regroupés dans une enveloppe unique (2). L'invention porte également sur un ensemble comportant un collecteur d'échappement et un dispositif de post-traitement selon l'invention, et sur un véhicule doté d'un tel ensemble.

Description

DISPOSITIF DE POST - TRAITEMENT DES GAZ D'ECHAPPEMENT
D'UN MOTEUR A COMBUSTION INTERNE
[001 ] La présente invention revendique la priorité de la demande française 1050453 déposée le 25 Janvier 2010 et la priorité de la demande française 1054080 déposée le 27 Mai 2010 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
[002] L'invention porte sur le domaine des moyens de traitement des polluants des gaz d'échappement des moteurs à combustion.
[003] Les émissions polluantes des moteurs à combustion équipant les véhicules automobiles sont réglementées par des normes de plus en plus sévères. Les polluants réglementés sont - selon la technologie de moteur à combustion considérée - le monoxyde de carbone (CO), les hydrocarbures imbrûlés (HC), les oxydes d'azotes (NOx), et les particules.
[004] Il est connu d'employer un certain nombre de moyens de dépollution dans la ligne d'échappement des moteurs à combustion pour en limiter les émissions de polluants réglementés. Un catalyseur d'oxydation permet le traitement du monoxyde de carbone, des hydrocarbures imbrûlés, et dans certaines conditions des oxydes d'azotes ; un filtre à particules peut être employé pour le traitement des particules de suie.
[005] On désigne de manière générale ces dispositifs par le terme de moyens de « post-traitement » des gaz d'échappement. [006] Pour satisfaire aux normes anti-pollution sur les émissions d'oxydes d'azote (NOx), un système spécifique de post-traitement peut être introduit dans la ligne d'échappement des véhicules, notamment des véhicules équipés de moteurs diesel. Pour le traitement des oxydes d'azote (NOx), on connaît des technologies de réduction catalytique sélective, ou « SCR » pour « sélective catalytic réduction », qui consistent à réduire les NOx par introduction d'un agent réducteur (ou d'un précurseur d'un tel agent réducteur) dans les gaz d'échappement. Il peut par exemple s'agir d'une solution d'urée, dont la décomposition va permettre l'obtention d'ammoniac qui servira d'agent réducteur, mais également d'un réducteur ou d'un précurseur d'un tel réducteur sous forme gazeuse. On parlera dans la suite du présent document d'une manière générale de « réducteur » pour désigner un agent réducteur ou un précurseur d'agent réducteur. [007] L'agent réducteur généré permet de réduire les oxydes d'azotes par réaction dans un catalyseur SCR, c'est-à-dire un substrat portant une imprégnation catalytique apte à favoriser la réduction des NOx par l'agent réducteur.
[008] Les technologies de réduction catalytique sélective présentent l'avantage de permettre un très haut niveau de conversion des oxydes d'azotes.
[009] D'une manière générale, la catalyse SCR nécessite d'ajouter un substrat catalytique dans la ligne d'échappement, ainsi qu'un moyen d'introduction du réducteur dans les gaz d'échappement, qui peut par exemple être un injecteur de réducteur.
[0010] Classiquement, le catalyseur SCR est placé sous la caisse du véhicule, loin du moteur car le réducteur injecté a besoin d'un long parcours dans la ligne d'échappement pour se décomposer d'une part, et de volumes libres suffisants pour s'implanter d'autre part. Si la distance parcourue par le réducteur n'est pas suffisante le risque d'encrassement de la ligne d'échappement est important.
[001 1 ] Or, s'il est placé loin de la sortie du collecteur d'échappement du moteur, ou de la sortie de la turbine dans le cas d'un moteur suralimenté, le catalyseur SCR peut ne pas être actif dès les premières secondes de fonctionnement du véhicule, et laisse alors passer une quantité importante d'oxydes d'azote non traités. De même, l'injecteur de réducteur, qui nécessite d'atteindre un certain niveau de température pour être opérationnel (amorçage suffisant de la décomposition du précurseur d'urée (Adblue®) ou préchauffage du système de mise à disposition de réducteur (gaz)), souffre de cet éloignement de la sortie du collecteur d'échappement.
[0012] Dans l'invention, on résout ce problème en proposant un ensemble de posttraitement regroupant dans un module compact le traitement des HC et CO, et le traitement des NOx par réduction catalytique sélective, et permettant, selon la variante de l'invention considérée, une implantation dans l'espace sous capot moteur d'un véhicule automobile. En outre, ce dispositif est optimisé dans l'invention pour éviter l'arrosage du catalyseur d'oxydation par du réducteur par l'adoption d'un pré-catalyseur SCR positionné entre le catalyseur d'oxydation et les moyens d'introduction de réducteur à l'échappement/
[0013] Plus précisément, l'invention porte sur un dispositif de post-traitement des gaz d'échappement d'un moteur à combustion comportant, selon le sens d'écoulement des gaz d'échappement du moteur :
• Un catalyseur d'oxydation ; • Une embouchure d'un moyen d'introduction de réducteur ou de précurseur d'un réducteur pour la réduction catalytique sélective des oxydes d'azote, pouvant par exemple être la tête d'un injecteur.
• Un mélangeur pour le mélange des gaz d'échappement et du réducteur et/ou la conversion du précurseur en réducteur ;
• Un catalyseur de réduction catalytique sélective des oxydes d'azote ;
dans lequel les éléments précités sont regroupés dans une enveloppe unique.
On propose ainsi un dispositif de traitement des oxydes d'azote compact, dans un seul « canning » ou enveloppe. Une telle configuration participe à la réduction du volume d'implantation de l'ensemble des moyens de post-traitement d'un moteur à combustion, ce qui est fondamental par exemple dans une application automobile. Tel qu'il est proposé dans l'invention, le dispositif de post-traitement peut par exemple être implanté dans le sous-capot moteur d'un véhicule automobile. Ceci conduit à un rapprochement du dispositif de post-traitement du moteur, engendrant un cercle vertueux dans la conception du dispositif : les éléments du dispositif de post-traitement, en étant disposés à proximité de la sortie des chambres de combustion du moteur (sous capot et non sous caisse dans une application automobile), jouissent de conditions thermiques favorables à un fonctionnement optimal, ce qui permet d'en réduire la taille pour obtenir une même efficacité de traitement, comparé à un dispositif implanté sous caisse.
[0014] Préférentiellement, le dispositif comporte en outre un pré-catalyseur de réduction catalytique sélective des oxydes d'azote entre le catalyseur d'oxydation et l'embouchure.
La demanderesse a en effet constaté l'existence d'un risque d'arrosage du catalyseur d'oxydation par du réducteur (ou du précurseur d'agent réducteur) introduit en aval de celui-ci. En effet, on tend à obtenir une taille de gouttes du réducteur (ou de son précurseur) la plus petite possible lors de son introduction, afin de faciliter le mélange du réducteur dans les gaz d'échappement. Or, une étude comparative menée par la demanderesse sur divers injecteurs de réducteur montre que des tailles de gouttes fines vont généralement de pair avec un cône de spray large, ce qui augmente le risque d'arrosage du catalyseur d'oxydation en amont.
[0015] Un tel phénomène est très préjudiciable, pour deux raisons principales. D'une part, le réducteur entrant en contact avec le catalyseur d'oxydation est transformé (notamment dans le cas d'un réducteur à base d'urée) en oxydes d'azotes, ce qui augmente la quantité de NOx à traiter par le système. D'autre part, le réducteur ainsi transformé sur le catalyseur est consommé en pure perte.
[0016] Le pré-catalyseur de réduction catalytique sélective des oxydes d'azote ainsi disposé permet la réduction d'au moins une part des oxydes d'azotes présent dans les gaz d'échappement par le pain catalytique située en amont de l'embouchure des moyens d'introduction de réducteur ou de précurseur de réducteur, à savoir le pré-catalyseur de réduction catalytique sélective et non plus le catalyseur d'oxydation.
[0017] De préférence, le pré-catalyseur de réduction catalytique sélective des oxydes d'azote est constitué d'un pain d'une longueur (mesurée selon la direction d'écoulement des gaz d'échappement) inférieure à 30mm, et de préférence comprise entre 20 mm et 30 mm. Cette longueur étant généralement inférieure aux autres dimensions du pain, on peut également parler d' « épaisseur » du pré-catalyseur. Le pré-catalyseur de réduction catalytique sélective des oxydes d'azote pourra notamment présenter une épaisseur de 1 pouce (25,4mm), unité de longueur généralement employée dans le domaine du post- traitement des gaz d'échappement automobile. Une telle faible longueur est néanmoins suffisante pour annuler le risque d'entrée en contact du réducteur sur le catalyseur d'oxydation, hydrolyser le précurseur de réducteur qui serait injecté à reflux, tout en restant dans des limites de faisabilité industrielles.
[0018] Le pré-catalyseur peut notamment présenter les mêmes caractéristiques générales (matériau du substrat et/ou densité de cellule et/ou épaisseur de paroi et/ou revêtement catalytique) que le catalyseur de réduction sélective des oxydes d'azote employé dans l'invention. Le précurseur d'agent réducteur, dans le cadre d'un dispositif de réduction catalytique sélective des oxydes d'azote mettant en jeu de l'urée, en contact avec cette tranche catalytique est alors hydrolysé et ce qui permet ensuite sa transformation en NH3 qui sera, à son tour, employé au post-traitement des NOx.
[0019] Le pré-catalyseur peut également permettre, selon l'application considérée, de réduire la longueur du catalyseur de réduction catalytique sélective des oxydes d'azotes (car une part du traitement est prise en charge par le pré-catalyseur de réduction catalytique sélective). En réduisant la longueur du catalyseur de réduction catalytique sélective des oxydes d'azotes, on diminue son inertie thermique, ce qui est un paramètre très important pour la rapidité de montée en température du catalyseur et au final pour l'efficacité globale du dispositif. [0020] De préférence, le catalyseur d'oxydation présente une densité de cellule comprise entre 62 et 140 cellules par centimètre carré, et de préférence de l'ordre de 93 cellules par centimètres carré. La densité de cellule correspond au nombre de cellules ou « canaux » formés dans le catalyseur par unité de surface, est observé selon une section transversale du catalyseur, sensiblement orthogonale à l'axe dans lequel les gaz peuvent traverser le catalyseur. Pour un catalyseur cylindrique, on observe donc une section transversale à l'axe principal du catalyseur. En pratique, s'il présente des canaux non borgnes, débouchant orthogonalement à la face d'entrée ou de sortie du catalyseur, on observe la densité de canaux sur la face d'entrée ou de sortie du catalyseur. [0021 ] De préférence, le catalyseur d'oxydation présente une épaisseur de paroi de comprise entre 50 μηι et 165 μηι. On entend par épaisseur de paroi l'épaisseur des parois séparant deux canaux d'un catalyseur.
[0022] L'utilisation de hautes densités de cellules, typiquement de 600 CPSI (cellules par pouce carré) soit de l'ordre de 93 cellules par cm2, et/ou de faibles épaisseurs de parois, typiquement entre 2 millièmes de pouce (environ 50 μηι) et 6,5 millièmes de pouce (environ 165 μηι) sur le catalyseur d'oxydation diesel permet d'augmenter son efficacité de conversion du monoxyde de carbone et des hydrocarbures imbrûlés, ainsi que sa faculté à transformer le monoxyde d'azote en dioxyde d'azote. Or, cela participe de l'obtention aussi souvent que possible d'un ratio N02/NOx dans les gaz d'échappement après le catalyseur d'oxydation proche de 50%, ce qui est nécessaire au bon fonctionnement de la réduction catalytique sélective des NOx. Il est également possible, dans une variante, de positionner dans le dispositif deux catalyseurs d'oxydation diesel consécutifs, dont au moins l'un des deux présente des hautes densités de cellules de l'ordre de 600 cellules par pouce carré (environ 93 cellules par cm2) et/ou de faibles épaisseur de parois entre 2 millipouces (environ 50 μηι) et 7 millipouces (environ 178 μηι).
[0023] L'obtention d'un catalyseur d'oxydation particulièrement efficace participe de la compacité du dispositif selon l'invention, et par conséquent de la possibilité de l'implanter à proximité de la sortie des chambres de combustion du moteur, et donc d'obtenir un dispositif encore plus compact et facile à implanter. [0024] De préférence, le catalyseur de réduction catalytique sélective des oxydes d'azote présente une densité de cellule comprise entre 62 et 140 cellules par centimètre carré, et de préférence de l'ordre de 93 cellules par centimètres carré.
[0025] De préférence, le catalyseur de réduction catalytique sélective des oxydes d'azote présente une épaisseur de paroi de comprise entre 50 μηι et 165 μηι. [0026] L'utilisation de hautes densités de cellules, typiquement de 600 CPSI (cellules par pouce carré) soit de l'ordre de 93 cellules par cm2, et/ou de faibles épaisseurs de parois, typiquement entre 2 millièmes de pouce (environ 50 μηι) et 6,5 millièmes de pouce (environ 165 μηι) sur le catalyseur SCR permet d'augmenter son efficacité en conversion des oxydes d'azote L'obtention d'un catalyseur de réduction catalytique sélective des oxydes d'azotes particulièrement efficace participe de la compacité du dispositif selon l'invention, et par conséquent de la possibilité de l'implanter à proximité de la sortie des chambres de combustion du moteur, et donc d'obtenir un dispositif encore plus compact et facile à implanter. Dans une variante de l'invention, on positionne dans le dispositif deux catalyseurs SCR consécutifs, dont au moins l'un des deux présente des hautes densités de cellules (600 cellules par pouce carré (environ93 cellules par cm2) et/ou faibles épaisseur de parois (2 millièmes de pouce (environ 50 μηι), 3,5 millièmes de pouce (environ 89 μηι), 7 millième de pouce (environ 178 μηι)) afin d'augmenter son efficacité de conversion. Le catalyseur SCR peut, dans une variante de l'invention, présenter une imprégnation catalytique hétérogène pour en optimiser l'efficacité ou pour en améliorer la tenue (maintien des performances) dans le temps.
[0027] De préférence, le mélangeur est d'un type présentant une longueur de parcours pour des gaz le traversant au moins deux fois supérieur à la longueur qu'il occupe longitudinalement dans l'enveloppe. Le but du mélangeur est d'homogénéiser le mélange entre les gaz d'échappement et le réducteur, et, si l'on introduit un précurseur d'un agent réducteur, de favoriser la décomposition du précurseur de réducteur en agent réducteur. L'emploi d'un mélangeur imposant au gaz d'échappement un parcours relativement long comparativement à la longueur du réducteur, par exemple d'un type imposant au gaz un cheminement sensiblement hélicoïdal, est particulièrement adapté à l'invention. Il permet, par l'obtention une distance de parcours des gaz d'échappement supérieure à ses propres dimensions, l'emploi dans un dispositif compact d'une solution à base d'urée en tant que précurseur d'ammoniac, alors même que l'hydrolyse de l'urée dans les gaz d'échappement nécessite un temps non négligeable.
[0028] Un tel mélangeur permet notamment l'injection de précurseur de réducteur dans une section d'échappement égale à la section des pains de catalyse, c'est-à-dire dans une enveloppe ne présentant pas de restriction de section particulière au point d'introduction du réducteur. Il permet en outre l'obtention de ces performances en ne générant que de faibles pertes de charges. [0029] Dans une variante préférée de l'invention, le mélangeur a une longueur inférieure à 100mm et de préférence inférieure à 70mm. Dans une application automobile classique, le mélange du réducteur avec une répartition de 95% de la même quantité en espèce sur toute la surface d'entrée du catalyseur SCR et/ou la décomposition complète d'un précurseur de réducteur peuvent être atteints à la sortie du mélangeur avec un mélangeur imposant au gaz un cheminement sensiblement hélicoïdal d'une longueur, mesurée longitudinalement dans l'enveloppe du dispositif, de l'ordre de 70mm.
[0030] Du fait de son faible encombrement et de sa grande efficacité, un tel mélangeur permet dans le cadre d'un système SCR mettant en jeu un précurseur d'agent réducteur à base d'urée, par un positionnement du dispositif dans une zone thermiquement favorable, de limiter le risque d'encrassement par l'urée cristallisée (en profitant d'une thermique favorable)
[0031 ] De préférence, l'enveloppe est munie d'un convergent de sortie doté d'une sortie latérale, sensiblement orthogonale à son entrée. Cela permet une implantation plus aisée du dispositif. Cela est particulièrement intéressant dans une application automobile dans le cas ou le dispositif selon l'invention est implanté verticalement dans un sous capot moteur : il est ainsi possible de relier le dispositif à un circuit d'échappement sous caisse sensiblement horizontal.
[0032] De préférence, l'enveloppe unique est sensiblement en forme d'un cylindre muni d'un divergent d'entrée et d'un convergeant de sortie, d'une longueur totale inférieure à 700mm. L'application des caractéristiques proposées dans l'invention, permettent, seules ou en combinaison, de contenir la longueur de l'enveloppe (et donc de l'ensemble du dispositif) à une longueur d'environ 700mm, compatible de l'implantation dans un sous- capot moteur d'un véhicule automobile. [0033] De préférence, le moyen d'introduction est un injecteur du type à actionneur par solénoïde ou par piézoélectrique ou mécanique ou hydropneumatique. Le niveau de pression d'injection employé est adapté en fonction de l'efficacité des éléments en interface (typiquement de 4 à 30 bars).
[0034] L'injecteur de précurseur de réducteur ou de réducteur a, dans la présente invention, des caractéristiques fonctionnelles et géométriques optimisées, qui participent au compactage du dispositif selon l'invention. L'emploi d'un injecteur du type à actionneur par solénoïde ou par piézoélectrique ou mécanique ou hydropneumatique dont le niveau de pression d'injection dépendra de l'efficacité des éléments en interface. Typiquement une pression d'injection de 4 à 30 bars pour l'introduction d'un réducteur (ou précurseur) liquide permet en particulier une taille de gouttes de l'ordre de 30 à 100 microns compatible de l'invention. Il permet également l'obtention d'une vitesse de pénétration du spray, mesurée en sortie d'injecteur, de l'ordre de 10 à 30m/s compatible de l'invention. En outre, on positionne l'injecteur de sorte à favoriser le mélange du réducteur dans les gaz d'échappement. La capacité d'intégration de l'injecteur de précurseur dans l'environnement géométrique disponible peut en outre nécessiter de désaxer l'axe du spray d'injection de l'axe de l'injecteur, d'un angle de l'ordre de -15° à +15°.
[0035] De préférence, le moyen d'introduction de réducteur est positionné en regard d'une section d'enveloppe identique à la section transversale du catalyseur de réduction catalytique sélective. Un tel arrangement, permis par la conjugaison d'un mélangeur efficace et de l'optimisation des moyens d'introduction de réducteur, permet l'obtention d'une géométrie d'enveloppe, et donc de dispositif, simple et compacte.
[0036] De préférence, le dispositif comporte un filtre à particules, dans l'enveloppe unique. On obtient ainsi dans un ensemble compact un dispositif de traitement de l'ensemble des polluants réglementés dans une application automobile (CO, HC, NOx, et particules).
[0037] Dans une variante de l'invention, le filtre à particules est positionné en aval du catalyseur de réduction catalytique sélective. [0038] Dans une variante de l'invention, un substrat unique est mis en jeu pour le catalyseur de réduction catalytique sélective et le filtre à particules. On obtient ainsi dans l'invention un dispositif particulièrement optimisé en termes d'encombrement de masse et de prix de revient. L'emploi d'un substrat unique pour faire filtre à particules et porter une imprégnation catalytique pour la SCR permet la réalisation de ces fonctions dans un volume nettement moindre qu'en employant deux substrats séparés. La capacité de filtration et de stockage du filtre à particules n'est que peu impactée par la présence d'une imprégnation SCR, tandis qu'un substrat du type filtre à particules est parfaitement adapté à porter une imprégnation catalytique SCR. L'emploi d'une imprégnation SCR hétérogène prend alors tout son sens, notamment pour garantir un bon maintien de l'efficacité de la SCR dans le temps, malgré des sollicitations thermiques importantes liées aux régénérations du filtre à particules.
[0039] L'invention porte également sur un ensemble comportant un collecteur d'échappement, un dispositif de post-traitement tel que décrit dans l'invention, et un conduit reliant le collecteur d'échappement au dispositif de post-traitement, caractérisé en ce que le conduit présente une longueur d'au plus 30 cm. Un tel ensemble permet ainsi de profiter de conditions thermiques favorables à l'efficacité (ou à la réduction de volume pour une même efficacité) des différents éléments du dispositif de post-traitement. Notamment, le catalyseur d'oxydation connaît une montée en température plus rapide et a une meilleure efficacité de conversion, il en va de même pour le catalyseur SCR, le mélange et l'éventuelle décomposition du réducteur est favorisée, et le filtre à particules - pour les variantes de l'invention qui en sont pourvues - est régénéré de manière plus efficace.
[0040] Le conduit entre le collecteur d'échappement et le dispositif selon l'invention peut en outre comporter une ou plusieurs turbines de turbocompresseur dans le cadre d'un moteur suralimenté, et, en particulier, le dispositif selon l'invention peut être raccordé directement au carter d'un turbocompresseur, à la sortie d'une turbine.
[0041 ] L'invention porte également sur un véhicule doté d'un compartiment moteur et d'un ensemble selon l'invention, caractérisé en ce que l'ensemble est contenu dans le compartiment moteur. Dans un tel véhicule, l'emploi d'un ensemble selon l'invention permet dans l'espace sous capot permet d'obtenir un moyen performant de dépollution tout en offrant de nombreux avantages en terme d'architecture générale du véhicule, en libérant des volumes sous plancher communément employés pour accueillir des éléments de post-traitement des gaz d'échappement. [0042] L'invention est décrite plus en détail ci-après et en référence aux figures représentant schématiquement le système dans son mode de réalisation préférentiel.
[0043] La figure 1 présente de manière schématique un moteur et sa ligne d'échappement comportant un dispositif selon une première variante de l'invention.
[0044] La figure 2 présente de manière schématique un moteur et sa ligne d'échappement comportant un dispositif selon une deuxième variante de l'invention.
[0045] La figure 3 présente de manière schématique un moteur et sa ligne d'échappement comportant un dispositif selon une troisième variante de l'invention.
[0046] La figure 4 présente une vue extérieure d'un ensemble selon l'invention.
[0047] Dans l'invention, et tel que représenté sur la figure 1 , on propose un dispositif de traitement des gaz d'échappement d'un moteur 1 . Ce dispositif comporte, dans une même enveloppe 2 (que l'on peut également désigner par le terme anglophone de « canning ») et selon les sens d'écoulement, un catalyseur d'oxydation 3, une embouchure 41 d'un moyen d'introduction 4 de réducteur (ou d'un précurseur d'agent réducteur), un mélangeur 5, et un catalyseur SCR 6 (catalyseur de réduction catalytique sélective des oxydes d'azote). [0048] Dans l'application représentée en figure 1 , la ligne d'échappement comporte en outre un filtre à particules 7, pour piéger les particules de suies des gaz d'échappement.
[0049] Lors du fonctionnement du moteur 1 , les gaz d'échappement traversent en premier lieu le catalyseur d'oxydation 3. Le monoxyde de carbone (CO) et les hydrocarbures imbrûlés (HC) sont ainsi éliminés des gaz d'échappement. Le catalyseur d'oxydation 3 permet également de transformer une partie du monoxyde d'azote (NO) en dioxyde d'azote (N02), cette transformation est nécessaire pour améliorer la réduction catalytique sélective des oxydes d'azote (NOx) le catalyseur SCR 6. Dans une variante de l'invention on peut utiliser un revêtement spécifique sur le catalyseur d'oxydation 3 visant à stocker tout à partie des émissions d'oxydes d'azote, notamment lorsque le catalyseur SCR 6 n'a pas atteint une température suffisante pour assurer une bonne conversion des oxydes d'azote. On parle alors d'une fonction d'adsorbeur d'oxydes d'azote incluse au catalyseur d'oxydation diesel 3. Le catalyseur d'oxydation convertit donc CO et HC, mais surtout, dans la présente invention, produit un ratio N02/NOx proche de 50% le plus souvent possible. Cette fonctionnalité est atteinte avec un encombrement réduit grâce à l'utilisation de géométries particulières sur la densité de cellules et l'épaisseur des parois. On utilise de préférence un catalyseur d'oxydation présentant de l'ordre de 600 CPSI (cells per square inch) soit environ 93 cellules par centimètre carré, et une épaisseur de paroi comprise entre 2 millièmes de pouce (environ 50 μηι) et 6,5 millièmes de pouce (environ 165 μπι) [0050] Le moyen d'introduction de réducteur 4 permet d'introduire dans la ligne d'échappement, par son embouchure 41 , un réducteur ou un précurseur de réducteur, réducteur nécessaire pour assurer la réaction de réduction des oxydes d'azote sur le catalyseur SCR 6. Le réducteur est fourni par une source (non représentée) qui peut source être une source de réducteur liquide (solution d'urée, formate de guanidine), gazeuse (type ammoniaque sous pression), et solide (sels d'ammoniac).
[0051 ] Le réducteur est décomposé dans le mélangeur 5, sur une très courte distance. Il convient pour ce faire d'employer un mélangeur ayant une grande efficacité, par exemple en ce qu'il impose aux gaz le traversant une distance de parcours largement supérieure à ses dimensions extérieure, et/ou en ce qu'il génère des turbulences dans le flux gazeux qui en favorise le mélange. Dans une application automobile, des essais on permis l'obtention d'un mélange suffisant avec un mélangeur présentant une dimension de 69mm (mesurée longitudinalement dans l'enveloppe) et engendrant une perte de charge limitée à environ 100 millibars. Enfin, les particules de suies s'accumulent sur le filtre à particules 7, réduisant ainsi leur présence en sortie d'échappement.
[0052] La figure 2 présente un dispositif très proche de celui représenté en figure 1 , à la différence près qu'il présente en outre un précatalyseur de réduction catalytique sélective des oxydes d'azote 61 entre le catalyseur d'oxydation 3 et l'embouchure 41 .
[0053] Le pré-catalyseur SCR 61 correspond à un pain catalytique SCR de préférence de faible longueur, de l'ordre de 1 pouce (25,4mm environ). Il peut présenter les mêmes caractéristiques que le catalyseur SCR 6, notamment pour ce qui est de l'imprégnation catalytique.
[0054] Le pré-catalyseur SCR 61 permet d'éviter qu'une part du réducteur (ou du précurseur d'agent réducteur) introduit dans la ligne d'échappement ne puisse entrer en contact avec le catalyseur d'oxydation, sur lequel il pourrait être transformé en NOx (dans le cas d'un réducteur à base d'urée, notamment). Ce phénomène peut notamment se produire, dans certaines conditions d'utilisation, lorsque le moyen d'introduction de réducteur 4 est un injecteur présentant un large cône d'injection.
[0055] L'introduction du pré-catalyseur SCR 61 peut également permettre, selon l'application considérée, de réduire le volume du catalyseur SCR 6, une partie du traitement de réduction catalytique sélective des oxydes d'azote étant prise en charge par le pré-catalyseur.
[0056] Un tel pré-catalyseur peut avantageusement être employé dans toutes les variantes de l'invention, notamment lorsque le moyen d'introduction de réducteur 4 est tel qu'il induit un risque d'arrosage du catalyseur d'oxydation 3 par du réducteur.
[0057] En figure 3, on a représenté schématiquement un moteur 1 et sa ligne d'échappement, comportant un dispositif selon une variante de l'invention. La configuration est proche de celle présentée en figure 1 , mais diffère en ce que la ligne d'échappement est dotée d'un dispositif selon une variante de l'invention dans laquelle le filtre à particules 7 est disposé dans l'enveloppe unique 2, en aval du catalyseur SCR 6. [0058] La figure 4 présente un dispositif très proche de celui représenté en figure 3, à la différence près qu'il présente en outre un précatalyseur de réduction catalytique sélective des oxydes d'azote 61 entre le catalyseur d'oxydation 3 et l'embouchure 41 .
[0059] En figure 5, on a représenté schématiquement un moteur 1 et sa ligne d'échappement, comportant un dispositif selon une variante de l'invention. La configuration est proche de celles présentées précédemment, mais en diffère par la présence d'un substrat unique 6', remplissant à la fois le rôle de filtre à particules et celui de catalyseur SCR. Le substrat unique 6' peut donc être un monolithe en carbure de silicium, ou en cordiérite ou titanate d'aluminium par exemple, enduit d'une imprégnation catalytique permettant la réduction catalytique sélective des oxydes d'azote.
[0060] De préférence et dans une application automobile de l'invention, l'enveloppe unique 2 est disposé dans l'espace sous-capot accueillant le moteur 1 . Dans une variante de l'invention non représentée, une (ou plusieurs) turbine de turbocompresseur peut être disposée entre la sortie du moteur (généralement un collecteur d'échappement) et le dispositif selon l'invention contenu dans l'enveloppe unique 2.
[0061 ] Afin de maximiser l'efficacité des différents éléments du dispositif selon l'invention, et permettre ainsi la réduction de leur volume pour atteindre un niveau d'efficacité souhaité, le conduit reliant la sortie du moteur à l'entrée dans l'enveloppe unique 2 est le plus court possible. Préférentiellement, dans une application automobile de l'invention, le conduit reliant la sortie d'un collecteur d'échappement du moteur 1 à l'entrée du dans le dispositif de post-traitement conforme à l'invention est inférieur à 30 cm.
[0062] La figure 6 présente un dispositif très proche de celui représenté en figure 5, à la différence près qu'il présente en outre un précatalyseur de réduction catalytique sélective des oxydes d'azote 61 entre le catalyseur d'oxydation 3 et l'embouchure 41 . [0063] En figure 7 est présentée une vue extérieure d'un dispositif de post-traitement conforme à une variante de l'invention. L'enveloppe unique 2 du dispositif présente un divergent d'entrée 21 par lequel sont introduits les gaz d'échappement à traiter, et un convergeant de sortie 22 par lequel les gaz traités dans le dispositif en ressortent.
[0064] Dans la variante de l'invention ici représentée le divergent 21 ou cône d'entrée est optimisé en volume, tout en préservant le critère de perte de charge de l'ensemble du système. Sa géométrie a également pour but d'optimiser l'arrosage du catalyseur d'oxydation. [0065] La géométrie convergent de sortie 22, ou cône de sortie, est optimisée afin d'en réduire la longueur, tout en préservant le critère de perte de charge de l'ensemble du système. En particulier, dans la variante de l'invention ici représentée, le convergent de sortie présente une forme aplatie, avec une sortie latérale sensiblement orthogonale à l'axe principal du dispositif, qui présente ici la forme général d'un cylindre. Une telle architecture permet de réduite la longueur totale du dispositif selon l'invention, et permet également de faciliter son implantation verticale dans l'espace sous-capot d'un véhicule automobile, en reliant le convergent de sortie 22 à un conduit d'échappement sous caisse sensiblement horizontal. [0066] Dans la variante de l'invention ici représentée, le moyen d'introduction de réducteur 4 prend la forme d'un injecteur du type à actionneur par solénoïde ou par piézoélectrique ou mécanique ou hydropneumatique dont le niveau de pression d'injection dépendra de l'efficacité des éléments en interface (typiquement de 4 à 30 bars), dont l'embouchure au niveau de la tête d'injecteur est contenue dans l'enveloppe commune 2. L'injecteur débouche donc dans une section d'échappement sensiblement égale à la section des pains de catalyse, ne présentant pas de restriction de section particulière. En outre, le moyen de fixation de l'injecteur sur l'enveloppe unique 2 peut prendre la forme d'une embase imposant un angle prédéfini entre l'injecteur et la direction du flux gazeux dans le dispositif (ou l'axe principal du dispositif, ou toute autre référence géométrique), l'angle étant optimisé empiriquement ou à l'aide de moyens de simulation pour obtenir un compromis adéquat entre l'amélioration du mélange du réducteur dans les gaz d'échappement et la réduction du volume nécessaire à l'implantation du moyen d'introduction de réducteur 4.
[0067] L'invention présente ainsi des avantages techniques multiples. Elle offre un dispositif de post-traitement particulièrement compact, pouvant notamment permettre sont intégration dans l'espace sous capot d'un véhicule automobile, par exemple en face avant. Une intégration en sous-capot offre une plus grande liberté architecturale dans la conception des véhicules, libérant de nombreux volumes sous plancher.
[0068] En outre, le dispositif tel que décrit dans l'invention engendre un cercle vertueux dans la conception du dispositif de post-traitement. L'optimisation apportée, en permettant une installation rapprochée de la sortie du moteur, augmente l'efficacité de l'ensemble des éléments de post-traitement mis en jeu, ce qui permet d'en réduire le volume pour l'obtention un niveau d'efficacité donné. En effet la solution développée dans l'invention permet de rapprocher les éléments de dépollution du moteur, donc de la source de chaleur, et donc d'en augmenter l'efficacité. De plus, cette solution permet de réduire le volume total des éléments de dépollution à embarquer sur véhicule.
[0069] La réduction dimensionnelle des éléments de post-traitement présent en outre des avantages en termes de coûts et de masse. En particulier, l'invention permet la réduction de la longueur du ou des cannings métalliques, et la réduction de la quantité de métaux précieux portés notamment par le catalyseur d'oxydation. En effet, la fonction de réduction des oxydes d'azote sur le filtre à particules - SCR nécessite une bonne transformation du monoxyde d'azote (NO) en dioxyde d'azote (N02) par le catalyseur d'oxydation. Cette transformation est dépendante de la quantité de métaux précieux embarqués sur le catalyseur d'oxydation. L'optimisation de la réduction des oxydes d'azote, induite par le rapprochement du catalyseur SCR de la source chaude, réduit la dépendance de cette fonction à la transformation de NO en N02 par le catalyseur d'oxydation diesel, et réduit donc la quantité de métaux précieux à embarquer sur ce dernier. [0070] Dans les variantes de l'invention comportant en outre un pré-catalyseur de réduction catalytique sélective des oxydes d'azote, l'invention permet en outre :
• d'empêcher le contact du précurseur ou du réducteur sur le catalyseur d'oxydation;
• d'améliorer l'efficacité de dépollution en réduisant l'inertie thermique ;
• d'augmenter les possibilités de choix des imprégnations catalytiques entre le précatalyseur et le catalyseur de réduction catalytique sélective des oxydes d'azotes.
[0071 ] Les intérêts économiques de ces variantes sont également multiples, notamment du fait d'une réduction de la quantité de métaux précieux à embarquer sur le catalyseur d'oxydation diesel, et d'une réduction de la longueur totale de catalyseur SCR (somme de la longueur du pré-catalyseur et du catalyseur d'oxydation catalytique sélective).
[0072] L'invention permet en outre d'envisager l'introduction aisée de la technologie de réduction catalytique sélective des oxydes d'azote dans les véhicule automobile, présentant un moteur Diesel de petite ou moyenne cylindrée (typiquement, inférieure à 2,2L de cylindrée). [0073] L'introduction de la technologie de réduction catalytique sélective dans les véhicules permet en outre d'autoriser des émissions d'oxydes d'azote supérieures en sortie du moteur, ce qui permet l'adoption de modes de combustion réduisant la consommation du moteur et ses émissions de C02.
[0074] Enfin, la variante de l'invention prévoyant l'emploi d'un substrat unique pour les fonctions de filtre à particules et de catalyseur SCR permet l'obtention d'un dispositif de post-traitement pour le traitement de l'ensemble des polluants réglementés des gaz d'échappement d'un véhicule automobile.

Claims

Revendications :
1 . Dispositif de post-traitement des gaz d'échappement d'un moteur à combustion (1 ) caractérisé en ce qu'il comporte, selon le sens d'écoulement des gaz d'échappement du moteur :
« Un catalyseur d'oxydation (3) ;
• Une embouchure (41 ) d'un moyen d'introduction (4) de réducteur ou de précurseur d'un réducteur pour la réduction catalytique sélective des oxydes d'azote ;
• Un mélangeur (5) pour le mélange des gaz d'échappement et du réducteur et/ou la conversion du précurseur en réducteur ;
· Un catalyseur de réduction catalytique sélective des oxydes d'azote (6) ;
et en ce que les éléments précités sont regroupés dans une enveloppe unique (2).
2. Dispositif selon la revendication 1 , caractérisé en ce qu'il comporte en outre un précatalyseur de réduction catalytique sélective des oxydes d'azote (61 ) entre le catalyseur d'oxydation (3) et l'embouchure (41 ).
3. Dispositif selon la revendication 2, caractérisé en ce que le pré-catalyseur de réduction catalytique sélective (61 ) est constitué d'un pain d'une longueur inférieure à 30mm, et de préférence comprise entre 20 mm et 30 mm.
4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le catalyseur d'oxydation (3) présente une densité de cellule comprise entre 62 et 140 cellules par centimètre carré, et de préférence de l'ordre de 93 cellules par centimètres carré.
5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le catalyseur d'oxydation (3) présente une épaisseur de paroi de comprise entre 50 μηι et 165 μηι.
6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le catalyseur de réduction catalytique sélective des oxydes d'azote (6) présente une densité de cellule comprise entre 62 et 140 cellules par centimètre carré, et de préférence de l'ordre de 93 cellules par centimètres carré.
7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le catalyseur de réduction catalytique sélective des oxydes d'azote (6) présente une épaisseur de paroi de comprise entre 50 μηι et 165 μηι.
8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le mélangeur (5) est d'un type présentant une longueur de parcours pour des gaz le traversant au moins deux fois supérieure à la longueur qu'il occupe longitudinalement dans l'enveloppe (2).
9. Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que le mélangeur (5) a une longueur inférieure à 100mm et de préférence inférieure à 70mm.
10. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'enveloppe (2) est munie d'un convergent de sortie (22) doté d'une sortie latérale, sensiblement orthogonale à son entrée.
1 1 . Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'enveloppe unique (2) est sensiblement en forme d'un cylindre muni d'un divergent d'entrée (21 ) et d'un convergeant de sortie (22), d'une longueur totale inférieure à 700mm.
12. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le moyen d'introduction (4) est un injecteur du type à actionneur par solénoïde ou par piézoélectrique ou mécanique ou hydropneumatique.
13. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le moyen d'introduction (4) est positionné en regard d'une section d'enveloppe identique à la section transversale du catalyseur de réduction catalytique sélective (6).
14. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte un filtre à particules (7), dans l'enveloppe unique.
15. Dispositif selon la revendication 14, caractérisé en ce que le filtre à particules (7) est positionné en aval du catalyseur de réduction catalytique sélective.
16. Dispositif selon la revendication 14, caractérisé par un substrat unique (6') pour le catalyseur de réduction catalytique sélective et le filtre à particules.
17. Ensemble comportant un collecteur d'échappement, un dispositif de post-traitement selon l'une quelconque des revendications précédentes, et un conduit reliant le collecteur d'échappement au dispositif de post-traitement, caractérisé en ce que le conduit présente une longueur d'au plus 30 cm.
18. Véhicule doté d'un compartiment moteur et d'un ensemble selon la revendication 17, caractérisé en ce que l'ensemble est contenu dans le compartiment moteur.
PCT/FR2010/052765 2010-01-25 2010-12-16 Dispositif de post - traitement des gaz d'echappement d'un moteur a combustion interne WO2011089330A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080065803.5A CN102822464B (zh) 2010-01-25 2010-12-16 内燃机排出气体的后处理装置
EP10809286.7A EP2529091B1 (fr) 2010-01-25 2010-12-16 Dispositif de post-traitement des gaz d'échappement d'un moteur à combustion interne
ES10809286.7T ES2569923T3 (es) 2010-01-25 2010-12-16 Dispositivo de postratamiento de los gases de escape de un motor de combustión interna

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1050453 2010-01-25
FR1050453A FR2955612B1 (fr) 2010-01-25 2010-01-25 Dispositif de post-traitement des gaz d'echappement d'un moteur a combustion
FR1054080 2010-05-27
FR1054080A FR2960593B1 (fr) 2010-05-27 2010-05-27 Dispositif de post-traitement des gaz d'echappement d'un moteur a combustion

Publications (1)

Publication Number Publication Date
WO2011089330A1 true WO2011089330A1 (fr) 2011-07-28

Family

ID=43631991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052765 WO2011089330A1 (fr) 2010-01-25 2010-12-16 Dispositif de post - traitement des gaz d'echappement d'un moteur a combustion interne

Country Status (4)

Country Link
EP (1) EP2529091B1 (fr)
CN (1) CN102822464B (fr)
ES (1) ES2569923T3 (fr)
WO (1) WO2011089330A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014079664A1 (fr) * 2012-11-26 2014-05-30 Volkswagen Aktiengesellschaft Dispositif de post-traitement des gaz d'échappement à réduction catalytique sélective et véhicule automobile pourvu d'un tel dispositif
WO2015181456A1 (fr) 2014-05-27 2015-12-03 Peugeot Citroen Automobiles Sa Dispositif de post-traitement des gaz d'échappement d'un moteur a combustion
WO2016092169A1 (fr) 2014-12-10 2016-06-16 Peugeot Citroen Automobiles Sa Dispositif de post-traitement des gaz d'echappement d'un moteur a combustion
WO2016092170A1 (fr) 2014-12-10 2016-06-16 Peugeot Citroen Automobiles Sa Dispositif de post-traitement des gaz d'echappement d'un moteur a combustion
EP3153677A1 (fr) 2015-10-08 2017-04-12 Peugeot Citroën Automobiles SA Dispositif de post-traitement des gaz d'echappement d'un moteur à combustion
EP3369905A1 (fr) 2017-03-02 2018-09-05 PSA Automobiles SA Véhicule intégrant un système de post-traitement des gaz d' échappement d'un moteur à combustion
EP3489477A1 (fr) * 2017-11-22 2019-05-29 Jumbomaw Technology Co., Ltd. Convertisseur catalytique de contre-pression à deux sections
US10837341B2 (en) 2015-07-03 2020-11-17 Ford Global Technologies, Llc Exhaust tract having a metering device which sprays counter to a direction of flow, method for operating an exhaust tract and vehicle having an exhaust tract
WO2022173921A1 (fr) * 2021-02-12 2022-08-18 Corning Incorporated Appareil de traitement d'échappement doté d'un disque cellulaire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115263506B (zh) * 2022-08-17 2024-02-23 一汽解放汽车有限公司 一种发动机后处理器总成

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1050453A (fr) 1950-11-22 1954-01-07 Westinghouse Electric Corp Dépoussiéreurs électrostatiques
FR1054080A (fr) 1950-11-06 1954-02-08 Gen Aniline & Film Corp Procédé de préparation de colorants méthiniques
GB2381218A (en) * 2001-10-25 2003-04-30 Eminox Ltd Gas treatment apparatus
EP1419816A1 (fr) * 2001-07-25 2004-05-19 Ngk Insulators, Ltd. Corps structurel en nid d'abeilles pour la regulation des gaz d'echappement et corps catalyseur en nid d'abeilles pour la regulation des gaz d'echappement
US20050224274A1 (en) * 2004-04-09 2005-10-13 Kouji Shimoji Exhaust apparatus for engine
JP2006132393A (ja) * 2004-11-04 2006-05-25 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置
US20080041050A1 (en) * 2006-08-16 2008-02-21 Andreas Doring Exhaust Gas Post Treatment System
WO2008144385A2 (fr) * 2007-05-15 2008-11-27 Donaldson Company, Inc. Dispositif d'écoulement de gaz d'échappement

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565830A (en) 1963-02-07 1971-02-23 Engelhard Min & Chem Coated film of catalytically active oxide on a refractory support
US4335023A (en) 1980-01-24 1982-06-15 Engelhard Corporation Monolithic catalyst member and support therefor
US4726523A (en) 1984-12-11 1988-02-23 Toa Nenryo Kogyo Kabushiki Kaisha Ultrasonic injection nozzle
DE4123161A1 (de) 1991-07-12 1993-01-14 Siemens Ag Statischer mischer
CA2088713C (fr) * 1992-02-24 1999-11-16 Hans Thomas Hug Nettoyage des gaz d'echappement des installations de combustion
KR100449784B1 (ko) 1995-06-28 2005-02-24 지멘스 악티엔게젤샤프트 연소장치로부터의배기가스를촉매정제하기위한방법및장치
WO2000021647A1 (fr) 1998-10-12 2000-04-20 Johnson Matthey Public Limited Company Procede et dispositif de traitement de gaz d'echappement
JP2000199423A (ja) 1999-01-05 2000-07-18 Mitsubishi Motors Corp ディ―ゼルエンジンの排気ガス浄化装置
GB9915939D0 (en) 1999-07-08 1999-09-08 Johnson Matthey Plc Improvements in pollution control
FR2810075B1 (fr) 2000-06-08 2005-08-12 Peugeot Citroen Automobiles Sa Vehicule automobile a moteur thermique comportant une ligne d'echappement ayant un systeme de depollution place a l'avant du moteur
WO2003054364A2 (fr) * 2001-12-20 2003-07-03 Johnson Matthey Public Limited Company Ameliorations dans la reduction catalytique selective
JP4303599B2 (ja) * 2002-03-25 2009-07-29 イビデン株式会社 排ガス浄化用フィルタ
JP3872384B2 (ja) * 2002-06-13 2007-01-24 トヨタ自動車株式会社 排ガス浄化フィルタ触媒
JP2004239109A (ja) * 2003-02-04 2004-08-26 Hino Motors Ltd エンジンの排ガス浄化装置
DE10323607B4 (de) 2003-05-20 2019-05-09 Robert Bosch Gmbh Vorrichtung zur Reinigung von Abgasen eines Verbrennungsmotors
SE523479C2 (sv) 2003-06-26 2004-04-20 Scania Cv Abp Behållaranordning inrättad att anordnas i ett avgassystem för en förbränningsmotor
JP2005155404A (ja) 2003-11-25 2005-06-16 Komatsu Ltd 内燃機関の排気ガス浄化装置
JP2006009608A (ja) 2004-06-23 2006-01-12 Hino Motors Ltd 排気浄化装置
JP4698359B2 (ja) 2005-09-22 2011-06-08 Udトラックス株式会社 排気浄化装置
JP2007100508A (ja) 2005-09-30 2007-04-19 Bosch Corp 内燃機関の排気浄化装置、及び内燃機関の排気浄化方法
JP2007205267A (ja) 2006-02-02 2007-08-16 Hino Motors Ltd 排気浄化装置
JP2008075543A (ja) * 2006-09-21 2008-04-03 Hino Motors Ltd エンジンの排ガス浄化装置
JP2008144644A (ja) 2006-12-08 2008-06-26 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置
US7998423B2 (en) * 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
US8371114B2 (en) 2007-03-12 2013-02-12 Bosch Corporation Exhaust gas purification apparatus for internal combustion engine
JP2008248746A (ja) 2007-03-29 2008-10-16 Tokyo Roki Co Ltd 排気浄化機能付き消音装置
US7814745B2 (en) 2007-07-17 2010-10-19 Ford Global Technologies, Llc Approach for delivering a liquid reductant into an exhaust flow of a fuel burning engine
JP2009114930A (ja) 2007-11-06 2009-05-28 Hino Motors Ltd 排気浄化装置
JP5066435B2 (ja) 2007-12-14 2012-11-07 東京濾器株式会社 ディーゼルエンジン用の排ガス浄化装置
JP5090890B2 (ja) 2007-12-21 2012-12-05 三菱ふそうトラック・バス株式会社 エンジンの排気浄化装置
WO2009141882A1 (fr) * 2008-05-20 2009-11-26 イビデン株式会社 Structure en nid d'abeilles
JP5256881B2 (ja) 2008-06-25 2013-08-07 いすゞ自動車株式会社 排気ガス浄化装置
US8475752B2 (en) 2008-06-27 2013-07-02 Basf Corporation NOx adsorber catalyst with superior low temperature performance
JP2011033000A (ja) * 2009-08-05 2011-02-17 Toyota Industries Corp 排気ガス浄化装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1054080A (fr) 1950-11-06 1954-02-08 Gen Aniline & Film Corp Procédé de préparation de colorants méthiniques
FR1050453A (fr) 1950-11-22 1954-01-07 Westinghouse Electric Corp Dépoussiéreurs électrostatiques
EP1419816A1 (fr) * 2001-07-25 2004-05-19 Ngk Insulators, Ltd. Corps structurel en nid d'abeilles pour la regulation des gaz d'echappement et corps catalyseur en nid d'abeilles pour la regulation des gaz d'echappement
GB2381218A (en) * 2001-10-25 2003-04-30 Eminox Ltd Gas treatment apparatus
US20050224274A1 (en) * 2004-04-09 2005-10-13 Kouji Shimoji Exhaust apparatus for engine
JP2006132393A (ja) * 2004-11-04 2006-05-25 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置
US20080041050A1 (en) * 2006-08-16 2008-02-21 Andreas Doring Exhaust Gas Post Treatment System
WO2008144385A2 (fr) * 2007-05-15 2008-11-27 Donaldson Company, Inc. Dispositif d'écoulement de gaz d'échappement

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014079664A1 (fr) * 2012-11-26 2014-05-30 Volkswagen Aktiengesellschaft Dispositif de post-traitement des gaz d'échappement à réduction catalytique sélective et véhicule automobile pourvu d'un tel dispositif
WO2015181456A1 (fr) 2014-05-27 2015-12-03 Peugeot Citroen Automobiles Sa Dispositif de post-traitement des gaz d'échappement d'un moteur a combustion
FR3021695A1 (fr) * 2014-05-27 2015-12-04 Peugeot Citroen Automobiles Sa Dispositif de post-traitement des gaz d'echappement d'un moteur a combustion
WO2016092169A1 (fr) 2014-12-10 2016-06-16 Peugeot Citroen Automobiles Sa Dispositif de post-traitement des gaz d'echappement d'un moteur a combustion
WO2016092170A1 (fr) 2014-12-10 2016-06-16 Peugeot Citroen Automobiles Sa Dispositif de post-traitement des gaz d'echappement d'un moteur a combustion
US10837341B2 (en) 2015-07-03 2020-11-17 Ford Global Technologies, Llc Exhaust tract having a metering device which sprays counter to a direction of flow, method for operating an exhaust tract and vehicle having an exhaust tract
EP3153677A1 (fr) 2015-10-08 2017-04-12 Peugeot Citroën Automobiles SA Dispositif de post-traitement des gaz d'echappement d'un moteur à combustion
EP3369905A1 (fr) 2017-03-02 2018-09-05 PSA Automobiles SA Véhicule intégrant un système de post-traitement des gaz d' échappement d'un moteur à combustion
EP3489477A1 (fr) * 2017-11-22 2019-05-29 Jumbomaw Technology Co., Ltd. Convertisseur catalytique de contre-pression à deux sections
WO2022173921A1 (fr) * 2021-02-12 2022-08-18 Corning Incorporated Appareil de traitement d'échappement doté d'un disque cellulaire

Also Published As

Publication number Publication date
CN102822464A (zh) 2012-12-12
EP2529091B1 (fr) 2016-04-06
CN102822464B (zh) 2015-10-07
EP2529091A1 (fr) 2012-12-05
ES2569923T3 (es) 2016-05-13

Similar Documents

Publication Publication Date Title
EP2529091B1 (fr) Dispositif de post-traitement des gaz d'échappement d'un moteur à combustion interne
EP2676016B1 (fr) Ensemble de post-traitement des gaz d'echappement d'un moteur a combustion suralimente, et vehicule automobile comportant un tel ensemble
EP2686529B1 (fr) Ensemble coudé de post-traitement des gaz d'echappement d'un moteur a combustion, groupe motopropulseur et vehicule associés
EP3230564B1 (fr) Dispositif de post-traitement des gaz d'echappement d'un moteur a combustion
FR2964413A1 (fr) Filtre a particules a trois revetements catalytiques
EP3230563B1 (fr) Dispositif de post-traitement des gaz d'echappement d'un moteur a combustion
FR2947004A1 (fr) Ligne d'echappement avec dispositif de traitement des oxydes d'azote.
EP3153677B1 (fr) Dispositif de post-traitement des gaz d'echappement d'un moteur à combustion
FR2957119A1 (fr) Chambre de melange d'un produit reducteur a des gaz d'echappement
FR2974595A1 (fr) Enveloppe coudee d'un ensemble de post-traitement des gaz d'echappement d'un moteur a combustion comportant deux demi-coquilles
EP2678536B1 (fr) Vehicule automobile comportant une ligne d'echappement dont les moyens acoustiques sont disposes en avant du train arriere
FR2960593A1 (fr) Dispositif de post-traitement des gaz d'echappement d'un moteur a combustion
FR2955612A1 (fr) Dispositif de post-traitement des gaz d'echappement d'un moteur a combustion
FR3081921A1 (fr) Ligne d’echappement de moteur thermique comprenant un element de chauffage amont
FR3029970A1 (fr) Dispositif de post-traitement des gaz d’echappement d’un moteur a combustion
FR3037615B1 (fr) Systeme de depollution des gaz d'echappement optimise
EP3369905A1 (fr) Véhicule intégrant un système de post-traitement des gaz d' échappement d'un moteur à combustion
EP2708709B1 (fr) Ligne déchappement avec dispositif de traitement des émissions polluantes d'un moteur thérmique par reduction catalytique, s'affranchissant de réducteur embarque
FR2995349A1 (fr) Dispositif de traitement des emissions polluantes d'un moteur thermique par reduction catalytique, diminuant l'apport en reducteur embarque
FR3120094A1 (fr) Ligne d’echappement de moteur thermique comprenant des elements de chauffage
FR2971005A1 (fr) Ligne d'echappement pour moteur a combustion interne
FR2933448A1 (fr) Dispositif de purification de gaz d'echappement
FR2901308A1 (fr) Dispositif de traitement de gaz d'echappement d'un moteur thermique de vehicule automobile
FR2986826A1 (fr) Dispositif de traitement des gaz d'echappement d'un moteur a combustion et vehicule automobile associe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065803.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809286

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010809286

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE