WO2011088706A1 - Fibre multimode à largeur de bande élevée - Google Patents
Fibre multimode à largeur de bande élevée Download PDFInfo
- Publication number
- WO2011088706A1 WO2011088706A1 PCT/CN2010/079313 CN2010079313W WO2011088706A1 WO 2011088706 A1 WO2011088706 A1 WO 2011088706A1 CN 2010079313 W CN2010079313 W CN 2010079313W WO 2011088706 A1 WO2011088706 A1 WO 2011088706A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- refractive index
- inner cladding
- index difference
- relative refractive
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03661—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
- G02B6/03666—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/028—Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
- G02B6/0288—Multimode fibre, e.g. graded index core for compensating modal dispersion
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/028—Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
- G02B6/0281—Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
Definitions
- the present invention relates to a high-bandwidth multimode optical fiber for use in an access network and a miniaturized optical device, which has excellent bending resistance and high bandwidth, and belongs to the field of optical communication technology.
- Multimode fiber especially high-bandwidth multimode fiber (such as OM3), has been widely used in medium and short-haul fiber-optic network systems (such as data centers and campus networks) due to its relatively low system construction cost.
- the bending-resistant multimode fiber needs to have the following characteristics: 1. Additional bending attenuation (especially macrobend additional attenuation) is small. 2. Fiber life is not affected by small curved half diameter. 3, with higher bandwidth, can meet the needs of 10Gb / s, or even 40Gb / s Ethernet.
- Mandrel a preform containing a core layer and a partial cladding
- Radius the distance between the outer boundary of the layer and the center point
- Refractive index profile Fiber or fiber preform (including mandrel) The relationship between the refractive index of the glass and its radius; Relative refractive index difference: And n Q are respectively the refractive index of each corresponding portion and pure silica glass at a wavelength of 850 nm; unless otherwise specified, the maximum refractive index of each corresponding portion;
- Casing a quartz glass tube that meets certain geometric and doping requirements
- the technical problem to be solved by the present invention is to provide a multimode optical fiber having a reasonable structural design, small bending additional attenuation, and high bandwidth in view of the above-mentioned deficiencies of the prior art.
- the core layer and the cladding layer are characterized in that the core layer radius R1 is 15 to 35 micrometers, the refractive index profile of the core layer is parabolic ((X is 1.9 to 2.2), and the maximum relative refractive index difference A l%max is greater than 0.8%,
- the outer layer of the core layer is in order from the inside to the outside: inner cladding layer and/or depressed inner cladding layer, rising ring and depressed outer cladding layer, the inner cladding layer has a single side thickness W2 of 0 to 8 micrometers, and the inner cladding has a relative refractive index difference of 8% 2%.
- the thickness of the inner side of the depressed inner cladding W3 is 0 ⁇ 20 microns, and the relative refractive index difference A 3% of the depressed inner cladding is -0.15% ⁇ -0.8%; the inner cladding thickness W2 and the depressed inner cladding
- the unilateral thickness W3 is not 0 at the same time; the rising ring unilateral thickness W4 is 0.2 ⁇ 15 ⁇ m, the rising ring relative refractive index difference ⁇ 4% is -0.01% ⁇ 0.8%; the sag outer cladding unilateral thickness W5 is 1 ⁇ 50 microns
- the relative refractive index difference A 5% of the depressed outer cladding layer is -0.15% ⁇ -0.8%; the relative refractive index difference of each layer simultaneously satisfies the following relationship: A l%max>A 2% > ⁇ 3%, ⁇ 4%> ⁇ 3 %, ⁇ 4%> ⁇ 5%, ⁇ 4% ⁇ 2%.
- the outer cladding layer is coated on the outer cladding layer, the outer layer thickness W6 of the outer cladding layer is 0 to 50 micrometers, and the relative refractive index difference A 6% of the outer cladding layer is -0.1% to 0.1%, ⁇ 6%> ⁇ 5% .
- the inner cladding layer and the depressed inner cladding layer are included in the cladding layer outside the core layer, the inner cladding layer has a single side thickness W2 of 0.5 to 4 micrometers, and the inner cladding layer has a relative refractive index difference of 8% to 2% of -0.01% to 0.01%;
- the singular inner layer thickness W3 of the depressed inner cladding is 5 to 15 micrometers, and the relative refractive index difference A 3% of the depressed inner cladding layer is -0.2% to -0.6%.
- the inner cladding layer or the depressed inner cladding layer is included in the cladding layer outside the core layer.
- the relative refractive index difference ⁇ 5% of the depressed outer layer is constant in the radial direction; or is gradual, the gradation includes increasing the gradient from the inside to the outside or decreasing the gradation from the inside to the outside; or changing in a curve.
- each layer is composed of ytterbium-doped (Ge) or fluorine-doped (F) or ytterbium-fluoride co-doped quartz glass.
- Chlorine (C1) is introduced by the reaction of silicon tetrachloride (SiCl 4 ), germanium tetrachloride (GeCl 4 ) and oxygen (0 2 ) to form C1, and the fluctuation of its content has little effect on the performance of the fiber, and Under stable process conditions, the fluctuation of its content is not large, and it can be omitted and required.
- a pure quartz glass liner is fixed on a plasma enhanced chemical vapor deposition (PCVD) lathe for doping deposition, and a fluorine-containing gas is introduced into the reaction gases silicon tetrachloride (SiCl 4 ) and oxygen (0 2 ).
- a fluorine-containing gas is introduced into the reaction gases silicon tetrachloride (SiCl 4 ) and oxygen (0 2 ).
- Introducing fluorine (F) doping introducing cerium tetrachloride (GeCl 4 ) to introduce germanium (Ge) doping, ionizing the reaction gas in the liner into a plasma by microwave, and finally depositing it in the form of glass.
- each cladding layer and the core layer are sequentially deposited by changing the flow rate of the doping gas in the mixed gas; after the deposition is completed, the deposition tube is melted into a solid by an electric heating furnace Mandrel; then partially hydrolyze the mandrel with hydrofluoric acid (HF), then use the synthetic pure quartz glass or fluorine-doped quartz glass as the casing to make the optical fiber preform by RIT process, or outsourced with OVD or VAD
- the deposition process produces an optical fiber preform by depositing an outer layer outside the mandrel; the optical fiber preform is placed in a drawing tower and drawn into an optical fiber, and two layers of ultraviolet-curable polyacrylic acid resin are applied on the surface of the optical fiber.
- the fluorine-containing gas is any one or more of C 2 F 6 , CF 4 , SiF 4 and SF 6 .
- the optical fiber of the invention has a bandwidth of 2000 MHz-km or more and even 10000 MHz-km or more at a wavelength of 850 nm; the numerical aperture of the optical fiber is 0.185 ⁇ 0.230; at a wavelength of 850 nm, the bending additional loss caused by a winding radius of 10 mm is less than O. ldB, even reaching O.OldB; bending additional loss caused by one turn around 7.5 mm bend radius is less than 0.2 dB, even up to 0.02 dB; bending additional loss caused by one turn around 5 mm bend radius is less than 0.5 dB, even reaching 0.05 dB.
- the present invention employs one or two depressed cladding layers to improve the bending resistance of the optical fiber.
- a rising loop is introduced in the cladding of the multimode optical fiber, and the effective refractive index and the rising loop of some higher order modes in the core layer are When the effective refractive indices of some modes are substantially equal, the energy of these higher order modes of the fiber core layer is transferred from the core layer or coupled to some modes of the rising ring, thereby leaking out of the outer cladding.
- this resonant coupling can effectively reduce the high-order modes of the core layer, thereby effectively increasing the bandwidth of the bend-insensitive multimode fiber.
- the invention has the following advantages: 1. Designing several multi-clad multimode optical fibers, each of which has at least one depressed cladding layer, which significantly reduces the additional attenuation of the optical macrobend and improves the bending resistance of the optical fiber; Fibers have risers that allow some of the higher order modes of the fiber core to transfer or couple energy from the core to some modes of the riser ring. Going, and then leaking out from the outer layer, after a certain fiber transmission distance, this resonant coupling can effectively reduce the high-order mode of the core layer, thereby effectively increasing the bandwidth of the bend-insensitive multimode fiber; in addition, the riser ring design can also reduce the fiber Microbending loss; 3.
- the manufacturing method of the invention is simple and effective, and is suitable for mass production.
- Figure 1 is a schematic cross-sectional view showing a refractive index of an optical fiber according to an embodiment
- FIG. 2 is a schematic cross-sectional view showing a refractive index of an optical fiber according to another embodiment of the present invention.
- Figure 3 is a schematic cross-sectional view showing the refractive index of a fiber according to a third embodiment of the present invention.
- Figure 4 is a schematic cross-sectional view showing the refractive index of a fiber according to a fourth embodiment of the present invention.
- Figure 5 is a schematic cross-sectional view showing the refractive index of a fiber according to a fifth embodiment of the present invention.
- Figure 6 is a schematic cross-sectional view showing the refractive index of a fiber according to a sixth embodiment of the present invention.
- Figure 7 is a schematic cross-sectional view showing the refractive index of a fiber according to a seventh embodiment of the present invention.
- Figure 8 is a schematic cross-sectional view showing the refractive index of an optical fiber according to an eighth embodiment of the present invention. detailed description
- the macrobend additional loss is measured according to the FOTP-62 (IEC- 60793-1 - 47) method.
- the fiber under test is wound around a certain diameter (for example: 10mm, 15mm, 20mm, 30mm, etc.), and then the circle is placed. On, test the change of optical power before and after the circle, as the additional loss of the macrobend of the fiber.
- Encircled Flux light injection conditions were used. Encircled Flux light injection conditions can be obtained by: welding a 2 m long ordinary 50 micron core multimode fiber at the front end of the fiber under test, and winding a 25 mm diameter ring in the middle of the fiber. When the injected light is injected into the fiber, the fiber to be tested is an Encircled Flux light injection.
- the full injection bandwidth is measured according to the FOTP-204 method, and the test uses a full injection condition.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- a set of preforms and wires are prepared, using a double-layer coating of multimode fibers and a drawing speed of 600 m/min, an optical fiber.
- the structure and main performance parameters are shown in Table 1. Table 1
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- Embodiment 3 is a diagrammatic representation of Embodiment 3
- the refractive index profiles of the optical fibers of the fourth to eighth embodiments of the present invention are shown in Figs. 4 to 8, wherein the fourth embodiment differs from the third embodiment mainly in the relative refractive index difference ⁇ 5 of the depressed outer cladding. % changes in a curve along the radial direction, The curve is a circular arc shape; the main difference between the fifth embodiment and the third embodiment is that the relative refractive index difference ⁇ 5% of the depressed outer cladding is linearly decreasing from the inside to the outside in the radial direction; the sixth embodiment and The main difference of the third embodiment is that the relative outer refractive index difference ⁇ 5% of the depressed outer cladding gradually increases linearly from the inner side to the outer side.
- the main feature of the seventh embodiment is that the cladding layer is composed of an inner cladding layer, a rising ring, a depressed outer cladding layer and an outer cladding layer, and has no depressed inner cladding layer.
- the main feature of the eighth embodiment is that the cladding is composed of a depressed inner cladding, a rising ring, a depressed outer cladding, and an outer cladding, and has no inner cladding.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Glass Compositions (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
- Lasers (AREA)
Abstract
L'invention concerne une fibre multimode à largeur de bande élevée comprenant une couche centrale et des couches de revêtement. Le rayon de la couche centrale est de 15~35 mm, et le profil d'indice de réfraction de la couche centrale est une parabole, tandis que la différence d'indice de réfraction relative maximale Δ1%max répond à la formule Δ1%max>0,8%. Les couches de revêtement à l'extérieur de la couche centrale comprennent une couche de revêtement interne et/ou une couche de revêtement interne noyée, une bague montante et une couche de revêtement externe noyée tour à tour de l'intérieur vers l'extérieur, la différence d'indice de réfraction relative de chaque couche répondant aux relations suivantes : Δ1%max>Δ2%>Δ3%, Δ4%>Δ3%, Δ4%>Δ5%, et Δ4%>Δ2%. La fibre multimode à largeur de bande élevée réduit l'atténuation supplémentaire des macro-courbures de fibre, et améliore les performances anti-courbures de la fibre. La fibre comporte une bague montante, de sorte que l'énergie de certains modes d'ordre élevé de la couche centrale de la fibre soit transférée ou couplée à certains modes de la bague montante depuis la couche centrale, et que la largeur de bande de la fibre multimode insensible aux courbures soit ainsi efficacement améliorée.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010100290311A CN101738681B (zh) | 2010-01-20 | 2010-01-20 | 一种高带宽多模光纤 |
CN201010029031.1 | 2010-01-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011088706A1 true WO2011088706A1 (fr) | 2011-07-28 |
Family
ID=42462388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/079313 WO2011088706A1 (fr) | 2010-01-20 | 2010-12-01 | Fibre multimode à largeur de bande élevée |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101738681B (fr) |
WO (1) | WO2011088706A1 (fr) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101738681B (zh) * | 2010-01-20 | 2011-08-31 | 长飞光纤光缆有限公司 | 一种高带宽多模光纤 |
CN102043197A (zh) * | 2011-01-26 | 2011-05-04 | 长飞光纤光缆有限公司 | 一种抗弯曲多模光纤 |
FR2971061B1 (fr) * | 2011-01-31 | 2013-02-08 | Draka Comteq France | Fibre optique a large bande passante et a faibles pertes par courbure |
CN102193142B (zh) * | 2011-06-28 | 2013-06-26 | 长飞光纤光缆有限公司 | 一种抗弯曲大芯径高数值孔径多模光纤 |
US8842957B2 (en) * | 2011-06-30 | 2014-09-23 | Corning Incorporated | Multimode optical fiber and system incorporating such |
US20130039626A1 (en) * | 2011-08-11 | 2013-02-14 | Scott Robertson Bickham | Multimode optical fiber and optical backplane using multimode optical fiber |
CN102539015B (zh) * | 2012-02-15 | 2013-11-20 | 长飞光纤光缆有限公司 | 一种分布式温度传感光纤 |
CN102778722B (zh) * | 2012-05-28 | 2014-09-17 | 长芯盛(武汉)科技有限公司 | 渐变折射率抗弯曲多模光纤 |
CN102692675A (zh) * | 2012-05-28 | 2012-09-26 | 长飞光纤光缆有限公司 | 一种渐变折射率抗弯曲多模光纤 |
CN103543491B (zh) * | 2013-11-08 | 2015-08-19 | 烽火通信科技股份有限公司 | 超低损耗高带宽耐辐照多模光纤及其制造方法 |
CN105319643A (zh) * | 2014-06-30 | 2016-02-10 | 住友电气工业株式会社 | 多模光纤 |
CN104216044B (zh) * | 2014-09-17 | 2017-10-24 | 长飞光纤光缆股份有限公司 | 一种低衰耗弯曲不敏感单模光纤 |
CN104391351B (zh) * | 2014-11-25 | 2017-07-21 | 长飞光纤光缆股份有限公司 | 一种抗弯曲多模光纤 |
CN104793285B (zh) * | 2015-04-29 | 2018-01-02 | 武汉邮电科学研究院 | 低损耗少模光纤 |
CN104898201B (zh) * | 2015-06-25 | 2017-12-08 | 长飞光纤光缆股份有限公司 | 一种超低衰减大有效面积的单模光纤 |
CN104880766B (zh) * | 2015-06-25 | 2018-01-12 | 长飞光纤光缆股份有限公司 | 一种超低衰减单模光纤 |
CN105759344B (zh) * | 2016-03-23 | 2018-11-30 | 长飞光纤光缆股份有限公司 | 一种抗弯曲多模光纤 |
CN106468803A (zh) * | 2016-08-30 | 2017-03-01 | 武汉长盈通光电技术有限公司 | 一种弯曲不敏感单模光纤 |
CN106324752B (zh) * | 2016-11-08 | 2019-01-22 | 长飞光纤光缆股份有限公司 | 一种高带宽抗辐射多模光纤 |
CN107390316A (zh) * | 2017-08-11 | 2017-11-24 | 长飞光纤光缆股份有限公司 | 具有高带宽性能的多模光纤 |
CN107479129A (zh) * | 2017-08-11 | 2017-12-15 | 长飞光纤光缆股份有限公司 | 一种高带宽多模光纤 |
CN110346864B (zh) * | 2019-06-04 | 2020-10-27 | 烽火通信科技股份有限公司 | 一种多芯少模光纤及其制造方法 |
CN112987169A (zh) * | 2019-12-02 | 2021-06-18 | 中国移动通信有限公司研究院 | 一种光纤 |
CN116626805B (zh) * | 2023-07-24 | 2023-10-13 | 中天科技光纤有限公司 | 超低损耗光纤及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0131729A1 (fr) * | 1983-06-15 | 1985-01-23 | Sumitomo Electric Industries Limited | Fibre pour transmission optique |
CN1252498C (zh) * | 2003-07-15 | 2006-04-19 | 长飞光纤光缆有限公司 | 与正色散和正色散斜率单模光纤匹配使用的色散补偿传输光纤及用途 |
US7085462B2 (en) * | 2001-12-05 | 2006-08-01 | The Furukawa Electric Co., Ltd. | Optical fiber, optical fiber module and optical amplifier |
US20090154888A1 (en) * | 2007-12-13 | 2009-06-18 | Abbott Iii John Steele | Bend Resistant Multimode Optical Fiber |
CN101526643A (zh) * | 2008-03-06 | 2009-09-09 | 汪业衡 | 宽带非零色散单模光纤 |
CN101622561A (zh) * | 2007-01-08 | 2010-01-06 | 康宁股份有限公司 | 抗弯曲多模光纤 |
CN101634728A (zh) * | 2009-08-18 | 2010-01-27 | 长飞光纤光缆有限公司 | 一种抗弯曲多模光纤及其制造方法 |
CN101738681A (zh) * | 2010-01-20 | 2010-06-16 | 长飞光纤光缆有限公司 | 一种高带宽多模光纤 |
-
2010
- 2010-01-20 CN CN2010100290311A patent/CN101738681B/zh active Active
- 2010-12-01 WO PCT/CN2010/079313 patent/WO2011088706A1/fr active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0131729A1 (fr) * | 1983-06-15 | 1985-01-23 | Sumitomo Electric Industries Limited | Fibre pour transmission optique |
US7085462B2 (en) * | 2001-12-05 | 2006-08-01 | The Furukawa Electric Co., Ltd. | Optical fiber, optical fiber module and optical amplifier |
CN1252498C (zh) * | 2003-07-15 | 2006-04-19 | 长飞光纤光缆有限公司 | 与正色散和正色散斜率单模光纤匹配使用的色散补偿传输光纤及用途 |
CN101622561A (zh) * | 2007-01-08 | 2010-01-06 | 康宁股份有限公司 | 抗弯曲多模光纤 |
US20090154888A1 (en) * | 2007-12-13 | 2009-06-18 | Abbott Iii John Steele | Bend Resistant Multimode Optical Fiber |
CN101526643A (zh) * | 2008-03-06 | 2009-09-09 | 汪业衡 | 宽带非零色散单模光纤 |
CN101634728A (zh) * | 2009-08-18 | 2010-01-27 | 长飞光纤光缆有限公司 | 一种抗弯曲多模光纤及其制造方法 |
CN101738681A (zh) * | 2010-01-20 | 2010-06-16 | 长飞光纤光缆有限公司 | 一种高带宽多模光纤 |
Also Published As
Publication number | Publication date |
---|---|
CN101738681B (zh) | 2011-08-31 |
CN101738681A (zh) | 2010-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011088706A1 (fr) | Fibre multimode à largeur de bande élevée | |
JP5687355B2 (ja) | 曲げ耐性を有しコア径が大きく高開口数のマルチモード光ファイバ | |
KR101577635B1 (ko) | 벤딩에 민감하지 않은 단일모드 광섬유 | |
US9796618B2 (en) | Multi-core optical fiber ribbons and methods for making the same | |
KR101577962B1 (ko) | 일종의 벤딩에 민감하지 않은 단일모드 광섬유 | |
US8750664B2 (en) | Bend insensitive single mode fiber | |
WO2013177996A1 (fr) | Fibre optique multimodale résistant à la flexion et ayant des indices de réfraction progressifs | |
WO2011020315A1 (fr) | Fibre optique multimodale résistante à la flexion et procédé de fabrication de celle-ci | |
WO2011147272A1 (fr) | Fibre optique multi-mode anti-flexion | |
CN109839694B (zh) | 一种截止波长位移单模光纤 | |
CN102778722B (zh) | 渐变折射率抗弯曲多模光纤 | |
CN108333671B (zh) | 抗弯曲多模光纤 | |
CN104291676B (zh) | 一种大尺寸弯曲不敏感多模光纤预制棒的制造方法 | |
WO2015007097A1 (fr) | Fibre optique monomodale insensible à la courbure | |
CN100371747C (zh) | 具有波导结构的弯曲不敏感光纤 | |
CN110488411B (zh) | 一种抗弯曲单模光纤 | |
CN107102400B (zh) | 一种高带宽弯曲不敏感多模光纤 | |
WO2020119439A1 (fr) | Fibre optique monomode à faible perte et à grande surface utile et son procédé de fabrication | |
US8606065B2 (en) | Optical fiber and method for fabricating the same | |
WO2017036030A1 (fr) | Fibre optique fine résistante à la flexion et son procédé de fabrication | |
CN107193080B (zh) | 高带宽弯曲不敏感多模光纤 | |
WO2012100581A1 (fr) | Fibre optique multimodale résistant à la flexion | |
WO2023240879A1 (fr) | Fibre optique monomode de petit diamètre | |
CN108983350B (zh) | 一种小芯径渐变折射率光纤 | |
CN115542455A (zh) | 一种兼容g652d标准的大模场g657a2光纤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10843746 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10843746 Country of ref document: EP Kind code of ref document: A1 |