WO2020119439A1 - Fibre optique monomode à faible perte et à grande surface utile et son procédé de fabrication - Google Patents

Fibre optique monomode à faible perte et à grande surface utile et son procédé de fabrication Download PDF

Info

Publication number
WO2020119439A1
WO2020119439A1 PCT/CN2019/120828 CN2019120828W WO2020119439A1 WO 2020119439 A1 WO2020119439 A1 WO 2020119439A1 CN 2019120828 W CN2019120828 W CN 2019120828W WO 2020119439 A1 WO2020119439 A1 WO 2020119439A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical fiber
core layer
radius
loss
Prior art date
Application number
PCT/CN2019/120828
Other languages
English (en)
Chinese (zh)
Inventor
沈小平
杨志杰
曹锦松
丁润琪
沈佳
满小忠
朱坤
Original Assignee
通鼎互联信息股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通鼎互联信息股份有限公司 filed Critical 通鼎互联信息股份有限公司
Publication of WO2020119439A1 publication Critical patent/WO2020119439A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • G02B6/02014Effective area greater than 60 square microns in the C band, i.e. 1530-1565 nm
    • G02B6/02019Effective area greater than 90 square microns in the C band, i.e. 1530-1565 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only

Definitions

  • the invention relates to a low-loss large-effective-area single-mode optical fiber and a preparation method thereof, which belong to the technical field of optical fiber transmission.
  • Optical fiber communication technology is changing our world at an enormous speed.
  • Optical fiber is used as a medium for transmitting optical signals.
  • Fiber attenuation and effective area are important factors that currently affect optical fiber transmission performance. In the future 400G or higher transmission system, the reduction of fiber attenuation and the increase of effective area will greatly improve the transmission quality of fiber and greatly reduce the construction and maintenance cost of the entire system.
  • the effective area is used to measure the transmission capacity of optical energy.
  • the large effective area is conducive to the transmission of optical signals and can effectively increase the capacity of optical fiber transmission.
  • the effective area of optical fiber is above 100 ⁇ m 2.
  • the large effective area can be changed by changing the fiber core , The refractive index distribution of the cladding, the size of the core and the duty cycle of the cladding, however, increasing the effective area of the fiber, with the increase in loss, thus limiting the expansion of the effective area of the fiber; in addition, increasing the fiber
  • the core diameter can obtain a larger effective area, it also causes the cut-off wavelength of the optical fiber to increase rapidly.
  • Patent No. CN107132614A proposes a large effective area optical fiber, using a simple refractive index stepped cladding structure design, the effective area of the fiber is 105 ⁇ 135 ⁇ m 2 , and the fiber's cable cut-off wavelength is 1407-1437nm, at 1550nm The dispersion at the wavelength is 17-23ps/nm*km, and the loss at the 1550nm wavelength is 0.180-0.184dB/km; however, the fiber has the following problems: the core layer and the depressed layer are closely connected, and the refractive index differs greatly.
  • the cut-off wavelength is too high; the optical power is easy to leak into the sink layer and refract out of the optical fiber, resulting in increased attenuation; there is no isolation layer between the sink layer and the core layer, which easily causes fluorine to diffuse into the core layer.
  • the patent number CN104459876B proposes a low-loss large effective area fiber.
  • the fiber is designed with a depressed inner core structure.
  • the effective area of the fiber at the wavelength of 1550nm is 110-147 ⁇ m 2 and the cable cut-off wavelength is 1389. -1522nm, the loss at 1550nm is 0.162-0.181dB/km; however, the refractive index of the inner core layer of the optical fiber is smaller than the refractive index of the outer core layer, which causes the change of the incident angle of the optical power during propagation to increase the loss.
  • Concentrated propagation, and its cable cut-off wavelength is large, in practical applications, too high a cut-off wavelength is difficult to ensure that the optical fiber is cut off in the application band, it can not guarantee that the optical signal is in a single-mode state during transmission.
  • the technical problem to be solved by the invention is to provide a low-loss large-effective-area single-mode optical fiber and a preparation method thereof in order to solve the technical problems of the existing single-mode optical fiber with small effective area, large loss, high cut-off wavelength and the like.
  • the relative refractive index is: ⁇ n 1 > ⁇ n 2 > ⁇ n 3 > ⁇ n 4 .
  • the dopants added to the inner core layer and the outer core layer are at least one of GeO 2 , P 2 O 5 -F mixture, and B 2 O 3 .
  • the dopant is a P 2 O 5 -F mixture
  • the doping contribution ⁇ n P of P is 0.3%-0.6%.
  • the inner cladding layer is a silica glass layer doped with germanium and fluorine, wherein the doping contribution of Ge ⁇ n Ge is 0.01%-0.05%.
  • the depressed layer is a fluorine-doped silica glass layer.
  • the effective area of the optical fiber at a wavelength of 1550 nm is 151-162 ⁇ m 2 .
  • the cut-off wavelength of the fiber-optic cable is equal to or less than 1316 nm.
  • the attenuation of the optical fiber at a wavelength of 1550 nm is equal to or less than 0.15 dB/km.
  • the dispersion of the optical fiber at a wavelength of 1550 nm is equal to or less than 17 ps/nm*km.
  • the macrobending loss of R15mm bending radius for 10 turns is equal to or less than 0.02dB, and the R30mm bend radius of 100 turns bending is equal to or less than 0.06dB.
  • the invention also provides a method for preparing a single-mode optical fiber with a low loss and a large effective area.
  • the preparation method is MCVD+OVD.
  • the preparation steps are as follows:
  • the deposition tube is melted and shrunk at a high temperature into a solid prefabricated core rod with an inner core layer, an outer core layer, an inner cladding layer and a depressed layer;
  • An OVD process is used to deposit an outer cladding layer on a prefabricated mandrel, and after sintering, an optical fiber with a low loss and a large effective area is prepared.
  • the relative refractive index ⁇ n i is defined by the following equation:
  • n i is the absolute refractive index of the fiber at a specific position
  • n c is the absolute refractive index of synthetic pure silica glass.
  • n P is the dopant P 2 O 5 -F mixture of the inner core layer and the outer core layer, the refractive index rise caused by P doping, and n c is the absolute refractive index of synthetic pure quartz glass.
  • n Ge is the refractive index increase caused by Ge doping of the inner cladding glass
  • n c is the absolute refractive index of synthetic pure quartz glass.
  • E is the electric field related to propagation and R is the distance from the axis to the point where the electric field is distributed.
  • the IEC (International Commission) standard 60793-1-44 defines:
  • the cable cut-off wavelength ⁇ cc is the wavelength at which the optical signal no longer propagates as a single-mode signal after it has propagated through the fiber for 22 meters. During the test, one loop of 14 cm radius and two loops of 4 cm radius are needed to obtain data.
  • the low-loss large-effective-area single-mode optical fiber provided by the present invention has a core layer divided into an inner core layer and an outer core layer with appropriate relative refractive index differences and radii, and further adding dopants to the inner core layer and the outer core layer , Can increase the effective area and reduce the attenuation coefficient of the optical fiber; the increase in the diameter of the outer core layer can fine-tune the effective area, and can adjust the difference in refractive index, thereby reducing the cutoff wavelength; the design of the inner cladding can prevent the alkali metal from diffusing to the fluorine-doped concentration
  • the higher sink layer forms metal fluoride crystals, which reduces attenuation and prevents the fluorine ions of the sink layer from diffusing into the core layer; the sink layer uses a fluorine-doped design, so that the effective area of the optical fiber at 1550nm wavelength is 151 ⁇ 162 ⁇ m 2 , At the same time, the distribution range of optical power is limited, so that the optical power
  • the comprehensive performance of the optical fiber of the present invention is good in the application band.
  • the cut-off wavelength of the cable can ensure the single-mode propagation of optical signals in the fiber.
  • This fiber can be used for high speed and large capacity Long-distance transmission and long-distance transmission system without relay station.
  • 1 is a distribution diagram of the refractive index cross-sectional structure of the single-mode optical fiber of the present invention, the horizontal axis represents the cross-sectional radius of each layer of the optical fiber, and the vertical axis represents the relative refractive index corresponding to each layer.
  • the dopant added to the inner core layer and the outer core layer is at least one of GeO 2 , P 2 O 5 -F mixture, and B 2 O 3
  • the dopant when the dopant is P 2 O 5 -F mixture ,
  • the doping contribution ⁇ n F of P is 0.1%-0.6%, and the reasonable design of the relative refractive index difference and radius of the inner core layer and the outer core layer effectively reduces the refractive index of the fiber core layer and increases the effectiveness of the fiber
  • the area reduces the attenuation coefficient of the optical fiber;
  • the inner cladding is a silica glass layer doped with germanium and fluorine, in which the Ge doping contribution ⁇ n Ge is 0.01%-0.05%.
  • the purpose is to prevent the fluoride ion diffusion of the alkali metal or the sagging layer of the core layer; the sagging layer closely surrounds the inner cladding, the sagging layer is a fluorine-doped silica glass layer, and its main function is to reduce the macrobending loss of the optical fiber.
  • the single-mode optical fiber of the present invention is prepared by the MCVD+OVD process, specifically:
  • the mandrel is deposited by MCVD process and the structure of the depressed layer is used.
  • the fluorine-doped quartz tube is used as the deposition reaction tube.
  • the inner cladding is deposited on the inner wall of the deposition reaction tube as the depressed layer to prevent the moisture of the reaction tube from expanding into the core layer. Then deposit the outer core layer and the inner core layer to obtain a deposition tube that meets the requirements of the refractive index distribution; after the deposition is completed, the deposited reaction tube is melted and shrunk into a solid prefabricated core rod.
  • the OVD process is used to deposit an outer cladding layer on the prefabricated mandrel, and after sintering to prepare a low-loss large effective area optical fiber that meets the requirements, the OVD process can improve production efficiency and facilitate large-scale production.
  • the effective area of the single-mode optical fiber of the present invention is 151.3-161.5 ⁇ m 2 at a wavelength of 1550 nm
  • the cut-off wavelength for cable formation is 1275-1316 nm
  • the attenuation at a wavelength of 1550 nm is 0.143-0.153 dB/km
  • the wavelength at a wavelength of 1550 nm The dispersion at the location is 15.32-17.31ps/nm*km
  • the optical fiber at the wavelength of 1550nm, the macro bending loss of R15mm bending radius bending 10 turns is 0.014-0.020dB
  • the macro bending loss of R30mm bending radius bending 100 turns is 0.0054-0.0060dB
  • the comprehensive performance parameters such as effective area, cut-off wavelength, attenuation, dispersion, and bending loss of the single-mode optical fiber of the present invention are good in the application band.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

L'invention concerne une fibre optique monomode à faible perte et à grande surface utile, la fibre optique comprenant séquentiellement de l'intérieur à l'extérieur une couche de coeur interne, une couche de coeur externe, une couche de gainage interne, une couche enfoncée et une couche de gainage externe, la couche de coeur interne, la couche de coeur externe, la couche de gainage interne et la couche enfoncée utilisant du dioxyde de silicium en tant que matériau de substrat et ayant un dopant y ajouté. La couche de coeur interne a un rayon de 4 à 7 µm et un indice de réfraction relatif de 0,25 % à 0,45 %; la couche de coeur externe a un rayon de 5 à 9 µm et un Indice de réfraction relatif de Δn2 = 0,1 % à 0,3 %; le rayon de gainage interne a un rayon de 9,5 à 15 µm et un indice de réfraction relatif de -0,02 % à 0,02 %; la couche enfoncée a un rayon de 12 à 25 µm et un indice de réfraction relatif de -0,15 % à 0,55 %; et la couche de gainage externe est de la silice pure et a un rayon de 60 à 65 µm. L'invention concerne également un procédé de préparation de la fibre optique monomode à faible perte et à grande surface utile. La présente fibre optique présente de bonnes propriétés globales telles qu'une zone utile, une longueur d'onde de coupure, une atténuation, une dispersion et une perte de courbure.
PCT/CN2019/120828 2018-12-14 2019-11-26 Fibre optique monomode à faible perte et à grande surface utile et son procédé de fabrication WO2020119439A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811531094.X 2018-12-14
CN201811531094.XA CN109655961A (zh) 2018-12-14 2018-12-14 一种低损耗大有效面积单模光纤及其制备方法

Publications (1)

Publication Number Publication Date
WO2020119439A1 true WO2020119439A1 (fr) 2020-06-18

Family

ID=66114137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120828 WO2020119439A1 (fr) 2018-12-14 2019-11-26 Fibre optique monomode à faible perte et à grande surface utile et son procédé de fabrication

Country Status (2)

Country Link
CN (1) CN109655961A (fr)
WO (1) WO2020119439A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655961A (zh) * 2018-12-14 2019-04-19 通鼎互联信息股份有限公司 一种低损耗大有效面积单模光纤及其制备方法
CN110596810B (zh) * 2019-09-06 2022-08-12 深圳大学 涡旋光纤
CN111562648B (zh) * 2020-04-30 2022-12-16 江苏永鼎光纤科技有限公司 一种包层组分优化的大有效模面积低损耗光纤
CN115321808B (zh) * 2022-08-25 2024-04-30 江苏亨通光导新材料有限公司 一种氢不敏感超低损耗光纤及制作方法
CN115480340A (zh) * 2022-10-11 2022-12-16 电子科技大学 一种用于超灵敏分布式声波传感的抗弯光纤

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020150364A1 (en) * 2001-04-04 2002-10-17 Ian Bassett Single mode fibre
CN102126825A (zh) * 2010-12-27 2011-07-20 成都富通光通信技术有限公司 耐辐射高性能石英光纤及其制作方法
US20120177333A1 (en) * 2010-09-03 2012-07-12 Furukawa Electric Co., Ltd. Optical fiber
CN103941334A (zh) * 2014-04-21 2014-07-23 长飞光纤光缆股份有限公司 一种低衰耗单模光纤
CN109655961A (zh) * 2018-12-14 2019-04-19 通鼎互联信息股份有限公司 一种低损耗大有效面积单模光纤及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8588568B2 (en) * 2011-11-04 2013-11-19 Corning Incorporated Bend loss resistant multi-mode fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020150364A1 (en) * 2001-04-04 2002-10-17 Ian Bassett Single mode fibre
US20120177333A1 (en) * 2010-09-03 2012-07-12 Furukawa Electric Co., Ltd. Optical fiber
CN102126825A (zh) * 2010-12-27 2011-07-20 成都富通光通信技术有限公司 耐辐射高性能石英光纤及其制作方法
CN103941334A (zh) * 2014-04-21 2014-07-23 长飞光纤光缆股份有限公司 一种低衰耗单模光纤
CN109655961A (zh) * 2018-12-14 2019-04-19 通鼎互联信息股份有限公司 一种低损耗大有效面积单模光纤及其制备方法

Also Published As

Publication number Publication date
CN109655961A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
WO2020119439A1 (fr) Fibre optique monomode à faible perte et à grande surface utile et son procédé de fabrication
CN108469648B (zh) 一种超低损耗大有效面积单模光纤及其制造方法
CN102645699B (zh) 一种低衰减弯曲不敏感单模光纤
JP6564074B2 (ja) 極低損失でベンド不敏感の単一モード光ファイバ
KR101577962B1 (ko) 일종의 벤딩에 민감하지 않은 단일모드 광섬유
JP5881213B2 (ja) シングルモード光ファイバ
CN103149630B (zh) 一种低衰减单模光纤
WO2013104243A1 (fr) Fibre optique monomodale insensible à la courbure
CN110045456B (zh) 一种超低损耗大有效面积的单模光纤及其制备方法
CN109839694B (zh) 一种截止波长位移单模光纤
CN104155717B (zh) 一种低衰耗单模光纤
CN105334570B (zh) 一种低衰减弯曲不敏感单模光纤
CN106443876B (zh) 一种低串扰少模光纤
CN109298482B (zh) 一种低衰减和低弯曲损耗的大有效面积单模光纤
JP2012247780A (ja) シングルモード光ファイバ
CN104216044B (zh) 一种低衰耗弯曲不敏感单模光纤
WO2016173253A1 (fr) Fibre optique à mode unique insensible à la courbure à atténuation ultra-faible
CN103472525B (zh) 低损耗大有效面积单模光纤及其制造方法
CN103323908B (zh) 一种单模光纤及其制造方法
CN107102400B (zh) 一种高带宽弯曲不敏感多模光纤
CN104316994A (zh) 一种低衰减弯曲不敏感单模光纤
CN104216045A (zh) 一种光纤及其制作方法
CN102225843B (zh) 光纤预制棒的制造方法
CN106443875A (zh) 一种超低衰减弯曲不敏感单模光纤
CN104261670A (zh) 一种光纤的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19895290

Country of ref document: EP

Kind code of ref document: A1