WO2015007097A1 - Fibre optique monomodale insensible à la courbure - Google Patents

Fibre optique monomodale insensible à la courbure Download PDF

Info

Publication number
WO2015007097A1
WO2015007097A1 PCT/CN2014/072843 CN2014072843W WO2015007097A1 WO 2015007097 A1 WO2015007097 A1 WO 2015007097A1 CN 2014072843 W CN2014072843 W CN 2014072843W WO 2015007097 A1 WO2015007097 A1 WO 2015007097A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
cladding
bending
less
bend
Prior art date
Application number
PCT/CN2014/072843
Other languages
English (en)
Chinese (zh)
Inventor
龙胜亚
张磊
周红燕
罗杰
Original Assignee
长飞光纤光缆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长飞光纤光缆股份有限公司 filed Critical 长飞光纤光缆股份有限公司
Publication of WO2015007097A1 publication Critical patent/WO2015007097A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -

Definitions

  • the present invention relates to a single mode fiber applied to an access network, which has excellent bending resistance and belongs to the field of optical fiber communication transmission.
  • G.657.B3 fiber According to the ITU-T regulations and the specific use environment and conditions of G.657.B3 fiber, G.657.B3 fiber is basically used in short-distance communication transmission, which pays more attention to macroscopic bending performance under small bending radius. It is not mandatory to be compatible with the G.652.D standard. In September 2012, in the latest revision of ITU-T G.657, Class B fiber is gradually becoming compatible with G.652 fiber. The introduction of the new standard will be more conducive to the promotion and use of G.657 fiber.
  • MAC is defined as the mode field diameter and The ratio of the cutoff wavelengths.
  • Patents US2007007016A1, CN1971321A and CN1942793A are such methods.
  • the fiber mode field diameter is too small, it is connected to a conventional single mode fiber.
  • the cut-off wavelength of the cable must be less than 1260 nm, so the space for increasing the cut-off wavelength of the fiber is very limited. If the method of reducing the MAC value of the optical fiber is used alone, the excellent bending performance cannot be effectively obtained, thereby meeting the requirements of the G.657.B3 standard.
  • another effective method for improving the bending performance of the fiber is to adopt the design of the depressed inner cladding.
  • US5032001, US7043125B2 and CN176680 adopt the depressed inner cladding design, and the depressed inner cladding design is adopted.
  • the numerical aperture (NA) of the fiber can be increased without increasing the doping of the core layer, and the increase in attenuation due to doping can be avoided.
  • the optimized design of the depressed inner cladding can only improve the macrobend performance of the fiber at a large bending radius to a certain extent.
  • the bending radius of the optical fiber is less than or equal to 10 mm, it is difficult to prepare a bending insensitive optical fiber conforming to the G.657.A2 standard by using the depressed inner cladding.
  • the depth and width of the submerged outer layer in the fiber profile also have certain requirements: the submerged outer layer is too shallow, too narrow, and can not bring good bending insensitive performance; too deep, Too wide, it may affect the fiber cut-off wavelength and dispersion performance.
  • the following trap layer is too close to the core layer. Once the core layer is offset at the fiber joint, multipath interference is easily generated. The trap layer is too far away from the core layer. There is no need to reduce the additional loss of fiber bending, so precise positioning of the depressed cladding is required. Therefore, reasonable design of the fiber profile, in the core layer, cladding and submerged cladding refractive index profile structure, to achieve a good balance, is a focus of G.657.B3 fiber research and Difficult.
  • US Patent No. 7,623,747 describes an optical fiber that reduces bending and microbending loss, the depressed outer cladding is co-doped with fluoroquinone, and the doped yttrium can increase the elastic optical coefficient of the depressed outer cladding, and reduce when the optical fiber is subjected to bending or The effect of stress on the refractive index change of the fiber during microbending, but its macrobend characteristics still fail to meet the G.657.B3 standard.
  • the applicant also proposes a bending-resistant single-mode optical fiber similar to CN101680994A, which has a bending diameter of 20 mm, but its bending performance fails to meet the standard of G.657.B3 optical fiber.
  • the fiber proposed in Chinese patent CN 102590933 A has a narrow undercut and a poor macrobend.
  • the optical fiber involved in CN 102540327 A has a wide sag and good macrobend performance, but the cutoff wavelength is high, which is not compatible with G.652.D fiber.
  • the macrobend loss at 10mm bend diameter of 1550nm is less than O.ldB/circle, 1625nm wavelength macrobend
  • the loss is less than or equal to 0.2dB/turn, which is superior to CN 102540327 A and has better macrobend performance, which is more conducive to the configuration of fiber in FTTx.
  • G.657.B3 fiber not only be superior to ITU-T G.657.B3 standard, but also requires full compatibility with G.652.D fiber standard, and a large number of G.657. B3 needs to be able to meet the requirements of low cost, large scale production.
  • the optical fiber connection adopts a mechanical connection method, such as a fiber cold connector, which requires good end face quality after fiber cutting, and thus requires an optical fiber to be very Good material uniformity.
  • Core rod a preform containing a core layer and a partial cladding
  • Refractive index profile the relationship between the refractive index of a fiber and its radius
  • Relative refractive index difference ⁇ and n Q are the refractive indices of the respective optical fibers and the pure silica glass, respectively.
  • Casing thick-walled high-purity quartz glass tube that meets the requirements of a certain cross-sectional area;
  • OVD Outer Deposition Process Preparation of Si0 2 glass of required thickness on the surface of the mandrel by external vapor deposition and sintering process
  • VAD outsourcing deposition process Preparation of Si0 2 glass of required thickness on the surface of the mandrel by axial vapor deposition and sintering process
  • APVD Outsourcing process melting a natural or synthetic quartz powder on a surface of a mandrel with a high-frequency plasma flame to prepare a SiO 2 glass of a desired thickness;
  • the technical problem to be solved by the present invention is to provide a bending-insensitive single-mode optical fiber for the deficiencies of the above prior art, which not only has a lower bending loss, but also has stable mechanical properties by optimizing the fiber profile. Uniform material composition, and can maintain effective mode field diameter and low attenuation performance, and low cost.
  • the core layer and the cladding layer are characterized in that the core layer diameter 2R1 is 7.6 to 8.4 micrometers, and the core layer relative refractive index difference ⁇ 1 is 4.66 ⁇ 10- 3 to 6.12 ⁇ 10- 3 , and the outer layer of the core layer is from the inside. to outer cladding to the inner, depressed cladding and an outer cladding, the inner cladding diameter 2R2 of 17.4 ⁇ 20 microns, the inner cladding relative refractive index difference ⁇ 2 of -0.1 X 10- 3 ⁇ 0.1 X 10- 3 , depressed cladding diameter 2R3 is 28 ⁇ 32 microns, depressed cladding relative refractive index difference ⁇ 3 is -4.37 X 10- 3 ⁇ - 7.25 X 10- 3.
  • the outer cladding layer is coated on the outer cladding layer, the diameter d of the outer cladding layer is 125 micrometers, and the refractive index of the outer cladding layer is the refractive index of the pure silica glass.
  • the core layer is a quartz glass layer doped with germanium (Ge) and fluorine (F), and the material composition is
  • the inner cladding layer is a quartz glass layer doped with germanium (Ge) and fluorine (F).
  • the depressed outer cladding layer is a fluorine-doped (F)-doped quartz glass layer.
  • the optical fiber has a mode field diameter of 8.2 to 9.2 ⁇ m at a wavelength of 1310 nm (nm).
  • the attenuation coefficient of the optical fiber at a wavelength of 1310 nm is less than or equal to 0.354 dB/km
  • the attenuation coefficient at 1383nm wavelength is less than or equal to 0.354dB/km, and the attenuation coefficient at 1550nm wavelength is less than or equal to
  • the attenuation coefficient at 1625nm wavelength is less than or equal to 0.234dB/km.
  • the optical fiber has a cable cut-off wavelength of less than or equal to 1260 nm.
  • the optical fiber has an additional loss of less than or equal to 0.03 dB around a radius of 10 mm around a bend of 10 mm at a wavelength of 1550 nm; and an additional loss less than or equal to one turn around a bend radius of 7.5 mm.
  • the additional loss is less than or equal to 0.15 dB.
  • the additional loss is less than or equal to O.ldB for one turn around a bend radius of 10 mm; for a bend around 7.5 mm
  • the additional radius of the curved radius is less than or equal to 0.25 dB around one turn; the additional loss is less than or equal to 0.45 dB for one turn around a 5 mm bend radius.
  • the dynamic fatigue parameter of the optical fiber is 29 ⁇ 33.
  • the beneficial effects of the present invention are as follows: 1. By optimizing the fiber profile, especially optimizing the depth and width of the fiber sag outer cladding to form a specific fiber profile structure, the fiber not only has lower bending additional loss, but also It has stable mechanical properties and uniform material composition. 2. Optimization of fiber cross-section structure. On the basis of maintaining effective mode field diameter and bending performance, the proportion of the submerged outer layer in the fiber cross-section is reduced, and the fiber is directly reduced. The deposition processing amount of the core, precision and complex parts in the preform manufacturing, thereby reducing the difficulty of process control, improving the processing efficiency of the optical fiber preform, thereby reducing the manufacturing cost of the optical fiber; 3.
  • the optical fiber of the present invention is in various The performance is far superior to the ITU-T G.657.B3 standard, especially its excellent macrobend performance, which can meet the requirements of FTTH network laying and device miniaturization. 4.
  • the preferred fiber of the present invention is fully compatible with G.652.D fiber and has a lower splice loss when soldered to conventional G.652.D. DRAWINGS
  • FIG. 1 is a schematic cross-sectional view of a refractive index of a fiber of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the optical fiber includes a core layer and a cladding layer, and the outer layer of the core layer is an inner cladding layer, a depressed outer cladding layer and an outer cladding layer from the inside to the outside.
  • Diameter of core layer 2R1, relative refractive index difference A i, depressed inner cladding and outer cladding diameters are 2R2, 2R3, and the inner cladding relative index difference of the depressed cladding are successively eight, and eight 2 3.
  • the outer cladding is coated on the outer cladding layer, the diameter d of the outer cladding is 125 micrometers, and the refractive index of the outer cladding is the refractive index of pure silica glass.
  • the core and the inner cladding is doped with germanium and fluorine vitreous silica layer, the material component Si0 2 -Ge0 2 -F-Cl, in the present embodiment, by optimizing the fiber sectional rational structure, the optical fiber satisfying the performance parameters Based on the G.657.B3 standard, it is compatible with the G.652.D standard and thus has better upward compatibility.
  • the macrobend additional loss test method refers to the method specified in IEC 60793-1-47.
  • the optical fiber is wound into a circle or a circle at a certain diameter, and then the circle is released, and the change of the optical power before and after the loop is tested, thereby taking the macrobend additional loss of the optical fiber.
  • a reliable method must be used to test the intensity distribution of the fiber.
  • the screening test screens the fibers with larger cracks, and the fiber tested through the screening test must be further analyzed to find and evaluate the reliability of the fiber.
  • the main performance parameters of the fiber are shown in Table 2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

La présente invention porte sur une fibre optique monomodale insensible à la courbure, qui comprend un cœur et un gainage. Le diamètre du cœur est de 7.6μm - 8.4 µm et la différence d'indice de réfraction relative Δ1 du cœur est de 4.66 x 10—3 ~ 6.12 × 10—3. Le gainage à l'extérieur du cœur comprend un gainage intérieur, un gainage extérieur creux et un gainage extérieur en séquence de l'intérieur vers l'extérieur. Le diamètre du gainage intérieur est de 17.4μm - 20μm et la différence d'indice de réfraction relative Δ2 du gainage intérieur est de -0.1 × 10—3 ~ 0.1 × 10—3. Le diamètre du gainage extérieur creux est de 28μm - 32μm et la différence d'indice de réfraction relative Δ3 du gainage extérieur creux est de -4.37 × 10—3~-7.25 × 10—3. Grâce à l'optimisation de la profondeur et la largeur de la gaine extérieure creuse de la fibre optique, la fibre optique présente non seulement une perte de courbure supplémentaire moindre, mais également une propriété mécanique stable et une composition de matériau homogène. Le maintien des diamètre de champ de mode et des propriétés de courbure efficaces permet de réduire la difficulté de commande du processus et d'améliorer l'efficacité de traitement d'une préforme de fibre optique. La fibre optique est nettement supérieure à la norme ITU-TG.657.B3 pour ce qui concerne diverses performances, si bien que les exigences de pose de réseau FTTH et du dispositif peuvent être satisfaites.
PCT/CN2014/072843 2013-07-17 2014-03-04 Fibre optique monomodale insensible à la courbure WO2015007097A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310300024.4 2013-07-17
CN201310300024.4A CN103345017B (zh) 2013-07-17 2013-07-17 一种弯曲不敏感单模光纤

Publications (1)

Publication Number Publication Date
WO2015007097A1 true WO2015007097A1 (fr) 2015-01-22

Family

ID=49279830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072843 WO2015007097A1 (fr) 2013-07-17 2014-03-04 Fibre optique monomodale insensible à la courbure

Country Status (3)

Country Link
CN (1) CN103345017B (fr)
TW (1) TWI522667B (fr)
WO (1) WO2015007097A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170104625A (ko) * 2015-04-28 2017-09-15 양쯔 옵티컬 파이버 앤드 케이블 조인트 스톡 리미티드 컴퍼니 초저감쇠 굴곡 강화 단일모드 광섬유

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103345017B (zh) * 2013-07-17 2016-04-13 长飞光纤光缆股份有限公司 一种弯曲不敏感单模光纤
CN104316994A (zh) * 2014-10-29 2015-01-28 长飞光纤光缆股份有限公司 一种低衰减弯曲不敏感单模光纤
CN104777553B (zh) * 2015-04-28 2017-12-29 长飞光纤光缆股份有限公司 一种超低衰减单模光纤
CN105425335B (zh) * 2015-12-17 2019-04-16 长飞光纤光缆股份有限公司 一种通信用抗弯多芯光纤
CN106443876B (zh) * 2016-10-20 2019-09-10 长飞光纤光缆股份有限公司 一种低串扰少模光纤
CN107272111B (zh) * 2017-07-27 2019-08-23 长飞光纤光缆股份有限公司 一种耐低温弯曲不敏感单模光纤
CN107678088A (zh) * 2017-11-09 2018-02-09 长飞光纤光缆股份有限公司 低衰减大有效面积的单模光纤
CN108897094A (zh) * 2018-08-29 2018-11-27 法尔胜泓昇集团有限公司 一种应力区高效利用的细径熊猫型保偏光纤及制备方法
CN110824610B (zh) * 2019-11-29 2021-06-18 江苏亨通光导新材料有限公司 一种弯曲不敏感单模光纤
CN114349327A (zh) * 2022-01-18 2022-04-15 江苏亨通光导新材料有限公司 一种弯曲不敏感单模光纤的低成本加工工艺
CN115140932B (zh) * 2022-06-15 2024-05-17 华能(泰安)光电科技有限公司 一种弯曲不敏感单模光纤及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852968A (en) * 1986-08-08 1989-08-01 American Telephone And Telegraph Company, At&T Bell Laboratories Optical fiber comprising a refractive index trench
CN1982928A (zh) * 2005-11-10 2007-06-20 德雷卡通信技术公司 单模光纤
CN101680994A (zh) * 2008-02-22 2010-03-24 住友电气工业株式会社 光纤缆线及光缆
CN101883998A (zh) * 2007-06-15 2010-11-10 Ofs菲特尔有限责任公司 单模光纤中的弯曲不敏感性
JP2011203552A (ja) * 2010-03-26 2011-10-13 Nippon Telegr & Teleph Corp <Ntt> 単一モード光ファイバ
CN102645699A (zh) * 2012-05-02 2012-08-22 长飞光纤光缆有限公司 一种低衰减弯曲不敏感单模光纤
CN103033874A (zh) * 2011-10-09 2013-04-10 江苏亨通光纤科技有限公司 一种弯曲不敏感单模光纤及其制备方法
CN103168261A (zh) * 2010-07-23 2013-06-19 普睿司曼股份公司 耐弯曲单模光纤
CN103345017A (zh) * 2013-07-17 2013-10-09 长飞光纤光缆有限公司 一种弯曲不敏感单模光纤

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1285932C (zh) * 1999-07-27 2006-11-22 株式会社藤仓 色散位移光纤
CN100371747C (zh) * 2006-03-07 2008-02-27 江苏亨通光纤科技有限公司 具有波导结构的弯曲不敏感光纤
EP2495589A1 (fr) * 2011-03-04 2012-09-05 Draka Comteq B.V. Fibre optique d'amplification dopée par des terres rares pour dispositifs compacts et procédé de fabrication correspondant
CN102590933B (zh) * 2012-01-10 2015-07-01 长飞光纤光缆股份有限公司 一种弯曲不敏感单模光纤

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852968A (en) * 1986-08-08 1989-08-01 American Telephone And Telegraph Company, At&T Bell Laboratories Optical fiber comprising a refractive index trench
CN1982928A (zh) * 2005-11-10 2007-06-20 德雷卡通信技术公司 单模光纤
CN101883998A (zh) * 2007-06-15 2010-11-10 Ofs菲特尔有限责任公司 单模光纤中的弯曲不敏感性
CN101680994A (zh) * 2008-02-22 2010-03-24 住友电气工业株式会社 光纤缆线及光缆
JP2011203552A (ja) * 2010-03-26 2011-10-13 Nippon Telegr & Teleph Corp <Ntt> 単一モード光ファイバ
CN103168261A (zh) * 2010-07-23 2013-06-19 普睿司曼股份公司 耐弯曲单模光纤
CN103033874A (zh) * 2011-10-09 2013-04-10 江苏亨通光纤科技有限公司 一种弯曲不敏感单模光纤及其制备方法
CN102645699A (zh) * 2012-05-02 2012-08-22 长飞光纤光缆有限公司 一种低衰减弯曲不敏感单模光纤
CN103345017A (zh) * 2013-07-17 2013-10-09 长飞光纤光缆有限公司 一种弯曲不敏感单模光纤

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170104625A (ko) * 2015-04-28 2017-09-15 양쯔 옵티컬 파이버 앤드 케이블 조인트 스톡 리미티드 컴퍼니 초저감쇠 굴곡 강화 단일모드 광섬유
KR102019579B1 (ko) 2015-04-28 2019-09-06 양쯔 옵티컬 파이버 앤드 케이블 조인트 스톡 리미티드 컴퍼니 초저감쇠 굴곡 강화 단일모드 광섬유

Also Published As

Publication number Publication date
TWI522667B (zh) 2016-02-21
CN103345017A (zh) 2013-10-09
TW201504701A (zh) 2015-02-01
CN103345017B (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
TWI522667B (zh) A kind of bending insensitive single mode fiber
KR101577635B1 (ko) 벤딩에 민감하지 않은 단일모드 광섬유
US9348087B1 (en) Bending insensitive single-mode optical fiber
CN102645699B (zh) 一种低衰减弯曲不敏感单模光纤
EP2700988B1 (fr) Fibre multimode d&#39;ouverture numérique élevée, de grand diamètre de coeur et résistant à la flexion
JP5604028B2 (ja) 単一モード光ファイバ
EP2420876B1 (fr) Fibre optique monomode et son procédé de fabrication
JP6564074B2 (ja) 極低損失でベンド不敏感の単一モード光ファイバ
WO2011020315A1 (fr) Fibre optique multimodale résistante à la flexion et procédé de fabrication de celle-ci
JP2007140510A (ja) 単一モード光ファイバ
JP2013047785A (ja) 多モード光ファイバ
JP2012256049A (ja) シングルモード光ファイバ
CN100371747C (zh) 具有波导结构的弯曲不敏感光纤
CN104316994A (zh) 一种低衰减弯曲不敏感单模光纤
WO2013177996A1 (fr) Fibre optique multimodale résistant à la flexion et ayant des indices de réfraction progressifs
CN105334570A (zh) 一种低衰减弯曲不敏感单模光纤
JP2018511077A (ja) 極低損失でベンド不敏感の単一モード光ファイバ
US10564349B2 (en) Low bend loss optical fiber with graded index core
CN110488411B (zh) 一种抗弯曲单模光纤
CN114325928B (zh) 一种低损耗抗弯曲单模光纤
US8792762B2 (en) Low loss aluminum doped optical fiber for UV applications
CN117233886A (zh) 一种超低损耗弯曲不敏感单模光纤
CN115542455A (zh) 一种兼容g652d标准的大模场g657a2光纤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826122

Country of ref document: EP

Kind code of ref document: A1