WO2011087474A1 - Methods of forming enhanced-surface walls for use in apparatae - Google Patents
Methods of forming enhanced-surface walls for use in apparatae Download PDFInfo
- Publication number
- WO2011087474A1 WO2011087474A1 PCT/US2010/002363 US2010002363W WO2011087474A1 WO 2011087474 A1 WO2011087474 A1 WO 2011087474A1 US 2010002363 W US2010002363 W US 2010002363W WO 2011087474 A1 WO2011087474 A1 WO 2011087474A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- centerline
- distorted
- set forth
- enhanced
- initial
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/04—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
- F28F3/042—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/08—Making tubes with welded or soldered seams
- B21C37/083—Supply, or operations combined with supply, of strip material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/15—Making tubes of special shape; Making tube fittings
- B21C37/156—Making tubes with wall irregularities
- B21C37/158—Protrusions, e.g. dimples
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D13/00—Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form
- B21D13/10—Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form into a peculiar profiling shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21H—MAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
- B21H8/00—Rolling metal of indefinite length in repetitive shapes specially designed for the manufacture of particular objects, e.g. checkered sheets
- B21H8/005—Embossing sheets or rolls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/42—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/42—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
- F28F1/424—Means comprising outside portions integral with inside portions
- F28F1/426—Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/08—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0043—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
- F28D9/005—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/04—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
- F28F3/042—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
- F28F3/044—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/04—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
- F28F3/042—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
- F28F3/046—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/08—Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
- F28F3/083—Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning capable of being taken apart
Definitions
- the present invention relates generally to methods of forming enhanced- surface walls for use in apparatae (e.g., heat transfer devices, fluid-mixing devices, etc.) for performing a process, to enhanced-surface walls per se, and to various apparatae incorporating such enhanced-surface walls.
- apparatae e.g., heat transfer devices, fluid-mixing devices, etc.
- US 5,052,476 A appears to disclose a heat transfer tube having U-shaped primary grooves, V-shaped secondary grooves, and pear-shaped tertiary grooves to increase turbulence and reflux efficiency.
- the tube is first formed as a plate, and is then rolled into a tube, after which its proximate ends are welded together.
- the depth of the secondary grooves is said to be 50-100% of the depth of the primary grooves.
- US 5,259,448 A appears to disclose a heat transfer tube having rectangularly-shaped main grooves and narrow secondary grooves that intersect the main grooves at an angle.
- the device appears to be formed flat, rolled or curled, and then welded.
- the depth of the narrow grooves is said to be 0.02 millimeters (mm).
- the depth of the main grooves is said to be 0.20-0.30 mm.
- US 5,332,034 A appears to disclose a heat exchanger tube having longitudinally-extending circumferentially-spaced ribs with parallel inclined notches to increase turbulence and to increase heat transfer performance.
- US 6,182,743 B1 appears to disclose a heat transfer tube with polyhedral arrays to enhance heat transfer characteristics.
- the polyhedral arrays may be applied to internal and external tube surfaces. This reference may teach the use of ribs, fins, coatings and inserts to break up the boundary layer.
- US 2005/0067156 A1 appears to disclose a heat transfer tube that is cold- or forge-welded, and that has dimpled patterns thereon of various shapes.
- US 2005/0247380 A1 appears to disclose a heat transfer tube of tin-brass alloys to resist formicary (i.e., ant-like) corrosion.
- US 5,351 ,397 A appears to disclose a roll-formed nucleate boiling pate having a first pattern of grooves separated by ridges, and a second pattern of more- shallow groves machined into the ridges.
- the second pattern depth is said to be about 10-50% of the depth of the first pattern.
- the present invention broadly provides: (1 ) improved methods of forming enhanced-surface walls for use in apparatae (e.g., heat transfer devices, fluid mixing devices, etc.) for performing a process, (2) to enhanced-surface walls per se, and (3) to various apparatae incorporating such enhanced-surface walls.
- apparatae e.g., heat transfer devices, fluid mixing devices, etc.
- the invention provides an improved method of forming an enhanced-surface wall (20) for use in an apparatus for performing a process, comprising the steps of: providing a length of material (21) having opposite initial surfaces (21a, 21b), the material having a longitudinal centerline (x-x) positioned substantially midway between the initial surfaces, the material having an initial transverse dimension measured from the centerline to a point on either of the initial surfaces located farthest away from the centerline, each of the initial surfaces having a initial surface density, the surface density being defined as the number of characters on an surface per unit of projected surface area; impressing secondary patterns (23a, 23b) having secondary pattern surface densities onto each of the initial surfaces to distort the material and to increase the surface densities on each of the surfaces and to increase the transverse dimension of the material from the centerline to the farthest point of such distorted material; and impressing primary patterns (25a, 25b) having primary pattern surface densities onto each of such distorted surfaces to further distort the material and to further increase the
- Each secondary pattern surface density may be greater than each primary pattern surface density.
- the step of impressing the secondary patterns onto each of the initial surfaces may include the additional step of: cold-working the material.
- the step of impressing the primary patterns onto each of distorted surfaces may include the additional step of: cold-working the material.
- the secondary patterns may be the same.
- the secondary patterns may be shifted relative to one another such that a maximum dimension from the centerline to one distorted surface will correspond to a minimum dimension from the centerline to the other distorted surface.
- the step of impressing the secondary patterns onto the material may increase the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material of up to 135% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
- the step of impressing the secondary patterns onto the material may increase the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material of up to 150% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
- the step of impressing the secondary patterns onto the material may increase the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material of up to 300% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
- the step of impressing the secondary patterns onto the material may increase the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material of up to 700% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
- the step of impressing the secondary patterns onto the material may not reduce the minimum dimension of the material, when measured from any point on one of such distorted surfaces to the closest point on the opposite one of such distorted surfaces, below 95% of the minimum dimension from any point on one of the initial surfaces to the closest point on the opposite initial surface.
- the step of impressing the secondary patterns onto the material may not reduce the minimum dimension of the material, when measured from any point on one of such distorted surfaces to the closest point on the opposite one of such distorted surfaces, below 50% of the minimum dimension from any point on one of the initial surfaces to the closest point on the opposite initial surface.
- the primary patterns may be the same.
- the primary patterns may be shifted relative to one another such that a maximum dimension from the centerline to one further-distorted surface will correspond to a minimum dimension from the centerline to the other further-distorted surface.
- the step of impressing the primary patterns onto the material may not reduce the minimum dimension of the further-distorted material, when measured from the centerline to any point on either of the further-distorted surfaces, below 95% of the minimum dimension of the material, when measured from the centerline to either of the initial surfaces.
- the step of impressing the primary patterns onto the material may not reduce the minimum dimension of the further-distorted material, when measured from the centerline to any point on either of the further-distorted surfaces, below 50% of the minimum dimension of the material, when measured from the centerline to either of the initial surfaces.
- the step of impressing the primary patterns onto each of the surfaces may further increase the dimension from the centerline to the farthest point of the further- distorted material.
- the opposite surfaces of the material may be initially planar.
- the steps of impressing the patterns may include the steps of impressing the patterns by at least one of a rigidizing, stamping, rolling, pressing and embossing operation.
- the method may further comprise the additional steps of: bending the en- hanced-surface wall such that the proximate ends are positioned proximate to one another; and joining the proximate ends of the material together; thereby to form an enhanced-surface tube.
- the step of joining the proximate ends of the material together may include the further step of: welding the proximate ends of the material to join them together.
- the method may further comprise the additional step of: providing holes through the material.
- the method may further comprise the additional step of: installing the enhanced-surface wall in a heat exchanger.
- the method may further comprise the additional step of: installing the enhanced-surface wall in a fluid-handling apparatus.
- the invention provides an enhanced-surface wall manufactured by the method defined by any of the foregoing steps.
- the primary patterns may be directional or non-directional.
- the secondary patterns may be directional or non-directional.
- the wall may comply with at least one of the following ASME/ASTM designations: A249/A, A135, A370, A751 , E213, E273, E309, E1806, A691 , A139, A213, A214, A268, A 269, A270, A312, A334, A335, A498, A631 , A671 , A688, A691 , A778, A299/A, A789, A789/A, A789/M, A790, A803, A480, A763, A941 , A1016, A1012, A1047/A, A250, A771 , A826, A851 , B674, E1 12, A370, A999, E381 , E426, E527, E340, A409, A358, A262, A240, A537, A530, A 435, A387, A299, A204, A20, A577, A578, A285, E
- the material may be homogeneous or non-homogeneous.
- the material may be provided with a coating on at least a portion of one of the initial surfaces.
- At least a portion of one of the initial surfaces may be chemically-treated.
- the invention provides an improved heat transfer device that incorporates the improved enhanced-surface wall.
- the invention provides an improved fluid-handling apparatus that incorporates the improved enhanced-surface wall.
- the invention provides an improved enhanced-surface wall (20) for use in an apparatus for performing a process, which wall comprises: a length of material (21) having opposite initial surfaces (21a, 21b), the material having a longitudinal centerline (x-x) positioned substantially midway between the initial surfaces, the material having an initial transverse dimension measured from the center- line to a point on either of the initial surfaces located farthest away from the center- line, each of the initial surfaces having a initial surface density, the surface density being defined as the number of characters (including zero) on a surface per unit of projected surface area; secondary patterns (23) having secondary pattern surface densities impressed onto each of the initial surfaces, the secondary patterns distorting the material and increasing the surface densities on each of the surfaces and increasing the transverse dimension of the material from the centerline to the farthest point of such distorted material; and primary patterns (25) having primary pattern surface densities impressed onto each of such distorted surfaces and further distorting the material and further increasing the surface densities on each of the surfaces.
- Each secondary pattern surface density may be greater than each primary pattern surface density.
- the secondary patterns may be the same.
- the secondary patterns may be shifted relative to one another such that a maximum dimension from the centerline to one distorted surface will correspond to a minimum dimension from the centerline to the other distorted surface.
- the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material may be less than 135% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
- the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material may be less than 150% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
- the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material may be less than 300% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
- the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material may be less than 700% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
- the minimum dimension of the material when measured from any point on one of such distorted surfaces to the closest point on the opposite one of such distorted surfaces, is at least 95% of the minimum dimension from any point on one of the initial surfaces to the closest point on the opposite initial surface.
- the minimum dimension of the material when measured from any point on one of such distorted surfaces to the closest point on the opposite one of such distorted surfaces, may be at least 50% of the minimum dimension from any point on one of the initial surfaces to the closest point on the opposite initial surface.
- the primary patterns may be the same or different.
- the primary patterns may be shifted relative to one another such that a maximum dimension from the centerline to one further-distorted surface will correspond to a minimum dimension from the centerline to the other further-distorted surface.
- the minimum dimension of the further-distorted material when measured from the centerline to any point on either of the further-distorted surfaces, may be at least 95% of the minimum dimension of the material, when measured from the centerline to either of the initial surfaces.
- the minimum dimension of the further-distorted material when measured from the centerline to any point on either of the further-distorted surfaces, may be at least 50% of the minimum dimension of the material, when measured from the centerline to either of the initial surfaces.
- the impressed primary patterns may further increase the dimension from the centerline to the farthest point of the further-distorted material.
- one object is to provide improved methods of forming en- hanced-surface walls for use in an apparatus for performing a process.
- Another object is to provide improved enhanced-surface walls.
- Still another object is to provide an improved apparatus that incorporates an improved enhanced-surface wall.
- Fig. 1A is a schematic top plan view of a length of material showing the Secondary 1 and Primary 1 patterns being impressed thereon.
- Fig. 1 B is a side elevation of the structure schematically shown in Fig. 1A.
- Fig. 2A is an enlarged top plan view of the Secondary 1 pattern, as shown in Figs. 1A-1 B, impressed into the material.
- Fig. 2B is an enlarged top plan view of the Primary 1 pattern impressed into a sheet of supplied material, the scale of Fig. 2B being the same as the scale of Fig. 2A
- Fig. 2C is a top plan view of the superimposed Primary 1 and Secondary 1 patterns, as shown in Figs. 1A-1 B, impressed into the material, the scale of Fig. 2C being the same as the scale of Figs. 2A-2B.
- Fig. 3A is a greatly-enlarged fragmentary transverse vertical sectional view of the material prior to impressing the Secondary 1 patterns thereon, this view being taken generally on line 3A-3A of Fig. 1A.
- Fig. 3B is a greatly-enlarged fragmentary transverse vertical sectional view thereof, taken generally on line 3B-3B of Fig. 2A, showing the Secondary 1 patterns impressed onto the material.
- Fig. 3C is a greatly-enlarged fragmentary transverse sectional view, taken generally on line 3C-3C of Fig. 2B, showing the Primary 1 patterns impressed into the material.
- Fig. 3D is a greatly-enlarged fragmentary transverse sectional view thereof, taken generally on line 3D-3D of Fig. 2C, showing the Primary 1 and Secondary 1 patterns impressed into the material.
- Fig. 4 is a schematic transverse vertical sectional view thereof, showing how the Secondary 1 patterns are impressed into the material.
- Fig. 5A is a schematic view, showing how the point-to-point wall thickness of a plain sheet is measured.
- Fig. 5B is a schematic view, showing how the point-to-point wall thickness of the material is measured after the Secondary 1 patterns have been impressed therein.
- Fig. 5C is a schematic view showing how the point-to-point wall thickness of the Primary 1 patterns is measured.
- Fig. 5D is a schematic view showing how the point-to-point wall thickness of the finished enhanced-surface material is measured, this material having the super imposed Primary 1 and Secondary 1 patterns impressed thereon.
- Fig. 6A is a schematic view showing how the area thickness of a plain sheet is measured.
- Fig. 6B is a schematic view showing how the area wall thickness is measured after the Secondary 1 patterns have been impressed thereon.
- Fig. 6C is a schematic view showing how the area wall thickness is measured after the Primary 1 patterns have been impressed thereon.
- Fig. 6D is a schematic view showing how the area wall thickness of an enhanced-surface wall is measured after the Primary 1 and Secondary 1 patterns have been impressed thereon.
- Fig. 7A is a top plan view showing another primary pattern, designated the Primary 2 pattern, impressed on a sheet.
- Fig. 7B is a fragmentary transverse vertical sectional view thereof taken on line 7B-7B of Fig. 7A.
- Fig. 7C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 7C-7C of Fig. 7A.
- Fig. 8A is a top plan view of a third primary pattern, designated the Primary 3 pattern, impressed on a sheet of material.
- Fig. 8B is a fragmentary transverse vertical sectional view thereof, taken generally on line 8B-8B of Fig. 8A.
- Fig. 8C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 8C-8C of Fig. 8A.
- Fig. 9A is a top plan view of another primary pattern, designated the Primary 4 pattern, impressed into a sheet of material, this pattern having a character surface density of 0.5.
- Fig. 9B is a view similar to Fig. 9A, but showing a variant form of the Primary 4 pattern having a character surface density of 1.0.
- Fig. 9C is a view similar to Figs. 9A and 9B, but showing another variant form of the Primary 4 pattern having a character surface density of 2.0.
- Fig. 10A is a top plan view of another primary pattern, designated the Primary 5 pattern, impressed on a sheet of material.
- Fig. 10B is a fragmentary transverse vertical sectional view thereof, taken generally on line 10B-10B of Fig. 10A.
- Fig. 10C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 10C-10C of Fig. 10A.
- Fig. 1 1A is a top plan view of another secondary pattern, designated the Secondary 2 pattern, impressed into the material, this view showing the individual characters as being somewhat oval-shaped.
- Fig. 1 1 B is a fragmentary transverse vertical sectional view thereof, taken generally on line 11 B-11 B of Fig. 11 A.
- Fig. 1 1 C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 1 1 C-1 1 C of Fig. 1 1 A.
- Fig. 12A is a top plan view of another secondary pattern, designated the Secondary 3 pattern, impressed onto a length of material, this view showing the individual characters as being somewhat lemon-shaped.
- Fig. 12B is a fragmentary transverse vertical sectional view thereof, taken generally on line 12B-12B of Fig. 12A.
- Fig. 12C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 12C-12C of Fig. 12A.
- Fig. 13A is a top plan view of another primary pattern, designated the Primary 6 pattern, impressed into a length of material.
- Fig. 13B is a fragmentary transverse vertical sectional view thereof, taken generally on line 13B-13B of Fig. 13A.
- Fig. 14A is still another example of a criss-crossed directional primary pattern, designated the Primary 7 pattern, impressed on a length of material, this pattern being directional in both the longitudinal and transverse directions.
- Fig. 14B is fragmentary transverse vertical sectional view thereof, taken generally on line 14B-14B of Fig. 14A.
- Fig. 14C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 14C-14C of Fig. 14A.
- Fig. 15A is a fragmentary view of another pebble-like non-directional pattern, designated as Secondary 4 pattern, impressed on a length of material.
- Fig. 15B is a fragmentary transverse vertical sectional view thereof, taken generally on line 15B-15B of Fig. 15A.
- Fig. 15C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 15C-15C of Fig. 15A.
- Fig. 16A is a top plan view of yet another honeycomb-like non-directional pattern, designated Secondary 4 pattern, impressed on the length of material.
- Fig. 16B is a fragmentary transverse vertical sectional view thereof, taken generally on line 16B-16B of Fig. 15A.
- Fig. 16C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 16C-16C of Fig. 16A.
- Fig. 17 is a schematic view of one process for making enhanced-surface tubes.
- Fig. 18A is a side elevation of a round tube having an optional coating on its outer surface.
- Fig. 18B is a right end elevation of the round tube shown in Fig. 18A.
- Fig. 18C is an enlarged detail view of the round tube, taken within the indicated circle in Fig. 18B, and particularly showing the coating on the outer surface of the tube.
- Fig. 19A is an isometric view of a rectangular tube.
- Fig. 19B is a fragmentary transverse vertical sectional view, taken generally on line 19B-19B of Fig. 19A, of the rectangular tube.
- Fig. 19C is an enlarged detail view of a portion of the wall of the rectangular tube, this view being taken within the indicated circle in Fig. 19B.
- Fig. 20A is a side elevation of a U-shaped tube.
- Fig. 20B is a slightly-enlarged fragmentary transverse vertical sectional view thereof, taken generally on line 20B-20B of Fig. 20A.
- Fig. 20C is a further-enlarged detail view of a portion of the tube wall, this view being taken within the indicated circle of Fig. 20B.
- Fig. 21 A is a side elevation of a helically-wound coil formed of a round tube having enhanced inner and outer surfaces.
- Fig. 21 B is a top plan view of the coil shown in Fig. 21 A.
- Fig. 21 C is an enlarged fragmentary vertical sectional view thereof, taken generally on line 21C-21C of Fig. 21 A, showing the tube in the coil.
- Fig. 21 D is a further-enlarged detail view, taken within the indicated circle of Fig. 21 C, showing of a portion of the tube wall.
- Fig. 22 is a schematic view of one process for making an enhanced- surface fin.
- Fig. 23A is a front elevation of a first enhanced-surface fin having primary and secondary patterns impressed thereon, and having cooler tube and flow-through openings.
- Fig. 23B is a fragmentary vertical sectional view thereof, taken generally on line 23B-23B of Fig. 23A.
- Fig. 24A is a front elevation of a second enhanced-surface fin having primary and secondary patterns impressed thereon, and having cooler tube and flow- through openings.
- Fig. 24B is a fragmentary vertical sectional view thereof, taken generally on line 24B-24B of Fig. 24A.
- Fig. 25A is a front elevation of a third enhanced-surface fin having cooler tube openings and smaller flow-through openings.
- Fig. 25B is a front elevation of a fourth enhanced-surface fin having cooler tube openings and intermediate flow-through openings.
- Fig. 25C is a front elevation of a fifth enhanced-surface fin having cooler tube openings and larger flow-through openings.
- Fig. 25D is a front elevation of a sixth enhanced-surface fin having cooler tube openings and one combination of smaller, intermediate and larger flow-through openings.
- Fig. 25E is a front elevation of a seventh enhanced-surface fin having cooler tube openings and another combination of smaller, intermediate and larger flow-through openings.
- Fig. 26 is a schematic view of an improved heat exchanger having an enhanced-surface heat transfer tube therewithin.
- Fig. 27A is a bottom plan view of an improved fluid cooler having enhanced-surface tubes therewithin.
- Fig. 27B is a fragmentary horizontal sectional view thereof, taken generally on line 27B-27B of Fig. 27A.
- Fig. 27C is a side elevation of the improved cooler shown in Fig. 27A, with the cover in place.
- Fig. 27D is a fragmentary vertical sectional view thereof, taken generally on line 27D-27D of Fig. 27C, showing a bottom plan view of one of the fins.
- Fig. 27E is an enlarged detail view of a portion of one of the fins, this view being taken within the indicated circle of Fig. 27D.
- Fig. 28 is a schematic view of a fluid flow vessel incorporating enhanced surfaces therewithin.
- Fig. 29A is a top plan view of a heat exchanger plate incorporating enhanced surfaces therewithin.
- Fig. 29B is an enlarged detail view of a portion of the heat exchanger plate, this view being taken within the indicated circle in Fig. 29A.
- the present invention broadly provides an improved method of forming an enhanced- surface wall 20 for use in an apparatus for performing a process.
- the apparatus may be a heat transfer device, a type of fluid mixing apparatus (either with or without a pertinent heat exchange function), or some other form of apparatus.
- This application discloses multiple embodiments of enhanced-surface walls having various primary and/or secondary patterns. The first embodiment is illustrated in Figs. 1A-6D, the second in Figs. 7A-7C, the third in Figs. 8A-8C, the fourth in Figs. 9A-9C, the fifth in Figs. 10A-10C, the sixth in Figs.
- FIG. 17 One process of making an enhanced-surface tube is schematically shown in Fig. 17, and several variations of such tubes are depicted in Figs. 18A-21 D.
- FIG. 22 One process for making an enhanced-surface fin is schematically shown in Fig. 22, and several variations of such fins are shown in Figs. 23A-25E.
- FIG. 26 An improved heat exchanger incorporating the enhanced-surface tubes is schematically shown in Fig. 26.
- FIG. 27A-27E A cooler incorporating such enhanced-surface fins is depicted in Figs. 27A-27E.
- FIG. 28 Another fluid flow vessel incorporated enhanced surfaces is depicted in Fig. 28.
- the improved method broadly begins with providing a length of material, of which a fragmentary portion is generally indicated at 21 .
- This material may be a piece of plate-like stock, may be unrolled from a coil, or may have some other source or configuration.
- the material may be rectangular having planar upper and lower initial surfaces 21a, 21b, respectively, and may have a longitudinal transverse center- line x-x positioned substantially midway between these initial surfaces. As shown in Fig. 3A, the thickness of the material between initial surfaces 21 a-21 b may be about 0.035 inches, and the nominal spacing from the centerline to either of the surfaces may therefore be about 0.0175 inches.
- the leading edge of the material in this first embodiment is then passed rightwardly (in the direction of the indicated arrow in Fig. 1 A) between a pair of upper and lower first rolls or dies 22a, 22b, respectively, which impress the Secondary 1 patterns into the upper and lower surfaces, respectively, of the material.
- the upper and lower surfaces of the material after the Secondary 1 patterns have been impressed thereon are indicated at 23a, 23b respectively.
- the material is then translated rightwardly between a second pair of upper and lower rolls or dies 24a, 24b respectively, which impress Primary 1 patterns onto the upper and lower surfaces, respectively of the material.
- Figs. 2A and 3B show the shape and configuration of the material after the Secondary 1 patterns have been impressed thereon.
- the Secondary 1 patterns have the shape of an array of interlocking paving blocks when seen in top plan (Fig. 2A), but have undulating or sinusoidal shapes when seen in cross-section (Fig. 3B).
- Figs. 2B and 3C show the shape of the Primary 1 patterns if such patterns were impressed into a sheet of plain stock material, without the Secondary 1 patterns impressed thereon. As shown in Figs. 2B and 3C, the Primary 1 patterns are in the form of a series of repeating step-like functions. In Figs. 2B and 3C, the upper surface of the material is indicated at 25a, and the lower surface thereof is indicated at 25b.
- the material exiting the second dies has the Primary 1 and Secondary 1 patterns superimposed and impressed thereon. These upper and lower surfaces of the material containing the superimposed Primary 1 and Secondary 1 patterns are indicated at 26a, 26b, respectively.
- the step of impressing the Secondary 1 patterns onto the material increases the minimal initial area wall thickness of the material from about 0.035 inches to about 0.045 inches.
- the step of impressing the Primary 1 patterns into the initially supplied material would increase the initial area wall thickness from about 0.035 inches to about 0.050 inches.
- the thickness of the material is further distorted to a dimension of about 0.052 inches.
- Figs. 2A-2C are drawn to the same scale (as indicated by the 6.0 x 6.0 dimensions thereon), and are enlarged with respect to the structure shown in Fig. 1A.
- Figs. 3A-3D are also drawn to the same scale, which is further-enlarged with respect to the scale of Figs. 2A-2C, and is greatly enlarged with respect to the scale of Figs. 1 A-1 B.
- Fig. 4 shows how the Secondary 1 patterns are impressed into the material. To this end, the top and bottom rolls 22a, 22b impart the undulating sinusoidal Secondary 1 patterns that are vertically aligned with one another such that the peak of one is aligned with the valley of the other.
- the material 21 is only partially deformed by the two rolls. Thus, the material will have a series of dimple-like concavities indicated at 27, separated by intermediate arcuate convexities, severally indicated at 28. In an alternative process, the material could be fully deformed, or "coined", between the upper and lower rolls.
- the steps of impressing the primary and secondary patterns into the material has the effect of cold-working the material.
- the material could be heated, and the process could include the step of hot-working the same.
- the secondary patterns may be the same, or may be different from one another.
- the step of impressing the secondary pattern onto the material increases the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material of up to 135% in one case, 150% in another case, 300% in a third case, and 700% in a fourth case, of the maximum transverse dimension from the centerline to the farthest point of the initial surfaces.
- the steps of impressing the primary and secondary patterns into the material does not materially reduce the minimum dimension of the material, when measured from any point on one of the distorted surfaces to the closest point on the opposite one of the distorted surfaces, below 95% in one case, and 50% in a second case, of the minimum dimension from any point on one of the initial surfaces to the closed point on the opposite initial surface.
- the primary patterns impressed into the opposite sides of the material may be the same, or may be different.
- the step of impressing the primary patterns into the material does not reduce the minimum dimension of the further-distorted material, when measured from the centerline to any point on either of the further- distorted surfaces, below 95% of the minimum dimension of the material, when measured from the centerline to either one of the initial surfaces.
- the primary patterns impressed into the opposite sides of the material may be the same, or may be different.
- the step of impressing the primary patterns into the material does not reduce the minimum dimension of the further-distorted material, when measured from the centerline to any point on either of the further- distorted surfaces, below 50% of the minimum dimension of the material, when measured from the centerline to either one of the initial surfaces.
- the step of impressing the primary patterns onto each of the surfaces may further increase the dimension from the centerline to the farthest point of the further-distorted material.
- the initial surfaces may be planar or may be supplied with some pattern or patterns impressed thereon.
- the step of impressing the primary and secondary patterns onto the material may be by a rigidizing operation, a stamping operation, a rolling operation, a pressing operation, an embossing operation, or by some other type of process or operation.
- the material may be supplied with cooler tube openings and/or with flow-through openings of whatever pattern is desired.
- the method may further include the additional step of bending the en- hanced-surface wall such that the proximate ends are positioned adjacent one another, and jointing the proximate ends of the material together, as by welding to form an enhanced-surface tube.
- the method may include the further step of providing holes through the material.
- the enhanced-surface wall may be installed in heat exchanger, in some type of fluid-handling apparatus or in still other forms of apparatus as well.
- the primary patterns may be directional or non-directional.
- the enhanced-surface wall complies with at least on of the following ASME/ASTM designations: A249/A, A135, A370, A751 , E213, E273, E309, E1806, A691 , A139, A213, A214, A268, A 269, A270, A312, A334, A335, A498, A631 , A671 , A688, A691 , A778, A299/A, A789, A789/A, A789/M, A790, A803, A480, A763, A941 , A1016, A1012, A1047/A, A250, A771 , A826, A851 , B674, E112, A370, A999, E381 , E426, E527, E340, A409, A358, A262, A240, A537, A530, A 435, A387, A299, A
- the material may be provided with a coating (e.g., a plating, etc.) on at least a portion of one of its initial surfaces, or such initial surface(s) may be chemically treated (e.g., electro-polished, etc.). Such coating and/or chemical treatment may be applied before, during or after the formation of the enhanced surfaces thereon.
- a coating e.g., a plating, etc.
- Such coating and/or chemical treatment may be applied before, during or after the formation of the enhanced surfaces thereon.
- portion includes a range of from 0-100%.
- the invention also includes an enhanced-surface wall formed by the forgoing method.
- Fig. 5A-5D show how the point-to-point wall thickness is measured during various stages of the method.
- the term "point-to-point wall thickness” means the thickness of the material from a point on one surface thereof to the closest point on the opposite surface thereof.
- Fig. 5A shows a micrometer as measuring the initial thickness between planar surfaces 21a, 21b.
- Fig. 5B shows the micrometer as measuring the wall thickness after the Secondary 1 patterns have been impressed thereon. This view schematically shows two measuring orientations, one being of the vertical thickness and the other being at an angle, such that the lesser of the two measured thicknesses may be used.
- Fig. 5C shows how the point-to-point wall thickness would be measured when the primary pattern is impressed into the material.
- Fig. 5D show the micrometer as measuring the point-to-point wall thickness of the material after the Primary 1 and Secondary 1 patterns have been impressed thereon.
- the lesser of the two measured thicknesses is used as the measure of the minimum wall thickness.
- Fig. 6A-6D shows how the area thickness of the material is measured at various stages during the performance of the method. The thickness is measured by measuring the peak-to-peak distance of the opposed surfaces, and, usually, by encompassing several peaks along each of the two surfaces.
- Fig. 6A shows the micrometer is measuring the thickness of the initially-supplied materiaL.having planar upper and lower surfaces 21a, 21b, respectively. Since these surfaces are planar, the micrometer can simply measure the distance therebetween.
- Fig. 6B shows the micrometer as measuring the thickness of the material after the Secondary 1 pattern has been impressed thereon. Note that the micrometer is measuring the peak-to- peak thickness of the amplitudes of both surfaces.
- Fig. 6A-6D shows how the area thickness of the material is measured at various stages during the performance of the method. The thickness is measured by measuring the peak-to-peak distance of the opposed surfaces, and, usually, by encompassing several peaks along each of the two surfaces.
- Fig. 6A shows the micrometer is measuring the thickness of
- FIG. 6C shows the micrometer as measuring the thickness of the material if the Primary 1 patterns were to be impressed on the initially-supplied material. In this view, the micrometer is again measuring the peak-to-peak thickness across multiple characters impressed on the surfaces. Finally, Fig. 6D shows the micrometer as measuring the wall thickness of the material after the Primary 1 and Secondary 1 patterns have been impressed thereon.
- the "point-to-point wall thickness” means the thickness of the material fro a point on one surface thereof to the closest point on the opposite surface thereof, it is sometimes required to measure such dimension both vertically and at various angles to determine which is the minimum thickness.
- the "area thickness” refers to a peak on one surface to a peak on the opposite surface dimension, this can usually be measured vertically.
- the "area thickness” preferably encompasses multiple peaks on each surface.
- This pattern somewhat resembles a raised honeycomb, and has an upper surface 31a and a lower surface 31 b.
- This pattern is directional in the vertical direction, but non-directional in the horizontal direction.
- the vertical and horizontal transverse cross-sections are shown in Figs. 7B- 7C.
- Figs. 8A-8C show another furrow-like primary pattern, designated the Primary 3 pattern. This pattern is generally indicated at 32. This pattern is directional in the vertical direction, but is non-directional in the horizontal direction. The vertical and horizontal transverse cross-sections are shown in Figs. 8B-8C. This pattern has sinusoidal undulations, albeit of different periods, in each of the two orthogonal transverse directions on its upper and lower surfaces.
- Figs. 9A-9C show another secondary pattern designated the Secondary 2 pattern.
- This pattern comprises of a series of dimple-like indentations on one surface, and vertically-aligned convexities on the opposite surface. These dimples can be staggered or in-line, as desired.
- This pattern is generally indicated at 34 in Fig. 9A, and is shown as having an upper surface 35a.
- Figs. 9B-9C show density variations on the pattern shown in Fig. 9A.
- the pattern is indicated at 34', and the upper surface is indicated at 35a'.
- the surface density of the dimple-like characters in pattern 34 shown in Fig. 9A is 0.5 of that for the modified pattern 34' shown is in Fig. 9B, and 0.25 of that for the further-modified pattern 34" shown in Fig. 9C.
- the surface density of the dimple-like characters in Fig. 9B is twice that shown in Fig. 9A.
- surface den- sity of the dimple-like characters in Fig. 9C is twice the surface density of the characters in Fig. 9B, and four times the surface density of the characters shown in Fig. 9A.
- Figs. 9A-9C are drawn to the same scale, as indicated by the 6.0 x 6.0 dimensions.
- Figs. 10A-10C show another chevron-like primary pattern designated the Primary 4 pattern. This pattern is non-directional in both the horizontal and vertical directions.
- the pattern is generally indicated at 36, and has upper and lower surfaces 38a, 38b.
- Figs. 11A-11C show another form of secondary pattern designated the Secondary 2 pattern, impressed into the material.
- the individual dimples or characters are somewhat oval-shaped. Note that the period of the dimples is different in the two orthogonal directions, as shown in Figs.11 B-11C.
- This pattern is generally indicated at 39, and is shown as having upper and lower surfaces 40a, 40b, respectively.
- Figs. 12A-12C show still another type of secondary pattern, designated the Secondary 3 pattern.
- the dimples or characters of this pattern appear to be somewhat lemon-shaped.
- the periods of the patterns is different in each of the two orthogonal transverse directions, as shown in Figs. 12B-12C.
- This pattern is generally indicated at 41 , and is shown as having upper and lower surfaces 42a, 42b, respectively.
- Figs. 13A-13B are used to illustrate a directional pattern, designated the Primary 6 pattern.
- This pattern is generally indicated at 43, and is shown as having upper and lower surfaces 44a, 44b, respectively Note that the pattern appears to have a series of step functions on its opposite surfaces, as shown in Fig. 13B. Note also, and the characters are aligned such that each projection on one surface corresponds with an indentation on the other surface.
- This pattern is directional in the horizontal direction, but not in the vertical direction.
- Figs. 14A-14C show a criss-crossed pattern designated the Primary 7 pattern, impressed on the material. This pattern is generally indicated at 45, and is shown as having an upper surface 46a and a lower surface 46b. This pattern is directional (i.e., not interrupted) in both the horizontal and vertical directions. Note that the period of the characters is the same in both orthogonal transverse directions.
- Figs. 15A-15C show an irregular pebble-like, albeit repeating, non- directional secondary pattern impressed on the material.
- This pattern is designated the Secondary 4 pattern.
- This pattern is generally indicated at 48, and has upper and lower surfaces 49a, 49b, respectively.
- the cross-sections in the orthogonal axes are shown in Figs. 15B-15C, respectively.
- Figs. 15B-15C note that the indentation on one surface is vertically aligned with a projection on the other surface.
- This pattern is non-directional in the sense that the pattern is interrupted in each of the horizontal and vertical directions.
- directional with respect to a pattern means that the lines of the pattern are continuous and not interrupted along a direction
- non-directional means that the lines of the pattern are interrupted along a direction, even though the pattern may repeat.
- Figs. 16A-16C show still another honeycomb-like non-directional secondary pattern, designated the Secondary 5 pattern impressed on a material.
- This pattern is generally indicated at 50, and is shown as having upper and lower surfaces 51a, 51b, respectively.
- This pattern is non-directional in the vertical and horizontal directions.
- Fig. 17 depicts one method of making a round tube having enhanced surfaces.
- a coil 52 having the primary and secondary patterns (and, optionally, whatever cooler tube and flow-through openings are desired) is unwound.
- the leading edge of the material passes through a series of rollers and roller dies, severally indicated at 53, within which the planar sheet material is rolled into a round tube with the two longitudinal edges being arranged closely adjacent, or, preferably, abutting, one another.
- the rolled tube is then passed through a preheating unit 54 and a welding unit 55 to weld the longitudinal edges together.
- the welded tube is then passed through a secondary heating unit 56 to anneal the weld and the material, and is then cooled in a cooling unit 58.
- the cooled welded tube is then passed through a deburrer to smooth the weld edges, and is further advanced rightwardly by rollers 60, 60.
- Round Tube (Figs. 18A-18C)
- Tubes may have many different shapes and cross-sections.
- Figs. 18A- 18C depict a length of welded round tube that may be manufactured by the process indicated in Fig. 17.
- the tube, generally indicated at 62, is shown as having primary and secondary patterns.
- tube 62 has a thin-walled circular transverse cross-section.
- the tube outer wall is also shown as having a coating 63 thereon.
- This coating may be a plating, or some other form of coating or lamination. This coating is optional and may be provided on any of the enhanced surfaces disclosed herein.
- the coating can be provided on the inner or outer surface of a tube, as desired.
- tubes have a round transverse cross-section.
- Some tubes have oval-shaped cross-sections, polygonal cross-sections, or the like.
- Figs. 19A-19C depict a tube 64 having a generally-rectangular transverse cross-section, with primary and secondary patterns on its inner and outer surfaces. This tube may, if desired, be formed with a coating or may be chemically treated.
- U-Shaped Tube Figs. 20A-20C
- Figs. 20A-20C depict a round tube which is bent to have a U-shape, when seen in elevation.
- This tube generally indicated at 65, has primary and secondary patterns on its inner and outer surfaces.
- Figs. 21A-21 D depict a helically-wound coil formed from a length of round tubing. This coil, generally indicated at 66, has primary and secondary patterns on its inner and outer surfaces.
- Fig. 22 is a schematic view of one process for forming enhanced-surface fins.
- a coil 68 of material with primary and secondary patterns is unrolled.
- the leading edge of the material passes around idler rollers 69a, 69b, c9c, and is then passed between an opposed pair of roller dies 70a, 70b, which punch or form various holes (e.g., cooling tube holes and/or flow-through holes in whatever pattern is desired) in the material.
- the leading edge is then passed through a second pair of roller dies 71a, 71b, which form flanges on the material.
- the leading edge is then passed under a cut-off shear 72, where individual fins, severally indi- cated at 73, are cut from the roll material. These fins are moved rightwardly by the action of rollers 74.
- Figs. 23A-25E show different forms of improved fins having different combinations of primary and secondary patterns, and having cooler tube openings and variously-sized flow through openings.
- a first form of fin is generally indicated at 75 in Figs. 23A-23B.
- the individual characters of the primary and secondary patterns are indicated at 76', 76", respectively.
- the cooling tube openings i.e., the openings in the fins to accommodate passage of various cooling tubes (not shown)
- the relatively-small flow-through openings are severally indicated at 78.
- a second form of fin is generally indicated at 79 in Figs. 24A-24B.
- the individual characters of the primary and secondary patters are again indicated at 76', 76", respectively.
- the cooling tube openings and the relatively-small flow-through openings are again indicated at 77, 78, respectively. Notice that second fin 78 is thinner, and more deeply distorted than first fin 75.
- Figs. 25A-25E Five different fins are illustrated in Figs. 25A-25E.
- the cooling tube openings or holes are indicated at 77.
- the salient difference between .these five figures lies in the size and configuration of the flow-through openings.
- a third form of fin, generally indicated at 79 is shown as having a plurality of smaller-sized flow-though openings, severally indicated at 80.
- a fourth form of fin, generally indicated at 79' is shown as having intermediately-sized flow-through openings, severally indicated at 80'.
- Fig. 25C a fifth form of fin, generally indicated at 79", is shown as having larger-sized flow-through openings, severally indicated at 80".
- FIG. 25D illustrates a sixth form of fin having various vertical columns of small, intermediate and large flow-through holes.
- Fig. 25E illustrates a seventh form of fin having another combination of small, intermediate and large flow-through holes. In each of these cases, the fin has primary and secondary patterns.
- An improved heat exchanger is shown in Fig. 26 as having an outer shell 82.
- a serpentine enhanced-surface heat transfer tube 83 extends between a hot inlet and a hot outlet on the shell. Cold fluid is admitted to the shell through a cold inlet, and flows around the tube toward a cold outlet, through which it exits the shell.
- the inlet and outlet connections and/or the tube geometry may be changed, as desired.
- Figs. 27A-27E depict an improved cooler, generally indicated at 84.
- This cooler is shown as having a plurality of enhanced-surface tubes, severally indicated at 85, that penetrate a bottom 86 and that rise upwardly through a plurality of vertically-spaced fins, severally indicated at 88.
- the tubes wind through the fins in a serpentine manner.
- Each fin is shown as having a plurality of cooler tube openings 89 to accommodate passage of the tubes.
- Each fin has primary and secondary patterns, and may optionally have a number of flow-through openings in whatever pattern is desired.
- Fig. 27A depicts a plan view of the cooler bottom.
- Fig. 27B is a fragmentary vertical sectional view of the cooler, taken generally on line 27B-27B of Fig.27A, and shows the tubes as passing upwardly and downwardly through aligned cooler tube openings in the fins.
- Fig. 27C is a side elevation of the cooler.
- Fig. 27D is a fragmentary horizontal sectional view through the cooler, taken generally on line 27D-27D of Fig. 27C, and shows a bottom plan view of one of the fins.
- Fig. 27E is an enlarged detail view of the lower right portion of the fin, this view being taken within the indicated circle in Fig. 27D.
- An improved fluid-flow vessel is generally indicated at 90 in Fig. 28.
- This vessel is shown as including a process column, generally indicated at 91 , that includes a plurality of vertically-spaced enhanced surface walls, severally indicated at 92. Vapor rises upwardly through the column by sequentially passing through the various walls, and liquid descends through the column by also passing through the various walls. Vapor at the top of the column passes via conduit 93 to a condenser 94. Liquid is returned to the uppermost chamber within the column by a conduit 95. At the bottom of the process column, collected liquid is supplied via a conduit 96 to an enhanced-surface reboiler 98. Vapor leaving this reboiler is supplied to the lowermost chamber of the column via a conduit 99.
- Fig. 29A depicts an improved heat exchanger plate, generally indicated at 100.
- a plurality of such plates may be stacked on top of one another, and adjacent plates may be sealingly separated by a gasket (not shown) to define flow passageways therebetween.
- Fig. 29B shows that portions of the heat exchanger plate may have enhanced surfaces thereon so as to facilitate heat transfer.
- Fig. 29B clearly shows that the illustrated portion of the plate may have primary patterns 101 and secondary patterns 102.
- the present invention broadly provides an improved method of forming an enhanced-surface wall for use in an apparatus for performing a process, an improved enhanced-surface wall, and uses thereof.
- the present invention contemplates that many changes and modifications may be made.
- the material may be formed of stainless steel, other types of material(s) (e.g., various alloys of aluminum, titanium, copper, etc, or various ceramics) may be used.
- the material may be homogenous or non-homogenous. It may be coated or chemically treated, either before, during or after the method described herein.
- the primary and secondary patterns may have a variety of different shapes and configurations, some regular and directional, and others not.
- the same types or configurations of characters may be used in the primary and secondary patters, with the difference residing in the depth and/or surface density of such characters.
- the various heat transfer devices disclosed herein may be complete in and of themselves, or may be portions of larger devices, which may have shapes other than those shown.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Finishing Walls (AREA)
- Printing Methods (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080061353.2A CN102713489B (en) | 2010-01-15 | 2010-08-27 | Form the method for the enhancing surface wall be used in device |
BR112012017291-3A BR112012017291B1 (en) | 2010-01-15 | 2010-08-27 | METHOD FOR FORMING A WALL WITH IMPROVED SURFACE |
AU2010341861A AU2010341861B2 (en) | 2010-01-15 | 2010-08-27 | Methods of forming enhanced-surface walls for use in apparatae |
KR1020127018271A KR101793754B1 (en) | 2010-01-15 | 2010-08-27 | Methods of forming enhanced-surface walls for use in apparatae |
ES10843354T ES2883234T3 (en) | 2010-01-15 | 2010-08-27 | Method of forming an improved surface wall for use in an appliance |
EP10843354.1A EP2524185B1 (en) | 2010-01-15 | 2010-08-27 | Method of forming an enhanced-surface wall for use in an apparatus |
JP2012548924A JP5905830B2 (en) | 2010-01-15 | 2010-08-27 | Method for forming a surface improvement wall for use in an apparatus for processing, surface improvement wall, and apparatus incorporating a surface improvement wall |
CA2786526A CA2786526C (en) | 2010-01-15 | 2010-08-27 | Methods of forming enhanced-surface walls for use in apparatae |
RU2012134771/06A RU2542628C2 (en) | 2010-01-15 | 2010-08-27 | Methods of forming walls with increased surface for use in device |
HK13104087.1A HK1176675A1 (en) | 2010-01-15 | 2013-04-03 | Methods of forming enhanced-surface walls for use in apparatae |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29565310P | 2010-01-15 | 2010-01-15 | |
US61/295,653 | 2010-01-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011087474A1 true WO2011087474A1 (en) | 2011-07-21 |
Family
ID=44304524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/002363 WO2011087474A1 (en) | 2010-01-15 | 2010-08-27 | Methods of forming enhanced-surface walls for use in apparatae |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP2524185B1 (en) |
JP (1) | JP5905830B2 (en) |
KR (1) | KR101793754B1 (en) |
CN (1) | CN102713489B (en) |
AU (1) | AU2010341861B2 (en) |
BR (1) | BR112012017291B1 (en) |
CA (1) | CA2786526C (en) |
ES (1) | ES2883234T3 (en) |
HK (1) | HK1176675A1 (en) |
RU (1) | RU2542628C2 (en) |
WO (1) | WO2011087474A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015117706A1 (en) * | 2014-02-07 | 2015-08-13 | Siemens Aktiengesellschaft | Heat sink |
EP2757341A4 (en) * | 2011-09-16 | 2015-10-21 | Kobe Steel Ltd | Raw plate material for heat exchanging plate, and heat exchanging plate using same |
SE1751497A1 (en) * | 2017-12-05 | 2019-06-06 | Swep Int Ab | Heat exchanger and method for forming heat exchanger plates |
US10744603B2 (en) | 2015-03-16 | 2020-08-18 | Dana Canada Corporation | Heat exchangers with plates having surface patterns for enhancing flatness and methods for manufacturing same |
DE102012113204B4 (en) | 2012-08-22 | 2024-09-05 | Hyundai Motor Company | Structure of an exhaust pipe for exhaust heat recovery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2647866C2 (en) * | 2016-05-31 | 2018-03-21 | Юрий Васильевич Таланин | Method of manufacturing liquid cooler |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4092842A (en) | 1975-10-16 | 1978-06-06 | Johns-Manville Corporation | Deeply embossed sheet product and method and apparatus for the production thereof |
US4098722A (en) | 1975-08-20 | 1978-07-04 | United Kingdom Atomic Energy Authority | Methods of fabricating bodies |
JPS56136241A (en) | 1980-03-26 | 1981-10-24 | Hitachi Ltd | Processing device of fin for heat exchanger |
US4663243A (en) | 1982-10-28 | 1987-05-05 | Union Carbide Corporation | Flame-sprayed ferrous alloy enhanced boiling surface |
US4753849A (en) | 1986-07-02 | 1988-06-28 | Carrier Corporation | Porous coating for enhanced tubes |
US5052476A (en) | 1990-02-13 | 1991-10-01 | 501 Mitsubishi Shindoh Co., Ltd. | Heat transfer tubes and method for manufacturing |
US5259448A (en) | 1991-07-09 | 1993-11-09 | Mitsubishi Shindoh Co., Ltd. | Heat transfer tubes and method for manufacturing |
EP0603108A1 (en) | 1992-12-16 | 1994-06-22 | Carrier Corporation | Heat exchanger tube |
US5351397A (en) | 1988-12-12 | 1994-10-04 | Olin Corporation | Method of forming a nucleate boiling surface by a roll forming |
US5458191A (en) | 1994-07-11 | 1995-10-17 | Carrier Corporation | Heat transfer tube |
US6026892A (en) | 1996-09-13 | 2000-02-22 | Poongsan Corporation | Heat transfer tube with cross-grooved inner surface and manufacturing method thereof |
US6176301B1 (en) | 1998-12-04 | 2001-01-23 | Outokumpu Copper Franklin, Inc. | Heat transfer tube with crack-like cavities to enhance performance thereof |
US6182743B1 (en) | 1998-11-02 | 2001-02-06 | Outokumpu Cooper Franklin Inc. | Polyhedral array heat transfer tube |
US20050067156A1 (en) | 2003-07-15 | 2005-03-31 | Rottmann Edward G. | Pressure containing heat transfer tube and method of making thereof |
US20050247380A1 (en) | 2004-05-05 | 2005-11-10 | Rottmann Edward G | Heat transfer tube constructed of tin brass alloy |
US20060054035A1 (en) * | 2003-12-23 | 2006-03-16 | Papadopoulos Jeremy J M | Interchangeable embossing plates for mounting on an embossing roll |
US7032654B2 (en) | 2003-08-19 | 2006-04-25 | Flatplate, Inc. | Plate heat exchanger with enhanced surface features |
US20070122590A1 (en) * | 2005-11-29 | 2007-05-31 | Haresh Lalvani | Multi-directional and variably expanded sheet material surfaces |
US20080038144A1 (en) * | 2006-04-21 | 2008-02-14 | Maziasz Phillip J | High strength alloys |
US20090008075A1 (en) | 2002-11-25 | 2009-01-08 | Outokumpu Oyj | Polyhedral array heat transfer tube |
GB2457333A (en) | 2008-02-08 | 2009-08-12 | Nichias Corp | Rolled sheet with orthogonal sinusoidal profiles |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3861462A (en) * | 1971-12-30 | 1975-01-21 | Olin Corp | Heat exchange tube |
SU869871A1 (en) * | 1980-01-18 | 1981-10-07 | Московский Ордена Трудового Красного Знамени Институт Стали И Сплавов | Rolling method |
US4431050A (en) * | 1981-10-16 | 1984-02-14 | Avco Corporation | Stacked-plate heat exchanger made of identical corrugated plates |
JPH0615354A (en) * | 1992-07-02 | 1994-01-25 | Showa Alum Corp | Manufacture of heat exchange tube |
RU2070103C1 (en) * | 1994-12-19 | 1996-12-10 | Акционерное общество "Кыргызавтомаш" | Device for making extrusions on metallic belt |
JP2001033179A (en) * | 1999-07-22 | 2001-02-09 | Showa Alum Corp | Tubular heat exchanger and its manufacture |
US6705143B2 (en) * | 2001-07-31 | 2004-03-16 | Lausan Chung-Hsin Liu | Method of manufacturing loading plane border frame tubes for chairs |
CN1164223C (en) * | 2001-08-08 | 2004-09-01 | 刘宗信 | Technology for manufacturing tubular body of load-bearing frame for chair |
DE10304814C5 (en) * | 2003-02-06 | 2009-07-02 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Method and tool for producing structured sheet metal layers; The catalyst support body |
JP2006064281A (en) * | 2004-08-26 | 2006-03-09 | Hisaka Works Ltd | Plate type heat exchanger |
JP4494136B2 (en) * | 2004-09-03 | 2010-06-30 | 株式会社柿生精密 | Mold equipment |
JP4765706B2 (en) * | 2006-03-22 | 2011-09-07 | パナソニック株式会社 | Manufacturing method of heat exchanger |
JP5246609B2 (en) * | 2007-03-30 | 2013-07-24 | 日産自動車株式会社 | Surface treatment method for heat transfer member |
-
2010
- 2010-08-27 AU AU2010341861A patent/AU2010341861B2/en active Active
- 2010-08-27 RU RU2012134771/06A patent/RU2542628C2/en active
- 2010-08-27 EP EP10843354.1A patent/EP2524185B1/en active Active
- 2010-08-27 CN CN201080061353.2A patent/CN102713489B/en active Active
- 2010-08-27 CA CA2786526A patent/CA2786526C/en active Active
- 2010-08-27 KR KR1020127018271A patent/KR101793754B1/en active IP Right Grant
- 2010-08-27 WO PCT/US2010/002363 patent/WO2011087474A1/en active Application Filing
- 2010-08-27 JP JP2012548924A patent/JP5905830B2/en active Active
- 2010-08-27 ES ES10843354T patent/ES2883234T3/en active Active
- 2010-08-27 BR BR112012017291-3A patent/BR112012017291B1/en active IP Right Grant
-
2013
- 2013-04-03 HK HK13104087.1A patent/HK1176675A1/en unknown
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4098722A (en) | 1975-08-20 | 1978-07-04 | United Kingdom Atomic Energy Authority | Methods of fabricating bodies |
US4092842A (en) | 1975-10-16 | 1978-06-06 | Johns-Manville Corporation | Deeply embossed sheet product and method and apparatus for the production thereof |
JPS56136241A (en) | 1980-03-26 | 1981-10-24 | Hitachi Ltd | Processing device of fin for heat exchanger |
US4663243A (en) | 1982-10-28 | 1987-05-05 | Union Carbide Corporation | Flame-sprayed ferrous alloy enhanced boiling surface |
US4753849A (en) | 1986-07-02 | 1988-06-28 | Carrier Corporation | Porous coating for enhanced tubes |
US5351397A (en) | 1988-12-12 | 1994-10-04 | Olin Corporation | Method of forming a nucleate boiling surface by a roll forming |
US5052476A (en) | 1990-02-13 | 1991-10-01 | 501 Mitsubishi Shindoh Co., Ltd. | Heat transfer tubes and method for manufacturing |
US5259448A (en) | 1991-07-09 | 1993-11-09 | Mitsubishi Shindoh Co., Ltd. | Heat transfer tubes and method for manufacturing |
EP0603108A1 (en) | 1992-12-16 | 1994-06-22 | Carrier Corporation | Heat exchanger tube |
US5332034A (en) | 1992-12-16 | 1994-07-26 | Carrier Corporation | Heat exchanger tube |
US5458191A (en) | 1994-07-11 | 1995-10-17 | Carrier Corporation | Heat transfer tube |
US6026892A (en) | 1996-09-13 | 2000-02-22 | Poongsan Corporation | Heat transfer tube with cross-grooved inner surface and manufacturing method thereof |
US6182743B1 (en) | 1998-11-02 | 2001-02-06 | Outokumpu Cooper Franklin Inc. | Polyhedral array heat transfer tube |
US6176301B1 (en) | 1998-12-04 | 2001-01-23 | Outokumpu Copper Franklin, Inc. | Heat transfer tube with crack-like cavities to enhance performance thereof |
US20090008075A1 (en) | 2002-11-25 | 2009-01-08 | Outokumpu Oyj | Polyhedral array heat transfer tube |
US20050067156A1 (en) | 2003-07-15 | 2005-03-31 | Rottmann Edward G. | Pressure containing heat transfer tube and method of making thereof |
US7032654B2 (en) | 2003-08-19 | 2006-04-25 | Flatplate, Inc. | Plate heat exchanger with enhanced surface features |
US20060054035A1 (en) * | 2003-12-23 | 2006-03-16 | Papadopoulos Jeremy J M | Interchangeable embossing plates for mounting on an embossing roll |
US20050247380A1 (en) | 2004-05-05 | 2005-11-10 | Rottmann Edward G | Heat transfer tube constructed of tin brass alloy |
US20070122590A1 (en) * | 2005-11-29 | 2007-05-31 | Haresh Lalvani | Multi-directional and variably expanded sheet material surfaces |
US20080038144A1 (en) * | 2006-04-21 | 2008-02-14 | Maziasz Phillip J | High strength alloys |
GB2457333A (en) | 2008-02-08 | 2009-08-12 | Nichias Corp | Rolled sheet with orthogonal sinusoidal profiles |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2757341A4 (en) * | 2011-09-16 | 2015-10-21 | Kobe Steel Ltd | Raw plate material for heat exchanging plate, and heat exchanging plate using same |
DE102012113204B4 (en) | 2012-08-22 | 2024-09-05 | Hyundai Motor Company | Structure of an exhaust pipe for exhaust heat recovery |
WO2015117706A1 (en) * | 2014-02-07 | 2015-08-13 | Siemens Aktiengesellschaft | Heat sink |
US10744603B2 (en) | 2015-03-16 | 2020-08-18 | Dana Canada Corporation | Heat exchangers with plates having surface patterns for enhancing flatness and methods for manufacturing same |
SE1751497A1 (en) * | 2017-12-05 | 2019-06-06 | Swep Int Ab | Heat exchanger and method for forming heat exchanger plates |
SE541905C2 (en) * | 2017-12-05 | 2020-01-02 | Swep Int Ab | Heat exchanger and method for forming heat exchanger plates |
US11867469B2 (en) | 2017-12-05 | 2024-01-09 | Swep International Ab | Heat exchanger |
US12104863B2 (en) | 2017-12-05 | 2024-10-01 | Swep International Ab | Heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
ES2883234T3 (en) | 2021-12-07 |
JP5905830B2 (en) | 2016-04-20 |
EP2524185B1 (en) | 2021-07-14 |
CA2786526C (en) | 2018-03-13 |
CN102713489B (en) | 2015-12-16 |
KR101793754B1 (en) | 2017-11-20 |
AU2010341861A1 (en) | 2012-07-19 |
BR112012017291A2 (en) | 2016-04-19 |
RU2012134771A (en) | 2014-02-20 |
HK1176675A1 (en) | 2013-08-02 |
BR112012017291B1 (en) | 2020-03-17 |
AU2010341861B2 (en) | 2015-04-23 |
KR20120116962A (en) | 2012-10-23 |
CN102713489A (en) | 2012-10-03 |
RU2542628C2 (en) | 2015-02-20 |
JP2013517140A (en) | 2013-05-16 |
EP2524185A1 (en) | 2012-11-21 |
CA2786526A1 (en) | 2011-07-21 |
EP2524185A4 (en) | 2017-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150122466A1 (en) | Enhanced surface walls | |
EP2524185B1 (en) | Method of forming an enhanced-surface wall for use in an apparatus | |
Sadeghianjahromi et al. | Heat transfer enhancement in fin-and-tube heat exchangers–A review on different mechanisms | |
Mangrulkar et al. | Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers | |
US6067712A (en) | Heat exchange tube with embossed enhancement | |
US6378605B1 (en) | Heat exchanger with transpired, highly porous fins | |
EP3650799B1 (en) | A fin body for a heat exchange tube | |
RU2520767C1 (en) | Heat exchange plate and plate-type heat exchanger | |
US5415225A (en) | Heat exchange tube with embossed enhancement | |
Wang et al. | An investigation of influence factor including different tube bundles on inclined elliptical fin-tube heat exchanger | |
WO2017214489A1 (en) | 3d spiral heat exchanger | |
CN102803890B (en) | Raw plate material for heat-exchanging plate, and method for fabricating raw plate material for heat-exchanging plate | |
US20100252247A1 (en) | Heat Transfer Device And Method | |
Ma et al. | Thermal performance optimization of heat exchanger with mixed cross-corrugated sinusoidal plate channels | |
US20060169019A1 (en) | Tabbed transfer fins for air-cooled heat exchanger | |
CN220039222U (en) | Fin with transverse texture enhanced heat exchange | |
RU200477U1 (en) | HEAT EXCHANGER PLATE | |
CN219511366U (en) | Heat exchange plate and heat exchange equipment | |
Panchal | Heat Transfer and Flow Characteristics of spiral Fin and Tube Heat Exchanger | |
Reshaeel et al. | A critical review of the thermal-hydraulic performance of fin and tube heat exchangers using statistical analysis | |
CN105157465B (en) | A kind of right angle plate fin that bur is set | |
Hassan et al. | Numerical solution of cross flow heat exchanger with metallic foam | |
Elmacıoğlu et al. | Analysis and design of an air to air heat exchanger used in energy recovery systems | |
CN116136375A (en) | Heat exchange plate and heat exchange equipment | |
Shao et al. | Thermal-Hydraulic and Entropy Generation Optimization of Capsule-Type Plate Heat Exchangers With Spherical Dimples |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080061353.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10843354 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010843354 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010341861 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1575/KOLNP/2012 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2786526 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 20127018271 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012548924 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2010341861 Country of ref document: AU Date of ref document: 20100827 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012134771 Country of ref document: RU |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012017291 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012017291 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120712 |