US20150122466A1 - Enhanced surface walls - Google Patents

Enhanced surface walls Download PDF

Info

Publication number
US20150122466A1
US20150122466A1 US14/498,395 US201414498395A US2015122466A1 US 20150122466 A1 US20150122466 A1 US 20150122466A1 US 201414498395 A US201414498395 A US 201414498395A US 2015122466 A1 US2015122466 A1 US 2015122466A1
Authority
US
United States
Prior art keywords
enhanced
centerline
distorted
initial
patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/498,395
Inventor
Richard S. Smith, III
Kevin Fuller
David J. Kukulka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigidized Metals Corp
Original Assignee
Rigidized Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/754,094 external-priority patent/US20100252247A1/en
Application filed by Rigidized Metals Corp filed Critical Rigidized Metals Corp
Priority to US14/498,395 priority Critical patent/US20150122466A1/en
Publication of US20150122466A1 publication Critical patent/US20150122466A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/227Surface roughening or texturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53113Heat exchanger
    • Y10T29/53122Heat exchanger including deforming means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness

Definitions

  • the present invention relates generally to methods of forming enhanced-surface walls for use in apparatae (e.g., heat transfer devices, fluid-mixing devices, etc.) for performing a process, to enhanced-surface walls per se, and to various apparatae incorporating such enhanced-surface walls.
  • apparatae e.g., heat transfer devices, fluid-mixing devices, etc.
  • Such walls typically have a plurality of characters impressed thereon to enhance the surface area, to improve fluid mixing, to promote turbulence, to break up the boundary layer adjacent the surface, to improve heat transfer, etc.
  • U.S. Pat. No. 5,052,476 A appears to disclose a heat transfer tube having U-shaped primary grooves, V-shaped secondary grooves, and pear-shaped tertiary grooves to increase turbulence and reflux efficiency.
  • the tube is first formed as a plate, and is then rolled into a tube, after which its proximate ends are welded together.
  • the depth of the secondary grooves is said to be 50-100% of the depth of the primary grooves.
  • U.S. Pat. No. 5,259,448 A appears to disclose a heat transfer tube having rectangularly-shaped main grooves and narrow secondary grooves that intersect the main grooves at an angle.
  • the device appears to be formed flat, rolled or curled, and then welded.
  • the depth of the narrow grooves is said to be 0.02 millimeters (mm).
  • the depth of the main grooves is said to be 0.20-0.30 mm.
  • U.S. Pat. No. 5,332,034 A appears to disclose a heat exchanger tube having longitudinally-extending circumferentially-spaced ribs with parallel inclined notches to increase turbulence and to increase heat transfer performance.
  • U.S. Pat. No. 5,458,191 A appears to disclose a heat exchanger tube having circumferentially-spaced helically-wound ribs with parallel inclined notches.
  • U.S. Pat. No. 6,182,743 B1 appears to disclose a heat transfer tube with polyhedral arrays to enhance heat transfer characteristics.
  • the polyhedral arrays may be applied to internal and external tube surfaces.
  • This reference may teach the use of ribs, fins, coatings and inserts to break up the boundary layer.
  • U.S. Pat. No. 6,176,301 B1 appears to disclose a heat transfer tube with polyhedral arrays having crack-like cavities on at least two surfaces of the polyhedrons.
  • U.S. Pat. No. 5,351,397 A appears to disclose a roll-formed nucleate boiling pate having a first pattern of grooves separated by ridges, and a second pattern of more-shallow groves machined into the ridges.
  • the second pattern depth is said to be about 10-50% of the depth of the first pattern.
  • U.S. Pat. No. 7,032,654 B2 appears to disclose a heat exchanger having fins with enhanced-surfaces, and with holes in the fins.
  • the present invention broadly provides: (1) improved methods of forming enhanced-surface walls for use in apparatae (e.g., heat transfer devices, fluid mixing devices, etc.) for performing a process, (2) to enhanced-surface walls per se, and (3) to various apparatae incorporating such enhanced-surface walls.
  • apparatae e.g., heat transfer devices, fluid mixing devices, etc.
  • the invention provides an improved method of forming an enhanced-surface wall ( 20 ) for use in an apparatus for performing a process, comprising the steps of: providing a length of material ( 21 ) having opposite initial surfaces ( 21 a , 21 b ), the material having a longitudinal centerline (x-x) positioned substantially midway between the initial surfaces, the material having an initial transverse dimension measured from the centerline to a point on either of the initial surfaces located farthest away from the centerline, each of the initial surfaces having a initial surface density, the surface density being defined as the number of characters on an surface per unit of projected surface area; impressing secondary patterns ( 23 a , 23 b ) having secondary pattern surface densities onto each of the initial surfaces to distort the material and to increase the surface densities on each of the surfaces and to increase the transverse dimension of the material from the centerline to the farthest point of such distorted material; and impressing primary patterns ( 25 a , 25 b ) having primary pattern surface densities onto each of such distorted surfaces
  • Each secondary pattern surface density may be greater than each primary pattern surface density.
  • the step of impressing the secondary patterns onto each of the initial surfaces may include the additional step of: cold-working the material.
  • the step of impressing the primary patterns onto each of distorted surfaces may include the additional step of: cold-working the material.
  • the secondary patterns may be the same.
  • the secondary patterns may be shifted relative to one another such that a maximum dimension from the centerline to one distorted surface will correspond to a minimum dimension from the centerline to the other distorted surface.
  • the step of impressing the secondary patterns onto the material may increase the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material of up to 135% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
  • the step of impressing the secondary patterns onto the material may increase the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material of up to 150% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
  • the step of impressing the secondary patterns onto the material may increase the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material of up to 300% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
  • the step of impressing the secondary patterns onto the material may increase the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material of up to 700% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
  • the step of impressing the secondary patterns onto the material may not reduce the minimum dimension of the material, when measured from any point on one of such distorted surfaces to the closest point on the opposite one of such distorted surfaces, below 95% of the minimum dimension from any point on one of the initial surfaces to the closest point on the opposite initial surface.
  • the step of impressing the secondary patterns onto the material may not reduce the minimum dimension of the material, when measured from any point on one of such distorted surfaces to the closest point on the opposite one of such distorted surfaces, below 50% of the minimum dimension from any point on one of the initial surfaces to the closest point on the opposite initial surface.
  • the primary patterns may be the same.
  • the primary patterns may be shifted relative to one another such that a maximum dimension from the centerline to one further-distorted surface will correspond to a minimum dimension from the centerline to the other further-distorted surface.
  • the step of impressing the primary patterns onto the material may not reduce the minimum dimension of the further-distorted material, when measured from the centerline to any point on either of the further-distorted surfaces, below 95% of the minimum dimension of the material, when measured from the centerline to either of the initial surfaces.
  • the step of impressing the primary patterns onto the material may not reduce the minimum dimension of the further-distorted material, when measured from the centerline to any point on either of the further-distorted surfaces, below 50% of the minimum dimension of the material, when measured from the centerline to either of the initial surfaces.
  • the step of impressing the primary patterns onto each of the surfaces may further increase the dimension from the centerline to the farthest point of the further-distorted material.
  • the opposite surfaces of the material may be initially planar.
  • the steps of impressing the patterns may include the steps of impressing the patterns by at least one of a rigidizing, stamping, rolling, pressing and embossing operation.
  • the method may further comprise the additional steps of: bending the enhanced-surface wall such that the proximate ends are positioned proximate to one another; and joining the proximate ends of the material together; thereby to form an enhanced-surface tube.
  • the step of joining the proximate ends of the material together may include the further step of: welding the proximate ends of the material to join them together.
  • the method may further comprise the additional step of: providing holes through the material.
  • the method may further comprise the additional step of: installing the enhanced-surface wall in a heat exchanger.
  • the method may further comprise the additional step of: installing the enhanced-surface wall in a fluid-handling apparatus.
  • the invention provides an enhanced-surface wall manufactured by the method defined by any of the foregoing steps.
  • the primary patterns may be directional or non-directional.
  • the secondary patterns may be directional or non-directional.
  • the wall may comply with at least one of the following ASME/ASTM designations: A249/A, A135, A370, A751, E213, E273, E309, E1806, A691, A139, A213, A214, A268, A 269, A270, A312, A334, A335, A498, A631, A671, A688, A691, A778, A299/A, A789, A789/A, A789/M, A790, A803, A480, A763, A941, A1016, A1012, A1047/A, A250, A771, A826, A851, B674, E112, A370, A999, E381, E426, E527, E340, A409, A358, A262, A240, A537, A530, A 435, A387, A299, A204, A20, A577, A578, A285, E165, A380, A262 and A179.
  • ASME/ASTM designations
  • the material may be homogeneous or non-homogeneous.
  • the material may be provided with a coating on at least a portion of one of the initial surfaces.
  • At least a portion of one of the initial surfaces may be chemically-treated.
  • the invention provides an improved heat transfer device that incorporates the improved enhanced-surface wall.
  • the invention provides an improved fluid-handling apparatus that incorporates the improved enhanced-surface wall.
  • the invention provides an improved enhanced-surface wall ( 20 ) for use in an apparatus for performing a process, which wall comprises: a length of material ( 21 ) having opposite initial surfaces ( 21 a , 21 b ), the material having a longitudinal centerline (x-x) positioned substantially midway between the initial surfaces, the material having an initial transverse dimension measured from the centerline to a point on either of the initial surfaces located farthest away from the centerline, each of the initial surfaces having a initial surface density, the surface density being defined as the number of characters (including zero) on a surface per unit of projected surface area; secondary patterns ( 23 ) having secondary pattern surface densities impressed onto each of the initial surfaces, the secondary patterns distorting the material and increasing the surface densities on each of the surfaces and increasing the transverse dimension of the material from the centerline to the farthest point of such distorted material; and primary patterns ( 25 ) having primary pattern surface densities impressed onto each of such distorted surfaces and further distorting the material and further increasing the surface densities on each of the
  • Each secondary pattern surface density may be greater than each primary pattern surface density.
  • the secondary patterns may be the same.
  • the secondary patterns may be shifted relative to one another such that a maximum dimension from the centerline to one distorted surface will correspond to a minimum dimension from the centerline to the other distorted surface.
  • the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material may be less than 135% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
  • the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material may be less than 150% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
  • the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material may be less than 300% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
  • the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material may be less than 700% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
  • the minimum dimension of the material when measured from any point on one of such distorted surfaces to the closest point on the opposite one of such distorted surfaces, is at least 95% of the minimum dimension from any point on one of the initial surfaces to the closest point on the opposite initial surface.
  • the minimum dimension of the material when measured from any point on one of such distorted surfaces to the closest point on the opposite one of such distorted surfaces, may be at least 50% of the minimum dimension from any point on one of the initial surfaces to the closest point on the opposite initial surface.
  • the primary patterns may be the same or different.
  • the primary patterns may be shifted relative to one another such that a maximum dimension from the centerline to one further-distorted surface will correspond to a minimum dimension from the centerline to the other further-distorted surface.
  • the minimum dimension of the further-distorted material when measured from the centerline to any point on either of the further-distorted surfaces, may be at least 95% of the minimum dimension of the material, when measured from the centerline to either of the initial surfaces.
  • the minimum dimension of the further-distorted material when measured from the centerline to any point on either of the further-distorted surfaces, may be at least 50% of the minimum dimension of the material, when measured from the centerline to either of the initial surfaces.
  • the impressed primary patterns may further increase the dimension from the centerline to the farthest point of the further-distorted material.
  • one object is to provide improved methods of forming enhanced-surface walls for use in an apparatus for performing a process.
  • Another object is to provide improved enhanced-surface walls.
  • Still another object is to provide an improved apparatus that incorporates an improved enhanced-surface wall.
  • FIG. 1A is a schematic top plan view of a length of material showing the Secondary 1 and Primary 1 patterns being impressed thereon.
  • FIG. 1B is a side elevation of the structure schematically shown in FIG. 1A .
  • FIG. 2A is an enlarged top plan view of the Secondary 1 pattern, as shown in FIGS. 1A-1 B, impressed into the material.
  • FIG. 2B is an enlarged top plan view of the Primary 1 pattern impressed into a sheet of supplied material, the scale of FIG. 2B being the same as the scale of FIG. 2A
  • FIG. 2C is a top plan view of the superimposed Primary 1 and Secondary 1 patterns, as shown in FIGS. 1A-1B , impressed into the material, the scale of FIG. 2C being the same as the scale of FIGS. 2A-2B .
  • FIG. 3A is a greatly-enlarged fragmentary transverse vertical sectional view of the material prior to impressing the Secondary 1 patterns thereon, this view being taken generally on line 3 A- 3 A of FIG. 1A .
  • FIG. 3B is a greatly-enlarged fragmentary transverse vertical sectional view thereof, taken generally on line 3 B- 3 B of FIG. 2A , showing the Secondary 1 patterns impressed onto the material.
  • FIG. 3C is a greatly-enlarged fragmentary transverse sectional view, taken generally on line 3 C- 3 C of FIG. 2B , showing the Primary 1 patterns impressed into the material.
  • FIG. 3D is a greatly-enlarged fragmentary transverse sectional view thereof, taken generally on line 3 D- 3 D of FIG. 2C , showing the Primary 1 and Secondary 1 patterns impressed into the material.
  • FIG. 4 is a schematic transverse vertical sectional view thereof, showing how the Secondary 1 patterns are impressed into the material.
  • FIG. 5A is a schematic view, showing how the point-to-point wall thickness of a plain sheet is measured.
  • FIG. 5B is a schematic view, showing how the point-to-point wall thickness of the material is measured after the Secondary 1 patterns have been impressed therein.
  • FIG. 5C is a schematic view showing how the point-to-point wall thickness of the Primary 1 patterns is measured.
  • FIG. 5D is a schematic view showing how the point-to-point wall thickness of the finished enhanced-surface material is measured, this material having the super imposed Primary 1 and Secondary 1 patterns impressed thereon.
  • FIG. 6A is a schematic view showing how the area thickness of a plain sheet is measured.
  • FIG. 6B is a schematic view showing how the area wall thickness is measured after the Secondary 1 patterns have been impressed thereon.
  • FIG. 6C is a schematic view showing how the area wall thickness is measured after the Primary 1 patterns have been impressed thereon.
  • FIG. 6D is a schematic view showing how the area wall thickness of an enhanced-surface wall is measured after the Primary 1 and Secondary 1 patterns have been impressed thereon.
  • FIG. 7A is a top plan view showing another primary pattern, designated the Primary 2 pattern, impressed on a sheet.
  • FIG. 7B is a fragmentary transverse vertical sectional view thereof taken on line 7 B- 7 B of FIG. 7A .
  • FIG. 7C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 7 C- 7 C of FIG. 7A .
  • FIG. 8A is a top plan view of a third primary pattern, designated the Primary 3 pattern, impressed on a sheet of material.
  • FIG. 8B is a fragmentary transverse vertical sectional view thereof, taken generally on line 8 B- 8 B of FIG. 8A .
  • FIG. 8C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 8 C- 8 C of FIG. 8A .
  • FIG. 9A is a top plan view of another primary pattern, designated the Primary 4 pattern, impressed into a sheet of material, this pattern having a character surface density of 0.5.
  • FIG. 9B is a view similar to FIG. 9A , but showing a variant form of the Primary 4 pattern having a character surface density of 1.0.
  • FIG. 9C is a view similar to FIGS. 9A and 9B , but showing another variant form of the Primary 4 pattern having a character surface density of 2.0.
  • FIG. 10A is a top plan view of another primary pattern, designated the Primary 5 pattern, impressed on a sheet of material.
  • FIG. 10B is a fragmentary transverse vertical sectional view thereof, taken generally on line 10 B- 10 B of FIG. 10A .
  • FIG. 10C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 10 C- 10 C of FIG. 10A .
  • FIG. 11A is a top plan view of another secondary pattern, designated the Secondary 2 pattern, impressed into the material, this view showing the individual characters as being somewhat oval-shaped.
  • FIG. 11B is a fragmentary transverse vertical sectional view thereof, taken generally on line 11 B- 11 B of FIG. 11A .
  • FIG. 11C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 11 C- 11 C of FIG. 11A .
  • FIG. 12A is a top plan view of another secondary pattern, designated the Secondary 3 pattern, impressed onto a length of material, this view showing the individual characters as being somewhat lemon-shaped.
  • FIG. 12B is a fragmentary transverse vertical sectional view thereof, taken generally on line 12 B- 12 B of FIG. 12A .
  • FIG. 12C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 12 C- 12 C of FIG. 12A .
  • FIG. 13A is a top plan view of another primary pattern, designated the Primary 6 pattern, impressed into a length of material.
  • FIG. 13B is a fragmentary transverse vertical sectional view thereof, taken generally on line 13 B- 13 B of FIG. 13A .
  • FIG. 14A is still another example of a criss-crossed directional primary pattern, designated the Primary 7 pattern, impressed on a length of material, this pattern being directional in both the longitudinal and transverse directions.
  • FIG. 14B is fragmentary transverse vertical sectional view thereof, taken generally on line 14 B- 14 B of FIG. 14A .
  • FIG. 14C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 14 C- 14 C of FIG. 14A .
  • FIG. 15A is a fragmentary view of another pebble-like non-directional pattern, designated as Secondary 4 pattern, impressed on a length of material.
  • FIG. 15B is a fragmentary transverse vertical sectional view thereof, taken generally on line 15 B- 15 B of FIG. 15A .
  • FIG. 15C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 15 C- 15 C of FIG. 15A .
  • FIG. 16A is a top plan view of yet another honeycomb-like non-directional pattern, designated Secondary 4 pattern, impressed on the length of material.
  • FIG. 16B is a fragmentary transverse vertical sectional view thereof, taken generally on line 16 B- 16 B of FIG. 15A .
  • FIG. 16C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 16 C- 16 C of FIG. 16A .
  • FIG. 17 is a schematic view of one process for making enhanced-surface tubes.
  • FIG. 18A is a side elevation of a round tube having an optional coating on its outer surface.
  • FIG. 18B is a right end elevation of the round tube shown in FIG. 18A .
  • FIG. 18C is an enlarged detail view of the round tube, taken within the indicated circle in FIG. 18B , and particularly showing the coating on the outer surface of the tube.
  • FIG. 19A is an isometric view of a rectangular tube.
  • FIG. 19B is a fragmentary transverse vertical sectional view, taken generally on line 19 B- 19 B of FIG. 19A , of the rectangular tube.
  • FIG. 19C is an enlarged detail view of a portion of the wall of the rectangular tube, this view being taken within the indicated circle in FIG. 19B .
  • FIG. 20A is a side elevation of a U-shaped tube.
  • FIG. 20B is a slightly-enlarged fragmentary transverse vertical sectional view thereof, taken generally on line 20 B- 20 B of FIG. 20A .
  • FIG. 20C is a further-enlarged detail view of a portion of the tube wall, this view being taken within the indicated circle of FIG. 20B .
  • FIG. 21A is a side elevation of a helically-wound coil formed of a round tube having enhanced inner and outer surfaces.
  • FIG. 21B is a top plan view of the coil shown in FIG. 21A .
  • FIG. 21C is an enlarged fragmentary vertical sectional view thereof, taken generally on line 21 C- 21 C of FIG. 21A , showing the tube in the coil.
  • FIG. 21D is a further-enlarged detail view, taken within the indicated circle of FIG. 21C , showing of a portion of the tube wall.
  • FIG. 22 is a schematic view of one process for making an enhanced-surface fin.
  • FIG. 23A is a front elevation of a first enhanced-surface fin having primary and secondary patterns impressed thereon, and having cooler tube and flow-through openings.
  • FIG. 23B is a fragmentary vertical sectional view thereof, taken generally on line 23 B- 23 B of FIG. 23A .
  • FIG. 24A is a front elevation of a second enhanced-surface fin having primary and secondary patterns impressed thereon, and having cooler tube and flow-through openings.
  • FIG. 24B is a fragmentary vertical sectional view thereof, taken generally on line 24 B- 24 B of FIG. 24A .
  • FIG. 25A is a front elevation of a third enhanced-surface fin having cooler tube openings and smaller flow-through openings.
  • FIG. 25B is a front elevation of a fourth enhanced-surface fin having cooler tube openings and intermediate flow-through openings.
  • FIG. 25C is a front elevation of a fifth enhanced-surface fin having cooler tube openings and larger flow-through openings.
  • FIG. 25D is a front elevation of a sixth enhanced-surface fin having cooler tube openings and one combination of smaller, intermediate and larger flow-through openings.
  • FIG. 25E is a front elevation of a seventh enhanced-surface fin having cooler tube openings and another combination of smaller, intermediate and larger flow-through openings.
  • FIG. 26 is a schematic view of an improved heat exchanger having an enhanced-surface heat transfer tube therewithin.
  • FIG. 27A is a bottom plan view of an improved fluid cooler having enhanced-surface tubes therewithin.
  • FIG. 27B is a fragmentary horizontal sectional view thereof, taken generally on line 27 B- 27 B of FIG. 27A .
  • FIG. 27C is a side elevation of the improved cooler shown in FIG. 27A , with the cover in place.
  • FIG. 27D is a fragmentary vertical sectional view thereof, taken generally on line 27 D- 27 D of FIG. 27C , showing a bottom plan view of one of the fins.
  • FIG. 27E is an enlarged detail view of a portion of one of the fins, this view being taken within the indicated circle of FIG. 27D .
  • FIG. 28 is a schematic view of a fluid flow vessel incorporating enhanced surfaces therewithin.
  • FIG. 29A is a top plan view of a heat exchanger plate incorporating enhanced surfaces therewithin.
  • FIG. 29B is an enlarged detail view of a portion of the heat exchanger plate, this view being taken within the indicated circle in FIG. 29A .
  • the terms “horizontal”, “vertical”, “left”, “right”, “up” and “down”, as well as adjectival and adverbial derivatives thereof simply refer to the orientation of the illustrated structure as the particular drawing figure faces the reader.
  • the terms “inwardly” and “outwardly” generally refer to the orientation of a surface relative to its axis of elongation, or axis of rotation, as appropriate. Unless otherwise indicated, all dimensions set forth in the present specification, and in the accompanying drawings, are expressed in inches.
  • the present invention broadly provides an improved method of forming an enhanced-surface wall 20 for use in an apparatus for performing a process.
  • the apparatus may be a heat transfer device, a type of fluid mixing apparatus (either with or without a pertinent heat exchange function), or some other form of apparatus.
  • This application discloses multiple embodiments of enhanced-surface walls having various primary and/or secondary patterns.
  • the first embodiment is illustrated in FIGS. 1A-6D , the second in FIGS. 7A-7C , the third in FIGS. 8A-8C , the fourth in FIGS. 9A-9C , the fifth in FIGS. 10A-10C , the sixth in FIGS. 11A-11C , the seventh in FIGS. 12A-12C , the eighth in FIGS. 13A-13B , the ninth in FIGS. 14A-14C , the tenth in FIGS. 15A-15C , and the eleventh in FIGS. 16A-16C .
  • These various patterns may be used in various combinations with one another, and are not exhaustive of all patterns falling within the scope of the appended claims.
  • FIG. 17 One process of making an enhanced-surface tube is schematically shown in FIG. 17 , and several variations of such tubes are depicted in FIGS. 18A-21D .
  • FIG. 22 One process for making an enhanced-surface fin is schematically shown in FIG. 22 , and several variations of such fins are shown in FIGS. 23A-25E .
  • FIG. 26 An improved heat exchanger incorporating the enhanced-surface tubes is schematically shown in FIG. 26 .
  • FIGS. 27A-27E A cooler incorporating such enhanced-surface fins is depicted in FIGS. 27A-27E .
  • FIG. 28 Another fluid flow vessel incorporated enhanced surfaces is depicted in FIG. 28 .
  • FIGS. 29A-29B an improved plate having various enhanced surfaces is shown in FIGS. 29A-29B .
  • the improved method broadly begins with providing a length of material, of which a fragmentary portion is generally indicated at 21 .
  • This material may be a piece of plate-like stock, may be unrolled from a coil, or may have some other source or configuration.
  • the material may be rectangular having planar upper and lower initial surfaces 21 a , 21 b , respectively, and may have a longitudinal transverse centerline x-x positioned substantially midway between these initial surfaces. As shown in FIG. 3A , the thickness of the material between initial surfaces 21 a - 21 b may be about 0.035 inches, and the nominal spacing from the centerline to either of the surfaces may therefore be about 0.0175 inches.
  • the leading edge of the material in this first embodiment is then passed rightwardly (in the direction of the indicated arrow in FIG. 1A ) between a pair of upper and lower first rolls or dies 22 a , 22 b , respectively, which impress the Secondary 1 patterns into the upper and lower surfaces, respectively, of the material.
  • the upper and lower surfaces of the material after the Secondary 1 patterns have been impressed thereon are indicated at 23 a , 23 b respectively.
  • the material is then translated rightwardly between a second pair of upper and lower rolls or dies 24 a , 24 b respectively, which impress Primary 1 patterns onto the upper and lower surfaces, respectively of the material.
  • FIGS. 2A and 3B show the shape and configuration of the material after the Secondary 1 patterns have been impressed thereon.
  • the Secondary 1 patterns have the shape of an array of interlocking paving blocks when seen in top plan ( FIG. 2A ), but have undulating or sinusoidal shapes when seen in cross-section ( FIG. 3B ).
  • FIGS. 2B and 3C show the shape of the Primary 1 patterns if such patterns were impressed into a sheet of plain stock material, without the Secondary 1 patterns impressed thereon.
  • the Primary 1 patterns are in the form of a series of repeating step-like functions.
  • the upper surface of the material is indicated at 25 a
  • the lower surface thereof is indicated at 25 b.
  • the material exiting the second dies has the Primary 1 and Secondary 1 patterns superimposed and impressed thereon.
  • These upper and lower surfaces of the material containing the superimposed Primary 1 and Secondary 1 patterns are indicated at 26 a , 26 b , respectively.
  • the step of impressing the Secondary 1 patterns onto the material increases the minimal initial area wall thickness of the material from about 0.035 inches to about 0.045 inches.
  • the step of impressing the Primary 1 patterns into the initially supplied material would increase the initial area wall thickness from about 0.035 inches to about 0.050 inches.
  • the thickness of the material is further distorted to a dimension of about 0.052 inches.
  • FIGS. 2A-2C are drawn to the same scale (as indicated by the 6.0 ⁇ 6.0 dimensions thereon), and are enlarged with respect to the structure shown in FIG. 1A .
  • FIGS. 3A-3D are also drawn to the same scale, which is further-enlarged with respect to the scale of FIGS. 2A-2C , and is greatly enlarged with respect to the scale of FIGS. 1A-1B .
  • FIG. 4 shows how the Secondary 1 patterns are impressed into the material.
  • the top and bottom rolls 22 a , 22 b impart the undulating sinusoidal Secondary 1 patterns that are vertically aligned with one another such that the peak of one is aligned with the valley of the other.
  • the material 21 is only partially deformed by the two rolls.
  • the material will have a series of dimple-like concavities indicated at 27 , separated by intermediate arcuate convexities, severally indicated at 28 .
  • the material could be fully deformed, or “coined”, between the upper and lower rolls.
  • the steps of impressing the primary and secondary patterns into the material has the effect of cold-working the material.
  • the material could be heated, and the process could include the step of hot-working the same.
  • the secondary patterns may be the same, or may be different from one another.
  • the step of impressing the secondary pattern onto the material increases the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material of up to 135% in one case, 150% in another case, 300% in a third case, and 700% in a fourth case, of the maximum transverse dimension from the centerline to the farthest point of the initial surfaces.
  • the steps of impressing the primary and secondary patterns into the material does not materially reduce the minimum dimension of the material, when measured from any point on one of the distorted surfaces to the closest point on the opposite one of the distorted surfaces, below 95% in one case, and 50% in a second case, of the minimum dimension from any point on one of the initial surfaces to the closed point on the opposite initial surface.
  • the primary patterns impressed into the opposite sides of the material may be the same, or may be different.
  • the step of impressing the primary patterns into the material does not reduce the minimum dimension of the further-distorted material, when measured from the centerline to any point on either of the further-distorted surfaces, below 95% of the minimum dimension of the material, when measured from the centerline to either one of the initial surfaces.
  • the primary patterns impressed into the opposite sides of the material may be the same, or may be different.
  • the step of impressing the primary patterns into the material does not reduce the minimum dimension of the further-distorted material, when measured from the centerline to any point on either of the further-distorted surfaces, below 50% of the minimum dimension of the material, when measured from the centerline to either one of the initial surfaces.
  • the step of impressing the primary patterns onto each of the surfaces may further increase the dimension from the centerline to the farthest point of the further-distorted material.
  • the initial surfaces may be planar or may be supplied with some pattern or patterns impressed thereon.
  • the step of impressing the primary and secondary patterns onto the material may be by a rigidizing operation, a stamping operation, a rolling operation, a pressing operation, an embossing operation, or by some other type of process or operation.
  • the material may be supplied with cooler tube openings and/or with flow-through openings of whatever pattern is desired.
  • the method may further include the additional step of bending the enhanced-surface wall such that the proximate ends are positioned adjacent one another, and jointing the proximate ends of the material together, as by welding to form an enhanced-surface tube.
  • the method may include the further step of providing holes through the material.
  • the enhanced-surface wall may be installed in heat exchanger, in some type of fluid-handling apparatus or in still other forms of apparatus as well.
  • the primary patterns may be directional or non-directional.
  • the enhanced-surface wall complies with at least on of the following ASME/ASTM designations: A249/A, A135, A370, A751, E213, E273, E309, E1806, A691, A139, A213, A214, A268, A 269, A270, A312, A334, A335, A498, A631, A671, A688, A691, A778, A299/A, A789, A789/A, A789/M, A790, A803, A480, A763, A941, A1016, A1012, A1047/A, A250, A771, A826, A851, B674, E112, A370, A999, E381, E426, E527, E340, A409, A358, A262, A240, A537, A530, A 435, A387, A299, A204, A20, A577, A578, A285, E165, A
  • the material may be provided with a coating (e.g., a plating, etc.) on at least a portion of one of its initial surfaces, or such initial surface(s) may be chemically treated (e.g., electro-polished, etc.). Such coating and/or chemical treatment may be applied before, during or after the formation of the enhanced surfaces thereon.
  • a coating e.g., a plating, etc.
  • Such coating and/or chemical treatment may be applied before, during or after the formation of the enhanced surfaces thereon.
  • portion includes a range of from 0-100%.
  • the invention also includes an enhanced-surface wall formed by the forgoing method.
  • FIG. 5A-5D show how the point-to-point wall thickness is measured during various stages of the method.
  • the term “point-to-point wall thickness” means the thickness of the material from a point on one surface thereof to the closest point on the opposite surface thereof.
  • FIG. 5A shows a micrometer as measuring the initial thickness between planar surfaces 21 a , 21 b .
  • FIG. 5B shows the micrometer as measuring the wall thickness after the Secondary 1 patterns have been impressed thereon. This view schematically shows two measuring orientations, one being of the vertical thickness and the other being at an angle, such that the lesser of the two measured thicknesses may be used.
  • FIG. 5C shows how the point-to-point wall thickness would be measured when the primary pattern is impressed into the material.
  • FIG. 5C shows how the point-to-point wall thickness would be measured when the primary pattern is impressed into the material.
  • 5D show the micrometer as measuring the point-to-point wall thickness of the material after the Primary 1 and Secondary 1 patterns have been impressed thereon.
  • the lesser of the two measured thicknesses is used as the measure of the minimum wall thickness.
  • FIG. 6A-6D shows how the area thickness of the material is measured at various stages during the performance of the method.
  • the thickness is measured by measuring the peak-to-peak distance of the opposed surfaces, and, usually, by encompassing several peaks along each of the two surfaces.
  • FIG. 6A shows the micrometer is measuring the thickness of the initially-supplied material having planar upper and lower surfaces 21 a , 21 b , respectively. Since these surfaces are planar, the micrometer can simply measure the distance therebetween.
  • FIG. 6B shows the micrometer as measuring the thickness of the material after the Secondary 1 pattern has been impressed thereon. Note that the micrometer is measuring the peak-to-peak thickness of the amplitudes of both surfaces.
  • FIG. 6C shows the micrometer as measuring the thickness of the material if the Primary 1 patterns were to be impressed on the initially-supplied material. In this view, the micrometer is again measuring the peak-to-peak thickness across multiple characters impressed on the surfaces. Finally, FIG. 6D shows the micrometer as measuring the wall thickness of the material after the Primary 1 and Secondary 1 patterns have been impressed thereon.
  • the “point-to-point wall thickness” means the thickness of the material fro a point on one surface thereof to the closest point on the opposite surface thereof, it is sometimes required to measure such dimension both vertically and at various angles to determine which is the minimum thickness.
  • the “area thickness” refers to a peak on one surface to a peak on the opposite surface dimension, this can usually be measured vertically.
  • the “area thickness” preferably encompasses multiple peaks on each surface.
  • FIGS. 7A-7C A second primary pattern, designated the Primary 2 pattern, is illustrated in FIGS. 7A-7C , and is generally indicated at 30 .
  • This pattern somewhat resembles a raised honeycomb, and has an upper surface 31 a and a lower surface 31 b .
  • This pattern is directional in the vertical direction, but non-directional in the horizontal direction.
  • the vertical and horizontal transverse cross-sections are shown in FIGS. 7B-7C .
  • FIGS. 8A-8C show another furrow-like primary pattern, designated the Primary 3 pattern.
  • This pattern is generally indicated at 32 .
  • This pattern is directional in the vertical direction, but is non-directional in the horizontal direction.
  • the vertical and horizontal transverse cross-sections are shown in FIGS. 8B-8C .
  • This pattern has sinusoidal undulations, albeit of different periods, in each of the two orthogonal transverse directions on its upper and lower surfaces.
  • FIGS. 9A-9C show another secondary pattern designated the Secondary 2 pattern.
  • This pattern comprises of a series of dimple-like indentations on one surface, and vertically-aligned convexities on the opposite surface. These dimples can be staggered or in-line, as desired.
  • This pattern is generally indicated at 34 in FIG. 9A , and is shown as having an upper surface 35 a.
  • FIGS. 9B-9C show density variations on the pattern shown in FIG. 9A .
  • the pattern is indicated at 34 ′
  • the upper surface is indicated at 35 a ′.
  • the surface density of the dimple-like characters in pattern 34 shown in FIG. 9A is 0.5 of that for the modified pattern 34 ′ shown is in FIG. 9B , and 0.25 of that for the further-modified pattern 34 ′′ shown in FIG. 9C .
  • the surface density of the dimple-like characters in FIG. 9B is twice that shown in FIG. 9A .
  • surface density of the dimple-like characters in FIG. 9C is twice the surface density of the characters in FIG. 9B , and four times the surface density of the characters shown in FIG. 9A .
  • FIGS. 9A-9C are drawn to the same scale, as indicated by the 6.0 ⁇ 6.0 dimensions.
  • FIGS. 10A-10C show another chevron-like primary pattern designated the Primary 4 pattern. This pattern is non-directional in both the horizontal and vertical directions.
  • the pattern is generally indicated at 36 , and has upper and lower surfaces 38 a , 38 b.
  • FIGS. 11A-11C show another form of secondary pattern designated the Secondary 2 pattern, impressed into the material.
  • the individual dimples or characters are somewhat oval-shaped. Note that the period of the dimples is different in the two orthogonal directions, as shown in FIGS. 11B-11C .
  • This pattern is generally indicated at 39 , and is shown as having upper and lower surfaces 40 a , 40 b , respectively.
  • FIGS. 12A-12C show still another type of secondary pattern, designated the Secondary 3 pattern.
  • the dimples or characters of this pattern appear to be somewhat lemon-shaped.
  • the periods of the patterns is different in each of the two orthogonal transverse directions, as shown in FIGS. 12B-12C .
  • This pattern is generally indicated at 41 , and is shown as having upper and lower surfaces 42 a , 42 b , respectively.
  • FIGS. 13A-13B are used to illustrate a directional pattern, designated the Primary 6 pattern.
  • This pattern is generally indicated at 43 , and is shown as having upper and lower surfaces 44 a , 44 b , respectively Note that the pattern appears to have a series of step functions on its opposite surfaces, as shown in FIG. 13B . Note also, and the characters are aligned such that each projection on one surface corresponds with an indentation on the other surface.
  • This pattern is directional in the horizontal direction, but not in the vertical direction.
  • FIGS. 14A-14C show a criss-crossed pattern designated the Primary 7 pattern, impressed on the material.
  • This pattern is generally indicated at 45 , and is shown as having an upper surface 46 a and a lower surface 46 b .
  • This pattern is directional (i.e., not interrupted) in both the horizontal and vertical directions. Note that the period of the characters is the same in both orthogonal transverse directions.
  • FIGS. 15A-15C show an irregular pebble-like, albeit repeating, non-directional secondary pattern impressed on the material.
  • This pattern is designated the Secondary 4 pattern.
  • This pattern is generally indicated at 48 , and has upper and lower surfaces 49 a , 49 b , respectively.
  • the cross-sections in the orthogonal axes are shown in FIGS. 15B-15C , respectively.
  • FIGS. 15B-15C note that the indentation on one surface is vertically aligned with a projection on the other surface.
  • This pattern is non-directional in the sense that the pattern is interrupted in each of the horizontal and vertical directions.
  • the term “directional” with respect to a pattern means that the lines of the pattern are continuous and not interrupted along a direction, whereas the term “non-directional” means that the lines of the pattern are interrupted along a direction, even though the pattern may repeat.
  • FIGS. 16A-16C show still another honeycomb-like non-directional secondary pattern, designated the Secondary 5 pattern impressed on a material.
  • This pattern is generally indicated at 50 , and is shown as having upper and lower surfaces 51 a , 51 b , respectively.
  • This pattern is non-directional in the vertical and horizontal directions.
  • FIG. 17 depicts one method of making a round tube having enhanced surfaces.
  • a coil 52 having the primary and secondary patterns (and, optionally, whatever cooler tube and flow-through openings are desired) is unwound.
  • the leading edge of the material passes through a series of rollers and roller dies, severally indicated at 53 , within which the planar sheet material is rolled into a round tube with the two longitudinal edges being arranged closely adjacent, or, preferably, abutting, one another.
  • the rolled tube is then passed through a preheating unit 54 and a welding unit 55 to weld the longitudinal edges together.
  • the welded tube is then passed through a secondary heating unit 56 to anneal the weld and the material, and is then cooled in a cooling unit 58 .
  • the cooled welded tube is then passed through a deburrer to smooth the weld edges, and is further advanced rightwardly by rollers 60 , 60 .
  • FIGS. 18A-18C depict a length of welded round tube that may be manufactured by the process indicated in FIG. 17 .
  • the tube, generally indicated at 62 is shown as having primary and secondary patterns.
  • tube 62 has a thin-walled circular transverse cross-section.
  • the tube outer wall is also shown as having a coating 63 thereon.
  • This coating may be a plating, or some other form of coating or lamination.
  • This coating is optional and may be provided on any of the enhanced surfaces disclosed herein.
  • the coating can be provided on the inner or outer surface of a tube, as desired.
  • tubes have a round transverse cross-section.
  • Some tubes have oval-shaped cross-sections, polygonal cross-sections, or the like.
  • FIGS. 19A-19C depict a tube 64 having a generally-rectangular transverse cross-section, with primary and secondary patterns on its inner and outer surfaces.
  • This tube may, if desired, be formed with a coating or may be chemically treated.
  • FIGS. 20A-20C depict a round tube which is bent to have a U-shape, when seen in elevation.
  • This tube generally indicated at 65 , has primary and secondary patterns on its inner and outer surfaces.
  • FIGS. 21A-21D depict a helically-wound coil formed from a length of round tubing.
  • This coil generally indicated at 66 , has primary and secondary patterns on its inner and outer surfaces.
  • FIG. 22 is a schematic view of one process for forming enhanced-surface fins.
  • a coil 68 of material with primary and secondary patterns is unrolled.
  • the leading edge of the material passes around idler rollers 69 a , 69 b, c 9 c , and is then passed between an opposed pair of roller dies 70 a , 70 b , which punch or form various holes (e.g., cooling tube holes and/or flow-through holes in whatever pattern is desired) in the material.
  • the leading edge is then passed through a second pair of roller dies 71 a , 71 b , which form flanges on the material.
  • the leading edge is then passed under a cut-off shear 72 , where individual fins, severally indicated at 73 , are cut from the roll material. These fins are moved rightwardly by the action of rollers 74 .
  • FIGS. 23A-25E show different forms of improved fins having different combinations of primary and secondary patterns, and having cooler tube openings and variously-sized flow through openings.
  • a first form of fin is generally indicated at 75 in FIGS. 23A-23B .
  • the individual characters of the primary and secondary patterns are indicated at 76 ′, 76 ′′, respectively.
  • the cooling tube openings i.e., the openings in the fins to accommodate passage of various cooling tubes (not shown)
  • the relatively-small flow-through openings are severally indicated at 78 .
  • a second form of fin is generally indicated at 79 in FIGS. 24A-24B .
  • the individual characters of the primary and secondary patters are again indicated at 76 ′, 76 ′′, respectively.
  • the cooling tube openings and the relatively-small flow-through openings are again indicated at 77 , 78 , respectively. Notice that second fin 78 is thinner, and more deeply distorted than first fin 75 .
  • FIGS. 25A-25E Five different fins are illustrated in FIGS. 25A-25E .
  • the cooling tube openings or holes are indicated at 77 .
  • the salient difference between these five figures lies in the size and configuration of the flow-through openings.
  • a third form of fin, generally indicated at 79 is shown as having a plurality of smaller-sized flow-though openings, severally indicated at 80 .
  • a fourth form of fin, generally indicated at 79 ′ is shown as having intermediately-sized flow-through openings, severally indicated at 80 ′.
  • a fifth form of fin, generally indicated at 79 ′′ is shown as having larger-sized flow-through openings, severally indicated at 80 ′′.
  • FIG. 25D illustrates a sixth form of fin having various vertical columns of small, intermediate and large flow-through holes.
  • FIG. 25E illustrates a seventh form of fin having another combination of small, intermediate and large flow-through holes. In each of these cases, the fin has primary and secondary patterns.
  • An improved heat exchanger is shown in FIG. 26 as having an outer shell 82 .
  • a serpentine enhanced-surface heat transfer tube 83 extends between a hot inlet and a hot outlet on the shell. Cold fluid is admitted to the shell through a cold inlet, and flows around the tube toward a cold outlet, through which it exits the shell.
  • the inlet and outlet connections and/or the tube geometry may be changed, as desired.
  • FIGS. 27A-27E depict an improved cooler, generally indicated at 84 .
  • This cooler is shown as having a plurality of enhanced-surface tubes, severally indicated at 85 , that penetrate a bottom 86 and that rise upwardly through a plurality of vertically-spaced fins, severally indicated at 88 .
  • the tubes wind through the fins in a serpentine manner.
  • Each fin is shown as having a plurality of cooler tube openings 89 to accommodate passage of the tubes.
  • Each fin has primary and secondary patterns, and may optionally have a number of flow-through openings in whatever pattern is desired.
  • FIG. 27A depicts a plan view of the cooler bottom.
  • FIG. 27B is a fragmentary vertical sectional view of the cooler, taken generally on line 27 B- 27 B of FIG. 27A , and shows the tubes as passing upwardly and downwardly through aligned cooler tube openings in the fins.
  • FIG. 27C is a side elevation of the cooler.
  • FIG. 27D is a fragmentary horizontal sectional view through the cooler, taken generally on line 27 D- 27 D of FIG. 27C , and shows a bottom plan view of one of the fins.
  • FIG. 27E is an enlarged detail view of the lower right portion of the fin, this view being taken within the indicated circle in FIG. 27D .
  • An improved fluid-flow vessel is generally indicated at 90 in FIG. 28 .
  • This vessel is shown as including a process column, generally indicated at 91 , that includes a plurality of vertically-spaced enhanced surface walls, severally indicated at 92 .
  • Vapor rises upwardly through the column by sequentially passing through the various walls, and liquid descends through the column by also passing through the various walls.
  • Vapor at the top of the column passes via conduit 93 to a condenser 94 .
  • Liquid is returned to the uppermost chamber within the column by a conduit 95 .
  • collected liquid is supplied via a conduit 96 to an enhanced-surface reboiler 98 . Vapor leaving this reboiler is supplied to the lowermost chamber of the column via a conduit 99 .
  • FIG. 29A depicts an improved heat exchanger plate, generally indicated at 100 .
  • a plurality of such plates may be stacked on top of one another, and adjacent plates may be sealingly separated by a gasket (not shown) to define flow passageways therebetween.
  • FIG. 29B shows that portions of the heat exchanger plate may have enhanced surfaces thereon so as to facilitate heat transfer.
  • FIG. 29B clearly shows that the illustrated portion of the plate may have primary patterns 101 and secondary patterns 102 .
  • the present invention broadly provides an improved method of forming an enhanced-surface wall for use in an apparatus for performing a process, an improved enhanced-surface wall, and uses thereof.
  • the present invention contemplates that many changes and modifications may be made.
  • the material may be formed of stainless steel, other types of material(s) (e.g., various alloys of aluminum, titanium, copper, etc, or various ceramics) may be used.
  • the material may be homogenous or non-homogenous. It may be coated or chemically treated, either before, during or after the method described herein.
  • the primary and secondary patterns may have a variety of different shapes and configurations, some regular and directional, and others not.
  • the same types or configurations of characters may be used in the primary and secondary patters, with the difference residing in the depth and/or surface density of such characters.
  • the various heat transfer devices disclosed herein may be complete in and of themselves, or may be portions of larger devices, which may have shapes other than those shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This invention relates generally to: (1) methods of forming enhanced-surface walls (20) for use in apparatae (e.g., heat transfer devices, fluid mixing devices, etc.) for performing a process, (2) to enhanced-surface walls per se, and (3) to various apparatae incorporating such enhanced-surface walls.
The method improved method broadly comprises the steps of: providing a length of material (21) having opposite initial surfaces (22 a, 22 b), said material having a longitudinal centerline (x-x) positioned substantially midway between said initial surfaces, said material having an initial transverse dimension measured from said centerline to a point on either of said initial surfaces located farthest away from said centerline, each of said initial surfaces having a initial surface density, said surface density being defined as the number of characters on an surface per unit of projected surface area; impressing secondary patterns (23 a, 23 b) having secondary pattern surface densities onto each of said initial surfaces to distort said material and to increase the surface densities on each of said surfaces and to increase the transverse dimension of said material from said centerline to the farthest point of such distorted material; and impressing primary patterns (25 a, 25 b) having primary pattern surface densities onto each of such distorted surfaces to further distort said material and to further increase the surface densities on each of said surfaces; thereby to provide an enhanced-surface wall for use in an apparatus for performing a process.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation-in-part of pending U.S. patent application Ser. No. 12/754,094, filed Apr. 5, 2010, and also claims the benefit of U.S. Provisional Application Ser. No. 61/295,653, filed Jan. 15, 2010, the entire disclosures of both of which are hereby incorporated by reference.
  • TECHNICAL FIELD
  • The present invention relates generally to methods of forming enhanced-surface walls for use in apparatae (e.g., heat transfer devices, fluid-mixing devices, etc.) for performing a process, to enhanced-surface walls per se, and to various apparatae incorporating such enhanced-surface walls.
  • BACKGROUND ART
  • It is known to provide enhanced-surface walls for use in heat exchangers and fluid-mixing devices. Such walls typically have a plurality of characters impressed thereon to enhance the surface area, to improve fluid mixing, to promote turbulence, to break up the boundary layer adjacent the surface, to improve heat transfer, etc.
  • U.S. Pat. No. 5,052,476 A appears to disclose a heat transfer tube having U-shaped primary grooves, V-shaped secondary grooves, and pear-shaped tertiary grooves to increase turbulence and reflux efficiency. The tube is first formed as a plate, and is then rolled into a tube, after which its proximate ends are welded together. The depth of the secondary grooves is said to be 50-100% of the depth of the primary grooves.
  • U.S. Pat. No. 5,259,448 A appears to disclose a heat transfer tube having rectangularly-shaped main grooves and narrow secondary grooves that intersect the main grooves at an angle. The device appears to be formed flat, rolled or curled, and then welded. The depth of the narrow grooves is said to be 0.02 millimeters (mm). The depth of the main grooves is said to be 0.20-0.30 mm.
  • U.S. Pat. No. 5,332,034 A appears to disclose a heat exchanger tube having longitudinally-extending circumferentially-spaced ribs with parallel inclined notches to increase turbulence and to increase heat transfer performance.
  • U.S. Pat. No. 5,458,191 A appears to disclose a heat exchanger tube having circumferentially-spaced helically-wound ribs with parallel inclined notches.
  • U.S. Pat. No. 6,182,743 B1 appears to disclose a heat transfer tube with polyhedral arrays to enhance heat transfer characteristics. The polyhedral arrays may be applied to internal and external tube surfaces. This reference may teach the use of ribs, fins, coatings and inserts to break up the boundary layer.
  • U.S. Pat. No. 6,176,301 B1 appears to disclose a heat transfer tube with polyhedral arrays having crack-like cavities on at least two surfaces of the polyhedrons.
  • US 2005/0067156 A1 appears to disclose a heat transfer tube that is cold- or forge-welded, and that has dimpled patterns thereon of various shapes.
  • US 2005/0247380 A1 appears to disclose a heat transfer tube of tin-brass alloys to resist formicary (i.e., ant-like) corrosion.
  • US 2009/0008075 A1 appears to disclose a heat transfer tube having arrays of polyhedrons, with the second array being arranged at an angle with respect to the first.
  • U.S. Pat. No. 5,351,397 A appears to disclose a roll-formed nucleate boiling pate having a first pattern of grooves separated by ridges, and a second pattern of more-shallow groves machined into the ridges. The second pattern depth is said to be about 10-50% of the depth of the first pattern.
  • U.S. Pat. No. 7,032,654 B2 appears to disclose a heat exchanger having fins with enhanced-surfaces, and with holes in the fins.
  • U.S. Pat. No. 4,663,243 A appears to disclose a heat exchanger surface having flame-sprayed ferrous alloy enhanced boiling surfaces.
  • Finally, U.S. Pat. No. 4,753,849 appears to disclose a heat exchanger tube with a porous coating to enhanced heat transfer.
  • DISCLOSURE OF THE INVENTION
  • With parenthetical reference to the corresponding parts, portions or surfaces of one or more of the disclosed embodiments, merely for purposes of illustration and not by way of limitation, the present invention broadly provides: (1) improved methods of forming enhanced-surface walls for use in apparatae (e.g., heat transfer devices, fluid mixing devices, etc.) for performing a process, (2) to enhanced-surface walls per se, and (3) to various apparatae incorporating such enhanced-surface walls.
  • In one aspect, the invention provides an improved method of forming an enhanced-surface wall (20) for use in an apparatus for performing a process, comprising the steps of: providing a length of material (21) having opposite initial surfaces (21 a, 21 b), the material having a longitudinal centerline (x-x) positioned substantially midway between the initial surfaces, the material having an initial transverse dimension measured from the centerline to a point on either of the initial surfaces located farthest away from the centerline, each of the initial surfaces having a initial surface density, the surface density being defined as the number of characters on an surface per unit of projected surface area; impressing secondary patterns (23 a, 23 b) having secondary pattern surface densities onto each of the initial surfaces to distort the material and to increase the surface densities on each of the surfaces and to increase the transverse dimension of the material from the centerline to the farthest point of such distorted material; and impressing primary patterns (25 a, 25 b) having primary pattern surface densities onto each of such distorted surfaces to further distort the material and to further increase the surface densities on each of the surfaces; thereby to provide an enhanced-surface wall for use in an apparatus for performing a process.
  • Each secondary pattern surface density may be greater than each primary pattern surface density.
  • The step of impressing the secondary patterns onto each of the initial surfaces may include the additional step of: cold-working the material.
  • The step of impressing the primary patterns onto each of distorted surfaces may include the additional step of: cold-working the material.
  • The secondary patterns may be the same.
  • The secondary patterns may be shifted relative to one another such that a maximum dimension from the centerline to one distorted surface will correspond to a minimum dimension from the centerline to the other distorted surface.
  • The step of impressing the secondary patterns onto the material may increase the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material of up to 135% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
  • The step of impressing the secondary patterns onto the material may increase the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material of up to 150% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
  • The step of impressing the secondary patterns onto the material may increase the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material of up to 300% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
  • The step of impressing the secondary patterns onto the material may increase the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material of up to 700% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
  • The step of impressing the secondary patterns onto the material may not reduce the minimum dimension of the material, when measured from any point on one of such distorted surfaces to the closest point on the opposite one of such distorted surfaces, below 95% of the minimum dimension from any point on one of the initial surfaces to the closest point on the opposite initial surface.
  • The step of impressing the secondary patterns onto the material may not reduce the minimum dimension of the material, when measured from any point on one of such distorted surfaces to the closest point on the opposite one of such distorted surfaces, below 50% of the minimum dimension from any point on one of the initial surfaces to the closest point on the opposite initial surface.
  • The primary patterns may be the same.
  • The primary patterns may be shifted relative to one another such that a maximum dimension from the centerline to one further-distorted surface will correspond to a minimum dimension from the centerline to the other further-distorted surface.
  • The step of impressing the primary patterns onto the material may not reduce the minimum dimension of the further-distorted material, when measured from the centerline to any point on either of the further-distorted surfaces, below 95% of the minimum dimension of the material, when measured from the centerline to either of the initial surfaces.
  • The step of impressing the primary patterns onto the material may not reduce the minimum dimension of the further-distorted material, when measured from the centerline to any point on either of the further-distorted surfaces, below 50% of the minimum dimension of the material, when measured from the centerline to either of the initial surfaces.
  • The step of impressing the primary patterns onto each of the surfaces may further increase the dimension from the centerline to the farthest point of the further-distorted material.
  • The opposite surfaces of the material may be initially planar.
  • The steps of impressing the patterns may include the steps of impressing the patterns by at least one of a rigidizing, stamping, rolling, pressing and embossing operation.
  • The method may further comprise the additional steps of: bending the enhanced-surface wall such that the proximate ends are positioned proximate to one another; and joining the proximate ends of the material together; thereby to form an enhanced-surface tube.
  • The step of joining the proximate ends of the material together may include the further step of: welding the proximate ends of the material to join them together.
  • The method may further comprise the additional step of: providing holes through the material.
  • The method may further comprise the additional step of: installing the enhanced-surface wall in a heat exchanger.
  • The method may further comprise the additional step of: installing the enhanced-surface wall in a fluid-handling apparatus.
  • In another aspect, the invention provides an enhanced-surface wall manufactured by the method defined by any of the foregoing steps.
  • The primary patterns may be directional or non-directional.
  • The secondary patterns may be directional or non-directional.
  • The wall may comply with at least one of the following ASME/ASTM designations: A249/A, A135, A370, A751, E213, E273, E309, E1806, A691, A139, A213, A214, A268, A 269, A270, A312, A334, A335, A498, A631, A671, A688, A691, A778, A299/A, A789, A789/A, A789/M, A790, A803, A480, A763, A941, A1016, A1012, A1047/A, A250, A771, A826, A851, B674, E112, A370, A999, E381, E426, E527, E340, A409, A358, A262, A240, A537, A530, A 435, A387, A299, A204, A20, A577, A578, A285, E165, A380, A262 and A179. The aggregate disclosure of each of these designations is hereby incorporated by reference.
  • The material may be homogeneous or non-homogeneous.
  • The material may be provided with a coating on at least a portion of one of the initial surfaces.
  • At least a portion of one of the initial surfaces may be chemically-treated.
  • In another aspect, the invention provides an improved heat transfer device that incorporates the improved enhanced-surface wall.
  • In another aspect, the invention provides an improved fluid-handling apparatus that incorporates the improved enhanced-surface wall.
  • In another aspect the invention provides an improved enhanced-surface wall (20) for use in an apparatus for performing a process, which wall comprises: a length of material (21) having opposite initial surfaces (21 a, 21 b), the material having a longitudinal centerline (x-x) positioned substantially midway between the initial surfaces, the material having an initial transverse dimension measured from the centerline to a point on either of the initial surfaces located farthest away from the centerline, each of the initial surfaces having a initial surface density, the surface density being defined as the number of characters (including zero) on a surface per unit of projected surface area; secondary patterns (23) having secondary pattern surface densities impressed onto each of the initial surfaces, the secondary patterns distorting the material and increasing the surface densities on each of the surfaces and increasing the transverse dimension of the material from the centerline to the farthest point of such distorted material; and primary patterns (25) having primary pattern surface densities impressed onto each of such distorted surfaces and further distorting the material and further increasing the surface densities on each of the surfaces.
  • Each secondary pattern surface density may be greater than each primary pattern surface density.
  • The secondary patterns may be the same.
  • The secondary patterns may be shifted relative to one another such that a maximum dimension from the centerline to one distorted surface will correspond to a minimum dimension from the centerline to the other distorted surface.
  • The maximum transverse dimension of the material from the centerline to the farthest point of the distorted material may be less than 135% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
  • The maximum transverse dimension of the material from the centerline to the farthest point of the distorted material may be less than 150% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
  • The maximum transverse dimension of the material from the centerline to the farthest point of the distorted material may be less than 300% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
  • The maximum transverse dimension of the material from the centerline to the farthest point of the distorted material may be less than 700% of the maximum transverse dimension from the centerline to the farthest point on the initial surface.
  • The minimum dimension of the material, when measured from any point on one of such distorted surfaces to the closest point on the opposite one of such distorted surfaces, is at least 95% of the minimum dimension from any point on one of the initial surfaces to the closest point on the opposite initial surface.
  • The minimum dimension of the material, when measured from any point on one of such distorted surfaces to the closest point on the opposite one of such distorted surfaces, may be at least 50% of the minimum dimension from any point on one of the initial surfaces to the closest point on the opposite initial surface.
  • The primary patterns may be the same or different.
  • The primary patterns may be shifted relative to one another such that a maximum dimension from the centerline to one further-distorted surface will correspond to a minimum dimension from the centerline to the other further-distorted surface.
  • The minimum dimension of the further-distorted material, when measured from the centerline to any point on either of the further-distorted surfaces, may be at least 95% of the minimum dimension of the material, when measured from the centerline to either of the initial surfaces.
  • The minimum dimension of the further-distorted material, when measured from the centerline to any point on either of the further-distorted surfaces, may be at least 50% of the minimum dimension of the material, when measured from the centerline to either of the initial surfaces.
  • The impressed primary patterns may further increase the dimension from the centerline to the farthest point of the further-distorted material.
  • Accordingly, one object is to provide improved methods of forming enhanced-surface walls for use in an apparatus for performing a process.
  • Another object is to provide improved enhanced-surface walls.
  • Still another object is to provide an improved apparatus that incorporates an improved enhanced-surface wall.
  • These and other objects and advantages will become apparent from the foregoing and ongoing written specification, the drawings and the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a schematic top plan view of a length of material showing the Secondary 1 and Primary 1 patterns being impressed thereon.
  • FIG. 1B is a side elevation of the structure schematically shown in FIG. 1A.
  • FIG. 2A is an enlarged top plan view of the Secondary 1 pattern, as shown in FIGS. 1A-1 B, impressed into the material.
  • FIG. 2B is an enlarged top plan view of the Primary 1 pattern impressed into a sheet of supplied material, the scale of FIG. 2B being the same as the scale of FIG. 2A
  • FIG. 2C is a top plan view of the superimposed Primary 1 and Secondary 1 patterns, as shown in FIGS. 1A-1B, impressed into the material, the scale of FIG. 2C being the same as the scale of FIGS. 2A-2B.
  • FIG. 3A is a greatly-enlarged fragmentary transverse vertical sectional view of the material prior to impressing the Secondary 1 patterns thereon, this view being taken generally on line 3A-3A of FIG. 1A.
  • FIG. 3B is a greatly-enlarged fragmentary transverse vertical sectional view thereof, taken generally on line 3B-3B of FIG. 2A, showing the Secondary 1 patterns impressed onto the material.
  • FIG. 3C is a greatly-enlarged fragmentary transverse sectional view, taken generally on line 3C-3C of FIG. 2B, showing the Primary 1 patterns impressed into the material.
  • FIG. 3D is a greatly-enlarged fragmentary transverse sectional view thereof, taken generally on line 3D-3D of FIG. 2C, showing the Primary 1 and Secondary 1 patterns impressed into the material.
  • FIG. 4 is a schematic transverse vertical sectional view thereof, showing how the Secondary 1 patterns are impressed into the material.
  • FIG. 5A is a schematic view, showing how the point-to-point wall thickness of a plain sheet is measured.
  • FIG. 5B is a schematic view, showing how the point-to-point wall thickness of the material is measured after the Secondary 1 patterns have been impressed therein.
  • FIG. 5C is a schematic view showing how the point-to-point wall thickness of the Primary 1 patterns is measured.
  • FIG. 5D is a schematic view showing how the point-to-point wall thickness of the finished enhanced-surface material is measured, this material having the super imposed Primary 1 and Secondary 1 patterns impressed thereon.
  • FIG. 6A is a schematic view showing how the area thickness of a plain sheet is measured.
  • FIG. 6B is a schematic view showing how the area wall thickness is measured after the Secondary 1 patterns have been impressed thereon.
  • FIG. 6C is a schematic view showing how the area wall thickness is measured after the Primary 1 patterns have been impressed thereon.
  • FIG. 6D is a schematic view showing how the area wall thickness of an enhanced-surface wall is measured after the Primary 1 and Secondary 1 patterns have been impressed thereon.
  • FIG. 7A is a top plan view showing another primary pattern, designated the Primary 2 pattern, impressed on a sheet.
  • FIG. 7B is a fragmentary transverse vertical sectional view thereof taken on line 7B-7B of FIG. 7A.
  • FIG. 7C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 7C-7C of FIG. 7A.
  • FIG. 8A is a top plan view of a third primary pattern, designated the Primary 3 pattern, impressed on a sheet of material.
  • FIG. 8B is a fragmentary transverse vertical sectional view thereof, taken generally on line 8B-8B of FIG. 8A.
  • FIG. 8C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 8C-8C of FIG. 8A.
  • FIG. 9A is a top plan view of another primary pattern, designated the Primary 4 pattern, impressed into a sheet of material, this pattern having a character surface density of 0.5.
  • FIG. 9B is a view similar to FIG. 9A, but showing a variant form of the Primary 4 pattern having a character surface density of 1.0.
  • FIG. 9C is a view similar to FIGS. 9A and 9B, but showing another variant form of the Primary 4 pattern having a character surface density of 2.0.
  • FIG. 10A is a top plan view of another primary pattern, designated the Primary 5 pattern, impressed on a sheet of material.
  • FIG. 10B is a fragmentary transverse vertical sectional view thereof, taken generally on line 10B-10B of FIG. 10A.
  • FIG. 10C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 10C-10C of FIG. 10A.
  • FIG. 11A is a top plan view of another secondary pattern, designated the Secondary 2 pattern, impressed into the material, this view showing the individual characters as being somewhat oval-shaped.
  • FIG. 11B is a fragmentary transverse vertical sectional view thereof, taken generally on line 11B-11B of FIG. 11A.
  • FIG. 11C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 11C-11C of FIG. 11A.
  • FIG. 12A is a top plan view of another secondary pattern, designated the Secondary 3 pattern, impressed onto a length of material, this view showing the individual characters as being somewhat lemon-shaped.
  • FIG. 12B is a fragmentary transverse vertical sectional view thereof, taken generally on line 12B-12B of FIG. 12A.
  • FIG. 12C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 12C-12C of FIG. 12A.
  • FIG. 13A is a top plan view of another primary pattern, designated the Primary 6 pattern, impressed into a length of material.
  • FIG. 13B is a fragmentary transverse vertical sectional view thereof, taken generally on line 13B-13B of FIG. 13A.
  • FIG. 14A is still another example of a criss-crossed directional primary pattern, designated the Primary 7 pattern, impressed on a length of material, this pattern being directional in both the longitudinal and transverse directions.
  • FIG. 14B is fragmentary transverse vertical sectional view thereof, taken generally on line 14B-14B of FIG. 14A.
  • FIG. 14C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 14C-14C of FIG. 14A.
  • FIG. 15A is a fragmentary view of another pebble-like non-directional pattern, designated as Secondary 4 pattern, impressed on a length of material.
  • FIG. 15B is a fragmentary transverse vertical sectional view thereof, taken generally on line 15B-15B of FIG. 15A.
  • FIG. 15C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 15C-15C of FIG. 15A.
  • FIG. 16A is a top plan view of yet another honeycomb-like non-directional pattern, designated Secondary 4 pattern, impressed on the length of material.
  • FIG. 16B is a fragmentary transverse vertical sectional view thereof, taken generally on line 16B-16B of FIG. 15A.
  • FIG. 16C is a fragmentary transverse horizontal sectional view thereof, taken generally on line 16C-16C of FIG. 16A.
  • FIG. 17 is a schematic view of one process for making enhanced-surface tubes.
  • FIG. 18A is a side elevation of a round tube having an optional coating on its outer surface.
  • FIG. 18B is a right end elevation of the round tube shown in FIG. 18A.
  • FIG. 18C is an enlarged detail view of the round tube, taken within the indicated circle in FIG. 18B, and particularly showing the coating on the outer surface of the tube.
  • FIG. 19A is an isometric view of a rectangular tube.
  • FIG. 19B is a fragmentary transverse vertical sectional view, taken generally on line 19B-19B of FIG. 19A, of the rectangular tube.
  • FIG. 19C is an enlarged detail view of a portion of the wall of the rectangular tube, this view being taken within the indicated circle in FIG. 19B.
  • FIG. 20A is a side elevation of a U-shaped tube.
  • FIG. 20B is a slightly-enlarged fragmentary transverse vertical sectional view thereof, taken generally on line 20B-20B of FIG. 20A.
  • FIG. 20C is a further-enlarged detail view of a portion of the tube wall, this view being taken within the indicated circle of FIG. 20B.
  • FIG. 21A is a side elevation of a helically-wound coil formed of a round tube having enhanced inner and outer surfaces.
  • FIG. 21B is a top plan view of the coil shown in FIG. 21A.
  • FIG. 21C is an enlarged fragmentary vertical sectional view thereof, taken generally on line 21C-21C of FIG. 21A, showing the tube in the coil.
  • FIG. 21D is a further-enlarged detail view, taken within the indicated circle of FIG. 21C, showing of a portion of the tube wall.
  • FIG. 22 is a schematic view of one process for making an enhanced-surface fin.
  • FIG. 23A is a front elevation of a first enhanced-surface fin having primary and secondary patterns impressed thereon, and having cooler tube and flow-through openings.
  • FIG. 23B is a fragmentary vertical sectional view thereof, taken generally on line 23B-23B of FIG. 23A.
  • FIG. 24A is a front elevation of a second enhanced-surface fin having primary and secondary patterns impressed thereon, and having cooler tube and flow-through openings.
  • FIG. 24B is a fragmentary vertical sectional view thereof, taken generally on line 24B-24B of FIG. 24A.
  • FIG. 25A is a front elevation of a third enhanced-surface fin having cooler tube openings and smaller flow-through openings.
  • FIG. 25B is a front elevation of a fourth enhanced-surface fin having cooler tube openings and intermediate flow-through openings.
  • FIG. 25C is a front elevation of a fifth enhanced-surface fin having cooler tube openings and larger flow-through openings.
  • FIG. 25D is a front elevation of a sixth enhanced-surface fin having cooler tube openings and one combination of smaller, intermediate and larger flow-through openings.
  • FIG. 25E is a front elevation of a seventh enhanced-surface fin having cooler tube openings and another combination of smaller, intermediate and larger flow-through openings.
  • FIG. 26 is a schematic view of an improved heat exchanger having an enhanced-surface heat transfer tube therewithin.
  • FIG. 27A is a bottom plan view of an improved fluid cooler having enhanced-surface tubes therewithin.
  • FIG. 27B is a fragmentary horizontal sectional view thereof, taken generally on line 27B-27B of FIG. 27A.
  • FIG. 27C is a side elevation of the improved cooler shown in FIG. 27A, with the cover in place.
  • FIG. 27D is a fragmentary vertical sectional view thereof, taken generally on line 27D-27D of FIG. 27C, showing a bottom plan view of one of the fins.
  • FIG. 27E is an enlarged detail view of a portion of one of the fins, this view being taken within the indicated circle of FIG. 27D.
  • FIG. 28 is a schematic view of a fluid flow vessel incorporating enhanced surfaces therewithin.
  • FIG. 29A is a top plan view of a heat exchanger plate incorporating enhanced surfaces therewithin.
  • FIG. 29B is an enlarged detail view of a portion of the heat exchanger plate, this view being taken within the indicated circle in FIG. 29A.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • At the outset, it should be clearly understood that like reference numerals are intended to identify the same structural elements, portions or surfaces consistently throughout the several drawing figures, as such elements, portions or surfaces may be further described or explained by the entire written specification, of which this detailed description is an integral part. Unless otherwise indicated, the drawings are intended to be read (e.g., cross-hatching, arrangement of parts, proportion, degree, etc.) together with the specification, and are to be considered a portion of the entire written description of this invention. As used in the following description, the terms “horizontal”, “vertical”, “left”, “right”, “up” and “down”, as well as adjectival and adverbial derivatives thereof (e.g., “horizontally”, “rightwardly”, “upwardly”, etc.), simply refer to the orientation of the illustrated structure as the particular drawing figure faces the reader. Similarly, the terms “inwardly” and “outwardly” generally refer to the orientation of a surface relative to its axis of elongation, or axis of rotation, as appropriate. Unless otherwise indicated, all dimensions set forth in the present specification, and in the accompanying drawings, are expressed in inches.
  • Referring now to the drawings, and more particularly to FIGS. 1-3 thereof, the present invention broadly provides an improved method of forming an enhanced-surface wall 20 for use in an apparatus for performing a process. The apparatus may be a heat transfer device, a type of fluid mixing apparatus (either with or without a pertinent heat exchange function), or some other form of apparatus.
  • This application discloses multiple embodiments of enhanced-surface walls having various primary and/or secondary patterns. The first embodiment is illustrated in FIGS. 1A-6D, the second in FIGS. 7A-7C, the third in FIGS. 8A-8C, the fourth in FIGS. 9A-9C, the fifth in FIGS. 10A-10C, the sixth in FIGS. 11A-11C, the seventh in FIGS. 12A-12C, the eighth in FIGS. 13A-13B, the ninth in FIGS. 14A-14C, the tenth in FIGS. 15A-15C, and the eleventh in FIGS. 16A-16C. These various patterns may be used in various combinations with one another, and are not exhaustive of all patterns falling within the scope of the appended claims.
  • One process of making an enhanced-surface tube is schematically shown in FIG. 17, and several variations of such tubes are depicted in FIGS. 18A-21D.
  • One process for making an enhanced-surface fin is schematically shown in FIG. 22, and several variations of such fins are shown in FIGS. 23A-25E.
  • An improved heat exchanger incorporating the enhanced-surface tubes is schematically shown in FIG. 26.
  • A cooler incorporating such enhanced-surface fins is depicted in FIGS. 27A-27E.
  • Another fluid flow vessel incorporated enhanced surfaces is depicted in FIG. 28.
  • Finally, an improved plate having various enhanced surfaces is shown in FIGS. 29A-29B.
  • These various embodiments and applications will be described seriatim herebelow.
  • First Embodiment (FIGS. 1A-6D)
  • The improved method broadly begins with providing a length of material, of which a fragmentary portion is generally indicated at 21. This material may be a piece of plate-like stock, may be unrolled from a coil, or may have some other source or configuration. The material may be rectangular having planar upper and lower initial surfaces 21 a, 21 b, respectively, and may have a longitudinal transverse centerline x-x positioned substantially midway between these initial surfaces. As shown in FIG. 3A, the thickness of the material between initial surfaces 21 a-21 b may be about 0.035 inches, and the nominal spacing from the centerline to either of the surfaces may therefore be about 0.0175 inches.
  • The leading edge of the material in this first embodiment is then passed rightwardly (in the direction of the indicated arrow in FIG. 1A) between a pair of upper and lower first rolls or dies 22 a, 22 b, respectively, which impress the Secondary 1 patterns into the upper and lower surfaces, respectively, of the material. The upper and lower surfaces of the material after the Secondary 1 patterns have been impressed thereon are indicated at 23 a, 23 b respectively. The material is then translated rightwardly between a second pair of upper and lower rolls or dies 24 a, 24 b respectively, which impress Primary 1 patterns onto the upper and lower surfaces, respectively of the material.
  • FIGS. 2A and 3B show the shape and configuration of the material after the Secondary 1 patterns have been impressed thereon. The Secondary 1 patterns have the shape of an array of interlocking paving blocks when seen in top plan (FIG. 2A), but have undulating or sinusoidal shapes when seen in cross-section (FIG. 3B).
  • FIGS. 2B and 3C show the shape of the Primary 1 patterns if such patterns were impressed into a sheet of plain stock material, without the Secondary 1 patterns impressed thereon. As shown in FIGS. 2B and 3C, the Primary 1 patterns are in the form of a series of repeating step-like functions. In FIGS. 2B and 3C, the upper surface of the material is indicated at 25 a, and the lower surface thereof is indicated at 25 b.
  • Thus, the material exiting the second dies has the Primary 1 and Secondary 1 patterns superimposed and impressed thereon. These upper and lower surfaces of the material containing the superimposed Primary 1 and Secondary 1 patterns are indicated at 26 a, 26 b, respectively.
  • As shown in FIGS. 3A-3B, the step of impressing the Secondary 1 patterns onto the material increases the minimal initial area wall thickness of the material from about 0.035 inches to about 0.045 inches. As shown in FIGS. 3A and 3C, the step of impressing the Primary 1 patterns into the initially supplied material would increase the initial area wall thickness from about 0.035 inches to about 0.050 inches. However, as shown in FIG. 3D, when the Primary 1 patterns are superimposed on the Secondary 2 patterns, the thickness of the material, as distorted by the Secondary 1 patterns (i.e., 0.045 inches), is further distorted to a dimension of about 0.052 inches.
  • In the accompanying drawings, FIGS. 2A-2C are drawn to the same scale (as indicated by the 6.0×6.0 dimensions thereon), and are enlarged with respect to the structure shown in FIG. 1A. FIGS. 3A-3D are also drawn to the same scale, which is further-enlarged with respect to the scale of FIGS. 2A-2C, and is greatly enlarged with respect to the scale of FIGS. 1A-1B.
  • FIG. 4 shows how the Secondary 1 patterns are impressed into the material. To this end, the top and bottom rolls 22 a, 22 b impart the undulating sinusoidal Secondary 1 patterns that are vertically aligned with one another such that the peak of one is aligned with the valley of the other. The material 21 is only partially deformed by the two rolls. Thus, the material will have a series of dimple-like concavities indicated at 27, separated by intermediate arcuate convexities, severally indicated at 28. In an alternative process, the material could be fully deformed, or “coined”, between the upper and lower rolls.
  • In the preferred embodiment, the steps of impressing the primary and secondary patterns into the material has the effect of cold-working the material. However, in an alternative process, the material could be heated, and the process could include the step of hot-working the same. The secondary patterns may be the same, or may be different from one another. The step of impressing the secondary pattern onto the material increases the maximum transverse dimension of the material from the centerline to the farthest point of the distorted material of up to 135% in one case, 150% in another case, 300% in a third case, and 700% in a fourth case, of the maximum transverse dimension from the centerline to the farthest point of the initial surfaces. The steps of impressing the primary and secondary patterns into the material does not materially reduce the minimum dimension of the material, when measured from any point on one of the distorted surfaces to the closest point on the opposite one of the distorted surfaces, below 95% in one case, and 50% in a second case, of the minimum dimension from any point on one of the initial surfaces to the closed point on the opposite initial surface.
  • The primary patterns impressed into the opposite sides of the material may be the same, or may be different. The step of impressing the primary patterns into the material does not reduce the minimum dimension of the further-distorted material, when measured from the centerline to any point on either of the further-distorted surfaces, below 95% of the minimum dimension of the material, when measured from the centerline to either one of the initial surfaces.
  • The primary patterns impressed into the opposite sides of the material may be the same, or may be different. The step of impressing the primary patterns into the material does not reduce the minimum dimension of the further-distorted material, when measured from the centerline to any point on either of the further-distorted surfaces, below 50% of the minimum dimension of the material, when measured from the centerline to either one of the initial surfaces.
  • In one aspect, the step of impressing the primary patterns onto each of the surfaces may further increase the dimension from the centerline to the farthest point of the further-distorted material.
  • The initial surfaces may be planar or may be supplied with some pattern or patterns impressed thereon. The step of impressing the primary and secondary patterns onto the material may be by a rigidizing operation, a stamping operation, a rolling operation, a pressing operation, an embossing operation, or by some other type of process or operation. Similarly, the material may be supplied with cooler tube openings and/or with flow-through openings of whatever pattern is desired.
  • The method may further include the additional step of bending the enhanced-surface wall such that the proximate ends are positioned adjacent one another, and jointing the proximate ends of the material together, as by welding to form an enhanced-surface tube. The method may include the further step of providing holes through the material.
  • As indicated above, the enhanced-surface wall may be installed in heat exchanger, in some type of fluid-handling apparatus or in still other forms of apparatus as well.
  • The primary patterns may be directional or non-directional. The enhanced-surface wall complies with at least on of the following ASME/ASTM designations: A249/A, A135, A370, A751, E213, E273, E309, E1806, A691, A139, A213, A214, A268, A 269, A270, A312, A334, A335, A498, A631, A671, A688, A691, A778, A299/A, A789, A789/A, A789/M, A790, A803, A480, A763, A941, A1016, A1012, A1047/A, A250, A771, A826, A851, B674, E112, A370, A999, E381, E426, E527, E340, A409, A358, A262, A240, A537, A530, A 435, A387, A299, A204, A20, A577, A578, A285, E165, A380, A262 and A179. Each of the foregoing designations is hereby incorporated by reference.
  • The material may be provided with a coating (e.g., a plating, etc.) on at least a portion of one of its initial surfaces, or such initial surface(s) may be chemically treated (e.g., electro-polished, etc.). Such coating and/or chemical treatment may be applied before, during or after the formation of the enhanced surfaces thereon. As used herein, the term “portion” includes a range of from 0-100%.
  • The invention also includes an enhanced-surface wall formed by the forgoing method.
  • FIG. 5A-5D show how the point-to-point wall thickness is measured during various stages of the method. As used herein, the term “point-to-point wall thickness” means the thickness of the material from a point on one surface thereof to the closest point on the opposite surface thereof. Thus, FIG. 5A shows a micrometer as measuring the initial thickness between planar surfaces 21 a, 21 b. FIG. 5B shows the micrometer as measuring the wall thickness after the Secondary 1 patterns have been impressed thereon. This view schematically shows two measuring orientations, one being of the vertical thickness and the other being at an angle, such that the lesser of the two measured thicknesses may be used. FIG. 5C shows how the point-to-point wall thickness would be measured when the primary pattern is impressed into the material. Finally, FIG. 5D show the micrometer as measuring the point-to-point wall thickness of the material after the Primary 1 and Secondary 1 patterns have been impressed thereon. Here again, the lesser of the two measured thicknesses is used as the measure of the minimum wall thickness. These two illustrations of the orientation of the micrometer are not exhaustive of all possible orientations thereof.
  • FIG. 6A-6D shows how the area thickness of the material is measured at various stages during the performance of the method. The thickness is measured by measuring the peak-to-peak distance of the opposed surfaces, and, usually, by encompassing several peaks along each of the two surfaces. Thus, FIG. 6A shows the micrometer is measuring the thickness of the initially-supplied material having planar upper and lower surfaces 21 a, 21 b, respectively. Since these surfaces are planar, the micrometer can simply measure the distance therebetween. FIG. 6B shows the micrometer as measuring the thickness of the material after the Secondary 1 pattern has been impressed thereon. Note that the micrometer is measuring the peak-to-peak thickness of the amplitudes of both surfaces. FIG. 6C shows the micrometer as measuring the thickness of the material if the Primary 1 patterns were to be impressed on the initially-supplied material. In this view, the micrometer is again measuring the peak-to-peak thickness across multiple characters impressed on the surfaces. Finally, FIG. 6D shows the micrometer as measuring the wall thickness of the material after the Primary 1 and Secondary 1 patterns have been impressed thereon.
  • Because the “point-to-point wall thickness” means the thickness of the material fro a point on one surface thereof to the closest point on the opposite surface thereof, it is sometimes required to measure such dimension both vertically and at various angles to determine which is the minimum thickness. However, because the “area thickness” refers to a peak on one surface to a peak on the opposite surface dimension, this can usually be measured vertically. The “area thickness” preferably encompasses multiple peaks on each surface.
  • Second Embodiment (FIGS. 7A-7C)
  • A second primary pattern, designated the Primary 2 pattern, is illustrated in FIGS. 7A-7C, and is generally indicated at 30. This pattern somewhat resembles a raised honeycomb, and has an upper surface 31 a and a lower surface 31 b. This pattern is directional in the vertical direction, but non-directional in the horizontal direction. The vertical and horizontal transverse cross-sections are shown in FIGS. 7B-7C.
  • Third Embodiment (FIGS. 8A-8C)
  • FIGS. 8A-8C show another furrow-like primary pattern, designated the Primary 3 pattern. This pattern is generally indicated at 32. This pattern is directional in the vertical direction, but is non-directional in the horizontal direction. The vertical and horizontal transverse cross-sections are shown in FIGS. 8B-8C. This pattern has sinusoidal undulations, albeit of different periods, in each of the two orthogonal transverse directions on its upper and lower surfaces.
  • Fourth Embodiment (FIGS. 9A-9C)
  • FIGS. 9A-9C show another secondary pattern designated the Secondary 2 pattern. This pattern comprises of a series of dimple-like indentations on one surface, and vertically-aligned convexities on the opposite surface. These dimples can be staggered or in-line, as desired. This pattern is generally indicated at 34 in FIG. 9A, and is shown as having an upper surface 35 a.
  • FIGS. 9B-9C show density variations on the pattern shown in FIG. 9A. In FIG. 9A, the pattern is indicated at 34′, and the upper surface is indicated at 35 a′. The surface density of the dimple-like characters in pattern 34 shown in FIG. 9A is 0.5 of that for the modified pattern 34′ shown is in FIG. 9B, and 0.25 of that for the further-modified pattern 34″ shown in FIG. 9C. Thus, the surface density of the dimple-like characters in FIG. 9B is twice that shown in FIG. 9A. Similarly, surface density of the dimple-like characters in FIG. 9C is twice the surface density of the characters in FIG. 9B, and four times the surface density of the characters shown in FIG. 9A.
  • FIGS. 9A-9C are drawn to the same scale, as indicated by the 6.0×6.0 dimensions.
  • Fifth Embodiment (FIGS. 10A-10C)
  • FIGS. 10A-10C show another chevron-like primary pattern designated the Primary 4 pattern. This pattern is non-directional in both the horizontal and vertical directions. The pattern is generally indicated at 36, and has upper and lower surfaces 38 a, 38 b.
  • Sixth Embodiment (FIGS. 11A-11C)
  • FIGS. 11A-11C show another form of secondary pattern designated the Secondary 2 pattern, impressed into the material. In this form, the individual dimples or characters are somewhat oval-shaped. Note that the period of the dimples is different in the two orthogonal directions, as shown in FIGS. 11B-11C. This pattern is generally indicated at 39, and is shown as having upper and lower surfaces 40 a, 40 b, respectively.
  • Seventh Embodiment (FIGS. 12A-12C)
  • FIGS. 12A-12C show still another type of secondary pattern, designated the Secondary 3 pattern. The dimples or characters of this pattern appear to be somewhat lemon-shaped. Here again, note that the periods of the patterns is different in each of the two orthogonal transverse directions, as shown in FIGS. 12B-12C. This pattern is generally indicated at 41, and is shown as having upper and lower surfaces 42 a, 42 b, respectively.
  • Eighth Embodiment (FIGS. 13A-13B)
  • FIGS. 13A-13B are used to illustrate a directional pattern, designated the Primary 6 pattern. This pattern is generally indicated at 43, and is shown as having upper and lower surfaces 44 a, 44 b, respectively Note that the pattern appears to have a series of step functions on its opposite surfaces, as shown in FIG. 13B. Note also, and the characters are aligned such that each projection on one surface corresponds with an indentation on the other surface. This pattern is directional in the horizontal direction, but not in the vertical direction.
  • Ninth Embodiment (FIGS. 14A-14C)
  • FIGS. 14A-14C show a criss-crossed pattern designated the Primary 7 pattern, impressed on the material. This pattern is generally indicated at 45, and is shown as having an upper surface 46 a and a lower surface 46 b. This pattern is directional (i.e., not interrupted) in both the horizontal and vertical directions. Note that the period of the characters is the same in both orthogonal transverse directions.
  • Tenth Embodiment (FIGS. 15A-15C)
  • FIGS. 15A-15C show an irregular pebble-like, albeit repeating, non-directional secondary pattern impressed on the material. This pattern is designated the Secondary 4 pattern. This pattern is generally indicated at 48, and has upper and lower surfaces 49 a, 49 b, respectively. The cross-sections in the orthogonal axes are shown in FIGS. 15B-15C, respectively. In FIGS. 15B-15C, note that the indentation on one surface is vertically aligned with a projection on the other surface. This pattern is non-directional in the sense that the pattern is interrupted in each of the horizontal and vertical directions. As used herein, the term “directional” with respect to a pattern means that the lines of the pattern are continuous and not interrupted along a direction, whereas the term “non-directional” means that the lines of the pattern are interrupted along a direction, even though the pattern may repeat.
  • Eleventh Embodiment (FIGS. 16A-16C)
  • FIGS. 16A-16C show still another honeycomb-like non-directional secondary pattern, designated the Secondary 5 pattern impressed on a material. This pattern is generally indicated at 50, and is shown as having upper and lower surfaces 51 a, 51 b, respectively. This pattern is non-directional in the vertical and horizontal directions.
  • Method of Making an Enhanced-Surface Tube (FIG. 17)
  • FIG. 17 depicts one method of making a round tube having enhanced surfaces. According to this process, a coil 52 having the primary and secondary patterns (and, optionally, whatever cooler tube and flow-through openings are desired) is unwound. The leading edge of the material passes through a series of rollers and roller dies, severally indicated at 53, within which the planar sheet material is rolled into a round tube with the two longitudinal edges being arranged closely adjacent, or, preferably, abutting, one another. The rolled tube is then passed through a preheating unit 54 and a welding unit 55 to weld the longitudinal edges together. The welded tube is then passed through a secondary heating unit 56 to anneal the weld and the material, and is then cooled in a cooling unit 58. The cooled welded tube is then passed through a deburrer to smooth the weld edges, and is further advanced rightwardly by rollers 60, 60.
  • Round Tube (FIGS. 18A-18C)
  • Tubes may have many different shapes and cross-sections. FIGS. 18A-18C depict a length of welded round tube that may be manufactured by the process indicated in FIG. 17. The tube, generally indicated at 62, is shown as having primary and secondary patterns. As best shown in FIG. 18B, tube 62 has a thin-walled circular transverse cross-section.
  • The tube outer wall is also shown as having a coating 63 thereon. This coating may be a plating, or some other form of coating or lamination. This coating is optional and may be provided on any of the enhanced surfaces disclosed herein. The coating can be provided on the inner or outer surface of a tube, as desired.
  • Rectangular Tube (FIGS. 19A-19C)
  • As noted above, not all tubes have a round transverse cross-section. Some tubes have oval-shaped cross-sections, polygonal cross-sections, or the like.
  • FIGS. 19A-19C depict a tube 64 having a generally-rectangular transverse cross-section, with primary and secondary patterns on its inner and outer surfaces. This tube may, if desired, be formed with a coating or may be chemically treated.
  • U-Shaped Tube (FIGS. 20A-20C)
  • FIGS. 20A-20C depict a round tube which is bent to have a U-shape, when seen in elevation. This tube, generally indicated at 65, has primary and secondary patterns on its inner and outer surfaces.
  • Coil Formed of Round Tube (FIGS. 21A-21D)
  • FIGS. 21A-21D depict a helically-wound coil formed from a length of round tubing. This coil, generally indicated at 66, has primary and secondary patterns on its inner and outer surfaces.
  • Method of Making an Enhanced-Surface Fin (FIG. 22)
  • FIG. 22 is a schematic view of one process for forming enhanced-surface fins. In this process, a coil 68 of material with primary and secondary patterns is unrolled. The leading edge of the material passes around idler rollers 69 a, 69 b, c 9 c, and is then passed between an opposed pair of roller dies 70 a, 70 b, which punch or form various holes (e.g., cooling tube holes and/or flow-through holes in whatever pattern is desired) in the material. The leading edge is then passed through a second pair of roller dies 71 a, 71 b, which form flanges on the material. The leading edge is then passed under a cut-off shear 72, where individual fins, severally indicated at 73, are cut from the roll material. These fins are moved rightwardly by the action of rollers 74.
  • Fins Having Cooler Tube Openings and Flow-Through Openings (FIGS. 23A-25E)
  • FIGS. 23A-25E show different forms of improved fins having different combinations of primary and secondary patterns, and having cooler tube openings and variously-sized flow through openings.
  • A first form of fin is generally indicated at 75 in FIGS. 23A-23B. In this first form, the individual characters of the primary and secondary patterns are indicated at 76′, 76″, respectively. The cooling tube openings (i.e., the openings in the fins to accommodate passage of various cooling tubes (not shown)) are severally indicated at 77, and the relatively-small flow-through openings are severally indicated at 78.
  • A second form of fin is generally indicated at 79 in FIGS. 24A-24B. In this second form, the individual characters of the primary and secondary patters are again indicated at 76′, 76″, respectively. The cooling tube openings and the relatively-small flow-through openings are again indicated at 77, 78, respectively. Notice that second fin 78 is thinner, and more deeply distorted than first fin 75.
  • Five different fins are illustrated in FIGS. 25A-25E. In each of these figures, the cooling tube openings or holes are indicated at 77. The salient difference between these five figures lies in the size and configuration of the flow-through openings. In FIG. 25A, a third form of fin, generally indicated at 79, is shown as having a plurality of smaller-sized flow-though openings, severally indicated at 80. In FIG. 25B, a fourth form of fin, generally indicated at 79′, is shown as having intermediately-sized flow-through openings, severally indicated at 80′. In FIG. 25C, a fifth form of fin, generally indicated at 79″, is shown as having larger-sized flow-through openings, severally indicated at 80″. FIG. 25D illustrates a sixth form of fin having various vertical columns of small, intermediate and large flow-through holes. FIG. 25E illustrates a seventh form of fin having another combination of small, intermediate and large flow-through holes. In each of these cases, the fin has primary and secondary patterns.
  • Improved Heat Exchanger (FIG. 26)
  • An improved heat exchanger, generally indicated at 81, is shown in FIG. 26 as having an outer shell 82. A serpentine enhanced-surface heat transfer tube 83 extends between a hot inlet and a hot outlet on the shell. Cold fluid is admitted to the shell through a cold inlet, and flows around the tube toward a cold outlet, through which it exits the shell. The inlet and outlet connections and/or the tube geometry may be changed, as desired.
  • Improved Cooler (FIGS. 27A-27E)
  • FIGS. 27A-27E depict an improved cooler, generally indicated at 84. This cooler is shown as having a plurality of enhanced-surface tubes, severally indicated at 85, that penetrate a bottom 86 and that rise upwardly through a plurality of vertically-spaced fins, severally indicated at 88. The tubes wind through the fins in a serpentine manner. Here again the fluid connections and/or the tube geometry may be changes, as desired. Each fin is shown as having a plurality of cooler tube openings 89 to accommodate passage of the tubes. Each fin has primary and secondary patterns, and may optionally have a number of flow-through openings in whatever pattern is desired.
  • FIG. 27A depicts a plan view of the cooler bottom. FIG. 27B is a fragmentary vertical sectional view of the cooler, taken generally on line 27B-27B of FIG. 27A, and shows the tubes as passing upwardly and downwardly through aligned cooler tube openings in the fins. FIG. 27C is a side elevation of the cooler. FIG. 27D is a fragmentary horizontal sectional view through the cooler, taken generally on line 27D-27D of FIG. 27C, and shows a bottom plan view of one of the fins. Finally, FIG. 27E is an enlarged detail view of the lower right portion of the fin, this view being taken within the indicated circle in FIG. 27D.
  • Improved Fluid-Flow Vessel (FIG. 28)
  • An improved fluid-flow vessel is generally indicated at 90 in FIG. 28. This vessel is shown as including a process column, generally indicated at 91, that includes a plurality of vertically-spaced enhanced surface walls, severally indicated at 92. Vapor rises upwardly through the column by sequentially passing through the various walls, and liquid descends through the column by also passing through the various walls. Vapor at the top of the column passes via conduit 93 to a condenser 94. Liquid is returned to the uppermost chamber within the column by a conduit 95. At the bottom of the process column, collected liquid is supplied via a conduit 96 to an enhanced-surface reboiler 98. Vapor leaving this reboiler is supplied to the lowermost chamber of the column via a conduit 99.
  • Improved Heat Exchanger Plate (FIGS. 29A-29B)
  • FIG. 29A depicts an improved heat exchanger plate, generally indicated at 100. A plurality of such plates may be stacked on top of one another, and adjacent plates may be sealingly separated by a gasket (not shown) to define flow passageways therebetween. FIG. 29B shows that portions of the heat exchanger plate may have enhanced surfaces thereon so as to facilitate heat transfer. FIG. 29B clearly shows that the illustrated portion of the plate may have primary patterns 101 and secondary patterns 102.
  • Therefore, the present invention broadly provides an improved method of forming an enhanced-surface wall for use in an apparatus for performing a process, an improved enhanced-surface wall, and uses thereof.
  • MODIFICATIONS
  • The present invention contemplates that many changes and modifications may be made. For example, while it may be preferred to form the material of stainless steel, other types of material(s) (e.g., various alloys of aluminum, titanium, copper, etc, or various ceramics) may be used. The material may be homogenous or non-homogenous. It may be coated or chemically treated, either before, during or after the method described herein. As illustrated above, the primary and secondary patterns may have a variety of different shapes and configurations, some regular and directional, and others not. The same types or configurations of characters may be used in the primary and secondary patters, with the difference residing in the depth and/or surface density of such characters. The various heat transfer devices disclosed herein may be complete in and of themselves, or may be portions of larger devices, which may have shapes other than those shown.
  • Therefore, while the improved method and apparatus has been shown and described, and several modifications and changes thereof discussed, persons skilled in this art will readily appreciated the various additional changes and modification may be made without departing from the spirit of the invention, as defined and differentiated by the following claims.

Claims (19)

1-25. (canceled)
26. The enhanced-surface wall as set forth in claim 34 wherein said primary patterns are directional.
27. The enhanced-surface wall as set forth in claim 34 wherein said secondary patterns are non-directional.
28. The enhanced-surface wall as set forth in claim 34 wherein said wall complies with one of the following ASME/ASTM designations: A249/A, A135, A370, A751, E213, E273, E309, E1806, A691, A139, A213, A214, A268, A 269, A270, A312, A334, A335, A498, A631, A671, A688, A691, A778, A299/A, A789, A789/A, A789/M, A790, A803, A480, A763, A941, A1016, A1012, A1047/A, A250, A771, A826, A851, B674, E112, A370, A999, E381, E426, E527, E340, A409, A358, A262, A240, A537, A530, A 435, A387, A299, A204, A20, A577, A578, A285, E165, A380, A262 and A179.
29. The enhanced-surface wall as set forth in claim 34 wherein said material is homogeneous.
30. The enhanced-surface wall as set forth in claim 34 wherein said material is provided with a coating on at least one of said initial surfaces.
31. The enhanced-surface wall as set forth in claim 34 wherein said material is chemically-treated.
32-33. (canceled)
34. An enhanced-surface wall for use in an apparatus for performing a process, comprising:
a length of material having opposite initial surfaces, said material having a longitudinal centerline positioned substantially midway between said initial surfaces, said material having had an initial transverse dimension measured from said centerline to a point on either of said initial surfaces located farthest away from said centerline, each of said initial surfaces having an initial surface density, said surface density being defined as the number of characters on a surface per unit of projected surface area;
secondary patterns densities impressed onto each of said initial surfaces, said secondary patterns having secondary pattern surface densities distorting said material and increasing the surface densities on each of said surfaces and increasing the transverse dimension of said material from said centerline to the farthest point of such distorted material;
wherein the maximum transverse dimension of said material from said centerline to the farthest point of such distorted material is less than 150% of the maximum transverse dimension from said centerline to the farthest point on either of said initial surfaces; and
primary patterns impressed onto each of such distorted surfaces and further distorting said material to further increase the dimension from said centerline to the farthest point on either of such further-distorted surfaces, said primary patterns having primary pattern surface densities and further increasing the surface densities of each of said such further-distorted surfaces; and
wherein the minimum dimension of such further-distorted material, when measured from said centerline to any point on either of such further-distorted surfaces, is at least 50% of the minimum dimension of said material, when measured from said centerline to the farthest point on either of said initial surfaces.
35. The enhanced-surface wall as set forth in claim 34 wherein each secondary pattern surface density is greater than each primary pattern surface density.
36. The enhanced-surface wall as set forth in claim 34 wherein said secondary patterns are the same.
37. The enhanced-surface wall as set forth in claim 34 wherein said secondary patterns are shifted relative to one another such that a maximum dimension from said centerline to one distorted surface will correspond to a minimum dimension from said centerline to the other distorted surface.
38-40. (canceled)
41. The enhanced-surface wall as set forth in claim 34 wherein the minimum dimension of said material, when measured from any point on one of such distorted surfaces to the closest point on the opposite one of such distorted surfaces, is at least 95% of the minimum dimension from any point on one of said initial surfaces to the closest point on the opposite initial surface.
42. (canceled)
43. The enhanced-surface wall as set forth in claim 34 wherein said primary patterns are the same.
44. The enhanced-surface wall as set forth in claim 43 wherein said primary patterns are shifted relative to one another such that a maximum dimension from said centerline to one further-distorted surface will correspond to a minimum dimension from said centerline to the other further-distorted surface.
45. The enhanced-surface wall as set forth in claim 34 wherein the minimum dimension of said such further-distorted material, when measured from said centerline to any point on either of said such further-distorted surfaces, is at least 95% of the minimum dimension of said material, when measured from said centerline to either of said initial surfaces.
46-47. (canceled)
US14/498,395 2010-01-15 2014-09-26 Enhanced surface walls Abandoned US20150122466A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/498,395 US20150122466A1 (en) 2010-01-15 2014-09-26 Enhanced surface walls

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US29565310P 2010-01-15 2010-01-15
US12/754,094 US20100252247A1 (en) 2009-04-03 2010-04-05 Heat Transfer Device And Method
US12/807,131 US8875780B2 (en) 2010-01-15 2010-08-27 Methods of forming enhanced-surface walls for use in apparatae for performing a process, enhanced-surface walls, and apparatae incorporating same
US14/498,395 US20150122466A1 (en) 2010-01-15 2014-09-26 Enhanced surface walls

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/807,131 Continuation US8875780B2 (en) 2010-01-15 2010-08-27 Methods of forming enhanced-surface walls for use in apparatae for performing a process, enhanced-surface walls, and apparatae incorporating same

Publications (1)

Publication Number Publication Date
US20150122466A1 true US20150122466A1 (en) 2015-05-07

Family

ID=44276685

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/807,131 Active 2033-03-31 US8875780B2 (en) 2010-01-15 2010-08-27 Methods of forming enhanced-surface walls for use in apparatae for performing a process, enhanced-surface walls, and apparatae incorporating same
US14/498,395 Abandoned US20150122466A1 (en) 2010-01-15 2014-09-26 Enhanced surface walls

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/807,131 Active 2033-03-31 US8875780B2 (en) 2010-01-15 2010-08-27 Methods of forming enhanced-surface walls for use in apparatae for performing a process, enhanced-surface walls, and apparatae incorporating same

Country Status (1)

Country Link
US (2) US8875780B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH703820A1 (en) * 2010-09-21 2012-03-30 Alstom Hydro France AIR-COOLED GENERATOR.
US20140116668A1 (en) * 2012-10-31 2014-05-01 GM Global Technology Operations LLC Cooler pipe and method of forming
USD763804S1 (en) * 2014-02-06 2016-08-16 Kobe Steel, Ltd. Plate for heat exchanger
USD757662S1 (en) * 2014-02-06 2016-05-31 Kobe Steel, Ltd. Plate for heat exchanger
JP6219199B2 (en) * 2014-02-27 2017-10-25 株式会社神戸製鋼所 Base plate material to be heat exchange plate, and method for manufacturing the base plate material
JP2015175507A (en) * 2014-03-18 2015-10-05 株式会社神戸製鋼所 Titanium weldment pipe and manufacturing method of titanium weldment pipe
WO2017087664A1 (en) * 2015-11-17 2017-05-26 Kandlikar, Satish, G. Pool boiling enhancement with feeder channels supplying liquid to nucleating regions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756362A (en) * 1985-09-06 1988-07-12 Hitachi, Ltd. Heat exchanger
US4879891A (en) * 1987-04-27 1989-11-14 Thermalloy Incorporated Method of manufacturing heat sink apparatus
US4984626A (en) * 1989-11-24 1991-01-15 Carrier Corporation Embossed vortex generator enhanced plate fin
US5667006A (en) * 1995-01-23 1997-09-16 Lg Electronics, Inc. Fin tube heat exchanger
US20070207931A1 (en) * 2005-12-22 2007-09-06 Petri Rissanen Grooved porous surface, production method and application in heat transfer

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1517633A (en) * 1920-06-28 1924-12-02 Junkers Hugo Corrugated sheet metal
US2641830A (en) * 1948-11-02 1953-06-16 Chicago Pump Co Method of making corrugated tubes
US3454081A (en) 1968-05-14 1969-07-08 Union Carbide Corp Surface for boiling liquids
US3696861A (en) 1970-05-18 1972-10-10 Trane Co Heat transfer surface having a high boiling heat transfer coefficient
US3730229A (en) 1971-03-11 1973-05-01 Turbotec Inc Tubing unit with helically corrugated tube and method for making same
US3831675A (en) * 1972-01-17 1974-08-27 Olin Corp Heat exchanger tube
US4044797A (en) 1974-11-25 1977-08-30 Hitachi, Ltd. Heat transfer pipe
GB1531134A (en) * 1975-08-20 1978-11-01 Atomic Energy Authority Uk Methods of fabricating bodies and to bodies so fabricated
US4092842A (en) * 1975-10-16 1978-06-06 Johns-Manville Corporation Deeply embossed sheet product and method and apparatus for the production thereof
DE2808080C2 (en) 1977-02-25 1982-12-30 Furukawa Metals Co., Ltd., Tokyo Heat transfer tube for boiling heat exchangers and process for its manufacture
US4159739A (en) 1977-07-13 1979-07-03 Carrier Corporation Heat transfer surface and method of manufacture
AU7757581A (en) 1980-11-19 1982-05-27 United Energy Technologies Inc. Enhanced surface tubing
US4438807A (en) 1981-07-02 1984-03-27 Carrier Corporation High performance heat transfer tube
US4663243A (en) * 1982-10-28 1987-05-05 Union Carbide Corporation Flame-sprayed ferrous alloy enhanced boiling surface
US4550776A (en) 1983-05-24 1985-11-05 Lu James W B Inclined radially louvered fin heat exchanger
JPS60142195A (en) 1983-12-28 1985-07-27 Hitachi Cable Ltd Heat transfer tube equipped with groove on internal surface thereof
US4649256A (en) 1985-01-10 1987-03-10 Nippon Steel Corporation High-frequency electric resistance welding method using irradiation with a laser beam
US4753849A (en) * 1986-07-02 1988-06-28 Carrier Corporation Porous coating for enhanced tubes
JPS63189793A (en) 1987-02-02 1988-08-05 Mitsubishi Electric Corp Heat transfer pipe for evaporation and condensation
US5222299A (en) 1987-08-05 1993-06-29 Carrier Corporation Enhanced heat transfer surface and apparatus and method of manufacture
US4938282A (en) 1988-09-15 1990-07-03 Zohler Steven R High performance heat transfer tube for heat exchanger
US5351397A (en) * 1988-12-12 1994-10-04 Olin Corporation Method of forming a nucleate boiling surface by a roll forming
US5052476A (en) * 1990-02-13 1991-10-01 501 Mitsubishi Shindoh Co., Ltd. Heat transfer tubes and method for manufacturing
US5140123A (en) 1990-05-25 1992-08-18 Kusakabe Electric & Machinery Co., Ltd. Continuous manufacturing method for a metal welded tube and a manufacturing apparatus therefor
US5070937A (en) * 1991-02-21 1991-12-10 American Standard Inc. Internally enhanced heat transfer tube
JP2730824B2 (en) * 1991-07-09 1998-03-25 三菱伸銅株式会社 Heat transfer tube with inner groove and method of manufacturing the same
US5332034A (en) * 1992-12-16 1994-07-26 Carrier Corporation Heat exchanger tube
US5388329A (en) 1993-07-16 1995-02-14 Olin Corporation Method of manufacturing a heating exchange tube
US5458191A (en) * 1994-07-11 1995-10-17 Carrier Corporation Heat transfer tube
US5697430A (en) 1995-04-04 1997-12-16 Wolverine Tube, Inc. Heat transfer tubes and methods of fabrication thereof
US5961748A (en) 1995-08-09 1999-10-05 Nkk Corporation Laser-welded steel pipe
US5704424A (en) 1995-10-19 1998-01-06 Mitsubishi Shindowh Co., Ltd. Heat transfer tube having grooved inner surface and production method therefor
US5839505A (en) 1996-07-26 1998-11-24 Aaon, Inc. Dimpled heat exchange tube
US6182743B1 (en) * 1998-11-02 2001-02-06 Outokumpu Cooper Franklin Inc. Polyhedral array heat transfer tube
US6176301B1 (en) * 1998-12-04 2001-01-23 Outokumpu Copper Franklin, Inc. Heat transfer tube with crack-like cavities to enhance performance thereof
SE513927C2 (en) * 2000-02-11 2000-11-27 Sven Melker Nilsson Method of folding metal foil and foil packages of such foil
US6644388B1 (en) 2000-10-27 2003-11-11 Alcoa Inc. Micro-textured heat transfer surfaces
US6705143B2 (en) * 2001-07-31 2004-03-16 Lausan Chung-Hsin Liu Method of manufacturing loading plane border frame tubes for chairs
US20040099409A1 (en) * 2002-11-25 2004-05-27 Bennett Donald L. Polyhedral array heat transfer tube
CN1826503A (en) * 2003-07-15 2006-08-30 奥托库姆普铜产品公司 Pressure containing heat transfer tube and method of making thereof
US7032654B2 (en) * 2003-08-19 2006-04-25 Flatplate, Inc. Plate heat exchanger with enhanced surface features
US7028612B2 (en) * 2003-12-23 2006-04-18 Paper Converting Machine Company Interchangeable embossing plates for mounting on an embossing roll
DE602005026527D1 (en) * 2004-05-05 2011-04-07 Luvata Oy HEAT TRANSFER TUBE MADE FROM TIN BRASS ALLOY
US8084117B2 (en) * 2005-11-29 2011-12-27 Haresh Lalvani Multi-directional and variably expanded sheet material surfaces
EP2010754A4 (en) * 2006-04-21 2016-02-24 Shell Int Research Adjusting alloy compositions for selected properties in temperature limited heaters
JP5705402B2 (en) * 2008-02-08 2015-04-22 ニチアス株式会社 Method for producing aluminum molded plate
TW200940198A (en) 2008-03-27 2009-10-01 Rachata Leelaprachakul Processes for textured pipe manufacturer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756362A (en) * 1985-09-06 1988-07-12 Hitachi, Ltd. Heat exchanger
US4879891A (en) * 1987-04-27 1989-11-14 Thermalloy Incorporated Method of manufacturing heat sink apparatus
US4984626A (en) * 1989-11-24 1991-01-15 Carrier Corporation Embossed vortex generator enhanced plate fin
US5667006A (en) * 1995-01-23 1997-09-16 Lg Electronics, Inc. Fin tube heat exchanger
US20070207931A1 (en) * 2005-12-22 2007-09-06 Petri Rissanen Grooved porous surface, production method and application in heat transfer

Also Published As

Publication number Publication date
US8875780B2 (en) 2014-11-04
US20110174473A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
US20150122466A1 (en) Enhanced surface walls
EP2524185B1 (en) Method of forming an enhanced-surface wall for use in an apparatus
Arsenyeva et al. The influence of plate corrugations geometry on plate heat exchanger performance in specified process conditions
US6067712A (en) Heat exchange tube with embossed enhancement
EP3650799B1 (en) A fin body for a heat exchange tube
Wang et al. An investigation of influence factor including different tube bundles on inclined elliptical fin-tube heat exchanger
US20160245591A1 (en) Plate for heat exchanger and heat exchanger
US20090188655A1 (en) Heat exchanger flat tube with oblique elongate dimples
WO2017214489A1 (en) 3d spiral heat exchanger
US5415225A (en) Heat exchange tube with embossed enhancement
WO2013039214A1 (en) Raw plate material for heat exchanging plate, and heat exchanging plate using same
Kapustenko et al. The heat and momentum transfers relation in channels of plate heat exchangers
EP3415827B1 (en) Air conditioner
WO2011136278A1 (en) Raw plate material for heat-exchanging plate, and method for fabricating raw plate material for heat-exchanging plate
US20100252247A1 (en) Heat Transfer Device And Method
Feng et al. Friction factor and heat transfer evaluation of cross-corrugated triangular flow channels with trapezoidal baffles
US20060169019A1 (en) Tabbed transfer fins for air-cooled heat exchanger
JP2011112331A (en) Heat exchanger for exhaust gas
US10876796B2 (en) Heat exchanger
CN220039222U (en) Fin with transverse texture enhanced heat exchange
RU200477U1 (en) HEAT EXCHANGER PLATE
RU193960U1 (en) Ribbed sheet panel
Reshaeel et al. A critical review of the thermal-hydraulic performance of fin and tube heat exchangers using statistical analysis
Panchal Heat Transfer and Flow Characteristics of spiral Fin and Tube Heat Exchanger
CN115876025A (en) Heat exchanger and fin thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION