WO2011087129A1 - Exposure method, exposure device, and manufacturing method for device - Google Patents

Exposure method, exposure device, and manufacturing method for device Download PDF

Info

Publication number
WO2011087129A1
WO2011087129A1 PCT/JP2011/050744 JP2011050744W WO2011087129A1 WO 2011087129 A1 WO2011087129 A1 WO 2011087129A1 JP 2011050744 W JP2011050744 W JP 2011050744W WO 2011087129 A1 WO2011087129 A1 WO 2011087129A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
component
exposure
mark measurement
relationship
Prior art date
Application number
PCT/JP2011/050744
Other languages
French (fr)
Japanese (ja)
Inventor
義昭 鬼頭
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2011550037A priority Critical patent/JP5903891B2/en
Publication of WO2011087129A1 publication Critical patent/WO2011087129A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/168Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by means of polarisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70783Handling stress or warp of chucks, masks or workpieces, e.g. to compensate for imaging errors or considerations related to warpage of masks or workpieces due to their own weight
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to an exposure method, an exposure apparatus, and a device manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2010-8004 for which it applied on January 18, 2010, and uses the content here.
  • an exposure apparatus that exposes a substrate with exposure light as disclosed in Patent Document 1 is used.
  • the device is formed by stacking a plurality of patterns (patterned films) on a substrate.
  • the alignment mark of the substrate is measured, and based on the measurement result of the alignment mark, the substrate and the image of the next pattern are measured.
  • An alignment process for performing alignment is executed.
  • the pattern overlay accuracy is lowered, and as a result, an exposure failure and a defective device occur. Even when the substrate is deformed, it is effective to accurately acquire the deformation information of the substrate in order to suppress a decrease in pattern overlay accuracy.
  • the deformation of the substrate includes a nonlinear component (nonlinear distortion)
  • the deformation information of the substrate including the nonlinear distortion can be accurately obtained by increasing the number of measurement points of the alignment mark. However, when the number of measurement points of the alignment mark is increased, it takes time for the measurement, and the throughput may be reduced.
  • the first component that requires a first point mark measurement on the first substrate for calculation and the first component, Deriving a relationship with a second component that can be calculated by measuring a small number of second points, executing a second number of marks on the second substrate, and marking the second point on the second substrate
  • An exposure including: acquiring deformation information of the second substrate based on a measurement result and the relationship; and exposing the second substrate with exposure light based on the acquired deformation information.
  • a device manufacturing method including exposing a substrate using the exposure method of the first aspect and developing the exposed substrate.
  • the first component that requires the first point mark measurement on the first substrate for calculation out of the non-linear distortion occurring in the first substrate, the first component that requires the first point mark measurement on the first substrate for calculation, and the first point number.
  • a storage device that stores a relationship with a second component that can be calculated by a small second mark measurement, a mark measurement device that performs a second mark measurement on the second substrate, and a measurement result of the mark measurement device
  • a controller that acquires deformation information of the second substrate based on information of the storage device, and an exposure apparatus that exposes the second substrate with exposure light based on the acquired deformation information Provided.
  • a device manufacturing method including exposing a substrate using the exposure apparatus according to the third aspect and developing the exposed substrate.
  • the aspect of the present invention it is possible to suppress the occurrence of exposure failure while suppressing a decrease in throughput. Moreover, according to the aspect of the present invention, it is possible to suppress the occurrence of defective devices while suppressing a decrease in throughput.
  • an XYZ orthogonal coordinate system is set, and the positional relationship of each part will be described with reference to this XYZ orthogonal coordinate system.
  • a predetermined direction in the horizontal plane is defined as an X-axis direction
  • a direction orthogonal to the X-axis direction in the horizontal plane is defined as a Y-axis direction
  • a direction orthogonal to each of the X-axis direction and the Y-axis direction (that is, a vertical direction) is defined as a Z-axis direction.
  • the rotation (inclination) directions around the X axis, Y axis, and Z axis are the ⁇ X, ⁇ Y, and ⁇ Z directions, respectively.
  • FIG. 1 is a schematic block diagram showing an example of an exposure apparatus EX according to the first embodiment
  • FIG. 2 is a perspective view. 1 and 2
  • an exposure apparatus EX includes a mask stage 1 that can move while holding a mask M, a substrate stage 2 that can move while holding a substrate P, and a drive system 3 that moves the mask stage 1.
  • a driving system 4 that moves the substrate stage 2, an illumination system IS that illuminates the mask M with the exposure light EL, a projection system PS that projects an image of the pattern of the mask M illuminated by the exposure light EL onto the substrate P, A control device 5 that controls the operation of the entire exposure apparatus EX, and a storage device 5R that is connected to the control device 5 and stores various types of information related to exposure are provided.
  • the mask M includes a reticle on which a device pattern projected onto the substrate P is formed.
  • the substrate P includes, for example, a base material such as a glass plate and a photosensitive film (coated photosensitizer) formed on the base material.
  • the substrate P includes a large glass plate, and the size of one side of the substrate P is, for example, 500 mm or more.
  • a rectangular glass plate having a side of about 3000 mm is used as the base material of the substrate P.
  • the exposure apparatus EX of the present embodiment also includes an interferometer system 6 that measures position information of the mask stage 1 and the substrate stage 2, and a first detection that detects position information of the surface (lower surface, pattern formation surface) of the mask M.
  • the system 7 includes a second detection system 8 that detects position information on the surface (exposure surface, photosensitive surface) of the substrate P, and an alignment system 9 that performs alignment mark measurement on the substrate P.
  • the exposure apparatus EX includes a body 13.
  • the body 13 includes, for example, a base plate 10 disposed on a support surface (for example, floor surface) FL in a clean room via a vibration isolation table BL, a first column 11 disposed on the base plate 10, and a first column 11 And a second column 12 disposed on the surface.
  • the body 13 supports each of the projection system PS, the mask stage 1 and the substrate stage 2.
  • the projection system PS is supported by the first column 11 via the surface plate 14.
  • the mask stage 1 is supported so as to be movable with respect to the second column 12.
  • the substrate stage 2 is supported so as to be movable with respect to the base plate 10.
  • the projection system PS has a plurality of projection optical systems.
  • the illumination system IS has a plurality of illumination modules corresponding to a plurality of projection optical systems.
  • the exposure apparatus EX of the present embodiment projects an image of the pattern of the mask M onto the substrate P while moving the mask M and the substrate P synchronously in a predetermined scanning direction. That is, the exposure apparatus EX of the present embodiment is a so-called multi-lens scan exposure apparatus.
  • the projection system PS has seven projection optical systems PL1 to PL7, and the illumination system IS has seven illumination modules IL1 to IL7.
  • the number of projection optical systems and illumination modules is not limited to seven.
  • the projection system PS may have 11 projection optical systems, and the illumination system IS may have 11 illumination modules.
  • the illumination system IS can irradiate the predetermined illumination areas IR1 to IR7 with the exposure light EL.
  • the illumination areas IR1 to IR7 are included in the irradiation areas of the exposure light EL emitted from the illumination modules IL1 to IL7.
  • the illumination system IS illuminates each of the seven different illumination areas IR1 to IR7 with the exposure light EL.
  • the illumination system IS illuminates portions of the mask M arranged in the illumination regions IR1 to IR7 with exposure light EL having a uniform illuminance distribution.
  • bright lines g line, h line, i line
  • a mercury lamp are used as the exposure light EL emitted from the illumination system IS.
  • the mask stage 1 is movable with respect to the illumination areas IR1 to IR7 while holding the mask M.
  • the mask stage 1 includes a mask holding unit 15 that can hold the mask M.
  • the mask holding unit 15 includes a chuck mechanism that can vacuum-suck the mask M, and holds the mask M in a releasable manner. In the present embodiment, the mask holding unit 15 holds the mask M so that the lower surface (pattern forming surface) of the mask M and the XY plane are substantially parallel.
  • the drive system 3 includes, for example, a linear motor, and can move the mask stage 1 on the guide surface 12G of the second column 12.
  • the mask stage 1 operates in the three directions of the X axis, the Y axis, and the ⁇ Z direction on the guide surface 12G in a state where the mask M is held by the mask holding unit 15 by the operation of the drive system 3. It is movable.
  • the projection system PS can irradiate the predetermined projection areas PR1 to PR7 with the exposure light EL.
  • the projection areas PR1 to PR7 correspond to the irradiation areas of the exposure light EL emitted from the projection optical systems PL1 to PL7.
  • the projection system PS projects a pattern image on each of seven different projection regions PR1 to PR7.
  • the projection optical system PS projects an image of the pattern of the mask M on the portion of the substrate P arranged in the projection areas PR1 to PR7 with a predetermined projection magnification.
  • the substrate stage 2 is movable with respect to the projection regions PR1 to PR7 while holding the substrate P.
  • the substrate stage 2 includes a substrate holding unit 16 that can hold the substrate P.
  • the substrate holding unit 16 includes a chuck mechanism capable of vacuum-sucking the substrate P, and holds the substrate P so that the substrate P can be released.
  • the substrate holding unit 16 holds the substrate P so that the surface (exposure surface) of the substrate P and the XY plane are substantially parallel.
  • the drive system 4 includes, for example, a linear motor, and can move the substrate stage 2 on the guide surface 10 ⁇ / b> G of the base plate 10.
  • the substrate stage 2 operates on the guide surface 10G with the X-axis, Y-axis, Z-axis, ⁇ X, ⁇ Y, and It can move in six directions of ⁇ Z direction.
  • the alignment system 9 measures an alignment mark provided on the substrate P.
  • the alignment system 9 is a so-called off-axis alignment system, and includes a plurality of microscopes 9A to 9F arranged to face the surface of the substrate P held on the substrate stage 2.
  • Each of the microscopes 9A to 9F includes a projection unit that irradiates detection light to the detection regions AL1 to AL6, and a light receiving unit that can acquire an optical image of the alignment marks arranged in the detection regions AL1 to AL6.
  • the control device 5 performs an exposure process so that the pattern image of the mask M formed by the projection system PS is superimposed on the pattern already formed on the substrate P. During the exposure process, the control device 5 measures the alignment mark of the substrate P, and executes an alignment process for aligning the substrate P and the pattern image of the mask M based on the measurement result of the alignment mark.
  • FIG. 3 is a diagram showing an example of the projection system PS, the alignment system 9, and the substrate stage 2 arranged in the projection regions PR1 to PR7 according to the present embodiment.
  • the first projection optical system PL1 will be described.
  • the first projection optical system PL1 projects an image of the pattern of the mask M illuminated with the exposure light EL by the first illumination module IL1 onto the substrate P.
  • the first projection optical system PL1 includes an image plane adjustment unit 33, a shift adjustment unit 34, two sets of catadioptric optical systems 31, 32, a field stop 35, and a scaling adjustment unit 36.
  • the image plane adjustment unit 33 can adjust the position of the image plane of the first projection optical system PL1 (position in the Z axis, ⁇ X, and ⁇ Y directions).
  • the image plane adjustment unit 33 is disposed at a position that is optically conjugate with respect to the mask M and the substrate P.
  • the image plane adjustment unit 33 includes a first optical member 33A and a second optical member 33B, and a drive device (not shown) that can move the first optical member 33A relative to the second optical member 33B.
  • the first optical member 33A and the second optical member 33B are opposed to each other through a predetermined gap by a gas bearing.
  • the first optical member 33A and the second optical member 33B are glass plates capable of transmitting the exposure light EL, and each have a wedge shape.
  • the control device 5 can adjust the position of the image plane of the first projection optical system PL1 by operating the drive device and adjusting the positional relationship between the first optical member 33A and the second optical member 33B. .
  • the exposure light EL that has passed through the image plane adjustment unit 33 enters the shift adjustment unit 34.
  • the shift adjusting unit 34 can shift the pattern image of the mask M on the substrate P in the X-axis direction and the Y-axis direction.
  • the exposure light EL transmitted through the shift adjustment unit 34 enters the first set of catadioptric optical system 31.
  • the catadioptric optical system 31 forms an intermediate image of the pattern of the mask M.
  • the exposure light EL emitted from the catadioptric optical system 31 is supplied to the field stop 35.
  • the field stop 35 is disposed at the position of the intermediate image of the pattern formed by the catadioptric optical system 31.
  • the field stop 35 defines the projection region PR1.
  • the field stop 35 defines the projection region PR1 on the substrate P in a trapezoidal shape.
  • the exposure light EL that has passed through the field stop 35 enters the second set of catadioptric optical system 32.
  • the catadioptric optical system 32 is configured in the same manner as the catadioptric optical system 31.
  • the exposure light EL emitted from the catadioptric optical system 32 enters the scaling adjustment unit 36.
  • the scaling adjustment unit 36 can adjust the magnification (scaling) of the pattern image of the mask M.
  • the exposure light EL that has passed through the scaling adjustment unit 36 is irradiated onto the substrate P.
  • the first projection optical system PL1 projects an image of the pattern of the mask M onto the substrate P at an erecting equal magnification.
  • the above-described image plane adjustment unit 33, shift adjustment unit 34, and scaling adjustment unit 36 constitute an image formation characteristic adjustment device 30 that adjusts the image formation characteristic (optical characteristic) of the first projection optical system PL1.
  • the imaging characteristic adjusting device 30 is capable of adjusting the position of the image plane of the first projection optical system PL1 with respect to the six directions of the X axis, the Y axis, the Z axis, the ⁇ X, the ⁇ Y, and the ⁇ Z directions. The magnification can be adjusted.
  • the first projection optical system PL1 has been described above.
  • the second to seventh projection optical systems PL2 to PL7 have the same configuration as the first projection optical system PL1. A description of the second to seventh projection optical systems PL2 to PL7 is omitted.
  • FIG. 4 is a schematic diagram showing an example of the positional relationship between the projection regions PR1 to PR7, the detection regions AL1 to AL6, and the substrate P, and shows the positional relationship in a plane including the surface of the substrate P.
  • the surface of the substrate P has a plurality of exposure areas (processed areas) PA1 to PA6 onto which an image of the pattern of the mask M is projected.
  • the surface of the substrate P has six exposure areas PA1 to PA6.
  • the exposure areas PA1, PA2, and PA3 are arranged at approximately equal intervals in the Y axis direction, and the exposure areas PA4, PA5, and PA6 are arranged at approximately equal intervals in the Y axis direction.
  • the exposure areas PA1, PA2, and PA3 are arranged on the + X side with respect to the exposure areas PA4, PA5, and PA6.
  • each of the projection areas PR1 to PR7 is a trapezoid in the XY plane.
  • projection regions PR1, PR3, PR5, PR7 by the projection optical systems PL1, PL3, PL5, PL7 are arranged at substantially equal intervals in the Y-axis direction
  • projection regions PR2 by the projection optical systems PL2, PL4, PL6 are arranged.
  • PR4, PR6 are arranged at substantially equal intervals in the Y-axis direction.
  • the projection areas PR1, PR3, PR5, PR7 are arranged on the ⁇ X side with respect to the projection areas PR2, PR4, PR6.
  • the projection areas PR2, PR4, and PR6 are arranged between the projection areas PR1, PR3, PR5, and PR7 with respect to the Y-axis direction.
  • the detection areas AL1 to AL6 by the microscopes 9A to 9F are arranged on the ⁇ X side with respect to the projection areas PR1 to PR7.
  • the detection areas AL1 to AL6 are arranged apart from each other in the Y-axis direction.
  • the distance between the two outer detection areas AL1 and AL6 in the Y-axis direction is set so that the two outer exposure areas PA1 ( The distance between the ⁇ Y side edge of PA4) and the + Y side edge of exposure area PA3 (PA6) is substantially equal.
  • the alignment system 9 detects a plurality of alignment marks m1 to m6 provided on the substrate P.
  • six alignment marks m1 to m6 are arranged on the substrate P so as to be separated from each other in the Y axis direction, and groups of these alignment marks m1 to m6 are arranged at four places separated in the X axis direction.
  • Alignment marks m1 and m2 are provided adjacent to both ends of exposure areas PA1 and PA4, and alignment marks m3 and m4 are provided adjacent to both ends of exposure areas PA2 and PA5.
  • m6 is provided adjacent to both ends of the exposure areas PA3 and PA6.
  • microscopes 9A to 9F are arranged corresponding to the six alignment marks m1 to m6 arranged on the substrate P so as to be separated from each other in the Y-axis direction.
  • the microscopes 9A to 9F are provided so that the alignment marks m1 to m6 are simultaneously arranged in the detection areas AL1 to AL6.
  • the alignment system 9 can simultaneously detect the six alignment marks m1 to m6 using the microscopes 9A to 9F.
  • the substrate P may be deformed.
  • the substrate P may be heated by, for example, various process processes performed before and after the exposure process.
  • the substrate P may be deformed (thermally deformed).
  • the substrate P may be deformed (distorted) due to the holding state of the substrate holding unit 16.
  • the holding state of the substrate holding unit 16 includes, for example, suction unevenness of the suction mechanism provided in the substrate holding unit 16.
  • the deformation of the substrate P can be divided into a linear component and a non-linear component.
  • the nonlinear component of the deformation of the substrate P is appropriately referred to as nonlinear distortion.
  • Non-linear component can be expressed by a polynomial.
  • the nonlinear component can be expressed by a cubic polynomial, for example.
  • the nonlinear component can be expressed by, for example, the following third-order polynomial by developing by the method of least squares.
  • Equation (1) indicates the amount of displacement from the reference lattice point in the X-axis direction
  • Equation (2) indicates the amount of displacement from the reference lattice point in the Y-axis direction.
  • the exposure process includes a process of projecting an image of the pattern of the mask M so as to be superimposed on the pattern already formed on the substrate P.
  • an alignment process is performed to align the substrate P and the pattern image.
  • the substrate P is deformed, it is effective to accurately acquire deformation information of the substrate P in order to suppress a decrease in pattern overlay accuracy.
  • deformation information relating to the nonlinear distortion can be acquired by increasing the number of measurement points of the alignment mark. That is, as the number of alignment mark measurement points increases, information on higher-order components of nonlinear distortion can be acquired. In order to obtain information on higher-order nonlinear components among the deformation information of the substrate P, it is effective to arrange a large number of alignment marks on the substrate P and to measure these many alignment marks with the alignment system 9.
  • alignment marks are arranged at a plurality of different positions on the substrate P at least in the X-axis direction, It is necessary to measure all of these alignment marks.
  • the correction process includes a process of adjusting the projection areas PR1 to PR7 using the imaging characteristic adjusting device 30.
  • step SA4 out of the non-linear distortion generated in the substrate P, the first component that requires the first number of alignment mark measurements on the substrate P for calculation, and the first component A process of deriving a relationship (correlation) with a second component that can be calculated by measuring an alignment mark with a second score smaller than the score (step SA1), and a process of executing alignment mark measurement of the second score on the substrate P (step SA1) Step SA2), a process of obtaining deformation information of the substrate P based on the result measured in Step SA2 and the relationship derived in Step SA1 (Step SA3), and the substrate P based on the obtained deformation information.
  • step SA4 A process of exposing with the exposure light EL
  • step SA1 the process for deriving the correlation (step SA1) is executed in advance prior to the alignment process and the exposure process (steps SA2 to SA4) for the substrate P to be exposed.
  • the nonlinear distortion can be decomposed (developed) into a plurality of components.
  • predetermined components have a correlation.
  • 14 nonlinear components shown in (C) is a second-order components shown in FIG. 14 (A) (x 2 component in the Y-axis direction), a second order component (xy component of the X-axis direction) shown in FIG. 14 (B) And can be disassembled.
  • FIG. 14 (A) x 2 component in the Y-axis direction
  • a second order component xy component of the X-axis direction
  • FIG. 14 (B) shows a correlation to the secondary component (Y-axis direction of the x 2 component) and the secondary component (xy component of the X-axis direction) shown in FIG. 14 (B) shown in FIG. 14 (A).
  • the correlation between the secondary component shown in FIG. 14A and the secondary component shown in FIG. 14B is derived in advance prior to the exposure of the substrate P (step SA1).
  • step SA2 measurement of four alignment marks is executed on the substrate P as shown in FIG. 15 (step SA2).
  • step SA2 Based on the measurement results of the four alignment marks, the secondary component shown in FIG. 14B is obtained.
  • the secondary component shown in FIG. Is required Since the secondary component shown in FIG. 14 (A) and the secondary component shown in FIG. 14 (B) have been obtained, information on the nonlinear component as shown in FIG. 14 (C) can be acquired (step SA3). ).
  • a second order component shown in FIG. 14 (A) (x 2 component in the Y-axis direction)
  • a second order component shown in FIG. 14 (B) The correlation with (xy component in the X-axis direction) is derived in advance.
  • the secondary components shown in FIG. 14 (A) (x 2 component in the Y-axis direction), that require alignment mark measurement of eight points in the substrate P for the calculation of the second order component It is an ingredient.
  • the secondary component (xy component in the X-axis direction) shown in FIG. 14B is a component that can be calculated by measuring four alignment marks on the substrate P.
  • the correlation obtained in step SA1 is stored in the storage device 5R.
  • the secondary component shown in FIG. 14A which requires 6-point alignment mark measurement on the substrate P in order to calculate the component, is appropriately referred to as a first component, and is smaller than 6 points 4
  • the secondary component shown in FIG. 14B that can be calculated by measuring the alignment mark of the points is appropriately referred to as a second component.
  • the controller 5 measures the four alignment marks on the substrate P using the alignment system 9 when exposing the substrate P (step SA2).
  • the control device 5 can acquire deformation information of the substrate P based on the measurement result of the four alignment marks measured in step SA2 and the information on the correlation stored in the storage device 5R (step). SA3).
  • the control device 5 exposes the substrate P with the exposure light EL based on the acquired deformation information (step SA4).
  • the control device 5 adjusts the exposure conditions based on the acquired deformation information, and exposes the substrate P based on the adjusted exposure conditions.
  • the adjustment of the exposure condition includes adjusting the projection regions PR1 to PR7 using the imaging characteristic adjusting device 30.
  • the control device 5 uses the image formation characteristic adjustment device 30 to prevent the pattern overlay accuracy from degrading (so that an overlay error does not occur). At least one of the position, size, and shape of PR7 is adjusted, and the substrate P is exposed with the exposure light EL that is irradiated onto the adjusted projection areas PR1 to PR7.
  • the control device 5 obtains the correlation between the first component shown in FIG. 14 (A) and the second component shown in FIG. 14 (B) by multiple regression analysis. That is, in step SA1, the control device 5 calculates the first component shown in FIG. 14A based on the measurement results of the six alignment marks, and calculates the first component shown in FIG.
  • the second component shown in FIG. 14B is calculated, and the calculated first component and second component are subjected to multiple regression analysis to derive the correlation (relationship) between the first component and the second component.
  • the correlation between the first component and the second component includes a predetermined relational expression.
  • a linear expression is adopted as the predetermined relational expression. That is, in the present embodiment, the derivation of the correlation (relationship) between the first component and the second component includes derivation of a linear relationship between the first component and the second component.
  • a relational expression is calculated using multiple regression analysis with the second component shown in FIG. 14B as an explanatory variable and the first component shown in FIG. 14A as an objective function. At this time, it is preferable to use a stepwise method or the like for selecting an effective objective variable.
  • the obtained relational expression is stored in the storage device 5R.
  • the correlation changes depending on, for example, the shape, size, and thickness of the substrate P, and various processing conditions applied to the substrate P. Conceivable.
  • the correlation (relational expression) between the first component and the second component is obtained in advance (step SA1), and the four-point alignment is performed during the actual exposure of the substrate P.
  • the first component shown in FIG. 14A can be known.
  • the nonlinear component shown in FIG. 14C can also be known.
  • the first component that cannot be calculated unless the six alignment marks are measured is based on the measurement results of the four alignment marks.
  • the measurement of the six alignment marks may be performed a plurality of times, and the average value of the measurement results of the six alignment marks may be used for calculating the first component.
  • the measurement of the four alignment marks may be performed a plurality of times, and the average value of the measurement results of the four alignment marks may be used for calculating the second component.
  • the nonlinear component shown in FIG. 14 has been described as an example.
  • the nonlinear component when the nonlinear component is expanded into a third-order polynomial, for example, there are 20 expanded components.
  • the relational expression between the components having the correlation can be derived using multiple regression analysis.
  • a component having a correlation is determined according to the shape of the substrate P, for example.
  • the deformation amount of the other component is determined according to the deformation amount of one component.
  • the amount of deformation is considered to be determined according to, for example, the conditions of the process performed on the substrate P.
  • the control device 5 starts a process for deriving a correlation (relational expression) between the first component and the second component (step SB1).
  • a correlation correlation
  • the process for deriving the correlation is appropriately referred to as a derivation sequence.
  • control device 5 performs an exposure process of the substrate P for deriving the correlation (relational expression) between the first component and the second component (step SB2).
  • the exposure in step SB2 is an exposure for deriving a correlation (relational expression).
  • the exposure in step SB2 is appropriately referred to as test exposure.
  • control device 5 exposes the substrate P by correcting only the linear component without correcting the nonlinear component by the imaging characteristic adjusting device 30.
  • a plurality (n) of substrates P are exposed in the test exposure.
  • the control device 5 measures each of the plurality of alignment marks provided on the substrate P using the alignment system 9 (step SB3). In the present embodiment, the control device 5 measures at least 16 alignment marks among the 24 alignment marks m1 to m6 provided on one substrate P. In the present embodiment, the control device 5 measures all 24 alignment marks m1 to m6 provided on one substrate P by using the alignment system 9.
  • the control device 5 Based on the measurement result of the alignment system 9, the control device 5 derives the 20 coefficients C 00 to C 19 shown in the equations (1) and (2) (step SB4).
  • the control device 5 performs 24 alignment mark measurements on each of the n substrates P, and derives 20 coefficients C 00 to C 19 .
  • the controller 5 performs multiple regression analysis on the above-described (20 ⁇ n) coefficients C 00 (i) to C 19 (i) to derive a correlation (relational expression) (step SB5). Similar to the first embodiment described above, this embodiment also employs a linear expression as a relational expression.
  • the derived correlation (relational expression) is stored in the storage device 5R (step SB6).
  • control device 5 After the derivation sequence is completed, the control device 5 starts an exposure sequence including an exposure process for the substrate P for manufacturing a device (step SB8).
  • the substrate P used in the above-described derivation sequence is a substrate P different from the substrate P in the lot exposed in the exposure sequence.
  • the control device 5 measures the alignment mark of the substrate P using the alignment system 9 (step SB9). ).
  • the control device 5 performs alignment mark measurement with fewer measurement points than the alignment mark measurement points measured in the alignment mark measurement process (step SB3) in the derivation sequence. As described above, the number of alignment mark measurement points in step SB3 is 24 points. In the present embodiment, as shown in the schematic diagram of FIG. 12, the control device 5 performs eight alignment mark measurements in step SB9.
  • Control device 5 calculates the second component based on the measurement result of the eight alignment mark measurements (step SB10).
  • the second component that can be calculated by measuring eight alignment marks and the first component that cannot be calculated from the measurement result of eight alignment mark measurements are as follows.
  • step SB9 based on the measurement result of the eight alignment marks, a second component that can be calculated from the eight alignment mark measurements is obtained. Therefore, there is a possibility that a predetermined component of nonlinear distortion that cannot be obtained from the measurement result of the eight alignment mark measurement is added to the second component calculated from the eight alignment mark measurement. .
  • the component of the nonlinear distortion actually generated There is a possibility that at least a part of is added.
  • the component to be added is considered to change depending on the position of the alignment mark to be measured.
  • control device 5 calculates the second component of the substrate P based on the measurement results of the eight alignment mark measurements, and then based on the first component that affects the second component.
  • the second component is corrected (step SB11).
  • the control device 5 corrects the second component so as to remove the influence of the first component on the second component.
  • the first component is C 05 , C 08 , C 09 , C 15 , C 18 , and C 19 .
  • the second component is C 00 , C 01 , C 02 , C 03 , C 04 , C 06 , C 07 , C 10 , C 11 , C 12 , C 13 , C 14 , C 16 , C 17 . .
  • the corrected second component C 00meas , C 01meas , C 02meas , C 03meas , C 04meas , C 06meas , C 07meas , C 10meas , C 11meas , C12meas , C13meas , C14meas , C16meas , C17meas are as follows.
  • the control device 5 acquires the deformation information of the substrate P based on the corrected second component and the correlation (relational expression) stored in the storage device 5R (step SB12).
  • the control device 5 exposes the substrate P with the exposure light EL based on the acquired deformation information (step SB13).
  • the control device 5 adjusts the exposure conditions based on the acquired deformation information, and exposes the substrate P based on the adjusted exposure conditions.
  • the adjustment of the exposure condition includes adjusting the projection regions PR1 to PR7 using the imaging characteristic adjusting device 30.
  • the control device 5 uses the image formation characteristic adjustment device 30 to prevent the pattern overlay accuracy from degrading (so that an overlay error does not occur). At least one of the position, size, and shape of PR7 is adjusted, and the substrate P is exposed with the exposure light EL that is irradiated onto the adjusted projection areas PR1 to PR7.
  • the exposure sequence ends (step SB14).
  • a derivation sequence different from the exposure sequence is provided, and the correlation (relational expression) is derived based on the alignment mark measurement result of the substrate P subjected to test exposure in the derivation sequence.
  • the substrate P used in the derivation sequence is different from the substrate P in the lot used in the exposure sequence, that is, the substrate P outside the lot.
  • a correlation is derived from the alignment mark measurement results of a predetermined number of substrates P in the lot including the top of the lot.
  • the second component is calculated with a small number of alignment mark measurement points, and the second component and the correlation are calculated.
  • the substrate P may be exposed based on the acquired deformation information of the substrate P.
  • the nonlinear component is expanded into a third-order polynomial, but of course, it may be expanded into a second-order polynomial, or expanded into a fourth-order polynomial. May be. The order is arbitrary.
  • the substrate P in the above-described embodiment not only a glass substrate for a display device but also a semiconductor wafer for manufacturing a semiconductor device, a ceramic wafer for a thin film magnetic head, or an original mask (reticle) used in an exposure apparatus ( Synthetic quartz, silicon wafer) or the like is applied.
  • a step-and-scan type scanning exposure apparatus that scans and exposes the substrate P with the exposure light EL through the pattern of the mask M by moving the mask M and the substrate P synchronously.
  • the pattern of the mask M is collectively exposed while the mask M and the substrate P are stationary, and is applied to a step-and-repeat type projection exposure apparatus (stepper) that sequentially moves the substrate P stepwise.
  • the present invention also relates to a twin-stage type exposure having a plurality of substrate stages as disclosed in US Pat. No. 6,341,007, US Pat. No. 6,208,407, US Pat. No. 6,262,796, and the like. It can also be applied to devices.
  • the present invention relates to a substrate stage for holding a substrate as disclosed in US Pat. No. 6,897,963, European Patent Application No. 1713113, etc., and a reference mark without holding the substrate.
  • the present invention can also be applied to an exposure apparatus that includes a formed reference member and / or a measurement stage on which various photoelectric sensors are mounted.
  • An exposure apparatus including a plurality of substrate stages and measurement stages can be employed.
  • the type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a liquid crystal display element or a display, but an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on a substrate P, a thin film magnetic head, an image sensor (CCD)
  • the present invention can be widely applied to an exposure apparatus for manufacturing a micromachine, MEMS, DNA chip, reticle, mask, or the like.
  • the position information of each stage is measured using an interferometer system including a laser interferometer.
  • an interferometer system including a laser interferometer.
  • the present invention is not limited to this.
  • a scale diffiffraction grating provided in each stage You may use the encoder system which detects this.
  • a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used.
  • a variable shaped mask also called an electronic mask, an active mask, or an image generator
  • a pattern forming apparatus including a self-luminous image display element may be provided instead of the variable molding mask including the non-luminous image display element.
  • the exposure apparatus EX of the above-described embodiment is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. To ensure these various accuracies, before and after this assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Adjustments are made to achieve electrical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus.
  • the exposure apparatus is preferably manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
  • a microdevice such as a semiconductor device includes a step 201 for designing a function / performance of the microdevice, a step 202 for manufacturing a mask (reticle) based on the design step, and a substrate which is a base material of the device.
  • Manufacturing step 203 including substrate processing (exposure processing) including exposing the substrate with exposure light using a mask pattern and developing the exposed substrate (photosensitive material) according to the above-described embodiment
  • the substrate is manufactured through a substrate processing step 204, a device assembly step (including processing processes such as a dicing process, a bonding process, and a packaging process) 205, an inspection step 206, and the like.
  • the photosensitive material is developed to form an exposure pattern layer (developd photosensitive material layer) corresponding to the mask pattern, and the substrate is processed through the exposure pattern layer. It is.

Abstract

Disclosed is an exposure method in which: the relationship is derived between a first component of a non-linear distortion generated on a first substrate, said first component being calculated by measuring a first number of alignment marks, and a second component which can be calculated by measuring a second number of alignment marks which is lower than the first number of alignment marks measured; the second number of alignment marks on a second substrate is measured; deformation information for the second substrate is obtained on the basis of the result of the measurement of the second number of alignment marks and the derived relationship between the first component and the second component; and the second substrate is exposed to an exposure beam on the basis of the obtained deformation information.

Description

露光方法、露光装置、及びデバイス製造方法Exposure method, exposure apparatus, and device manufacturing method
 本発明は、露光方法、露光装置、及びデバイス製造方法に関する。
 本願は、2010年1月18日に出願された特願2010-8004号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an exposure method, an exposure apparatus, and a device manufacturing method.
This application claims priority based on Japanese Patent Application No. 2010-8004 for which it applied on January 18, 2010, and uses the content here.
 フラットパネルディスプレイ等の電子デバイスの製造工程において、例えば特許文献1に開示されているような、露光光で基板を露光する露光装置が使用される。デバイスは、基板上に複数のパターン(パターン化された膜)を積層することによって形成される。露光処理において、基板に既に形成されているパターンに次のパターンの像を重ね合わせる際、基板のアライメントマークを計測し、そのアライメントマークの計測結果に基づいて、基板と次のパターンの像との位置合わせを行うアライメント処理が実行される。 In a manufacturing process of an electronic device such as a flat panel display, for example, an exposure apparatus that exposes a substrate with exposure light as disclosed in Patent Document 1 is used. The device is formed by stacking a plurality of patterns (patterned films) on a substrate. In the exposure process, when the image of the next pattern is superimposed on the pattern already formed on the substrate, the alignment mark of the substrate is measured, and based on the measurement result of the alignment mark, the substrate and the image of the next pattern are measured. An alignment process for performing alignment is executed.
特開2001-215718号公報JP 2001-215718 A
 露光処理において、基板が変形すると、パターンの重ね合わせ精度が低下し、その結果、露光不良の発生、及び不良デバイスの発生をもたらす。基板が変形した場合でも、パターンの重ね合わせ精度の低下を抑制するために、基板の変形情報を精確に取得することが有効である。基板の変形が非線形成分(非線形歪み)を含む場合、アライメントマークの計測点数を多くすることによって、その非線形歪みを含む基板の変形情報を精確に取得することができる。しかし、アライメントマークの計測点数を多くした場合、その計測のために時間を要し、スループットが低下してしまう可能性がある。 In the exposure process, when the substrate is deformed, the pattern overlay accuracy is lowered, and as a result, an exposure failure and a defective device occur. Even when the substrate is deformed, it is effective to accurately acquire the deformation information of the substrate in order to suppress a decrease in pattern overlay accuracy. When the deformation of the substrate includes a nonlinear component (nonlinear distortion), the deformation information of the substrate including the nonlinear distortion can be accurately obtained by increasing the number of measurement points of the alignment mark. However, when the number of measurement points of the alignment mark is increased, it takes time for the measurement, and the throughput may be reduced.
 本発明の態様は、スループットの低下を抑制しつつ、基板の変形情報を精確に取得して露光不良の発生を抑制できる露光方法及び露光装置を提供することを目的とする。また本発明の態様は、スループットの低下を抑制しつつ、不良デバイスの発生を抑制できるデバイス製造方法を提供することを目的とする。 An object of an aspect of the present invention is to provide an exposure method and an exposure apparatus that can accurately acquire substrate deformation information and suppress the occurrence of exposure failure while suppressing a decrease in throughput. Another object of the present invention is to provide a device manufacturing method capable of suppressing the occurrence of defective devices while suppressing a decrease in throughput.
 本発明の第1の態様に従えば、第1基板に生じる非線形歪みのうち、算出のために前記第1基板において第1点数のマーク計測が必要な第1成分と、前記第1点数よりも少ない第2点数のマーク計測で算出可能な第2成分との関係を導出することと、第2基板において第2点数のマーク計測を実行することと、前記第2基板における前記第2点数のマーク計測の結果と、前記関係とに基づいて、前記第2基板の変形情報を取得することと、取得した前記変形情報に基づいて、前記第2基板を露光光で露光することと、を含む露光方法が提供される。 According to the first aspect of the present invention, out of the non-linear distortion generated in the first substrate, the first component that requires a first point mark measurement on the first substrate for calculation, and the first component, Deriving a relationship with a second component that can be calculated by measuring a small number of second points, executing a second number of marks on the second substrate, and marking the second point on the second substrate An exposure including: acquiring deformation information of the second substrate based on a measurement result and the relationship; and exposing the second substrate with exposure light based on the acquired deformation information. A method is provided.
 本発明の第2の態様に従えば、第1の態様の露光方法を用いて基板を露光することと、露光された前記基板を現像することと、を含むデバイス製造方法が提供される。 According to the second aspect of the present invention, there is provided a device manufacturing method including exposing a substrate using the exposure method of the first aspect and developing the exposed substrate.
 本発明の第3の態様に従えば、第1基板に生じる非線形歪みのうち、算出のために前記第1基板において第1点数のマーク計測が必要な第1成分と、前記第1点数よりも少ない第2点数のマーク計測で算出可能な第2成分との関係を記憶する記憶装置と、第2基板において第2点数のマーク計測を実行するマーク計測装置と、前記マーク計測装置の計測結果と、前記記憶装置の情報とに基づいて、前記第2基板の変形情報を取得する制御装置と、を備え、取得した前記変形情報に基づいて、前記第2基板を露光光で露光する露光装置が提供される。 According to the third aspect of the present invention, out of the non-linear distortion occurring in the first substrate, the first component that requires the first point mark measurement on the first substrate for calculation, and the first point number. A storage device that stores a relationship with a second component that can be calculated by a small second mark measurement, a mark measurement device that performs a second mark measurement on the second substrate, and a measurement result of the mark measurement device A controller that acquires deformation information of the second substrate based on information of the storage device, and an exposure apparatus that exposes the second substrate with exposure light based on the acquired deformation information Provided.
 本発明の第4の態様に従えば、第3の態様の露光装置を用いて基板を露光することと、露光された前記基板を現像することと、を含むデバイス製造方法が提供される。 According to a fourth aspect of the present invention, there is provided a device manufacturing method including exposing a substrate using the exposure apparatus according to the third aspect and developing the exposed substrate.
 本発明の態様によれば、スループットの低下を抑制しつつ、露光不良の発生を抑制できる。また本発明の態様によれば、スループットの低下を抑制しつつ、不良デバイスの発生を抑制できる。 According to the aspect of the present invention, it is possible to suppress the occurrence of exposure failure while suppressing a decrease in throughput. Moreover, according to the aspect of the present invention, it is possible to suppress the occurrence of defective devices while suppressing a decrease in throughput.
第1実施形態に係る露光装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the exposure apparatus which concerns on 1st Embodiment. 第1実施形態に係る露光装置の一例を示す斜視図である。It is a perspective view which shows an example of the exposure apparatus which concerns on 1st Embodiment. 第1実施形態に係る投影システムの一例を説明するための概略構成図である。It is a schematic block diagram for demonstrating an example of the projection system which concerns on 1st Embodiment. 第1実施形態に係る投影システムの投影領域とアライメントシステムの検出領域と基板との関係の一例を示す模式図である。It is a schematic diagram which shows an example of the relationship between the projection area | region of the projection system which concerns on 1st Embodiment, the detection area | region of an alignment system, and a board | substrate. 基板の変形の非線形成分の一例を示す図である。It is a figure which shows an example of the nonlinear component of a deformation | transformation of a board | substrate. 基板の変形の非線形成分の一例を示す図である。It is a figure which shows an example of the nonlinear component of a deformation | transformation of a board | substrate. 基板の変形の非線形成分の一例を示す図である。It is a figure which shows an example of the nonlinear component of a deformation | transformation of a board | substrate. 基板の変形の非線形成分の一例を示す図である。It is a figure which shows an example of the nonlinear component of a deformation | transformation of a board | substrate. 基板の変形の非線形成分の一例を示す図である。It is a figure which shows an example of the nonlinear component of a deformation | transformation of a board | substrate. 基板の変形の非線形成分の一例を示す図である。It is a figure which shows an example of the nonlinear component of a deformation | transformation of a board | substrate. 基板の変形の非線形成分の一例を示す図である。It is a figure which shows an example of the nonlinear component of a deformation | transformation of a board | substrate. アライメントマークの計測点数の一例を示す模式図である。It is a schematic diagram which shows an example of the number of measurement points of an alignment mark. 第1実施形態に係る露光方法の一例を示すフローチャートである。It is a flowchart which shows an example of the exposure method which concerns on 1st Embodiment. 基板に生じる非線形歪みのうち、第1成分及び第2成分の一例を示す模式図である。It is a schematic diagram which shows an example of a 1st component and a 2nd component among the nonlinear distortions which arise in a board | substrate. アライメントマークの計測点数の一例を示す模式図である。It is a schematic diagram which shows an example of the number of measurement points of an alignment mark. 第2実施形態に係る露光方法の一例を示すフローチャートである。It is a flowchart which shows an example of the exposure method which concerns on 2nd Embodiment. 本実施形態に係るデバイス製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the device manufacturing method which concerns on this embodiment.
 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部の位置関係について説明する。水平面内の所定方向をX軸方向、水平面内においてX軸方向と直交する方向をY軸方向、X軸方向及びY軸方向のそれぞれと直交する方向(すなわち鉛直方向)をZ軸方向とする。また、X軸、Y軸、及びZ軸まわりの回転(傾斜)方向をそれぞれ、θX、θY、及びθZ方向とする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. In the following description, an XYZ orthogonal coordinate system is set, and the positional relationship of each part will be described with reference to this XYZ orthogonal coordinate system. A predetermined direction in the horizontal plane is defined as an X-axis direction, a direction orthogonal to the X-axis direction in the horizontal plane is defined as a Y-axis direction, and a direction orthogonal to each of the X-axis direction and the Y-axis direction (that is, a vertical direction) is defined as a Z-axis direction. Further, the rotation (inclination) directions around the X axis, Y axis, and Z axis are the θX, θY, and θZ directions, respectively.
<第1実施形態>
 第1実施形態について説明する。図1は、第1実施形態に係る露光装置EXの一例を示す概略構成図、図2は、斜視図である。図1及び図2において、露光装置EXは、マスクMを保持して移動可能なマスクステージ1と、基板Pを保持して移動可能な基板ステージ2と、マスクステージ1を移動する駆動システム3と、基板ステージ2を移動する駆動システム4と、マスクMを露光光ELで照明する照明システムISと、露光光ELで照明されたマスクMのパターンの像を基板Pに投影する投影システムPSと、露光装置EX全体の動作を制御する制御装置5と、制御装置5に接続され、露光に関する各種の情報を記憶する記憶装置5Rとを備えている。
<First Embodiment>
A first embodiment will be described. FIG. 1 is a schematic block diagram showing an example of an exposure apparatus EX according to the first embodiment, and FIG. 2 is a perspective view. 1 and 2, an exposure apparatus EX includes a mask stage 1 that can move while holding a mask M, a substrate stage 2 that can move while holding a substrate P, and a drive system 3 that moves the mask stage 1. A driving system 4 that moves the substrate stage 2, an illumination system IS that illuminates the mask M with the exposure light EL, a projection system PS that projects an image of the pattern of the mask M illuminated by the exposure light EL onto the substrate P, A control device 5 that controls the operation of the entire exposure apparatus EX, and a storage device 5R that is connected to the control device 5 and stores various types of information related to exposure are provided.
 マスクMは、基板Pに投影されるデバイスパターンが形成されたレチクルを含む。基板Pは、例えばガラスプレート等の基材と、その基材上に形成された感光膜(塗布された感光剤)とを含む。本実施形態において、基板Pは、大型のガラスプレートを含み、その基板Pの一辺のサイズは、例えば500mm以上である。本実施形態においては、基板Pの基材として、一辺が約3000mmの矩形のガラスプレートを用いる。 The mask M includes a reticle on which a device pattern projected onto the substrate P is formed. The substrate P includes, for example, a base material such as a glass plate and a photosensitive film (coated photosensitizer) formed on the base material. In the present embodiment, the substrate P includes a large glass plate, and the size of one side of the substrate P is, for example, 500 mm or more. In the present embodiment, a rectangular glass plate having a side of about 3000 mm is used as the base material of the substrate P.
 また、本実施形態の露光装置EXは、マスクステージ1及び基板ステージ2の位置情報を計測する干渉計システム6と、マスクMの表面(下面、パターン形成面)の位置情報を検出する第1検出システム7と、基板Pの表面(露光面、感光面)の位置情報を検出する第2検出システム8と、基板P上のアライメントマーク計測を実行するアライメントシステム9とを備えている。 The exposure apparatus EX of the present embodiment also includes an interferometer system 6 that measures position information of the mask stage 1 and the substrate stage 2, and a first detection that detects position information of the surface (lower surface, pattern formation surface) of the mask M. The system 7 includes a second detection system 8 that detects position information on the surface (exposure surface, photosensitive surface) of the substrate P, and an alignment system 9 that performs alignment mark measurement on the substrate P.
 また、露光装置EXは、ボディ13を備えている。ボディ13は、例えばクリーンルーム内の支持面(例えば床面)FL上に防振台BLを介して配置されたベースプレート10と、ベースプレート10上に配置された第1コラム11と、第1コラム11上に配置された第2コラム12とを有する。本実施形態において、ボディ13は、投影システムPS、マスクステージ1、及び基板ステージ2のそれぞれを支持する。本実施形態において、投影システムPSは、定盤14を介して、第1コラム11に支持される。マスクステージ1は、第2コラム12に対して移動可能に支持される。基板ステージ2は、ベースプレート10に対して移動可能に支持される。 Further, the exposure apparatus EX includes a body 13. The body 13 includes, for example, a base plate 10 disposed on a support surface (for example, floor surface) FL in a clean room via a vibration isolation table BL, a first column 11 disposed on the base plate 10, and a first column 11 And a second column 12 disposed on the surface. In the present embodiment, the body 13 supports each of the projection system PS, the mask stage 1 and the substrate stage 2. In the present embodiment, the projection system PS is supported by the first column 11 via the surface plate 14. The mask stage 1 is supported so as to be movable with respect to the second column 12. The substrate stage 2 is supported so as to be movable with respect to the base plate 10.
 本実施形態において、投影システムPSは、複数の投影光学系を有する。照明システムISは、複数の投影光学系に対応する複数の照明モジュールを有する。また、本実施形態の露光装置EXは、マスクMと基板Pとを所定の走査方向に同期移動しながら、マスクMのパターンの像を基板Pに投影する。すなわち、本実施形態の露光装置EXは、所謂、マルチレンズ型スキャン露光装置である。 In the present embodiment, the projection system PS has a plurality of projection optical systems. The illumination system IS has a plurality of illumination modules corresponding to a plurality of projection optical systems. Further, the exposure apparatus EX of the present embodiment projects an image of the pattern of the mask M onto the substrate P while moving the mask M and the substrate P synchronously in a predetermined scanning direction. That is, the exposure apparatus EX of the present embodiment is a so-called multi-lens scan exposure apparatus.
 本実施形態において、投影システムPSは、7つの投影光学系PL1~PL7を有し、照明システムISは、7つの照明モジュールIL1~IL7を有する。なお、投影光学系及び照明モジュールの数は7つに限定されず、例えば投影システムPSが、投影光学系を11個有し、照明システムISが、照明モジュールを11個有してもよい。 In the present embodiment, the projection system PS has seven projection optical systems PL1 to PL7, and the illumination system IS has seven illumination modules IL1 to IL7. The number of projection optical systems and illumination modules is not limited to seven. For example, the projection system PS may have 11 projection optical systems, and the illumination system IS may have 11 illumination modules.
 照明システムISは、所定の照明領域IR1~IR7に露光光ELを照射可能である。照明領域IR1~IR7は、各照明モジュールIL1~IL7から射出される露光光ELの照射領域に含まれている。本実施形態において、照明システムISは、異なる7つの照明領域IR1~IR7のそれぞれを露光光ELで照明する。照明システムISは、マスクMのうち照明領域IR1~IR7に配置された部分を、均一な照度分布の露光光ELで照明する。本実施形態においては、照明システムISから射出される露光光ELとして、例えば水銀ランプから射出される輝線(g線、h線、i線)を用いる。 The illumination system IS can irradiate the predetermined illumination areas IR1 to IR7 with the exposure light EL. The illumination areas IR1 to IR7 are included in the irradiation areas of the exposure light EL emitted from the illumination modules IL1 to IL7. In the present embodiment, the illumination system IS illuminates each of the seven different illumination areas IR1 to IR7 with the exposure light EL. The illumination system IS illuminates portions of the mask M arranged in the illumination regions IR1 to IR7 with exposure light EL having a uniform illuminance distribution. In the present embodiment, for example, bright lines (g line, h line, i line) emitted from a mercury lamp are used as the exposure light EL emitted from the illumination system IS.
 マスクステージ1は、マスクMを保持した状態で、照明領域IR1~IR7に対して移動可能である。マスクステージ1は、マスクMを保持可能なマスク保持部15を有する。マスク保持部15は、マスクMを真空吸着可能なチャック機構を含み、マスクMをリリース可能に保持する。本実施形態において、マスク保持部15は、マスクMの下面(パターン形成面)とXY平面とがほぼ平行となるように、マスクMを保持する。駆動システム3は、例えばリニアモータを含み、第2コラム12のガイド面12G上においてマスクステージ1を移動可能である。本実施形態において、マスクステージ1は、駆動システム3の作動により、マスク保持部15でマスクMを保持した状態で、ガイド面12G上を、X軸、Y軸、及びθZ方向の3つの方向に移動可能である。 The mask stage 1 is movable with respect to the illumination areas IR1 to IR7 while holding the mask M. The mask stage 1 includes a mask holding unit 15 that can hold the mask M. The mask holding unit 15 includes a chuck mechanism that can vacuum-suck the mask M, and holds the mask M in a releasable manner. In the present embodiment, the mask holding unit 15 holds the mask M so that the lower surface (pattern forming surface) of the mask M and the XY plane are substantially parallel. The drive system 3 includes, for example, a linear motor, and can move the mask stage 1 on the guide surface 12G of the second column 12. In the present embodiment, the mask stage 1 operates in the three directions of the X axis, the Y axis, and the θZ direction on the guide surface 12G in a state where the mask M is held by the mask holding unit 15 by the operation of the drive system 3. It is movable.
 投影システムPSは、所定の投影領域PR1~PR7に露光光ELを照射可能である。投影領域PR1~PR7は、各投影光学系PL1~PL7から射出される露光光ELの照射領域に相当する。本実施形態において、投影システムPSは、異なる7つの投影領域PR1~PR7のそれぞれにパターンの像を投影する。投影光学システムPSは、基板Pのうち投影領域PR1~PR7に配置された部分に、マスクMのパターンの像を所定の投影倍率で投影する。 The projection system PS can irradiate the predetermined projection areas PR1 to PR7 with the exposure light EL. The projection areas PR1 to PR7 correspond to the irradiation areas of the exposure light EL emitted from the projection optical systems PL1 to PL7. In the present embodiment, the projection system PS projects a pattern image on each of seven different projection regions PR1 to PR7. The projection optical system PS projects an image of the pattern of the mask M on the portion of the substrate P arranged in the projection areas PR1 to PR7 with a predetermined projection magnification.
 基板ステージ2は、基板Pを保持した状態で、投影領域PR1~PR7に対して移動可能である。基板ステージ2は、基板Pを保持可能な基板保持部16を有する。基板保持部16は、基板Pを真空吸着可能なチャック機構を含み、基板Pをリリース可能に保持する。本実施形態において、基板保持部16は、基板Pの表面(露光面)とXY平面とがほぼ平行となるように、基板Pを保持する。駆動システム4は、例えばリニアモータを含み、ベースプレート10のガイド面10G上において基板ステージ2を移動可能である。本実施形態において、基板ステージ2は、駆動システム4の作動により、基板保持部16で基板Pを保持した状態で、ガイド面10G上を、X軸、Y軸、Z軸、θX、θY、及びθZ方向の6つの方向に移動可能である。 The substrate stage 2 is movable with respect to the projection regions PR1 to PR7 while holding the substrate P. The substrate stage 2 includes a substrate holding unit 16 that can hold the substrate P. The substrate holding unit 16 includes a chuck mechanism capable of vacuum-sucking the substrate P, and holds the substrate P so that the substrate P can be released. In the present embodiment, the substrate holding unit 16 holds the substrate P so that the surface (exposure surface) of the substrate P and the XY plane are substantially parallel. The drive system 4 includes, for example, a linear motor, and can move the substrate stage 2 on the guide surface 10 </ b> G of the base plate 10. In the present embodiment, the substrate stage 2 operates on the guide surface 10G with the X-axis, Y-axis, Z-axis, θX, θY, and It can move in six directions of θZ direction.
 アライメントシステム9は、基板Pに設けられているアライメントマークを計測する。アライメントシステム9は、所謂、オフアクシス方式のアライメントシステムであり、基板ステージ2に保持された基板Pの表面と対向配置される複数の顕微鏡9A~9Fを有する。顕微鏡9A~9Fのそれぞれは、検出領域AL1~AL6に検出光を照射する投射部と、検出領域AL1~AL6に配置されたアライメントマークの光学像を取得可能な受光部とを有する。 The alignment system 9 measures an alignment mark provided on the substrate P. The alignment system 9 is a so-called off-axis alignment system, and includes a plurality of microscopes 9A to 9F arranged to face the surface of the substrate P held on the substrate stage 2. Each of the microscopes 9A to 9F includes a projection unit that irradiates detection light to the detection regions AL1 to AL6, and a light receiving unit that can acquire an optical image of the alignment marks arranged in the detection regions AL1 to AL6.
 制御装置5は、投影システムPSにより形成されるマスクMのパターンの像を、基板Pに既に形成されているパターンに重ね合わせるように、露光処理を実行する。露光処理の際、制御装置5は、基板Pのアライメントマークを計測し、そのアライメントマークの計測結果に基づいて、基板PとマスクMのパターンの像との位置合わせを行うアライメント処理を実行する。 The control device 5 performs an exposure process so that the pattern image of the mask M formed by the projection system PS is superimposed on the pattern already formed on the substrate P. During the exposure process, the control device 5 measures the alignment mark of the substrate P, and executes an alignment process for aligning the substrate P and the pattern image of the mask M based on the measurement result of the alignment mark.
 図3は、本実施形態に係る投影システムPS、アライメントシステム9、及び投影領域PR1~PR7に配置された基板ステージ2の一例を示す図である。 FIG. 3 is a diagram showing an example of the projection system PS, the alignment system 9, and the substrate stage 2 arranged in the projection regions PR1 to PR7 according to the present embodiment.
 第1投影光学系PL1について説明する。図3において、第1投影光学系PL1は、第1照明モジュールIL1により露光光ELで照明されたマスクMのパターンの像を基板Pに投影する。第1投影光学系PL1は、像面調整部33と、シフト調整部34と、二組の反射屈折型光学系31,32と、視野絞り35と、スケーリング調整部36とを備えている。 The first projection optical system PL1 will be described. In FIG. 3, the first projection optical system PL1 projects an image of the pattern of the mask M illuminated with the exposure light EL by the first illumination module IL1 onto the substrate P. The first projection optical system PL1 includes an image plane adjustment unit 33, a shift adjustment unit 34, two sets of catadioptric optical systems 31, 32, a field stop 35, and a scaling adjustment unit 36.
 照明領域IR1に照射され、マスクMを透過した露光光ELは、像面調整部33に入射する。像面調整部33は、第1投影光学系PL1の像面の位置(Z軸、θX、及びθY方向に関する位置)を調整可能である。像面調整部33は、マスクM及び基板Pに対して光学的にほぼ共役な位置に配置されている。像面調整部33は、第1光学部材33A及び第2光学部材33Bと、第2光学部材33Bに対して第1光学部材33Aを移動可能な駆動装置(不図示)とを備えている。第1光学部材33Aと第2光学部材33Bとは、気体軸受により、所定のギャップを介して対向する。第1光学部材33A及び第2光学部材33Bは、露光光ELを透過可能なガラス板であり、それぞれくさび形状を有する。制御装置5は、駆動装置を作動して、第1光学部材33Aと第2光学部材33Bとの位置関係を調整することにより、第1投影光学系PL1の像面の位置を調整することができる。像面調整部33を通過した露光光ELは、シフト調整部34に入射する。 The exposure light EL irradiated to the illumination area IR1 and transmitted through the mask M enters the image plane adjustment unit 33. The image plane adjustment unit 33 can adjust the position of the image plane of the first projection optical system PL1 (position in the Z axis, θX, and θY directions). The image plane adjustment unit 33 is disposed at a position that is optically conjugate with respect to the mask M and the substrate P. The image plane adjustment unit 33 includes a first optical member 33A and a second optical member 33B, and a drive device (not shown) that can move the first optical member 33A relative to the second optical member 33B. The first optical member 33A and the second optical member 33B are opposed to each other through a predetermined gap by a gas bearing. The first optical member 33A and the second optical member 33B are glass plates capable of transmitting the exposure light EL, and each have a wedge shape. The control device 5 can adjust the position of the image plane of the first projection optical system PL1 by operating the drive device and adjusting the positional relationship between the first optical member 33A and the second optical member 33B. . The exposure light EL that has passed through the image plane adjustment unit 33 enters the shift adjustment unit 34.
 シフト調整部34は、基板P上におけるマスクMのパターンの像をX軸方向及びY軸方向にシフトさせることができる。シフト調整部34を透過した露光光ELは、1組目の反射屈折型光学系31に入射する。反射屈折型光学系31は、マスクMのパターンの中間像を形成する。反射屈折型光学系31から射出された露光光ELは、視野絞り35に供給される。 The shift adjusting unit 34 can shift the pattern image of the mask M on the substrate P in the X-axis direction and the Y-axis direction. The exposure light EL transmitted through the shift adjustment unit 34 enters the first set of catadioptric optical system 31. The catadioptric optical system 31 forms an intermediate image of the pattern of the mask M. The exposure light EL emitted from the catadioptric optical system 31 is supplied to the field stop 35.
 視野絞り35は、反射屈折型光学系31により形成されるパターンの中間像の位置に配置されている。視野絞り35は、投影領域PR1を規定する。本実施形態において、視野絞り35は、基板P上における投影領域PR1を台形状に規定する。視野絞り35を通過した露光光ELは、2組目の反射屈折型光学系32に入射する。 The field stop 35 is disposed at the position of the intermediate image of the pattern formed by the catadioptric optical system 31. The field stop 35 defines the projection region PR1. In the present embodiment, the field stop 35 defines the projection region PR1 on the substrate P in a trapezoidal shape. The exposure light EL that has passed through the field stop 35 enters the second set of catadioptric optical system 32.
 反射屈折型光学系32は、反射屈折型光学系31と同様に構成されている。反射屈折型光学系32から射出された露光光ELは、スケーリング調整部36に入射する。スケーリング調整部36は、マスクMのパターンの像の倍率(スケーリング)を調整することができる。スケーリング調整部36を介した露光光ELは、基板Pに照射される。本実施形態において、第1投影光学系PL1は、マスクMのパターンの像を、基板P上に、正立等倍で投影する。 The catadioptric optical system 32 is configured in the same manner as the catadioptric optical system 31. The exposure light EL emitted from the catadioptric optical system 32 enters the scaling adjustment unit 36. The scaling adjustment unit 36 can adjust the magnification (scaling) of the pattern image of the mask M. The exposure light EL that has passed through the scaling adjustment unit 36 is irradiated onto the substrate P. In the present embodiment, the first projection optical system PL1 projects an image of the pattern of the mask M onto the substrate P at an erecting equal magnification.
 上述の像面調整部33、シフト調整部34、及びスケーリング調整部36により、第1投影光学系PL1の結像特性(光学特性)を調整する結像特性調整装置30が構成される。結像特性調整装置30は、X軸、Y軸、Z軸、θX、θY、及びθZ方向の6つの方向に関する第1投影光学系PL1の像面の位置を調整可能であり、パターンの像の倍率を調整可能である。 The above-described image plane adjustment unit 33, shift adjustment unit 34, and scaling adjustment unit 36 constitute an image formation characteristic adjustment device 30 that adjusts the image formation characteristic (optical characteristic) of the first projection optical system PL1. The imaging characteristic adjusting device 30 is capable of adjusting the position of the image plane of the first projection optical system PL1 with respect to the six directions of the X axis, the Y axis, the Z axis, the θX, the θY, and the θZ directions. The magnification can be adjusted.
 以上、第1投影光学系PL1について説明した。第2~第7投影光学系PL2~PL7は、第1投影光学系PL1と同等の構成を有する。第2~第7投影光学系PL2~PL7についての説明は省略する。 The first projection optical system PL1 has been described above. The second to seventh projection optical systems PL2 to PL7 have the same configuration as the first projection optical system PL1. A description of the second to seventh projection optical systems PL2 to PL7 is omitted.
 図4は、投影領域PR1~PR7と、検出領域AL1~AL6と、基板Pとの位置関係の一例を示す模式図であり、基板Pの表面を含む平面内の位置関係を示している。図4に示すように、本実施形態おいて、基板Pの表面は、マスクMのパターンの像が投影される複数の露光領域(被処理領域)PA1~PA6を有する。本実施形態において、基板Pの表面は、6つの露光領域PA1~PA6を有する。露光領域PA1、PA2、PA3が、Y軸方向にほぼ等間隔で離れて配置され、露光領域PA4、PA5、PA6が、Y軸方向にほぼ等間隔で離れて配置されている。露光領域PA1、PA2、PA3は、露光領域PA4、PA5、PA6に対して+X側に配置されている。 FIG. 4 is a schematic diagram showing an example of the positional relationship between the projection regions PR1 to PR7, the detection regions AL1 to AL6, and the substrate P, and shows the positional relationship in a plane including the surface of the substrate P. As shown in FIG. 4, in the present embodiment, the surface of the substrate P has a plurality of exposure areas (processed areas) PA1 to PA6 onto which an image of the pattern of the mask M is projected. In the present embodiment, the surface of the substrate P has six exposure areas PA1 to PA6. The exposure areas PA1, PA2, and PA3 are arranged at approximately equal intervals in the Y axis direction, and the exposure areas PA4, PA5, and PA6 are arranged at approximately equal intervals in the Y axis direction. The exposure areas PA1, PA2, and PA3 are arranged on the + X side with respect to the exposure areas PA4, PA5, and PA6.
 本実施形態において、投影領域PR1~PR7のそれぞれは、XY平面内において台形である。本実施形態において、投影光学系PL1、PL3、PL5、PL7による投影領域PR1、PR3、PR5、PR7が、Y軸方向にほぼ等間隔で配置され、投影光学系PL2、PL4、PL6による投影領域PR2、PR4、PR6が、Y軸方向にほぼ等間隔で配置されている。投影領域PR1、PR3、PR5、PR7は、投影領域PR2、PR4、PR6に対して-X側に配置されている。また、Y軸方向に関して、投影領域PR1、PR3、PR5、PR7の間に、投影領域PR2、PR4、PR6が配置される。 In the present embodiment, each of the projection areas PR1 to PR7 is a trapezoid in the XY plane. In the present embodiment, projection regions PR1, PR3, PR5, PR7 by the projection optical systems PL1, PL3, PL5, PL7 are arranged at substantially equal intervals in the Y-axis direction, and projection regions PR2 by the projection optical systems PL2, PL4, PL6 are arranged. , PR4, PR6 are arranged at substantially equal intervals in the Y-axis direction. The projection areas PR1, PR3, PR5, PR7 are arranged on the −X side with respect to the projection areas PR2, PR4, PR6. Further, the projection areas PR2, PR4, and PR6 are arranged between the projection areas PR1, PR3, PR5, and PR7 with respect to the Y-axis direction.
 本実施形態において、顕微鏡9A~9Fによる検出領域AL1~AL6が、投影領域PR1~PR7に対して-X側に配置されている。検出領域AL1~AL6は、Y軸方向に離れて配置される。複数の検出領域AL1~AL6のうち、Y軸方向に関して外側2つの検出領域AL1と検出領域AL6との間隔は、複数の露光領域PA1~PA6のうち、Y軸方向に関して外側2つの露光領域PA1(PA4)の-Y側のエッジと露光領域PA3(PA6)の+Y側のエッジとの間隔とほぼ等しい。 In this embodiment, the detection areas AL1 to AL6 by the microscopes 9A to 9F are arranged on the −X side with respect to the projection areas PR1 to PR7. The detection areas AL1 to AL6 are arranged apart from each other in the Y-axis direction. Among the plurality of detection areas AL1 to AL6, the distance between the two outer detection areas AL1 and AL6 in the Y-axis direction is set so that the two outer exposure areas PA1 ( The distance between the −Y side edge of PA4) and the + Y side edge of exposure area PA3 (PA6) is substantially equal.
 アライメントシステム9は、基板Pに設けられている複数のアライメントマークm1~m6を検出する。本実施形態において、基板P上にはY軸方向に離れて6つのアライメントマークm1~m6が配置され、それらアライメントマークm1~m6のグループが、X軸方向に離れた4箇所に配置されている。アライメントマークm1,m2は、露光領域PA1,PA4の各両端部に隣接して設けられ、アライメントマークm3,m4は、露光領域PA2,PA5の各両端部に隣接して設けられ、アライメントマークm5,m6は、露光領域PA3,PA6の各両端部に隣接して設けられている。 The alignment system 9 detects a plurality of alignment marks m1 to m6 provided on the substrate P. In the present embodiment, six alignment marks m1 to m6 are arranged on the substrate P so as to be separated from each other in the Y axis direction, and groups of these alignment marks m1 to m6 are arranged at four places separated in the X axis direction. . Alignment marks m1 and m2 are provided adjacent to both ends of exposure areas PA1 and PA4, and alignment marks m3 and m4 are provided adjacent to both ends of exposure areas PA2 and PA5. m6 is provided adjacent to both ends of the exposure areas PA3 and PA6.
 本実施形態においては、基板P上においてY軸方向に離れて配置された6つのアライメントマークm1~m6に対応して、顕微鏡9A~9F(検出領域AL1~AL6)が配置されている。顕微鏡9A~9Fは、アライメントマークm1~m6が検出領域AL1~AL6に同時に配置されるように設けられている。アライメントシステム9は、顕微鏡9A~9Fを用いて、6つのアライメントマークm1~m6を同時に検出可能である。 In this embodiment, microscopes 9A to 9F (detection areas AL1 to AL6) are arranged corresponding to the six alignment marks m1 to m6 arranged on the substrate P so as to be separated from each other in the Y-axis direction. The microscopes 9A to 9F are provided so that the alignment marks m1 to m6 are simultaneously arranged in the detection areas AL1 to AL6. The alignment system 9 can simultaneously detect the six alignment marks m1 to m6 using the microscopes 9A to 9F.
 ところで、基板Pは、変形する可能性がある。基板Pは、例えば露光処理の前後に行われる各種のプロセス処理によって加熱される場合がある。その結果、基板Pの変形(熱変形)が発生する可能性がある。また、基板保持部16の保持状態に起因して、基板Pの変形(歪み変形)が発生する可能性がある。なお、基板保持部16の保持状態は、例えば基板保持部16に設けられている吸着機構の吸着むらを含む。 Incidentally, the substrate P may be deformed. The substrate P may be heated by, for example, various process processes performed before and after the exposure process. As a result, the substrate P may be deformed (thermally deformed). Further, the substrate P may be deformed (distorted) due to the holding state of the substrate holding unit 16. Note that the holding state of the substrate holding unit 16 includes, for example, suction unevenness of the suction mechanism provided in the substrate holding unit 16.
 基板Pの変形は、線形成分と非線型成分とに分けることができる。以下の説明において、基板Pの変形の非線形成分を適宜、非線形歪み、と称する。 The deformation of the substrate P can be divided into a linear component and a non-linear component. In the following description, the nonlinear component of the deformation of the substrate P is appropriately referred to as nonlinear distortion.
 非線形成分(非線形歪み)は、多項式で表すことができる。非線形成分は、例えば3次の多項式で表すことができる。非線形成分は、最小自乗法により展開することによって、例えば以下の3次の多項式で表すことができる。 Non-linear component (non-linear distortion) can be expressed by a polynomial. The nonlinear component can be expressed by a cubic polynomial, for example. The nonlinear component can be expressed by, for example, the following third-order polynomial by developing by the method of least squares.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図5、図6、及び図7に、展開した2次の非線形成分を示し、図8、図9、図10、及び図11に、展開した3次の非線形成分を示す。なお、(1)式は、X軸方向に関する基準の格子点からの変位量を示し、(2)式は、Y軸方向に関する基準の格子点からの変位量を示す。 5, 6 and 7 show the developed second-order nonlinear components, and FIGS. 8, 9, 10 and 11 show the developed third-order nonlinear components. Equation (1) indicates the amount of displacement from the reference lattice point in the X-axis direction, and Equation (2) indicates the amount of displacement from the reference lattice point in the Y-axis direction.
 上述のように、露光処理は、基板Pに既に形成されているパターンに重ね合わせるように、マスクMのパターンの像を投影する処理を含む。その露光処理において、基板Pとパターンの像との位置合わせのためにアライメント処理が実行される。基板Pが変形した場合、パターンの重ね合わせ精度の低下を抑制するために、基板Pの変形情報を精確に取得することが有効である。 As described above, the exposure process includes a process of projecting an image of the pattern of the mask M so as to be superimposed on the pattern already formed on the substrate P. In the exposure process, an alignment process is performed to align the substrate P and the pattern image. When the substrate P is deformed, it is effective to accurately acquire deformation information of the substrate P in order to suppress a decrease in pattern overlay accuracy.
 基板Pに非線形歪みが発生した場合、アライメントマークの計測点数を多くすることによって、その非線形歪みに関する変形情報を取得することができる。すなわち、アライメントマークの計測点数が多いほど、非線形歪みの高次成分に関する情報を取得することができる。基板Pの変形情報のうち、高次の非線形成分に関する情報を取得するために、基板Pにアライメントマークを多数配置し、それら多数のアライメントマークをアライメントシステム9で計測することが有効である。 When nonlinear distortion occurs in the substrate P, deformation information relating to the nonlinear distortion can be acquired by increasing the number of measurement points of the alignment mark. That is, as the number of alignment mark measurement points increases, information on higher-order components of nonlinear distortion can be acquired. In order to obtain information on higher-order nonlinear components among the deformation information of the substrate P, it is effective to arrange a large number of alignment marks on the substrate P and to measure these many alignment marks with the alignment system 9.
 例えば、非線形成分のうち、Y軸方向のx2成分を算出するためには、図12の模式図に示すように、基板P上において少なくともX軸方向に関して異なる複数ヵ所にアライメントマークを配置し、それらアライメントマークの全てを計測する必要がある。 For example, in order to calculate the x 2 component in the Y-axis direction among the nonlinear components, as shown in the schematic diagram of FIG. 12, alignment marks are arranged at a plurality of different positions on the substrate P at least in the X-axis direction, It is necessary to measure all of these alignment marks.
 このように、基板P上に多数のアライメントマークを配置し、それら多数のアライメントマークをアライメントシステム9によって計測することで、高次の非線形成分に関する情報を取得することができる。高次の非線形成分に関する情報まで取得することによって、パターンの重ね合わせ精度の低下を抑制するための補正処理を良好に実行することができる。なお、補正処理は、結像特性調整装置30を用いて投影領域PR1~PR7を調整する処理を含む。 As described above, by arranging a large number of alignment marks on the substrate P and measuring the large number of alignment marks by the alignment system 9, information on higher-order nonlinear components can be acquired. By acquiring up to information about higher-order nonlinear components, it is possible to satisfactorily execute correction processing for suppressing a decrease in pattern overlay accuracy. The correction process includes a process of adjusting the projection areas PR1 to PR7 using the imaging characteristic adjusting device 30.
 しかし、アライメントマークの計測点数を多くした場合、その計測のために時間を要し、スループットが低下してしまう可能性がある。 However, if the number of alignment mark measurement points is increased, it takes time for the measurement and the throughput may be reduced.
 そこで、本実施形態においては、図13のフローチャートに示すように、基板Pに生じる非線形歪みのうち、算出のために基板Pにおいて第1点数のアライメントマーク計測が必要な第1成分と、第1点数よりも少ない第2点数のアライメントマーク計測で算出可能な第2成分との関係(相関性)を導出する処理(ステップSA1)と、基板Pにおいて第2点数のアライメントマーク計測を実行する処理(ステップSA2)と、ステップSA2で計測した結果と、ステップSA1で導出した関係とに基づいて、基板Pの変形情報を取得する処理(ステップSA3)と、取得した変形情報に基づいて、基板Pを露光光ELで露光する処理(ステップSA4)と、が実行される。 Therefore, in the present embodiment, as shown in the flowchart of FIG. 13, out of the non-linear distortion generated in the substrate P, the first component that requires the first number of alignment mark measurements on the substrate P for calculation, and the first component A process of deriving a relationship (correlation) with a second component that can be calculated by measuring an alignment mark with a second score smaller than the score (step SA1), and a process of executing alignment mark measurement of the second score on the substrate P (step SA1) Step SA2), a process of obtaining deformation information of the substrate P based on the result measured in Step SA2 and the relationship derived in Step SA1 (Step SA3), and the substrate P based on the obtained deformation information. A process of exposing with the exposure light EL (step SA4) is executed.
 本実施形態において、相関性を導出する処理(ステップSA1)は、露光される基板Pのアライメント処理及び露光処理(ステップSA2~SA4)に先立って、事前に実行される。 In the present embodiment, the process for deriving the correlation (step SA1) is executed in advance prior to the alignment process and the exposure process (steps SA2 to SA4) for the substrate P to be exposed.
 以下、本実施形態の原理について説明する。(1)式、(2)式、及び図5~図11に示したように、非線形歪みは、複数の成分に分解(展開)できる。本発明者の知見によれば、非線形歪みの複数の成分のうち、所定の成分同士は、相関性があることが分かった。 Hereinafter, the principle of this embodiment will be described. As shown in the equations (1), (2), and FIGS. 5 to 11, the nonlinear distortion can be decomposed (developed) into a plurality of components. According to the knowledge of the present inventor, it has been found that among a plurality of components of nonlinear distortion, predetermined components have a correlation.
 以下、説明を簡単にするために、図14に示す非線形成分を例にして説明する。図14(C)に示す非線形成分は、図14(A)に示す2次成分(Y軸方向のx2成分)と、図14(B)に示す2次成分(X軸方向のxy成分)とに分解することができる。この場合、図14(A)に示す2次成分(Y軸方向のx2成分)と図14(B)に示す2次成分(X軸方向のxy成分)とは相関性がある。 Hereinafter, in order to simplify the description, the nonlinear component shown in FIG. 14 will be described as an example. 14 nonlinear components shown in (C) is a second-order components shown in FIG. 14 (A) (x 2 component in the Y-axis direction), a second order component (xy component of the X-axis direction) shown in FIG. 14 (B) And can be disassembled. In this case, there is a correlation to the secondary component (Y-axis direction of the x 2 component) and the secondary component (xy component of the X-axis direction) shown in FIG. 14 (B) shown in FIG. 14 (A).
 すなわち、図14(A)に示す2次成分が生じている場合、内部応力として図14(A)の矢印で示すような力が発生し、その作用のため図14(B)に示す2次成分が発生し、その結果、図14(C)に示すような非線形歪みが発生すると考えられる。この場合、図14(A)に示す2次成分と図14(B)に示す2次成分とは相関性がある。 That is, when the secondary component shown in FIG. 14 (A) is generated, a force as shown by an arrow in FIG. 14 (A) is generated as an internal stress, and the secondary shown in FIG. As a result, a non-linear distortion as shown in FIG. 14C is considered to occur. In this case, the secondary component shown in FIG. 14 (A) and the secondary component shown in FIG. 14 (B) are correlated.
 そのため、図14(A)に示す2次成分、及び図14(B)に示す2次成分のいずれか一方の成分を計測することにより、その計測結果と、上述の相関性とに基づいて、他方の成分を求めることができる。 Therefore, by measuring one of the secondary component shown in FIG. 14 (A) and the secondary component shown in FIG. 14 (B), based on the measurement result and the above correlation, The other component can be determined.
 図14(A)に示す2次成分を求める場合、あるいは図14(C)に示す非線形成分を求める場合、図12に示したように、8つのアライメントマークを計測する必要がある。一方、図14(B)に示す2次成分を求める場合、図15に示すように、4つのアライメントマークを計測すれば足りる。 When obtaining the secondary component shown in FIG. 14A or obtaining the nonlinear component shown in FIG. 14C, it is necessary to measure eight alignment marks as shown in FIG. On the other hand, when obtaining the secondary component shown in FIG. 14B, it is sufficient to measure four alignment marks as shown in FIG.
 本実施形態においては、図14(A)に示す2次成分と図14(B)に示す2次成分との相関性が、基板Pの露光に先立って事前に導出される(ステップSA1)。そして、実際に基板Pを露光する場合、図15に示すようにその基板Pにおいて4つのアライメントマークの計測が実行される(ステップSA2)。4つのアライメントマークの計測結果に基づいて、図14(B)に示す2次成分が求められる。ステップSA2で計測した4つのアライメントマークの計測結果、すなわち、図14(B)に示す2次成分と、ステップSA1で導出された相関性とに基づいて、図14(A)に示す2次成分が求められる。図14(A)に示す2次成分と図14(B)に示す2次成分とが求められたので、図14(C)に示したような非線形成分に関する情報が取得可能である(ステップSA3)。 In this embodiment, the correlation between the secondary component shown in FIG. 14A and the secondary component shown in FIG. 14B is derived in advance prior to the exposure of the substrate P (step SA1). When the substrate P is actually exposed, measurement of four alignment marks is executed on the substrate P as shown in FIG. 15 (step SA2). Based on the measurement results of the four alignment marks, the secondary component shown in FIG. 14B is obtained. Based on the measurement results of the four alignment marks measured in step SA2, that is, the secondary component shown in FIG. 14B and the correlation derived in step SA1, the secondary component shown in FIG. Is required. Since the secondary component shown in FIG. 14 (A) and the secondary component shown in FIG. 14 (B) have been obtained, information on the nonlinear component as shown in FIG. 14 (C) can be acquired (step SA3). ).
 このように、本実施形態においては、基板Pに生じる非線形歪みのうち、図14(A)に示す2次成分(Y軸方向のx2成分)と、図14(B)に示す2次成分(X軸方向のxy成分)との相関性が予め導出される。図12に示したように、図14(A)に示す2次成分(Y軸方向のx2成分)は、その2次成分の算出のために基板Pにおいて8点のアライメントマーク計測が必要な成分である。一方、図15に示したように、図14(B)に示す2次成分(X軸方向のxy成分)は、基板Pにおいて4点のアライメントマーク計測で算出可能な成分である。ステップSA1において求められた相関性は、記憶装置5Rに記憶される。 Thus, in the present embodiment, among the nonlinear distortion occurring in the substrate P, a second order component shown in FIG. 14 (A) (x 2 component in the Y-axis direction), a second order component shown in FIG. 14 (B) The correlation with (xy component in the X-axis direction) is derived in advance. As shown in FIG. 12, the secondary components shown in FIG. 14 (A) (x 2 component in the Y-axis direction), that require alignment mark measurement of eight points in the substrate P for the calculation of the second order component It is an ingredient. On the other hand, as shown in FIG. 15, the secondary component (xy component in the X-axis direction) shown in FIG. 14B is a component that can be calculated by measuring four alignment marks on the substrate P. The correlation obtained in step SA1 is stored in the storage device 5R.
 以下の説明において、その成分の算出のために基板Pにおいて6点のアライメントマーク計測が必要な図14(A)に示す2次成分を適宜、第1成分、と称し、6点よりも少ない4点のアライメントマーク計測で算出可能な図14(B)に示す2次成分を適宜、第2成分、と称する。 In the following description, the secondary component shown in FIG. 14A, which requires 6-point alignment mark measurement on the substrate P in order to calculate the component, is appropriately referred to as a first component, and is smaller than 6 points 4 The secondary component shown in FIG. 14B that can be calculated by measuring the alignment mark of the points is appropriately referred to as a second component.
 制御装置5は、基板Pを露光する際、その基板Pにおいて4点のアライメントマークを、アライメントシステム9を用いて計測する(ステップSA2)。制御装置5は、ステップSA2で計測した4点のアライメントマークの計測結果と、記憶装置5Rに記憶されている相関性に関する情報とに基づいて、基板Pの変形情報を取得することができる(ステップSA3)。 The controller 5 measures the four alignment marks on the substrate P using the alignment system 9 when exposing the substrate P (step SA2). The control device 5 can acquire deformation information of the substrate P based on the measurement result of the four alignment marks measured in step SA2 and the information on the correlation stored in the storage device 5R (step). SA3).
 制御装置5は、その取得した変形情報に基づいて、その基板Pを露光光ELで露光する(ステップSA4)。制御装置5は、取得した変形情報に基づいて、露光条件を調整し、その調整された露光条件に基づいて、基板Pを露光する。露光条件の調整は、結像特性調整装置30を用いて投影領域PR1~PR7を調整することを含む。制御装置5は、取得した基板Pの変形情報に基づいて、パターンの重ね合わせ精度が低下しないように(重ね合わせ誤差が生じないように)、結像特性調整装置30を用いて投影領域PR1~PR7の位置、大きさ、及び形状の少なくとも一つを調整し、その調整された投影領域PR1~PR7に照射される露光光ELで基板Pを露光する。 The control device 5 exposes the substrate P with the exposure light EL based on the acquired deformation information (step SA4). The control device 5 adjusts the exposure conditions based on the acquired deformation information, and exposes the substrate P based on the adjusted exposure conditions. The adjustment of the exposure condition includes adjusting the projection regions PR1 to PR7 using the imaging characteristic adjusting device 30. Based on the acquired deformation information of the substrate P, the control device 5 uses the image formation characteristic adjustment device 30 to prevent the pattern overlay accuracy from degrading (so that an overlay error does not occur). At least one of the position, size, and shape of PR7 is adjusted, and the substrate P is exposed with the exposure light EL that is irradiated onto the adjusted projection areas PR1 to PR7.
 本実施形態において、制御装置5は、図14(A)に示す第1成分と図14(B)に示す第2成分との相関性を重回帰分析によって求める。すなわち、ステップSA1において、制御装置5は、6点のアライメントマークの計測結果に基づいて、図14(A)に示す第1成分を算出し、4点のアライメントマークの計測結果に基づいて、図14(B)に示す第2成分を算出し、その算出された第1成分及び第2成分を重回帰分析することによって、第1成分と第2成分との相関性(関係)を導出する。本実施形態において、第1成分と第2成分との相関性は、所定の関係式を含む。本実施形態においては、所定の関係式として、一次式を採用する。すなわち、本実施形態において、第1成分と第2成分との相関性(関係)の導出は、第1成分と第2成分との一次式の関係を導出することを含む。 In the present embodiment, the control device 5 obtains the correlation between the first component shown in FIG. 14 (A) and the second component shown in FIG. 14 (B) by multiple regression analysis. That is, in step SA1, the control device 5 calculates the first component shown in FIG. 14A based on the measurement results of the six alignment marks, and calculates the first component shown in FIG. The second component shown in FIG. 14B is calculated, and the calculated first component and second component are subjected to multiple regression analysis to derive the correlation (relationship) between the first component and the second component. In the present embodiment, the correlation between the first component and the second component includes a predetermined relational expression. In the present embodiment, a linear expression is adopted as the predetermined relational expression. That is, in the present embodiment, the derivation of the correlation (relationship) between the first component and the second component includes derivation of a linear relationship between the first component and the second component.
 例えば、図14(B)に示す第2成分を説明変数、図14(A)に示す第1成分を目的関数として、重回帰分析を用いて関係式を算出する。その際、有効な目的変数の選択にはステップワイズ法等を用いることが好ましい。求められた関係式は、記憶装置5Rに記憶される。 For example, a relational expression is calculated using multiple regression analysis with the second component shown in FIG. 14B as an explanatory variable and the first component shown in FIG. 14A as an objective function. At this time, it is preferable to use a stepwise method or the like for selecting an effective objective variable. The obtained relational expression is stored in the storage device 5R.
 なお、本発明者の知見によれば、相関性(関係式)は、例えば基板Pの形状、大きさ、厚み、及び基板Pに対して施される各種のプロセス処理の条件に応じて変化すると考えられる。 According to the knowledge of the present inventor, the correlation (relational expression) changes depending on, for example, the shape, size, and thickness of the substrate P, and various processing conditions applied to the substrate P. Conceivable.
 このように、本実施形態によれば、第1成分と第2成分との相関性(関係式)を事前に求めておき(ステップSA1)、実際の基板Pの露光時において、4点のアライメントマークの計測結果に基づいて図14(B)に示す第2成分がどれくらい生じているのかを知ることによって、図14(A)に示す第1成分を知ることができる。また、図14(C)に示す非線形成分も知ることができる。 As described above, according to the present embodiment, the correlation (relational expression) between the first component and the second component is obtained in advance (step SA1), and the four-point alignment is performed during the actual exposure of the substrate P. By knowing how much the second component shown in FIG. 14B is generated based on the measurement result of the mark, the first component shown in FIG. 14A can be known. Further, the nonlinear component shown in FIG. 14C can also be known.
 以上説明したように、本実施形態によれば、基板Pに生じる非線形成分のうち、6点のアライメントマークを計測しなければ算出できない第1成分を、4点のアライメントマークの計測結果に基づいて取得することができる。すなわち、本実施形態によれば、事前に求めた相関性(関係式)を用いて、少ないアライメントマーク計測点数で、多いアライメントマーク計測点数で計測した計測結果から導出可能な基板Pの変形状態を推定することができる。したがって、アライメントマークの計測に長時間を要することなく、図14(C)に示したような基板Pの変形情報を取得することができる。そのため、スループットの低下を抑制しつつ、重ね合わせ精度の低下を抑制することができ、露光不良の発生及び不良デバイスの発生を抑制することができる。 As described above, according to the present embodiment, among the nonlinear components generated on the substrate P, the first component that cannot be calculated unless the six alignment marks are measured is based on the measurement results of the four alignment marks. Can be acquired. That is, according to the present embodiment, the deformation state of the substrate P that can be derived from the measurement results measured with a large number of alignment mark measurement points with a small number of alignment mark measurement points using the correlation (relational expression) obtained in advance. Can be estimated. Accordingly, the deformation information of the substrate P as shown in FIG. 14C can be acquired without requiring a long time for the alignment mark measurement. Therefore, it is possible to suppress a decrease in overlay accuracy while suppressing a decrease in throughput, and it is possible to suppress the occurrence of exposure failure and the generation of defective devices.
 なお、本実施形態において、6点のアライメントマークの計測を複数回実行し、その6点の複数回のアライメントマークの計測の結果の平均値を、第1成分の算出に用いてもよい。また、4点のアライメントマークの計測を複数回実行し、その4点の複数回のアライメントマークの計測の結果の平均値を、第2成分の算出に用いてもよい。 In the present embodiment, the measurement of the six alignment marks may be performed a plurality of times, and the average value of the measurement results of the six alignment marks may be used for calculating the first component. Alternatively, the measurement of the four alignment marks may be performed a plurality of times, and the average value of the measurement results of the four alignment marks may be used for calculating the second component.
 なお、本実施形態においては、一例として、図14に示す非線形成分について説明した。(1)式、(2)式、図5~図11を参照して説明したように、非線形成分を例えば3次の多項式に展開した場合、その展開された成分は、20個存在する。本実施形態において、20個の成分のうち、どの成分とどの成分とに相関性があるかについて、重回帰分析を用いて導出することができる。また、その相関性がある成分同士の関係式についても、重回帰分析を用いて導出することができる。 In the present embodiment, the nonlinear component shown in FIG. 14 has been described as an example. As described with reference to the equations (1), (2), and FIGS. 5 to 11, when the nonlinear component is expanded into a third-order polynomial, for example, there are 20 expanded components. In the present embodiment, it is possible to derive which component is correlated with which component among the 20 components by using multiple regression analysis. Moreover, the relational expression between the components having the correlation can be derived using multiple regression analysis.
 なお、相関性がある成分(連成する成分)は、例えば基板Pの形状等に応じて決定される。また、相関性がある成分同士のうち、一方の成分の変形量に応じて、他方の成分の変形量が決定される。その変形量は、例えば基板Pに施されるプロセス処理の条件に応じて決定されると考えられる。 It should be noted that a component having a correlation (a coupled component) is determined according to the shape of the substrate P, for example. In addition, among the components having correlation, the deformation amount of the other component is determined according to the deformation amount of one component. The amount of deformation is considered to be determined according to, for example, the conditions of the process performed on the substrate P.
<第2実施形態>
 次に、第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
Second Embodiment
Next, a second embodiment will be described. In the following description, the same or equivalent components as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
 第2実施形態においては、より詳細な手順について、図16のフローチャートを参照しながら説明する。まず、制御装置5は、第1成分と第2成分との相関性(関係式)を導出するための処理を開始する(ステップSB1)。以下の説明において、相関性(関係式)を導出するための処理を適宜、導出シーケンス、と称する。 In the second embodiment, a more detailed procedure will be described with reference to the flowchart of FIG. First, the control device 5 starts a process for deriving a correlation (relational expression) between the first component and the second component (step SB1). In the following description, the process for deriving the correlation (relational expression) is appropriately referred to as a derivation sequence.
 導出シーケンスにおいて、制御装置5は、第1成分と第2成分との相関性(関係式)を導出するための基板Pの露光処理を実行する(ステップSB2)。 In the derivation sequence, the control device 5 performs an exposure process of the substrate P for deriving the correlation (relational expression) between the first component and the second component (step SB2).
 ステップSB2の露光は、相関性(関係式)を導出するための露光である。以下の説明において、ステップSB2の露光を適宜、テスト露光、と称する。 The exposure in step SB2 is an exposure for deriving a correlation (relational expression). In the following description, the exposure in step SB2 is appropriately referred to as test exposure.
 テスト露光において、制御装置5は、結像特性調整装置30による非線形成分の補正を行わず、線形成分の補正のみを行って、基板Pを露光する。本実施形態においては、テスト露光において、複数(n枚)の基板Pが露光される。 In the test exposure, the control device 5 exposes the substrate P by correcting only the linear component without correcting the nonlinear component by the imaging characteristic adjusting device 30. In the present embodiment, a plurality (n) of substrates P are exposed in the test exposure.
 次に、制御装置5は、その基板Pに設けられている複数のアライメントマークのそれぞれを、アライメントシステム9を用いて計測する(ステップSB3)。本実施形態において、制御装置5は、1つの基板Pに設けられている24点のアライメントマークm1~m6のうち、少なくとも16点のアライメントマークを計測する。本実施形態においては、制御装置5は、1つの基板Pに設けられている24点のアライメントマークm1~m6の全てを、アライメントシステム9を用いて計測することとする。 Next, the control device 5 measures each of the plurality of alignment marks provided on the substrate P using the alignment system 9 (step SB3). In the present embodiment, the control device 5 measures at least 16 alignment marks among the 24 alignment marks m1 to m6 provided on one substrate P. In the present embodiment, the control device 5 measures all 24 alignment marks m1 to m6 provided on one substrate P by using the alignment system 9.
 制御装置5は、そのアライメントシステム9の計測結果に基づいて、(1)式、(2)式に示した20個の係数C00~C19を導出する(ステップSB4)。制御装置5は、n枚の基板Pのそれぞれについて、24点のアライメントマーク計測を実行し、20個の係数C00~C19を導出する。これにより、(20×n)個の係数C00(i)~C19(i)(但し、i=1~n)が導出される。 Based on the measurement result of the alignment system 9, the control device 5 derives the 20 coefficients C 00 to C 19 shown in the equations (1) and (2) (step SB4). The control device 5 performs 24 alignment mark measurements on each of the n substrates P, and derives 20 coefficients C 00 to C 19 . As a result, (20 × n) coefficients C 00 (i) to C 19 (i) (where i = 1 to n) are derived.
 制御装置5は、上述の(20×n)個の係数C00(i)~C19(i)を重回帰分析して、相関性(関係式)を導出する(ステップSB5)。上述の第1実施形態と同様、本実施形態においても、関係式として一次式を採用する。導出された相関性(関係式)は、記憶装置5Rに記憶される(ステップSB6)。 The controller 5 performs multiple regression analysis on the above-described (20 × n) coefficients C 00 (i) to C 19 (i) to derive a correlation (relational expression) (step SB5). Similar to the first embodiment described above, this embodiment also employs a linear expression as a relational expression. The derived correlation (relational expression) is stored in the storage device 5R (step SB6).
 一例として、重回帰分析により、C05とC00との間に相関性があると導出された場合、その一次式は、C05=f05×C00+Const05と表すことができる。また、C05とC01との間に相関性があると導出された場合、その一次式は、C05=f05×C01+Const05と表すことができる。 As an example, when it is derived by the multiple regression analysis that there is a correlation between C 05 and C 00 , the linear expression can be expressed as C 05 = f 05 × C 00 + Const 05 . When it is derived that there is a correlation between C 05 and C 01 , the linear expression can be expressed as C 05 = f 05 × C 01 + Const 05 .
 以上により、導出シーケンスが終了する(ステップSB7)。 Thus, the derivation sequence ends (step SB7).
 導出シーケンスが終了した後、制御装置5は、デバイスを製造するための基板Pの露光処理を含む露光シーケンスを開始する(ステップSB8)。 After the derivation sequence is completed, the control device 5 starts an exposure sequence including an exposure process for the substrate P for manufacturing a device (step SB8).
 露光シーケンスにおいては、ロットに含まれる複数の基板Pが順次露光される。本実施形態において、上述の導出シーケンスで使用される基板Pは、露光シーケンスにおいて露光されるロット内の基板Pとは異なる基板Pである。 In the exposure sequence, a plurality of substrates P included in a lot are sequentially exposed. In the present embodiment, the substrate P used in the above-described derivation sequence is a substrate P different from the substrate P in the lot exposed in the exposure sequence.
 デバイスを製造するための基板Pが基板ステージ2(基板保持部16)に保持(ロード)された後、制御装置5は、アライメントシステム9を用いて、基板Pのアライメントマークを計測する(ステップSB9)。制御装置5は、導出シーケンスにおけるアライメントマーク計測処理(ステップSB3)で計測したアライメントマークの計測点数よりも少ない計測点数のアライメントマーク計測を実行する。上述のように、ステップSB3におけるアライメントマークの計測点数は、24点である。本実施形態においては、図12の模式図に示すように、制御装置5は、ステップSB9において8点のアライメントマーク計測を実行する。 After the substrate P for manufacturing the device is held (loaded) on the substrate stage 2 (substrate holding unit 16), the control device 5 measures the alignment mark of the substrate P using the alignment system 9 (step SB9). ). The control device 5 performs alignment mark measurement with fewer measurement points than the alignment mark measurement points measured in the alignment mark measurement process (step SB3) in the derivation sequence. As described above, the number of alignment mark measurement points in step SB3 is 24 points. In the present embodiment, as shown in the schematic diagram of FIG. 12, the control device 5 performs eight alignment mark measurements in step SB9.
 制御装置5は、8点のアライメントマーク計測の計測結果に基づいて、第2成分を算出する(ステップSB10)。本実施形態において、8点のアライメントマーク計測で算出可能な第2成分、及び8点のアライメントマーク計測の計測結果からでは算出不可能な第1成分の一例は、以下の通りである。 Control device 5 calculates the second component based on the measurement result of the eight alignment mark measurements (step SB10). In the present embodiment, examples of the second component that can be calculated by measuring eight alignment marks and the first component that cannot be calculated from the measurement result of eight alignment mark measurements are as follows.
<第2成分>〔X軸方向〕:C00、C01、C02、C03、C04、C06、C07〔Y軸方向〕:C10、C11、C12、C13、C14、C16、C17<第1成分>〔X軸方向〕:C05、C08、C09〔Y軸方向〕:C15、C18、C19 <Second component> [X-axis direction]: C 00 , C 01 , C 02 , C 03 , C 04 , C 06 , C 07 [Y-axis direction]: C 10 , C 11 , C 12 , C 13 , C 14 , C 16 , C 17 <first component> [X-axis direction]: C 05 , C 08 , C 09 [Y-axis direction]: C 15 , C 18 , C 19
 また、各第1成分のそれぞれについての関係式の一例は、以下の通りである。 Also, an example of the relational expression for each of the first components is as follows.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ところで、ステップSB9においては、8点のアライメントマークの計測結果に基づいて、その8点のアライメントマーク計測から算出可能な第2成分を求めている。そのため、その8点のアライメントマーク計測から算出される第2成分には、その8点のアライメントマーク計測の計測結果からでは求めることができない非線形歪みの所定の成分が付加されている可能性がある。換言すれば、8点のアライメントマーク計測の計測結果から求めた第2成分には、その8点のアライメントマーク計測の計測結果からでは求めることができないものの、実際に発生している非線形歪みの成分の少なくとも一部が付加されている可能性がある。なお、その付加させる成分は、計測するアライメントマークの位置に応じて変化すると考えられる。 Incidentally, in step SB9, based on the measurement result of the eight alignment marks, a second component that can be calculated from the eight alignment mark measurements is obtained. Therefore, there is a possibility that a predetermined component of nonlinear distortion that cannot be obtained from the measurement result of the eight alignment mark measurement is added to the second component calculated from the eight alignment mark measurement. . In other words, although the second component obtained from the measurement result of the eight alignment mark measurements cannot be obtained from the measurement result of the eight alignment mark measurement, the component of the nonlinear distortion actually generated There is a possibility that at least a part of is added. The component to be added is considered to change depending on the position of the alignment mark to be measured.
 そこで、本実施形態においては、制御装置5は、8点のアライメントマーク計測の計測結果に基づいて、基板Pの第2成分を算出した後、その第2成分に影響する第1成分に基づいて、第2成分を補正する(ステップSB11)。 Therefore, in the present embodiment, the control device 5 calculates the second component of the substrate P based on the measurement results of the eight alignment mark measurements, and then based on the first component that affects the second component. The second component is corrected (step SB11).
 すなわち、所定の第2成分に対して第1成分が相関性を有する場合、制御装置5は、その第1成分が第2成分に与える影響を除去するように、第2成分を補正する。 That is, when the first component has a correlation with the predetermined second component, the control device 5 corrects the second component so as to remove the influence of the first component on the second component.
 上述のように、本実施形態において、第1成分は、C05、C08、C09、C15、C18、C19である。また、第2成分は、C00、C01、C02、C03、C04、C06、C07、C10、C11、C12、C13、C14、C16、C17である。第1成分に含まれる第2成分の係数をγとした場合、補正後の第2成分C00meas、C01meas、C02meas、C03meas、C04meas、C06meas、C07meas、C10meas、C11meas、C12meas、C13meas、C14meas、C16meas、C17measは、以下の通りである。 As described above, in the present embodiment, the first component is C 05 , C 08 , C 09 , C 15 , C 18 , and C 19 . The second component is C 00 , C 01 , C 02 , C 03 , C 04 , C 06 , C 07 , C 10 , C 11 , C 12 , C 13 , C 14 , C 16 , C 17 . . When the coefficient of the second component included in the first component is γ, the corrected second component C 00meas , C 01meas , C 02meas , C 03meas , C 04meas , C 06meas , C 07meas , C 10meas , C 11meas , C12meas , C13meas , C14meas , C16meas , C17meas are as follows.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 制御装置5は、補正後の第2成分と、記憶装置5Rに記憶されている相関性(関係式)とに基づいて、基板Pの変形情報を取得する(ステップSB12)。 The control device 5 acquires the deformation information of the substrate P based on the corrected second component and the correlation (relational expression) stored in the storage device 5R (step SB12).
 制御装置5は、その取得した変形情報に基づいて、その基板Pを露光光ELで露光する(ステップSB13)。制御装置5は、取得した変形情報に基づいて、露光条件を調整し、その調整された露光条件に基づいて、基板Pを露光する。露光条件の調整は、結像特性調整装置30を用いて投影領域PR1~PR7を調整することを含む。制御装置5は、取得した基板Pの変形情報に基づいて、パターンの重ね合わせ精度が低下しないように(重ね合わせ誤差が生じないように)、結像特性調整装置30を用いて投影領域PR1~PR7の位置、大きさ、及び形状の少なくとも一つを調整し、その調整された投影領域PR1~PR7に照射される露光光ELで基板Pを露光する。 The control device 5 exposes the substrate P with the exposure light EL based on the acquired deformation information (step SB13). The control device 5 adjusts the exposure conditions based on the acquired deformation information, and exposes the substrate P based on the adjusted exposure conditions. The adjustment of the exposure condition includes adjusting the projection regions PR1 to PR7 using the imaging characteristic adjusting device 30. Based on the acquired deformation information of the substrate P, the control device 5 uses the image formation characteristic adjustment device 30 to prevent the pattern overlay accuracy from degrading (so that an overlay error does not occur). At least one of the position, size, and shape of PR7 is adjusted, and the substrate P is exposed with the exposure light EL that is irradiated onto the adjusted projection areas PR1 to PR7.
 以上により、露光シーケンスが終了する(ステップSB14)。 Thus, the exposure sequence ends (step SB14).
 以上説明したように、本実施形態においても、スループットの低下を抑制しつつ、露光不良の発生及び不良デバイスの発生を抑制できる。 As described above, also in this embodiment, it is possible to suppress the occurrence of exposure failure and the occurrence of defective devices while suppressing a decrease in throughput.
 なお、本実施形態においては、露光シーケンスとは異なる導出シーケンスを設け、その導出シーケンスにおいてテスト露光された基板Pのアライメントマーク計測結果に基づいて、相関性(関係式)を導出することとした。そして、導出シーケンスで使用される基板Pは、露光シーケンスで使用されるロット内の基板Pとは異なる基板P、すなわちロット外の基板Pであることとした。露光シーケンスにおいてデバイスを製造するためにロットに含まれる複数の基板Pを順次露光する場合において、ロットの先頭の基板Pを含むロット内の所定数の基板Pを露光し、その露光された複数の基板Pのアライメントマーク計測結果に基づいて、相関性(関係式)を導出することとしてもよい。すなわち、ロットに含まれる複数の基板Pを順次露光する場合において、ロットの先頭を含むロット内の所定数の基板Pのアライメントマーク計測結果から相関性(関係式)を導出し、そのロット内の基板Pであって相関性(関係式)の導出に用いられた基板P以外の基板Pの露光処理において、少ないアライメントマーク計測点数で第2成分を算出し、その第2成分と相関性とに基づいて基板Pの変形情報を取得し、その取得された変形情報に基づいて基板Pを露光することとしてもよい。 In the present embodiment, a derivation sequence different from the exposure sequence is provided, and the correlation (relational expression) is derived based on the alignment mark measurement result of the substrate P subjected to test exposure in the derivation sequence. The substrate P used in the derivation sequence is different from the substrate P in the lot used in the exposure sequence, that is, the substrate P outside the lot. When sequentially exposing a plurality of substrates P included in a lot in order to manufacture a device in an exposure sequence, a predetermined number of substrates P in the lot including the first substrate P of the lot are exposed, and the exposed plurality of substrates P The correlation (relational expression) may be derived based on the alignment mark measurement result of the substrate P. That is, in the case where a plurality of substrates P included in a lot are sequentially exposed, a correlation (relational expression) is derived from the alignment mark measurement results of a predetermined number of substrates P in the lot including the top of the lot. In the exposure processing of the substrate P other than the substrate P used to derive the correlation (relational expression), the second component is calculated with a small number of alignment mark measurement points, and the second component and the correlation are calculated. Based on the acquired deformation information, the substrate P may be exposed based on the acquired deformation information of the substrate P.
 なお、上述の第1、第2実施形態においては、非線形成分を3次の多項式に展開することとしたが、もちろん、2次の多項式に展開してもよいし、4次の多項式に展開してもよい。その次数は任意である。 In the first and second embodiments described above, the nonlinear component is expanded into a third-order polynomial, but of course, it may be expanded into a second-order polynomial, or expanded into a fourth-order polynomial. May be. The order is arbitrary.
 なお、上述の実施形態の基板Pとしては、ディスプレイデバイス用のガラス基板のみならず、半導体デバイス製造用の半導体ウエハ、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。 As the substrate P in the above-described embodiment, not only a glass substrate for a display device but also a semiconductor wafer for manufacturing a semiconductor device, a ceramic wafer for a thin film magnetic head, or an original mask (reticle) used in an exposure apparatus ( Synthetic quartz, silicon wafer) or the like is applied.
 なお、露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを介した露光光ELで基板Pを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。 As the exposure apparatus EX, a step-and-scan type scanning exposure apparatus (scanning stepper) that scans and exposes the substrate P with the exposure light EL through the pattern of the mask M by moving the mask M and the substrate P synchronously. In addition, the pattern of the mask M is collectively exposed while the mask M and the substrate P are stationary, and is applied to a step-and-repeat type projection exposure apparatus (stepper) that sequentially moves the substrate P stepwise. Can do.
 また、本発明は、米国特許第6341007号明細書、米国特許第6208407号明細書、米国特許第6262796号明細書等に開示されているような、複数の基板ステージを備えたツインステージ型の露光装置にも適用できる。 The present invention also relates to a twin-stage type exposure having a plurality of substrate stages as disclosed in US Pat. No. 6,341,007, US Pat. No. 6,208,407, US Pat. No. 6,262,796, and the like. It can also be applied to devices.
 また、本発明は、米国特許第6897963号明細書、欧州特許出願公開第1713113号明細書等に開示されているような、基板を保持する基板ステージと、基板を保持せずに、基準マークが形成された基準部材及び/又は各種の光電センサを搭載した計測ステージとを備えた露光装置にも適用することができる。また、複数の基板ステージと計測ステージとを備えた露光装置を採用することができる。 Further, the present invention relates to a substrate stage for holding a substrate as disclosed in US Pat. No. 6,897,963, European Patent Application No. 1713113, etc., and a reference mark without holding the substrate. The present invention can also be applied to an exposure apparatus that includes a formed reference member and / or a measurement stage on which various photoelectric sensors are mounted. An exposure apparatus including a plurality of substrate stages and measurement stages can be employed.
 露光装置EXの種類としては、液晶表示素子製造用又はディスプレイ製造用の露光装置に限られず、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、MEMS、DNAチップ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。 The type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a liquid crystal display element or a display, but an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on a substrate P, a thin film magnetic head, an image sensor (CCD) In addition, the present invention can be widely applied to an exposure apparatus for manufacturing a micromachine, MEMS, DNA chip, reticle, mask, or the like.
 なお、上述の各実施形態においては、レーザ干渉計を含む干渉計システムを用いて各ステージの位置情報を計測するものとしたが、これに限らず、例えば各ステージに設けられるスケール(回折格子)を検出するエンコーダシステムを用いてもよい。 In each of the above-described embodiments, the position information of each stage is measured using an interferometer system including a laser interferometer. However, the present invention is not limited to this. For example, a scale (diffraction grating) provided in each stage You may use the encoder system which detects this.
 なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスクを用いたが、このマスクに代えて、例えば米国特許第6778257号明細書に開示されているように、露光すべきパターンの電子データに基づいて透過パターン又は反射パターン、あるいは発光パターンを形成する可変成形マスク(電子マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれる)を用いてもよい。また、非発光型画像表示素子を備える可変成形マスクに代えて、自発光型画像表示素子を含むパターン形成装置を備えるようにしても良い。 In the above-described embodiment, a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used. As disclosed in US Pat. No. 6,778,257, a variable shaped mask (also called an electronic mask, an active mask, or an image generator) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed. ) May be used. Further, a pattern forming apparatus including a self-luminous image display element may be provided instead of the variable molding mask including the non-luminous image display element.
 上述の実施形態の露光装置EXは、各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。 The exposure apparatus EX of the above-described embodiment is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. To ensure these various accuracies, before and after this assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Adjustments are made to achieve electrical accuracy. The assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. The exposure apparatus is preferably manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
 半導体デバイス等のマイクロデバイスは、図17に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、上述の実施形態に従って、マスクのパターンを用いて露光光で基板を露光すること、及び露光された基板(感光材)を現像することを含む基板処理(露光処理)を含む基板処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)205、検査ステップ206等を経て製造される。なお、ステップ204では、感光材を現像することで、マスクのパターンに対応する露光パターン層(現像された感光材の層)を形成し、この露光パターン層を介して基板を加工することが含まれる。 As shown in FIG. 17, a microdevice such as a semiconductor device includes a step 201 for designing a function / performance of the microdevice, a step 202 for manufacturing a mask (reticle) based on the design step, and a substrate which is a base material of the device. Manufacturing step 203, including substrate processing (exposure processing) including exposing the substrate with exposure light using a mask pattern and developing the exposed substrate (photosensitive material) according to the above-described embodiment The substrate is manufactured through a substrate processing step 204, a device assembly step (including processing processes such as a dicing process, a bonding process, and a packaging process) 205, an inspection step 206, and the like. In step 204, the photosensitive material is developed to form an exposure pattern layer (developd photosensitive material layer) corresponding to the mask pattern, and the substrate is processed through the exposure pattern layer. It is.
 なお、上述の実施形態及び変形例の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、法令で許容される限りにおいて、上述の実施形態及び変形例で引用した露光装置などに関する全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。 It should be noted that the requirements of the above-described embodiments and modifications can be combined as appropriate. Some components may not be used. In addition, as long as it is permitted by law, the disclosure of all published publications and US patents related to the exposure apparatus and the like cited in the above-described embodiments and modifications are incorporated herein by reference.
 1…マスクステージ、2…基板ステージ、5…制御装置、5R…記憶装置、9…アライメントシステム、EL…露光光、EX…露光装置、P…基板 DESCRIPTION OF SYMBOLS 1 ... Mask stage, 2 ... Substrate stage, 5 ... Control device, 5R ... Memory | storage device, 9 ... Alignment system, EL ... Exposure light, EX ... Exposure apparatus, P ... Substrate

Claims (11)

  1.  第1基板に生じる非線形歪みのうち、算出のために前記第1基板において第1点数のマーク計測が必要な第1成分と、前記第1点数よりも少ない第2点数のマーク計測で算出可能な第2成分との関係を導出することと、
     第2基板において第2点数のマーク計測を実行することと、
     前記第2基板における前記第2点数のマーク計測の結果と、前記関係とに基づいて、前記第2基板の変形情報を取得することと、
     取得した前記変形情報に基づいて、前記第2基板を露光光で露光することと、を含む露光方法。
    Of the non-linear distortion generated in the first substrate, it can be calculated by a first component that requires a first point mark measurement on the first substrate and a second point mark measurement less than the first point for calculation. Deriving a relationship with the second component;
    Performing a second point mark measurement on the second substrate;
    Obtaining deformation information of the second substrate based on the result of the mark measurement of the second score on the second substrate and the relationship;
    Exposing the second substrate with exposure light based on the acquired deformation information.
  2.  前記第2点数のマーク計測の結果に基づいて、前記第2基板の第2成分を算出することと、
     前記第2成分に影響する第1成分に基づいて、前記第2成分を補正することと、
     を含み、
     前記第2基板の変形情報は、補正された前記第2成分と、前記関係とに基づいて取得される請求項1記載の露光方法。
    Calculating a second component of the second substrate based on the result of mark measurement of the second score;
    Correcting the second component based on the first component affecting the second component;
    Including
    The exposure method according to claim 1, wherein the deformation information of the second substrate is acquired based on the corrected second component and the relationship.
  3.  取得した前記変形情報に基づいて露光条件を調整することを含み、
     調整された前記露光条件に基づいて、前記第2基板を露光する請求項1又は2記載の露光方法。
    Adjusting exposure conditions based on the acquired deformation information,
    The exposure method according to claim 1, wherein the second substrate is exposed based on the adjusted exposure condition.
  4.  前記関係の導出は、複数の前記第1基板に関して、
     前記第1点数のマーク計測の結果に基づいて前記第1成分を算出することと、
     前記第2点数のマーク計測の結果に基づいて前記第2成分を算出することと、
     算出された前記第1、第2成分を重回帰分析することと、
     を含む請求項1~3のいずれか一項記載の露光方法。
    The derivation of the relationship is related to a plurality of the first substrates.
    Calculating the first component based on the result of mark measurement of the first score;
    Calculating the second component based on the result of mark measurement of the second score;
    Multiple regression analysis of the calculated first and second components;
    The exposure method according to any one of claims 1 to 3, comprising:
  5.  前記第1成分の算出は、前記第1点数の複数回のマーク計測の結果の平均値を求めることを含み、
     前記第2成分の算出は、前記第2点数の複数回のマーク計測の結果の平均値を求めることを含む請求項1~4のいずれか一項記載の露光方法。
    The calculation of the first component includes obtaining an average value of a plurality of mark measurement results of the first score,
    The exposure method according to any one of claims 1 to 4, wherein the calculation of the second component includes obtaining an average value of a plurality of mark measurement results of the second score.
  6.  前記関係の導出は、前記第1成分と前記第2成分との一次式の関係を導出することを含む請求項1~5のいずれか一項記載の露光方法。 The exposure method according to any one of claims 1 to 5, wherein the derivation of the relationship includes deriving a linear relationship between the first component and the second component.
  7.  ロットに含まれる複数の基板が順次露光され、
     前記第1基板は、前記ロット外の基板であり、
     前記第2基板は、前記ロット内の基板である請求項1~6のいずれか一項記載の露光方法。
    A plurality of substrates included in a lot are sequentially exposed,
    The first substrate is a substrate outside the lot,
    The exposure method according to claim 1, wherein the second substrate is a substrate in the lot.
  8.  ロットに含まれる複数の基板が順次露光され、
     前記第1基板は、前記ロットの先頭の基板を含む前記ロット内の所定数の基板であり、
     前記第2基板は、前記ロット内の前記第1基板以外の基板である請求項1~6のいずれか一項記載の露光方法。
    A plurality of substrates included in a lot are sequentially exposed,
    The first substrate is a predetermined number of substrates in the lot including the first substrate of the lot;
    The exposure method according to any one of claims 1 to 6, wherein the second substrate is a substrate other than the first substrate in the lot.
  9.  請求項1~8のいずれか一項記載の露光方法を用いて基板を露光することと、
     露光された前記基板を現像することと、を含むデバイス製造方法。
    Exposing the substrate using the exposure method according to any one of claims 1 to 8,
    Developing the exposed substrate. A device manufacturing method.
  10.  第1基板に生じる非線形歪みのうち、算出のために前記第1基板において第1点数のマーク計測が必要な第1成分と、前記第1点数よりも少ない第2点数のマーク計測で算出可能な第2成分との関係を記憶する記憶装置と、
     第2基板において第2点数のマーク計測を実行するマーク計測装置と、
     前記マーク計測装置の計測結果と、前記記憶装置の情報とに基づいて、前記第2基板の変形情報を取得する制御装置と、を備え、
     取得した前記変形情報に基づいて、前記第2基板を露光光で露光する露光装置。
    Of the non-linear distortion generated in the first substrate, it can be calculated by a first component that requires a first point mark measurement on the first substrate and a second point mark measurement less than the first point for calculation. A storage device for storing the relationship with the second component;
    A mark measuring device for executing a second point mark measurement on the second substrate;
    A control device that acquires deformation information of the second substrate based on a measurement result of the mark measurement device and information of the storage device;
    An exposure apparatus that exposes the second substrate with exposure light based on the acquired deformation information.
  11.  請求項10記載の露光装置を用いて基板を露光することと、
     露光された前記基板を現像することと、を含むデバイス製造方法。
    Exposing the substrate using the exposure apparatus according to claim 10;
    Developing the exposed substrate. A device manufacturing method.
PCT/JP2011/050744 2010-01-18 2011-01-18 Exposure method, exposure device, and manufacturing method for device WO2011087129A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011550037A JP5903891B2 (en) 2010-01-18 2011-01-18 Exposure method, exposure apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010008004 2010-01-18
JP2010-008004 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011087129A1 true WO2011087129A1 (en) 2011-07-21

Family

ID=44304399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050744 WO2011087129A1 (en) 2010-01-18 2011-01-18 Exposure method, exposure device, and manufacturing method for device

Country Status (3)

Country Link
JP (1) JP5903891B2 (en)
KR (1) KR101581083B1 (en)
WO (1) WO2011087129A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137866A1 (en) * 2011-04-05 2012-10-11 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
CN103354770A (en) * 2012-02-01 2013-10-16 三菱电机株式会社 Laser processing method and laser processing device
CN104238279A (en) * 2013-06-14 2014-12-24 Ap系统股份有限公司 A method for correcting the direction and the position of light beam patterning
WO2015197023A1 (en) * 2014-06-26 2015-12-30 无锡华润上华科技有限公司 Lithography stepper alignment and control method
JP2022530567A (en) * 2019-05-03 2022-06-29 エーエスエムエル ネザーランズ ビー.ブイ. A method for determining an alignment model based on diagonal fitting techniques
JP7361599B2 (en) 2019-12-26 2023-10-16 キヤノン株式会社 Exposure equipment and article manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6643834B2 (en) * 2015-09-02 2020-02-12 キヤノン株式会社 Distortion detection method, exposure apparatus, exposure method, and device manufacturing method
KR20210059130A (en) 2019-11-14 2021-05-25 삼성디스플레이 주식회사 Display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215718A (en) * 1999-11-26 2001-08-10 Nikon Corp Exposure system and exposure method
JP2001345243A (en) * 2000-05-31 2001-12-14 Nikon Corp Methods for evaluation, position detection, exposure, and manufacturing device
JP2003086483A (en) * 2001-09-07 2003-03-20 Canon Inc Aligning method, aligning device and aligner
WO2005083756A1 (en) * 2004-03-01 2005-09-09 Nikon Corporation Pre-measurement processing method, exposure system and substrate processing equipment
JP2009206143A (en) * 2008-02-26 2009-09-10 Seiko Instruments Inc Alignment method
JP2010186918A (en) * 2009-02-13 2010-08-26 Nikon Corp Alignment method, exposure method and exposure device, device manufacturing method, and exposure system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291020A (en) * 1993-04-06 1994-10-18 Nikon Corp Alignment method
KR20010109212A (en) * 2000-05-31 2001-12-08 시마무라 테루오 Estimating method, position detecting method, exposure method and method of manufacturing device, and exposure apparatus
JP2004265957A (en) * 2003-02-26 2004-09-24 Nikon Corp Detecting method of optimal position detection formula, alignment method, exposure method, device, and method of manufacture the device
JP4890846B2 (en) * 2005-12-08 2012-03-07 キヤノン株式会社 Measuring apparatus, measuring method, exposure apparatus, and device manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215718A (en) * 1999-11-26 2001-08-10 Nikon Corp Exposure system and exposure method
JP2001345243A (en) * 2000-05-31 2001-12-14 Nikon Corp Methods for evaluation, position detection, exposure, and manufacturing device
JP2003086483A (en) * 2001-09-07 2003-03-20 Canon Inc Aligning method, aligning device and aligner
WO2005083756A1 (en) * 2004-03-01 2005-09-09 Nikon Corporation Pre-measurement processing method, exposure system and substrate processing equipment
JP2009206143A (en) * 2008-02-26 2009-09-10 Seiko Instruments Inc Alignment method
JP2010186918A (en) * 2009-02-13 2010-08-26 Nikon Corp Alignment method, exposure method and exposure device, device manufacturing method, and exposure system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137866A1 (en) * 2011-04-05 2012-10-11 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
CN103354770A (en) * 2012-02-01 2013-10-16 三菱电机株式会社 Laser processing method and laser processing device
KR101398320B1 (en) * 2012-02-01 2014-05-23 미쓰비시덴키 가부시키가이샤 Laser processing method and laser processing apparatus
CN104238279A (en) * 2013-06-14 2014-12-24 Ap系统股份有限公司 A method for correcting the direction and the position of light beam patterning
WO2015197023A1 (en) * 2014-06-26 2015-12-30 无锡华润上华科技有限公司 Lithography stepper alignment and control method
US9977342B2 (en) 2014-06-26 2018-05-22 Csmc Technologies Fab2 Co., Ltd. Lithography stepper alignment and control method
JP2022530567A (en) * 2019-05-03 2022-06-29 エーエスエムエル ネザーランズ ビー.ブイ. A method for determining an alignment model based on diagonal fitting techniques
JP7260669B2 (en) 2019-05-03 2023-04-18 エーエスエムエル ネザーランズ ビー.ブイ. Methods for Determining Alignment Models Based on Oblique Fitting Techniques
JP7361599B2 (en) 2019-12-26 2023-10-16 キヤノン株式会社 Exposure equipment and article manufacturing method

Also Published As

Publication number Publication date
JP5903891B2 (en) 2016-04-13
KR101581083B1 (en) 2015-12-30
JPWO2011087129A1 (en) 2013-05-20
KR20120116963A (en) 2012-10-23

Similar Documents

Publication Publication Date Title
JP5903891B2 (en) Exposure method, exposure apparatus, and device manufacturing method
US11009799B2 (en) Exposure apparatus, manufacturing method of flat-panel display, device manufacturing method, and exposure method
JP6791154B2 (en) Exposure equipment, flat panel display manufacturing method, and device manufacturing method
KR20180058734A (en) Exposure apparatus, method of manufacturing flat panel display, device manufacturing method, and exposure method
CN108139681B (en) Exposure apparatus, exposure method, and flat panel display manufacturing method
JP2012004564A (en) Exposure method, exposure apparatus and method of manufacturing device
KR20180059816A (en) EXPOSURE APPARATUS AND EXPOSURE METHOD,
JP5429283B2 (en) Exposure apparatus and device manufacturing method
WO2012137866A1 (en) Exposure method, exposure apparatus, and device manufacturing method
JP6727554B2 (en) Exposure apparatus, flat panel display manufacturing method, device manufacturing method, and exposure method
JP2010192744A (en) Exposure apparatus, exposure method and device manufacturing method
JP6855008B2 (en) Exposure equipment, flat panel display manufacturing method, device manufacturing method, and exposure method
JP2013258284A (en) Scanning exposure device, manufacturing method of article, alignment method and scanning exposure method
JP2013130642A (en) Exposure method, device manufacturing method, and exposure device
JP2010266687A (en) Exposure method, exposure apparatus and device producing method
JP2020177149A (en) Exposure apparatus and method for manufacturing article
JP2012242811A (en) Mask, exposure apparatus, exposure method and device manufacturing method
JP4779630B2 (en) Alignment method, alignment apparatus, and exposure apparatus
JP2010217389A (en) Exposure apparatus, exposure method, and method for manufacturing device
JP2010050223A (en) Substrate processing method, exposure device, and device manufacturing method
JP2012033925A (en) Exposure equipment, exposure method, and device manufacturing method
JP2005026615A (en) Stage unit and exposure apparatus, and measuring method
JP2009266864A (en) Exposure apparatus
KR20170113265A (en) Exposure apparatus, stage calibration system, stage calibration method and calibration jig
JP2012093585A (en) Alignment method, exposure method, and method of manufacturing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11732999

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550037

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127018674

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11732999

Country of ref document: EP

Kind code of ref document: A1