WO2011086558A1 - Lenticular image articles and method and apparatus of reducing banding artifacts in lenticular image articles - Google Patents

Lenticular image articles and method and apparatus of reducing banding artifacts in lenticular image articles Download PDF

Info

Publication number
WO2011086558A1
WO2011086558A1 PCT/IL2011/000046 IL2011000046W WO2011086558A1 WO 2011086558 A1 WO2011086558 A1 WO 2011086558A1 IL 2011000046 W IL2011000046 W IL 2011000046W WO 2011086558 A1 WO2011086558 A1 WO 2011086558A1
Authority
WO
WIPO (PCT)
Prior art keywords
lenticular
lens sheet
composite image
lenticular lens
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/IL2011/000046
Other languages
English (en)
French (fr)
Inventor
Assaf Zomet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HumanEyes Technologies Ltd
Original Assignee
HumanEyes Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HumanEyes Technologies Ltd filed Critical HumanEyes Technologies Ltd
Priority to KR1020127020975A priority Critical patent/KR101783464B1/ko
Priority to BR112012017368A priority patent/BR112012017368A2/pt
Priority to EP11710028.9A priority patent/EP2524265B1/en
Priority to JP2012548534A priority patent/JP5788903B2/ja
Priority to US13/521,252 priority patent/US8854684B2/en
Publication of WO2011086558A1 publication Critical patent/WO2011086558A1/en
Anticipated expiration legal-status Critical
Priority to US14/468,395 priority patent/US9071714B2/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00681Detecting the presence, position or size of a sheet or correcting its position before scanning
    • H04N1/00729Detection means
    • H04N1/00734Optical detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B25/00Viewers, other than projection viewers, giving motion-picture effects by persistence of vision, e.g. zoetrope
    • G03B25/02Viewers, other than projection viewers, giving motion-picture effects by persistence of vision, e.g. zoetrope with interposed lenticular or line screen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/14Printing apparatus specially adapted for conversion between different types of record
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/24Stereoscopic photography by simultaneous viewing using apertured or refractive resolving means on screens or between screen and eye
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04842Selection of displayed objects or displayed text elements
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/005General purpose rendering architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00132Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture in a digital photofinishing system, i.e. a system where digital photographic images undergo typical photofinishing processing, e.g. printing ordering
    • H04N1/00185Image output
    • H04N1/00201Creation of a lenticular or stereo hardcopy image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/23Reproducing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/122Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/317Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using slanted parallax optics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/327Calibration thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays

Definitions

  • the present invention in some embodiments thereof, relates to lenticular printing and, more particularly, but not exclusively, to lenticular image articles and methods for reducing or eliminating banding artifacts in lenticular printing products such as lenticular image articles.
  • Lenticular printing is a process consisting of creating a composite interlaced image by interlacing various images, and attaching it with a lenticular lens arrangement, such as a sheet, to form a lenticular image article.
  • a lenticular lens arrangement such as a sheet
  • the lenticular printing can be used to create a dynamic image, for example by offsetting the various layers at different increments in order to give a three dimension (3D) effect to the observer, various frames of animation that gives a motion effect to the observer, a set of alternate images that each appears to the observer as transforming into another.
  • 3D three dimension
  • One of the most common methods of lenticular printing which accounts for the vast majority of lenticular images in the world today, is lithographic printing of the composite interlaced image directly onto lower surface of a lenticular lens sheet.
  • banding In order to improve the clarity of the effect of the dynamic image to the observer, some artifacts may be reduced.
  • One of the reduced artifacts is banding.
  • the banding artifact is formed when transition starts in several places and progresses from each starting point towards the next, giving the impression of several curtains crossing the visual.
  • the unwanted bands appear typically in parallel to the lens direction.
  • the banding may be caused because of a mismatch between the printing resolution, denoted herein as D, and the lenticular sheet pitch, denoted herein as P, such that D/P is a non-integer number.
  • One of the known methods for reducing banding is adding blur to the composite interlaced image which can be implemented for example by interlacing not only the set of input images but also an additional set of so-called separator images. These separator images are created, for example, as an averaging of the input images. It should be noted that the use of separator images increases the mixing among views and hence increases ghosting and blur and provides only a partial reduction in the banding artifact.
  • Another known method for reducing banding is modifying the resolution of the printing system to match the lenticular sheet pitch, for example by changing the distances of laser dots in an offset plate setter. This is possible to do only in printing systems with variable resolution.
  • a method of creating a lenticular imaging article with a reduced banding artifact comprises printing an interlaced composite image according to a reference grid of a printer, the reference grid being parallel to a first axis, providing a lenticular lens sheet having a plurality of parallel lenticular lines between a plurality of lenslets, each the lenticular line being parallel to a second axis, selecting an acute angle for an intersection between the first and second axes according to a function of a resolution of the interlaced composite image and a pitch of the lenticular lens sheet, and positioning the lenticular lens sheet so that the intersection forms the acute angle.
  • the interlaced composite image having a plurality of bands tilted in about the acute angle.
  • the setting comprises calculating the acute angle so that the resolution divided by the pitch multiple a cosine of the acute angle equals an integer.
  • the setting comprising:
  • the printing comprises printing the interlaced composite image on the lenticular lens sheet.
  • the printing comprises printing the interlaced composite image on a medium, the positioning comprising attaching the medium to the lenticular lens sheet.
  • the first axis is tilted in relation to the edges of the lenticular lens sheet.
  • a lenticular imaging article with a reduced banding artifact comprises a lenticular lens sheet having a plurality of lenslets separated by a plurality of parallel lenticular lines aligned in parallel to a first axis, and an interlaced composite image positioned to face the lenticular lens sheet and printed according to a reference grid of a printer which is aligned in parallel to a second axis.
  • the intersection between the first and second axes forms an acute angle adapted to a resolution of the interlaced composite image and a pitch of the lenticular lens sheet.
  • the first axis is tilted in relation to an edge of the lenticular lens sheet.
  • the interlaced composite image is printed on a side of the lenticular lens sheet.
  • the interlaced composite image is printed on a media attached to a side of the lenticular lens sheet.
  • the lenticular imaging article has reduced banding artifact in relation to a similar lenticular imaging article having a plurality of similar lenslets being in parallel to another interlaced composite image printed in a similar reference grid aligned in parallel to the second axis.
  • a lenticular imaging article with a reduced banding artifact comprises a lenticular lens sheet having a plurality of lenslets separated by a plurality of parallel lenticular lines aligned in parallel to a first axis, the first axis being tilted in an acute angle in relation to a plurality of edges of the lenticular lens sheet and an interlaced composite image printed to face the lenticular lens sheet and printed according to a reference grid of a printer which is aligned in parallel to a second axis, the second axis being parallel to the at least two of the plurality of edges.
  • a method of printing a lenticular composite image for lenticular articles with a reduced banding artifact comprises providing a lenticular lens sheet having a plurality of sheet lateral edges and a plurality of lenticules aligned in parallel to a first axis, the first axis being tilted in an acute angle in relation to the plurality of sheet lateral edges, cutting a plurality of plate lateral edges of at least one rectangle offset plate in parallel to the plurality of sheet lateral edges, and printing an interlaced composite image using the at least one rectangle offset plate.
  • the printing comprises printing the interlaced composite image on a medium; further comprising fixating the lenticular lens sheet in relation to the medium.
  • the printing comprises printing the interlaced composite image on the medium to the lenticular lens sheet.
  • the acute angle is adapted to a resolution of the interlaced composite image and a pitch of the lenticular lens sheet.
  • a computer program product comprising at least one computer usable medium having a computer readable program code embodied therein, the computer readable program code adapted to be executed to implement a method of creating a lenticular imaging article with a reduced banding artifact.
  • the method comprises generating printing instructions for printing an interlaced composite image according to a reference grid of a printer, the reference grid being parallel to a first axis, computing an acute angle for an intersection between the first axis and a second axis parallel to a plurality of parallel lenticular lines between a plurality of lenslets of a lenticular lens sheet, the computing being performed using a function of a resolution of the interlaced composite image and a pitch of the lenticular lens sheet, and instructing the positioning of the lenticular lens sheet so that the intersection forms the acute angle.
  • all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains.
  • Implementation of the method and/or system of embodiments of the invention can involve performing or completing selected tasks manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of embodiments of the method and/or system of the invention, several selected tasks could be implemented by hardware, by software or by firmware or by a combination thereof using an operating system.
  • a data processor such as a computing platform for executing a plurality of instructions.
  • the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile storage, for example, a magnetic hard-disk and/or removable media, for storing instructions and/or data.
  • a network connection is provided as well.
  • a display and/or a user input device such as a keyboard or mouse are optionally provided as well.
  • FIG. 1 is a schematic illustration of a method of creating a lenticular imaging article having a reduced banding effect, according to some embodiments of the present invention
  • FIG. 2A is a schematic illustration of an arrangement in which an interlaced composite image and a lenticular lens sheet are placed one on top of the other, according to some embodiments of the present invention
  • FIG. 2B is an exemplary interlaced composite image, according to some embodiments of the present invention.
  • FIG. 3 depicts a schematic illustration of an offset plate that confines an imaging grid in which an area is marked to contain data for forming an interlaced image, according to some embodiments of the present invention
  • FIG. 4 is a schematic illustration of such a lenticular lens sheet having lenslets which are tilted in relation to its edges, according to some embodiments of the present invention.
  • FIG. 5 is a schematic illustration of an apparatus for creating a lenticular imaging article, according to some embodiment of the present invention.
  • the present invention in some embodiments thereof, relates to lenticular printing and, more particularly, but not exclusively, to lenticular image articles and methods for reducing or eliminating banding artifacts in lenticular printing products such as lenticular image articles.
  • a lenticular imaging article having a lenticular lens sheet and an interlaced composite image printed according to a reference grid of a printer, which is positioned to face the lenticular lens sheet so that an acute angle (a) is formed at the intersection between an axis that is parallel to the lenslets of the lenticular lens sheet and another axis that is parallel to one or more axes of the reference grid.
  • the lenticular lens sheet and the interlaced composite image are firmly fixated to one another.
  • the interlaced bands of the interlaced composite image are tilted to match the tilting angle of the lenslets of the lenticular lens sheet, for example about the acute angle.
  • the acute angle is set so as to reduce banding artifacts of the lenticular imaging article.
  • the acute angle is set according to the pitch (P) of the lenticular lens sheet and according to the resolution of the interlaced composite image (D) such that D/(P*cos(a)) is an integer number.
  • the acute angle reduces or eliminates the banding effect from the lenticular imaging article, optionally without changing or adapting the resolution of the printing system. This allows printing the lenticular imaging article in printing systems with a fixed resolution, for example inkjet printing systems, offset printing systems and silver halide digital printing systems.
  • a method of creating such a lenticular imaging article is based on positioning an interlaced composite image, which is printed according to a reference grid of a printer, so that it faces a lenticular lens sheet having a plurality of parallel lenticular lines between a plurality of lenslets.
  • the interlaced composite image is positioned so that an intersection between an axis, which is parallel to one of the axes of the reference grid, and another axis, which is parallel to the lenslets, forms an acute angle.
  • a lenticular imaging article that comprises an interlaced composite image and a lenticular lens sheet.
  • the lenticular lens sheet has titled lenslets separated by tilted and parallel lenticular lines which are aligned in parallel.
  • the titled lenslets, and optionally the bands of the interlaced composite image are tilted in an acute angle in relation to a plurality of edges of the lenticular lens sheet.
  • the interlaced composite image is printed according to a reference grid of a printer. The printing is performed so that one of the axes of the reference grid is parallel to two of the edges of the lenticular lens sheet on which the interlaced composite image is printed and/or to which the interlaced composite image is attached.
  • FIG. 1 is a schematic illustration of a method of creating a lenticular imaging article having a reduced banding effect, according to some embodiments of the present invention.
  • images are received.
  • the images may be taken from a sequence, such as a typical spatio-temporal signal for example a series of sequentially ordered images, a video sequence, or any other series of sequential images.
  • the images may be selected to create a dynamic image, for example a set of offset images selected to give a three dimension (3D) effect to the observer, when interlaced, various frames of one or more moving objects that gives a motion effect to the observer, when interlaced, and/or a set of alternate images that are selected to appear, when interlaced, to the observer as transforming into another.
  • the images may be extracted from a memory device, captured by an imaging device, received from a remote server, selected by a user, and/or created by a user.
  • the provided images are interlaced to form an interlaced composite image, also known as a lenticular image.
  • the interlacing is optionally performed to match the tilt angle of the lenticules of the lenticular lens sheet that is provided, as shown at 103.
  • the interlaced composite image is aligned such that its strips are tilted with respect to a reference grid, which may also be referred to as an image grid, of a printing system, referred to herein also as a printer, so as to be matched to the direction of the lenticules of the lenticular lens sheet.
  • the interlaced composite image 201 is printed according to the reference grid.
  • the reference grid is typically implemented by a laser beam that imprints points on a reference grid and then the print is formed according to the imprinted points by impression or by a chemical process.
  • the reference grid is realized in some systems by an array of printing heads and by their motion steps.
  • the printed bands of the interlaced composite image are optionally tilted in relation to the reference grid of the printer, for example as further described below.
  • the forming of the interlaced composite image 201 involves assigning brightness intensities or colors, to a set of positions on the reference grid.
  • a lenticular lens sheet which is optionally adapted to the width of the bands of the interlaced composite image.
  • a lenticular lens sheet means any image separating mask, such as an array of lenslets, optionally magnifying, optionally cylindrical, which are optionally designed so that when viewed from a point of view in slightly different angles, light from different segments of a plane parallel to the sheet is directed to the point of view.
  • the lenticular lens sheet has a plurality of parallel lenticular lines each separates between two lenslets of the lenticular lens sheet. The parallel lenticular lines and the lenslets are optionally parallel to a common axis.
  • the lenticular lens sheet is positioned so that the lenticular lines and/or lenslets are tilted in an acute tilt angle in relation to one of the axes of the reference grid of the printer printing the interlaced composite image.
  • FIG. 2A is a schematic illustration of an arrangement 200 in which an interlaced composite image 201 and a lenticular lens sheet 202 are placed one on top of the other, according to some embodiments of the present invention.
  • the interlaced composite image 201 is printed according to a reference grid 210 having an axis, for example the axis that is marked as numeral 203, which forms an acute angle with another axis that is parallel to the lenticular lens 204 of the lenticular lens sheet 202, for example an acute angle with less than 45° degrees.
  • the interlaced composite image 201 is pixelated.
  • Numeral 205 depicts a width of an exemplary pixel.
  • the interlaced composite image 201 comprises a plurality of bands.
  • the bands are tilted to match the tilted angle of the lenticular lens 204 of the lenticular lens sheet 202.
  • FIG. 2B depicts an exemplary interlaced composite image with bands, such as 220, which are tilted to match the angle of the lenticular lens 204 of the lenticular lens sheet 202, for example the aforementioned acute angle.
  • bands such as 220
  • the depicted lenticular lens sheet have substantially vertical lenticular lenses
  • teaching of this document also refers to lenticular lens sheets having substantially horizontal lenticular lenses.
  • the tilt angle is selected such that it reduces banding artifacts.
  • the tilt angle denoted as a in FIG, 2 is selected such that:
  • an initial interlaced composite image is optionally formed with a resolution S that is an integer multiple of P.
  • the wraping of this initial interlaced composite image allows creating the final interlaced composite image, such as 201.
  • a resolution S may be defined as follows:
  • ceil() denotes a ceiling function, rounding up a positive number to the closest integer, acos() denotes an inverse of the cosine function cosQ, and k denotes a non-negative integer value that is optionally set to 0.
  • Equation 3 i _ - tan( ) 1
  • the scaling component in the warp allows changing the image resolution from S to D.
  • a is selected according to a calibration process which includes a trial and error procedure in which the arrangement is set with different tilt angles and a viewer chooses the tilt angle that reduces substantially banding artifacts.
  • the tilt angle may be sequentially adjusted in a plurality of trial sessions so as to allow an observer to detect when the lenticular imaging article has low banding artifact. This allows fixating the acute angle according to the observation of the observer.
  • the interlaced composite image and the lenticular lens sheet 202 are arranged in relation to one another manually, automatically, and/or semi automatically.
  • a mechanical element attaches the lenticular lens sheet 202 to the interlaced composite image 201 and then a viewer optionally adjusts the tilt angle between them.
  • the interlaced composite image is firmly fixed on top of the lenticular lens sheet, for example printed on the lenticular lens sheet and/or attached to the lenticular lens sheet.
  • the fixing of the interlaced composite image 201 to the lenticular sheet can be implemented by printing the interlaced composite image 201 according to a reference grid of a printer, as described above, directly on the flat side of the lenticular lens sheet 202 and/or printing the interlaced composite image 201 in the reference grid on some media and/or attaching the media to the lenticular lens sheet 202, for example by lamination.
  • the interlaced composite image 201 is printed on the lenticular lens sheet 202 by offset printing, where the tilt angle between the lenticular lens sheet 202 and the interlaced composite image
  • the reference grid of the interlaced composite image 201 is printed, for example as depicted in FIG. 3, prior to printing it on the lenticular lens sheet
  • FIG. 3 depicts an offset plate 301 that confines a reference grid 302 in which an area 303 which contains visual data 304 is defined to perform cutting for forming the interlaced image.
  • offset plates are created in a plate setter, for example four plates 301 for Cyan, Magenta, Yellow, and Black, each containing a respective version of the warped interlaced composite image 304 as described for example in Equation 3.
  • the lateral edges of the plates are cut in parallel to the lateral edges of the interlaced composite image 304 as the cut rectangle that is tilted by angle a.
  • the plates 301 are cut in a bulk in order to have consistent cutting of all plates 301. Then the plates 301 are mounted on the cylinders of the press, depending on the mechanism of the offset press. In some embodiments, this includes punching holes in the plate (not shown) and folding.
  • lenticular lens sheets are cut before the printing takes place to create an acute angle a between the. edge of the lenticular lens sheet and the direction of the lenslets.
  • FIG. 4 is a schematic illustration of such a lenticular lens sheet, according to some embodiments of the present invention.
  • a printing device such as an offset press, so as to allow printing the interlaced composite image 201 on the flat side thereof.
  • the image is printed on a media, such as a paper or a sticker which is then laminated or adhered to the lenticular lens sheet so that the intersection between the edge of the lenslets and one of the axes of the reference grid of the printer printing the interlaced composite image forms an acute tilt angle.
  • a media such as a paper or a sticker which is then laminated or adhered to the lenticular lens sheet so that the intersection between the edge of the lenslets and one of the axes of the reference grid of the printer printing the interlaced composite image forms an acute tilt angle.
  • FIG. 5 is a schematic illustration of an apparatus 50 for creating a lenticular imaging article that comprises an interlaced composite image and a lenticular lens sheet, according to some embodiment of the present invention.
  • the apparatus 50 comprises an input unit 53 that receives a set of images.
  • a set means a typical spatio-temporal signal such as a series of sequentially ordered images, a video sequence, or any other series or group of images.
  • the apparatus 50 comprises an interlacing module 57 that interlaces the received image to print an interlaced composite image therefrom, for example as described above.
  • the interlacing module 57 is not limited for generating interlaced images of a certain kind and may be used in various lenticular printing applications, such as generating three dimensional images. Furthermore, it should be noted that though the embodiments which are disclosed hereinbelow are described with reference to lenticular viewing, printing, and/or, images, they are not limited to lenticular viewing, printing, and/or, images and can be used for other applications and technologies.
  • the apparatus 50 further comprises an interface 56 which communicates with a lenticular imaging article generation unit 55, such as a lenticular imaging articles printer.
  • the lenticular imaging article generation unit 55 is set to print the interlaced composite image on lenticular lens sheets or on a medium which is than attached to lenticular lens sheets.
  • the apparatus 50 further comprises an angle calculation module 54 for defining a target angle for the intersection between the lenslets of the lenticular lens sheet and one of the axes of the reference grid of the printing printer according to which the interlaced composite image is printed by the lenticular imaging article generation unit 55. The calculation may be performed as described above.
  • the acute angle is optionally forwarded by the interface 56 to the lenticular imaging article generation unit 55 so that in use the lenticular imaging article generation unit 55 generates lenticular imaging articles with the target angle, according to the injection, for example as described above in relation to the method depicted in FIG. 2A.
  • the angle calculation module 54 may instruct the orientation of the printing image grid of the interlaced composite image or the feeding of the lenticular lens sheets.
  • composition or method may include additional ingredients and/or steps, but only if the additional ingredients and/or steps do not materially alter the basic and novel characteristics of the claimed composition or method.
  • a compound or “at least one compound” may include a plurality of compounds, including mixtures thereof.
  • range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Graphics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Processing Or Creating Images (AREA)
PCT/IL2011/000046 2010-01-14 2011-01-13 Lenticular image articles and method and apparatus of reducing banding artifacts in lenticular image articles Ceased WO2011086558A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020127020975A KR101783464B1 (ko) 2010-01-14 2011-01-13 렌티큘러 이미지 물품들과, 렌티큘러 이미지 물품들에서 밴딩 아티팩트들을 감소시키는 방법 및 장치
BR112012017368A BR112012017368A2 (pt) 2010-01-14 2011-01-13 "método para criar um artigo de imagens lenticulares com artefato de bandeamento reduzido , artigo de imagens lenticulares com artefatos de bandeamento reduzido metodo para imprimir uma imagem lenticular composta de artigos lenticulares com artefato de bandeamento reduzido e programa de computador
EP11710028.9A EP2524265B1 (en) 2010-01-14 2011-01-13 Lenticular image articles and method and apparatus of reducing banding artifacts in lenticular image articles
JP2012548534A JP5788903B2 (ja) 2010-01-14 2011-01-13 レンチキュラー像形成物品、並びにレンチキュラー像形成物品におけるバンディングアーティファクトを減少させる方法及び装置
US13/521,252 US8854684B2 (en) 2010-01-14 2011-01-13 Lenticular image articles and method and apparatus of reducing banding artifacts in lenticular image articles
US14/468,395 US9071714B2 (en) 2010-01-14 2014-08-26 Lenticular image articles and method and apparatus of reducing banding artifacts in lenticular image articles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29484310P 2010-01-14 2010-01-14
US61/294,843 2010-01-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/521,252 A-371-Of-International US8854684B2 (en) 2010-01-14 2011-01-13 Lenticular image articles and method and apparatus of reducing banding artifacts in lenticular image articles
US14/468,395 Continuation US9071714B2 (en) 2010-01-14 2014-08-26 Lenticular image articles and method and apparatus of reducing banding artifacts in lenticular image articles

Publications (1)

Publication Number Publication Date
WO2011086558A1 true WO2011086558A1 (en) 2011-07-21

Family

ID=43828384

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/IL2011/000046 Ceased WO2011086558A1 (en) 2010-01-14 2011-01-13 Lenticular image articles and method and apparatus of reducing banding artifacts in lenticular image articles
PCT/IL2011/000048 Ceased WO2011086560A1 (en) 2010-01-14 2011-01-13 Method and system for adjusting depth values of objects in a three dimensional (3d) display

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/IL2011/000048 Ceased WO2011086560A1 (en) 2010-01-14 2011-01-13 Method and system for adjusting depth values of objects in a three dimensional (3d) display

Country Status (6)

Country Link
US (4) US8953871B2 (enExample)
EP (2) EP2524511B1 (enExample)
JP (2) JP5940459B2 (enExample)
KR (2) KR101758314B1 (enExample)
BR (2) BR112012017368A2 (enExample)
WO (2) WO2011086558A1 (enExample)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013160900A1 (en) * 2012-04-25 2013-10-31 Humaneyes Technologies Ltd. Methods and systems of generating a lenticular article using a printing blanket
CN104166241A (zh) * 2014-08-22 2014-11-26 上海环鼎影视科技有限公司 裸眼3d透镜拼接方法及其拼接装置
EP3145728A4 (en) * 2014-05-20 2017-10-25 Lumenco, LLC Slant lens interlacing with linearly arranged lenses
CN108508616A (zh) * 2018-05-17 2018-09-07 成都工业学院 一种3d显示系统及3d显示装置
CN110383137A (zh) * 2017-03-10 2019-10-25 卡尔蔡司显微镜有限责任公司 三维显微术

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101758314B1 (ko) 2010-01-14 2017-07-26 휴먼아이즈 테크놀로지즈 리미티드 3차원 디스플레이에서 물체들의 깊이 값들을 조정하기 위한 방법 및 시스템
KR101763263B1 (ko) * 2010-12-24 2017-07-31 삼성전자주식회사 3d 디스플레이 단말 장치 및 그 조작 방법
JP2012205148A (ja) * 2011-03-25 2012-10-22 Kyocera Corp 電子機器
KR101778659B1 (ko) * 2011-04-04 2017-09-15 삼성디스플레이 주식회사 입체 영상 처리 방법 및 이를 수행하는 표시 장치
KR20120133640A (ko) * 2011-05-31 2012-12-11 삼성전자주식회사 3d 영상변환장치 그 구현방법 및 그 저장매체
CN102903143A (zh) * 2011-07-27 2013-01-30 国际商业机器公司 用于将二维图像三维化的方法和系统
US9100642B2 (en) * 2011-09-15 2015-08-04 Broadcom Corporation Adjustable depth layers for three-dimensional images
JP5989315B2 (ja) * 2011-09-22 2016-09-07 任天堂株式会社 表示制御プログラム、表示制御システム、表示制御装置、および、表示制御方法
KR20130065074A (ko) * 2011-12-09 2013-06-19 엘지전자 주식회사 전자 기기 및 전자 기기의 제어 방법
US9052518B2 (en) * 2012-11-30 2015-06-09 Lumenco, Llc Slant lens interlacing with linearly arranged sets of lenses
US9383588B2 (en) * 2012-11-30 2016-07-05 Lumenco, Llc Slanted lens interlacing
US20150332496A1 (en) 2012-12-10 2015-11-19 Dirtt Environmental Solutions, Ltd. Efficient lighting effects in design software
CA2838197C (en) * 2013-01-25 2020-05-12 Robert W. Blodgett Real-time depth of field effects with design software
EP2951785B1 (en) 2013-01-31 2019-12-11 Dirtt Environmental Solutions, Ltd. Method and system for efficient modeling of specular reflection
WO2014120185A1 (en) 2013-01-31 2014-08-07 Dirtt Environmental Solutions Inc. Visual distortion effects through translucent structures in design software
WO2014189484A1 (en) * 2013-05-20 2014-11-27 Intel Corporation Technologies for increasing the accuracy of depth camera images
US9128585B2 (en) * 2013-05-31 2015-09-08 Prezi, Inc. 3D rendering in a ZUI environment
US9958858B2 (en) 2013-05-31 2018-05-01 Ice Edge Business Solutions, Ltd. Associating computer-executable objects with three-dimensional spaces within an architectural design environment
CA2950595A1 (en) * 2014-05-20 2015-11-26 Hector Andres Porras Soto Slant lens interlacing with linearly arranged sets of lenses
EP3152373A4 (en) 2014-06-09 2018-05-02 Dirtt Environmental Solutions Inc. Associating computer-executable objects with timber frames within an architectural design environment
CN104347051A (zh) * 2014-06-30 2015-02-11 腾讯科技(深圳)有限公司 屏幕亮度调节的方法和系统
WO2016102338A1 (en) * 2014-12-24 2016-06-30 Koninklijke Philips N.V. Autostereoscopic display device
USD764151S1 (en) * 2015-05-11 2016-08-23 Eric J. Gewirz Hat with lenticular panel
USD849375S1 (en) * 2015-06-19 2019-05-28 Eric J. Gewirz Panel for a shoe
US10065441B2 (en) 2015-09-01 2018-09-04 Digimarc Corporation Counterfeiting detection using machine readable indicia
US10359640B2 (en) * 2016-03-08 2019-07-23 Microsoft Technology Licensing, Llc Floating image display
JP2016146656A (ja) * 2016-03-24 2016-08-12 任天堂株式会社 表示制御プログラム、表示制御システム、表示制御装置、および、表示制御方法
US10530997B2 (en) 2017-07-13 2020-01-07 Zillow Group, Inc. Connecting and using building interior data acquired from mobile devices
US10375306B2 (en) 2017-07-13 2019-08-06 Zillow Group, Inc. Capture and use of building interior data from mobile devices
KR102423175B1 (ko) 2017-08-18 2022-07-21 삼성전자주식회사 심도 맵을 이용하여 이미지를 편집하기 위한 장치 및 그에 관한 방법
US10643386B2 (en) 2018-04-11 2020-05-05 Zillow Group, Inc. Presenting image transition sequences between viewing locations
KR102472156B1 (ko) * 2018-04-19 2022-11-30 삼성전자주식회사 전자 장치 및 그 깊이 정보 생성 방법
US10809066B2 (en) 2018-10-11 2020-10-20 Zillow Group, Inc. Automated mapping information generation from inter-connected images
CA3058602C (en) 2018-10-11 2023-01-24 Zillow Group, Inc. Automated mapping information generation from inter-connected images
US10708507B1 (en) 2018-10-11 2020-07-07 Zillow Group, Inc. Automated control of image acquisition via use of acquisition device sensors
US12014120B2 (en) 2019-08-28 2024-06-18 MFTB Holdco, Inc. Automated tools for generating mapping information for buildings
US11243656B2 (en) 2019-08-28 2022-02-08 Zillow, Inc. Automated tools for generating mapping information for buildings
US11164368B2 (en) 2019-10-07 2021-11-02 Zillow, Inc. Providing simulated lighting information for three-dimensional building models
US11164361B2 (en) 2019-10-28 2021-11-02 Zillow, Inc. Generating floor maps for buildings from automated analysis of visual data of the buildings' interiors
US11676344B2 (en) 2019-11-12 2023-06-13 MFTB Holdco, Inc. Presenting building information using building models
US10825247B1 (en) 2019-11-12 2020-11-03 Zillow Group, Inc. Presenting integrated building information using three-dimensional building models
US12333655B2 (en) 2019-11-12 2025-06-17 MFTB Holdco, Inc. Presenting building information using video and building models
US11405549B2 (en) 2020-06-05 2022-08-02 Zillow, Inc. Automated generation on mobile devices of panorama images for building locations and subsequent use
US11514674B2 (en) 2020-09-04 2022-11-29 Zillow, Inc. Automated analysis of image contents to determine the acquisition location of the image
US11592969B2 (en) 2020-10-13 2023-02-28 MFTB Holdco, Inc. Automated tools for generating building mapping information
US11481925B1 (en) 2020-11-23 2022-10-25 Zillow, Inc. Automated determination of image acquisition locations in building interiors using determined room shapes
US11252329B1 (en) 2021-01-08 2022-02-15 Zillow, Inc. Automated determination of image acquisition locations in building interiors using multiple data capture devices
CA3142154A1 (en) 2021-01-08 2022-07-08 Zillow, Inc. Automated determination of image acquisition locations in building interiors using multiple data capture devices
US11836973B2 (en) 2021-02-25 2023-12-05 MFTB Holdco, Inc. Automated direction of capturing in-room information for use in usability assessment of buildings
US11790648B2 (en) 2021-02-25 2023-10-17 MFTB Holdco, Inc. Automated usability assessment of buildings using visual data of captured in-room images
US11501492B1 (en) 2021-07-27 2022-11-15 Zillow, Inc. Automated room shape determination using visual data of multiple captured in-room images
US12056900B2 (en) 2021-08-27 2024-08-06 MFTB Holdco, Inc. Automated mapping information generation from analysis of building photos
US11842464B2 (en) 2021-09-22 2023-12-12 MFTB Holdco, Inc. Automated exchange and use of attribute information between building images of multiple types
US12045951B2 (en) 2021-12-28 2024-07-23 MFTB Holdco, Inc. Automated building information determination using inter-image analysis of multiple building images
US11830135B1 (en) 2022-07-13 2023-11-28 MFTB Holdco, Inc. Automated building identification using floor plans and acquired building images
US12260156B2 (en) 2022-07-25 2025-03-25 MFTB Holdco, Inc. Automated tools for incremental generation of building mapping information
US12444139B2 (en) 2022-09-22 2025-10-14 MFTB Holdco, Inc. Automated generation and presentation of visual data enhancements on camera view images captured in a building
US12175562B2 (en) 2022-11-11 2024-12-24 MFTB Holdco, Inc. Automated inter-image analysis of multiple building images for building information determination
US12347033B1 (en) 2022-11-11 2025-07-01 MFTB Holdco, Inc. Automated inter-image analysis of multiple building images for building floor plan generation
US12462483B2 (en) 2023-01-05 2025-11-04 MFTB Holdco, Inc. Automated localization using beacon transmitter devices of data acquired in buildings
US12495390B2 (en) 2023-01-23 2025-12-09 MFTB Holdco, Inc. Automated tracking of in-building device location and provision of associated location-related functionality

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0791847A1 (en) * 1996-02-23 1997-08-27 Koninklijke Philips Electronics N.V. Autostereoscopic display apparatus
EP0805041A1 (en) * 1995-11-10 1997-11-05 Matsushita Electric Industrial Co., Ltd. Image recorder, image data generator and recording method
US20090213210A1 (en) * 2006-08-30 2009-08-27 Conley Kenneth E Device for displaying a three dimensional image

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06149957A (ja) 1992-11-09 1994-05-31 Toshiba Medical Eng Co Ltd 画像表示装置
CA2173201C (en) 1993-09-30 2001-05-29 Yoshihide Yumoto Mehtod of producing lens, method of fabricating article with lens, articles with lens, resin composition for forming defining lines and lens-forming resin composition
US5503152A (en) 1994-09-28 1996-04-02 Tetrad Corporation Ultrasonic transducer assembly and method for three-dimensional imaging
US6005607A (en) 1995-06-29 1999-12-21 Matsushita Electric Industrial Co., Ltd. Stereoscopic computer graphics image generating apparatus and stereoscopic TV apparatus
JP3579162B2 (ja) 1995-06-29 2004-10-20 松下電器産業株式会社 立体cg画像生成装置
US5924870A (en) * 1996-12-09 1999-07-20 Digillax Systems Lenticular image and method
US5959718A (en) 1997-03-31 1999-09-28 Eastman Kodak Company Alignment and printing of integral images
US20050146521A1 (en) * 1998-05-27 2005-07-07 Kaye Michael C. Method for creating and presenting an accurate reproduction of three-dimensional images converted from two-dimensional images
US6406428B1 (en) 1999-12-15 2002-06-18 Eastman Kodak Company Ultrasound lenticular image product
US6373637B1 (en) 2000-09-13 2002-04-16 Eastman Kodak Company Diagonal lenticular image system
GB0105801D0 (en) * 2001-03-09 2001-04-25 Koninkl Philips Electronics Nv Apparatus
US7113634B2 (en) 2001-07-31 2006-09-26 Canon Kabushiki Kaisha Stereoscopic image forming apparatus, stereoscopic image forming method, stereoscopic image forming system and stereoscopic image forming program
US7123728B2 (en) * 2001-08-15 2006-10-17 Apple Computer, Inc. Speaker equalization tool
JP2003209858A (ja) * 2002-01-17 2003-07-25 Canon Inc 立体画像生成方法及び記録媒体
JP4005395B2 (ja) 2002-03-20 2007-11-07 株式会社トプコン 立体画像表示装置及び方法
EP1534021B1 (en) 2002-03-08 2010-04-28 Topcon Corporation Device and method for displaying stereo image
US7365875B2 (en) 2002-05-14 2008-04-29 Canon Kabushiki Kaisha Image processing apparatus, image processing method, program, and recording medium
JP2003348621A (ja) * 2002-05-27 2003-12-05 Canon Inc 二視点カメラの設定手段
KR100720879B1 (ko) * 2002-08-09 2007-05-23 가부시키가이샤 구라레 렌티큘러 렌즈 시트의 제조 방법
CA2507930A1 (en) * 2002-11-29 2004-08-05 Bracco Imaging, S.P.A. System and method for managing a plurality of locations of interest in 3d data displays
JP4272901B2 (ja) * 2003-02-17 2009-06-03 株式会社マーキュリーシステム 画像処理装置、撮像装置およびプログラム
US8102392B2 (en) 2003-06-27 2012-01-24 Kabushiki Kaisha Toshiba Image processing/displaying apparatus having free moving control unit and limited moving control unit and method of controlling the same
JP4664623B2 (ja) 2003-06-27 2011-04-06 株式会社東芝 画像処理表示装置
JP4400143B2 (ja) * 2003-08-20 2010-01-20 パナソニック株式会社 表示装置および表示方法
CA2581612A1 (en) * 2003-09-22 2005-04-07 Gene Dolgoff Omnidirectional lenticular and barrier-grid image display
JP2005165614A (ja) * 2003-12-02 2005-06-23 Canon Inc 画像合成装置および画像合成方法
US6995913B2 (en) * 2004-01-09 2006-02-07 National Graphics, Inc. Digitally imaged lenticular products incorporating customized elements
US7083340B2 (en) 2004-01-09 2006-08-01 National Graphics, Inc. Systematic lenticular lens selection in a digital printing environment
JP4271155B2 (ja) * 2004-02-10 2009-06-03 株式会社東芝 三次元画像表示装置
US7593132B2 (en) 2004-09-30 2009-09-22 Lexmark International, Inc. Method for calibrating printing of lenticular images to lenticular media
JP2006107213A (ja) 2004-10-06 2006-04-20 Canon Inc 立体画像印刷システム
WO2006040698A1 (en) * 2004-10-13 2006-04-20 Koninklijke Philips Electronics N.V. A stereoscopic display apparatus
US7643672B2 (en) 2004-10-21 2010-01-05 Kazunari Era Image processing apparatus, image pickup device and program therefor
US7469074B2 (en) 2004-11-17 2008-12-23 Lexmark International, Inc. Method for producing a composite image by processing source images to align reference points
JP2006163547A (ja) 2004-12-03 2006-06-22 Canon Inc 立体画像生成プログラム、立体画像生成システム及び立体画像生成装置。
JP4941624B2 (ja) * 2004-12-10 2012-05-30 大日本印刷株式会社 立体表示媒体
US7563228B2 (en) 2005-01-24 2009-07-21 Siemens Medical Solutions Usa, Inc. Stereoscopic three or four dimensional ultrasound imaging
JPWO2007001013A1 (ja) * 2005-06-29 2009-01-22 大日本印刷株式会社 レンチキュラーレンズ、光拡散シートおよびプロジェクション・スクリーン
US7660041B1 (en) 2006-08-30 2010-02-09 Conley Kenneth E Method of producing a sheet having lenticular lenses for a three dimensional display system
US20100099991A1 (en) 2006-10-13 2010-04-22 Koninklijke Philips Electronics N.V. 3D Ultrasonic Color Flow Imaging With Grayscale Invert
US20080151198A1 (en) * 2006-12-22 2008-06-26 Texas Instruments Incorporated System and method for slim projection displays
EP2106564A2 (en) 2007-01-15 2009-10-07 Humaneyes Technologies Ltd. A method and a system for lenticular printing
JP2013501255A (ja) 2009-08-03 2013-01-10 ヒューマンアイズ テクノロジーズ リミテッド 再構成3d画像の印刷を表示する方法およびシステム
JP2011107449A (ja) * 2009-11-18 2011-06-02 Fujifilm Corp プリンタ及びプリント方法
US20110157155A1 (en) * 2009-12-31 2011-06-30 Disney Enterprises, Inc. Layer management system for choreographing stereoscopic depth
KR101758314B1 (ko) 2010-01-14 2017-07-26 휴먼아이즈 테크놀로지즈 리미티드 3차원 디스플레이에서 물체들의 깊이 값들을 조정하기 위한 방법 및 시스템
US9317491B2 (en) 2010-11-22 2016-04-19 Webydo Systems Ltd. Methods and systems of generating and editing adaptable and interactive network documents

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0805041A1 (en) * 1995-11-10 1997-11-05 Matsushita Electric Industrial Co., Ltd. Image recorder, image data generator and recording method
EP0791847A1 (en) * 1996-02-23 1997-08-27 Koninklijke Philips Electronics N.V. Autostereoscopic display apparatus
US20090213210A1 (en) * 2006-08-30 2009-08-27 Conley Kenneth E Device for displaying a three dimensional image

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013160900A1 (en) * 2012-04-25 2013-10-31 Humaneyes Technologies Ltd. Methods and systems of generating a lenticular article using a printing blanket
CN104541494A (zh) * 2012-04-25 2015-04-22 人眼科技有限公司 使用印刷垫生成立体光栅制品的方法和系统
US9641702B2 (en) 2012-04-25 2017-05-02 Humaneyes Technologies Ltd. Methods and systems of generating a lenticular article using a printing blanket
EP3145728A4 (en) * 2014-05-20 2017-10-25 Lumenco, LLC Slant lens interlacing with linearly arranged lenses
CN104166241A (zh) * 2014-08-22 2014-11-26 上海环鼎影视科技有限公司 裸眼3d透镜拼接方法及其拼接装置
CN110383137A (zh) * 2017-03-10 2019-10-25 卡尔蔡司显微镜有限责任公司 三维显微术
US11454798B2 (en) 2017-03-10 2022-09-27 Carl Zeiss Microscopy Gmbh 3D microscopy
CN108508616A (zh) * 2018-05-17 2018-09-07 成都工业学院 一种3d显示系统及3d显示装置
CN108508616B (zh) * 2018-05-17 2024-04-16 成都工业学院 一种3d显示系统及3d显示装置

Also Published As

Publication number Publication date
US20140362388A1 (en) 2014-12-11
US8854684B2 (en) 2014-10-07
US9071714B2 (en) 2015-06-30
US20120287447A1 (en) 2012-11-15
EP2524265A1 (en) 2012-11-21
JP2013517524A (ja) 2013-05-16
KR20130099809A (ko) 2013-09-06
JP5940459B2 (ja) 2016-06-29
EP2524511A1 (en) 2012-11-21
WO2011086560A1 (en) 2011-07-21
BR112012017367A2 (pt) 2017-06-13
US9438759B2 (en) 2016-09-06
KR101758314B1 (ko) 2017-07-26
US8953871B2 (en) 2015-02-10
KR101783464B1 (ko) 2017-10-11
EP2524511B1 (en) 2017-10-18
JP2013517657A (ja) 2013-05-16
US20120288184A1 (en) 2012-11-15
KR20120125492A (ko) 2012-11-15
US20150154788A1 (en) 2015-06-04
JP5788903B2 (ja) 2015-10-07
BR112012017368A2 (pt) 2017-06-13
EP2524265B1 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
EP2524265B1 (en) Lenticular image articles and method and apparatus of reducing banding artifacts in lenticular image articles
CN104541494B (zh) 使用印刷垫生成立体光栅制品的方法和系统
US9361717B2 (en) Methods and systems of generating an interlaced composite image
US7136185B2 (en) Corresponding lenticular imaging
US9576401B2 (en) Methods and systems of reducing blurring artifacts in lenticular printing and display
CN104937477B (zh) 倾斜透镜交错
JP2013517524A5 (enExample)
EP1986446A3 (en) Image processing apparatus and image processing method
US8411325B2 (en) Method for screening color separations of a lenticular image, computer program product and method for producing a lenticular image on a printing material
EP2630631B1 (en) Methods and systems of generating an interlaced composite image
US8284452B2 (en) Method for screening color separations of a lenticular image and method for producing a lenticular image on a printing material
JP5862188B2 (ja) 印刷システム、印刷方法およびレンズシート
EP2902211B1 (en) Ghosting compensation in relief images for directional prints
US10706338B2 (en) Minimizing visual variations in multi-lane print outputs
JP2007003588A (ja) 画像分割プリント装置および方法並びにプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11710028

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13521252

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012548534

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011710028

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127020975

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012017368

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012017368

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120713