WO2011086292A1 - Compositions a base de matiere vegetale et de fibres synthetiques et procede de preparation de telles compositions - Google Patents

Compositions a base de matiere vegetale et de fibres synthetiques et procede de preparation de telles compositions Download PDF

Info

Publication number
WO2011086292A1
WO2011086292A1 PCT/FR2010/052870 FR2010052870W WO2011086292A1 WO 2011086292 A1 WO2011086292 A1 WO 2011086292A1 FR 2010052870 W FR2010052870 W FR 2010052870W WO 2011086292 A1 WO2011086292 A1 WO 2011086292A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
fibers
thermoplastic
starch
composition according
Prior art date
Application number
PCT/FR2010/052870
Other languages
English (en)
Inventor
Léon Mentink
Didier Beaudoux
Bernard Constant
Original Assignee
Roquette Freres
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres filed Critical Roquette Freres
Priority to CN2010800587877A priority Critical patent/CN102753611A/zh
Priority to EP10810781A priority patent/EP2516535A1/fr
Publication of WO2011086292A1 publication Critical patent/WO2011086292A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Definitions

  • compositions comprising a thermoplastic composition based on polyolefin and plasticized starch (a) and synthetic fibers (b). It also relates to a process for preparing these compositions.
  • thermoplastic composition in the present invention means a composition which reversibly softens under the action of heat and hardens on cooling. It has at least one so-called glass transition temperature (Tg) below which the amorphous fraction of the composition is in the brittle glassy state, and above which the composition can undergo reversible plastic deformations.
  • Tg glass transition temperature
  • the glass transition temperature or at least one of the glass transition temperatures of the starch-based thermoplastic composition of the present invention is preferably from -120 ° C to 150 ° C.
  • This thermoplastic composition has an ability to be shaped by the processes traditionally used in the plastic, textile or wood processing industries, such as extrusion, injection, molding, rotational molding, thermoforming, blowing, spinning, calendering or pressing. Its viscosity, measured at a temperature of 100 ° C. to 200 ° C., is generally between 10 and 10 6 Pa.s.
  • said thermoplastic composition is "heat fusible", that is to say that it can be shaped without application of significant shear forces, that is to say by simple flow or by simple pressing melted matter. Its viscosity, measured at a temperature of 100 ° C. to 200 ° C., is generally between 10 and 10 3 Pa.s.
  • synthetic fibers is intended to mean a composition obtained by shaping, in particular after melting or pyrolysis, a material of mineral, fossil or organic origin, fibers of diameter from 2 to 35 microns and of variable length.
  • These synthetic fibers preferably have a high specific modulus, between 25 and 230 GPa.mVkg and are in particular of siliceous nature (glass fibers), of a carbon-like nature (carbon fibers), of a metallic nature (steel fibers or aluminum) or synthetic polymeric nature (PET fibers, PBT, PS, PP, PA, PLA, PU, aramids). It can therefore be both inorganic fibers and organic fibers.
  • This definition excludes in fact vegetable fibers, that is to say fibers as present in nature, especially in plants.
  • thermomechanical properties similar to synthetic-fiber-reinforced petroleum resins or even improved properties compared to them while maximizing short-term renewable resources such as starch and reducing energy requirements for the manufacture, transport, processing and even recycling of such compositions.
  • the present invention provides a new and advantageous solution to the problems stated above by proposing new compositions based on plant material and synthetic fibers, having mechanical properties at least comparable to resins reinforced polyolefmes market.
  • compositions based on plant material and synthetic fibers comprise:
  • thermoplastic composition comprising at least one polyolefin and at least one thermoplastic starch, and at least 5% by weight and at most 90% by weight of synthetic fibers (b) with a diameter of between 2 and 35 microns and with a specific modulus of between 25 and 230 GPa.mVkg.
  • thermoplastic starch behaves in the manner of a compatibilizer or coupling agent between the thermoplastic composition (a) and the synthetic fibers (b) by acting on the fiber adhesion and the compatibility of such mixtures.
  • thermoplastic composition (a) has, compared with polyolefins, excellent interaction and adhesion properties vis-à-vis the synthetic fibers, especially vis-à-vis the fibers of glass or carbon, so that this thermoplastic composition (a) can also constitute a full-fledged adhesive or synthetic fiber bonding composition (b).
  • thermoplastic starch means a state in which the starch is no longer in a granular state, ie in a state where it is no longer in a semi-granular state.
  • the starch grains In the native state, the starch grains have a degree of crystallinity which varies from 15 to 45%, and which depends essentially on the botanical origin of the starch and the possible treatment that it has undergone.
  • the granular starch placed under polarized light, presents in microscopy a characteristic cross, called “Maltese cross", typical of the crystalline granular state.
  • Mealtese cross a characteristic cross
  • thermoplastic state of the starch is obtained by baking / plasticizing granular starch by incorporating water or / and a suitable plasticizer at a level generally between 15 and 35% relative to the granular starch and by supply of mechanical and thermal energy.
  • US Pat. Nos. 5,095,054 to Warner Lambert and EP 0,497,706 B1 of the Applicant describe, in particular, this destructured thermoplastic state, with reduced or absent crystallinity due to the addition of plasticizer, and means for obtaining such thermoplastic starches. .
  • the destructuring of the native semi-crystalline granular state of the starch to obtain amorphous thermoplastic starches can be carried out in a medium that is poorly hydrated by thermomechanical or extrusion processes, but in this case requires the presence of a plasticizer at risk. otherwise, carbonize the starch.
  • thermoplastic starch makes it possible to obtain thermoplastic compositions whose properties can be modulated by the choice of the type of starch, the nature of the plasticizer, the plasticization ratio, the incorporation of thermoplastic starch and polyolefins and the mixing process.
  • compositions comprising starch and a non-starchy polymer do not have the characteristics required to be suitable for uses of materials requiring high flexural or tensile modulus, good temperature resistance properties or impact resilience. high.
  • reinforcing agents into polyolefin-based compositions, the addition of these to improve its mechanical properties in bending and pulling is generally accompanied by decreased impact resistance.
  • the Applicant has found that the addition of clay or calcium carbonate in a composition based on thermoplastic starch and polyolefin results in an improvement of the mechanical properties in flexion accompanied by a decrease in impact resilience.
  • the Applicant has found that by adding specific synthetic fibers (b) to a composition based on thermoplastic starch and polyolefin as a non-starchy polymer, it is possible to improve the mechanical properties in flexion and traction of this material. composition, while surprisingly increasing the impact resilience of these compositions significantly.
  • US 2006/0194902 A1 discloses a composition which comprises a polyolefin, a compatibilizer and a non-thermoplastic starch filler.
  • the composition may optionally comprise small amounts of glass fiber or cellulose.
  • EP 1 265 967 discloses thermoplastic starch compositions comprising fillers in the form of inorganic particles such as calcium carbonate or pine plant fibers and optionally an additional polymer. This The latter is described as being able to be among a long list of possible products, a polyolefin. At no time in this document is there described or suggested a composition according to the present invention.
  • compositions based on thermoplastic starch and a particular filler This composition may optionally further comprise fibers or an additional polymer.
  • composition based on plant material and synthetic fibers according to the invention is characterized in that it is advantageously in the form of granules, chips, sheets, plates, powders or fibrous mats, suitable for being shaped by pressing, thermoforming, extrusion, calendering, spinning, injection or blowing.
  • the composition according to the invention advantageously has a density of between 1.1 and 2.5, preferably between 1.15 and 2.10 and more preferably between 1.3 and 2.00 according to the ISO 1183 method. density is actually quite high but remains very advantageous in view of the densities of metals and even those of many synthetic polymers formulated with mineral fillers present on the market.
  • composition according to the invention is also at least in part bio-sourced by the obligatory presence of thermoplastic starch. It nevertheless has excellent thermomechanical characteristics and is a very advantageous material to suit many application areas such as automotive, aeronautics, yachting or building. More precisely, she presents:
  • a flexural modulus which is also very high and greater than 1500 MPa, preferably greater than 3000 MPa and better still greater than 5000 MPa, according to the ISO 178 method, and excellent impact resilience, ie a non-notched Chock Charpy value exceeding 25 kJ / m 2 , or even 30 kJ / m 2 at 23 ° C according to the ISO method 179 / IeU or a notched Shock Charpy value usually exceeding 15 kJ / m 2 , or even 20 kJ / m 2 at 23 ° C according to the ISO 179 / lA method.
  • the composition according to the invention comprises first and foremost a particular thermoplastic composition (a) which has the advantage of being rather sparse and of having a density measured according to the ISO 1183 method of between 1.05 and 1.25 and of preferably between 1.1 and 1.2.
  • This thermoplastic composition (a) necessarily comprises a polyolefin.
  • This polyolefin may be virgin, that is to say not having any prior use, although it may be formulated by the addition of additives or by compounding. It can also be recycled, that is to say come from polyolefin parts or objects recovered by recovery of material.
  • This polyolefin is preferably chosen from high density polyethylenes (HDPE), low density polyethylenes (LDPE), linear low density polyethylenes, homopolymeric polypropylenes (PPh), random polypropylenes (PPs), polypropylene copolymers (PPc) and polybutenes, as well as any mixtures thereof.
  • HDPE high density polyethylenes
  • LDPE low density polyethylenes
  • PPh homopolymeric polypropylenes
  • PPs random polypropylenes
  • PPc polypropylene copolymers
  • polybutenes polybutenes
  • the polyolefin may in particular be a mixture of polyolefins, at least one of which may carry silane, acrylic or maleic anhydride units, hereinafter functional units.
  • the amount by mass of silane, acrylic or maleic anhydride units ranges from 0.1 to 10% of the total mass of the polyolefin with patterns. It may be in particular polyolefins grafted with maleic anhydride.
  • the polyolefin comprises from 10 to 90% by weight of a polyolefin without functional units, or even from 25 to 75%, and from 10 to 90% by weight of a polyolefin carrying functional units. or even 25 to 75%.
  • the polyolefin has a weight average molecular weight of between 8500 and 10,000,000 daltons, in particular between 15,000 and 1,000,000 daltons.
  • the polyolefin of the composition is preferably semi-crystalline. At least one of its melting temperatures is then advantageously between 100 and 200 ° C., preferably between 110 and 170 ° C.
  • the melting temperature can be measured in a known manner by differential scanning calorimetry (DSC) with a heating rate of 10 ° C / minute: this measurement can be carried out by first heating the sample up to 200 ° C., cooling to a temperature of -50 ° C and then a second heating of the sample during which the melting temperature is measured, the heating and cooling rates being 10 ° C / minute.
  • DSC differential scanning calorimetry
  • the polyolefin of the thermoplastic composition (a) is a polymer containing at least 50%, preferably at least 70%, in particular more than 80%, and more preferably 100% of carbon of renewable origin in the sense of the ASTM D 6852 and / or ASTM D 6866, with respect to all the carbon present in said polymer.
  • the thermoplastic composition (a) may therefore comprise at least one polyolefin obtained from bio-sourced monomers, in particular from bioethanol or bio-methanol or bio-sourced functionalization grafts.
  • thermoplastic composition (a) also necessarily comprises a thermoplastic starch.
  • This starch preferably has a degree of crystallinity of less than 15%, preferably less than 5% and more preferably less than 1%, that is to say being in a substantially amorphous state.
  • This degree of crystallinity can in particular be measured by X-ray diffraction as described in US Pat. No. 5,362,777 (column 9, lines 8 to 24).
  • thermoplastic starch is advantageously substantially free of starch grains having, under light microscopy under polarized light, a Maltese cross, an indicator sign of the presence of crystalline granular starch.
  • thermoplastic composition (a) preferably comprises at least one thermoplastic starch representing, by dry weight, more than 25%, preferably more than
  • thermoplastic composition (a) 35%>, and more preferably more than 50%> of the thermoplastic composition (a), the complement to 100% of the thermoplastic composition (a) being essentially a polyolefin or a mixture of polyolefins.
  • the polyolefin constitutes the continuous dispersing phase and the thermoplastic starch the discontinuous dispersed phase of the thermoplastic composition (a)
  • the starch used for the preparation of the thermoplastic starch composition is preferably selected from granular starches, water-soluble starches and organomodified starches.
  • the starch selected for the preparation of the thermoplastic starch is a granular starch.
  • the crystallinity of said granular starch can be reduced to less than 15% by thermomechanical treatment and / or intimate mixing with a suitable plasticizer.
  • Said granular starch can be of any botanical origin. It may be starch native to cereals such as wheat, maize, barley, triticale, sorghum or rice, tubers such as potato or cassava, or legumes such as peas and soya, starches rich in amylose or conversely, rich in amylopectin (vaxy) from these plants and any mixtures of the aforementioned starches.
  • the granular starch may also be a granular starch modified by any means, physical, chemical and / or enzymatic. It may be a fluidized or oxidized granular starch or a white dextrin. It may also be a granular starch modified physico-chemically but having been able to retain the structure of the native starch starch, such as esterified and / or etherified starches, in particular modified by grafting, acetylation, hydroxypropylation, anionization, cationisation, crosslinking, phosphatation, succinylation and / or silylation. It may be, finally, a starch modified by a combination of the treatments mentioned above or any mixture of such granular starches.
  • this granular starch is chosen from native starches, fluidized starches, oxidized starches, chemically modified starches, white dextrins and any mixtures of these products.
  • the granular starch is preferably a wheat or pea granular starch or a granular derivative of wheat or pea starch. It generally has a level of solubles at 20 ° C in demineralised water of less than 5% by mass and can be practically insoluble in cold water.
  • the starch selected for the preparation of the thermoplastic starch is a water-soluble starch, which can also come from all botanical origins, including a starch, which is water-soluble, rich in amylose or, conversely, rich in amylopectin (waxy). .
  • This soluble starch can be introduced as a partial or total replacement of the granular starch.
  • the water-soluble starch is used in solid form, preferably substantially anhydrous, i.e. undissolved or non-dispersed in an aqueous or organic solvent. It is therefore important not to confuse, throughout the description that follows, the term "water-soluble” with the term "dissolved”.
  • Such water-soluble starches can be obtained by pregelatinization on a drum, by pregelatinization on an extruder, by spraying a suspension or a starch solution, by precipitation with a non-solvent, by hydrothermal cooking, by chemical functionalization or the like. It is in particular a pregelatinized, extruded or atomized starch, a highly converted dextrin (also called yellow dextrin), a maltodextrin, a functionalized starch or a mixture of these products.
  • the pregelatinized starches can be obtained by hydrothermal treatment of gelatinization of native starches or modified starches, in particular by steam cooking, jet-cooker cooking, drum cooking, cooking in kneader / extruder systems and then drying, for example in incubator, by hot air on a fluidized bed, on a rotating drum, by atomization, by extrusion or by lyophilization.
  • Such starches generally have a solubility in demineralized water at 20 ° C. of greater than 5% and more generally of between 10 and 100% and a starch crystallinity level of less than 15%, generally less than 5% and most often less than 1%, or even none. Examples include products manufactured and marketed by the Applicant under the brand name PREGEFLO ®.
  • Highly processed dextrins can be prepared from native or modified starches by dextrinification in a weakly acidic acid medium. It may be in particular soluble white dextrins or yellow dextrins. By way of example, mention may be made of the STABILYS ® A 053 or TACKIDEX ® C 072 products manufactured and marketed by the Applicant. Such dextrins have demineralized water at 20 ° C, a solubility generally between 10 and 95% and a starch crystallinity of less than 15% and generally less than 5%.
  • Maltodextrins can be obtained by acid, oxidative or enzymatic hydrolysis of starches in an aqueous medium. They may in particular have an equivalent dextrose (DE) of between 0.5 and 40, preferably between 0.5 and 20 and better still between 0.5 and 12.
  • DE dextrose
  • Such maltodextrins are for example manufactured and marketed by the Applicant under the trade name GLUCIDEX ® and have a solubility in deionized water at 20 ° C, generally greater than 90% or close to 100% and a starch crystallinity generally less than 5% and usually almost zero.
  • the functionalized starches can be obtained from a native or modified starch.
  • the high functionalization may for example be carried out by esterification or etherification at a sufficiently high level to confer a solubility in water.
  • Such functionalized starches have a soluble fraction as defined above, greater than 5%, preferably greater than 10%, more preferably greater than 50%.
  • the functionalization can be obtained in particular by aqueous phase acetylation of acetic anhydride, mixed anhydrides, glutamate hydroxypropylation, dry phase cationization or glue phase, anionization in the dry phase or glue phase by phosphatation or succinylation.
  • These water-soluble highly functionalized starches may have a degree of substitution of between 0.01 and 3, and more preferably between 0.05 and 1.
  • the reagents for modifying or functionalizing the starch are of renewable origin.
  • the water-soluble starch is a water-soluble starch of wheat or pea or a water-soluble derivative of a wheat or pea starch.
  • the starch selected for the preparation of the thermoplastic starch is an organomodified starch, preferably organosoluble, which may also come from all botanical origins, including an organomodified starch, preferably organosoluble, rich in amylose or, conversely , rich in amylopectin (waxy).
  • organosoluble starch may be introduced as partial or total replacement of the granular starch or of the water-soluble starch.
  • organomodified starch means any polysaccharide material derived from starch, other than a granular starch or a water-soluble starch according to the definitions given above.
  • this organomodified starch is almost amorphous, that is to say has a starch crystallinity level of less than 5%, generally less than 1% and especially zero.
  • organosoluble that is to say present, at 20 ° C, a fraction soluble in a solvent selected from ethanol, ethyl acetate, propyl acetate, butyl acetate, diethyl carbonate, propylene carbonate, dimethyl glutarate, triethyl citrate, dibasic esters, dimethyl sulfoxide (DMSO), dimethyl isosorbide, glycerol triacetate, isosorbide diacetate, dioleate isosorbide and methyl esters of vegetable oils, at least equal to 5% by weight.
  • This soluble fraction is preferably greater than 20% by weight and in particular greater than 50% by weight.
  • the organomodified starch may be used according to the invention in solid form, preferably substantially anhydrous.
  • its water content is less than 10%, preferably less than 5%, in particular less than 2% by weight and ideally less than 0.5%, or even less than 0.2% by weight.
  • the organomodified starch that can be used in the composition according to the invention can be prepared by high functionalization of the native or modified starches such as those presented above.
  • This high functionalization can for example be carried out by esterification or etherification at a sufficiently high level to make it essentially amorphous and to confer on it an insolubility in water and preferably a solubility in one of the above organic solvents.
  • Such functionalized starches have a soluble fraction as defined above, greater than 5%, preferably greater than 10%, more preferably greater than 50%.
  • the high functionalization can be obtained in particular by acetylation in the solvent phase by acetic anhydride, grafting for example in the solvent phase or by reactive extrusion, of acid anhydrides, mixed anhydrides, fatty acid chlorides, oligomers of caprolactones or lactides, hydroxypropylation and crosslinking in the glue phase, cationization and crosslinking in the dry phase or in the glue phase, anionization by phosphatation or succinylation and crosslinking in the dry phase or in the glue phase, sililation, butadiene telomerization.
  • organomodified, preferably organosoluble, highly functionalized starches may in particular be acetates of starches, dextrins or maltodextrins or fatty esters of these starchy materials (starches, dextrins, maltodextrins) with fatty chains of 4 to 22 carbons, all of these products preferably having a degree of substitution (DS) between 0.5 and 3.0, preferably between 0.8 and 2.8 and in particular between 1.0 and 2.7.
  • DS degree of substitution
  • It may be, for example, hexanoates, octanoates, decanoates, laurates, palmitates, oleates and stearates of starches, dextrins or maltodextrins, in particular having a DS between 0 , 8 and 2.8.
  • the organomodified starch is an organomodified starch of wheat or pea or an organomodified derivative of a wheat or pea starch.
  • the thermoplastic composition (a) comprises a plasticizer.
  • plasticizer is intended to mean any organic molecule of low molecular weight, that is to say preferably having a molecular weight of less than 5000, which, when incorporated by a thermomechanical treatment at a temperature of between 20 and 200 ° C to the thermoplastic composition (a) or to the thermoplastic starch, results in a decrease in the glass transition temperature of the thermoplastic composition (a) or the thermoplastic starch and / or results in reducing the crystallinity of the thermoplastic starch until it reaches an essentially amorphous state.
  • thermoplastic composition (a) preferably has a content of plasticizer in dry weight of between 4% and 50%, preferably between 8% and 40% and in particular between 15% and 25%, of the thermoplastic composition ( at).
  • Water is the most natural plasticizer of starch and is therefore commonly used, but other molecules are also very effective, including sugars such as glucose, maltose, fructose or sucrose; polyols and mixtures of these products.
  • the plasticizer preferably selected in the context of the present invention is preferably chosen from diols, triols and polyols such as glycerol, polyglycerol, isosorbide, sorbitans, sorbitol, mannitol, and syrups of hydrogenated glucose, salts of organic acids such as sodium lactate, urea and mixtures of these products.
  • the plasticizer then advantageously has a molar mass of less than 5000, preferably less than 1000, and in particular less than 400.
  • the plasticizer preferably has a molar mass of greater than 18 and at most 380, ie preferably does not include water.
  • the plasticizer of the starch may be, especially when the latter is organomodified, chosen from methyl, ethyl or fatty esters of organic acids such as lactic acid, citric acid, succinic acid, adipic acid and glutaric acid and the acetic acid esters.
  • fatty esters of monoalcohols, diols, triols or polyols such as ethanol, diethylene glycol, glycerol and sorbitol.
  • glycerol diacetate (diacetin) and glycerol triacetate examples of glycerol diacetate (diacetin) and glycerol triacetate.
  • triacetin isosorbide diacetate, isosorbide dioctanoate, isosorbide dioleate, isosorbide dilaurate, dibasic esters (dibasic esters of dicarboxylic acids or dibasic esters), and mixtures of these products.
  • the plasticizer preferably other than water, is generally present in the thermoplastic starch at a rate of 1 to 150 parts by dry weight, preferably at 10 to 120 parts by dry weight and in particular at 25 to 25 parts by weight. 120 parts by dry weight per 100 parts by dry weight of starch.
  • the plasticizer preferably other than water, is contained in the thermoplastic starch at 25 to 110 parts by dry weight, preferably at 30 to 100 parts by dry weight, and in particular from 30 to 90 parts by dry weight, per 100 parts by dry weight of starch.
  • thermoplastic composition (a) preferably comprises, as thermoplastic starch, at least one plasticized starch obtained from native starches, pregelatinized starches, extruded starches, atomized starches, fluidized starches, oxidized starches, cationic starches, anionic starches, hydroxyalkylated starches, crosslinked starches, starch acetates, starch fatty esters and fatty chains of 4 to 22 carbons, dextrins , maltodextrins and any mixtures of these products, plasticized by at least one of the plasticizers listed above.
  • thermoplastic composition (a) advantageously comprises: from 25 to 85% by weight of thermoplastic starch,
  • At least one plasticizer preferably other than water, and more preferably:
  • thermoplastic starch from 35 to 85% by weight of thermoplastic starch, for example from 35 to 80%,
  • composition according to the invention also preferably comprises a binding agent.
  • linking agent in the present invention means any organic molecule carrying at least two functional groups, free or masked, capable of reacting with molecules carrying active hydrogen functions such as starch or plasticizer of starch. This binding agent may be added to the composition to allow covalent attachment of at least a portion of the plasticizer to the starch or even to the polyolefin, particularly if it carries functional groups.
  • This binding agent can then be chosen for example from compounds carrying at least two functions, free or masked, identical or different, chosen from isocyanate functions, carbamoylcaprolactams, aldehydes, epoxides, halo, protonic acids, acid anhydrides acyl halides, oxychlorides, trimetaphosphates, alkoxysilanes and combinations thereof.
  • H12MDI 4,4'-dicyclohexylmethane diisocyanate
  • MDI methylenediphenyl diisocyanate
  • TDI toluene diisocyanate
  • NDI naphthalene diisocyanate
  • HMDI hexamethylene diisocyanate
  • LI lysine diisocyanate
  • dicarbamoylcaprolactams preferably 1-1'-carbonyl-caprolactam
  • halohydrins that is to say compounds having an epoxide function and a halogen function, preferably epichlorohydrin,
  • organic diacids preferably succinic acid, adipic acid, glutaric acid, oxalic acid, malonic acid, maleic acid and the corresponding anhydrides,
  • oxychlorides preferably phosphorus oxychloride
  • trimetaphosphates preferably sodium trimetaphoshate
  • alkoxysilanes preferably tetraethoxysilane
  • the linking agent is a diisocyanate, in particular methylenediphenyl diisocyanate (MDI) or 4,4'-dicyclohexylmethane diisocyanate (H 12 MDI).
  • MDI methylenediphenyl diisocyanate
  • H 12 MDI 4,4'-dicyclohexylmethane diisocyanate
  • the amount of binding agent, expressed as dry weight and relative to the sum, expressed in dry weight of the composition according to the invention is advantageously between 0.1 and 15% by weight, preferably between 0.1 and 12. % by weight, more preferably still between 0.2 and 9% by weight and in particular between 0.5 and 5% by weight.
  • the optional but preferred incorporation of the binding agent into the mixture of the composition according to the invention can be done by physical mixing at low temperature or cold, but preferably by hot mixing at a temperature above the transition temperature. vitreous of the amylaceous composition.
  • This mixing temperature is advantageously between 60 and 200 ° C. and better still between 100 and 180 ° C.
  • This incorporation can be carried out by thermomechanical mixing, discontinuously or continuously and in particular online. In this case, the mixing time can be short, from a few seconds to a few minutes.
  • the composition according to the invention may preferably comprise an agent improving its impact resilience, especially at a temperature of 23 ° C. or at a lower temperature. It may be an ethylene-propylene co-polymer type polymer (in particular ethylene-propylene terpolymer (EPDM)), ethylene-styrene, styrene-butadiene, a natural rubber, a copolymer-type elastomer styrene-butylene-styrenes (SB S) and styrene-ethylene-butylene-styrenes (SEBS) or any other elastomeric material.
  • This improving agent may represent from 1 to 15%, preferably 2 to 12% and better still 5 to 10% of the composition according to the invention.
  • thermoplastic composition (a) advantageously has the following preferred variants, taken separately or in combination:
  • thermoplastic starch is derived from granular starches, water-soluble starches or organomodified starches, preferably wheat or peas.
  • the thermoplastic starch has a degree of crystallinity of less than 5%, preferably less than 1%, that is to say in a substantially amorphous state
  • the polyolefin is chosen from polyethylenes (PE) and polypropylenes (PP), and preferably contains several polyolefins, at least one of which is functionalized, that is to say carries functional groups such as silane, acrylic or maleic anhydride units; ,
  • the polyolefin is a polymer containing at least 50%, preferably at least 70%, in particular more than 80%, and better still 100% of renewable carbon according to ASTM D 6852 and / or ASTM D 6866, with respect to all the carbon present in said polymer,
  • thermoplastic composition (a) comprises at least one plasticizer chosen from diols, triols and polyols such as glycerol, polyglycerol, isosorbide, sorbitans, sorbitol, mannitol, and hydrogenated glucose syrups, salts of organic acids such as sodium lactate, urea and mixtures of these products,
  • thermoplastic composition (a) comprises at least one impact-resilience improving agent, chosen in particular from polymers of ethylene-propylene co-polymer, ethylene-styrene or styrene-butadiene type, natural rubbers, elastomers of the type styrene-butylene-styrene copolymer (SB S) and styrene-ethylene-butylene-styrenes (SEBS) or any other elastomeric material,
  • impact-resilience improving agent chosen in particular from polymers of ethylene-propylene co-polymer, ethylene-styrene or styrene-butadiene type, natural rubbers, elastomers of the type styrene-butylene-styrene copolymer (SB S) and styrene-ethylene-butylene-styrenes (SEBS) or any other elastomeric material,
  • thermoplastic composition (a) comprises at least one linking agent chosen from compounds bearing at least two functions, free or masked, identical or different, chosen from isocyanate, carbamoylcaprolactam, aldehyde, epoxide, halogen and protonic acid functions; acid anhydride, acyl halide, oxychloride, trimetaphosphate, alkoxysilane and combinations thereof,
  • thermoplastic composition (a) contains at least 30%, advantageously at least 51%, preferably at least 70%, in particular more than 80% of carbon of renewable origin according to ASTM D 6852 and or ASTM D 6866, with respect to all the carbon present in said composition, the thermoplastic composition is non-biodegradable or non-compostable in the sense of the standards EN 13432, ASTM D 6400 and ASTM D 6868,
  • thermoplastic composition has a maximum flexural stress greater than 50 MPa, preferably greater than 100 MPa.
  • the composition according to the invention in the second place necessarily comprises synthetic fibers (b). These fibers are chosen so as to have a diameter of between 2 and 35 microns and a specific modulus of between 25 and 230 GPa.m3 / kg and selected in order to improve the cold mechanical properties of the composition according to the invention but also its heat stability as well as its thermomechanical properties, its conductive properties, and / or its organoleptic properties such as its appearance, color or odor. They may also be chosen advantageously to increase the nucleation or the crystallizability of the polyolefin present in the thermoplastic composition (a) and to allow the properties to be adjusted to the shrinkage of the composition according to the invention.
  • glass fibers may in particular be chosen from glass fibers, carbon fibers, metal fibers and synthetic polymer fibers having a melting temperature measured by DSC greater than 180 ° C. and preferably greater than 200 ° C. and / or temperature HDT (Heat Deflexion Temperature, ISO 75 Bf method at 0.45 MPa) greater than 70 ° C and preferably greater than 100 ° C, and more particularly be chosen from short glass fibers, long glass fibers, high tenacity carbon fibers, high modulus carbon fibers, low modulus aramid fibers, modulus high fibers, polyethylene terephthalate (PET) fibers, polybutylene terephthalate (PBT) fibers, polypropylene (PP) fibers, polystyrene fibers (PS), polyamide fibers (in particular PA 6, PA 4-6, PA 6-6, aromatic PA), polyurethane fibers (PU, TPU), PLA fibers (in particular stechocompl exes PLLA / PDLA).
  • DSC melting
  • the composition according to the invention advantageously comprises, when it is intended to be shaped according to a conventional technique used in plastics, between 10% and 60% by weight, for example between 10 and 40%, or between 15 and 30% of synthetic fibers (b).
  • the amount by weight of these synthetic fibers (b) may advantageously be between 20 and 50%, or even between 25 and 45%.
  • the composition according to the invention then preferably has a low melt flow, that is to say preferably an MFR between 1 and 100 g / 10 minutes and better between 2 and 50 g / 10 minutes, at 190 ° C for a mass of 2.16 kg according to the ISO 1133 method.
  • the composition according to the invention when intended to be shaped according to a conventional technique used in the textile industry, it advantageously contains from 40% to 90% by weight, preferably 60% to 90% by weight. and more preferably from 70% to 90% by weight of synthetic fibers (b).
  • the thermoplastic composition (a) is advantageously used as a binder, an adhesive agent, a sizing agent, an impregnating agent, a sheathing agent or a sizing agent for synthetic fibers (b). ). It then preferably has a high fluidity in the molten state, that is to say preferably an MFR of between 25 and 500 g / 10 minutes and better still between 100 and 500 g / 10 minutes, at 190 ° C. for a mass of 2.16 kg according to the ISO 1133 method.
  • These synthetic fibers (b) advantageously have a diameter of between 2 and 35 microns, preferably between 5 and 30 microns, and more preferably between 8 and 15 microns.
  • the diameter of the elementary fiber is usually between 3 and 30 microns and more typically between 10 and 14 microns.
  • their length generally of the order of 3 to 4 millimeters at the introduction, is usually close to 200 to 300 microns in the composition according to the invention.
  • long fibers their length can reach several millimeters to tens of centimeters in the composition of the present invention.
  • These synthetic fibers (b) moreover preferably have a tensile rupture modulus of between 60 and 450 GPa and more advantageously of between 70 and 400 GPa.
  • composition according to the invention may comprise other polymers, of any kind, in small quantities, for the adjustment of its characteristics.
  • polymers or copolymers partially or totally bio-sourced, such as in particular polyurethanes (PU), thermoplastic polyurethanes (TPU), polyamides, polyesters, especially polybutyleneterephthalates (PBT), polyethylene terephthalate (PET), copolyester-co-terephthalates aliphatic (PBAT), polylactates (PL A), polybutylenes succinates (PB S, PB SA), polyhydroxyalkanoates (PHA, PHB, PHBV).
  • PU polyurethanes
  • TPU thermoplastic polyurethanes
  • PBT polyethylene terephthalate
  • PET copolyester-co-terephthalates aliphatic
  • PL A polylactates
  • PHA polybutylenes succinates
  • PHB polyhydroxyalkanoates
  • Fillers and other additives of all kinds may also be incorporated in the composition of the present invention.
  • the additive may be an improving agent or an adjustment of the mechanical or thermal properties chosen from minerals, salts and organic substances. It may be nucleating agents such as talc, compatibilizers or dispersants such as natural or synthetic surfactants, impact or scratch-resistant agents such as calcium silicate control agents such as magnesium silicate, scavengers or deactivators of water, acids, catalysts, metals, oxygen, infrared rays, UV rays, hydrophobing agents such as oils and greases, fire retardants and flame retardants such as halogenated derivatives, smoke-suppressing agents, reinforcing fillers, mineral or organic, such as calcium carbonate, talc.
  • nucleating agents such as talc, compatibilizers or dispersants such as natural or synthetic surfactants, impact or scratch-resistant agents such as calcium silicate control agents such as magnesium silicate, scavengers or deactivators of water, acids, catalysts, metals, oxygen, infrared rays, UV rays, hydrophobing
  • the additive may also be an improving agent or an adjustment of the conductive or insulating properties with respect to electricity or heat, for example sealing against air, water or gases. , to solvents, to fatty substances, to essences, to aromas, to perfumes, chosen in particular from minerals, salts and organic substances, in particular from heat-conduction or dissipation agents such as metal powders and graphites .
  • This heat dissipation agent may also be chosen from ceramics.
  • the additive may be an agent that improves the organoleptic properties, in particular:
  • optical properties whiteners such as titanium dioxide, dyes, pigments, dye enhancers, opacifiers, matting agents such as calcium carbonate, thermochromic agents, phosporescence and fluorescence agents, agents metallizers or marbles and anti-fogging agents
  • whiteners such as titanium dioxide, dyes, pigments, dye enhancers, opacifiers, matting agents such as calcium carbonate, thermochromic agents, phosporescence and fluorescence agents, agents metallizers or marbles and anti-fogging agents
  • the additive may also be an enhancing or adjusting agent for adhesive properties, including adhesion to cellulosic materials such as paper or wood, metal materials such as aluminum and steel, glass or ceramic materials, textiles and mineral materials, such as pine resins, rosins, ethylene / vinyl alcohol copolymers, fatty amines, lubricating agents, mold release agents, antistatic agents and anti-blocking agents.
  • cellulosic materials such as paper or wood, metal materials such as aluminum and steel, glass or ceramic materials, textiles and mineral materials, such as pine resins, rosins, ethylene / vinyl alcohol copolymers, fatty amines, lubricating agents, mold release agents, antistatic agents and anti-blocking agents.
  • the additive may be an agent improving the durability of the material or an agent for controlling its (bio) degradability, especially chosen from hydrophobic or pearling agents such as oils and greases, anti-corrosion agents, antimicrobial agents such as Ag , Cu and Zn, degradation catalysts such as oxo-catalysts and enzymes such as amylases.
  • hydrophobic or pearling agents such as oils and greases
  • anti-corrosion agents such as Ag , Cu and Zn
  • antimicrobial agents such as Ag , Cu and Zn
  • degradation catalysts such as oxo-catalysts and enzymes such as amylases.
  • the additive may be selected from aging stabilizers, in particular UV stabilizers, hydrophobing agents and antimicrobial agents.
  • composition With a view to the preparation of the composition according to the invention, it is possible to use a number of methods that provide for extremely varied moments and orders of introduction of the components of said composition (polyolefin, starch, optional plasticizer, synthetic fibers (b), optional bonding agent, impact resilience enhancer, other optional additives).
  • the synthetic fibers may be introduced after all or part of it has been previously dispersed in the thermoplastic composition (a).
  • the present invention particularly relates to a process for the advantageous preparation of a composition as described above in all its variants, said process comprising the following steps:
  • thermoplastic composition (a) comprising at least one polyolefin and at least one thermoplastic starch,
  • thermoplastic composition (a) and synthetic fibers (b) so as to obtain the composition based on plant material and synthetic fibers.
  • thermoplastic composition (a) or the application of the thermoplastic composition (a) to synthetic fibers
  • thermomechanical mixture can be performed cold and prior to its thermomechanical mixing.
  • This mixture is ideally carried out hot, that is to say at a temperature above the glass transition temperature of the highest thermoplastic composition (a).
  • This temperature may be between 60 and 280 ° C., for example between 60 and 250 ° C., more preferably between 80 and 200 ° C. and in particular between 100 and 185 ° C.
  • the temperature may be high enough to facilitate the incorporation of the fibers into the thermoplastic composition, for example between 200 and 280 ° C, preferably between 220 and 270 ° C.
  • the thermomechanical mixture can be produced discontinuously, for example by kneading / kneading, or continuously, for example by extrusion or coextrusion.
  • the duration of this mixture can range from a few seconds to a few hours, depending on the mixing mode selected. Preferably, the duration the mixture ranges from a few seconds to a few minutes, for example from 10 to 75 seconds.
  • glass fibers are selected as synthetic fibers in step (ii) and the mixture of step (iii) is carried out by extrusion at a temperature of between 200 and 280 ° C. preferably between 220 and 270 ° C. In these temperature ranges, it is possible to disperse the glass fibers (b) in a very homogeneous manner in the thermoplastic composition (a).
  • thermoplastic starch is extruded alone at temperatures above 200 ° C, there is a strong loss of the mechanical properties of this thermoplastic starch, this loss being related to the thermal degradation of the starch and the plasticizer.
  • thermoplastic composition (a) comprises thermoplastic starch which is thermally unstable, the method of manufacturing the composition is carried out without difficulty and the mechanical properties of the composition obtained by this method are excellent.
  • the Applicant has shown that the process according to the invention is, compared with the conventional process for producing polyolefin-based composites and fibers, very advantageous in terms of energy, because of the choice of the particular thermoplastic composition (a) and the presence therein of thermoplastic starch.
  • the process according to the invention may comprise a step which is subsequent to or concomitant with the mixing step (iii), namely a shaping treatment of the composition based on plant material and synthetic fibers (iv), at a temperature between 60 and 280 ° C, for example between 80 and 250 ° C, preferably between 120 and 200 ° C, and in particular between 160 and 185 ° C.
  • the subject of the present invention is also the use of a composition comprising at least one at least partially plasticized starch as a compatibilizing agent between synthetic fibers (b) and a polyolefin.
  • the thermoplastic composition according to the invention can be used as such or in admixture with other products or additives, including other synthetic, artificial or naturally occurring polymers. It is preferably non-biodegradable and non-compostable in the sense of standards EN 13432, ASTM D 6400 and ASTM D 6868, and thus constitute a sink or carbon trap, thanks to its high content of plant products of photosynthetic origin.
  • composition according to the invention advantageously contains at least 25%, preferably at least 30%, and in particular more than 40% of material of renewable origin according to the ASTM D 6866 renewable carbon determination method, expressed by relative to the whole of said composition.
  • This carbon of renewable origin is that constitutive of the starch necessarily present in the composition according to the invention but can also be that of the polyolefin which is preferably bio-sourced, that of the other possible constituents of the composition such as the plasticizer, especially if it is glycerol or sorbitol, or any other product when it comes from renewable natural resources.
  • compositions according to the invention as bioplastic materials or composite materials, useful for the preparation by injection, extrusion, blowing, calendering, molding, thermoforming, compacting, spinning, coring or other techniques , objects, parts, bottles, jars, containers, tanks, sheets, panels, bars, cleats, beam profiles, tables, indoor furniture, street furniture, masts, nonwovens, door trim, walls, insulation layers, automotive parts, electrical parts, wiring, ducts, dashboards, hoods or other household products such as sports and leisure items, household appliances, tools or useful for different industries such as the building, packaging, electricity, transportation, aeronautics and yachting industries and the eq uipement.
  • Said composition may be in pulverulent, granulated or bead form. It can constitute as such a masterbatch or the matrix of a masterbatch, intended to be diluted in a bio-sourced matrix or not. She can also constitute a plastic raw material or a compound that can be used directly by an equipment manufacturer or a manufacturer of plastic objects. It can also constitute a final or intermediate composition, suitable for being shaped or used in the textile industry as a fibrous mat or a nonwoven, or in the wood-processing industry such as a wood panel or wood composites. / polymers.
  • Example Compositions according to the invention and according to the prior art
  • thermoplastic composition (a) is a composition based on:
  • a polyolefin consisting of one half of commercial polypropylene and, for the other half, of maleic anhydride grafted polypropylene, and about 2% of methylenediphenyl diisocyanate (MDI).
  • MDI methylenediphenyl diisocyanate
  • This composition comprises 52% of renewable origin material in the form of wheat starch and bio-sourced polyol type plasticizers. It has a density close to 1.11 and an MFR of 26 g / 10 minutes at 190 ° C. for a mass of 10 kg.
  • This thermoplastic composition (a) is referred to as: Resin A.
  • thermoplastic composition (a) thermoplastic composition (a) and as synthetic fibers (b), glass fibers having:
  • thermoplastic resin composition A Approximately 40% by weight of glass fiber is mixed with the thermoplastic resin composition A.
  • a control composition called G400-8229 is prepared in an identical manner with an identical glass fiber content of about 40%, using, instead of Resin A, a mixture comprising 97% of a polypropylene mixture.
  • composition according to the invention (Test 2) identical to the control composition G400-8229 is also prepared, with the same method as in Test 1, except that Resin A replaces PPH60.
  • compositions according to the invention have at glass fiber equivalence, very good mechanical properties and that the composition according to Test 2 is comparable or better than the composition according to the prior art for the measured criteria.
  • Resin A appears to act both on the improvement of adhesion to glass fibers and on the improvement of the compatibility of these fibers with polypropylene.
  • the composition according to the invention may also be obtained by the same method as that usually applied and advantageously without modification of the tooling and working at temperatures below 20 to 35 ° C below the control composition. This advantageously allows significant energy savings and reduce the need for fossil resources.
  • composition according to the invention unlike that of the prior art, has a natural appearance. It also has a pleasant feel explained by the presence of starch in the thermoplastic composition (a) and thus to overcome the use for this purpose of a synthetic elastomer.
  • composition Test 1 comprising in total about 31% of bio-sourced material
  • composition Test 2 comprising in total about 16% of bio-sourced material
  • composition Test 3 also according to the invention comprising a total of about 18% of biobased material all have many technical advantages compared to the control composition according to the prior art which has no renewable natural origin at all.
  • the addition of reinforcements in a composition to improve its mechanical properties in flexion and traction is generally accompanied by a decrease in impact resistance.
  • the Applicant has found that by adding clays or calcium carbonate in a composition based on thermoplastic starch and polyolefin, the mechanical properties in flexion and in traction of this composition were improved but a decrease impact resilience was also observed.
  • the Applicant has thus found that by adding specific synthetic fibers to a composition based on thermoplastic starch and polyolefin, it is possible to improve the mechanical properties in flexion and traction of this composition, while increasing in a manner surprisingly the impact resistance of these compositions based on polyolefin and thermoplastic starch.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention a pour objet une composition à base de matière végétale et de fibres synthétiques caractérisée en ce qu'elle comprend: au moins 10 % en poids et au plus 95 % en poids d'une composition thermoplastique (a) comprenant au moins une polyoléfine et au moins un amidon thermoplastique; et au moins 5 % en poids et au plus 90 % en poids de fibres synthétiques (b) de diamètre compris entre 2 et 35 microns et de module spécifique compris entre 25 et 230 GPa.m3/kg.

Description

COMPOSITIONS A BASE DE MATIERE VEGETALE ET DE FIBRES SYNTHETIQUES ET PROCEDE DE PREPARATION DE TELLES
COMPOSITIONS. La présente invention concerne de nouvelles compositions comprenant une composition thermoplastique à base de polyoléfïne et d'amidon plastifié (a) et des fibres synthétiques (b). Elle concerne également un procédé de préparation de ces compositions.
On entend par « composition thermoplastique » dans la présente invention une composition qui, de manière réversible, se ramollit sous l'action de la chaleur et se durcit en se refroidissant. Elle présente au moins une température dite de transition vitreuse (Tg) en dessous de laquelle la fraction amorphe de la composition est à l'état vitreux cassant, et au-dessus de laquelle la composition peut subir des déformations plastiques réversibles. La température de transition vitreuse ou l'une, au moins, des températures de transition vitreuse, de la composition thermoplastique à base d'amidon de la présente invention est de préférence comprise entre -120 °C et 150°C. Cette composition thermoplastique présente une aptitude à être mise en forme par les procédés utilisés traditionnellement dans les industries de transformation des matières plastiques, des textiles ou du bois, tels que l'extrusion, l'injection, le moulage, le rotomoulage, le thermoformage, le soufflage, le filage, le calandrage ou le pressage. Sa viscosité, mesurée à une température de 100 °C à 200°C, est généralement comprise entre 10 et 106 Pa.s
De préférence, ladite composition thermoplastique est «thermo-fusible», c'est-à-dire qu'elle peut être mise en forme sans application de forces de cisaillement importantes, c'est-à-dire par simple écoulement ou par simple pressage de la matière fondue. Sa viscosité, mesurée à une température de 100°C à 200°C, est généralement comprise entre 10 et 103 Pa.s.
Sous le terme « fibres synthétiques», on entend au sens de la présente invention une composition obtenue par une mise en forme, suite notamment à une fusion ou une pyrolyse, d'une matière d'origine minérale, fossile ou organique, en fibres de diamètre de 2 à 35 microns et de longueur variable. Ces fibres synthétiques présentent de préférence un haut module spécifique, compris entre 25 et 230 GPa.mVkg et sont en particulier de nature siliceuse (fibres de verre), de nature carbonée (fibres de carbone), de nature métallique (fibres d'acier ou d'aluminium) ou de nature polymérique de synthèse (fibres de PET, PBT, PS, PP, PA, PLA, PU, aramides). Il peut donc aussi bien s'agir de fibres inorganiques que de fibres organiques. Cette définition exclut de fait les fibres végétales, c'est-à-dire les fibres telles que présentes dans la nature, notamment dans les plantes.
Dans les contextes environnementaux et économiques actuels, de raréfaction des réserves pétrolières et gazières dont sont issues les matières plastiques traditionnelles appelées également pétro-plastiques par opposition aux bioplastiques à base de ressources renouvelables, de perturbations climatiques dues à l'effet de serre et du réchauffement planétaire, de l'état de l'opinion publique en quête d'un développement durable et de produits plus naturels, plus propres, plus sains, recyclables et moins dispendieux en énergie, et de l'évolution des réglementations et des fiscalités, il est nécessaire de disposer de nouvelles compositions issues de ressources renouvelables qui soient à la fois compétitives, conçues dès l'origine pour n'avoir que peu ou pas d'impacts négatifs sur l'environnement et techniquement aussi performantes que les matériaux préparés à partir de matières premières traditionnelles et d'origine fossile.
Dans cet esprit, différentes voies ont été explorées depuis plusieurs dizaines d'années déjà, consistant à introduire des matières bio-sourcées comme renforts dans des résines pétro-plastiques et notamment dans les polyoléfmes. Ces dernières présentent les avantages d'être produites en très larges volumes à des prix relativement bas, de présenter des éco-profils assez intéressants au regard de l'environnement, d'être incinérables sans production de gaz toxiques contrairement au PVC par exemple et d'être recyclables industriellement.
Dans ce contexte, parmi les renforts retenus pour les résines pétro-plastiques, de nombreux travaux ont porté sur l'incorporation de fibres végétales, comme en particulier les fibres de lin et de chanvre, les fibres de paille de céréales, les fibres de kénaf, les fibres de bois, les fibres cellulosiques (rayon), dans les résines pétro- plastiques comme en particulier dans le polypropylène. On obtient ainsi des produits appelés couramment composites ou compounds de fibres naturelles. On pourra se référer par exemple à la thèse suivante :
"Interfacial Interactions in Fiber Reinforced Thermoplastic Composites " par Livia Dânyâdi , Laboratory of Plastics and Rubber Technology Department of Physical Chemistry and Materials Science Budapest University of Technology and Economies, Institute of Materials and Environmental Chemistry Chemical Research Center Hungarian Academy of Sciences ; 2009 .
Cette opération de compoundage est aujourd'hui assez bien maîtrisée bien que de nombreuses études soient encore menées en vue d'améliorer la production et les caractéristiques de ces composites. Toutefois l'introduction de telles fibres végétales n'est pas aisée compte tenu que ces fibres végétales sont généralement à la fois très riches en eau et très hydrophiles alors que les résines sont quasiment anhydres et de nature hydrophobe. De fait, il est courant d'introduire des produits de synthèse, généralement d'origine pétrolière, en tant qu'agents dispersants, agents compatibilisants et/ou agents couplants, entre les résines et les fibres végétales. Par ailleurs, l'incorporation de fibres végétales dans des résines pétro-plastiques se heurte au problème de la forte instabilité des fibres végétales dans les conditions usuelles de température et de cisaillement appliquées pour la transformation et la mise en œuvre de ces résines pétro-plastiques. En effet, même en présence d'agents stabilisants spécifiques, les fibres végétales demeurent très sensibles au cisaillement, à la chaleur, à la lumière et aux microorganismes. De plus, une déshydratation ou un séchage de ces fibres favorable à leur incorporation ou à leur compatibilité aux résines, s'accompagne d'une perte conséquente de leur pouvoir renforçant. De fait, de façon générale, même par introduction de quantités pouvant dépasser 40%, le renforcement attendu des propriétés mécaniques des résines par les fibres végétales introduites à la place de fibres de verre par exemple, reste insuffisant pour pouvoir convenir à de nombreuses applications. D'autres travaux ont porté sur l'incorporation de ces mêmes fibres végétales dans des résines bio-sourcées, comme en particulier les polylactates (PLA). On obtient ainsi des compositions appelées bio-composites, présentant alors des caractéristiques encore plus insuffisantes et plus insatisfaisantes que les composites de pétro-plastiques et de fibres végétales, pour remplir les cahiers des charges d'un grand nombre d'applications.
De fait, la Demanderesse a fait le constat qu'il existe un besoin de disposer de nouvelles compositions qui présentent réellement des propriétés thermomécaniques similaires aux résines pétro-plastiques renforcés par des fibres synthétiques voire même des propriétés améliorées par rapport à celles-ci, tout en utilisant au maximum des ressources renouvelables à courte échéance comme l'amidon et en réduisant les besoins en énergie pour la fabrication, le transport, la transformation et voire aussi le recyclage de telles compositions. Après maints essais, la Demanderesse a fait le constat qu'il était préférable de suivre une voie nouvelle et totalement différente de celle suivie dans les travaux menés depuis des années pour préparer des composites à base de ressources renouvelables disposant à la fois des hauts modules en traction, des hauts modules en flexion et de hautes résiliences au choc, en partant du principe qu'il est préférable d'utiliser une composition thermoplastique bio-sourcée adaptée à ce besoin et des fibres synthétiques de très hauts modules spécifiques, plutôt que de retenir une polyoléfïne renforcée avec des fibres végétales ou des charges bio- sourcées.
La présente invention apporte une solution nouvelle et avantageuse aux problèmes énoncés ci-dessus en proposant de nouvelles compositions à base en matière végétale et de fibres synthétiques, présentant des propriétés mécaniques au moins comparables aux résines de polyoléfmes renforcées du marché.
Plus précisément, selon la présente invention, ces compositions à base de matière végétale et de fibres synthétiques comprennent:
- au moins 10 % en poids et au plus 95 % en poids d'une composition thermoplastique (a) comprenant au moins une polyoléfïne et au moins un amidon thermoplastique et, - au moins 5 % en poids et au plus 90 % en poids de fibres synthétiques (b) de diamètre compris entre 2 et 35 microns et de module spécifique compris entre 25 et 230 GPa.mVkg.
La Demanderesse a en effet constaté après de nombreux travaux que, de façon surprenante et inattendue, l'utilisation de la composition thermoplastique (a) particulière, au lieu d'une composition constituée uniquement de polyoléfine, permettait contre toute attente d'obtenir des propriétés mécaniques équivalentes voire meilleures. Sans vouloir se lier à une quelconque théorie, la Demanderesse pense que l'amidon thermoplastique se comporte à la manière d'un agent de compatibilisation ou de couplage entre la composition thermoplastique (a) et les fibres synthétiques (b) en agissant sur l'adhésion aux fibres et la compatibilité de tels mélanges.
De plus, la Demanderesse a pu constater que la composition thermoplastique (a) présente, comparativement aux polyoléfînes, d'excellentes propriétés d'interaction et d'adhésion vis-à-vis des fibres synthétiques, notamment vis-à-vis des fibres de verre ou de carbone, de sorte que cette composition thermoplastique (a) peut constituer également à part entière, une composition adhésive ou de collage de fibres synthétiques (b).
Par « amidon thermoplastique », on entend au sens de l'invention un état dans lequel l'amidon n'est plus dans un état granulaire, c'est à dire dans un état où il n'est plus dans un état en granules semi-cristallins caractéristique de l'état dans lequel il est naturellement présent dans les organes et tissus de réserve des végétaux supérieurs, en particulier dans les graines de céréales, les graines de légumineuses, les tubercules de pomme de terre ou de manioc, les racines, les bulbes, les tiges et les fruits. Cet état semi-cristallin naturel est essentiellement dû aux macromolécules d'amylopectine, l'un des deux constituants principaux de l'amidon. A l'état natif, les grains d'amidon présentent un taux de cristallinité qui varie de 15 à 45 %, et qui dépend essentiellement de l'origine botanique de l'amidon et du traitement éventuel qu'il a subi. L'amidon granulaire, placé sous lumière polarisée, présente en microscopie une croix caractéristique, dite « croix de Malte », typique de l'état granulaire cristallin. Pour une description plus détaillée de l'amidon granulaire, on pourra se référer au chapitre II intitulé « Structure et morphologie du grain d'amidon » de S. Perez, dans l'ouvrage « Initiation à la chimie et à la physico-chimie macromoléculaires », Première édition 2000, Volume 13, pages 41 à 86, Groupe Français d'Etudes et d'Applications des Polymères. L'état thermoplastique de l'amidon s'obtient par cuisson/plastification d'amidon granulaire par incorporation d'eau ou/et d'un plastifiant approprié à un taux compris généralement entre 15 et 35 % par rapport à l'amidon granulaire et par apport d'énergie mécanique et thermique. Les brevets US 5 095 054 de la société Warner Lambert et EP 0 497 706 Bl de la Demanderesse décrivent en particulier cet état thermoplastique déstructuré, à cristallinité réduite ou absente grâce à l'ajout de plastifiant, et des moyens pour obtenir de tels amidons thermoplastiques. La déstructuration de l'état granulaire natif semi-cristallin de l'amidon pour obtenir des amidons thermoplastiques amorphes peut être réalisée en milieu peu hydraté par des procédés thermomécaniques ou d'extrusion, mais nécessite dans ce cas la présence d'un plastifiant au risque, sinon, de carboniser l'amidon.
II est connu que l'association de polyoléfines et d'amidon thermoplastique permet d'obtenir des compositions thermoplastiques dont les propriétés peuvent être modulées par les choix du type d'amidon, de la nature du plastifiant, du ratio de plastification, des taux d'incorporation d'amidon thermoplastique et de polyoléfines et du procédé de mélange. A titre d'exemple, on peut citer l'article de Rodriguez- Gonzalez et al, High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene, Polymer 44 (2003), pages 1517-1526.
De grandes avancées ont permis ces dernières années d'obtenir de nouvelles compositions thermoplastiques présentant de bonnes propriétés mécaniques en termes de rigidité, de flexion et de résilience au choc, par le développement de procédés nouveaux tels que ceux ayant fait l'objet des demandes de brevet WO 2009/095617,
WO 2009/095618 et WO 2009/095622 par la Demanderesse. Toutefois, de telles compositions comprenant de l'amidon et un polymère non amylacé ne présentent pas les caractéristiques requises pour convenir à des usages de matériaux demandant de hauts modules en flexion ou en traction, des bonnes propriétés de tenue en température ou des résiliences au choc élevées. De plus, s'il est possible d'incorporer des agents de renforcement dans des compositions à base de polyoléfïne, l'ajout de ceux-ci en vue d'améliorer ses propriétés mécaniques en flexion et en traction s'accompagne généralement d'une diminution de la résistance au choc. A titre d'exemple, la Demanderesse a constaté que l'ajout d'argile ou de carbonate de calcium dans une composition à base d'amidon thermoplastique et de polyoléfïne aboutissait à une amélioration des propriétés mécaniques en flexion s 'accompagnant d'une diminution de la résilience au choc.
La Demanderesse a constaté qu'en ajoutant des fibres synthétiques particulières (b) à une composition à base d'amidon thermoplastique et de polyoléfïne en tant que polymère non amylacé, il est possible d'améliorer les propriétés mécaniques en flexion et en traction de cette composition, tout en augmentant de manière surprenante la résilience au choc de ces compositions de façon importante.
Des compositions à base de polyoléfines, d'amidon et d'autres composants parmi lesquels en particulier les fibres synthétiques et plus spécifiquement les fibres de verre, sont déjà décrites.
C'est le cas de la demande de brevet WO 2009/022195 de la société CEREPLAST qui décrit des composites de polyoléfines et d'amidon, pouvant comprendre en toute généralité parmi une longue liste d'additifs cités, des fibres de verre en tant que renforts. Dans ce document, aucun exemple concret de réalisation d'une telle composition n'est donné ni a fortiori les caractéristiques que pourrait avoir une telle composition. De plus, l'amidon y est introduit dans un état granulaire (non themoplastique) comme charge dispersée dans la polyoléfïne, et cela grâce à l'ajout d'un PEG agissant comme agent de compatibilisation.
De manière similaire, le document US 2006/0194902 Al décrit une composition qui comprend une polyoléfïne, un compatibilisant et une charge d'amidon non-thermoplastique. La composition peut éventuellement comprendre des faibles quantités de fibres de verre ou de cellulose.
Le brevet EP 1 265 967 décrit des compositions d'amidon thermoplastique comprenant des charges sous forme de particules minérales comme le carbonate de calcium ou des fibres végétales de pin et éventuellement un polymère additionnel. Ce dernier est décrit comme pouvant être parmi une longue liste de produits envisageables, une polyoléfine. A aucun moment dans ce document n'est décrite ni suggérée une composition conforme à la présente invention.
Le brevet US 6,231,970 Bl décrit des compositions à base d'amidon thermoplastique et d'une charge particulière. Cette composition peut éventuellement comprendre en outre des fibres ou un polymère additionnel.
La composition à base de matière végétale et de fibres synthétiques selon l'invention est caractérisée en ce qu'elle se présente avantageusement sous forme de granulés, de copeaux, de feuilles, de plaques, de poudres ou de mats fibreux, aptes à être mis en forme par pressage, thermoformage, extrusion, calandrage, filage, injection ou soufflage.
La composition selon l'invention présente avantageusement une densité comprise entre 1,1 et 2,5, de préférence comprise entre 1,15 et 2,10 et plus préférentiellement comprise entre 1,3 et 2,00 selon la méthode ISO 1183. Cette densité est de fait assez élevée mais demeure très avantageuse au regard des densités des métaux et même de celles de bon nombre de polymères synthétiques formulés avec des charges minérales présents sur le marché.
La composition selon l'invention est par ailleurs au moins en partie bio- sourcée par la présence obligatoire d'amidon thermoplastique. Elle présente malgré cela d'excellentes caractéristiques thermomécaniques et constitue un matériau très avantageux pour convenir à de nombreux domaines applicatifs comme celui de l'automobile, de l'aéronautique, de la plaisance ou du bâtiment. Plus précisément, elle présente :
un module de traction très élevé, supérieur d'ordinaire à 2500 MPa et mieux supérieur à 3000 MPa, selon la méthode ISO 527,
- un module de flexion également très élevé et supérieur à 1500 MPa, de préférence supérieur à 3000 MPa et mieux supérieur à 5000 MPa, selon la méthode ISO 178, et une excellente résilience au choc, soit une valeur Choc Charpy non entaillé dépassant d'ordinaire 25 kJ/m2, voire 30 kJ/m2 à 23°C selon la méthode ISO 179/IeU ou une valeur Choc Charpy entaillé dépassant d'ordinaire 15 kJ/m2, voire 20 kJ/m2 à 23°C selon la méthode ISO 179/leA.
La composition selon l'invention comprend en premier lieu une composition thermoplastique (a) particulière qui présente l'avantage d'être assez peu dense et de présenter une densité mesurée selon la méthode ISO 1183 comprise entre 1,05 et 1,25 et de préférence comprise entre 1,1 et 1,2. Cette composition thermoplastique (a) comprend nécessairement une polyoléfîne. Cette polyoléfîne peut être vierge c'est-à- dire n'ayant pas eu d'usage antérieur bien que pouvant être formulée par addition d'additifs ou par compoundage. Elle peut être également recyclée, c'est-à-dire provenir de pièces ou objets en polyoléfîne valorisés par récupération de matière.
Cette polyoléfîne est de préférence choisie parmi les polyéthylènes haute densité (PEHD), les polyéthylènes basse densité (PEBD), les polyéthylènes linéaires basses densité, les polypropylènes homopolymères (PPh), les polypropylènes statistiques (PPs), les polypropylènes copolymères (PPc) et les polybutènes, ainsi que les mélanges quelconques de ceux-ci.
La polyoléfîne peut être en particulier un mélange de polyoléfînes dont l'une au moins peut être porteuse de motifs silanes, acryliques ou anhydrides maléiques, ci- après motifs fonctionnels. Préférentiellement, la quantité massique en motifs silanes, acryliques ou anhydrides maléiques va de 0,1 à 10 % de la masse totale de la polyoléfîne porteuse de motifs. Il peut s'agir en particulier de polyoléfînes greffées par de l'anhydride maléique.
Selon un mode de réalisation, la polyoléfîne comprend de 10 à 90% en masse d'une polyoléfîne non porteuse de motifs fonctionnels, voire de 25 à 75%, et de 10 à 90%) en masse d'une polyoléfîne porteuse de motifs fonctionnels, voire de 25 à 75%.
Avantageusement, la polyoléfîne présente un poids moléculaire moyen en poids compris entre 8500 et 10 000 000 daltons, en particulier compris entre 15 000 et 1 000 000 daltons.
La polyoléfîne de la composition est de préférence semi-cristalline. Au moins une de ses températures de fusion est alors avantageusement comprise entre 100 et 200°C, préférentiellement entre 110 et 170°C. La température de fusion peut être mesurée de manière connue par analyse calométrique différentielle (DSC, differential scanning calorimetry) avec une vitesse de chauffage de 10°C/minute : on peut réaliser cette mesure en effectuant une première chauffe de l'échantillon jusqu'à 200°C, un refroidissement jusqu'à une température de -50°C puis une seconde chauffe de l'échantillon pendant laquelle on mesure la température de fusion, les vitesses de chauffe et de refroidissement étant de 10°C/minute.
De préférence, la polyoléfïne de la composition thermoplastique (a) est un polymère contenant au moins 50 %, de préférence au moins 70 %, en particulier plus de 80 %, et mieux encore 100% de carbone d'origine renouvelable au sens de la norme ASTM D 6852 et/ou de la norme ASTM D 6866, par rapport à l'ensemble du carbone présent dans ledit polymère. La composition thermoplastique (a) peut de ce fait comprendre au moins une polyoléfïne obtenue à partir de monomères bio-sourcés, en particulier à partir de bio-éthanol ou de bio-méthanol ou de greffons de fonctionnalisation bio-sourcés.
La composition thermoplastique (a) comprend également nécessairement un amidon thermoplastique. Cet amidon présente de préférence un taux de cristallinité inférieur à 15 %, de préférence inférieur à 5% et plus préférentiellement inférieur à 1%, c'est-à-dire être dans un état essentiellement amorphe.
Ce taux de cristallinité peut en particulier être mesuré par diffraction de rayons X comme décrit dans le brevet US 5 362 777 (colonne 9, lignes 8 à 24).
L'amidon thermoplastique est avantageusement substantiellement dépourvu de grains d'amidon présentant, en microscopie sous lumière polarisée, une croix de Malte, signe indicateur de la présence d'amidon granulaire cristallin.
La composition thermoplastique (a) comprend de préférence au moins un amidon thermoplastique représentant en poids sec, plus de 25 %>, de préférence plus de
35 %>, et plus préférentiellement plus de 50 %> de la composition thermoplastique (a), le complément à 100 % de la composition thermoplastique (a) étant essentiellement une polyoléfïne ou un mélange de polyoléfïnes. D'ordinaire, la polyoléfïne constitue la phase dispersante continue et l'amidon thermoplastique la phase dispersée discontinue de la composition thermoplastique (a), L'amidon utilisé pour la préparation de la composition d'amidon thermoplastique est de préférence choisi parmi les amidons granulaires, les amidons hydrosolubles et les amidons organomodifiés.
Selon une première variante, l'amidon sélectionné pour la préparation de l'amidon thermoplastique est un amidon granulaire. La cristallinité dudit amidon granulaire peut être rendue inférieure à 15% par un traitement thermomécanique et/ou mélange intime avec un plastifiant approprié. Ledit amidon granulaire peut être de toutes origines botaniques. Il peut s'agir d'amidon natif de céréales telles que le blé, le maïs, l'orge, le triticale, le sorgo ou le riz, de tubercules tels que la pomme de terre ou le manioc, ou de légumineuses telles que le pois et le soja, les amidons riches en amylose ou, inversement, riches en amylopectine ( vaxy) issus de ces plantes et les mélanges quelconques des amidons précités. L'amidon granulaire peut également être un amidon granulaire modifié par tous moyens, physiques, chimiques et/ou enzymatiques. Il peut s'agir d'un amidon granulaire fluidifié ou oxydé ou d'une dextrine blanche. Il peut s'agir également d'un amidon granulaire modifié par voie physico-chimique mais ayant pu conserver la structure de l'amidon natif de départ, comme les amidons estérifïés et/ou éthérifïés, en particulier modifiés par greffage, acétylation, hydroxypropylation, anionisation, cationisation, réticulation, phosphatation, succinylation et/ou silylation. Il peut s'agir, enfin, d'un amidon modifié par une combinaison des traitements énoncés ci-dessus ou d'un mélange quelconque de tels amidons granulaires.
Dans un mode de réalisation préféré, cet amidon granulaire est choisi parmi les amidons natifs, les amidons fluidifiés, les amidons oxydés, les amidons ayant subi une modification chimique, les dextrines blanches et les mélanges quelconques de ces produits.
L'amidon granulaire est de préférence un amidon granulaire de blé ou de pois ou un dérivé granulaire d'amidon de blé ou de pois. Il présente généralement un taux de solubles à 20°C dans l'eau déminéralisée inférieur à 5 % en masse et peut être quasiment insoluble dans l'eau froide. Selon une seconde variante, l'amidon sélectionné pour la préparation de l'amidon thermoplastique est un amidon hydrosoluble, pouvant provenir aussi de toutes origines botaniques, y compris un amidon, hydrosoluble, riche en amylose ou, inversement, riche en amylopectine (waxy). Cet amidon soluble peut être introduit en remplacement partiel ou total de l'amidon granulaire.
On entend au sens de l'invention par « amidon hydrosoluble», toute matière polysaccharidique dérivée d'amidon, présentant à 20°C et sous agitation mécanique pendant 24 heures, une fraction soluble dans de l'eau déminéralisée au moins égale à 5 % en poids. Cette fraction soluble est de préférence supérieure à 20 % en poids et en particulier supérieure à 50 % en poids. Bien entendu, l'amidon soluble peut être totalement soluble dans l'eau déminéralisée (fraction soluble = 100 %).
L'amidon hydrosoluble est utilisé sous forme solide, de préférence essentiellement anhydre, c'est-à-dire non dissoute ou non dispersée dans un solvant aqueux ou organique. Il est donc important de ne pas confondre, tout au long de la description qui suit, le terme « hydrosoluble » avec le terme « dissous ».
De tels amidons hydrosolubles peuvent être obtenus par prégélatinisation sur tambour, par prégélatinisation sur extrudeuse, par atomisation d'une suspension ou d'une solution amylacée, par précipitation par un non-solvant, par cuisson hydrothermique, par fonctionnalisation chimique ou autre. Il s'agit en particulier d'un amidon prégélatinisé, extrudé ou atomisé, d'une dextrine hautement transformée (appelée aussi dextrine jaune), d'une maltodextrine, d'un amidon fonctionnalisé ou d'un mélange de ces produits.
Les amidons prégélatinisés peuvent être obtenus par traitement hydrothermique de gélatinisation d'amidons natifs ou d'amidons modifiés, en particulier par cuisson vapeur, cuisson jet-cooker, cuisson sur tambour, cuisson dans des systèmes de malaxeur/extrudeuse puis séchage, par exemple en étuve, par air chaud sur lit fluidisé, sur tambour rotatif, par atomisation, par extrusion ou par lyophilisation. De tels amidons présentent généralement une solubilité dans l'eau déminéralisée à 20°C supérieure à 5 % et plus généralement comprise entre 10 et 100 % et un taux de cristallinité en amidon inférieur à 15%, généralement inférieur à 5% et le plus souvent inférieur à 1 %, voire nul. A titre d'exemple, on peut citer les produits fabriqués et commercialisés par la Demanderesse sous le nom de marque PREGEFLO®.
Les dextrines hautement transformées peuvent être préparées à partir d'amidons natifs ou modifiés, par dextrinification en milieu acide peu hydraté. Il peut s'agir en particulier de dextrines blanches solubles ou de dextrines jaunes. A titre d'exemple, on peut citer les produits STABILYS® A 053 ou TACKIDEX® C 072 fabriqués et commercialisés par la Demanderesse. De telles dextrines présentent dans l'eau déminéralisée à 20°C, une solubilité comprise généralement entre 10 et 95 % et une cristallinité en amidon inférieure à 15% et généralement inférieure à 5%.
Les maltodextrines peuvent être obtenues par hydrolyse acide, oxydante ou enzymatique d'amidons en milieu aqueux. Elles peuvent présenter en particulier un dextrose équivalent (DE) compris entre 0,5 et 40, de préférence entre 0,5 et 20 et mieux encore entre 0,5 et 12. De telles maltodextrines sont par exemple fabriquées et commercialisées par la Demanderesse sous l'appellation commerciale GLUCIDEX® et présentent une solubilité dans l'eau déminéralisée à 20°C, généralement supérieure à 90%, voire proche de 100% et une cristallinité en amidon inférieure généralement inférieure à 5% et d'ordinaire quasiment nulle.
Les amidons fonctionnalisés peuvent être obtenus à partir d'un amidon natif ou modifié. La haute fonctionnalisation peut par exemple être réalisée par estérification ou éthérification à un niveau suffisamment élevé pour lui conférer une solubilité dans l'eau. De tels amidons fonctionnalisés présentent une fraction soluble telle que définie ci-dessus, supérieure à 5 %, de préférence supérieure à 10 %, mieux encore supérieure à 50%>.
La fonctionnalisation peut s'obtenir en particulier par acétylation en phase aqueuse d'anhydride acétique, d'anhydrides mixtes, hydroxypropylation en phase colle, cationisation en phase sèche ou phase colle, anionisation en phase sèche ou phase colle par phosphatation ou succinylation. Ces amidons hautement fonctionnalisés hydrosolubles peuvent présenter un degré de substitution compris entre 0,01 et 3, et mieux encore compris entre 0,05 et 1. De préférence, les réactifs de modification ou de fonctionnalisation de l'amidon sont d'origine renouvelable. Selon une autre variante avantageuse, l'amidon hydrosoluble est un amidon hydrosoluble de blé ou de pois ou un dérivé hydrosoluble d'un amidon de blé ou de pois.
Il présente avantageusement une faible teneur en eau, généralement inférieure à 10 %, de préférence inférieure à 5 %, en particulier inférieure à 2 % en poids et idéalement inférieure à 0,5 %, voire inférieure à 0,2 % en poids.
Selon une troisième variante, l'amidon sélectionné pour la préparation de l'amidon thermoplastique est un amidon organomodifïé, de préférence organosoluble, pouvant provenir aussi de toutes origines botaniques, y compris un amidon organomodifïé, de préférence organosoluble, riche en amylose ou, inversement, riche en amylopectine (waxy). Cet amidon organosoluble peut être introduit en remplacement partiel ou total de l'amidon granulaire ou de l'amidon hydrosoluble.
On entend au sens de l'invention par « amidon organomodifïé», toute matière polysaccharidique dérivée d'amidon, autre qu'un amidon granulaire ou un amidon hydrosoluble selon les définitions données ci-avant. De préférence, cet amidon organomodifïé est quasiment amorphe, c'est à dire présente un taux de cristallinité en amidon inférieur à 5 %, généralement inférieur à 1% et notamment nul. Il est aussi de préférence « organosoluble », c'est-à-dire présente, à 20°C, une fraction soluble dans un solvant choisi parmi l'éthanol, l'acétate d'éthyle, l'acétate de propyle, l'acétate de butyle, le carbonate de diéthyle, le carbonate de propylène, le glutarate de diméthyle, le citrate de triéthyle, les esters dibasiques, le diméthylsulfoxide (DMSO), le diméthylisosorbide, le triacétate de glycérol, le diacétate d'isosorbide, le dioléate d'isosorbide et les esters méthyliques d'huiles végétales, au moins égale à 5 % en poids. Cette fraction soluble est de préférence supérieure à 20 % en poids et en particulier supérieure à 50 % en poids. Bien entendu, l'amidon organosoluble peut être totalement soluble dans l'un ou plusieurs des solvants indiqués ci-dessus (fraction soluble = 100 %).
L'amidon organomodifïé peut être utilisé selon l'invention sous forme solide, de préférence essentiellement anhydre. De préférence, sa teneur en eau est inférieure à 10 %, de préférence inférieure à 5 %, en particulier inférieure à 2 % en poids et idéalement inférieure à 0,5 %, voire inférieure à 0,2 % en poids.
L'amidon organomodifïé utilisable dans la composition selon l'invention peut être préparé par une haute fonctionnalisation des amidons natifs ou modifiés tels que ceux présentés ci-avant. Cette haute fonctionnalisation peut par exemple être réalisée par estérification ou éthérification à un niveau suffisamment élevé pour le rendre essentiellement amorphe et pour lui conférer une insolubilité dans l'eau et de préférence une solubilité dans l'un des solvants organiques ci-dessus. De tels amidons fonctionnalisés présentent une fraction soluble telle que définie ci-dessus, supérieure à 5 %, de préférence supérieure à 10 %, mieux encore supérieure à 50%.
La haute fonctionnalisation peut s'obtenir en particulier par acétylation en phase solvant par anhydride acétique, greffage par exemple en phase solvant ou par extrusion réactive, d'anhydrides d'acides, d'anhydrides mixtes, de chlorures d'acides gras, d'oligomères de caprolactones ou de lactides, hydroxypropylation et réticulation en phase colle, cationisation et réticulation en phase sèche ou en phase colle, anionisation par phosphatation ou succinylation et réticulation en phase sèche ou en phase colle, sililation, télomérisation au butadiène. Ces amidons hautement fonctionnalisés organomodifiés, de préférence organosolubles, peuvent être en particulier des acétates d'amidons, de dextrines ou de maltodextrines ou des esters gras de ces matières amylacées (amidons, dextrines, maltodextrines) avec des chaînes grasses de 4 à 22 carbones, l'ensemble de ces produits présentant de préférence un degré de substitution (DS) compris entre 0,5 et 3,0, de préférence compris entre 0,8 et 2,8 et notamment compris entre 1,0 et 2,7.
Il peut s'agir, par exemple, d'hexanoates, d'octanoates, de décanoates, de laurates, de palmitates, d'oléates et de stéarates d'amidons, de dextrines ou de maltodextrines, en particulier présentant un DS compris entre 0,8 et 2,8.
Selon une autre variante avantageuse, l'amidon organomodifïé est un amidon organomodifïé de blé ou de pois ou un dérivé organomodifïé d'un amidon de blé ou de pois.
De préférence, la composition thermoplastique (a) comprend un plastifiant. On entend par « plastifiant », toute molécule organique de faible masse moléculaire, c'est-à-dire ayant de préférence une masse moléculaire inférieure à 5000, qui, lorsqu'elle est incorporée par un traitement thermomécanique à une température comprise entre 20 et 200°C à la composition thermoplastique (a) ou à l'amidon thermoplastique, aboutit à une diminution de la température de transition vitreuse de la composition thermoplastique (a) ou de l'amidon thermoplastique et/ou aboutit à réduire la cristallinité de l'amidon jusqu'à lui permettre d'atteindre un état essentiellement amorphe.
La composition thermoplastique (a) présente de préférence une teneur en plastifiant comprise en poids sec comprise entre 4 % et 50 %, de préférence comprise entre 8 % et 40 % et en particulier comprise entre 15 % et 25 %, de la composition thermoplastique (a).
L'eau est le plastifiant le plus naturel de l'amidon et il est par conséquent couramment employé, mais d'autres molécules sont également très efficaces, notamment les sucres tels que le glucose, le maltose, le fructose ou le saccharose ; les polyols ainsi que les mélanges de ces produits.
Le plastifiant de préférence retenu dans le cadre de la présente invention est de préférence choisi parmi les diols, les triols et les polyols tels que le glycérol, le polyglycérol, l'isosorbide, les sorbitans, le sorbitol, le mannitol, et les sirops de glucose hydrogénés, les sels d'acides organiques comme le lactate de sodium, l'urée et les mélanges de ces produits. Le plastifiant présente alors de façon avantageuse une masse molaire inférieure à 5000, de préférence inférieure à 1000, et en particulier inférieure à 400. L'agent plastifiant a de préférence une masse molaire supérieure à 18 et au plus égale à 380, autrement dit il n'englobe de préférence pas l'eau.
Le plastifiant de l'amidon peut être, tout particulièrement lorsque ce dernier est organomodifïé, choisi parmi les esters méthyliques, éthyliques ou les esters gras d'acides organiques tels que les acides lactique, citrique, succinique, adipique et glutarique et les esters acétiques ou esters gras de mono-alcools, diols, triols ou polyols tels que l'éthanol, le diéthylène glycol, le glycérol et le sorbitol. A titre d'exemple, on peut citer le diacétate de glycérol (diacétine), le triacétate de glycérol (triacétine), le diacétate d'isosorbide, le dioctanoate d'isosorbide, le dioléate d'isosorbide, le dilaurate d'isosorbide, les esters d'acides dicarboxyliques ou esters dibasiques (DBE de l'anglais dibasic esters) et les mélanges de ces produits.
Le plastifiant, de préférence autre que l'eau, est généralement présent dans l'amidon thermoplastique à raison de 1 à 150 parts en poids sec, de préférence à raison de 10 à 120 parts en poids sec et en particulier à raison de 25 à 120 parts en poids sec pour 100 parts en poids sec d'amidon.
Ainsi, selon une variante avantageuse, le plastifiant, de préférence autre que l'eau, est contenu dans l'amidon thermoplastique à raison de 25 à 110 parts en poids sec, de préférence à raison de 30 à 100 parts en poids sec et en particulier à raison de 30 à 90 parts en poids sec, pour 100 parts en poids sec d'amidon.
La composition thermoplastique (a) comprend de préférence en tant qu'amidon thermoplastique, au moins un amidon plastifié obtenu à partir d'amidons natifs, d'amidons prégélatinisés, d'amidons extrudés, d'amidons atomisés, d'amidons fluidifiés, d'amidons oxydés, d'amidons cationiques, d'amidons anioniques, d'amidons hydroxyalkylés, d'amidons réticulés, d'acétates d'amidon, d'esters gras d'amidon et de chaînes grasses de 4 à 22 carbones, de dextrines, de maltodextrines et les mélanges quelconque de ces produits, plastifiés par l'un au moins des plastifiants listés ci-dessus.
De plus, la composition thermoplastique (a) comprend avantageusement : - de 25 à 85 % en poids d'amidon thermoplastique,
- de 10 à 60 % en poids de polyoléfme,
- et de 4 à 40 % en poids d'au moins un plastifiant, de préférence autre que l'eau, et plus préférentiellement :
- de 35 à 85 % en poids d'amidon thermoplastique, par exemple de 35 à 80%,
- de 10 à 50 % en poids de polyoléfme,
- et de 10 à 30 % en poids d'au moins un plastifiant, de préférence autre que l'eau.
La composition selon l'invention comprend également de préférence un agent de liaison.
On entend par « agent de liaison » dans la présente invention, toute molécule organique porteuse d'au moins deux groupements fonctionnels, libres ou masqués, aptes à réagir avec des molécules porteuses de fonctions à hydrogène actif telles que l'amidon ou le plastifiant de l'amidon. Cet agent de liaison peut être ajouté à la composition pour permettre la fixation, par liaisons covalentes, d'au moins une partie du plastifiant sur l'amidon, voire aussi sur la polyoléfine, en particulier si elle est porteuse de groupements fonctionnels.
Cet agent de liaison peut alors être choisi par exemple parmi les composés porteurs d'au moins deux fonctions, libres ou masquées, identiques ou différentes, choisies parmi les fonctions isocyanates, carbamoylcaprolactames, aldéhydes, époxydes, halogéno, acides protoniques, anhydrides d'acide, halogénures d'acyle, oxychlorures, trimétaphosphates, alcoxysilanes et des combinaisons de celles- ci.
Il peut être choisi avantageusement parmi les composés suivants:
- les diisocyanates et polyisocyanates, de préférence le 4,4'-dicyclohexylméthane- diisocyanate (H12MDI), le méthylènediphényl-diisocyante (MDI), le toluène- diisocyanate (TDI), le naphthalène-diisocyanate (NDI), rhexaméthylène-diisocyanate (HMDI) et la lysine-diisocyanate (LDI),
- les dicarbamoylcaprolactames, de préférence le 1-1 ' carbonyl bis caprolactame,
- le glyoxal, les amidons dialdhéydes et les amidons oxydés TEMPO,
- les diépoxydes,
- les halogénhydrines, c'est-à-dire les composés comportant une fonction époxyde et une fonction halogène, de préférence l'épichlorohydrine,
- les diacides organiques, de préférence l'acide succinique, l'acide adipique, l'acide glutarique, l'acide oxalique, l'acide malonique, l'acide maléique et les anhydrides correspondants,
- les oxychlorures, de préférence l'oxychlorure de phosphore,
- les trimétaphosphates, de préférence le trimétaphoshate de sodium,
- les alcoxysilanes, de préférence le tétraéthoxysilane, et
- les mélanges quelconques de ces composés. Dans un mode de réalisation préféré de l'invention, l'agent de liaison est un diisocyanate, en particulier le méthylènediphényl-diisocyanate (MDI) ou le 4,4'- dicyclohexylméthane-diisocyanate (H 12MDI).
La quantité d'agent de liaison, exprimée en poids sec et rapportée à la somme, exprimée en poids sec de la composition selon l'invention est avantageusement comprise entre 0,1 et 15 % en poids, de préférence entre 0,1 et 12 % en poids, plus préférentiellement encore entre 0,2 et 9 % en poids et en particulier entre 0,5 et 5 % en poids.
L'incorporation éventuelle mais préférée de l'agent de liaison dans le mélange de la composition selon l'invention peut se faire par mélange physique à froid ou à basse température mais de préférence par malaxage à chaud à une température supérieure à la température de transition vitreuse de la composition amylacée. Cette température de malaxage est avantageusement comprise entre 60 et 200 °C et mieux de 100 à 180°C. Cette incorporation peut être réalisée par mélange thermomécanique, de façon discontinue ou de façon continue et en particulier en ligne. Dans ce cas, la durée de mélange peut être courte, de quelques secondes à quelques minutes.
La composition selon l'invention peut comprendre de préférence un agent améliorateur de sa résilience au choc, notamment à température de 23°C ou à plus basse température. Il peut s'agir d'un polymère de type co-polymère éthylène- propylène (en particulier terpolymère éthylène-propylène (EPDM)), éthylène-styrène, styrène-butadiène, d'un caoutchouc naturel, d'un élastomère de type copolymère styrène-butylène-styrènes (SB S) et styrène-éthylène-butylène-styrènes (SEBS) ou de tout autre matière élastomérique. Cet agent améliorateur peut représenter de 1 à 15%, de préférence 2 à 12% et mieux de 5 à 10% de la composition selon l'invention.
La composition thermoplastique (a) présente avantageusement les variantes préférées suivantes, prises séparément ou en combinaison:
- l'amidon thermoplastique est issu d'amidons granulaires, d'amidons hydrosolubles ou d'amidons organomodifïés, de préférence de blé ou de pois.
- l'amidon thermoplastique présente un taux de cristallinité inférieur à 5 %, de préférence inférieur à 1% c'est à dire dans un état essentiellement amorphe, - la polyoléfïne est choisi parmi les polyéthylènes (PE) et polypropylènes (PP), et de préférence contient plusieurs polyoléfïnes dont une au moins est fonctionnalisée c'est-à-dire porteuse de groupements fonctionnels tels que des motifs silane, acryliques ou anhydride maléique,
- la polyoléfïne est un polymère contenant au moins 50 %, de préférence au moins 70 %, en particulier plus de 80 %, et mieux encore 100% de carbone d'origine renouvelable au sens de la norme ASTM D 6852 et/ou de la norme ASTM D 6866, par rapport à l'ensemble du carbone présent dans ledit polymère,
- la composition thermoplastique (a) comprend au moins un plastifiant choisi parmi les diols, les triols et les polyols tels que le glycérol, le polyglycérol, l'isosorbide, les sorbitans, le sorbitol, le mannitol, et les sirops de glucose hydrogénés, les sels d'acides organiques comme le lactate de sodium, l'urée et les mélanges de ces produits,
- la composition thermoplastique (a) comprend au moins un agent améliorateur de sa résilience au choc, choisi en particulier parmi les polymères de type co-polymère éthylène- propylène, éthylène-styrène ou styrène-butadiène, les caoutchoucs naturels, les élastomère de type copolymère styrène-butylène-styrènes (SB S) et styrène-éthylène-butylène-styrènes (SEBS) ou de tout autre matière élastomérique,
- la composition thermoplastique (a) comprend au moins un agent de liaison choisi parmi les composés porteurs d'au moins deux fonctions, libres ou masquées, identiques ou différentes, choisies parmi les fonctions isocyanate, carbamoylcaprolactame, aldéhydes, époxyde, halogéno, acide protonique, anhydride d'acide, halogénure d'acyle, oxychlorure, trimétaphosphate, alcoxysilane et des combinaisons de celles-ci ,
la composition thermoplastique (a) contient au moins 30%, avantageusement au moins 51 %>, de préférence au moins 70 %>, en particulier plus de 80 %>, de carbone d'origine renouvelable au sens de la norme ASTM D 6852 et/ou de la norme ASTM D 6866, par rapport à l'ensemble du carbone présent dans ladite composition, - la composition thermoplastique est non biodégradable ou non compostable au sens des normes EN 13432, ASTM D 6400 et ASTM D 6868,
- ou encore, la composition thermoplastique présente une contrainte maximale en flexion supérieure à 50 MPa , de préférence supérieure à 100 MPa.
La composition selon l'invention comprend en second lieu nécessairement des fibres synthétiques (b). Ces fibres sont choisies de manière à présenter un diamètre compris entre 2 et 35 microns et un module spécifique compris entre 25 et 230 GPa.m3/kg et sélectionnées en vue d'améliorer les propriétés mécaniques à froid de la composition selon l'invention mais aussi sa stabilité à la chaleur ainsi que ses propriétés thermomécaniques, ses propriétés conductrices, et/ou ses propriétés organoleptiques telles que son aspect, sa couleur ou son odeur. Elles peuvent être aussi choisies avantageusement pour augmenter la nucléation ou l'aptitude à la cristallisation de la polyoléfme présente dans la composition thermoplastique (a) et permettre d'ajuster les propriétés au retrait de la composition selon l'invention.
Elles peuvent en particulier être choisies parmi les fibres de verre, les fibres de carbone, les fibres métalliques et les fibres de polymères synthétiques de température de fusion mesurée par DSC supérieure à 180°C et de préférence supérieure à 200°C ou/et de température HDT (Heat Deflexion Température, ISO 75 méthode Bf sous 0,45 MPa) supérieure à 70°C et de préférence supérieure à 100° C, et plus particulièrement être choisies parmi les fibres de verre courtes, les fibres de verre longues, les fibres de carbone de haute ténacité, les fibres de carbone de haut module, les fibres aramides bas module, les fibres hauts module, les fibres de polyéthylènetérephtalate (PET), les fibres de polybutylènetérephtalate (PBT), les fibres de polypropylène (PP), les fibres de polystyrène (PS) , les fibres de polyamides (en particulier de PA 6, PA 4-6, PA 6-6, PA aromatiques), les fibres polyuréthanes (PU, TPU), les fibres de PLA (en particulier les stéréocomplexes PLLA/PDLA) .
La composition selon l'invention comprend de manière avantageuse, lorsqu'elle est destinée à être mise en forme selon une technique classique utilisée en plasturgie, entre 10 % et 60 % en poids, par exemple entre 10 et 40%, ou encore entre 15 et 30 %, de fibres synthétiques (b). La quantité en poids de ces fibres synthétiques (b) peut avantageusement être comprise entre 20 et 50 %, voire entre 25 et 45%. La composition selon l'invention présente alors de préférence une fluidité faible à l'état fondu, c'est-à-dire de préférence un MFR compris entre 1 et 100 g/ 10 minutes et mieux compris entre 2 et 50g/ 10 minutes, à 190° C pour une masse de 2,16 kg selon la méthode ISO 1133.
En revanche, lorsque la composition selon l'invention est destinée à être mise en forme selon une technique classique utilisée dans l'industrie du textile, elle contient avantageusement de 40 % à 90 % en poids, de préférence 60 % à 90 % en poids, et plus préférentiellement de 70 % à 90 % en poids, de fibres synthétiques (b). Dans ce cas de figure, la composition thermoplastique (a) est utilisée avantageusement comme un liant, un agent adhésif, un agent d'encollage, un agent d'imprégnation, un agent de gainage ou un agent d'ensimage des fibres synthétiques (b). Elle présente alors de préférence une fluidité élevée à l'état fondu, c'est-à-dire de préférence un MFR compris entre 25 et 500 g/10 minutes et mieux compris entre 100 et 500 g/10 minutes, à 190° C pour une masse de 2,16 kg selon la méthode ISO 1133.
Ces fibres synthétiques (b) présentent avantageusement un diamètre compris entre 2 et 35 microns, de préférence compris entre 5 et 30 microns, et mieux encore compris entre 8 et 15 microns. Lorsqu'il s'agit de fibres de verre, le diamètre de la fibre élémentaire est d'ordinaire compris entre 3 et 30 microns et plus classiquement situé entre 10 et 14 microns. En ce qui concerne les fibres courtes de verre, leur longueur généralement de l'ordre de 3 à 4 millimètres à l'introduction, est d'ordinaire voisine de 200 à 300 microns dans la composition selon l'invention. Pour les fibres dites longues, leur longueur peut atteindre plusieurs millimètres à dizaines de centimètres dans la composition de la présente invention. Ces fibres synthétiques (b) présentent par ailleurs de préférence un module de rupture en traction compris entre 60 et 450 GPa et plus avantageusement compris entre 70 et 400 GPa.
Par ailleurs, la composition selon l'invention peut comprendre d'autres polymères, de toute nature, en faible quantité, pour l'ajustement de ses caractéristiques. Elle comprendra toutefois de préférence des polymères ou des copolymères, partiellement ou totalement bio-sourcés, comme en particulier des polyuréthanes (PU), des polyuréthanes thermoplastiques (TPU), des polyamides, des polyesters, notamment de type polybutylènestérephtalates (PBT), polyétylènetérephtaltes (PET), copolyester-co-terephthalates aliphatiques (PBAT), polylactates (PL A), polybutylènes succinates (PB S, PB SA), polyhydroxyalcanoates (PHA, PHB, PHBV).
Des charges et autres additifs de toutes natures, dont ceux détaillés ci-après, peuvent aussi être incorporés dans la composition de la présente invention.
Il peut s'agir de produits visant à améliorer davantage encore ses propriétés physico-chimiques, en particulier sa structure physique, son comportement de mise en œuvre et sa durabilité ou bien ses propriétés mécaniques, thermiques, conductrices, adhésives ou organoleptiques.
L'additif peut être un agent améliorateur ou d'ajustement des propriétés mécaniques ou thermiques choisi parmi les minéraux, les sels et les substances organiques. Il peut s'agir d'agents de nucléation tel que le talc, d'agents compatibilisants ou dispersants comme les agents tensio-actifs naturels ou synthétiques, d'agents améliorateurs de la résistance aux chocs ou aux rayures comme le silicate de calcium, d'agents régulateurs de retrait comme le silicate de magnésium, d'agents piégeurs ou désactivateurs d'eau, d'acides, de catalyseurs, de métaux, d'oxygène, de rayons infra-rouges, de rayons UV, d'agents hydrophobants comme les huiles et graisses, d'agents retardateurs de flamme et anti-feu comme les dérivés halogénés, d'agents anti- fumée, de charges de renforcement, minérales ou organiques, comme le carbonate de calcium, le talc.
L'additif peut être également un agent améliorateur ou d'ajustement des propriétés conductrices ou isolantes vis-à-vis de l'électricité ou de la chaleur, de l'étanchéité par exemple à l'air, à l'eau, aux gaz, aux solvants, aux corps gras, aux essences, aux arômes, aux parfums, choisi notamment parmi les minéraux, les sels et les substances organiques, en particulier parmi les agents de conduction ou de dissipation de la chaleur comme les poudres métalliques et les graphites. Cet agent de dissipation de la chaleur peut également être choisi parmi les céramiques. L'additif peut être encore un agent améliorateur des propriétés organoleptiques, notamment :
- des propriétés odorantes (parfums ou agents de masquage d'odeur),
- des propriétés optiques (agents de brillance, agents de blancheur tels que le dioxyde de titane, colorants, pigments, exhausteurs de colorants, opacifiants, agents de matité tels que le carbonate de calcium, agents thermochromes, agents de phosporescence et de fluorescence, agents métallisants ou marbrants et agents antibuée),
- des propriétés sonores (sulfate de baryum et barytes), et
- des propriétés tactiles (matières grasses, huiles silicones).
L'additif peut être aussi un agent améliorateur ou d'ajustement des propriétés adhésives, notamment de l'adhésion vis-à-vis des matières cellulosiques comme le papier ou le bois, des matières métalliques comme l'aluminium et l'acier, des matériaux en verre ou céramiques, des matières textiles et des matières minérales, comme notamment les résines de pin, les colophanes, les copolymères d'éthylène/alcool vinylique, les aminés grasses, les agents lubrifiants, les agents de démoulage, les agents antistatiques et les agents anti-blocking.
Enfin, l'additif peut être un agent améliorateur de la durabilité du matériau ou un agent de contrôle de sa (bio)dégradabilité, notamment choisi parmi les agents hydrophobants ou perlants comme les huiles et graisses, les agents anticorrosion, les agents antimicrobiens comme Ag, Cu et Zn, les catalyseurs de dégradation comme les oxo-catalyseurs et les enzymes comme les amylases.
De préférence, l'additif peut être choisi parmi des agents stabilisants au vieillissement, en particulier des agents anti-UV, des agents hydrophobants et des agents anti-microbiens.
En vue de la préparation de la composition selon l'invention, on peut utiliser de nombreux procédés prévoyant notamment des moments et ordres d'introduction extrêmement variés des composants de ladite composition (polyoléfine, amidon, plastifiant éventuel, fibres synthétiques (b), agent de liaison éventuel, agent d'amélioration de la résilience au choc éventuel, autres additifs éventuels).
Ainsi, les fibres synthétiques peuvent être introduites après avoir, en tout ou partie, été préalablement dispersées dans la composition thermoplastique (a).
Parmi toutes ces possibilités de mise en œuvre desdits composants, la présente invention a notamment pour objet un procédé de préparation avantageux d'une composition telle que décrite précédemment dans toutes ses variantes, ledit procédé comprenant les étapes suivantes :
(i) sélection d'au moins une composition thermoplastique (a) comprenant au moins une polyoléfme et au moins un amidon thermoplastique,
(ii) sélection d'au moins un type de fibres synthétiques (b) de diamètre compris entre 2 et 35 microns et de module spécifique compris entre 25 et 230 GPa.mVkg,
(iii) mélange, de préférence mélange thermomécanique, de la composition thermoplastique (a) et des fibres synthétiques (b) de manière à obtenir la composition à base de matière végétale et de fibres synthétiques.
L'incorporation des fibres synthétiques (b) à la composition thermoplastique
(a) ou l'application de la composition thermoplastique (a) sur les fibres synthétiques
(b) peut être réalisée à froid et préalablement à son mélange thermomécanique. Ce mélange s'effectue idéalement à chaud, c'est-à-dire à une température supérieure à la température de transition vitreuse la plus élevée de la composition thermoplastique (a). Cette température peut être comprise entre 60 et 280°C °C, par exemple entre 60 et 250°C plus préférentiellement entre 80 et 200 °C et notamment comprise entre 100 et 185°C. La température peut être assez élevée en vue de faciliter l'incorporation des fibres dans la composition thermoplastique, par exemple entre 200 et 280°C, de préférence entre 220 et 270°C. Le mélange thermomécanique peut être réalisé de façon discontinue, par exemple par pétrissage/malaxage, ou de façon continue, par exemple par extrusion ou co-extrusion. La durée de ce mélange peut aller de quelques secondes à quelques heures, selon le mode de mélange retenu. De préférence, la durée du mélange va de quelques secondes à quelques minutes, par exemple de 10 à 75 secondes.
Selon un procédé préféré de l'invention, des fibres de verre sont sélectionnées comme fibres synthétiques lors de l'étape (ii) et le mélange de l'étape (iii) est réalisé par extrusion à une température comprise entre 200 et 280°C, de préférence entre 220 et 270°C. Dans ces gammes de température, on parvient à disperser de manière très homogène les fibres de verre (b) dans la composition thermoplastique (a). Or, lorsque de l'amidon thermoplastique est extrudé seul à des températures supérieures à 200°C, on observe une forte perte des propriétés mécaniques de cet amidon thermoplastique, cette perte étant liée à la dégradation thermique de l'amidon et du plastifiant. Cette dégradation est encore plus importante lorsqu'on essaye d'incorporer des fibres de verre dans cet amidon thermoplastique, du fait de la forte augmentation de la viscosité lors de cette incorporation. De manière surprenante, bien que la composition thermoplastique (a) comprenne de l'amidon thermoplastique qui est peu stable thermiquement, le procédé de fabrication de la composition se réalise sans difficultés et les propriétés mécaniques de la composition obtenue par ce procédé sont excellentes.
La Demanderesse a montré que le procédé selon l'invention est, par rapport au procédé classique de fabrication de composites à base polyoléfine et de fibres, très avantageux en terme énergétique, du fait du choix de la composition thermoplastique (a) particulière et de la présence au sein de celle-ci d'amidon thermoplastique.
Le procédé selon l'invention peut comprendre une étape ultérieure ou concomitante à l'étape de mélange (iii), à savoir un traitement de mise en forme de la composition à base de matière végétale et de fibres synthétiques (iv), à une température comprise entre 60 et 280°C, par exemple entre 80 et 250°C, de préférence comprise entre 120 et 200 °C, et en particulier comprise entre 160 et 185°C.
La présente invention a d'ailleurs également pour objet l'utilisation d'une composition comprenant au moins un amidon au moins partiellement plastifié comme agent de compatibilisation entre des fibres synthétiques (b) et une polyoléfine. La composition thermoplastique selon l'invention peut être utilisée telle quelle ou en mélange avec d'autres produits ou additifs, y compris d'autres polymères synthétiques, artificiels ou d'origine naturelle. Elle est de préférence non biodégradable et non compostable au sens des normes EN 13432, ASTM D 6400 et ASTM D 6868, et constituer de ce fait, un puits ou piège à carbone, grâce à sa haute richesse en produits végétaux d'origine photosynthétique.
La composition selon l'invention contient avantageusement au moins 25 %, de préférence au moins 30 %, et en particulier plus de 40 % de matière d'origine renouvelable selon la méthode de dosage du carbone d'origine renouvelable ASTM D 6866, exprimé par rapport à l'ensemble de ladite composition. Ce carbone d'origine renouvelable est celui constitutif de l'amidon nécessairement présent dans la composition conforme à l'invention mais peut aussi être aussi celui de la polyoléfine qui est de préférence bio-sourcée, celui des autres constituants éventuels de la composition comme le plastifiant, notamment s'il s'agit de glycérol ou de sorbitol, ou de tout autre produit lorsqu'il provient de ressources naturelles renouvelables.
Il est en particulier envisageable d'utiliser les compositions selon l'invention, en tant que matériaux bioplastiques ou matériaux composites, utiles à la préparation par injection, extrusion, soufflage, calandrage, moulage, thermo formage, compactage, filage, éguitage ou autres techniques, d'objets, de pièces, de flaconnages, de pots, de contenants, de réservoirs, de feuilles, de panneaux, de barreaux, de tasseaux , de profilés de poutres, de tables, de meubles d'intérieur, de mobiliers urbains, de mats, de non-tissés, de garnitures de portes, de parois, de couches isolantes, de pièces automobiles, de pièces électriques, de câblages, de gaines, de tableaux de bord, de capots ou autres produits courants d'usage domestique comme les articles de sports et de loisir, l'électroménager, l'outillage ou utiles à différentes industries comme par exemple l'industrie du bâtiment, de l'emballage, de l'électricité, du transport , de l'aéronautique, de la plaisance et de l'équipement.
Ladite composition peut se présenter sous forme pulvérulente, granulée ou en billes. Elle peut constituer en tant que telle un mélange maître ou la matrice d'un mélange maître, destiné à être dilué dans une matrice bio-sourcée ou non. Elle peut constituer aussi une matière première plastique ou un compound utilisable directement par un équipementier ou un façonnier d'objets plastiques. Elle peut constituer aussi une composition finale ou intermédiaire, apte à être mise en forme ou utilisée dans l'industrie textile comme un mat fibreux ou un non-tissé ou dans l'industrie de transformation du bois comme un panneau de bois ou un composites bois/polymères.
L'invention sera mieux comprise à la lumière des exemples qui suivent qui ne se veulent en aucun cas limitatif de l'invention.
Exemple : Compositions selon l'invention et selon l'art antérieur
Préparation des compositions
On choisit pour cet exemple comme composition thermoplastique (a), une composition à base de :
- 52 % en poids de la composition dénommée « AP6040 » telle que décrite dans les demandes de brevet WO 2009/095617, WO 2009/095618 et WO 2009/095622 précitées, déposées par la Demanderesse,
46 % en poids d'une polyoléfïne constitué, pour moitié, de polypropylène du commerce et, pour autre moitié, de polypropylène greffé anhydride maléique, et - 2 % environ de méthylènediphényl-diisocyante (MDI).
Cette composition comprend 52 % de matière d'origine renouvelable sous forme d'amidon de blé et de plastifiants de type polyols bio-sourcés. Elle présente une densité proche de 1,11 et un MFR de 26 g/ 10 minutes à 190°C pour une masse de 10 kg. On dénomme cette composition thermoplastique (a) : Résine A.
On prépare une composition selon l'invention (Essail) en utilisant uniquement la Résine A comme composition thermoplastique (a) et comme fibres synthétiques (b), des fibres de verre présentant :
- un module spécifique proche de 30 GPa.mVkg ,
- une contrainte spécifique proche de 1 GPa.mVkg,
- une contrainte à la rupture en traction de 2,2 GPa, - un module de rupture en traction de 75 GPa,
- un allongement à la rupture de 4,8%,
et un diamètre de la fibre élémentaire de 10 microns. On mélange à la composition thermoplastique Résine A, environ 40 % en poids commercial de fibres de verre.
Les conditions de préparation par extrusion sur filière de 6 mm sont les suivantes :
- profil de température croissant de 240°C à 260°C ;
- filière d'imprégnation spécifique au procédé fibres longues ;
- débit 200kg/h.
En sortie d'extrudeuse, les joncs sont refroidis sous eau, puis coupés à 1cm de long. La densité de la composition selon l'invention ainsi obtenue est voisine de 1,25. On prépare de manière identique avec un taux de fibres de verre identique d'environ 40%, une composition témoin dénommée G400-8229, en utilisant, en lieu et place de la Résine A, un mélange comprenant 97% d'un mélange de polypropylène de type homopolymère PPH60 de MFR de 60 g/10 minutes (230°C ; 2,16 kg) et d'un polypropylène de type homopolymère PPH450 de MFR de 450 g/10 minutes (230°C ; 2,16 kg) et 3% de polypropylène greffé anhydride maléique à 1% (PPg) en tant qu'agent de compatibilisation. Seules les conditions d'extrusion sur filière de 6mm, sont légèrement modifiées au sens que le profil est croissant de 280°C à 300°C.
On prépare aussi, avec un procédé identique à celui de l'Essai 1, une composition selon l'invention (Essai 2) identique à la composition témoin G400-8229 à la différence que la Résine A remplace le PPH60.
Dans les mêmes conditions et proportions relatives de PPH450, de Résine A et de PPg que celles de l'Essai 2, on prépare enfin une composition selon l'invention (Essai 3), à la différence que la quantité en fibres de verre est de 30% en poids. Les essais industriels n'ont posé aucun problème particulier lors de l'usage de la Résine A en lieu et place du mélange de PPH, si ce n'est que pour l'Essai 1 , la matière fondue est un peu trop visqueuse et entraîne la casse de fibres de verre.
Caractéristiques mécaniques des compositions selon l'invention et selon l'art antérieur :
Figure imgf000031_0001
On observe que les compositions selon l'invention présentent à équivalence en taux de fibres de verre, de très bonnes caractéristiques mécaniques et que la composition selon l'Essai 2 est comparable sinon meilleure que la composition selon l'art antérieur pour les critères mesurés.
La Résine A apparaît agir à la fois sur l'amélioration de l'adhésion aux fibres de verre et sur l'amélioration de la compatibilité de ces fibres au polypropylène. La composition selon l'invention peut de plus être obtenue par le même procédé que celui appliqué habituellement et avantageusement sans modification de l'outillage et en travaillant à des températures inférieures de 20 à 35°C au dessous de la composition témoin. Ceci permet avantageusement des gains énergétiques non négligeables et de réduire les besoins en ressources d'origine fossile.
De plus, la composition selon l'invention contrairement à celle de l'art antérieur, présente un aspect naturel. Elle présente également un toucher agréable s'expliquant par la présence d'amidon au sein de la composition thermoplastique (a) et ainsi de s'affranchir de l'emploi dans ce but d'un élastomère synthétique.
On constate que la composition Essai 1 selon l'invention comprenant au total environ 31 % de matière bio-sourcée, que la composition Essai 2 selon l'invention comprenant au total environ 16 % de matière bio-sourcée et que la composition Essai 3 également selon l'invention comprenant au total environ 18 % de matière bio- sourcée présentent toutes trois de nombreux avantages techniques comparativement à la composition témoin selon l'art antérieur qui ne comporte pas du tout de matière d'origine naturelle renouvelable.
Comme expliqué précédemment, l'ajout de renforts dans une composition en vue d'améliorer ses propriétés mécaniques en flexion et en traction s'accompagne généralement d'une diminution de la résistance au choc. A titre d'exemple, la Demanderesse a constaté qu'en ajoutant des argiles ou du carbonate de calcium dans une composition à base d'amidon thermoplastique et de polyoléfme, les propriétés mécaniques en flexion et en traction de cette composition étaient améliorées mais une diminution de la résilience au choc était également observée.
En comparant les propriétés obtenues pour les compositions selon l'invention avec la composition sans fibres de verre (Résine A), la Demanderesse a ainsi constaté qu'en ajoutant des fibres synthétiques particulières à une composition à base d'amidon thermoplastique et de polyoléfme, il est possible d'améliorer les propriétés mécaniques en flexion et en traction de cette composition, tout en augmentant de manière surprenante la résistance au choc de ces compositions à base de polyoléfïne et d'amidon thermoplastique.

Claims

REVENDICATIONS
1. Composition à base de matière végétale et de fibres synthétiques caractérisée en ce qu'elle comprend:
- au moins 10 % en poids et au plus 95 % en poids d'une composition thermoplastique (a) comprenant au moins une polyoléfme et au moins un amidon thermoplastique et, - au moins 5 % en poids et au plus 90 % en poids de fibres synthétiques (b) de diamètre compris entre 2 et 35 microns et de module spécifique compris entre 25 et 230 GPa.mVkg.
2. Composition selon la revendication 1, caractérisée en ce qu'elle se présente sous forme de granulés, de copeaux, de feuilles, de plaques, de poudres ou de mats fibreux, aptes à être mis en forme par pressage, thermoformage, extrusion, calandrage, filage, injection ou soufflage.
3. Composition selon la revendication 1 ou 2, caractérisée en ce la composition thermoplastique (a) présente une densité comprise entre 1,1 et 2,5, de préférence comprise entre 1,15 et 2,10 et plus préférentiellement comprise entre 1,3 et 2,0 selon la méthode ISO 1183.
4. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle présente un module de flexion supérieur à 1500 MPa, de préférence supérieur à 3000 MPa et mieux supérieur à 5000 MPa, selon la méthode ISO 178.
5. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que la composition thermoplastique (a) comprend au moins une polyoléfine, vierge ou recyclée, choisie parmi les polyéthylènes haute densité (PEHD) , les polyéthylènes basse densité (PEBD), les polyéthylènes linéaires basses densité, les polypropylènes homopolymères (PPh), les polypropylènes statistiques (PPs), les polypropylènes copolymères (PPc) et les polybutènes, ainsi que les mélanges quelconques de ceux-ci.
6. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que la composition thermoplastique (a) comprend au moins une polyoléfine obtenue à partir de monomères bio-sourcés, en particulier à partir de bio- éthanol ou de bio-méthanol.
7. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que la composition thermoplastique (a) comprend de l'amidon thermoplastique dont le taux de cristallinité est inférieur à 15 %, de préférence inférieur à 5% et plus préférentiellement inférieur à 1%.
8. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que la composition thermoplastique (a) comprend au moins un amidon thermoplastique représentant en poids sec, plus de 25 %, de préférence plus de 35 % et plus préférentiellement plus de 50 % de la composition thermoplastique (a).
9. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que la composition thermoplastique (a) comprend en tant qu'amidon thermoplastique, au moins un amidon plastifié obtenu à partir d'amidons natifs, d'amidons prégélatinisés, d'amidons extrudés, d'amidons atomisés, d'amidons fluidifiés, d'amidons oxydés, d'amidons cationiques, d'amidons anioniques, d'amidons hydroxyalkylés, d'amidons réticulés, d'acétates d'amidon, d'esters gras d'amidon et de chaînes grasses de 4 à 22 carbones, de dextrines, de maltodextrines et les mélanges quelconque de ces produits.
10. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que la composition thermoplastique (a) comprend au moins un plastifiant , de préférence choisi parmi les diols, les triols, les polyols, les sirops de glucose hydrogénés, les sels d'acides organiques, l'urée, les esters méthyliques, éthyliques ou gras d'acides organiques, les esters acétiques ou gras de mono-alcools, diols, triols ou polyols et les mélanges quelconques de ces produits.
11. Composition selon l'une quelconque des revendications précédentes, caractérisée en que la composition thermoplastique (a) présente une teneur en plastifiant comprise en poids sec comprise entre 4 % et 50 %, de préférence comprise entre 8 % et 40 % et en particulier comprise entre 15 % et 25 %, de la composition thermoplastique (a).
12. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce qu'au sein de la composition thermoplastique (a), la polyoléfine constitue la phase dispersante continue et l'amidon thermoplastique la phase dispersée discontinue.
13. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que la composition thermoplastique (a) comprend :
- de 25 à 85 % en poids d'amidon thermoplastique,
- de 10 à 60 % en poids de polyoléfine,
- et de 4 à 40 % en poids d'au moins un plastifiant, de préférence autre que l'eau.
14. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que la composition thermoplastique (a) comprend :
- de 35 à 80 % en poids d'amidon thermoplastique,
- de 10 à 50 % en poids de polyoléfine,
- et de 10 à 30 % en poids d'au moins un plastifiant, de préférence autre que l'eau.
15. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que les fibres synthétiques (b) sont choisies parmi les fibres de verre, les fibres de carbone, les fibres métalliques et les fibres de polymères synthétiques de température de fusion mesurée par DSC supérieure à 180°C et de préférence supérieure à 200°C et/ou de température HDT supérieure à 70°C et de préférence supérieure à 100° C, et plus particulièrement être choisies parmi les fibres de verre courtes, les fibres de verre longues, les fibres de carbone de haute ténacité, les fibres de carbone de haut module, les fibres aramides bas module, les fibres hauts module, les fibres de polyéthylènetérephtalate (PET), les fibres de polybutylènetérephtalate (PBT), les fibres de polypropylène (PP), les fibres de polystyrène (PS) , les fibres de polyamides, les fibres polyuréthanes, les fibres de PLA (en particulier les stéréocomplexes PLLA/PDLA) .
16. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend de 10 % à 60 % en poids, de préférence de 20 à 50 % et mieux de 25 à 45 % de fibres synthétiques (b).
17. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que les fibres synthétiques (b) présentent un diamètre compris entre 2 et 35 microns, de préférence compris entre 5 et 30 microns, et mieux compris entre 8 et 15 microns.
18. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que les fibres synthétiques (b) présentent un module de rupture en traction compris entre 60 et 450 GPa et de préférence entre 70 et 400 GPa.
19. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend en outre un agent de liaison choisi parmi les composés porteurs d'au moins deux fonctions, libres ou masquées, identiques ou différentes, choisies parmi les fonctions isocyanates, carbamoylcaprolactames, époxydes, aldhéhydes, halogéno, acides protoniques, anhydrides d'acide, halogénures d'acyle, oxychlorures, trimétaphosphates, alcoxysilanes et les mélanges de ceux-ci.
20. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend en outre des agents stabilisants au vieillissement, en particulier des agents anti-UV, des agents hydrophobants et des agents antimicrobiens.
21. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est non biodégradable ou non compostable au sens des normes EN 13432, ASTM D 6400 et ASTM D 6868.
22. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle contient au moins 25 %, de préférence au moins 30 %, et en particulier plus de 40 % de matière d'origine renouvelable selon la méthode de dosage du carbone d'origine renouvelable ASTM D 6866, exprimé par rapport à l'ensemble de ladite composition.
23. Procédé de préparation d'une composition à base de matière végétale et de fibres synthétiques selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend les étapes suivantes :
(i) sélection d'au moins une composition thermoplastique (a) comprenant au moins une polyoléfme et au moins un amidon thermoplastique,
(ii) sélection d'au moins un type de fibres synthétiques (b) de diamètre compris entre 2 et 35 microns et de module spécifique compris entre 25 et 230 GPa.mVkg ,
(iii) mélange, de préférence mélange thermomécanique, de la composition thermoplastique (a) et des fibres synthétiques (b) de manière à obtenir la composition à base de matière végétale et de fibres synthétiques.
24. Procédé selon la revendication 23 caractérisé en ce que l'étape de mélange (iii) est suivie d'un traitement de mise en forme de la composition à base de matière végétale (iv), à une température comprise entre 60 et 280°C, par exemple entre 80 et 250°C, de préférence comprise entre 120 et 200 °C , et en particulier comprise entre 160 et 185°C.
25. Procédé selon la revendication 23 ou 24 caractérisé en ce que les fibres synthétiques sélectionnées lors de l'étape (ii) comprennent des fibres de verre et en ce que l'étape de mélange (iii) est réalisée par extrusion à une température comprise entre 200 et 280°C, de préférence entre 220 et 270°C.
PCT/FR2010/052870 2009-12-22 2010-12-22 Compositions a base de matiere vegetale et de fibres synthetiques et procede de preparation de telles compositions WO2011086292A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800587877A CN102753611A (zh) 2009-12-22 2010-12-22 包含植物质和合成纤维的组合物以及用于制备这类组合物的方法
EP10810781A EP2516535A1 (fr) 2009-12-22 2010-12-22 Compositions a base de matiere vegetale et de fibres synthetiques et procede de preparation de telles compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0959349 2009-12-22
FR0959349A FR2954331B1 (fr) 2009-12-22 2009-12-22 Compositions a base de matiere vegetale et de fibres synthetiques et procede de preparation de telles compositiions

Publications (1)

Publication Number Publication Date
WO2011086292A1 true WO2011086292A1 (fr) 2011-07-21

Family

ID=42338148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052870 WO2011086292A1 (fr) 2009-12-22 2010-12-22 Compositions a base de matiere vegetale et de fibres synthetiques et procede de preparation de telles compositions

Country Status (4)

Country Link
EP (1) EP2516535A1 (fr)
CN (1) CN102753611A (fr)
FR (1) FR2954331B1 (fr)
WO (1) WO2011086292A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014039479A1 (fr) * 2012-09-04 2014-03-13 Cpg International, Inc. Utilisation d'emballage recyclé dans des produits polymères composites
WO2014056063A1 (fr) * 2012-10-11 2014-04-17 Da Silva Serafim Félix Procédé de fabrication et composé thermoplastique avec fibres de tiges de manioc
US9976018B2 (en) 2012-09-04 2018-05-22 CPG International, LLC Use of recycled packaging in polymer composite products
CN114672128A (zh) * 2022-03-07 2022-06-28 天津金发新材料有限公司 一种改性聚丙烯材料及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20180084A1 (en) 2018-07-13 2020-01-14 Paptic Oy Water-dispersed composite structure and process for its preparation
US10882977B1 (en) 2020-01-30 2021-01-05 Edward Showalter Earth plant compostable biodegradable substrate and method of producing the same
US11149131B2 (en) * 2020-01-30 2021-10-19 Edward Showalter Earth plant compostable biodegradable substrate and method of producing the same
FR3108913B1 (fr) * 2020-04-06 2022-07-29 Nexans Cable comportant une composition résistante et/ou retardante au feu

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095054A (en) 1988-02-03 1992-03-10 Warner-Lambert Company Polymer compositions containing destructurized starch
EP0497706A1 (fr) 1991-01-31 1992-08-05 Roquette FrÀ¨res Compositions thermoformables, leur procédé de préparation et leur utilisation pour l'obtention d'articles thermoformés
US5362777A (en) 1988-11-03 1994-11-08 Ivan Tomka Thermoplastically processable starch and a method of making it
US6231970B1 (en) 2000-01-11 2001-05-15 E. Khashoggi Industries, Llc Thermoplastic starch compositions incorporating a particulate filler component
EP1265967A2 (fr) 2000-02-02 2002-12-18 BASF Coatings AG Substance de revetement aqueuse, pouvant durcir par voie physique, thermique ou thermique et avec rayonnement actinique, et son utilisation
US20060194902A1 (en) 2005-01-25 2006-08-31 Li Nie Starch-plastic composite resins and profiles made by extrusion
WO2009022195A1 (fr) 2007-08-13 2009-02-19 Cereplast, Inc. Compositions de polyoléfines comprenant des matières d'amidon d'origine biologique
WO2009095622A2 (fr) 2008-02-01 2009-08-06 Roquette Freres Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues
WO2009095618A2 (fr) 2008-02-01 2009-08-06 Roquette Freres Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues
WO2009095617A2 (fr) 2008-02-01 2009-08-06 Roquette Freres Compositions thermoplastiques a base d'amidon soluble et procede de preparation de telles compositions

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095054A (en) 1988-02-03 1992-03-10 Warner-Lambert Company Polymer compositions containing destructurized starch
US5362777A (en) 1988-11-03 1994-11-08 Ivan Tomka Thermoplastically processable starch and a method of making it
EP0497706A1 (fr) 1991-01-31 1992-08-05 Roquette FrÀ¨res Compositions thermoformables, leur procédé de préparation et leur utilisation pour l'obtention d'articles thermoformés
US6231970B1 (en) 2000-01-11 2001-05-15 E. Khashoggi Industries, Llc Thermoplastic starch compositions incorporating a particulate filler component
EP1265967A2 (fr) 2000-02-02 2002-12-18 BASF Coatings AG Substance de revetement aqueuse, pouvant durcir par voie physique, thermique ou thermique et avec rayonnement actinique, et son utilisation
US20060194902A1 (en) 2005-01-25 2006-08-31 Li Nie Starch-plastic composite resins and profiles made by extrusion
WO2009022195A1 (fr) 2007-08-13 2009-02-19 Cereplast, Inc. Compositions de polyoléfines comprenant des matières d'amidon d'origine biologique
WO2009095622A2 (fr) 2008-02-01 2009-08-06 Roquette Freres Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues
WO2009095618A2 (fr) 2008-02-01 2009-08-06 Roquette Freres Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues
WO2009095617A2 (fr) 2008-02-01 2009-08-06 Roquette Freres Compositions thermoplastiques a base d'amidon soluble et procede de preparation de telles compositions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RODRIGUEZ-GONZALEZ ET AL.: "High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene", POLYMER, vol. 44, 2003, pages 1517 - 1526
RODRIGUEZ-GONZALEZ F J ET AL: "High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene", POLYMER, ELSEVIER SCIENCE PUBLISHERS B.V, GB LNKD- DOI:10.1016/S0032-3861(02)00907-2, vol. 44, no. 5, 1 March 2003 (2003-03-01), pages 1517 - 1526, XP004409092, ISSN: 0032-3861 *
S. PEREZ: "Structure et morphologie du grain d'amidon", INITIATION À LA CHIMIE ET À LA PHYSICO-CHIMIE MACROMOLÉCULAIRES, vol. 13, 2000, pages 41 - 86

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014039479A1 (fr) * 2012-09-04 2014-03-13 Cpg International, Inc. Utilisation d'emballage recyclé dans des produits polymères composites
US9951191B2 (en) 2012-09-04 2018-04-24 Cpg International Llc Use of recycled packaging in polymer composite products
US9976018B2 (en) 2012-09-04 2018-05-22 CPG International, LLC Use of recycled packaging in polymer composite products
US10683401B2 (en) 2012-09-04 2020-06-16 Cpg International Llc Use of recycled packaging in polymer composite products
US10683402B2 (en) 2012-09-04 2020-06-16 Cpg International Llc Use of recycled packaging in polymer composite products
WO2014056063A1 (fr) * 2012-10-11 2014-04-17 Da Silva Serafim Félix Procédé de fabrication et composé thermoplastique avec fibres de tiges de manioc
CN114672128A (zh) * 2022-03-07 2022-06-28 天津金发新材料有限公司 一种改性聚丙烯材料及其制备方法
CN114672128B (zh) * 2022-03-07 2023-10-20 天津金发新材料有限公司 一种改性聚丙烯材料及其制备方法

Also Published As

Publication number Publication date
FR2954331A1 (fr) 2011-06-24
FR2954331B1 (fr) 2012-05-25
EP2516535A1 (fr) 2012-10-31
CN102753611A (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
EP2550323A1 (fr) Compositions à base de matière végétale et procédé de préparation de telles compositions
AU2009208830B2 (en) Method for preparing thermoplastic compositions based on plasticized starch and resulting compositions
JP5544301B2 (ja) 可溶性デンプンベース熱可塑性組成物およびこのような組成物を調製する方法
RU2524382C2 (ru) Способ получения термопластических композиций на основе пластифицированного крахмала и полученные им композиции
EP2516535A1 (fr) Compositions a base de matiere vegetale et de fibres synthetiques et procede de preparation de telles compositions
FR2927083A1 (fr) Procede de preparation de compositions thermoplastiques a base de matiere amylacee soluble.
CA2729814A1 (fr) Procede de preparation de compositions a base de composant amylace et de polymere synthetique
WO2011086334A1 (fr) Procédé de préparation de compositions thermoplastiques à base d'amidon plastifié et compositions
FR2958938A1 (fr) Procede de preparation de compositions thermoplastiques a base de farine vegetale plastifiee et compositions ainsi obtenues
WO2014009678A1 (fr) Composition thermoplastique à base d'amidon comprenant un polypropylène fonctionnalisé de fluidité sélectionnée

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058787.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10810781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010810781

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010810781

Country of ref document: EP