WO2011083970A2 - 폴리에스테르 수지 및 이를 포함하는 토너 - Google Patents

폴리에스테르 수지 및 이를 포함하는 토너 Download PDF

Info

Publication number
WO2011083970A2
WO2011083970A2 PCT/KR2011/000060 KR2011000060W WO2011083970A2 WO 2011083970 A2 WO2011083970 A2 WO 2011083970A2 KR 2011000060 W KR2011000060 W KR 2011000060W WO 2011083970 A2 WO2011083970 A2 WO 2011083970A2
Authority
WO
WIPO (PCT)
Prior art keywords
weight
polyester resin
toner
resin
acid
Prior art date
Application number
PCT/KR2011/000060
Other languages
English (en)
French (fr)
Other versions
WO2011083970A3 (ko
Inventor
유영만
이계윤
Original Assignee
에스케이케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼주식회사 filed Critical 에스케이케미칼주식회사
Publication of WO2011083970A2 publication Critical patent/WO2011083970A2/ko
Publication of WO2011083970A3 publication Critical patent/WO2011083970A3/ko

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08755Polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08775Natural macromolecular compounds or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters

Definitions

  • the present invention relates to a polyester resin and a toner comprising the same, and more particularly, to a toner used in an electrophotographic copying process or an electrostatic printing process and a polyester resin included as a binder in the toner.
  • an electrophotographic copying process or an electrostatic printing process involves (1) an electrostatically charged material, for example an electrostatically charged image corresponding to an image to be recorded on the surface of an organic photoconductor (OPC) drum. charged image) or electronically conductive phase (hereinafter referred to as " latent image "), and (2) electrostatic latent images formed on the surface of the drum by electrostatic attachment of charged toner to the drum. Developing and visualizing, (3) transferring the developed toner image to a recording medium such as paper or recording film, and (4) fixing the transferred image to the recording medium with a thermocompression roller or the like. Process.
  • OPC organic photoconductor
  • Such an image-forming process is widely used in the field of copiers and printers because it is possible to obtain printed matter at high speed, has excellent control stability of the phase formed on the surface of the electrostatic rock material, and facilitates operation of the image-forming apparatus.
  • the toner used for dry development is classified into one component toner, two component toner, and the like.
  • the two-component toner together with a binder resin, a colorant, a charge control agent and other additives, includes a magnetic material for developing and transferring an electrostatic latent image formed on a drum, and melting, kneading, dispersing, finely pulverizing and It is produced in the form of particles by classification.
  • the binder resin which is a main component of the toner, should not only have excellent dispersibility, fixability, non-offsetability, storage stability, and other electrical properties of the colorant during melting and kneading, but also excellent transparency and a small amount of colorant. It should be possible to form a clear image without blur.
  • the binder resin has a wide color reproducible width, can improve the image density of a copy or printed matter, and is environmentally friendly.
  • a polystyrene resin, a styrene acrylic resin, an epoxy resin, a polyamide resin, and the like have conventionally been used, and in recent years, the use of polyester resins having excellent fixability and transparency has increased.
  • raw materials of numerous products including toners are manufactured from fossil resources such as petroleum, and a response to reducing the use of fossil resources is very important in preventing exhaustion of fossil resources.
  • most of the toner resins which account for more than 70% of the toner components, are mostly made from petroleum resources, and there are concerns about the depletion of petroleum resources, warming by consuming large amounts of petroleum resources, and carbon dioxide emissions to the atmosphere have.
  • toner resin As a toner resin, when a resin derived from a plant that grows carbon dioxide in the air and grows is used, the carbon dioxide generated is circulated in the environment, and there is a possibility of solving the problem of warming and depletion of petroleum resources at the same time. In particular, the attention is paid to the biomass raw material content (biomass) in the plant-derived environmentally cyclic polymer.
  • Biomass refers to a biological organism including plants, cells and animals that eat and live by photosynthesis of plants and microorganisms that receive solar energy.
  • biomass resources include starch-based resources including cereals and potatoes, cellulose-based resources including agricultural products such as herbs, wood and rice straw, rice hulls, and environmentally cyclic resources derived from sugar-based plants such as sugar cane and sugar beets.
  • starch-based resources including cereals and potatoes
  • cellulose-based resources including agricultural products such as herbs, wood and rice straw, rice hulls
  • environmentally cyclic resources derived from sugar-based plants such as sugar cane and sugar beets.
  • it has a variety of properties, including animal manure, carcass and protein-based resources, including microbial cells.
  • Organic wastes such as paper and food waste derived from these resources are also included.
  • Such biomass can be utilized as a biological resource that can be an energy source or a material of various synthetic materials by combining biological technology and chemical technology.
  • the biggest advantage of this biomass is that it is renewable. Unlike other fossil fuels, carbon dioxide is not depleted and released into the atmosphere through combustion, which is obtained in the atmosphere through the growth of plants and microorganisms in the past few years, so there is no increase in atmospheric carbon dioxide. Thus, it will be able to replace existing products derived from petrochemicals.
  • Japanese Laid-Open Patent Publication Nos. 2009-75544, 2008-250171, 2001-166537, 1997-274335, 1997-308765, and 194-200250 use polylactic acid resin as it is or
  • the concentration of the ester bond is higher than that of the general polyester resin, the application to the thermoplastic resin at the time of fixing is lowered.
  • the toner becomes considerably hard, there is a problem in that there is a lack of pulverization and inferior productivity, and a lot of fine powder is generated in response to the mechanical impact caused by stirring in the developing machine, resulting in severe offset generation and image contamination.
  • polylactic acid is difficult to control the molecular weight, it is difficult to achieve the physical properties necessary for the toner only with polylactic acid because only the carbon atoms are used and ester bonds are present.
  • there is a fear that fixing failure occurs when forming a black and white image not a configuration that can sufficiently cope with an image forming apparatus that has made the process speed faster when forming a black and white image.
  • the printed matters are left in an overlapped state under the above-described conditions, there is a fear that the printed matters may stick together depending on the softened toner.
  • the polyester resin used as the binder resin for toner uses bisphenol-A or a derivative thereof as the alcohol component.
  • bisphenol-A is an environmentally undesirable compound, it does not contain bisphenol-A or its derivatives, and thus, good offset resistance, low temperature fixing property, sharp melt resistance, blocking resistance, charging property, grinding property, The development of the polyester resin which is excellent in the characteristics, such as storage stability and transparency, and forms a favorable image development even after leaving for a long time is tried.
  • Germanium-based catalysts, antimony-based catalysts, tin-based catalysts and the like have been used in the production of toner polyester resins.
  • the catalysts are excessively used due to their low activity, they are not environmentally preferable,
  • the antimony-based catalyst has a problem in that transparency of the polyester resin is lowered due to gray colorability).
  • a titanium catalyst such as a coprecipitation agent and a TiO 2 / ZrO 2 coprecipitation agent.
  • An object of the present invention is to increase the biomass material content in the resin by using a biomass polymerization raw material, does not include bisphenol-A or its derivatives, and does not require the use of heavy metal catalysts such as tin and antimony during the polymerization. It is to provide a polyester resin for toner.
  • Another object of the present invention can be economically produced, has excellent offset resistance and storage stability, excellent fixability to an electrostatic lock material or recording medium, and high image density, and excellent durability and moisture resistance of the toner, It is to provide a toner having improved image stability.
  • one aspect of the present invention is a toner containing lactic acid (D or L-lactic acid) or a derivative thereof, lactide (D or L-lactide) and 1,4-cyclohexanedimethanol It provides a polyester resin.
  • One embodiment of the present invention is 5 to 70% by weight of a biomass resource-derived compound including lactic acid (D or L-lactic acid) or a lactide (D or L-lactide) derived therefrom based on the total polyester resin And 30 to 94% by weight of a petroleum-derived compound including the 1,4-cyclohexanedimethanol; And greater than 0 to less than 1% of a heat stabilizer.
  • the petroleum resource-derived compound is composed of 2 to 70% by weight of an acid component and 24 to 92% by weight of an alcohol component including 1,4-cyclohexanedimethanol.
  • 1,4-cyclohexanedimethanol contains 0.5 to 28% by weight of the total polyester resin.
  • the biomass resource-derived compound is 0.5 to 50% by weight of lactic acid (D or L-lactic acid) or a lactide (D or L-lactide) thereof, based on the total polyester resin. 0 to 10 weight percent diol, 0 to 5 weight percent fatty acid or fatty acid alkyl ester, and 0.5 to 10 weight percent glycerin component.
  • the polyester resin further includes a styrene resin or a styrene-acrylic resin. .
  • the softening temperature of the polyester resin is 125 to 190 °C
  • the acid value of the resin is 1 to 30 KOHmg / g
  • Tg is 58 to 75 °C or less.
  • One aspect of the present invention provides a toner containing the polyester resin.
  • Another aspect of the present invention is (a) 0.5 to 50% by weight of lactic acid (D or L-lactic acid) derived from biomass resources or a compound thereof, lactide (D or L-lactide), 0% by weight of aliphatic diol To 10 weight percent, 0 to 5 weight percent fatty acid or fatty acid alkyl ester, 0.5 to 10 weight percent glycerin component; And esterification reaction or transesterification in the presence of titanium-based catalyst, including 30 to 94% by weight of acid components derived from petroleum resources and alcohol components containing 1,4-cyclohexanemethanol as reactants. Carrying out the reaction; And
  • the polyester resin according to the present invention contains an environmentally cyclic biomass polymerization raw material lactic acid (D or L-lactic acid) or a derivative thereof, lactide (D or L-lactide) and 1,4-cyclohexanedimethanol. do.
  • the polyester resin according to the present invention is a binder capable of producing environmentally friendly toner, and does not include bisphenol-A or its derivatives as an alcohol component, and does not use heavy metal catalysts such as tin or antimony, More preferred.
  • the toner made of the polyester resin according to the present invention has not only an excellent storage stability, a fixing temperature range and an image density, but also an advantage that it can be manufactured inexpensively.
  • the polyester resin according to the present invention is a biomass polymerized raw material lactic acid (D or L-lactic acid) or a derivative compound thereof, such as lactide (D or L-lactide) and 1,4-cyclohexanedimethanol containing poly It provides an ester resin.
  • the biomass polymerization raw material component is 5 to 70% by weight, preferably 20 to 60% by weight, more preferably 30 to 50% by weight based on the total polyester resin polymerization raw material. If the content of the biomass polymerization raw material is less than 5% by weight, it can be seen that there is no meaning of using the biomass polymerization raw material, if it is more than 70% by weight, economic efficiency as a toner can not be secured, the basic physical resistance of the toner Fixability, storage stability, burn density, durability and moisture resistance are poor.
  • the biomass polymerization raw material component includes lactic acid (D or L-lactic acid) or a derivative thereof, lactide (D or L-lactide), which have acid and alcohol properties simultaneously, 0.5 to 50% by weight or less, preferably 10 to 40% by weight, more preferably 20 to 30% by weight.
  • the lactic acid (D or L-lactic acid) or lactide (D or L-lactide), which is a derivative thereof, is competitive with petroleum-derived polymerization raw materials, so that the lactic acid (D or L-lactic acid) is used as long as it does not affect toner properties, but the content thereof When it is more than 50 weight%, ester content which is a polar group in resin becomes relatively large, and water content tends to increase in high temperature / high humidity conditions.
  • the lactic acid (D or L-lactic acid) or its derivative, lactide (D or L-lactide), is preferably introduced at the beginning of the polymerization reaction and contained in the form of random polymer in the resin.
  • the fatty acid or alkyl ester thereof may be used as the biomass polymerization raw material acid component.
  • biodiesel which is an environmentally friendly fuel rather than a fossil fuel derived from petroleum resources, is in the spotlight.
  • the main component of biodiesel fuel is composed of 14 to 24 fatty acid methyl esters, and the content of each component is different depending on oil type (soybean oil, rapeseed oil, palm oil, etc.) used as raw materials.
  • oil type soybean oil, rapeseed oil, palm oil, etc.
  • the methyl ester component of saturated palmitic acid when the methyl ester component of saturated palmitic acid is high, it affects low temperature fluidity, which is disadvantageous for use as fuel for vehicles in winter.
  • methyl palmitic acid ester component treated as a by-product as a toner resin ensures eco-friendly resource utilization and economics through the use of by-products, and improves melting characteristics of the toner to obtain good fixability.
  • the type of fatty acid methyl ester is not limited to methyl palmitate, and all 14 to 24 fatty acid methyl esters used for biodiesel fuel can be used.
  • the fatty acid methyl ester component is used in an amount of 0 to 5% by weight or less based on the total resin polymerization raw material, and preferably 2 to 5% by weight. If the content thereof is more than 5% by weight, the glass transition temperature (Tg) of the polyester resin may be lowered, resulting in poor storage stability. Moreover, it becomes impossible to ensure the target degree of polymerization of a polyester resin with a monovalent acid component.
  • dianhydrohexitol (1,4-3,6-Dianhydrohexitol), which is a bioderived sugar derivative
  • This is a condensation reaction under condensation reaction under acid catalysts of D-sorbitol, D-mannitol, and D-iditol, respectively, derived from starch, respectively, and alcohol components such as isosorbide, isomannide, and isoidide, respectively, to polyester resin.
  • Tg glass transition temperature
  • This component may be used in an amount of 0% to 30% by weight based on the total resin polymerization raw material.
  • Aliphatic diol may be used as the biomass polymerization raw material alcohol component.
  • it is produced through a fermentation process using a sugar component as a raw material, it is applied as an aliphatic diol component of the toner resin, such as 1,3-propanediol and 1,4-butanediol.
  • This component increases the speed of polymerization of polyester resin and increases productivity. It also serves to improve fixability by lowering the melt viscosity as a soft segment in the resin.
  • This component is used in an amount of 0 wt% to 10 wt% or less with respect to the total resin polymerization raw material, and preferably 0.1 to 5 wt%. If the content is more than 10% by weight, the economical efficiency as a toner is not produced as an expensive raw material, and the glass transition temperature (Tg) of the polyester resin may be lowered, resulting in poor storage stability.
  • glycerin which is a byproduct of the production of biodiesel from biomass vegetable oils (palm oil, soybean oil, castor oil, seaweed seed oil, rapeseed oil), may be used as a polymerization raw alcohol component.
  • the purity of Crude Glycerin is usually 70-80%, and in order to use it as a polymerization raw material, it is preferable to use it as a raw material of purity of 90% or more after purification by a conventional fractional distillation method.
  • This component has the effect of giving cohesiveness to the resin and improving storage stability of the toner while raising the Tg of the resulting resin.
  • the content of the polyhydric alcohol is 0.5 to 10% by weight or less, preferably 2 to 5% by weight based on the total alcohol component. If the content of such polyhydric alcohol is less than 0.5% by weight, the molecular weight distribution is small to narrow the fixing temperature range of the toner, and if it exceeds 10% by weight, it is difficult to control the gelation of the polyester resin during the production of the polyester resin, which is preferable. It is difficult to obtain.
  • the polyester resin has the necessary physical properties as the binder for the toner in the remaining components except for the biomass polymerization raw material component
  • acid components and alcohol components derived from ordinary petroleum resources can be used.
  • the acid component may include an aromatic dibasic acid component, a cycloaliphatic dibasic acid component, an aliphatic dibasic acid, an alkyl ester thereof and / or an acid anhydride thereof, and a trivalent or more polyacid component.
  • the alcohol component also includes alicyclic diols and aliphatic diols.
  • the aromatic dibasic acid component includes aromatic dibasic acids, alkyl esters thereof, and acid anhydrides commonly used in the preparation of polyester resins.
  • Typical examples of the aromatic dibasic acid include terephthalic acid, isophthalic acid and 5-sulfoisophthalic acid sodium salt.
  • Examples of the alkyl ester of the aromatic dibasic acid include dimethyl terephthalate, dimethyl isophthalate, and diethyl terephthalate. , Diethyl isophthalate, dibutyl terephthalate, dibutyl isophthalate, dimethyl 5-sulfoisophthalate sodium salt, and the like.
  • the aromatic dibasic acid and alkyl esters thereof may be used alone or in combination of two or more thereof. Since the aromatic dibasic acid component contains a benzene ring having high hydrophobicity, it improves the moisture resistance of the toner, increases the glass transition temperature (hereinafter referred to as Tg) of the resulting resin, and consequently improves the storage stability of the toner. .
  • the amount of the aromatic dibasic acid component used is 20 to 70% by weight, preferably 25 to 50% by weight, more preferably 30 to 40% by weight based on the total resin polymerization raw materials.
  • the terephthalic acid component increases the toughness and Tg of the resin, and the isophthalic acid component increases the reactivity, the terephthalic acid component can be used by changing its use ratio as desired.
  • the cycloaliphatic dibasic acid component, aliphatic dibasic acid, alkyl esters thereof and / or acid anhydrides thereof, and trivalent or higher polyacid components as long as the polyester resin has the necessary physical properties as a binder for a toner, except for these components.
  • the content of the alicyclic diol and aliphatic diol components can be appropriately adjusted as necessary.
  • the alcohol component of the petroleum resource constituting the polyester resin according to the present invention includes an alicyclic diol.
  • the alicyclic group preferably has 5 to 20 carbon atoms, and as the alicyclic diol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, or spiroglycol More preferably 1,4-cyclohexanedimethanol is used.
  • the amount of the 1,4-cyclohexanedimethanol used is 0.5 to 28% by weight, preferably 10 to 28% by weight, more preferably 10 to 20% by weight, based on the total polyester resin weight ratio.
  • the 1,4-cyclohexanedimethanol component in the high temperature region of 170 ° C or higher, increases the storage modulus among the viscoelastic properties of the polyester resin, enables high temperature offset, and has lipophilic properties, Improve the moisture resistance of the toner, which is lowered due to the introduction of hydrophilic dianhydrohexitol (isosorbide or isomannide) or biomass polymerized raw material lactic acid or its derivative lactide, thereby maintaining good toner image density. Can be.
  • the cyclic structure of the 1,4-cyclohexanedimethanol improves the hydrolysis resistance and thermal stability of the resin, suppresses the phenomenon of lowering the molecular weight during toner production, and exhibits a wide range of fixing region characteristics.
  • the content of the 1,4-cyclohexanedimethanol component is less than 0.5% by weight, the moisture content of the polyester resin is high, the moisture content of the toner is high, the viscoelastic properties are poor, and high temperature offset characteristics cannot be obtained. If it exceeds, the polyester resin may have crystallinity, resulting in poor transparency, and poor fixing area due to high softening point.
  • the alcohol component does not contain environmentally undesirable aromatic diols.
  • aromatic diol include bisphenol-A derivatives, specifically, polyoxyethylene- (2.0) -2,2-bis (4-hydroxyphenyl) propane, polyoxypropylene- (2.0) -2,2-bis ( 4-hydroxyphenyl) propane, polyoxypropylene- (2.2) -polyoxyethylene- (2.0) -2,2-bis (4-hydroxyphenyl) propane, polyoxyethylene-(2.3) -2,2- Bis (4-hydroxyphenyl) propane, polyoxypropylene- (6) -2,2-bis (4-hydroxyphenyl) propane, polyoxypropylene- (2.3) -2,2-bis (4-hydroxy Phenyl) propane, polyoxypropylene- (2.4) -2,2-bis (4-hydroxyphenyl) propane, polyoxypropylene- (3.3) -2,2-bis (4-hydroxyphenyl) propane, polyoxy Ethylene- (3.0) -2,2-bis (4-hydroxyphenyl) propane and polyoxyethylene-
  • the polyester resin which concerns on this invention contains a conventional heat stabilizer (polymerization stabilizer) as an additive.
  • a conventional heat stabilizer polymerization stabilizer
  • Conventional compounds may be used as the heat stabilizer, and preferably phosphoric acid, trimethyl phosphate, and triethyl phosphate are not limited thereto.
  • the amount of the thermal stabilizer is preferably added at a concentration of 5 to 500 ppm relative to the total resin weight.
  • the polyester resin according to the present invention is produced in two stages: esterification reaction or transesterification reaction and polycondensation reaction.
  • esterification reaction or transesterification reaction is produced in two stages: esterification reaction or transesterification reaction and polycondensation reaction.
  • the acid component, alcohol component, lactic acid (D or L-lactic acid) or a derivative thereof, lactide (D or L-lactide), and a heat stabilizer are charged to a reactor. And heating to effect esterification or transesterification, followed by polycondensation.
  • at least one of the reactions can be carried out in the presence of a heat stabilizer.
  • the molar ratio of the total alcohol component usage amount (G) with respect to the total acid component usage amount (A) is 1.1-1.8.
  • the esterification reaction or transesterification reaction is a conventional titanium catalyst, for example, tetraethyl titanate, acetyltripropyl titanate, tetrapropyl titanate, tetrabutyl titanate, polybutyl titanate, ethyl acetoacetic ester Titanate, isostearyl titanate, titanium dioxide, TiO 2 / SiO 2 coprecipitation agent, TiO 2 / ZrO 2 coprecipitation agent and the like.
  • a conventional titanium catalyst for example, tetraethyl titanate, acetyltripropyl titanate, tetrapropyl titanate, tetrabutyl titanate, polybutyl titanate, ethyl acetoacetic ester Titanate, isostearyl titanate, titanium dioxide, TiO 2 / SiO 2 coprecipitation agent, TiO 2 / ZrO 2 coprecipitation agent and the like.
  • esterification reaction or transesterification reaction can be carried out, for example, at a reaction temperature of 230 to 260 ° C. under a nitrogen stream, while the water or alcohol produced from the reactants is removed in a conventional manner during the reaction.
  • a polycondensation reaction is performed.
  • the polycondensation reaction may also be carried out under conventional polycondensation reaction conditions of a polyester resin, for example, at a temperature of 240 to 270 ° C., preferably at a temperature of 250 ° C. or lower, (a) the first of the polycondensation reaction As a step, the reaction is carried out by low speed agitation at low vacuum, and (b) the reaction is carried out by high speed agitation of the reactant at high vacuum, and (c) finally the reaction is reacted at low speed while the reactor is kept at atmospheric pressure. Polyester resin can be manufactured.
  • the Tg of the polyester resin according to the present invention is preferably 58 to 75 ° C. or less. If the Tg is less than 58 ° C., the toner crushability and storage stability may be lowered. If the Tg exceeds 75 ° C., the thermoplastic resin of the resin may be used. There is a possibility of poor fixability due to lack of characteristics.
  • the softening temperature of the said polyester resin is 125-190 degreeC, and it is more preferable if it is 140-170 degreeC. If the softening temperature is lower than 125 ° C., the Tg is lowered and the storage stability is lowered. Therefore, the toner particles may be agglomerated during storage, and there is a fear that an offset occurs at a high temperature. If the softening temperature exceeds 190 ° C., the low temperature fixability of the toner may deteriorate and offset may occur.
  • the acid value of the polyester resin is preferably 30 KOH mg / g or less, more preferably 1 to 30 KOH mg / g, most preferably 1 to 20 KOH mg / g. If the acid value exceeds 30 KOH mg / g, there is a risk of poor storage stability during storage and transportation of the polyester and in the developer.
  • polyester resin according to the present invention is used as a main component of the toner binder resin, but if necessary, other resins such as styrene resin or styrene-acrylic resin may be used in combination.
  • the content of the binder resin in the components of the toner according to the present invention is preferably 30 to 95% by weight, more preferably 35 to 90% by weight. If the binder resin content is less than 30% by weight, the offset resistance of the toner tends to be lowered. If the binder resin content is more than 95% by weight, the charging stability of the toner may deteriorate.
  • polyester resin which concerns on this invention can also be used together with the coloring agent component of a toner.
  • colorants and pigments include carbon black, nigrosine dyes, lamp blacks, Sudan black SM, navel yellow, mineral fast yellow, littol red, permanent orange 4R, and the like.
  • the polyester resin according to the present invention can be used in combination with conventional additives such as magnetic materials such as wax, charge control agent, magnetic powder, and other components of the toner.
  • magnetic materials such as wax, charge control agent, magnetic powder, and other components of the toner.
  • wax include polyethylene, polypropylene, and ethylene-polypropylene copolymers.
  • charge control agent include nigrosine, alkyl-containing azine dyes, basic dyes, monoazo dyes and metal complexes thereof, salicylic acid, and the like.
  • Metal complexes, alkyl salicylic acid and metal complexes thereof, naphthoic acid and metal complexes thereof, and the like, and examples of the magnetic powders include ferrite and magnetite.
  • the toner containing the polyester resin according to the present invention can be produced by a conventional method.
  • the binder resin, the colorant, and other additives are kneaded at a temperature higher than the softening temperature of the binder resin by using a kneader such as a single screw extruder, a twin screw extruder, a mixer, and the mixture is pulverized to form a particle.
  • Toner can be produced.
  • the average particle size of the produced toner particles is usually 5 to 10 mu m, preferably 7 to 9 mu m, and it is more preferable that fine particles having a particle size of 5 mu m or less are present in less than 3% by weight of the whole.
  • the toner containing the polyester resin according to the present invention may be used as a toner binder of a chemically produced toner (CPT) in addition to the conventional grinding method.
  • the toner is prepared by dispersing a solution obtained by dissolving a polymerized resin in a solvent in an aqueous medium in the presence of a dispersant such as a surfactant or a water-soluble resin and a dispersion stabilizer such as inorganic fine particles and resin fine particles, and removing the solvent according to heating, reduced pressure, or the like. It is also possible to obtain a uniform toner by dissolving resin suspension, emulsion or the like.
  • Bio content (%) The content of the biomass polymerization raw material component in the resin was quantitatively analyzed using a 600 Mhz nuclear magnetic resonance (NMR) spectrometer.
  • Tg glass transition temperature, ° C: After using a differential scanning calorimeter (TA Instruments), the sample was melt-quenched and then measured by raising the temperature to 10 ° C / min. The baseline near the endothermic curve and the mid value of each tangent line are Tg.
  • Softening temperature (° C.) 1.5 g, using a flow tester (CFT-500D, manufactured by Shimadzu Laboratories), under conditions of a 1.0 ⁇ ⁇ 10 mm (height) nozzle, a 10 kgf load, and a rate of temperature rise of 6 ° C./min. The temperature at which half of the sample flowed out was referred to as softening temperature (° C).
  • Crushability The toner production produced per hour was evaluated by pulverizing and classifying the melt-extruded flakes (Flake) in a toner production by a Hosogawa jet mill pulverizer and a classifier (100AFG, 50ATP, 50ZPS) as follows. .
  • 0.4 kg / 1 hour or more, ⁇ : 0.2 to 0.4 kg / 1 hour, X: 0 to 0.2 kg / 1 hour.
  • no aggregation and good storage stability
  • fine aggregation but good storage stability
  • X severe aggregation and poor storage stability
  • Minimum fixing temperature and offset temperature The minimum temperature of the heat roller which coats the manufactured toner on white paper, passes the heat roller coated with silicone oil at a speed of 200 mm / sec, and maintains a fixing efficiency of 90% or more.
  • the minimum fixing temperature, the maximum temperature is defined as the offset temperature, and the heat roller temperature was adjusted from 50 ° C to 230 ° C to measure the minimum fixing temperature and the offset temperature.
  • the offset temperature minus the minimum fixing temperature is defined as the fixing temperature range.
  • Toner Image Density Evaluation 100 when printed on up to 5,000 sheets on an OHP film or paper using a black and white printer having a Teflon-coated heat roller, free of temperature change, and having a printing speed of 40 pages / minute.
  • the image flow and image density (solid area image) of each sheet of 2000 sheets and 5000 sheets were measured with a Macbeth reflectometer RD918 and evaluated according to the following criteria.
  • 1,3-PDO 1,3-Propane diol (aliphatic diol)
  • Glycerin Glycerin
  • Lactide L-Lactide
  • BPA-PO polyoxypropylene- (2,3) -2,2-bis (4-hydroxyphenyl) propane
  • the reaction was transferred to a polycondensation reactor equipped with a stirrer, a cooling condenser and a vacuum system. After adding a heat stabilizer (trimethyl phosphate), the reaction temperature was raised to 250 ° C., and the excess diol component was allowed to flow out while reacting under low vacuum while reducing the reaction pressure to 50 mmHg over 30 minutes.
  • a heat stabilizer trimethyl phosphate
  • toner particles having a volume average particle diameter of 8 to 9 ⁇ .
  • the pulverization, storage stability, minimum fixing temperature, offset generation temperature and toner image concentration (100 sheets, 2000 sheets and 5000 sheets) of the prepared toner particles are shown in Table 1 together.
  • the reaction was transferred to a polycondensation reactor equipped with a stirrer, a cooling condenser and a vacuum system. After adding a heat stabilizer (trimethyl phosphate), the reaction temperature was raised to 240 ° C., and the excess diol component was allowed to flow out while reacting under low vacuum while reducing the reaction pressure to 50 mmHg over 30 minutes.
  • a heat stabilizer trimethyl phosphate
  • the reaction pressure was gradually reduced to 0.1 mmHg, and the reaction was carried out under high vacuum for 30 minutes, and then the weight ratio of Sn (Oct) 2 to the total polyester resin Sn (Oct) 2 as a reactant and a catalyst of the lactide component and content shown in Table 1 below. 50 ppm was added thereto, the reaction was performed at atmospheric pressure for 80 minutes, and the reaction pressure was reduced to 0.1 mmHg over 10 minutes to remove the unreacted residual lactide component under high vacuum, and then the reaction was terminated. Softening temperature, Tg and acid value of the prepared polyester resin was measured and shown in Table 1.
  • Comparative Example 1 is a conventional toner binder using an aromatic diol, a bisphenol-A derivative, which has a good storage stability, crushability, and storage stability due to high Tg, but does not contain any biomass content in the overall resin, which is environmentally friendly. I can't do this.
  • a difference in the softening temperature of the resin and the softening temperature of the toner after extrusion occurred by 10 ° C., and the softening temperature was lowered more severely due to thermal decomposition during toner production.
  • Comparative Example 2 is a non-BPA-based toner binder using 1,4-cyclohexanedimethanol instead of bisphenol-A or derivatives thereof. Although good crushability, storage stability and image density were obtained, bisphenol-A or derivatives thereof were used. Although not used, it is environmentally friendly, but it does not use lactide and isosorbide or isomannide, and uses excessive amount of 1,4-cyclohexanedimethanol. The temperature could not be obtained a good fixing area, and the bio mss content in the total resin is less than 5% by weight can be said to be less environmentally friendly.
  • the lactide content is more than 50% by weight, the ester content as a polar group in the resin is relatively increased, and the water content is likely to increase in high temperature / high humidity conditions.
  • the charging characteristics were deteriorated and the image was poor, and the glass transition temperature (Tg) of the polyester resin was lowered, resulting in poor crushability, storage stability, fixing area, and the like.
  • Comparative Examples 4 to 7 contained 5 to 70% by weight of the non-petroleum biomass polymerization raw material component relative to the total resin polymerization raw material, while in Comparative Example 4, when the content of isosorbide exceeds 30% by weight, the polymerization of the resin The reaction rate was poor, so that the target degree of polymerization could not be obtained within the desired reaction time. As a result, the glass transition temperature (Tg) of the polyester resin was lowered, resulting in poor storage stability and fixing area.
  • Tg glass transition temperature

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

전자 사진복사 공정 또는 정전 인쇄 공정에 사용되는 토너 및 상기 토너에 바인더로서 포함되는 폴리에스테르 수지가 개시된다. 상기 폴리에스테르 수지는 젖산(D 또는 L-젖산) 또는 이의 유래화합물인 락티드(D 또는 L-락티드) 및 1,4-사이클로헥산디메탄올을 함유한다.

Description

폴리에스테르 수지 및 이를 포함하는 토너
본 발명은 폴리에스테르 수지 및 이를 포함하는 토너에 관한 것으로서, 더욱 상세하게는 전자 사진복사 공정 또는 정전 인쇄 공정에 사용되는 토너 및 상기 토너에 바인더로서 포함되는 폴리에스테르 수지에 관한 것이다.
일반적으로, 전자 사진복사 공정 또는 정전 인쇄 공정은, (1) 정전기록 물질, 예를 들면 OPC(Organic Photoconductor) 드럼의 표면에, 기록될 상(image)에 상응하는 정전기적으로 하전된 상(statically charged image) 또는 전자 전도성 상(이하, "정전 잠상(latent image)"이라 한다)을 형성하는 과정, (2) 하전된 토너를 상기 드럼에 정전기적으로 부착시켜, 드럼의 표면에 형성된 정전 잠상을 현상 및 가시화하는 과정, (3) 현상된 토너상(toner image)을 종이, 기록 필름 등의 기록 매체로 전사하는 과정, 및 (4) 상기 기록 매체로 전사된 상을 열압착 롤러 등으로 고정하는 과정을 포함한다.
이와 같은 상-형성 공정은 인쇄물을 고속으로 수득할 수 있고, 정전기록 물질의 표면에 형성되는 상의 조정 안정성이 우수하며, 상-형성 장치의 조작이 용이하므로, 복사기 및 프린터 분야에 널리 사용되고 있다.
상기 현상 공정에 있어서, 건식 현상에 사용되는 토너는 1 성분계 토너, 2 성분계 토너 등으로 구분된다. 2 성분계 토너는, 바인더 수지, 착색제, 하전제어제 및 기타 첨가제와 함께, 드럼 위에 형성된 정전 잠상을 현상하고 전사하기 위한 자성체를 포함하며, 상기 토너 성분들을 용융, 혼련, 분산시키고, 미세하게 분쇄 및 분급함으로써 입자 형태로 제조된다. 상기 토너의 주성분인 바인더 수지는 용융, 혼련 공정시 착색제의 분산성, 정착성, 비오프셋성, 저장안정성, 기타 전기적 성질이 우수하여야 할 뿐만 아니라, 투명성이 우수하고, 소량의 착색제를 사용하는 경우에도 흐림 현상이 없는 선명한 화상을 형성하여야 한다. 또한 상기 바인더 수지는 색조 재현폭이 넓으며, 복사 또는 인쇄물의 화상 농도를 향상시킬 수 있고, 환경친화적인 것이 바람직하다.
상기 바인더 수지로는, 종래부터 폴리스티렌 수지, 스티렌 아크릴 수지, 에폭시 수지, 폴리아미드 수지 등이 사용되어 왔으며, 최근에는 정착성, 투명성 등이 우수한 폴리에스테르 수지의 사용이 증가하고 있다. 그러나, 현재는 토너를 비롯하는 수많은 제품의 원료물질이 석유 등의 화석 자원으로부터 제조되고 있고, 화석 자원의 사용을 삭감하는 대응은 화석 자원의 고갈을 방지하는 점에 있어서 대단히 중요하다. 특히, 토너구성 성분의 70% 이상을 차지하는 토너수지는 그 대부분이 석유자원을 원료로 하고 있고, 석유 자원의 고갈문제, 석유자원을 대량소비하고 이산화탄소를 대기중에 배출하는 것에 의한 온난화 문제가 우려 되고 있다. 토너수지로서, 대기중의 이산화탄소를 집어 넣고 성장하는 식물 유래의 수지를 사용하면, 생기는 이산화탄소는 환경중에서 순환하는 만큼이 되고, 온난화 문제와 석유 자원의 고갈문제를 동시에 해결할 수 있는 가능성이 있다. 특히, 식물 유래의 환경순환형 고분자에서 바이오 매스원료 함량(생물체 총량)에 주목을 하게 된다.
바이오 매스(Bio mass)란 태양에너지를 받은 식물과 미생물의 광합성에 의해 생성되는 식물체, 균체와 이를 먹고 살아가는 동물체를 포함하는 생물 유기체를 의미한다. 또한, 바이오 매스 자원은 곡물, 감자류를 포함한 전분계의 자원과 초본, 임목과 볏짚, 왕겨와 같은 농수산물을 포함하는 셀룰로오스계의 자원과 사탕수수, 사탕무와 같은 당질계의 식물 유래의 환경순환형 자원은 물론 가축의 분뇨, 사체와 미생물 균체를 포함하는 단백질계의 자원까지 포함하는 다양한 성상을 지닌다. 이들 자원에서 파생되는 종이, 음식찌꺼기 등의 유기성 폐기물도 포함된다.
이런 바이오매스는 생물학적 기술과 화학 기술을 접목하여 에너지원이나 각종 합성소재의 재료가 될 수 있는 생물자원으로 활용 가능하다. 이런 바이오 매스의 가장 큰 장점으로는 재생이 가능하다는 점이다. 다른 화석연료와 다르게 고갈되지 않으며, 연소를 통해 대기 중으로 방출되는 이산화탄소는 동식물 및 미생물의 성장을 통해 이전 몇 해 동안 대기 중에서 얻은 것이므로 대기 중 이산화탄소의 증가 또한 없어서 환경친화적이다. 따라서, 이는 석유화학물질에서 파생되는 기존의 제품들을 대체할 수 있을 것이다.
상술과 같은 문제를 해결하기 위해 토너수지로서, 바이오 매스원료를 사용하는 여러 기술이 제안되어 있다. 예를 들면, 일본 특허공개 제2009-75544호, 제2008-250171호, 제2001-166537호, 제1997-274335호, 제1994-308765호, 제1994-200250호에는 폴리젖산 수지를 그대로 이용 또는 일부 사용한 경우에는 일반 폴리에스테르 수지에 비교하여 에스테르 결합의 농도가 높기 때문에, 정착시에 열가소성 수지로서의 적용이 낮아진다. 또한, 토너가 상당히 딱딱해지기 때문에 분쇄성이 부족하고 생산성이 뒤떨어진다는 문제가 있고, 현상기 내의 교반에 의한 기계적 충격에 대하여 미분이 많이 발생되어 오프셋 발생 및 화상오염이 심해지는 결점이 있다.
또한, 폴리젖산은 분자량의 제어가 어려운 것, 탄소원자만을 이용하고 에스테르 결합이 존재하는 것으로 토너에 필요한 물성을 폴리젖산만으로 달성하는 것은 곤란하다. 또한, 흑백화상 형성시 프로세스 속도를 빠르게 한 화상 형성 장치에 충분히 대응할 수 있는 구성이 아니라, 흑백 화상 형성시에 정착 불량이 생기는 우려가 있다. 양호한 생분해성을 가지기 위해 장기 보존 안정성에 뒤떨어진다는 문제도 있다. 즉, 고온 고습환경하에 장기간 방치된다면, 토너가 가수분해되어 사용 불가능하게 되는 우려가 있다. 또한 상술의 조건하에서 있어서 인쇄물을 겹친 상태로 방치해 두는 경우에는 연화한 토너에 따라서 인쇄물 물건 사이가 붙어버리는 우려도 있다.
이에 대해 종래로부터 사용되고 있는 방법처럼, 폴리젖산과 그 밖의 수지를 혼합하는 것으로, 토너에 필요한 물성 및 열적 특성을 확보하는 것이 생각되지만, 폴리젖산은 토너에 범용에 사용되는 폴리에스테르 수지 및 스티렌-아크릴 공중합체에 대한 상용성 및 분산성이 극히 나쁘기 때문에, 토너를 제조하는 것이 상당히 곤란하다. 또한, 미국 출원번호 제2006-010136호에는 식물 유래의 환경순환형 중합원료인 이소소르비드 및 Dimer acid를 사용한 토너수지가 소개되고 있다. 그러나, 이는 고가의 원료로 상업화하기가 어려우며, 바이오 매스함량을 증가시키는데 한계가 있다.
일반적으로, 토너용 바인더 수지로 사용되는 폴리에스테르 수지는 알코올 성분으로서 비스페놀-A 또는 그 유도체를 사용한다. 그러나, 비스페놀-A는 환경적으로 바람직하지 못한 화합물이므로, 비스페놀-A 또는 그 유도체를 포함하지 않으면서도, 양호한 내오프셋성, 저온정착성, 샤프 멜트성, 내블로킹성, 대전특성, 분쇄성, 저장안정성, 투명성 등의 특성이 우수하며, 장기간 방치 후에도 양호한 현상 화상을 형성하는 폴리에스테르 수지의 개발이 시도되고 있다.
토너용 폴리에스테르 수지의 제조에는, 게르마늄계 촉매, 안티몬계 촉매, 주석계 촉매 등이 사용되어 왔으나, 상기 촉매들은 활성이 낮아 과량 사용되므로, 환경적으로 바람직하지 못하며, 촉매 특유의 착색성(예를 들어, 안티몬계 촉매는 회색의 착색성)으로 인해 폴리에스테르 수지의 투명성이 저하되는 문제점이 있다. 따라서, 테트라에틸티타네이트, 아세틸트리프로필티타네이트, 테트라프로필티타네이트, 테트라부틸티타네이트, 폴리부틸티타네이트, 에틸아세토아세틱에스테르티타네이트, 이소스테아릴티타네이트, 티타늄디옥사이드, TiO2/SiO2 공침전제, TiO2/ZrO2 공침전제 등의 티타늄계 촉매를 사용하여, 반응성 및 수지의 투명성을 개선하는 방법이 시도되고 있다.
본 발명의 목적은 바이오 매스 중합원료를 사용하여 수지 내에 바이오 매스원료 함량을 증가시키고, 비스페놀-A 또는 그 유도체를 포함하지 않으며, 중합시 주석, 안티몬 등의 중금속 촉매를 사용할 필요가 없어 환경친화적인 토너용 폴리에스테르 수지를 제공하는 것이다.
본 발명의 다른 목적은, 경제적으로 제조될 수 있으며, 내오프셋성 및 저장안정성이 우수하고, 정전기록 물질 또는 기록 매체로의 정착성과 화상농도가 우수하며, 토너의 내구성 및 내습성이 우수하여, 화상안정성이 향상된 토너를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명의 일측면은 젖산(D 또는 L-젖산) 또는 이의 유래화합물인 락티드(D 또는 L-락티드) 및 1,4-사이클로헥산디메탄올을 함유하는 토너용 폴리에스테르 수지를 제공한다.
본 발명의 일구현예는 전체 폴리에스테르 수지에 대하여 상기 젖산(D 또는 L-젖산) 또는 이의 유래화합물인 락티드(D 또는 L-락티드)를 포함하는 바이오 매쓰 자원 유래 화합물 5 내지 70중량%;및 상기 1,4-사이클로헥산디메탄올을 포함하는 석유자원 유래 화합물 30 내지 94중량%; 및 0 초과 내지 1% 미만의 열안정제로 이루어진다.
본 발명의 일구현예는 제 2항에 있어서, 석유자원 유래 화합물은 산 성분 2 내지 70 중량% 및 1,4-사이클로헥산디메탄올을 포함하는 알코올 성분 24 내지 92 중량%로 이루어진다.
본 발명의 일구현예는, 1,4-사이클로헥산디메탄올은 전체 폴리에스테르 수지 중 0.5 내지 28중량 % 함유한다.
본 발명의 일구현예는 전체 폴리에스테르 수지에 대하여 상기 바이오 매쓰 자원 유래 화합물은 젖산(D 또는 L-젖산) 또는 이의 유래화합물인 락티드(D 또는 L-락티드) 0.5 내지 50중량%, 지방족디올 0 중량% 내지 10중량%, 지방산 또는 지방산 알킬 에스테르 0 중량% 내지 5중량%, 글리세린 성분 0.5 내지 10중량%로 이루어진다.
본 발명의 일구현예는 상기 폴리에스테르 수지는 스티렌계 수지 또는 스티렌-아크릴계 수지를 더 포함한다. .
본 발명의 일구현예는 상기 폴리에스테르 수지의 연화온도는 125 내지 190℃, 수지의 산가는 1 내지 30 KOHmg/g, Tg는 58 내지 75℃이하이다.
본 발명의 일측면은 상기 폴리에스테르 수지를 포함하는 토너를 제공한다.
본 발명의 또다른 일 측면은 (a) 바이오 매쓰 자원 유래의 젖산(D 또는 L-젖산) 또는 이의 유래화합물인 락티드(D 또는 L-락티드) 0.5 내지 50중량%, 지방족디올 0 중량% 내지 10중량%, 지방산 또는 지방산 알킬 에스테르 0 중량% 내지 5중량%, 글리세린 성분 0.5 내지 10중량%; 및 석유자원 유래의 산 성분(acid components) 및 1,4-사이클로헥산메탄올을 함유하는 알코올 성분(alcohol components) 30 내지 94중량%을 반응물로 포함하여, 티타늄계 촉매 존재 하에서 에스테르화 반응 또는 에스테르 교환반응을 수행하는 단계; 및
(b) 상기 반응물을 중축합 반응시키는 단계를 포함하며, 상기 반응 단계 중 적어도 하나는 0 중량% 초과 내지는 1 중량% 미만의 열안정제의 존재 하에서 수행되는 토너용 폴리에스테르 수지의 제조방법을 제공한다.
본 발명에 따른 폴리에스테르 수지는, 환경순환형 바이오 매스 중합원료 젖산(D 또는 L-젖산) 또는 이의 유래화합물인 락티드(D 또는 L-락티드) 및 1,4-사이클로헥산디메탄올을 함유한다.
본 발명에 따른 폴리에스테르 수지는 환경친화적인 토너를 제조할 수 있는 바인더로서, 알코올 성분으로서 비스페놀-A 또는 그 유도체를 포함하지 않으며, 주석 또는 안티몬 등의 중금속 촉매를 사용하지 않으므로, 환경적으로도 더욱 바람직하다. 또한, 본 발명에 따른 폴리에스테르 수지로 제조된 토너는 저장안정성, 정착온도영역 및 화상농도가 우수할 뿐만 아니라, 저렴하게 제조될 수 있는 장점이 있다.
이하, 본 발명을 더욱 상세히 설명하면 다음과 같다.
본 발명에 따른 폴리에스테르 수지는 바이오 매스 중합원료 젖산(D 또는 L-젖산) 또는 이의 유래화합물인 락티드(D 또는 L-락티드) 및 1,4-사이클로헥산디메탄올을 함유하는 토너용 폴리에스테르 수지를 제공한다.
상기 바이오 매스 중합원료 성분은 전체 폴리에스테르 수지 중합원료에 대하여 5 내지 70중량%, 바람직하게는 20 내지 60중량%, 더욱 바람직하게는 30 내지 50중량%이다. 상기 바이오 매스 중합원료 성분의 함량이 5중량% 미만이면, 바이오 매스 중합원료 사용의 의미가 없다고 볼 수 있으며, 70중량% 초과이면, 토너로서의 경제성을 확보할 수 없으며, 토너의 기본물성 내오프셋성, 정착성, 저장안정성, 화상농도, 내구성 및 내습성이 불량하게 된다.
상기 바이오 매스 중합원료 성분으로써 젖산(D 또는 L-젖산) 또는 이의 유래화합물인 락티드(D 또는 L-락티드)을 포함하는 바, 이들은 산 및 알코올 특성을 동시에 가지고 있으며, 전체 수지 중합원료에 대하여 0.5 내지 50중량% 이하 사용하며, 바람직하게는 10 내지 40중량%, 더욱 바람직하게는 20 내지 30중량%이다.
상기 젖산(D 또는 L-젖산) 또는 이의 유래화합물인 락티드(D 또는 L-락티드)는 석유유래의 중합원료와 가격 경쟁력이 있으므로, 토너물성의 영향을 미치지 않는 한 최대한 사용하되, 이의 함량이 50중량% 초과이면, 수지 내에 극성기인 에스테르 함유량이 상대적으로 많아져서, 고온/고습조건에서 수분 함유량이 많아지기 쉽다.
따라서, 고온/고습의 카트리지 내 환경하에서는 인쇄 초기 화상은 양호하나, 인쇄가 진행될수록 토너의 수분 함유량이 높아져, 대전특성이 저하되어 화상이 불량해지기 쉽다. 또한, 폴리에스테르 수지의 유리전이온도(Tg)가 저하되어 저장안정성 불량해질 우려가 있다. 이 젖산(D 또는 L-젖산) 또는 이의 유래화합물인 락티드 (D 또는 L-락티드)는 중합반응초기에 도입하여 수지내 Random 고분자 형태로 포함되는 것이 바람직하다.
중합말기에 투입하거나, 이미 중합된 폴리젖산 올리고머 또는 폴리머 형태로 도입하게 되면은 수지내 block화 되어 폴리 젖산 특유의 결정성으로 토너가 상당히 딱딱해지기 때문에 분쇄성이 부족하고 생산성이 뒤떨어진다는 문제가 있고, 높은 열용융온도 특성으로 정착시에 열가소성 수지로서의 특성이 낮아지고 생분해성을 가지기 때문에 장기 보존 안정성에 뒤떨어진다는 문제도 있다.
바이오 매스 중합원료 산 성분으로 지방산 또는 이의 알킬에스테르를 사용할 수 있다. 특히, 요즘 석유자원 유래의 화석계 연료보다는 환경친화계 연료인 바이오 디젤이 각광을 받고 있다. 바이오 디젤 연료의 주성분은 탄소수 14개에서 24개의 지방산메틸 에스테르로 이루어져 있으며, 원료로 사용되는 유종(대두유, 유채유,팜유 등)에 따라 각 성분의 함량이 다르게 구성된다. 이 중에 포화지방산인 팔미트산의 메틸에스테르성분이 많을 경우에는 저온유동성에 영향을 주어 겨울철에 차량용연료로 사용하기에 불리한 점이 있다. 
일부 바이오 디젤의 경우, 겨울철 저온유동성을 만족시키기 위하여 상기 성분을 일부 제외시키며 이는 부산물로 처리된다. 상기 부산물로 처리되는 팔미트산메틸 에스테르 성분을 토너수지로서 적용하면 친환경 자원 활용이란 환경적 측면과 부산물을 사용을 통한 경제성이 확보되며, 토너의 용융특성을 향상시켜 양호한 정착성을 얻을 수 있다. 단, 지방산메틸 에스테르의 종류를 팔미트산메틸 에스테르로 한정하지는 않으며, 바이오 디젤 연료로 사용되는 탄소수 14개에서 24개의 지방산메틸 에스테르는 모두 사용 가능하다.
지방산메틸 에스테르 성분은 전체 수지 중합원료에 대하여 0 내지 5중량% 이하 사용하며, 바람직하게는 2 내지 5중량%이다. 이의 함량이 5중량% 초과이면, 폴리에스테르 수지의 유리전이온도(Tg)가 저하되어 저장안정성 불량해질 우려가 있다. 또한, 일가 산 성분으로 폴리에스테르 수지가 목표하는 중합도를 확보할수 없게 된다.
바이오 매스 중합원료 알코올 성분으로 바이오 유래 설탕 유도체인 디안히드로헥시톨(1,4-3,6-Dianhydrohexitol)를 사용할 수 있다. 이는 전분에서 유래한 각각 D-솔비톨, D-매니톨, D-이디톨의 산촉매 하에 축합반응로 환상형 구조를 이루어 각각 이소소르비드, 이소만니드, 이소이디드 등의 알코올 성분으로 폴리에스테르 수지에 적용시 유리전이온도(Tg)를 상승시키는 특성을 가지고 있다.
이는 바이오 매스 중합원료(지방족)의 다량 적용에 의한 폴리에스테르 수지의 유리전이온도(Tg)가 저하문제를 해결할 수 있다. 이 성분은 전체 수지 중합원료에 대하여 0 중량% 내지 30중량% 이하 사용될 수 있다.
바이오 매스 중합원료 알코올 성분으로 지방족디올을 사용할 수 있다. 이 또한, 설탕성분을 원료로 하여 발효공정을 통해 제조되며, 1,3-프로판디올 및 1,4-부탄디올 등으로 토너수지의 지방족 디올 성분으로서 적용된다. 이 성분은 폴리에스테르 수지 중합의 속도를 올려주어 생산성을 높이기도 하며, 수지내 Soft-segment로서 용융점도를 낮추어 정착성을 향상시키는 작용을 한다.
이 성분은 전체 수지 중합원료에 대하여 0 중량% 내지 10중량% 이하 사용하며, 바람직하게는 0.1 내지 5중량%이다. 이의 함량이 10중량% 초과이면, 고가의 원료로 토너로서의 경제성이 나오지 않으며, 폴리에스테르 수지의 유리전이온도(Tg)가 저하되어 저장안정성 불량해질 우려가 있다.
상기 성분 외에 바이오 매스 식물유(팜유, 대두유, 피마자유, 해비라기씨유, 유채유)에서 바이오디젤을 생산하고 남은 부산물인 글리세린을 중합원료 알코올 성분으로 사용할 수 있다. 이 Crude 글리세린의 순도는 통상 70~80%이며, 이를 중합원료로 사용하기 위해서는 통상적인 분별증류법으로 정제하여 90%이상의 순도 원료로 사용하는 것이 좋다. 이 성분은 생성되는 수지의 Tg를 상승시키면서 수지에 응집성을 부여하고 토너의 저장안정성을 향상시키는 효과를 나타낸다. 상기 다가 알코올의 함량은 전체 알코올 성분에 대하여 0.5 내지 10중량% 이하, 바람직하게는 2 내지 5중량%이다. 이런 다가 알코올의 함량이 0.5중량% 미만이면, 분자량 분포가 적어 토너의 정착온도 영역이 좁아지고, 10중량%를 초과하면, 폴리에스테르 수지를 제조하는 동안에 폴리에스테르 수지의 겔화 제어가 어려워져서 바람직한 수지를 수득하기가 곤란하다.
상기 바이오 매스 중합원료 성분을 제외한 나머지 성분에 폴리에스테르 수지가 토너용 바인더로서 필요한 물성을 가지는 한, 통상의 석유자원 유래의 산 성분 및 알코올 성분을 사용할 수 있다. 상기 산 성분은 방향족 이염기산 성분, 지환족(Cycloaliphatic) 이염기산 성분, 지방족 이염기산, 이의 알킬 에스테르 및/또는 이들의 산무수물 및 3가 이상의 다가산 성분을 포함할 수 있다. 또한 상기 알코올 성분은 지환족 디올 및 지방족 디올을 포함한다.
특히, 상기 방향족 이염기산 성분은 폴리에스테르 수지의 제조에 통상적으로 사용되는 방향족 이염기산, 이의 알킬 에스테르 및 산무수물(acid anhydride)을 포함한다. 상기 방향족 이염기산으로는, 대표적으로 테레프탈산, 이소프탈산, 5-술포이소프탈산 나트륨염 등을 예시할 수 있으며, 상기 방향족 이염기산의 알킬 에스테르로는 디메틸테레프탈레이트, 디메틸이소프탈레이트, 디에틸테레프탈레이트, 디에틸이소프탈레이트, 디부틸테레프탈레이트, 디부틸이소프탈레이트, 디메틸 5-술포이소프탈레이트 나트륨염 등을 예시할 수 있다.
상기 방향족 이염기산과 이의 알킬 에스테르는 단독 또는 둘 이상이 배합된 형태로 사용될 수 있다. 상기 방향족 이염기산 성분은 소수성이 높은 벤젠환을 포함하므로, 토너의 내습성을 향상시키고, 생성되는 수지의 유리전이온도(이하, Tg 라고 함)를 증가시키며, 결과적으로 토너의 저장안정성을 향상시킨다.
상기 방향족 이염기산 성분의 사용량은, 전체 수지 중합원료에 대하여, 20 내지 70중량%, 바람직하게는 25 내지 50중량%, 더욱 바람직하게는 30 내지 40중량%이다. 또한 상기 테레프탈산 성분은 수지의 인성과 Tg를 상승시키고, 이소프탈산 성분은 반응성을 증가시키므로, 목적하는 바에 따라 이의 사용 비율을 변화시켜 사용할 수 있다.
이를 제외한 나머지 성분에 폴리에스테르 수지가 토너용 바인더로서 필요한 물성을 가지는 한, 상기 지환족 (Cycloaliphatic) 이염기산 성분, 지방족 이염기산, 이의 알킬 에스테르 및/또는 이들의 산무수물, 3가 이상의 다가산 성분, 지환족 디올 및 지방족 디올 성분의 함량은 필요에 따라 적절히 조절될 수 있다.
본 발명에 따른 폴리에스테르 수지를 구성하는 석유 자원의 알코올 성분은 지환족 디올을 포함한다. 상기 지환족 디올 성분에 있어서, 지환족 기의 탄소수는 5 내지 20인 것이 바람직하며, 상기 지환족 디올로써, 1,4-시클로헥산디올, 1,4-사이클로헥산디메탄올, 스피로글리콜(spiroglycol)이 있다.더욱 바람직하게는 1,4-사이클로헥산디메탄올을 사용한다. 상기 1,4-사이클로헥산디메탄올의 사용량은 전체 폴리에스테르 수지 중량비로 0.5 내지 28중량%이며, 바람직하게는 10 내지 28중량%이며, 더욱 바람직하게는 10 내지 20중량%다.
상기 1,4-사이클로헥산디메탄올 성분은, 170℃이상의 고온 영역에서, 폴리에스테르 수지의 점탄성 특성 중, 저장 탄성율(Storage modulus)을 증가시켜, 고온 오프셋을 가능하게 하며, 친유성을 가지므로, 친수성인 디안히드로헥시톨(이소소르비드 또는 이소만니드) 또는 바이오 매스 중합원료 젖산 또는 이의 유래화합물 락티드 도입으로 인해 저하되는 토너의 내습성을 향상시켜, 토너의 화상농도를 양호하게 유지시킬 수 있다.
또한, 상기 1,4-사이클로헥산디메탄올의 환형 구조는 수지의 내 가수분해성 및 열안정성을 향상시켜, 토너 제조 시의 분자량 저하 현상을 억제하여, 넓은 정착영역 특성을 발휘하도록 한다. 상기 1,4-사이클로헥산디메탄올 성분의 함량이 0.5중량% 미만이면, 폴리에스테르 수지의 수분 함유량이 높아 토너의 함습성이 높아지고, 점탄성 특성이 불량하여 고온 오프셋 특성을 얻을 수 없고, 28중량%를 초과하면, 폴리에스테르 수지가 결정성을 갖게 되어 투명성이 불량하게 되고, 높은 연화점으로 정착영역이 불량하게 되는 단점이 있다.
본 발명에 있어서, 상기 알코올 성분은, 환경적으로 바람직하지 않은 방향족 디올을 포함하지 않는다. 상기 방향족 디올로는 비스페놀-A 유도체, 구체적으로는, 폴리옥시에틸렌-(2.0)-2,2-비스(4-하이드록시페닐)프로판, 폴리옥시프로필렌-(2.0)-2,2-비스(4-하이드록시페닐)프로판, 폴리옥시프로필렌- (2.2)-폴리옥시에틸렌-(2.0)-2,2-비스(4-하이드록시페닐)프로판, 폴리옥시에틸렌 -(2.3)-2,2-비스(4-하이드록시페닐)프로판, 폴리옥시프로필렌-(6)-2,2-비스 (4-하이드록시페닐)프로판, 폴리옥시프로필렌-(2.3)-2,2-비스(4-하이드록시페닐) 프로판, 폴리옥시프로필렌-(2.4)-2,2-비스(4-하이드록시페닐)프로판, 폴리옥시프로필렌-(3.3)-2,2-비스(4-하이드록시페닐)프로판, 폴리옥시에틸렌- (3.0)-2,2-비스(4-하이드록시페닐)프로판, 폴리옥시에틸렌-(6)-2,2-비스 (4-하이드록시페닐)프로판 등이 통상 사용되고 있으나, 이들은 환경적으로 바람직하지 못하다.
본 발명에 따른 폴리에스테르 수지는, 첨가제로서 통상적인 열안정제 (중합안정제)를 포함한다. 상기 열안정제로는 통상의 화합물을 사용할 수 있으며, 바람직하게 인산, 트리메틸포스페이트, 트리에틸포스페이트를 사용하지만 이에 한정되는 것은 아니다.
상기 열안정제의 첨가량은 전체 수지 중량에 대하여 5 내지 500ppm의 농도로 투입하는 것이 바람직하다.
본 발명에 따른 폴리에스테르 수지는, 통상적인 폴리에스테르 수지와 같이, 에스테르화 반응 또는 에스테르 교환반응, 및 중축합 반응의 2단계로 제조된다. 본 발명에 따라 폴리에스테르 수지를 제조하기 위해서는, 먼저 상기 산 성분, 알코올 성분, 젖산(D 또는 L-젖산) 또는 이의 유래화합물인 락티드(D 또는 L-락티드) 및 열안정제를 반응기에 충전시키고 가열하여 에스테르화 반응 또는 에스테르 교환반응을 수행한 다음, 중축합 반응을 수행한다. 따라서, 상기 반응 중 적어도 하나는 열안정제의 존재 하에서 수행될 수 있다.
여기서, 전체 산 성분 사용량(A)에 대한 전체 알코올 성분 사용량(G)의 몰 비율은 1.1 내지 1.8 인 것이 바람직하다.
상기 에스테르화 반응 또는 에스테르 교환반응은 통상적인 티타늄계 촉매, 예를 들면, 테트라에틸티타네이트, 아세틸트리프로필티타네이트, 테트라프로필티타네이트, 테트라부틸티타네이트, 폴리부틸티타네이트, 에틸아세토아세틱에스테르티타네이트, 이소스테아릴티타네이트, 티타늄디옥사이드, TiO2/SiO2 공침전제, TiO2/ZrO2 공침전제 등의 촉매 존재 하에서 수행될 수 있다.
한편, 중금속 안티몬계, 주석계 촉매는 환경적인 관점에서 사용하지 않는 것이 바람직하다. 상기 에스테르화 반응 또는 에스테르 교환반응은, 예를 들면 질소 기류 하에 230 내지 260℃의 반응온도에서, 반응이 수행되는 동안, 반응물로부터 생성되는 물 또는 알코올을 통상적인 방법으로 제거하면서 수행될 수 있다.
상기 에스테르화 반응 또는 에스테르 교환반응이 완결되면, 중축합 반응을 수행한다. 상기 중축합 반응 역시, 통상적인 폴리에스테르 수지의 중축합 반응 조건에서 수행될 수 있으며, 예를 들면 240 내지 270℃의 온도, 바람직하게는 250℃ 이하의 온도에서, (a) 중축합 반응의 첫 단계로서, 저진공에서 저속 교반에 의해 반응을 수행하고, (b) 이어서 고진공에서 반응물을 고속 교반하여 반응을 수행하며, (c) 마지막으로 반응기를 상압으로 유지하면서, 저속 교반 상태에서 반응물을 반응시켜 폴리에스테르 수지를 제조할 수 있다.
이와 같은 중축합 반응에서 글리콜 등의 부산물은 증류 제거되며, 상기 중축합 반응 첫 단계의 고진공인 경우의 압력은 100mmHg 이하, 바람직하게는 30mmHg 이하이며, 이러한 고진공은 중축합 반응에서 생성되는 저비점 화합물을 반응계로부터 제거하는 효과를 부여한다.
본 발명에 따른 폴리에스테르 수지의 Tg는 58 내지 75℃이하인 것이 바람직하며, 만일 Tg가 58℃ 미만이면 토너의 분쇄성 및 저장안정성이 저하될 우려가 있고, Tg가 75℃를 초과하면 수지의 열가소성 특성이 부족하여 정착성이 불량해질 우려가 있다.
상기 폴리에스테르 수지의 연화온도는 125 내지 190℃이고, 140 내지 170℃이면 더욱 바람직하다. 만일 상기 연화온도가 125℃ 미만이면 Tg가 낮아지고 저장안정성이 저하되므로, 저장 도중 토너 입자가 응집할 우려가 있고, 고온에서 오프셋이 발생할 우려가 있다. 상기 연화온도가 190℃를 초과하면 토너의 저온 정착성이 저하되어 오프셋이 발생할 우려가 있다.
또한, 상기 폴리에스테르 수지의 산가는 30 KOH mg/g 이하인 것이 바람직하며, 1 내지 30 KOHmg/g이면 더욱 바람직하고, 1 내지 20 KOH mg/g이면 가장 바람직하다. 만일 산가가 30 KOH mg/g를 초과하면 폴리에스테르의 저장 운반 시 그리고 현상기 내에서 저장안정성이 불량해질 우려가 있다.
본 발명에 따른 폴리에스테르 수지는 토너 바인더 수지의 주성분으로서 사용되나, 필요한 경우, 스티렌계 수지 또는 스티렌-아크릴계 수지와 같은 다른 수지를 병용할 수도 있다.
본 발명에 따른 토너의 성분 중 바인더 수지의 함량은 바람직하게는 30∼95중량%, 보다 바람직하게는 35∼90중량%이다. 만일 바인더 수지 함량이 30중량% 미만이면 토너의 내오프셋성을 저하시키는 경향이 있고, 95중량%를 초과하면 토너의 대전 안정성이 열화될 우려가 있다.
본 발명에 따른 폴리에스테르 수지는 토너의 착색제 성분과 병용할 수도 있다. 이와 같은 착색제 및 안료의 예로는 카본 블랙, 니그로신 염료, 램프 블랙, 수단 블랙 SM, 네이블 옐로우, 미네랄 패스트 옐로우, 리톨 레드, 퍼머넌트 오렌지 4R 등을 예시할 수 있다.
또한, 본 발명에 따른 폴리에스테르 수지는 토너의 타성분인 왁스, 하전 제어제, 자성 분말 등의 자성체와 같은 통상적인 첨가제와 병용할 수 있다. 상기 왁스의 예로는 폴리에틸렌, 폴리프로필렌, 에틸렌-폴리프로필렌 공중합체 등이 있으며, 상기 하전 제어제의 예로는 니그로신, 알킬 함유 아진계 염료, 염기성 염료, 모노아조염료 및 이의 금속 착물, 살리실산 및 이의 금속 착물, 알킬 살리실산 및 이의 금속 착물, 나프토산 및 이의 금속 착물 등이 있고, 상기 자성 분말의 예로는 페라이트, 마그네타이트 등이 있다.
본 발명에 따른 폴리에스테르 수지를 포함하는 토너는 통상적인 방법으로 제조될 수 있다. 예를 들면, 바인더 수지의 연화온도보다 15 내지 30℃ 높은 온도에서 바인더 수지, 착색제 및 기타 첨가제를, 일축 압출기, 이축 압출기, 믹서 등의 혼련기를 사용하여 혼련하고, 혼련된 혼합물을 분쇄하여 입자형태의 토너를 제조할 수 있다. 제조된 토너 입자의 평균 입자 크기는 통상 5 내지 10㎛이고, 바람직하게는 7 내지 9㎛이며, 입자크기가 5㎛ 이하인 미립자가 전체의 3중량% 미만으로 존재하면 더욱 바람직하다.
본 발명에 따른 폴리에스테르 수지를 포함하는 토너는 통상적인 방법인 분쇄법외에 케미칼 제조 토너(CPT, Chemically produced toner)의 토너 바인더로서도 사용될 수 있다. 미리 중합된 수지를 용제에 용해시킨 용액을 계면활성제 또는 수용성 수지등의 분산제 및 무기 미립자, 수지 미립자 등의 분산 안정제의 존재 하에 수성 매체중으로 분산시키고, 가열, 감압 등에 따라서 용제를 제거하는 것에 따라 토너를 얻는 용해수지 현탁, 에멀젼 등에 의하여 균일한 토너를 얻을 수도 있다.
이하, 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다. 하기 실시예 및 비교예에서 사용한 성능 평가 방법은 다음과 같다.
(1) 중합반응생성물: 동일한 축중합 반응 조건에서 중합반응시 급격한 점도 상승으로 반응물을 반응기 외부로 나오게 하지 못하게 된 경우(겔화)를 불량이라고 정의 하였으며, 축중합 반응시 속도가 너무 느려서 중합반응시간이 300분을 초과할 경우를 미반응이라고 정의 하였다. 기타 정상정인 반응은 양호라고 정의한다.
(2) Bio content(%): 600Mhz 핵자기공명(NMR) 스펙트로미터를 사용하여, 수지 내에 바이오 매스 중합원료 성분의 함유량을 정량분석하였다.
(3) 수지 투명성: 폴리에스테르 수지 중합 완료 후에 고온의 용융 토출물을 약 1 cm의 판상으로 받아 상온에서 고화시킨 후에 80도의 오븐에서 2시간 동안 Annealing 후에 육안으로 다음의 기준에 따라서 평가하였다. ◎: 수지가 비결정성으로 투명함, ○: 수지가 약간의 결정성으로 Haze함, ×: 수지가 결정성으로 불투명함.
(4) Tg(유리전이온도, ℃): 시차주사열량계(제조원: TA Instruments)를 사용하여, 시료를 용융 급냉시킨 후에 10℃/분으로 승온시켜 측정하였다. 흡열 곡선 부근의 베이스 라인과 각 접선의 중앙값(mid value)을 Tg로 한다.
(5) 산가(KOHmg/g): 수지를 디클로로메탄에 용해시킨 후, 냉각시키고, 0.1N KOH 메탄올 용액으로 적정하였다.
(6) 연화 온도(℃): 유동 시험기(CFT-500D, 제조원: Shimadzu Laboratories)를 사용하여, 1.0Φ X 10mm(높이) 노즐, 10kgf 하중 및 6℃/분의 온도 상승률의 조건 하에서, 1.5g 시료의 절반이 흘러나오는 온도를 연화온도(℃)라고 하였다.
(7) 분쇄성: 토너 제조 시 용융 압출된 플레이크(Flake)를 호소가와 제트밀 분쇄, 분급기(100AFG, 50ATP, 50ZPS)로 분쇄, 분급하면서, 시간당 생산되는 토너 생산량을 다음과 같이 평가하였다.
◎: 0.4kg/1시간 이상, ○: 0.2 ~ 0.4kg/1시간, X: 0 ~ 0.2kg/1시간.
(8) 저장안정성: 제조된 토너를 100g 유리병에 넣은 후 밀폐하고, 50℃에서 48시간 경과 후, 토너간의 응집 정도를 육안으로 다음과 같이 평가하였다.
◎: 응집이 전혀 없고 저장안정성 양호, ○: 미세한 응집이 있으나 저장안정성 양호, X: 응집이 심하며 저장안정성 불량.
(9) 최소 정착온도 및 오프셋 온도: 제조된 토너를 흰 종이 위에 코팅하고, 실리콘 오일로 도포된 히트 롤러를 200mm/초의 속도로 통과시킨 후, 90% 이상의 정착 효율을 유지하는 히트 롤러의 최소 온도를 최소 정착온도, 최대 온도를 오프셋 온도로 정의하며, 히트 롤러 온도를 50℃에서 230℃까지 조절하여 최소 정착온도와 오프셋 온도를 측정하였다. 오프셋 온도에서 최소 정착온도를 뺀 값을 정착온도 영역으로 정의한다.
(10) 토너 화상농도 평가: 테프론으로 코팅된 히트 롤러를 포함하고, 온도 변화가 자유롭고, 인쇄속도가 40 page/분인 흑백 프린터를 사용하여, OHP 필름 또는 종이 위에 5,000매까지 인쇄했을 때의, 100매, 2000매, 5000매째의 화상 흐름과 화상 농도(솔리드(Solid) 면적 화상)를 맥베스 반사 농도계 RD918로 측정하여 다음의 기준에 따라서 평가하였다.
◎: 화상의 이미지 농도가 1.4 이상, ○: 화상의 이미지 농도가 1.2 이상, ×: 화상의 이미지 농도가 1.2 이하.
하기 실시예 및 비교예에서 사용한 중합원료는 다음과 같다.
- TPA: 테레프탈산
- IPA: 이소프탈산
- DMS: 디메틸 5-술포이소프탈레이트, 나트륨 염
- TMA: 트리멜리트산
- EG: 에틸렌 글리콜
- 1,2-PG: 1,2-프로필렌 글리콜
- CHDM: 1,4-시클로헥산디메탄올
- 1,3-PDO: 1,3-Propane diol(지방족 디올)
- 이소소르비드: 1,4-3,6-Dianhydrosorbitol(디안히드로헥시톨)
- 글리세린: 글리세린
- 락티드: L-락티드
- C16: 팔미트산메틸 에스테르
- C18: 스테아릭산메틸 에스테르
- BPA-PO: 폴리옥시프로필렌-(2,3)-2,2-비스(4-하이드록시페닐)프로판
- 촉매: 티타늄디옥사이드와 실리콘디옥사이드 공중합체
- 안정제: 트리메틸포스페이트
[실시예 1-6 및 비교예 1-6]
A. 폴리에스테르 수지의 제조
교반기와 유출 콘덴서를 장착한 2ℓ 반응기에, 하기 표 1에 나타낸 바와 같은 성분 및 함량의 반응물(산 성분 및 알코올 성분의 비율, G/A= 1.2 ~ 1.5) 및 촉매로서 TiO2/SiO2 공침전제 100ppm(전체 폴리에스테르 수지에 대한 중량비 기준)를 함께 충진시켰다. 질소기류 하에서 반응기의 온도를 250℃까지 서서히 상승시킴과 동시에, 부산물인 물을 반응기 외부로 유출시키면서 에스테르화 반응을 수행하였다.
상기 물의 발생 및 유출이 종료된 후, 반응물을 교반기, 냉각 콘덴서 및 진공 시스템이 장착된 중축합 반응기로 이송하였다. 열안정제(트리메틸포스페이트) 을 첨가한 다음, 반응온도를 250℃까지 상승시키고, 반응압력을 30분에 걸쳐 50mmHg까지 감압하면서 저진공 하에서 반응시키면서, 과량의 디올 성분을 유출시켰다.
다음으로 반응압력을 0.1mmHg까지 서서히 감압하여 고진공 하에서, 소정의 교반 토크가 나타낼 때까지 반응을 수행한 후에 반응을 종결하였다. 제조된 폴리에스테르 수지의 연화온도, Tg 및 산가를 측정하여 표 1에 나타내었다.
B. 토너의 제조
제조된 폴리에스테르 수지 50중량부, 자성체 및 착색제인 마그네타이트 45중량부, 하전 제어제인 아조염료계 금속착물 2중량부, 그리고 폴리에틸렌 왁스 3중량부를 혼합기를 사용하여 혼합하고, 압출기에서 용융 및 혼련하였다.
그런 다음, 제트밀 분쇄기로 미분쇄하고, 풍력 분급기로 분급한 후, 실리카 1중량부 및 티타늄 디옥사이드 0.2중량부로 코팅 처리하여, 체적 평균 입자경이 8 내지 9㎛인 토너 입자를 제조하였다. 제조된 토너 입자의 분쇄성, 저장안정성, 최소정착온도, 오프셋 발생온도 및 토너 화상농도(100매, 2000매 및 5000매) 평가결과를 하기 표 1에 함께 나타내었다.
[비교예 7]
A. 폴리에스테르 수지의 제조
교반기와 유출 콘덴서를 장착한 2ℓ 반응기에, 하기 표 1에 나타낸 성분 중에 TPA, EG, CHDM, 이소소르비드 성분 및 함량의 반응물을, 촉매로서 TiO2/SiO2 공침전제를 전체 폴리에스테르 수지에 대하여 중량비로 50ppm과 함께 충진시켰다. 질소기류 하에서 반응기의 온도를 250℃까지 서서히 상승시킴과 동시에, 부산물인 물을 반응기 외부로 유출시키면서 에스테르화 반응을 수행하였다.
상기 물의 발생 및 유출이 종료된 후, 반응물을 교반기, 냉각 콘덴서 및 진공 시스템이 장착된 중축합 반응기로 이송하였다. 열안정제(트리메틸포스페이트) 을 첨가한 다음, 반응온도를 240℃까지 상승시키고, 반응압력을 30분에 걸쳐 50mmHg까지 감압하면서 저진공 하에서 반응시키면서, 과량의 디올 성분을 유출시켰다.
다음으로 반응압력을 0.1mmHg까지 서서히 감압하여 고진공 하에서, 30분간 반응을 수행한 후에 하기 표 1에 나타낸 락티드 성분 및 함량의 반응물과 촉매로서 S n(Oct)2를 전체 폴리에스테르 수지에 대하여 중량비로 50ppm을 첨가하고, 상압에서 80분간 반응을 수행한 후에 반응압력을 10분에 걸쳐 0.1mmHg까지 감압하여 고진공 하에서 미 반응된 잔류 락티드 성분을 제거한 후에 반응을 종결하였다. 제조된 폴리에스테르 수지의 연화온도, Tg 및 산가를 측정하여 표 1에 나타내었다.
B. 토너의 제조
실시예 1-6 및 비교예 1-6의 토너제조 방법과 동일하게 수행하였다.
표 1
Figure PCTKR2011000060-appb-I000001
비교예 1은 방향족 디올인 비스페놀-A 유도체를 사용한 통상의 토너 바인더인데, 높은 Tg로 인해 양호한 저장안정성, 분쇄성, 저장안정성을 얻을 수 있었지만, 전체 수지내에 바이오 매스함량이 전혀 포함되지 않아 환경친화적이 못하다. 또한, 열안정제가 없으면, 수지의 연화온도와 압출 후 토너의 연화온도 차이가 10℃ 차이가 발생되어, 토너 제조시 열분해에 의한 연화온도 저하가 더욱 심하게 발생되었다.
비교예 2는 비스페놀-A 또는 그 유도체 대신에 1,4-시클로헥산디메탄올을 사용한 비 BPA계 토너 바인더인데, 양호한 분쇄성, 저장안정성 및 화상농도를 얻을 수 있었지만, 비스페놀-A 또는 그 유도체를 이용하지 않은 점은 환경친화적이나, 락티드와 이소소르비드 또는 이소만니드를 사용하지 않고, 1,4-시클로헥산디메탄올을 과량으로 사용하여 수지의 결정성으로 인해 투명성이 부족하고, 높은 연화온도로 양호한 정착영역을 얻을 수 없었고, 전체 수지 내에 Bio mss 함량이 5중량%이하이므로 덜 환경친화적이라고 할 수 있다.
비교예 3에서는 락티드 함량이 50중량% 초과가 되어, 수지 내에 극성기인 에스테르 함유량이 상대적으로 많아져서, 고온/고습조건에서 수분 함유량이 많아지기 쉽다. 결과적으로, 대전특성이 저하되어 화상이 불량해졌고, 폴리에스테르 수지의 유리전이온도(Tg)가 저하되어 분쇄성, 저장안정성 및 정착영역 등이 불량해졌다.
비교예 4 내지 7는 전체 수지 중합원료에 대하여 비석유 자원인 바이오 매스 중합원료 성분을 5 내지 70중량% 포함하였으나, 비교예 4에서는 이소소르비드의 함량이 30중량%를 초과하면, 수지의 중합반응속도가 불량해져서 원하는 반응시간내에 목표 중합도를 수득할 없었고, 이로 인해 폴리에스테르 수지의 유리전이온도(Tg)가 저하되어 저장안정성 및 정착영역 등이 불량해졌다.
비교예 5에서 열안정제 함량이 수지 중합원료 내에 500ppm 초과하면, 수지의 중합반응속도가 불량해져서 원하는 반응시간내에 목표 중합도를 수득할 없었고, 지방산메틸 에스테르 함량 5중량% 초과로 포함되어 있는 경우 폴리에스테르 수지의 유리전이온도(Tg)가 저하되어 마찰열에 의한 융착 문제로 수지의 분쇄가 불가능하여 토너를 제조 할 수 없었다.
비교예 6에서 글리세린함량이 10중량% 초과하여 사용되면 중합속도가 너무 빨라져서 수지가 겔화되어 수지 분쇄가 쉽지 않아 토너제조가 불가하였고, 1,3-프로판디올의 함량이 10중량% 초과하면, 폴리에스테르 수지의 유리전이온도(Tg)가 저하되는 문제도 발생되었다.
비교예 7에서 폴리에스테르 수지의 중합원료로 소정의 중합도(연화온도 120 내지 140℃)를 수득 한 후 중합말기에 락티드로 부가중합을 실시하거나, 이미 중합된 폴리젖산 올리고머 또는 폴리머 형태에서 추가 기타 폴리에스테르 수지의 중합원료로 추가 중합하면, 수지내 폴리 젖산이 block화 되어 폴리 젖산 특유의 결정성으로 토너가 상당히 딱딱해지기 때문에 분쇄성이 부족하고 생산성이 뒤떨어진다는 문제가 있고, 높은 열용융온도 특성으로 정착시에 열가소성 수지로서의 특성이 낮아지고 생분해성을 가지기 때문에 장기 보존 안정성에 뒤떨어진다는 문제도 있다. 따라서, 이 젖산(D 또는 L-젖산) 또는 이의 유래화합물인 락티드 (D 또는 L-락티드)는 중합반응초기에 도입하여 수지내 Random 고분자 형태로 포함되는 것이 바람직하다.

Claims (9)

  1. 젖산(D 또는 L-젖산) 또는 이의 유래화합물인 락티드(D 또는 L-락티드) 및 1,4-사이클로헥산디메탄올을 함유하는 토너용 폴리에스테르 수지.
  2. 제 1항에 있어서, 전체 폴리에스테르 수지에 대하여 상기 젖산(D 또는 L-젖산) 또는 이의 유래화합물인 락티드(D 또는 L-락티드)를 포함하는 바이오 매스 자원 유래 화합물 5 내지 70중량%; 상기 1,4-사이클로헥산디메탄올을 포함하는 석유자원 유래 화합물 30 내지 94중량%; 및 0 초과 내지 1% 미만의 열안정제로 이루어진 토너용 폴리에스테르 수지.
  3. 제 2항에 있어서, 상기 석유자원 유래 화합물은 산 성분 2 내지 70중량% 및 1,4-사이클로헥산디메탄올을 포함하는 알코올 성분 24 내지 92중량%으로 이루어진 토너용 폴리에스테르 수지.
  4. 제 3항에 있어서, 1,4-사이클로헥산디메탄올은 전체 폴리에스테르 수지 중 0.5 내지 28중량% 함유된 토너용 폴리에스테르 수지
  5. 제 1항에 있어서, 전체 폴리에스테르 수지에 대하여 상기 바이오 매스 자원 유래 화합물은 젖산(D 또는 L-젖산) 또는 이의 유래화합물인 락티드(D 또는 L-락티드) 0.5 내지 50중량%, 지방족디올 0 중량% 내지 10중량%, 지방산 또는 지방산 알킬에스테르 0 중량% 내지 5중량% 및 글리세린 성분 0.5 내지 10중량%로 이루어진 토너용 폴리에스테르 수지.
  6. 제 1항에 있어서, 상기 폴리에스테르 수지는 스티렌계 수지 또는 스티렌-아크릴계 수지를 더 포함하는 토너용 폴리에스테르 수지.
  7. 제1항에 있어서, 상기 폴리에스테르 수지의 연화온도는 125 내지 190℃, 수지의 산가는 1 내지 30 KOHmg/g, Tg는 58 내지 75℃이하인 토너용 폴리에스테르 수지
  8. 제1항 내지 제 7항 중 어느 한 항에 따른 폴리에스테르 수지를 포함하는 토너.
  9. (a) 바이오 매쓰 자원 유래의 젖산(D 또는 L-젖산) 또는 이의 유래화합물인 락티드(D 또는 L-락티드) 0.5 내지 50중량%, 지방족디올 0 중량% 내지 10중량%, 지방산 또는 지방산 알킬 에스테르 0 중량% 내지 5중량%, 글리세린 성분 0.5 내지 10중량%; 및 석유자원 유래의 산 성분(acid components) 및 1,4-사이클로헥산메탄올을 함유하는 알코올 성분(alcohol components) 30 내지 94중량%을 반응물로 포함하여, 티타늄계 촉매 존재 하에서 에스테르화 반응 또는 에스테르 교환반응을 수행하는 단계; 및
    (b) 상기 반응물을 중축합 반응시키는 단계를 포함하며, 상기 반응 단계 중 적어도 하나는 0 중량% 초과 내지는 1 중량% 미만의 열안정제의 존재 하에서 수행되는 것 토너용 폴리에스테르 수지의 제조방법.
PCT/KR2011/000060 2010-01-08 2011-01-06 폴리에스테르 수지 및 이를 포함하는 토너 WO2011083970A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100001791A KR20110081571A (ko) 2010-01-08 2010-01-08 폴리에스테르 수지 및 이를 포함하는 토너
KR10-2010-0001791 2010-01-08

Publications (2)

Publication Number Publication Date
WO2011083970A2 true WO2011083970A2 (ko) 2011-07-14
WO2011083970A3 WO2011083970A3 (ko) 2011-10-27

Family

ID=44305939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000060 WO2011083970A2 (ko) 2010-01-08 2011-01-06 폴리에스테르 수지 및 이를 포함하는 토너

Country Status (2)

Country Link
KR (1) KR20110081571A (ko)
WO (1) WO2011083970A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014074892A (ja) * 2012-09-12 2014-04-24 Ricoh Co Ltd 静電荷像現像用トナー及び該トナーの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075539A1 (ja) * 2004-02-10 2005-08-18 Toyo Boseki Kabushiki Kaisha ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2008262179A (ja) * 2007-03-16 2008-10-30 Ricoh Co Ltd トナー及び現像剤、並びにこれを用いた画像形成方法
JP2009037206A (ja) * 2007-07-06 2009-02-19 Sharp Corp トナーおよびその製造方法、二成分現像剤、現像装置ならびに画像形成装置
JP2009162957A (ja) * 2007-12-28 2009-07-23 Sharp Corp トナー、二成分現像剤、現像装置および画像形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075539A1 (ja) * 2004-02-10 2005-08-18 Toyo Boseki Kabushiki Kaisha ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2008262179A (ja) * 2007-03-16 2008-10-30 Ricoh Co Ltd トナー及び現像剤、並びにこれを用いた画像形成方法
JP2009037206A (ja) * 2007-07-06 2009-02-19 Sharp Corp トナーおよびその製造方法、二成分現像剤、現像装置ならびに画像形成装置
JP2009162957A (ja) * 2007-12-28 2009-07-23 Sharp Corp トナー、二成分現像剤、現像装置および画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014074892A (ja) * 2012-09-12 2014-04-24 Ricoh Co Ltd 静電荷像現像用トナー及び該トナーの製造方法

Also Published As

Publication number Publication date
WO2011083970A3 (ko) 2011-10-27
KR20110081571A (ko) 2011-07-14

Similar Documents

Publication Publication Date Title
WO2011083969A2 (ko) 폴리에스테르 수지 및 이를 포함하는 토너
JP4270561B2 (ja) 電子写真用トナー
EP2930566B1 (en) Polyester resin for toners, method for producing same, and toner
JP5456633B2 (ja) 電子写真用トナー
JP5444243B2 (ja) ポリエステル樹脂及びこれを含むトナー
JPH05165252A (ja) 静電荷像現像用カラートナー
US10428178B2 (en) Polyester resin for toner, method for producing polyester resin for toner, and toner
WO2011083970A2 (ko) 폴리에스테르 수지 및 이를 포함하는 토너
KR101155074B1 (ko) 토너용 폴리에스테르 수지, 및 이를 사용하여 제조되는 토너
CN101681136B (zh) 调色剂用树脂和调色剂组合物
KR101250877B1 (ko) 폴리에스테르 수지 및 이를 포함하는 토너
JP4021277B2 (ja) トナーの製造方法
KR20110081572A (ko) 폴리에스테르 수지 및 이를 포함하는 토너
KR101250887B1 (ko) 폴리에스테르 수지 및 이를 포함하는 토너
JP4759573B2 (ja) トナー用ポリエステルバインダーの製造方法
KR20080051252A (ko) 폴리에스테르 수지 및 이를 포함하는 토너
WO2012043531A1 (ja) 電子写真用トナー
JP5649516B2 (ja) 静電荷像現像用トナー
JP5247811B2 (ja) ポリエステル樹脂及びこれを含むトナー
KR101471419B1 (ko) 폴리에스테르 수지 및 이를 포함하는 토너
KR101187277B1 (ko) 전하제어제를 가지는 폴리에스테르 수지 및 이를 포함하는토너
KR20060074092A (ko) 향상된 정착성을 가지는 토너 조성물
JP2012247628A (ja) 静電荷像現像用トナー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC, EPO FORM 1205A DATED 14.09.12.

122 Ep: pct application non-entry in european phase

Ref document number: 11731908

Country of ref document: EP

Kind code of ref document: A2