WO2011083944A2 - 압전 액추에이팅 장치 - Google Patents

압전 액추에이팅 장치 Download PDF

Info

Publication number
WO2011083944A2
WO2011083944A2 PCT/KR2011/000015 KR2011000015W WO2011083944A2 WO 2011083944 A2 WO2011083944 A2 WO 2011083944A2 KR 2011000015 W KR2011000015 W KR 2011000015W WO 2011083944 A2 WO2011083944 A2 WO 2011083944A2
Authority
WO
WIPO (PCT)
Prior art keywords
driven
piezoelectric
drive shaft
driving
elastic
Prior art date
Application number
PCT/KR2011/000015
Other languages
English (en)
French (fr)
Other versions
WO2011083944A3 (ko
Inventor
이한상
Original Assignee
Lee Hansang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lee Hansang filed Critical Lee Hansang
Publication of WO2011083944A2 publication Critical patent/WO2011083944A2/ko
Publication of WO2011083944A3 publication Critical patent/WO2011083944A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/021Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
    • H02N2/025Inertial sliding motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/101Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using intermittent driving, e.g. step motors

Definitions

  • the present invention relates to a piezoelectric actuating device, and more particularly, to generate a driving force in a linear direction by using the vibration force obtained by the inverse piezoelectric effect of the piezoelectric material according to the coupling method with the driven member.
  • the present invention relates to a piezoelectric actuating device capable of linearly moving or rotating the driven body.
  • piezoelectric material is obtained by applying pressure (mechanical energy) to obtain a voltage (electrical energy) (piezoelectric effect), and conversely by applying voltage (electrical energy), volume or length due to pressure change in the piezoelectric material. Increase or decrease (mechanical energy) occurs (reverse piezoelectric effect).
  • the application of the reverse piezoelectric effect can implement a vibration device or a speaker (sound generated through vibration).
  • a typical representative actuator using a reverse piezoelectric effect it is a "small piezoelectric / electric distortion ultrasonic linear motor" of Korean Patent Registration No. 10-0443638 by Sung-il Yoon et al.
  • the linear motor attaches a moving shaft to the center of the piezoelectric drive unit in which a piezoelectric plate (or electrostrictive substrate) is attached to the elastic body 20 (metal) in a single or double (unimorph or bimorph) form, and the moving body is attached to the moving shaft 30. 40 is mounted on the structure.
  • the repeated sawtooth pulse is applied to the piezoelectric substrate (or electrostrictive substrate) as a driving power source, and the piezoelectric substrate causes a bending displacement, and thus the moving shaft 30 repeats the forward and backward movements.
  • the forward is a relatively slow speed compared to the reverse so that the moving shaft 30 transfers the forward force by friction to the moving body 40, since the reverse occurs very quickly immediately after the end of the forward movement of the moving body 40 In combination with the inertial force, the moving shaft 30 hardly provides the reverse force to the moving body 40. By repeating this type of motion, the moving body 40 is linearly moved in the desired direction.
  • the above-described inventions such as Yoon Seong-il have a big limitation on the moving distance of the moving body 40.
  • the movable body 40 can move only within the length of the movable shaft 30. This is because the moving shaft 30 is coupled to the moving body 40 in the form of being inserted so that the moving body 40 is provided with a force necessary for movement by the frictional force with the outer surface of the moving shaft 30.
  • the linear motor is also intended to operate in such a manner as to fix the piezoelectric driving units 10 and 20 and move the moving body 40.
  • the length of the moving shaft 30 can only be increased.
  • the load that the piezoelectric driving units 10 and 20 can bear is limited, the length of the moving shaft 30 cannot be lengthened.
  • the moving shaft 30 is a simple cylindrical rod, and the portion that transmits the force to the moving body 40 is its outer surface.
  • the direction of the force exerted by the moving shaft 30 on the moving body 40 is perpendicular to the linear direction of movement of the moving shaft.
  • the friction member 42 is wrapped in the heavy material 44, and further, the spring for a firm coupling of the heavy material 44 and the friction material 42.
  • the weight and volume of the movable body 40 may act as an excessive load on the piezoelectric driving units 10 and 20.
  • the energy consumption according to the overweight of the moving body 40 may be considered sensitive.
  • the load by the weight of the moving body 40 and the weight of other objects coupled thereto may not coincide with the linear movement direction of the moving shaft 30.
  • the linear movement direction of the movement shaft 30 may be distorted, and due to the movement deviation, the momentum of the movable body 40 is incorrect.
  • an object of the present invention is to provide a piezoelectric actuating device that is structurally improved to drive a more accurate and stable to the object by minimizing the driving deviation through a more stable contact with the object. do.
  • Another object of the present invention is to provide a piezoelectric actuating device capable of linearly and uniformly driving a driven object by providing a constant magnitude of force regardless of the moving position of the driven body when linearly moving the driven object. do.
  • an object of the present invention is to provide a piezoelectric actuating device capable of driving the driven body as well as the linear drive according to the structure of the driven body.
  • a piezoelectric actuating device for driving a driven body.
  • the piezoelectric actuating device includes a piezoelectric vibrating member which causes vibration based on a fixed vibration action point by a change in a driving voltage applied thereto; When the piezoelectric vibrating member vibrates and extends in the normal direction with respect to the surface of the piezoelectric vibrating member with a lower end coupled to a point causing maximum displacement, the piezoelectric vibrating member vibrates and retreats in the normal direction accordingly.
  • the driving axle It is connected to or coupled to the other end or a predetermined portion of the drive shaft, the elastic friction driving portion for transmitting the friction force to the driven body while elastically contacting a predetermined portion of the driven body in conjunction with the advancing and retracting movement of the drive shaft
  • the driving force is provided to the driven member by the difference between the frictional force and the inertia force with the guide surface of the driven member.
  • the piezoelectric actuating device includes a piezoelectric vibrating member which causes vibration based on a fixed vibration action point by a change in a driving voltage applied thereto; When the piezoelectric vibrating member vibrates and extends in the normal direction with respect to the surface of the piezoelectric vibrating member with a lower end coupled to a point causing maximum displacement, the piezoelectric vibrating member vibrates and retreats in the normal direction accordingly.
  • An elastic friction driving unit which is connected to or integrally provided with the other end portion or a predetermined portion of the drive shaft and is elastically contacted with a predetermined portion of the driven member to transmit frictional force to the driven member while reciprocating in response to the advance and fall of the drive shaft.
  • a vibration support member coupled to the vibration action point of the piezoelectric vibrating member to vibrately support the piezoelectric vibrating member;
  • a drive shaft guide part extending from one side of the vibration support member in the direction of the drive shaft to support the outer side of the drive shaft so that the drive shaft can be moved forward and backward to minimize the deviation of the drive shaft movement.
  • the driving force is provided to the driven member by the difference between the frictional force and the inertia force.
  • the driving voltage is a sawtooth waveform which periodically repeats a steep fall following a gentle rise or a slow fall following a steep rise. Then, the piezoelectric vibrating member vibrates so that the elastic friction driving unit periodically repeats a rapid retreat after a slow advance in the normal direction according to a Smooth Impact Drive Mechanism (SIDM), or performs a slow retreat after a rapid advance.
  • SIDM Smooth Impact Drive Mechanism
  • Periodically repeating to transfer a frictional force to the guide surface of the driven body so that the actuating device is driven by the difference between the frictional force and the inertia force (at least one of the driven body and the piezoelectric actuating device)
  • the relative movement is performed along the guide surface with respect to the driven body.
  • the piezoelectric actuating device may further include a vibration support member coupled to the vibration action point of the piezoelectric vibrating member to support the piezoelectric vibrating member to vibrate.
  • the elastic friction driving unit is made of a structure that maintains a more secure contact with the driven body by the tension obtained due to the changed (distorted) shape due to the changed (distorted) shape compared to before the engagement with the driven member or Or, it may be of a form that is applied to the outer surface of the high rigidity member integrally connected to a part or part of the drive shaft or coated or covered with a sheet made of such a material.
  • the elastic friction driving unit may be fastened to the inside or outside of the elastic friction driving unit that is tensioned due to the shape change, and pushes the inner surface of the friction driving unit outward or pushes the outer surface inward to provide elastic contact force to the driven member of the friction driving unit. It may be further provided with a spring for strengthening.
  • the piezoelectric vibrating member may include a plurality of piezoelectric vibrating members disposed vertically when viewed in the direction of the driving shaft and configured to vibrate in synchronization when the driving voltage is applied.
  • the piezoelectric actuating device is in contact with the driven body only the elastic friction drive portion during the relative movement with respect to the driven member, the rest of the driven body It may be configured not to hit with.
  • the reciprocating motion of the elastic friction drive unit is any one of a linear reciprocating motion of repeating forward and backward or a rotational reciprocating motion swinging by a predetermined angle clockwise and counterclockwise.
  • the driven member has at least one guide surface extending in parallel in the longitudinal direction thereof, and the elastic friction driving portion is in elastic contact with the at least one guide surface to transmit the friction force.
  • the piezoelectric actuating device may function as driving means for a linear motor for driving linear relative motion along the at least one guide surface with respect to the driven member.
  • the at least one guide surface is formed on both walls of the groove portion having a constant width extending in the longitudinal direction of the driven body, or both walls between the two parallel guide rails, or one provided in the longitudinal direction of the driven body. It may be on both sides of the guide rail.
  • the driven member has at least one guide surface provided in an annular shape
  • the elastic friction drive unit is in elastic contact with the at least one annular guide surface to transfer the friction force
  • the piezoelectric The actuating device can function as drive means for a rotating motor for driving an annular relative motion with respect to the driven member.
  • the at least one guide surface is formed on both walls of the groove part provided in an annular shape in a predetermined portion of the driven body, or both walls between two concentric annular guide rails of different radius, or a driven disk of the driven body. It may be part of a surface that is drawn annularly on at least one side of the.
  • the elastic friction driving unit is coupled to each other by pressing the elastic member and the elastic member intermittently, and the two disk members are elastically coupled to each other by elasticity of the elastic member.
  • the elastic friction driving part is sandwiched between the driven members and the two disc-shaped members are elastically contacted with the surface of the driven member while being slightly compressed, thereby advancing and receding the drive shaft member within a predetermined angle range. It may be configured in the form of transmitting a friction force to the driven body while the swing operation.
  • the piezoelectric actuator device may further include a weight member coupled to the piezoelectric vibrating member to a body to amplify the vibration force and displacement while vibrating with the piezoelectric vibrating member.
  • the elastic friction driving unit may be configured to include a plurality of elastic friction driving units disposed in front, rear, left, and right directions in the extending direction of the drive shaft.
  • the elastic friction drive unit is an elastic member provided on the side or the end of the drive shaft, the driven member is extrapolated to the drive shaft and pressed in close contact with it while gently pressing the elastic friction drive unit. Coupled to a drive shaft, by means of such coupling, the driven member may be guided by the drive shaft and move along the drive shaft when moved by the drive force provided by the elastic friction drive unit.
  • the piezoelectric actuating device of the present invention is not a method in which the drive shaft is in direct contact with the driven body to provide a friction force, but a separate elastic friction drive unit is provided on the drive shaft to transmit the friction force by contacting the surface of the driven body.
  • the elastic friction drive unit is brought into contact with the driven member, causing a change (distortion) in the normal shape of the non-contact state and elastically contacting the driven member by such a change (distortion). Therefore, there is an advantage that can minimize the loss of force transmitted to the driven body.
  • even when an unwanted impact or the like is applied from the outside it is possible to maintain a stable contact state with the driven object, so that variation in driving force hardly occurs, thereby enabling the driven object to be driven accurately and stably.
  • the piezoelectric actuating device of the present invention is a linear motor when used in combination with a linear driven member and a rotary motor when used in combination with a circular driven member.
  • the piezoelectric actuator when used as a linear motor, by designing a sufficient level difference between the drive shaft and the elastic friction drive portion, the piezoelectric actuator can move over its entire length without being caught by the driven body.
  • the movable distance of the piezoelectric actuator is determined by the length of the guide surface of the driven body, not the length of the drive shaft of the piezoelectric actuator. The longer the length of the driven member, the longer the distance that can be moved. Compared to the conventional method, it can travel much longer distance.
  • the driven member is coupled to the drive shaft of the piezoelectric actuator, the driven member is moved while being guided by the drive shaft while maintaining a constant distance from the drive shaft.
  • the driven body can be always provided with a uniform friction force (driving force) from the elastic friction driving unit, regardless of the position of the drive shaft, thereby enabling stable and homogeneous movement.
  • FIG. 1 to 3 are exploded perspective views and assembled state diagrams showing the piezoelectric actuator 100 according to the first embodiment of the present invention.
  • FIG. 4 is a waveform diagram of a sawtooth wave voltage used as a driving power source of a piezoelectric vibrating member.
  • 5 and 6 are an exploded perspective view and an assembled state diagram showing the configuration of the piezoelectric actuator 200 according to the second embodiment.
  • FIG. 7 is an exploded perspective view showing the configuration of the piezoelectric actuator 300 according to the third embodiment.
  • FIGS. 8 to 10 are exploded perspective views showing the configuration of the piezoelectric actuator 400 according to the fourth embodiment, assembled state, and a plan view from above.
  • 11 to 13 are exploded perspective, assembled and front views of the piezoelectric actuator 500 according to the fifth embodiment.
  • FIG 14 shows a configuration of a piezoelectric actuator 700 according to the sixth embodiment.
  • FIG 15 shows the configuration of a piezoelectric actuator 800 according to the seventh embodiment.
  • 16 and 17 are exploded perspective views and coupling state diagrams showing the configuration of the piezoelectric actuator 900 according to the eighth embodiment.
  • 18 to 20 are exploded perspective views, coupling state diagrams and operating state diagrams showing the configuration of a piezoelectric actuator according to a modification of the eighth embodiment.
  • 21 to 23 are exploded perspective views and coupling state diagrams showing the configuration of a piezoelectric actuator according to still another modification of the eighth embodiment.
  • FIG. 26 shows a configuration of a piezoelectric actuator 1100 according to the tenth embodiment.
  • FIG. 27 shows a configuration of a piezoelectric actuator 1200 according to the eleventh embodiment.
  • FIG. 29 shows a case of using the plurality of piezoelectric actuators 1000 as the rotation motor driving means according to the thirteenth embodiment.
  • FIGS. 1 to 3 are exploded perspective view and assembled state diagram showing the piezoelectric actuator 100 according to the first embodiment of the present invention
  • Figure 4 is a waveform diagram of the sawtooth voltage used as a driving power source of the piezoelectric vibrating member.
  • the piezoelectric actuator 100 includes a piezoelectric vibrating member 110, a vibration supporting member 120, and a drive shaft member 130.
  • the piezoelectric vibrating member 110 is a bimorph structure in which the piezoelectric element layers 114 and 116 are bonded to both surfaces thereof with the substrate 112 interposed therebetween, and has a rectangular plate shape as a whole.
  • the piezoelectric vibrating member may be made of a unimorph structure in which the piezoelectric element layer is bonded only to one surface of the substrate 112.
  • the substrate 112 is preferably made of a material having good elasticity in the vertical direction without elasticity in the horizontal direction, and the substrate 112 may be integrally formed with the electrode terminal 118 using a metal plate having good conductivity.
  • Each of the piezoelectric element layers 114 and 116 may be composed of a single layer or a plurality of stacked piezoelectric element layers.
  • Electrode layers are respectively bonded to both surfaces of each piezoelectric element layer, and are respectively connected to two electrode terminals 118.
  • the piezoelectric element layer is preferably made of PZT-based piezoceramic, but of course, other materials may be used to provide a reverse piezoelectric effect.
  • the vibration support member 120 has a structure in which coupling holders 124 having accommodation grooves 126 are integrally connected to both ends of the bridge portion 122 extending approximately the length of the piezoelectric vibration member 110, respectively.
  • the piezoelectric vibrating member 110 is fitted into the receiving groove 126 of the coupling holder 124.
  • Coupling holes 119 and 128 are respectively provided at the center portions of the piezoelectric vibrating member 110 and the bridge portion 122.
  • the drive shaft member 130 includes a drive shaft 132 having a rod shape, a fixing part 136 and an elastic friction driving part 134 provided at lower and upper ends thereof, respectively.
  • the fixing part 136 is fastened to the coupling hole 119 of the piezoelectric vibrating member 110 by penetrating the coupling hole 128 of the bridge portion 122, whereby the drive shaft member 30 is connected to the piezoelectric vibrating member 110. It is combined in a form extending in the normal direction.
  • the elastic friction driving unit 134 has a hollow cylindrical or oval cylindrical shape and has a certain elastic force on its own. If necessary, the elastic friction drive unit 134 may be installed in the spring 140 to reinforce the elastic force.
  • the drive shaft member 130 may be coupled through the coupling portion 160.
  • Coupling portion 160 is coupled to the piezoelectric vibrating member 160 and at the same time coupled to the fixing portion 136, thereby coupling the drive shaft member 130 perpendicular to the piezoelectric vibrating member 110.
  • the coupling portion 160 is made of a high specific gravity, the vibration force and amplitude of the piezoelectric vibrating member 110 may be amplified by the weight of the coupling portion 160.
  • the piezoelectric actuator 100 needs a driven object (hereinafter, simply referred to as a 'driven body') in harmony with itself. 1 to 3, the driven member 150 moves along a guide surface provided by the piezoelectric actuator 100 in contact with itself or vice versa.
  • the driven member 150 includes a flat base 152 and two guide rails 154 and 156 extending side by side at regular intervals in the longitudinal direction of the base 152 on one side thereof.
  • An elastic friction driving part 134 is inserted between the two guide rails 154 and 156. Two opposing guide surfaces of the two guide rails 154 and 156 have a gap and a height that can make surface contact with both outer surfaces of the elastic friction driving unit 134.
  • the elastic friction driving unit 134 is a cylindrical structure having elasticity, it is possible to make surface contact with the two guide surfaces of the guide rails 154 and 156 without gaps. By using the spring 140, such surface contact can be stably maintained without any gaps. Due to such stable surface contact, the elastic friction driving unit 134 may properly transmit a friction force to the driven object 150.
  • the operation mechanism of the piezoelectric actuator 100 of such a structure is as follows.
  • the first piezoelectric element layer 112 and the second piezoelectric element layer 114 correspond to one cycle of the AC driving voltage.
  • the reverse piezoelectric effect repeats the following two states: First, the first piezoelectric element layer 112 contracts (thickness) in the y-axis direction and expands (length) in the x-axis direction.
  • the second piezoelectric element layer 114 in contrast, has a first state in which the thickness expands in the y-axis direction and the length shrinks in the x-axis direction; And secondly, the first piezoelectric element layer 112 expands (thickness) in the y-axis direction and contracts (length) in the x-axis direction, while the second piezoelectric element layer 114 has the y-axis on the contrary.
  • both ends of the piezoelectric vibrating member 110 are fixed to the vibration supporting member 120, both ends thereof become vibration operating points, and the center portion of the piezoelectric vibrating member 130 coupled to the driving shaft member 130 vibrates in a form that causes maximum displacement. do.
  • the piezoelectric vibrating member 110 In the first state, the piezoelectric vibrating member 110 is bent to be convex in the + y direction, and in the second state, the piezoelectric vibrating member 110 is bent to be convex in the -y direction.
  • the drive shaft member 130 also repeats the linear reciprocation of the forward and backward movements in the y-axis direction.
  • the piezoelectric actuator 100 can be continuously advanced or retracted in the desired direction with respect to the driven object 150. Due to the difference between the inertia force due to the weight of the piezoelectric actuator 100 and the friction force between the elastic friction driving unit 134 and the guide surfaces 154 and 156 of the driven member 150, the piezoelectric actuator 100 is connected to the driven object 150. Relative movement in the + y direction or the -y direction is performed along the guide surfaces 154 and 1565.
  • the piezoelectric vibrating member 110 is bent in the opposite direction at a very high speed in the period in which the driving voltage is drastically reduced, and thus the elastic friction driving unit 134 retreats in the -y direction. Since the retraction of the elastic friction drive unit 134 is made while the inertial force of the piezoelectric actuator 100 remains and its retraction speed is faster than the forward speed, the elastic friction drive unit 134 slips with respect to the driven body 150. Only retreat himself. Therefore, the piezoelectric actuator 100 does not move relative to the driven member 150. As a result, the piezoelectric actuator 100 can move a distance of several nm to several tens of nm in a -y direction per cycle.
  • the piezoelectric actuator 100 moves along the guide surfaces 154 and 156 of the driven member 150 in the -y direction.
  • the driving mechanism using the inertial force as described above is called a smooth impact drive mechanism (SIDM).
  • SIDM smooth impact drive mechanism
  • FIG. 5 and 6 are an exploded perspective view and an assembled state diagram showing the configuration of the piezoelectric actuator 200 according to the second embodiment. Only one end of the piezoelectric vibrating member 210 is fixed to the vibration support member 220, and the driving shaft member 130 is coupled to one end of the piezoelectric vibrating member 210, not the center of the first embodiment The difference is that.
  • the vibration supporting member 220 is provided with a fixed slot 224 at a position higher than the maximum vibration width of the piezoelectric vibrating member 210 at the bottom of the body portion 222.
  • One end of the piezoelectric vibrating member 210 provided with the electrode terminal 118 is inserted into and fixed to the fixing slot 224.
  • a coupling hole 219 for engaging with the drive shaft member 130 is provided near the other end of the piezoelectric vibrating member 210.
  • the piezoelectric vibrating member 210 pivots in a form in which an end coupled to the vibration supporting member 220 becomes a vibration point and an opposite end represents a maximum displacement, and thus the drive shaft member ( 130 performs a linear reciprocating motion in a SIDM manner to drive the driven object (150).
  • the vibration supporting member 220 is fixed to the third object, the two guide rails 154 and 156 of the driven member 150 move relative to the elastic friction driving unit 134 to be in the + y-axis direction or -y. Linear movement in the axial direction.
  • the piezoelectric vibrating member 310 is coin type different from the first embodiment.
  • the first piezoelectric element layer 314 and the second piezoelectric element layer 316 are bonded to both surfaces of the circular substrate 312, and a coupling hole 318 is provided at the center thereof.
  • the first and second piezoelectric element layers 314 may be composed of a single layer or a plurality of stacked piezoelectric element layers, and electrode layers (not shown) are provided on both surfaces of each piezoelectric element layer so that a driving voltage may be applied thereto.
  • the electrode layers are respectively connected to two electrode terminals 318.
  • the drive shaft member 130 has its coupling portion 136 fastened to its coupling hole 318 is vertically coupled to the piezoelectric vibrating member 310.
  • the vibration supporting member 320 has a circular to donut-shaped base 322 and coupling holders 324 vertically provided at three edges thereof. Piezoelectric vibrating member 310 is coupled to the vibration support member 320 by the three edges thereof are fitted to the coupling holder 324.
  • the piezoelectric vibrating member 310 vibrates in the form where the edge portion caught by the vibration support member 320 becomes the vibration point and the center portion thereof causes the maximum displacement.
  • the drive shaft member 130 is driven by the piezoelectric vibrating member 310 in a SIDM manner to transmit a friction force to the driven member 150. Therefore, when the driven member 150 is fixed, the piezoelectric actuator 300 continues to move along the driven member in the + y-axis direction or the -y-axis direction, and when the piezoelectric actuator 300 is fixed, The driven member 150 continues to move in the + y-axis direction or the -y-axis direction. Even if the piezoelectric vibrating member is deformed into a square disk, it is driven in the same manner.
  • the dual piezoelectric vibrating member 410 is characterized in that the two piezoelectric vibrating members 110 are arranged side by side in order to obtain greater driving force.
  • the driving shaft member 430 has a hollow 438 cylindrical elastic friction driving portion 437 connected to the upper end of the driving shaft 432, and a coupling portion is connected to the lower end of the driving shaft 432.
  • the elastic friction driving unit 437 is made of a material having a hollow portion 438 and having a slight ductility, so that the elastic friction driving unit 437 elastically reacts to a force applied from the outside.
  • the coupling portion includes a first stopper 433 provided at the end of the driving shaft 432, a coupling shaft 434 extending on the same axis as the driving shaft 432, and a spacer 436 disposed at an intermediate point of the coupling shaft 434. And a second stopper 435 provided at a lower end of the coupling shaft 434.
  • the two piezoelectric vibrating members 410 are respectively coupled to the coupling shaft 434 between the first stopper 433 and the spacer 436 and between the space 436 and the second stopper 435.
  • the body may be connected to the lower end of the drive shaft 432, and the body may be configured in the form of two slots in which two piezoelectric vibrating members 410 are fitted. .
  • Vibration support member 420 is a rectangular plate-shaped base 421 longer than the piezoelectric vibrating member 410, and coupling holders 423 fastened with screws 427 to fastening holes 422 provided at both ends thereof, respectively.
  • Has Coupling holder 423 is provided with two fixing slots 424, 425 at a predetermined height of the vertical surface of the body, the fastening hole 426 is provided on the bottom surface of the body.
  • Both ends of the piezoelectric vibrating member 410 are coupled to the vibration supporting member 420 by being inserted into and fixed to the fixing slots 425 and 425, respectively.
  • a hole 428 may be provided in the center portion of the base 421 to provide a reverse space of the second stopper 436.
  • the elastic friction driving unit 437 is inserted into the guide rails 154 and 156 of the driven body 150.
  • the two piezoelectric vibrating members 410 When the same sawtooth wave driving power is applied to each of the pair of piezoelectric vibrating members 410, the two piezoelectric vibrating members 410 have both end portions fixed to the coupling holder 423 at the vibrating action point, and the center portion thereof is the maximum displacement. It vibrates synchronously while generating The vibration causes the drive shaft member 430 to 'repeat slow forward and fast retreat' or 'repeat fast forward and slow retreat'. Accordingly, the piezoelectric actuator 400 coupled to the driven member 150 linearly moves itself while the drive shaft member 430 performs a linear reciprocating motion of repeating forward and backward in a SIDM method (the driven member 150 is fixed). Or linearly move the driven member 150 (when the piezoelectric actuator 400 is fixed). Since the piezoelectric actuator 400 is driven by two piezoelectric vibrating members 410, a larger driving force can be obtained.
  • the piezoelectric actuators 100, 200, 300, and 400 of the first to fourth embodiments described above also have a step with a sufficient height instead of the elastic friction driving units 134 and 437 are not aligned with respect to the drive shafts 132 and 432. Change the design to have a level difference), the piezoelectric actuators 100, 200, 300, 400 do not catch each other when performing linear relative motion with respect to the driven object 150, and the entire length of the driven object 150 Of course, you can move.
  • the piezoelectric actuator 500 of the fifth embodiment described below is designed with this concept.
  • 11 to 13 are exploded perspective, assembled and front views of the piezoelectric actuator 500 according to the fifth embodiment.
  • the feature of this embodiment is that the drive shaft guide portion is further provided and there is a level difference between the drive shaft 532 and the elastic friction driving portion 534 of the drive shaft member 530.
  • the vibration support member 520 two coupling holders 423 are fastened by screws 427 to two coupling holes 522 respectively provided at both ends of the rectangular base 521.
  • the drive shaft guide portion is provided integrally to the vibration support member (520). Specifically, the drive shaft guide portion is bent at a right angle downward from the end of the guide plate 524 and the guide plate 524 extending in the direction of the drive shaft 532 at the upper middle portion of the base 521 of the vibration support member 520.
  • a first guide piece 525 is included.
  • a second guide plate 527 may be further provided between the base 521 and the first guide piece 525.
  • the first through hole 526 and the second through hole 528 are respectively provided in the middle portions of the first guide piece 525 and the second guide piece 527. Both ends of the piezoelectric vibrating member 110 are inserted into and coupled to the slots provided in the coupling holder 423 to be vibratedly supported by the vibration supporting member 520.
  • the drive shaft member 530 is provided at the upper end of the drive shaft 532 to provide a level difference between the drive shaft 532, the coupling portion 536 provided at the lower end thereof, and the axis of the drive shaft 532 and the elastic friction driving portion 534.
  • the stepped portion 533 is bent upwardly, and the U-shaped elastic friction driving portion 534 extending upwardly at the end of the stepped portion 533 is provided.
  • the elastic friction drive part may be changed into an elliptical cylinder shape or other shape (U-shaped or cylindrical to elliptic elastic friction drive part that is bent in the direction from the step portion 533 to the driving shaft 532 again).
  • U-shaped or cylindrical to elliptic elastic friction drive part that is bent in the direction from the step portion 533 to the driving shaft 532 again).
  • the drive shaft member 530 has a drive shaft 532 penetrating through the first through hole 526 and the second through hole 528 to the first guide piece 525 and the second guide piece 527 (without obstructing retraction). While being loosely supported, the engaging portion 536 thereof is coupled to the engaging hole 119 of the piezoelectric vibrating member 110.
  • the piezoelectric actuator 500 of this structure engages, for example, the driven member 550 shown.
  • the driven member 550 may have a structure in which the guide rail 554 extends in the longitudinal direction on the bottom of the base 552.
  • the elastic friction driving unit 534 is in contact with the arms of the two sides wrap around both sides of the guide rail 554.
  • a U-shaped elastic spring 538 that is fastened to the outer surface of the elastic friction driving unit 534 and pushed inward may be used.
  • the elastic friction driving unit 534 may be applied to the driven member 150.
  • the U-shaped elastic spring for strengthening the coupling force may be fastened to the inner surface of the elastic friction driving unit 534 and pushed outward.
  • the mechanism for driving the driven member 550 in the SIDM method by applying the sawtooth driving voltage to the piezoelectric vibrating member 110 is the same as the above embodiments.
  • the characteristic of this embodiment is that in such SIDM type driving, the drive shaft 532 is guided by the drive shaft guides 524, 525, 526 and 528 so that the linear reciprocating motion of the forward and backward in the y-axis direction is always constant. to be. Due to the drive shaft guide, the linear movement of the drive shaft 532 may be uneven (for example, a deviation occurs in the reciprocating path of the drive shaft, and thus a difference in the force transmitted to the driven member causes the movement distance per cycle to be inconsistent). There is a lot of room to stop.
  • the piezoelectric actuator 500 performs relative movement with respect to the driven body 550 because the elastic friction drive unit 534 is located at a higher point than the drive shaft 532. While only contacting the elastic friction drive unit 534 while the remaining portion does not collide with the driven body 550 can be moved relative to the entire section of the length of the driven body 550 without being caught.
  • the piezoelectric actuator 500 may be used in a form in which a plurality of piezoelectric actuators 500 are arranged in a line along the longitudinal direction of the driven member 550. Depending on the given installation conditions, the plurality of piezoelectric actuators 500 may be arranged in the same direction or in opposite directions to face each other. Two piezoelectric actuators 500 having a short structure and a long structure of the stepped portion 533 of the drive shaft member 530 and the length of the drive shaft 532 may be used in the form of vertically disposed.
  • the structure of the drive shaft member 730 is different and the rest of the configuration is the same.
  • the driving shaft member 730 is different from the driving shaft member 530 of the fifth embodiment in that two elastic friction driving units are provided. That is, the elastic friction driving unit 734 has a structure in which two U-shaped elastic friction driving units 734-1 and 734-2 are integrally connected to both ends of the 'c' shaped stepped section 733.
  • the stepped portion 733 is coupled to be perpendicular to the upper end of the drive shaft 732.
  • the driven member that may be combined with the piezoelectric actuator 700 may be, for example, a driven member 150 having two guide rails 154 and 156 shown in FIG. 1.
  • U-shaped springs may be further added to the outer side or the inner side of each of the elastic friction driving units 734-1 and 734-2 to reinforce the frictional force with the guide rail 154 of the driven member 150.
  • Its driving mechanism is no different from the previous embodiments.
  • the elastic friction driving portions 734-1 and 734-2 are disposed at a higher position than the guide plate 524, so that the piezoelectric actuator 700 covers the entire length of the driven member 150. It is possible to move.
  • FIG. 15 shows the configuration of a piezoelectric actuator 800 according to the seventh embodiment.
  • This is also the structure of the drive shaft member 830 is different compared to the piezoelectric actuator 500 of the fifth embodiment and the rest of the configuration is the same.
  • Two U-shaped elastic friction driving units 834-1 and 834-2 have a stepped portion 833 which extends perpendicularly to the drive shaft 832 at a predetermined position of the side surface instead of the top of the drive shaft 832 of the drive shaft member 830. Is connected to.
  • Its driving mechanism is also the same as the previous embodiments, and when the stepped portion 833 is sufficiently long, the piezoelectric actuator 800 can move over its entire length without being caught by the driven body.
  • FIG 16 and 17 are exploded perspective views and coupling state diagrams showing the configuration of the piezoelectric actuator 900 according to the eighth embodiment.
  • This embodiment relates to an example in which the piezoelectric actuator 900 is applied as a camera lens driving mechanism.
  • the drive shaft member 930 is vertically coupled to the maximum displacement point (ie, the center point) of the piezoelectric vibrating member 110 fixed to the vibration support member 420 (421, 423, 427) as in the previous embodiments.
  • the piezoelectric vibrating member 110 may be directly fixed to the camera body (not shown) without mediating the vibration support member 420.
  • the drive shaft member 930 may include a drive shaft 932 having a portion of the side angled to extend in a rod shape, a fixing part 933 provided at a lower end of the drive shaft 932 to couple with the piezoelectric vibrating member 110, and An elastic friction drive unit 939 is provided at any point on the side of the drive shaft 932.
  • the elastic friction drive unit 939 is an elastic plate whose one end thereof extends obliquely outwardly while being fixed to the side of the drive shaft 932 and then extends substantially parallel to the side of the drive shaft 932.
  • the driving shaft 932 decuts or grooves a portion of the side surface along the longitudinal direction, and also makes a portion of the driven member 950 in contact with the portion of the driving shaft 932 corresponding to the driving shaft 932. It is preferable not to rotate in the circumferential direction of the drive shaft 932 when moving along.
  • the driven member 950 includes a lens bracket 952 on which a lens 953 is mounted, and a slide moving part 954 coupled to the lens bracket 952 and connected to a body.
  • the slide moving part 954 is a substrate portion 955 which is vertically erected vertically at a point of the edge of the lens bracket 952, and is opposite to the lens bracket 952 at the upper and lower ends of the substrate portion 955.
  • first and second coupling portions 956, 957 It consists of vertically extending first and second coupling portions 956, 957.
  • the first and second coupling parts 956 and 957 are provided with coupling holes 958 and 959 at the center points thereof, and are slidably extrapolated to the drive shaft 932 through them.
  • the inner surface of the substrate portion 955 of the slide moving part 954 is pressed against the elastic friction driving part 939 as shown in FIG. 17.
  • the driving shaft 932 retreats in a SIDM manner, and in addition, the elastic friction driving unit 939 is a substrate part of the sliding member 954 which is in elastic contact with the piezoelectric vibrating member 110.
  • a force is applied to the inner surface to allow the driven body 950 to slide on the drive shaft 932.
  • the direction in which the driven member 950 moves along the driving shaft 932 is determined according to the waveform of the driving power source.
  • an imaging device module 960 of a digital camera is fixed to the camera body (not shown).
  • the separation distance between the lens 953 and the imaging device module 960 is adjusted. Since the length of the substrate portion 955 is an element limiting the moving distance of the driven member 950, it is necessary to determine the length of the substrate 955 appropriately in consideration of the necessary moving distance.
  • the piezoelectric actuator according to the present embodiment has a unique feature different from the previous embodiments.
  • the slide moving part 954, which is a driven body, is extrapolated to the driving shaft 932 and is coupled to the driving shaft 932 in a form of being in contact with the elastic friction driving unit 939 slightly.
  • the slide moving portion 954 is guided by the drive shaft 932 and moves along the drive shaft 932 when moved by the driving force provided by the elastic friction driving portion 939.
  • the drive shaft 932 also serves as a guide shaft with respect to the driven body.
  • the driving unit 932 may always be provided with a constant driving force (friction force) from the elastic friction driving unit 939.
  • the drive shaft member 1930 is a drive shaft (1932) made of a circular rod shape
  • the coupling portion (1933) is provided on the lower end of the drive shaft (1932) and coupled to the maximum displacement point of the piezoelectric vibrating member (110), and the drive shaft (1932) It includes an elastic friction driving unit (1939) fastened to the center portion and fixed so that there is no movement in the axial direction.
  • the drive shaft 1932 makes the predetermined length section at a substantially middle height thinner than the remaining length sections.
  • the semi-circular leaf spring 1939 which functions as an elastic friction drive part is fastened to the thin section.
  • the driven member 1950 is provided in a hollow cylindrical shape.
  • the hollow radius of the driven member 1950 is larger than the radius of the thick portion of the drive shaft 1932 and smaller than the diameter from the central axis of the drive shaft 1932 to the outer surface of the leaf spring 1939.
  • the drive shaft 1932 and the leaf spring 1939 move fast (or fast retreat) and slow retreat. (Or slow forward) is repeated periodically.
  • the driven body 1950 moves along the drive shaft 1932 by the repeated movement of the forward and the backward.
  • the force for moving the driven member 1950 is a force corresponding to the difference between the friction force between the driven member 1950 and the leaf spring 1932, that is, the elastic friction driving unit, and the motion inertia of the driven member 1950 itself.
  • 20A and 20B illustrate a state in which the driven member 1950 is moved farthest and closest to the driving shaft 1932 based on the piezoelectric vibrating member 110, respectively.
  • This variant has the same advantages as the foregoing eighth embodiment. That is, the driven object 1950 is coupled to the drive shaft 1932 extrapolated state, so that the drive shaft 1932 always moves stably while being guided. In addition, regardless of the position can receive a substantially constant amount of friction force from the leaf spring (1939) can be a uniform movement.
  • FIGS. 21-23 show the structure of the piezoelectric actuator device according to another modification of the eighth embodiment.
  • This modification also differs in the configuration of the drive shaft member 2930 compared with the eighth embodiment.
  • the drive shaft member 2930 is a circular rod-shaped drive shaft (2932), the coupling portion (2933) is provided on the lower end of the drive shaft (2932) coupled to the maximum displacement point of the piezoelectric vibrating member (110), and the drive shaft (2932) It is fixed to the upper end and includes a U-shaped elastic plate (2939) for transmitting friction by making contact with the inner hollow surface of the hollow cylindrical driven body 2950.
  • the U-shaped elastic sheet 2939 functions as an elastic friction driving unit.
  • the U-shaped elastic sheet 2939 has a bottom portion fixed to an upper surface of the drive shaft 2932, and outer surfaces of the two wings extending upward from both ends of the U-shaped elastic sheet 2929 have a distance slightly beyond the upper surface of the drive shaft 2932. .
  • the diameter of the hollow portion of the driven object 2950 is made slightly larger than the diameter of the drive shaft 2932 and smaller than the maximum spacing of the two wings of the U-shaped elastic sheet 2939.
  • the driven member 2950 receives a frictional force from the U-shaped elastic sheet 2939 in a SIDM manner, and the difference between the frictional force and its own inertial force. Under the force of to move along the drive shaft (2932). Even in this case, the driven member 2950 is in an extrapolated state coupled with the drive shaft 2932 so that the driven body 2950 is always moved under the guidance of the drive shaft 2932, thereby allowing stable and uniform movement.
  • the drive shaft is made by longitudinally cutting a part of its outer surface, and correspondingly by engaging the drive shaft of the driven body by decuting it in an even shape so that the driven body is the length of the drive shaft. It is desirable to allow the slide to move only in the direction and to restrain the rotation in the circumferential direction of the drive shaft.
  • the piezoelectric actuators described above have been described as an example of using a linear driven member as a linear driving means (ie, a linear motor) for driving, but is not necessarily limited to such a use.
  • a linear driven member ie, a linear motor
  • it may also function as a rotary drive means (ie, a rotary motor).
  • a slide drive means which slides along it.
  • the structure of the piezoelectric actuator may be appropriately modified based on the above description for effective rotary driving or sliding driving.
  • application examples using the piezoelectric actuator of the present invention as a rotation driving means will be described.
  • the piezoelectric actuator 1000 shown in FIGS. 24 and 25 is substantially the same as the configuration of the piezoelectric actuator 500 according to the fifth embodiment, for example.
  • the elastic friction driving unit 1034 of the drive shaft member 1030 is cylindrical in shape and employs a stepped portion 1033 of another shape.
  • the elastic friction driving unit 1034 has some degree of elasticity in itself due to its structure and / or material properties.
  • a semi-circular plate spring 1038 may be embedded in the elastic friction driving unit 1034.
  • the driven member 1050 has an annular to ring driven groove having a drive shaft 1056 extending vertically at the center of the disc to cylindrical body 1052 and surrounded one wheel around the drive shaft 1056 on the upper surface of the body 1052 ( 1054).
  • the piezoelectric actuator 1000 is coupled in such a way that the elastic friction driving portion 1034 is fitted into the driven groove 1054 while the driving shaft member 1030 covers the upper surface of the driven body 1050.
  • Two outer side surfaces of the elastic friction driving unit 1034 are in contact with the left and right side wall surfaces of the driven groove 1054.
  • a saw-tooth waveform driving voltage is applied to the piezoelectric vibrating member 110 so that the drive shaft member 1030 repeatedly moves forward and backward in a SIDM manner, while the elastic friction driving unit 1034 has a frictional force on the left and right side walls of the driven groove 1054.
  • the driven member 1050 is forced to rotate only in one direction (+ ⁇ direction or ⁇ direction) defined by the drive voltage waveform about the rotation axis 1056. It will rotate accordingly.
  • the shape or structure of the driven object subjected to rotational drive may vary depending on the application.
  • the structure of the drive shaft member, in particular, the structure of the elastic friction drive portion, and the length or extension direction of the step portion for providing a step between the elastic friction drive portion and the drive shaft need to be designed to suit the shape or structure of the driven body.
  • the driven body 1150 has a structure in which an annular driven wall body 1154 is provided around the rotary shaft 1156 on the upper surface of the disc-shaped or cylindrical body 1152.
  • the drive shaft member 1130 of the piezoelectric actuator 1100 is connected to the U-shaped elastic friction driving unit 1134 with the mouth open downward from the end of the drive shaft 1132.
  • the piezoelectric actuator 1100 and the driven member 1150 are coupled to each other so that the annular driven wall 1154 is inserted into the gaping mouth of the elastic friction driving unit 1134.
  • the drive shaft member 1130 of the piezoelectric actuator 1100 is driven in a SIDM method to repeat the forward and backward in a straight line, accordingly the elastic friction drive unit 1134 is an annular driven wall Continue to push or pull 1154 in the same direction.
  • the driven body 1150 then rotates clockwise or counterclockwise about the rotation axis 1156.
  • the driven body 1250 is slightly spaced apart in the direction of the rotation axis 1256 from the upper surface of the disc-shaped cylindrical body 1252 in parallel with the main body 1152.
  • the elastic friction driving unit 1234 of the piezoelectric actuator 1200 may rotate or drive the driven member 1250 by pushing or pulling the driven disk 1254 in the SIDM method.
  • the drive shaft member 1230 is made of a structure in which the U-shaped elastic friction drive unit 1234 with the mouth toward the left or right direction is integrally connected to the end of the drive shaft 1232.
  • the driven disk 1254 is inserted into the mouth of the elastic friction drive unit 1234 of the piezoelectric actuator 1200, thereby coupling the piezoelectric actuator 1200 and the driven member 1250.
  • the U-shaped spring 1238 is fastened to the elastic friction drive unit 1234 to strengthen the contact force between the elastic friction drive unit 1234 and the driven disk 1254 as in the previous example.
  • the drive shaft member 1330 of the piezoelectric actuator 1300 suitable for this may be a structure in which the U-shaped elastic friction driving unit 1334 having the mouth toward the left or right direction is integrally connected to the end of the drive shaft 1332. have.
  • the elastic friction driving unit 1334 is inserted into the annular driven groove 1356 so that both outer surfaces of the elastic friction driving unit 1334 are in contact with both sidewalls of the annular driven groove 1356. It is preferable to insert the coil spring 1338 in the mouth of the elastic friction drive unit 1334 to strengthen the contact force therebetween. Even with this structure and combination, the piezoelectric actuator 1300 can rotate the driven member 1350 according to the SIDM method.
  • a plurality of piezoelectric actuators may be coupled to one driven body in order to transmit a greater rotational force to the driven body.
  • An example is shown in FIG. That is, four piezoelectric actuators 1000 are coupled to the driven hole 1054 of the driven member 1050. Using the same drive power source, these four piezoelectric actuators 1000 can synchronously retreat their drive shaft members, thereby obtaining four times the rotational force.
  • a further driven hole 1054 is provided on the bottom surface of the main body 1052 of the driven body 1050, and the plurality of piezoelectric actuators 1000 are coupled to the driven hole 1054 on the upper and lower surfaces, a larger driving force can be obtained. There will be. The same is true for other piezo actuators and driven members.
  • the piezoelectric actuator 1400 for the rotary motor shown in FIGS. 30 and 31 is somewhat unique in structure of the elastic friction drive unit 1430 that transmits a frictional force to the driven member 1450.
  • the elastic friction driving unit 1430 has an annular trench member 1435 and an annular cover member 1440.
  • the annular trench member 1435 is composed of an annular bottom portion and annular sidewall portions standing up along both edges thereof, the top of which is open.
  • the coupling rods 1437 are fixed to three points of the annular bottom of the annular trench member 1435, and the coupling protrusions 1439 extend radially in four places on the outer surface of the outer side wall portion.
  • Coil springs 1438 are extrapolated to each coupling rod 1437.
  • the annular cover member 1440 is provided with a coupling hole in three places through which the screw (14367) is fixed is fastened to the coupling rod (1437).
  • the depth of the engagement hole is made deeper than the head thickness of the screw 1434 so that the head of the screw 1434 is at a lower position than the top surface of the annular cover member 1440.
  • the elastic friction drive unit 1430 assembly is coupled with, for example, four piezoelectric actuators 1405 through four engagement protrusions 1439 provided on its outer surface.
  • the piezoelectric actuator 1405 is provided with a coupling portion 1434 forming a coupling protrusion 1439 and a screw 1433 at the end of the drive shaft 1432.
  • the piezoelectric actuator 1405 is the same as that of the other embodiment except this point.
  • the elastic friction drive unit 1430 assembly is also coupled with the driven member 1450.
  • the dodge member 1450 comprises a first driven member 1450-1 having an angular coupling hole 1452 at the center thereof, and two concentric disks 1456 and 1458 having different radii arranged up and down to form a body.
  • the coupling shaft 1454 has a second driven member 1450-2 upright.
  • the elastic friction driving unit 1430 is extrapolated to the upper disc 1458 of the second driven member 1450-2. In such a state, the coupling shaft 1454 of the second driven member 1450-2 is inserted into the coupling hole 1452 of the first driven member 1450-1, so that the first and second driven members 1450-1 are inserted. 1, 1450-2).
  • An elastic friction driving unit 1430 is inserted into and coupled between the first driven member 1450-1 and the second driven member 1450-2.
  • the entire upper surface of the annular cover member 1440 makes surface contact with the bottom surface of the first driven member 1450-1, and the entire bottom surface of the annular trench member 1435 is the lower portion of the second driven member 1450-2. In surface contact with the upper surface of the original plate 1456.
  • the thickness of the elastic friction drive unit 1430 is slightly thicker than the thickness of the upper disk 1458. Due to such a thickness difference, the annular cover member 1440 and the annular trench member 1430 of the elastic friction drive unit 1430 are pressed by the first and second driven members 1450-1 and 1450-2 so that the gap therebetween is reduced. It will be somewhat reduced. However, the annular cover member 1440 and the annular trench member 1430 of the elastic friction driving unit 1430 are respectively driven by the first spring member 1450-1 and the second driven member by the elastic supporting force of the coil spring 1438. 1450-2). That is, the driven member 1450 is in elastic contact with the bottom surface of the annular trench member 1435 of the elastic friction driving unit 1430 and the top surface of the annular cover portion 1440, respectively.
  • the piezoelectric vibrating member 110 is supplied with a driving power having a sawtooth wave, for example, to drive each piezoelectric actuator 1405 in a SIDM manner.
  • the vibration supporting member of each piezoelectric actuator 1405 is fixed.
  • the drive shaft member 1430 repeats the advance and retreat in the SIDM method.
  • the drive shaft member 1430 uses a sawtooth waveform voltage having a modest amplitude and steep fall as a driving power source.
  • the elastic friction drive 1430 When driven to periodically repeat a relatively slow forward and a (relatively) fast retraction, the elastic friction drive 1430 also undergoes a (relatively) slow rotation in the clockwise direction and a (relatively) fast rotation in the counterclockwise direction.
  • Periodically repeating motion that is, rotational reciprocating motion swinging clockwise and counterclockwise within a predetermined fine angle range.
  • the first driven member 1450-1 and the second driven member 1450-2 which are in contact with the upper and lower surfaces of the elastic friction driving unit 1430, respectively, have a frictional force and a motion inertia force transmitted through the contact surface. Only the clockwise rotation is sustained by the difference.
  • the sawtooth waveform voltage as shown in FIG.
  • the piezoelectric actuator 1400 shown in FIGS. 30 and 31 can function as a rotating motor.
  • the elastic friction driving unit that directly contacts the driven member and transmits the frictional force is not limited to the shape shown in the above embodiment.
  • the elastic friction drive unit may be changed (distorted) after the engagement (eg, crushed or uneven), compared to before the engagement with the driven member, and by the tension obtained due to such a changed (distorted) shape. If a reliable contact can be maintained, the shape of the elastic friction driving unit can be variously taken.
  • the elastic friction driving unit needs to be made of a material which can cause a shape change without breaking and an elastic force can be obtained through such a shape change.
  • the elastic friction driving unit may be configured in such a manner as to obtain a material elastic force, in addition to the method of obtaining structural elastic force according to the specificity of the shape. For example, one example may be to apply a material having an appropriate elasticity to the outer surface of the high rigidity member integrally connected to a part or part of the drive shaft in the form of bonding or covering with a sheet made of such a material.
  • the vibration support member may be changed so that a portion (eg, the coupling holder 423) holding and supporting an edge portion or both ends of the piezoelectric vibration member is elastic.
  • the force and displacement of the vibration generated by the piezoelectric vibrating member are then amplified by such an elastic coupling holder.
  • the piezoelectric actuator is described as being fixed to a separate vibration support member, but the vibration support member as a separate independent component is not necessarily required. This is because the piezoelectric actuator may be fixed to the structure when the structure in which the piezoelectric actuator is installed may serve as a vibration support member.
  • the various structures of the elastic friction driving unit presented in the above embodiment (one side of both arms are connected to each other and the other side is extended by a predetermined interval, extending tong-shaped or U-shaped, or a hollow or cylindrical structure provided with a cavity inside) It is only one. Since the elastic friction drive unit may have a structure in which the shape after engagement may be changed (distorted) as compared with before the engagement with the driven body, and the tension obtained due to the changed (distorted) shape maintains a more secure contact with the driven body. Other structures that meet these requirements could also modify the elastic friction drive.
  • the elastic friction drive unit may be made of a material having elasticity. for example.
  • the outer surface of the high rigidity member integrally connected to a part or part of the drive shaft may be coated with a material having an appropriate elasticity, or may be configured in the form of bonding or covering with a sheet made of such a material.
  • a bridge for fixing the center of the piezoelectric vibrating member to be a vibrating action point, and catching at least two points of the edge portion and connecting the upper surface of the piezoelectric vibrating member, and a predetermined portion of the bridge It may be configured to have a drive shaft extending in the normal direction with respect to the upper surface of the piezoelectric vibrating member at the site, and an elastic friction drive unit connected to the upper end or side of the drive shaft and transmitting friction force while elastically contacting the driven member.
  • piezoelectric actuators disclosed in the present invention can be widely used to require various driving or motions depending on the structure, shape, installation conditions, etc. of the driven member.
  • the piezoelectric actuator in combination with a driven member having a linear to curved guide surface, can be used to linearly or curvedly move along the guide surface (if the driven member is fixed) or vice versa as a linear motor to do so.
  • the piezoelectric actuator may be used as a rotating motor coupled to a driven member having an annular guide surface to rotate the driven member or to rotate itself along the annular guide surface of the driven member.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

피구동체를 직선 또는 선형 구동하기 위한 압전 액추에이팅 장치가 개시된다. 구동축이 압전진동부재의 최대변위 지점에 법선방향으로 결합된다. 압전진동부재에 톱니파 구동전압이 인가되면, 구동축은 스무드 임팩트 구동 메커니즘(SIDM)에 따라 진퇴를 반복한다. 구동축의 단부나 측부에 연결되거나 일체로 마련되고, 피구동체의 소정부위에 탄성적으로 접촉된 탄성 마찰구동부는 구동축의 진퇴에 부수하여 왕복운동을 하면서 피구동체에 마찰력을 전달한다. 압전 액추에이팅 장치는 그 과정에서 피구동체의 안내면과의 마찰력과 관성력 간의 차이에 의해 피구동체에게 구동력을 제공한다. 그 결과, 피구동체(압전 액추에이터가 고정된 경우)나 압전 액추에이터 장치(피구동체가 고정된 경우)가 원하는 방향으로 직선 운동(피구동체가 선형 안내면을 갖는 경우) 또는 회전운동(피구동체가 원형 안내면을 갖는 경우)을 하게 된다. 압전진동부재의 진동작용점에 결합되어 그 압전진동부재를 진동 가능하게 지지해주는 진동지지부재를 더 구비할 수도 있다. 또한, 구동축의 외측면을 진퇴가능하게 지지하여 구동축의 진퇴운동의 편차가 최소화되도록 안내하는 구동축 안내부를 더 구비할 수도 있다. 구동축과 탄성 마찰구동부 간에 레벨 차이를 주면 선형 이동거리를 길게 할 수 있다.

Description

압전 액추에이팅 장치
본 발명은 압전 액추에이팅 장치에 관한 것으로서, 더욱 상세하게는 압전물질의 역압전효과(inverse piezoelectric effect)에 의해 얻어지는 진동력을 이용하여 직선방향의 구동력을 발생시켜 피구동체와의 결합방식에 따라 그 피구동체를 선형 이동시키거나 회전 운동을 시킬 수 있는 압전 액추에이팅 장치에 관한 것이다.
잘 알려져 있다시피, 압전물질(Piezoelectric material)은 압력(기계적 에너지)을 가하면 전압(전기적 에너지)이 얻어지고(압전효과), 반대로 전압(전기적 에너지)을 가하면 압전물질 내에 압력 변화로 인한 부피나 길이의 증감(기계적 에너지)이 발생한다(역압전효과). 특히 역압전효과를 응용하면 진동 장치나 스피커(진동을 통한 소리 발생)를 구현할 수 있다.
역압전효과를 이용한 종래의 대표적인 액추에이터 예로서, 윤성일 등에 의한 한국 특허등록번호 제10-0443638호의 "소형 압전/전왜 초음파 리니어모터"이다. 그 리니어모터는, 탄성체(20)(금속)에 압전기판(또는 전왜기판)을 단일 또는 이중(unimorph 또는 bimorph) 형태로 부착한 압전구동부의 중앙에 이동축을 부착하고 그 이동축(30)에 이동체(40)를 탑재한 구조로 되어 있다. 반복되는 톱니펄스를 압전기판(또는 전왜기판)에 구동전원으로 인가하여 그 압전기판이 굴곡 변위를 일으키고 그에 따라 이동축(30)이 전진과 후진 운동을 반복한다. 그때, 전진은 후진에 비해 상대적으로 느린 속도여서 이동축(30)이 이동체(40)에 마찰에 의한 전진력을 전달하는데 비해, 후진은 전진이 끝나자마자 곧바로 아주 빠르게 일어나므로 이동체(40)의 전진 관성력과 어우러지면서 이동축(30)은 이동체(40)에 거의 후진력을 제공하지 못한다. 이러한 형태의 운동이 계속 반복됨으로써 이동체(40)는 원하는 방향으로 선형 이동된다.
그런데 윤성일 등의 상기 발명은 이동체(40)의 이동거리에 큰 제약이 있다. 이동체(40)는 이동축(30)의 길이 내에서만 이동이 가능하다. 이동축(30)이 이동체(40)에 삽입된 형태로 결합되어 이동체(40)는 이동축(30)의 외측면과의 마찰력에 의해 이동에 필요한 힘을 제공받는 구조로 되어있기 때문이다. 또한, 그 리니어모터는 압전구동부(10, 20)를 고정시키고 이동체(40)를 이동시키는 형태로 동작하는 것을 예정한 것이기 때문이기도 하다. 이동거리를 늘이려면 이동축(30)의 길이를 길게 하는 수밖에 없는데, 압전구동부(10, 20)가 감당할 수 있는 부하에도 한계가 있으므로 이동축(30)의 길이를 마냥 길게 할 수는 없다.
상기 리니어모터에 있어서, 이동축(30)은 간단한 원기둥형 막대로서, 이동체(40)에 힘을 전달하는 부위는 그 외측면이다. 이동축(30)이 이동체(40)에 가하는 힘의 방향은 이동축의 직선운동방향에 대해 수직인데, 그 리니어모터의 구조상 이동축(30)을 그 수직방향으로 밀어주는 힘은 거의 없다. 따라서 이동축(30)과 이동체(40) 간의 최적화된 압착력을 얻기 위해, 마찰재(42)를 중량재(44)로 감싸도록 하고 나아가 중량재(44)와 마찰재(42)의 견고한 결합을 위해 스프링(46)을 중량재(44) 외측에 장착한 형태의 이동체(40) 구조를 개시한다. 하지만, 이동체(40)는 실제 응용에 있어서는 통상적으로 다른 물체를 실어 나르는 운반체 역할을 하는 것임을 고려할 때, 이동체(40)의 중량과 부피는 압전구동부(10, 20)에 과도한 부하로 작용할 수도 있다. 특히 상기 리니어모터가 휴대용 기기에 응용되는 경우, 이동체(40)의 과중량에 따른 에너지 소모량이 민감하게 고려될 수도 있다.
또한, 이동체(40)의 중량과 그에 결합된 다른 물체의 중량에 의한 하중은 이동축(30)의 직선운동 방향과 일치하지 않을 수 있다. 예를 들어 이동축(30)의 운동방향에 대해 수직으로 하중이 작용하면 이동축(30)의 직선운동방향이 틀어질 수도 있고, 그에 따른 운동 편차로 인해 이동체(40) 등의 운동량이 부정확하고 불안정하게 되는 문제가 있다. 이상과 같은 여러 점들을 고려할 때, 윤성일 등의 리니어모터는 여러 가지 측면에서 개선될 여지가 많다.
이상의 점들을 고려하여, 본 발명은 대상물과의 보다 안정적인 접촉을 통해 구동 편차를 최소화함으로써 그 대상물에 대한 보다 정확하고 안정적으로 구동할 수 있도록 구조적으로 개선된 압전 액추에이팅 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 구동축의 길이에 제한받지 않고 원하는 거리만큼 이동할 수 있도록 구조적으로 개선된 압전 액추에이팅 장치를 제공하는 것을 목적으로 한다.
본 발명은 또한 피구동체를 선형 이동시킬 때 그 피구동체의 이동 위치에 상관없이 일정한 크기의 힘을 제공함으로써 피구동체를 안정적이고 균일하게 선형 구동할 수 있는 압전 액추에이팅 장치를 제공하는 것을 목적으로 한다.
나아가, 본 발명은 피구동체의 구조에 따라 그 피구동체를 선형 구동뿐만 아니라 회전 구동도 할 수 있는 압전 액추에이팅 장치를 제공하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 피구동체를 구동하기 위한 압전 액추에이팅 장치가 제공된다. 이 압전 액추에이팅 장치는, 인가되는 구동전압의 변화에 의해, 고정된 진동작용점을 기준으로 진동을 일으키는 압전진동부재; 상기 압전진동부재가 진동할 때 최대 변위를 일으키는 지점에 하단부가 결합된 채 상기 압전진동부재의 표면에 대해 법선방향으로 연장되어, 상기 압전진동부재가 진동하면 그에 따라 상기 법선방향으로 진퇴를 반복하는 구동축; 상기 구동축의 타측 단부 또는 소정 부위에 연결되거나 결합되고, 상기 피구동체의 소정부위에 탄성적으로 접촉되어 상기 구동축의 진퇴에 부수하여 왕복운동을 하면서 상기 피구동체에 마찰력을 전달하는 탄성 마찰구동부를 구비하여, 상기 피구동체의 안내면과의 마찰력과 관성력 간의 차이에 의해 상기 피구동체에 대하여 구동력을 제공하는 것을 특징으로 한다.
본 발명의 다른 측면에 따르면, 피구동체를 구동하기 위한 다른 압전 액추에이팅 장치가 제공된다. 이 압전 액추에이팅 장치는, 인가되는 구동전압의 변화에 의해, 고정된 진동작용점을 기준으로 진동을 일으키는 압전진동부재; 상기 압전진동부재가 진동할 때 최대 변위를 일으키는 지점에 하단부가 결합된 채 상기 압전진동부재의 표면에 대해 법선방향으로 연장되어, 상기 압전진동부재가 진동하면 그에 따라 상기 법선방향으로 진퇴를 반복하는 구동축; 상기 구동축의 타측 단부 또는 소정 부위에 연결되거나 일체로 마련되고, 상기 피구동체의 소정부위에 탄성적으로 접촉되어 상기 구동축의 진퇴에 부수하여 왕복운동을 하면서 상기 피구동체에 마찰력을 전달하는 탄성 마찰구동부; 상기 압전진동부재의 상기 진동작용점에 결합되어 상기 압전진동부재를 진동 가능하게 지지해주는 진동지지부재; 및 상기 진동지지부재의 일측에서 상기 구동축 방향으로 연장되어 상기 구동축을 진퇴가능 하게 그 외측면을 지지하여 상기 구동축의 진퇴운동의 편차가 최소화되도록 안내하는 구동축 안내부를 구비하여, 상기 피구동체의 안내면과의 마찰력과 관성력 간의 차이에 의해 상기 피구동체에 대하여 구동력을 제공하는 것을 특징으로 한다.
상기 구동전압은 그의 진폭이 완만한 상승에 이은 가파른 하강을 주기적으로 반복하거나 또는 가파른 상승에 이은 완만한 하강을 주기적으로 반복하는 톱니파형이다. 그리고 그때 상기 압전진동부재는 진동을 일으켜 상기 탄성 마찰구동부가 스무드 임팩트 구동 메커니즘(Smooth Impact Drive Mechanism: SIDM)에 따라 상기 법선방향으로 느린 전진 후 빠른 후퇴를 주기적으로 반복하거나 또는 빠른 전진 후 느린 후퇴를 주기적으로 반복하면서 상기 피구동체의 안내면에 마찰력을 전달하게 하고, 그 결과 상기 액추에이팅 장치는 상기 마찰력과 (상기 피구동체와 상기 압전 액추에이팅 장치 중 적어도 어느 하나의) 관성력 간의 차이에 의해 상기 피구동체에 대하여 상기 안내면을 따라 상대 운동을 한다.
상기 압전 액추에이팅 장치는 상기 압전진동부재의 상기 진동작용점에 결합되어 상기 압전진동부재를 진동 가능하게 지지해주는 진동지지부재를 더 구비하는 것이 바람직하다.
상기 탄성 마찰구동부는 피구동체와의 결합 전에 비해 결합 후의 형상이 변화될(왜곡될) 수 있고 그러한 변화(왜곡)된 형상으로 인해 얻어지는 텐션에 의해 피구동체와 보다 확실한 접촉을 유지하는 구조로 만들어지거나, 또는 상기 구동축의 일부 또는 그 일부에 일체로 연결된 고강성 부재의 외면에 적절한 탄성을 갖는 재질을 도포하거나 그러한 재질로 만든 쉬트로 접합 내지 덮어씌운 형태로 구성되는 것일 수 있다. 그리고 상기 형상 변화로 인해 텐션을 얻은 상기 탄성 마찰구동부의 내부 또는 외부에 체결되어 상기 마찰구동부의 상기 내면을 바깥으로 밀거나 상기 외면을 안쪽으로 밀어주어 상기 마찰구동부의 상기 피구동체에 대한 탄성 접촉력을 강화시켜주는 스프링을 더 구비할 수 있다.
상기 압전진동부재는 상기 구동축의 방향으로 볼 때 상하로 배치되고 상기 구동전압이 인가되면 동기되어 진동을 하도록 구성된 복수 개의 압전진동부재를 포함할 수 있다.
그리고 상기 구동축과 상기 탄성 마찰구동부 간에는 레벨 차이가 존재하여, 상기 압전 액추에이팅 장치는 상기 피구동체에 대하여 상대 운동을 하는 동안에 상기 탄성 마찰구동부만 상기 피구동체와 접촉할 뿐 나머지 부분은 상기 피구동체와 부딪히지 않도록 구성될 수 있다.
상기 탄성 마찰구동부의 상기 왕복운동은 앞뒤로 진퇴를 반복하는 선형 왕복운동 또는 시계방향과 반시계방향으로 소정각도만큼 스윙하는 회전 왕복 운동 중 어느 한 가지이다.
상기 압전 액추에이팅 장치에 있어서, 상기 피구동체는 그의 길이방향으로 길게 평행하게 연장된 적어도 1개의 안내면을 가지고, 상기 탄성 마찰구동부는 상기 적어도 1개의 안내면과 탄성 접촉을 이루어 상기 마찰력을 전달함에 따라, 상기 압전 액추에이팅 장치는 상기 피구동체에 대하여 상기 적어도 1개의 안내면을 따라 선형적인 상대 운동을 구동하는 리니어 모터용 구동수단으로서 기능할 수 있다. 상기 적어도 1개의 안내면은 상기 피구동체의 길이방향으로 길게 마련된 일정한 폭을 가진 요홈부 내부의 양쪽 벽면, 또는 두 개의 평행한 안내레일 사이의 양쪽 벽면, 또는 상기 피구동체의 길이방향으로 길게 마련된 하나의 안내레일의 양쪽 측면일 수 있다.
한편, 상기 압전 액추에이팅 장치에 있어서, 상기 피구동체는 환형으로 마련된 적어도 1개의 안내면을 가지고, 상기 탄성 마찰구동부는 상기 적어도 1개의 환형 안내면과 탄성 접촉을 이루어 상기 마찰력을 전달함에 따라, 상기 압전 액추에이팅 장치는 상기 피구동체에 대하여 환형의 상대 운동을 구동하는 회전 모터용 구동수단으로서 기능할 수 있다. 그 경우, 상기 적어도 1개의 안내면은 상기 피구동체의 소정 부위에 환형을 이루며 마련된 요홈부 내부의 양쪽 벽면, 또는 반지름이 다른 두 개의 동심 환형 안내레일 사이의 양쪽 벽면, 또는 상기 피구동체의 피구동 디스크의 적어도 어느 한 면에서 환형으로 그려지는 표면 일부일 수 있다.
상기 압전 액추에이팅 장치에 있어서, 상기 탄성 마찰구동부는 탄성부재와 상기 탄성부재를 내삽하여 양쪽에서 누르면서 결합되어 상기 탄성부재의 탄성에 의해 서로간의 간격이 신축가능하게 결합되는 두 개의 원판형 부재를 포함하며, 상기 탄성 마찰구동부는 피구동체 사이에 끼워 넣어 상기 두 개의 원판형 부재가 약간 압축되면서 상기 피구동체의 표면에 탄성적으로 접촉되어, 상기 구동축 부재의 진퇴에 부수하여 소정의 각도 범위 내에서 스윙동작을 하면서 상기 피구동체에 마찰력을 전달하는 형태로 구성될 수 있다.
상기 압전 액추에이팅 장치에 있어서, 상기 압전진동부재와 한 몸체로 결합되어 상기 압전진동부재와 함께 진동하면서 상기 진동의 힘과 변위를 증폭시키는 웨이트부재를 더 구비할 수 있다.
상기 탄성 마찰구동부는 상기 구동축의 연장 방향으로 보아 전후로 또는 좌우로 배치된 복수 개의 탄성 마찰구동부를 포함하는 형태로 구성될 수 있다.
상기 압전 액추에이팅 장치에 있어서, 상기 탄성 마찰구동부는 상기 구동축의 측면 또는 끝 부분에 마련된 탄성 부재이고, 상기 피구동체는 상기 구동축에 외삽되어 상기 탄성 마찰구동부를 살짝 누르면서 그것과 밀착되는 형태로 상기 구동축에 결합되며, 그러한 결합에 의해 상기 피구동체는 상기 탄성 마찰구동부가 제공하는 상기 구동력에 의해 이동할 때 상기 구동축에 의해 가이드 되어 그 구동축을 따라 이동하는 것일 수 있다.
본 발명의 압전 액추에이팅 장치는 구동축이 피구동체와 직접 접촉하여 마찰력을 제공하는 방식이 아니라, 구동축에 별도의 탄성 마찰구동부를 마련하여 그 탄성 마찰구동부가 피구동체의 표면과 접촉하여 마찰력을 전달하는 구조를 취한다. 또한, 탄성 마찰구동부는 피구동체와 접촉하면서 비접촉 상태의 정상적인 형상에 변화(왜곡)가 생기고 그러한 변화(왜곡)에 의해 피구동체와 탄성적으로 접촉된다. 그러므로 피구동체에 전달하는 힘의 손실을 최소화될 수 있는 장점이 있다. 또한, 외부로부터 원하지 않는 충격 등이 인가되더라도 피구동체와의 안정적인 접촉 상태를 그대로 유지할 수 있어 구동력의 편차가 거의 일어나지 않아 피구동체를 정확하고 안정적으로 구동을 할 수 있다.
본 발명의 압전 액추에이팅 장치는 선형의 피구동체와 조합하여 사용하면 리니어 모터가 되고 원형의 피구동체와 조합하여 사용하면 회전 모터가 된다. 특히 리니어 모터로서 사용하는 경우, 구동축과 탄성 마찰구동부 간에 충분한 레벨 차이를 갖도록 설계하면, 압전 액추에이터가 피구동체에 걸리지 않고 그것의 전체 길이에 걸쳐 이동할 수 있다. 압전 액추에이터의 이동가능 거리가 압전 액추에이터의 구동축의 길이가 아닌 피구동체의 안내면의 길이에 의해 정해진다. 피구동체의 길이를 길게 하면 그만큼 이동가능 거리가 길어진다. 기존의 방식에 비해 훨씬 먼 거리를 이동할 수 있는 것이다.
또한, 종래기술에 따르면, 구동축과 피구동체 간의 안정적인 결합을 유지시켜주는 수단이 없었기에 피구동체가 압전진동부재로부터 멀어질수록 구동축으로부터 제공받는 힘이 약화되어 안정적인 이동은 물론이거니와 균질의 이동도 어려웠던 단점이 있었다. 이에 비해, 피구동체를 압전 액추에이터의 구동축에 외삽시키는 형태로 결합하는 본 발명의 실시예에 따르면, 피구동체는 구동축과 항상 일정한 간격을 유지하면서 그 구동축에 의해 안내되면서 이동을 하게 된다. 또한, 그러한 이동과정에서 피구동체는 구동축의 어느 위치에 있든지 상관없이 탄성 마찰구동부로부터 항상 균일한 마찰력(구동력)을 제공받을 수 있어 안정적이고 균질의 이동을 할 수 있다.
도 1 내지 도 3은 본 발명의 제1 실시예에 따른 압전 액추에이터(100)를 도시한 분해사시도와 조립상태도이다.
도 4는 압전진동부재의 구동전원으로 이용하는 톱니파 전압의 파형도이다.
도 5와 6은 제2 실시예에 따른 압전 액추에이터(200)의 구성을 도시한 분해사시도와 조립상태도이다.
도 7은 제3 실시예에 따른 압전 액추에이터(300)의 구성을 도시한 분해사시도이다.
도 8 내지 도 10은 제4실시예에 따른 압전 액추에이터(400)의 구성을 도시한 분해사시도, 조립상태도, 그리고 위에서 내려본 평면도이다.
도 11 내지 도 13은 제5 실시예에 따른 압전 액추에이터(500)의 분해사시도, 조립상태도 및 정면도이다.
도 14는 제6 실시예에 따른 압전 액추에이터(700)의 구성을 도시한다.
도 15는 제7 실시예에 따른 압전 액추에이터(800)의 구성을 도시한다.
도 16과 도 17은 제8 실시예에 따른 압전 액추에이터(900)의 구성을 도시한 분해사시도와 결합상태도이다.
도 18 내지 20은 제8 실시예의 변형예에 따른 압전 액추에이터의 구성을 도시한 분해사시도, 결합상태도 및 작동상태도이다.
도 21 내지 23은 제8 실시예의 또 다른 변형예에 따른 압전 액추에이터의 구성을 도시한 분해사시도, 결합상태도이다.
도 24와 25는 제9 실시예에 따른 압전 액추에이터(1000)의 구성을 도시한다.
도 26은 제10 실시예에 따른 압전 액추에이터(1100)의 구성을 도시한다.
도 27은 제11 실시예에 따른 압전 액추에이터(1200)의 구성을 도시한다.
도 28은 제12 실시예에 따른 압전 액추에이터(1300)의 구성을 도시한다.
도 29는 제13 실시예에 따른 것으로서, 복수의 압전 액추에이터(1000)를 회전모터 구동수단으로 이용하는 경우를 도시한다.
도 30 및 31은 제14 실시예에 따른 것으로서, 복수의 압전 액추에이터(1405)를 회전모터 구동수단으로 이용하는 다른 경우를 도시한다.
이하에서는 첨부도면을 참조하여 본 발명의 다양한 실시예들에 대하여 상세하게 설명한다. 도면 부호와 관련하여, 서로 다른 실시예에서 동일한 구성요소가 공통적으로 채용되는 경우 그 구성요소에 대해 동일한 도면번호를 부여하였다.
(1) 리니어 모터 구동수단으로서의 응용예
<제1 실시예>
도 1 내지 도 3은 본 발명의 제1 실시예에 따른 압전 액추에이터(100)를 도시한 분해사시도와 조립상태도이고, 도 4는 압전진동부재의 구동전원으로 이용하는 톱니파 전압의 파형도이다. 압전 액추에이터(100)는 압전진동부재(110), 진동지지부재(120), 구동축부재(130)를 포함한다.
압전진동부재(110)는 기판(112)을 사이에 두고 그 양면에 압전소자층(114, 116)이 접합된 바이모프 구조로서, 전체적으로는 직사각 판 모양을 지닌다. 물론 압전진동부재는 기판(112)의 한쪽 면에만 압전소자층이 접합된 유니모프 구조로 만들 수도 있다. 기판(112)은 수평 방향의 신축성은 없고 수직 방향으로의 탄성은 좋은 재질을 이용하는 것이 바람직하며, 도전성이 좋은 금속판으로 기판(112)을 전극단자(118)와 일체형으로 구성할 수도 있다. 압전소자층(114)과 (116) 각각은 단일 층 또는 적층된 복수 층의 압전소자층으로 구성될 수 있다. 각 압전소자층의 양면에는 전극층(비도시)이 각각 접합 되면서 두 개의 전극단자(118)에 각각 연결된다. 압전소자층은 PZT 계열의 압전세라믹으로 만드는 것이 바람직하나, 역압전효과를 제공하는 다른 물질을 이용할 수도 있음은 물론이다.
진동지지부재(120)는 대략 압전진동부재(110)의 길이만큼 연장된 브릿지부(122)의 양끝에 수납홈(126)을 갖는 결합홀더(124)가 각각 일체로 연결된 구조이다. 압전진동부재(110)는 결합홀더(124)의 수납홈(126)에 끼움 결합된다. 압전진동부재(110) 및 브릿지부(122)의 가운데 부분에는 결합공 (119)와 (128)이 각각 마련된다.
구동축부재(130)는 봉형(rod shape)의 구동축(132)과, 이의 하단과 상단에 각각 마련된 고정부(136)와 탄성 마찰구동부(134)를 포함한다. 고정부(136)는 브릿지부(122)의 결합공(128)을 관통하여 압전진동부재(110)의 결합공(119)에 체결됨으로써, 구동축부재(30)가 압전진동부재(110)에 대하여 법선방향으로 연장되는 형태로 결합된다. 탄성 마찰구동부(134)는 내부가 비어있는 원통형 내지 타원통형이고 자체적으로 어느 정도의 탄성력을 지니고 있다. 필요한 경우, 탄성 마찰구동부(134) 내부에는 탄성력을 보강하기 위한 스프링(140)에 설치될 수도 있다. 구동축부재(130)를 압전진동부재(110)에 직접 결합시키는 대신, 결합부(160)를 매개로 하여 결합시킬 수도 있다. 결합부(160)는 압전진동부재(160)에 끼움 결합됨과 동시에 고정부(136)와도 결합됨으로써, 구동축부재(130)를 압전진동부재(110)에 대해 수직되게 결합시켜준다. 결합부(160)를 고비중의 재질로 만들면 그 자체의 무게에 의해 압전진동부재(110)의 진동력과 진폭이 증폭될 수 있다.
이러한 압전 액추에이터(100)는 자신과 조화되는 피구동 대상체(이하, 간략히 '피구동체'라 함)를 필요로 한다. 도 1 내지 3에 도시된 피구동체(150)는 압전 액추에이터(100)가 자신과 접촉하여 자신에게 마련된 소정의 안내면을 따라 이동하거나 그 반대로 자신이 그 안내면을 따라 이동한다. 그 피구동체(150)는 평판형 기부(152)와, 이의 한쪽 면에 기부(152)의 길이방향으로 일정한 간격을 가지면서 나란히 연장되는 2개의 안내레일(154, 156)을 포함한다. 두 안내레일(154, 156) 사이에 탄성 마찰구동부(134)가 삽입된다. 두 안내레일(154, 156)의 마주 보는 두 안내면은 탄성 마찰구동부(134)의 양쪽 외측면과 면접촉을 이룰 수 있는 간격과 높이를 갖는다. 탄성 마찰구동부(134)가 탄성을 지닌 통형 구조이어서 안내레일(154, 156)의 두 안내면과 빈틈이 없는 면접촉을 만들 수 있다. 스프링(140)까지 사용하면 그러한 면접촉을 보다 빈틈이 없게 안정적으로 유지할 수 있다. 이러한 안정적인 면접촉에 의해 탄성 마찰구동부(134)는 피구동체(150)에게 마찰력을 제대로 전달할 수 있다.
이와 같은 구조의 압전 액추에이터(100)의 동작 메커니즘은 다음과 같다. 압전진동부재(110)의 전극단자(118)에 예컨대 정현파 교류 구동전압을 걸어주면, 그 교류 구동전압의 한 주기에 대응하여 제1압전소자층(112)과 제2압전소자층(114)은 역압전효과에 의해 다음과 같은 두 가지 상태를 반복한다: 첫째, 제1압전소자층(112)은 y축 방향으로는 (두께가) 수축하면서 x축 방향으로는 (길이가) 팽창함과 동시에, 제2압전소자층(114)은 이와 반대로 y축 방향으로는 (두께가) 팽창하면서 x축 방향으로는 (길이가) 수축하는 제1상태; 및 둘째, 제1압전소자층(112)은 y축 방향으로는 (두께가) 팽창하면서 x축 방향으로는 (길이가) 수축함과 동시에, 제2압전소자층(114)은 이와 반대로 y축 방향으로는 (두께가) 수축하면서 x축 방향으로는 (길이가) 팽창하는 제2상태. 압전진동부재(110)는 그의 양쪽 단부가 진동지지부재(120)에 고정되어 있기 때문에 그 양쪽 단부가 진동작용점이 되고 구동축부재(130)가 결합된 그의 가운데 부분이 최대변위를 일으키는 형태로 진동하게 된다. 압전진동부재(110)는 제1상태에서는 그의 가운데 부분이 +y 방향으로 볼록해지도록 휘어지고, 제2상태에서는 이와 반대로 그 가운데 부분이 -y방향으로 볼록해지도록 휘어진다. 압전진동부재(110)의 이와 같은 휘어짐의 반복(즉, 진동)에 따라 구동축부재(130)도 y축 방향으로 전진과 후퇴 즉, 선형 왕복운동을 반복하게 된다. 정현파처럼 대칭형 구동전압을 이용하는 경우, 구동축부재(130)의 전진과 후퇴가 같은 속력으로 이루어진다. 따라서 탄성 마찰구동부(134)가 안내레일(154, 156)에 전달하는 한 주기 동안의 마찰력의 합력은 영(0)이 되어 피구동체(150)에 대한 압전 액추에이터(100)의 상대 순이동량(a relative net movement)은 영(0)이다.
그런데 예컨대 톱니파형과 같이 파형의 진폭이 시간에 대하여 서서히 증가한 다음 어느 시점에서 갑자기 급속히 감소하는 형태의 전압(도 3의 (A) 참조) 또는 이와 반대 유형으로 변하는 전압(도 3의 (B) 참조)을 구동전압으로 이용하는 경우에는 피구동체(150)에 대하여 압전 액추에이터(100)를 원하는 방향으로 계속 전진시키거나 후퇴시킬 수 있다. 압전 액추에이터(100)의 중량에 의한 관성력과 탄성 마찰구동부(134)와 피구동체(150)의 안내면(154, 156) 사이의 마찰력과의 차이에 의해 압전 액추에이터(100)는 피구동체(150)의 안내면(154, 1565)을 따라 +y 방향 또는 -y 방향으로의 상대 운동을 한다.
구체적으로, 압전진동부재(110)의 전극단자(118)에 도 3의 (A)와 같은 톱니파형의 구동전압을 인가하는 경우를 고려하자. 구동전압이 완만하게 상승하는 구간에서는 그 파형의 기울기에 대응하는 속도로 그 압전진동부재(110)의 가운데 부분이 +y 방향으로 볼록하게 휘어지고 그에 따라 탄성 마찰구동부(134)가 +y 방향으로 전진한다. 탄성 마찰구동부(134)의 전진 속도가 상대적으로 느리므로 마찰력에 의해 피구동체(150)를 +y방향으로 밀게 된다. 즉, 피구동체(150)가 고정된 경우 압전 액추에이터(100)는 -y방향으로 이동하게 된다. 그러다가 구동전압이 급격하게 감소하는 구간에서는 압전진동부재(110)는 매우 빠른 속도로 반대방향으로 휘어지고 그에 따라 탄성 마찰구동부(134)는 -y 방향으로 후퇴한다. 탄성 마찰구동부(134)의 후퇴가 압전 액추에이터(100)의 관성력이 남아있는 상태에서 이루어지고 그것의 후퇴 속도가 전진 속도에 비해 더 빠르므로 탄성 마찰구동부(134)는 피구동체(150)에 대하여 슬립 되면서 자신만 후퇴할 뿐이다. 그러므로 압전 액추에이터(100)는 피구동체(150)에 대해 이동하지 않은 결과가 된다. 결국, 압전 액추에이터(100)는 한 주기당 수 nm 내지 수십 nm의 거리를 -y 방향으로 이동할 수 있게 된다. 매주기마다 이와 같은 구동이 반복됨으로써 압전 액추에이터(100)는 피구동체(150)의 안내면(154, 156)을 따라 -y방향으로 이동하게 된다. 이와 같이 관성력을 이용한 구동 메커니즘을 스무드 임팩트 구동 메커니즘(Smooth Impact Drive Mechanism: SIDM)이라 한다. 도 3의 (A)와 같은 톱니파형의 구동전압을 인가하는 경우에는, 압전 액추에이터(100)는 피구동체(150)의 안내면(154, 156)을 따라 +y방향으로 이동한다.
<제2 실시예>
도 5와 6은 제2 실시예에 따른 압전 액추에이터(200)의 구성을 도시한 분해사시도와 조립상태도이다. 압전진동부재(210)의 한쪽 끝 부분만 진동지지부재(220)에 고정되는 점과, 구동축부재(130)가 압전진동부재(210)의 가운데가 아니라 한쪽 끝 부분에 결합되는 점이 제1 실시예와 다른 점이다. 진동지지부재(220)는 몸체부(222)의 바닥에서 압전진동부재(210)의 최대 진동폭보다 더 높은 위치에 고정슬롯(224)이 마련된다. 압전진동부재(210)의 전극단자(118)가 마련된 일측 단부가 그 고정슬롯(224)에 삽입 고정된다. 압전진동부재(210)의 타측 단부 근처에는 구동축부재(130)와 결합하기 위한 결합공(219)이 마련된다.
톱니파형의 구동전압이 인가되면, 압전진동부재(210)는 진동지지부재(220)에 결합된 단부가 진동작용점이 되고 반대쪽 단부가 최대 변위를 나타내는 형태로 선회운동을 하고, 그에 따라 구동축부재(130)는 SIDM 방식으로 선형 왕복운동을 하여 피구동체(150)를 구동한다. 진동지지부재(220)를 제3의 물체에 고정시킨 경우, 피구동체(150)의 두 안내레일(154, 156)은 탄성 마찰구동부(134)에 대하여 상대운동을 하여 +y축 방향 또는 -y축 방향으로 직선 이동을 한다.
<제3 실시예>
도 7은 제3 실시예에 따른 압전 액추에이터(300)의 구성을 도시한 분해사시도이다. 압전진동부재(310)가 코인형이라는 점이 제1 실시예와 다른 점이다. 이 코인형 압전진동부재(310)는 원형 기판(312)의 양면에 제1압전소자층(314)과 제2압전소자층(316)이 접합되고, 그 중심에 결합공(318)이 마련된다. 제1 및 제2 압전소자층(314)은 단층 또는 적층된 복수의 압전소자층으로 구성될 수 있으며, 각 압전소자층의 양면에는 구동전압이 인가될 수 있도록 전극층들(비도시)이 마련되고, 그 전극층들은 두 전극단자(318)에 각각 연결된다. 구동축부재(130)는 그의 결합부(136)가 그 결합공(318)에 체결되어 압전진동부재(310)에 수직 결합된다. 진동지지부재(320)는 원형 내지 도넛형의 기부(322)와, 이의 가장자리 세 곳에서 각각 수직으로 마련된 결합홀더(324)를 갖는다. 압전진동부재(310)는 그의 가장자리 세 곳이 결합홀더(324)에 끼움 결합 됨으로써 진동지지부재(320)에 결합된다.
톱니파형의 구동전압이 전극단자(318)에 인가되면, 압전진동부재(310)는 진동지지부재(320)에 붙잡힌 가장자리 부위가 진동작용점이 되고 그의 가운데 부분이 최대변위를 일으키는 형태로 진동을 한다. 앞의 실시예에서 설명한 것처럼 구동축부재(130)는 압전진동부재(310)에 의해 SIDM방식으로 구동되어 피구동체(150)에 마찰력을 전달한다. 그에 따라, 피구동체(150)가 고정된 경우에는 압전 액추에이터(300)가 피구동체(150)를 따라 +y축 방향 또는 -y축 방향으로 계속 이동하고, 압전 액추에이터(300)를 고정시킨 경우에는 피구동체(150)가 +y축 방향 또는 -y축 방향으로 계속 이동하게 된다. 압전진동부재를 정사각형 디스크 형태로 변형해도 같은 방식으로 구동된다.
<제4 실시예>
도 8 내지 도 10은 제4실시예에 따른 압전 액추에이터(400)의 구성을 도시한 분해사시도, 조립상태도, 그리고 위에서 내려본 평면도이다. 보다 큰 구동력을 얻기 위해 압전진동부재(110) 2개를 앞뒤로 나란히 배치한 이중 압전진동부재(410)를 채용한 점에 특징이 있다. 구동축부재(430)는 구동축(432)의 상단에는 중공(438) 원통형 탄성 마찰구동부(437)가 연결되고 구동축(432)의 하단에는 결합부가 연결된다. 탄성 마찰구동부(437)는 그 내부가 중공(438) 상태이고 약간의 연성을 갖는 재질로 만들어져서, 외부에서 가해지는 힘에 대해 탄성적으로 반발한다. 결합부는 구동축(432)의 끝에 마련된 제1스토퍼(433)와, 구동축(432)과 동일 축선 상으로 연장된 결합축(434), 그 결합축(434)의 중간 지점에 배치되는 스페이서(436), 그리고 그 결합축(434) 하단에 마련된 제2스토퍼(435)를 포함한다. 두 개의 압전진동부재(410)는 제1스토퍼(433)와 스페이서(436) 사이 및 스페이스(436)와 제2스토퍼(435) 사이의 결합축(434)에 각각 결합된다. 결합부는 도 8에 439번으로 표시된 것과 같이, 몸체가 구동축(432)의 하단에 연결되고, 그 몸체에는 두 개의 압전진동부재(410)가 끼움 결합되는 두 개의 슬롯이 마련된 형태로 구성될 수도 있다.
두 개의 압전진동부재(410)는 진동지지부재(420)에 진동가능하게 결합된다. 진동지지부재(420)는 압전진동부재(410)보다 길이가 더 긴 직사각 판형의 기부(421)와, 이의 양단에 마련된 체결공(422)에 나사(427)로 각각 체결되는 결합홀더(423)를 갖는다. 결합홀더(423)는 몸체의 수직면의 소정 높이에 두 개의 고정슬롯(424, 425)이 마련되고, 몸체의 바닥면에 체결공(426)이 마련된다. 압전진동부재(410)는 그 양측 단부가 그 고정슬롯(425, 425)에 각각 삽입 고정됨으로써 진동지지부재(420)에 결합된다. 제2스토퍼(436)의 후진 공간을 제공하기 위해 기부(421)의 가운데 부위에 구멍(428)을 마련할 수도 있다. 탄성 마찰구동부(437)는 피구동체(150)의 안내레일(154, 156)에 끼움삽입 된다.
한 쌍의 압전진동부재(410) 각각에 동일한 톱니파형의 구동전원을 인가하면, 두 압전진동부재(410)는 결합홀더(423)에 고정된 그 양쪽 단부가 진동작용점이 되어 가운데 부분이 최대변위를 일으키면서 동기적으로 진동을 한다. 그 진동은 구동축부재(430)를 '느린 전진과 빠른 후퇴를 반복'하게 하거나 또는 '빠른 전진과 느린 후퇴를 반복'하게 한다. 그에 따라 피구동체(150)와 결합된 압전 액추에이터(400)는 구동축부재(430)가 SIDM방식으로 전진과 후퇴를 반복하는 선형 왕복운동을 하면서 스스로 선형 이동을 하거나(피구동체(150)가 고정된 경우) 또는 피구동체(150)를 선형 이동시킨다(압전 액추에이터(400)가 고정된 경우). 이 압전 액추에이터(400)는 두 개의 압전진동부재(410)로 구동하므로 보다 큰 구동력을 얻을 수 있다.
앞에서 설명한 제1 내지 제4 실시예의 압전 액추에이터(100, 200, 300, 400)도 탄성 마찰구동부(134, 437)가 구동축(132, 432)에 대하여 일직선상에 위치하는 것이 아니라 충분한 높이의 단차(레벨 차이)를 가지도록 설계를 변경하면, 압전 액추에이터(100, 200, 300, 400)는 피구동체(150)에 대하여 선형 상대운동을 할 때 서로 간에 걸리지 않고 그 피구동체(150)의 전체 길이를 이동할 수 있음은 물론이다. 이하에서 설명하는 제5 실시예의 압전 액추에이터(500)는 이러한 개념으로 설계한 것이다.
<제5 실시예>
도 11 내지 도 13은 제5 실시예에 따른 압전 액추에이터(500)의 분해사시도, 조립상태도 및 정면도이다. 이 실시예의 특징은 구동축 안내부가 더 마련된다는 점과 구동축부재(530)의 구동축(532)과 탄성 마찰구동부(534) 간에 레벨 차이를 갖는다는 점이다.
진동지지부재(520)는 직사각판 모양의 기저부(521)의 양단에 각각 마련된 두 개의 결합공(522)에 두 개의 결합홀더(423)가 나사(427)로 체결된다. 그리고 이 진동지지부재(520)에 구동축 안내부가 일체로 마련된다. 구체적으로, 구동축 안내부는 진동지지부재(520)의 기부(521)의 상측 중간 부위에서 구동축(532) 방향으로 연장된 안내판(524)과, 그 안내판(524)의 단부에서 아래쪽으로 직각으로 절곡된 제1안내편(525)을 포함한다. 또한, 기저부(521)와 제1안내편(525) 사이에 제2안내판(527)을 더 마련될 수도 있다. 제1안내편(525)과 제2안내편(527)의 가운데 부위에는 제1관통공(526)과 제2관통공(528)이 각각 마련된다. 압전진동부재(110)는 그 양 단부가 결합홀더(423)에 마련된 슬롯에 끼움 결합 됨으로써, 진동지지부재(520)에 진동가능하게 지지된다.
구동축부재(530)는 구동축(532)과, 이의 하단부에 마련된 결합부(536)와, 구동축(532)의 축선과 탄성 마찰구동부(534) 간의 레벨 차이를 제공하기 위해 구동축(532)의 상단부에서 상방으로 절곡된 단차부(533)와, 그 단차부(533) 끝에 상방으로 연장된 U자 형상의 탄성 마찰구동부(534)를 포함한 구조로 마련된다. 탄성 마찰구동부는 예컨대 타원통 형상이나 기타 다른 형상(단차부(533)에서 다시 구동축(532) 방향으로 절곡시켜 그 방향으로 누운 U자형 또는 원통 내지 타원통형의 탄성 마찰구동부)으로 설계 변경이 가능함은 물론이다.
구동축부재(530)는 구동축(532)이 제1관통공(526)과 제2관통공(528)을 관통하여 제1안내편(525)과 제2안내편(527)에 (진퇴가 방해 없이 보장되도록) 느슨하게 지지된 채, 그의 결합부(536)가 압전진동부재(110)의 결합공(119)에 결합된다.
이러한 구조의 압전 액추에이터(500)는 예컨대 도시된 피구동체(550)에 맞물린다. 피구동체(550)는 기부(552)의 저면에 안내레일(554)이 길이방향으로 길게 연장된 구조일 수 있다. 이 경우, 탄성 마찰구동부(534)는 그 양 팔부가 안내레일(554)의 양 측면을 감싸는 형태로 접촉된다. 탄성 마찰구동부(534)와 안내레일(554) 간의 결합력을 강화하기 위해 탄성 마찰구동부(534)의 바깥 면에 체결되어 안쪽으로 밀어주는 U자형의 탄성스프링(538)을 이용할 수도 있다. 탄성 마찰구동부(534)는 피구동체(150)에도 적용될 수 있음은 물론이다. 이 경우 결합력 강화를 위한 U자형 탄성스프링은 탄성 마찰구동부(534)의 안쪽 면에 체결되어 바깥쪽으로 밀어주는 것을 사용하면 된다.
톱니파 구동전압을 압전진동부재(110)에 인가하여 SIDM 방식으로 피구동체(550)를 구동하는 메커니즘은 앞의 실시예들과 같다. 이 실시예의 특징은 그러한 SIDM 방식의 구동에 있어서 구동축(532)이 구동축 안내부(524, 525,526, 528)에 의해 안내됨으로써 y축 방향으로 전진과 후퇴의 선형 왕복운동을 항상 일정하게 할 수 있다는 점이다. 구동축 안내부가 있으므로 해서 구동축(532)의 선형운동이 불균일(예: 구동축의 왕복 경로에 편차가 생기고 그에 따라 피구동체에 전달하는 힘에도 차이가 생겨 주기당 이동거리가 일정하지 않게 되는 문제)하게 될 수 있는 여지를 원천적으로 막을 수 있다.
탄성 마찰구동부(534)와 구동축(532) 간의 레벨 차이로 인해 탄성 마찰구동부(534)가 구동축(532)보다 더 높은 지점에 위치하므로 압전 액추에이터(500)는 피구동체(550)에 대하여 상대 운동을 하는 동안에 탄성 마찰구동부(534)와만 접촉할 뿐 나머지 부분은 상기 피구동체(550)와 부딪히지 않아 피구동체(550)의 길이의 전 구간에 걸쳐 걸림이 없이 상대 이동을 할 수 있다.
또한, 보다 큰 구동력을 얻기 위해 압전 액추에이터(500)를 피구동체(550)의 길이방향을 따라 일렬로 복수 개 배치한 형태로 이용할 수도 있다. 주어진 설치 조건에 따라 그 복수의 압전 액추에이터(500)는 같은 방향으로 배치하거나 또는 서로 마주보도록 반대방향으로 배치할 수 있다. 구동축부재(530)의 단차부(533)의 길이와 구동축(532)의 길이가 짧은 구조와 긴 구조의 2개의 압전 액추에이터(500)를 상하로 배치한 형태로 이용할 수도 있을 것이다.
<제6 실시예>
도 14는 제6 실시예에 따른 압전 액추에이터(700)의 구성을 도시한다. 제5 실시예의 압전 액추에이터(500)와 비교할 때 구동축부재(730)의 구조가 다르고 나머지 구성은 동일하다. 구동축부재(730)가 제5실시예의 구동축부재(530)와 다른 점은 탄성 마찰구동부가 2개 마련된다는 점이다. 즉, 탄성 마찰구동부(734)는 'ㄷ'자 모양의 단차부(733)의 양단에 2개의 U자형 탄성 마찰구동부(734-1, 734-2)가 일체로 연결된 구조를 갖는다. 단차부(733)는 구동축(732)의 상단부에 대해 수직이 되게 결합된다. 이 압전 액추에이터(700)와 조합될 수 있는 피구동체는 예컨대 도 1에 도시된 두 개의 안내레일(154, 156)을 갖는 피구동체(150)일 수 있다. 피구동체(150)의 안내레일(154)과의 마찰력을 강화하기 위해 각 탄성 마찰구동부(734-1, 734-2)의 외측 또는 내측에는 U자형 스프링이 더 부가될 수 있음은 물론이다. 이의 구동 메커니즘은 앞의 실시예들과 다를 바가 없다. 구동축(732)을 정면에서 보았을 때 탄성 마찰구동부(734-1, 734-2)는 안내판(524)보다 더 높은 위치에 배치되어, 압전 액추에이터(700)는 피구동체(150)의 전체 길이에 걸쳐 이동하는 것이 가능하다.
<제7 실시예>
도 15는 제7 실시예에 따른 압전 액추에이터(800)의 구성을 도시한다. 이것 역시 제5 실시예의 압전 액추에이터(500)와 비교할 때 구동축부재(830)의 구조가 다르고 나머지 구성은 동일하다. 2개의 U자형 탄성 마찰구동부(834-1, 834-2)가 구동축부재(830)의 구동축(832)의 상단이 아니라 측면의 소정 위치에서 구동축(832)에 대하여 수직 연장된 단차부(833)에 연결된다. 이것의 구동 메커니즘도 앞의 실시예들과 같으며, 단차부(833)를 충분히 길게 하면 압전 액추에이터(800)가 피구동체에 걸리지 않고 그것의 전체 길이에 걸쳐 이동할 수 있다.
<제8 실시예>
도 16과 도 17은 제8 실시예에 따른 압전 액추에이터(900)의 구성을 도시한 분해사시도와 결합상태도이다. 이 실시예는 압전 액추에이터(900)가 카메라 렌즈 구동메커니즘으로 응용된 예에 관한 것이다. 구동축부재(930)가 진동지지부재(420: 421, 423, 427)에 고정된 압전진동부재(110)의 최대변위 지점(즉, 가운데 지점)에 수직 결합되는 것은 이전 실시예들과 같다. 물론 압전진동부재(110)는 진동지지부재(420)를 매개하지 않고 직접 카메라 본체(비도시)에 고정될 수도 있다. 구동축부재(930)는 측면의 일부가 각이 지고 봉 형상으로 길게 연장된 구동축(932)과, 압전진동부재(110)와 결합하기 위해 구동축(932)의 하단에 마련된 고정부(933)와, 구동축(932)의 측면의 임의의 지점에 탄성 마찰구동부(939)가 마련된다. 탄성 마찰구동부(939)는 그의 일측 단부가 구동축(932)의 측면에 고정된 채 바깥쪽으로 비스듬히 약간 연장된 다음 구동축(932)의 측면과 거의 평행하게 연장되는 탄성판이다. 구동축(932)은 측면의 일부를 길이방향을 따라 디컷하거나 홈을 만들고, 그 일부와 접촉하는 피구동체(950)의 부분도 그에 대응되는 짝 모양으로 만들어, 피구동체(950)가 구동축(932)을 따라 이동할 때 구동축(932)의 원주방향으로 회전하지 못하도록 하는 것이 바람직하다. 피구동체(950)는 렌즈(953)가 장착되는 렌즈브라켓(952)과, 그 렌즈브라켓(952)과 결합되어 한 몸으로 연결된 활주이동부(954)로 구성된다. 이 활주이동부(954)는 렌즈브라켓(952)의 가장자리의 한 지점에서 수직으로 소정길이 직립한 기판부(955)와, 그 기판부(955)의 상단과 하단에서 렌즈브라켓(952)과 반대쪽으로 수직 연장된 제1 및 제2 결합부(956, 957)로 구성된다. 그 제1 및 제2 결합부(956, 957)는 가운데 지점에 결합공(958, 959)이 각각 마련되어 그것을 통해 구동축(932)에 활주 가능하게 외삽된다. 활주이동부(954)가 구동축(932)에 끼워진 상태에서는 도 17에 도시된 것처럼 활주이동부(954)의 기판부(955)의 안쪽 면이 탄성 마찰구동부(939)와 맞닿아 누르는 상태가 유지된다.
압전진동부재(110)에 톱니파와 같은 구동전원이 공급되면 구동축(932)이 SIDM 방식으로 진퇴하고, 그에 부수하여 탄성 마찰구동부(939)는 자신과 탄성 접촉되어 있는 활주이동부(954)의 기판부(955) 안쪽 면에 힘을 가하여 피구동체(950)가 구동축(932)을 타고 활주 이동하도록 한다. 피구동체(950)가 구동축(932)을 따라 이동하는 방향은 구동전원의 파형에 따라 결정된다. 피구동체(950)가 이동하는 경로 상에는 예컨대 디지털 카메라의 촬상소자 모듈(960)이 그 카메라 본체(비도시)에 고정되어 있다. 피구동체(950)가 구동축(932)을 따라 이동함에 따라 렌즈(953)와 촬상소자 모듈(960) 간의 이격거리가 조정된다. 기판부(955)의 길이는 피구동체(950)의 이동거리를 제한하는 요소이므로 필요한 이동거리를 고려하여 적절히 정할 필요가 있다.
특히 본 실시예에 따른 압전 액추에이터는 앞의 실시예들과는 다른 독특한 특징을 지닌다. 피구동체인 활주이동부(954)는 구동축(932)에 외삽되어 탄성 마찰구동부(939)를 약간 누르면서 그것과 접촉되는 형태로 구동축(932)에 결합된다는 점이다. 그러한 결합에 의해 활주이동부(954)는 탄성 마찰구동부(939)가 제공하는 구동력에 의해 이동할 때 구동축(932)에 의해 가이드 되어 그 구동축(932)을 따라 이동한다. 구동축(932)은 피구동체에 대하여 가이드축의 역할도 병행한다. 그리고 피구동체가 구동축(932)의 어느 지점으로 이동하는지 관계없이 탄성 마찰구동부(939)로부터 항상 일정한 크기의 구동력(마찰력)을 제공받을 수 있다.
도 18 내지 20에는 제8 실시예의 변형예에 따른 압전 액추에이터 장치의 구성을 도시한다. 제8 실시예에 비해 구동축부재(1930)와 피구동체(1950)의 구조에서 차이가 있다. 구동축부재(1930)는 원형 봉 형상으로 만들어진 구동축(1932)과, 구동축(1932)의 하단에 마련되어 압전진동부재(110)의 최대변위 지점과 결합되는 결합부(1933), 그리고 구동축(1932)의 대략 가운데 부분에 체결되어 축방향으로의 움직임이 없도록 고정되는 탄성 마찰구동부(1939)를 포함한다. 구체적으로, 구동축(1932)은 대략 가운데 높이에서 소정 길이 구간을 나머지 길이 구간에 비해 굵기가 더 가늘게 만든다. 그리고 그 얇은 구간에는 탄성 마찰구동부로 기능하는 반원형의 판스프링(1939)이 체결된다. 구동축(1932)을 축방향에서 봤을 때 판스프링(1939)의 표면이 구동축(1932)의 굵은 부분의 높이보다 좀 더 높다. 피구동체(1950)는 중공 원통형으로 마련된다. 피구동체(1950)의 중공의 반지름은 구동축(1932)의 굵은 부분의 반지름보다는 크고 구동축(1932)의 중심축선에서 판스프링(1939)의 바깥표면까지의 지름보다는 작은 정도의 크기로 만든다. 구동축(1932)에 판스프링(1939)이 체결된 상태에서, 중공 원통형 피구동체(1950)를 구동축(1932)에 외삽하면, 피구동체(1950)의 중공의 내측면이 판스프링(1939)을 누르면서 밀착된다. 판스프링(1939)은 자체의 탄성에 의해 그의 바깥면이 피구동체(1950)의 중공면과 밀착된 상태를 유지한다.
이러한 결합 상태에서, 압전진동부재(110)에 도 4에 도시된 것과 같은 톱니파형 구동전압을 인가하여 진동시키면, 구동축(1932)과 판스프링(1939)은 빠른 전진(또는 빠른 후퇴)과 느린 후퇴(또는 느린 전진)를 주기적으로 반복하게 된다. 그리고 그러한 전진과 후퇴의 반복 움직임에 의해 피구동체(1950)는 구동축(1932)을 따라 이동하게 된다. 피구동체(1950)를 움직이게 하는 힘은 피구동체(1950)와 판스프링(1932) 즉, 탄성 마찰구동부 간의 마찰력과 피구동체(1950) 자신의 운동관성력 간의 차이에 해당하는 힘이다. 도 20의 (a)와 (b)는 압전진동부재(110)를 기준으로 피구동체(1950)가 구동축(1932)을 따라 가장 멀리 이동한 상태와 가장 가까이 접근한 상태를 각각 도시하고 있다.
이 변형예는 앞의 제8 실시예와 같은 장점을 갖는다. 즉, 피구동체(1950)는 구동축(1932)에 외삽된 결합상태를 이루므로 항상 구동축(1932)의 안내를 받으면서 안정적으로 이동을 하게 된다. 또한 위치에 상관없이 판스프링(1939)으로부터 거의 일정한 크기의 마찰력을 전달받을 수 있어 균일한 이동을 할 수 있다.
다음으로, 도 21 내지 23은 제8 실시예의 또 다른 변형예에 따른 압전 액추에이터 장치의 구성을 도시한다. 이 변형예도 제8 실시예에 비해 구동축부재(2930)의 구성에서 차이를 가진다. 구동축부재(2930)는 원형 봉 형상의 구동축(2932)과, 이 구동축(2932)의 하단에 마련되어 압전진동부재(110)의 최대 변위지점과 결합되는 결합부(2933), 그리고 구동축(2932)의 상단부에 고정되며 중공 원통형 피구동체(2950)의 내부 중공면과 접촉을 이루어 마찰력을 전달하는 U자형 탄성 판재(2939)를 포함한다. U자형 탄성 판재(2939)는 탄성 마찰구동부로 기능한다. U자형 탄성 판재(2939)는 그 가운데 바닥부가 구동축(2932)의 상면에 고정되고, 그 바닥부의 양단에서 위로 연장된 두 날개부의 바깥면은 구동축(2932)의 상면을 약간 벗어나는 정도의 간격을 갖는다. 피구동체(2950)와의 보다 확실한 접촉상태를 유지할 수 있도록, U자형 탄성판재(2930)의 두 날개부는 끝쪽으로 가면서 약간 더 벌어진 형태로 만드는 것이 바람직하다. 피구동체(2950)의 중공부의 지름은 구동축(2932)의 지름보다 약간 크고 U자형 탄성 판재(2939)의 두 날개부의 최대 이격 간격보다는 작게 만든다. 피구동체(2950)가 구동축(2932)에 외삽되면, 피구동체(2950)의 중공면은 U자형 탄성 판재(2939)에 밀착된다.
이러한 결합 상태에서, 압전진동부재(110)를 톱니파형 구동전압으로 진동시키면, 피구동체(2950)는 U자형 탄성 판재(2939)로부터 SIDM방식으로 마찰력을 전달받아 그 마찰력과 자신의 운동관성력 간의 차이의 힘을 받아 구동축(2932)을 따라 이동하게 된다. 이 경우에도 피구동체(2950)는 구동축(2932)과 외삽 결합된 상태에 있으므로 항상 그 구동축(2932)의 안내를 받으면서 이동을 하게 되어, 안정적이고 균일한 이동을 할 수 있다.
위에서 설명한 제8실시예의 변형예에서, 구동축은 그것의 바깥면의 일부를 길이방향으로 디컷하여 만들고, 이에 대응하여 피구동체의 구동축과의 결합면도 짝형상으로 디컷하여 만들어서, 피구동체는 구동축의 길이방향으로만 활주 이동할 수 있도록 하고 구동축의 원주방향으로는 회전하지 못하도록 구속되도록 하는 것이 바람직하다.
위에서 설명한 압전 액추에이터들은 선형의 피구동체를 구동대상으로 한 선형구동수단(즉, 리니어 모터)으로 이용하는 경우를 예로 하여 설명하였지만, 반드시 그러한 용도에 한정되는 것이 아니다. 피구동체의 형상에 따라 회전구동수단(즉, 회전 모터)으로도 기능할 수 있다. 또한 탄성 마찰구동부와 접촉하여 상대운동을 하는 피구동체 부위의 형상이 임의의 곡선주로인 경우에는 그것을 따라 활주하는 활주구동수단으로서 기능할 수 있다. 또한, 효과적인 회전구동이나 활주구동을 위해 위의 설명을 바탕으로 압전 액추에이터의 구조를 적합하게 변경할 수도 있다. 이하에서는 본 발명의 압전 액추에이터를 회전구동수단으로 이용하는 응용예들에 대해서 설명한다.
(2) 회전 모터 구동수단으로서의 응용예
<제9 실시예>
도 24와 25에 도시된 압전 액추에이터(1000)는 예컨대 제5 실시예에 따른 압전 액추에이터(500)의 구성과 실질적으로 거의 동일하다. 다만, 구동축부재(1030)의 탄성 마찰구동부(1034)가 원통형 모양이고 다른 형상의 단차부(1033)를 채용하는 점만 다를 뿐이다. 탄성 마찰구동부(1034)는 구조 및/또는 재질 특성상 자체적으로 어느 정도의 탄성을 가진다. 탄성 마찰구동부(1034)의 측벽을 탄성적으로 지지해주기 위해, 탄성 마찰구동부(1034) 내부에 반원형 판스프링(1038)을 내장시킬 수도 있다.
피구동체(1050)는 원판형 내지 원통형 몸체(1052)의 중심에서 구동축(1056)이 수직으로 연장되고 그 몸체(1052)의 상면에 구동축(1056) 둘레를 한 바퀴 포위하는 환형 내지 링형 피구동홈(1054)이 형성된다. 압전 액추에이터(1000)는 구동축부재(1030)가 그 피구동체(1050)의 상면을 가로질러 덮으면서 탄성 마찰구동부(1034)가 피구동홈(1054) 안에 끼움 삽입되는 형태로 결합된다. 탄성 마찰구동부(1034)의 외측면 두 곳이 피구동홈(1054)의 좌우 측벽면과 접촉된다.
톱니파형의 구동전압이 압전진동부재(110)에 인가되어 구동축부재(1030)가 SIDM 방식으로 전진과 후퇴를 계속적으로 반복하면서 탄성 마찰구동부(1034)가 피구동홈(1054)의 좌우 측벽면에 마찰력을 전달한다. 그 마찰력에 의해 피구동체(1050)는 회전축(1056)을 중심으로 구동전압 파형이 규정하는 한쪽 방향(+θ방향 또는 -θ방향)으로만 회전하도록 강제된다. 그에 따라 회전을 하게 된다.
회전 구동을 당하는 피구동체의 형상이나 구조는 응용예에 따라 다양할 수 있다. 구동축부재의 구조 특히 탄성 마찰구동부의 구조 및 그 탄성 마찰구동부와 구동축 간에 단차를 주기 위한 단차부의 길이나 연장방향 등은 피구동체의 형상이나 구조에 적합하도록 설계될 필요가 있다.
<제10 실시예>
예컨대 도 26에 도시된 것처럼 피구동체(1150)가 원판형 내지 원통형 본체(1152)의 상면에 회전축(1156)을 중심으로 하여 그것을 한 바퀴 포위한 환형 피구동벽체(1154)가 마련된 구조인 경우를 고려하자. 압전 액추에이터(1100)의 구동축부재(1130)는 구동축(1132)의 끝부분에서 아래쪽으로 향해 입이 벌어진 U자형 탄성 마찰구동부(1134)가 연결된다. 그 탄성 마찰구동부(1134)의 벌어진 입에 환형 피구동벽체(1154)가 삽입되는 형태로 압전 액추에이터(1100)와 피구동체(1150)가 결합된다. 탄성 마찰구동부(1134)의 바깥쪽에 U자형 판스프링(1138)을 체결시켜 탄성 마찰구동부(1134)가 환형 피구동벽체(1154)의 양 측면에 보다 확실하게 접촉하도록 하는 것이 바람직하다. 이와 같은 구조와 결합관계에 의하면, 압전 액추에이터(1100)의 구동축부재(1130)는 SIDM방식으로 구동됨에 따라 직선상으로 전진과 후퇴를 반복하고, 그에 따라 탄성 마찰구동부(1134)는 환형 피구동벽체(1154)를 같은 방향으로 계속 밀거나 또는 당기게 된다. 그러면 피구동체(1150)는 회전축(1156)을 중심으로 시계방향 또는 반시계방향으로 회전하게 된다.
<제11 실시예>
또 다른 응용예로서, 도 27에 도시된 것과 같이 피구동체(1250)가 원판형 내지 원통형 본체(1252)의 상면에 회전축(1256) 방향으로 약간 이격되어 본체(1152)와 평행한 피구동 디스크(1254)가 마련된 구조인 경우를 고려하자. 위와 마찬가지로 압전 액추에이터(1200)의 탄성 마찰구동부(1234)가 이 피구동 디스크(1254)를 SIDM 방식으로 밀거나 당김으로써 피구동체(1250)를 회전 구동시킬 수 있다. 이를 위해, 구동축부재(1230)는 구동축(1232)의 끝 부분에 입이 좌측 또는 우측 방향으로 향하는 U자형 탄성 마찰구동부(1234)가 일체로 연결된 구조로 만들어진다. 피구동 디스크(1254)가 압전 액추에이터(1200)의 탄성 마찰구동부(1234)의 입 안으로 끼움 삽입됨으로써, 압전 액추에이터(1200)와 피구동체(1250)가 결합된다. U자형 스프링(1238)을 그 탄성 마찰구동부(1234)에 체결하여 탄성 마찰구동부(1234)와 피구동 디스크(1254) 간의 접촉력을 강화하는 것은 앞의 예와 같다.
<제12 실시예>
또 다른 예로서, 도 28에 도시된 것과 같이 피구동체(1350)가 원판형 내지 원통형 본체(1352)의 측면 둘레를 따라 소정 깊이의 환형 피구동홈(1356)이 마련된 구조를 고려하자. 이에 적합한 압전 액추에이터(1300)의 구동축부재(1330)로는, 구동축(1332)의 끝 부분에 입이 좌측 또는 우측 방향으로 향하는 U자형 탄성 마찰구동부(1334)가 일체로 연결된 구조가 그 일 예가 될 수 있다. 탄성 마찰구동부(1334)는 환형 피구동홈(1356)에 삽입되어 그 탄성 마찰구동부(1334)의 양쪽 외측면이 환형 피구동홈(1356)의 양 측벽에 접촉된다. 이들 간의 접촉력을 강화하기 위해 탄성 마찰구동부(1334)의 입안에 코일 스프링(1338)을 삽입하는 것이 바람직하다. 이러한 구조와 결합에 의해서도, 압전 액추에이터(1300)는 SIDM방식에 따라 피구동체(1350)를 회전 구동시킬 수 있다.
<제13 실시예>
위에서 예시한 여러 가지 압전 액추에이터들에 있어서, 피구동체에 보다 큰 회전력을 전달하기 위해 하나의 피구동체에 복수 개의 압전 액추에이터를 결합할 수도 있다. 그 예가 도 29에 도시되어 있다. 즉, 피구동체(1050)의 피구동홀(1054) 안에 네 개의 압전 액추에이터(1000)를 결합한 형태이다. 동일한 구동전원을 이용하면 이들 네 개의 압전 액추에이터(1000)들은 그들의 구동축부재가 동기적으로 진퇴하게 되고, 그에 따라 4배의 회전력을 얻을 수 있다. 또한, 피구동체(1050) 본체(1052)의 저면에도 피구동홀(1054)을 하나 더 마련하고, 복수 개의 압전 액추에이터(1000)를 그 상하면의 피구동홀(1054)에 결합시키면 더 큰 구동력을 얻을 수 있을 것이다. 다른 압전 액추에이터들과 피구동체에 대해서도 마찬가지이다.
<제14 실시예>
도 30과 31에 도시된 회전 모터용 압전 액추에이터(1400)는 피구동체(1450)에 마찰력을 전달하는 탄성 마찰구동부(1430)의 구조가 다른 실시예에 비해 다소 독특하다. 탄성 마찰구동부(1430)는 환형 트렌치부재(1435)와 환형 덮개부재(1440)를 갖는다. 환형 트렌치부재(1435)는 환형 바닥부와 이의 양쪽 가장자리를 따라 직립한 환형의 측벽부들로 구성되고, 상부는 개방된다. 이 환형 트렌치부재(1435)의 환형 바닥부의 세 지점에 결합봉(1437)이 고정되고, 바깥쪽 측벽부의 바깥면의 네 곳에는 결합돌출부(1439)가 반경방향으로 연장된다. 각 결합봉(1437)에는 코일스프링(1438)이 외삽된다. 또한, 환형 덮개부재(1440)에는 세 군데에 결합공이 마련되어 그곳을 통해 나사(14367)가 고정되어 결합봉(1437)에 체결된다. 결합공의 깊이를 나사(1436)의 머리 두께보다 더 깊게 하여 나사(1436)의 머리가 환형 덮개부재(1440)의 상면보다 더 낮은 위치에 있도록 한다. 이러한 나사 결합에 의해 환형 트렌치부재(1435)와 환형 덮개부재(1440)가 결합된다. 그러한 결합상태에서 코일스프링(1438)은 환형 트렌치부재(1435)와 환형 덮개부재(1440)를 반대방향으로 밀어 서로 간에 최대로 이격되도록 탄성적으로 지지한다.
탄성 마찰구동부(1430) 조립체는 그 외측면에 마련된 네 개의 결합돌출부(1439)를 통해 예컨대 4개의 압전 액추에이터(1405)와 결합된다. 이러한 결합을 위해, 압전 액추에이터(1405)는 구동축(1432)의 끝 부분에 결합돌출부(1439)와 나사(1433) 결합을 이루는 결합부(1434)가 마련된다. 압전 액추에이터(1405)는 이 점을 제외하고는 다른 실시예의 구성과 동일하다.
탄성 마찰구동부(1430) 조립체는 또한 피구동부재(1450)와 결합된다. 피구부재(1450)는 중심에 각진 결합공(1452)이 마련된 제1 피구동부재(1450-1)와, 반지름이 서로 다른 두 개의 동심 원판(1456, 1458)이 상하로 배치되어 한 몸체를 이루며 그 중심에는 결합축(1454)이 직립 고정된 제2피구동부재(1450-2)를 갖는다. 제2 피구동부재(1450-2)의 상부 원판(1458)에 탄성 마찰구동부(1430)가 외삽된다. 그런 상태에서 제1 피구동부재(1450-1)의 결합공(1452)에 제2 피구동부재(1450-2)의 결합축(1454)을 삽입하여 제1 및 제2 피구동부재(1450-1, 1450-2)를 결합한다. 제1피구동부재(1450-1)와 제2 피구동부재(1450-2) 사이에 탄성 마찰구동부(1430)가 삽입 결합된다. 환형 덮개부재(1440)의 상면 전체는 제1 피구동부재(1450-1)의 저면과 면접촉을 이루고, 환형 트렌치부재(1435)의 저면 전체는 제2 피구동부재(1450-2)의 하부 원판(1456)의 상면과 면접촉을 이룬다.
그런데 탄성 마찰구동부(1430)의 두께가 상부 원판(1458)의 두께보다 조금 더 두껍도록 한다. 그러한 두께 차이로 인해, 탄성 마찰구동부(1430)의 환형 덮개부재(1440)와 환형 트렌치부재(1430)는 제1 및 제2 피구동부재(1450-1, 1450-2)에 눌려 그들 간의 간격이 다소 줄어들게 된다. 하지만 코일 스프링(1438)의 탄성 지지력에 의해 탄성 마찰구동부(1430)의 환형 덮개부재(1440)와 환형 트렌치부재(1430)는 각각 제1 피구동부재(1450-1)와 제2 피구동부재(1450-2)에 더욱 밀착된다. 즉, 피구동부재(1450)는 탄성 마찰구동부(1430)의 환형 트렌치부재(1435)의 저면 및 환형 덮개부(1440)의 상면과 각각 탄성적으로 접촉된다.
이와 같은 접촉 상태에서, 압전진동부재(110)에 예컨대 톱니파형을 지닌 구동전원을 공급하여 각 압전 액추에이터(1405)를 SIDM 방식으로 구동한다. 각 압전 액추에이터(1405)의 진동지지부재는 고정된다. 그러면 구동축부재(1430)는 SIDM 방식으로 진퇴를 반복하게 된다. 도 30 및 31과 같은 결합상태에서, 만약 도 4의 (A)에 도시된 것과 같이 진폭이 완만한 상승과 가파른 하강을 나타내는 형태의 톱니파형 전압을 구동전원으로 이용하여 구동축부재(1430)가 (상대적으로) 느린 전진과 (상대적으로) 빠른 후퇴를 주기적으로 반복하도록 구동되면, 탄성 마찰구동부(1430) 역시 시계방향으로의 (상대적으로) 느린 회전과 반시계방향으로의 (상대적으로) 빠른 회전을 주기적으로 반복하는 운동 즉, 소정의 미세한 각도 범위 내에서 시계방향과 반시계 방향으로 스윙하는 회전 왕복운동을 하게 된다. 그에 따라 탄성 마찰구동부(1430)의 상면 및 하면과 각각 접촉되어 있는 제1 피구동부재(1450-1) 및 제2 피구동부재(1450-2)는 접촉 표면을 통해 전달되는 마찰력과 운동관성력의 차이에 의해 시계방향으로의 회전만을 지속하게 된다. 반대로, 도 4의 (B)에 도시된 것과 같은 톱니파형 전압을 구동전원으로 이용하면 구동축부재(1430)는 빠른 전진과 느린 후퇴를 주기적으로 반복하게 되고(즉, 상기 회전 왕복운동을 반복하고), 그에 따라 제1 피구동부재(1450-1) 및 제2 피구동부재(1450-2)는 반시계방향으로의 회전만을 지속하게 된다. 도 30과 31에 도시된 압전액추에이터(1400)는 회전 모터로서 기능할 수 있다.
이상에서는 본 발명의 압전 액추에이터의 다양한 실시예들에 대해 설명하였다. 본 발명이 속하는 기술분야의 평균적인 지식을 가진 기술자라면 이상의 설명에 의거하여 본 발명의 기술사상을 벗어나지 않는 범위 내에서 본 발명의 다양한 변형을 할 수 있을 것이다.
예를 들어, 피구동체와 직접 접촉하여 마찰력을 전달하는 탄성 마찰구동부는 위 실시예에서 제시한 형상으로만 한정되는 것은 아니다. 탄성 마찰구동부가 피구동체와의 결합 전에 비해 결합 후의 형상이 변화될(왜곡될) 수 있고(예컨대, 찌그러지거나 벌어지는 등의 변화) 그러한 변화(왜곡)된 형상으로 인해 얻어지는 텐션에 의해 피구동체와 보다 확실한 접촉을 유지할 수 있다면, 탄성 마찰구동부의 형상을 다양하게 취할 수 있다. 물론 탄성 마찰구동부는 파괴 없이 형상 변화를 일으킬 수 있고 그러한 형상 변화를 통해 탄성력이 얻어질 수 있는 재질로 만들 필요가 있다. 탄성 마찰구동부는 이처럼 형상의 특이성에 따른 구조적 탄성력을 얻는 방식 외에도, 재료적 탄성력을 얻는 방식으로 구성할 수도 있을 것이다. 예를 들어, 구동축의 일부 또는 그 일부에 일체로 연결된 고강성 부재의 외면에 적절한 탄성을 갖는 재질을 도포 내지 그러한 재질로 만든 쉬트로 접합 내지 덮어씌운 형태로 구성하는 것이 한 가지 예가 될 수 있다.
또한, 진동지지부재는 압전진동부재의 가장자리 부위나 양끝 부분을 잡아서 지지해주는 부분(예컨대 결합홀더(423))이 탄성을 갖도록 변경하는 것도 바람직하다. 그러면 압전진동부재가 발생시킨 진동의 힘과 변위는 그러한 탄성 결합홀더에 의해 증폭된다. 결국 구동축의 진퇴운동의 행정(stroke) 길이가 더 길어지는 이점이 있다.
이상의 설명에서는 압전 액추에이터가 별도의 진동지지부재에 고정되는 것으로 설명하였지만, 별개의 독립된 구성요소로서의 진동지지부재가 반드시 필요한 것은 아니다. 압전 액추에이터가 설치되는 대상물 자체에 진동지지부재의 역할을 할 수 있는 구조가 마련된 경우라면 그 구조에 압전 액추에이터를 고정시킬 수도 있기 때문이다.
위의 실시예에서 제시한 탄성 마찰구동부의 여러 가지 구조(양 팔의 일측은 서로 연결되고 타측은 소정간격 벌어지면서 연장된 집게형 내지 U자형, 또는 내부에 공동이 마련된 환형 또는 원통형 구조)는 예시한 것에 불과하다. 탄성 마찰구동부는 피구동체와의 결합 전에 비해 결합 후의 형상이 변화될(왜곡될) 수 있고 그러한 변화(왜곡)된 형상으로 인해 얻어지는 텐션에 의해 피구동체와 보다 확실한 접촉을 유지하는 구조를 가지면 되므로, 이런 요건을 충족하는 다른 구조로도 탄성 마찰구동부를 변형할 수 있을 것이다. 또한, 탄성 마찰구동부는 탄성을 갖는 재료를 이용하여 만들 수도 있다. 예컨대. 구동축의 일부 또는 그 일부에 일체로 연결된 고강성 부재의 외면에 적절한 탄성을 갖는 재질을 도포하거나 그러한 재질로 만든 쉬트로 접합 내지 덮어씌운 형태로 구성할 수도 있을 것이다.
또한, 압전 액추에이터의 구조의 다른 변형예로서, 압전진동부재의 중앙을 고정시켜 진동작용점으로 삼고, 가장자리부위의 적어도 두 지점을 잡아서 압전진동부재의 상면을 가로질러 연결하는 브릿지와, 그 브릿지의 소정부위에서 압전진동부재의 상면에 대해 법선방향으로 연장되는 구동축과, 이 구동축의 상단 또는 측면에 연결되고 피구동체와 탄성적으로 접촉하면서 마찰력을 전달하는 탄성 마찰구동부를 갖는 형태로 구성할 수도 있다.
본 발명이 개시한 여러 가지 압전 액추에이터는 피구동체의 구조나 형태, 설치조건 등에 따라 다양한 구동 내지 운동을 필요로 하는 데 널리 이용될 수 있다. 예를 들어, 선형 내지 곡선형 안내면을 가진 피구동체와 결합하여 압전 액추에이터가 그러한 안내면을 따라 선형이동 내지 곡선이동을 하거나(피구동체를 고정시킨 경우) 반대로 그 피구동체를 그렇게 이동시키는 리니어모터로 이용될 수 있다. 또한, 압전 액추에이터는 환형 안내면을 가진 피구동체와 결합되어 그 피구동체를 회전시키거나 또는 스스로가 그러한 피구동체의 환형 안내면을 따라 회전운동 하는 회전모터로도 이용될 수 있다.

Claims (28)

  1. 피구동체를 구동하기 위한 압전 액추에이터 장치로서,
    인가되는 구동전압의 변화에 의해, 고정된 진동작용점을 기준으로 진동을 일으키는 압전진동부재;
    상기 압전진동부재가 진동할 때 최대 변위를 일으키는 지점에 하단부가 결합된 채 상기 압전진동부재의 표면에 대해 법선방향으로 연장되어, 상기 압전진동부재가 진동하면 그에 따라 상기 법선방향으로 진퇴를 반복하는 구동축; 및
    상기 구동축의 타측 단부 또는 소정 부위에 연결되거나 결합되고, 상기 피구동체의 소정부위에 탄성적으로 접촉되어 상기 구동축의 진퇴에 부수하여 왕복운동을 하면서 상기 피구동체에 마찰력을 전달하는 탄성 마찰구동부를 구비하여,
    상기 피구동체의 안내면과의 마찰력과 관성력 간의 차이에 의해 상기 피구동체에 대하여 구동력을 제공하는 것을 특징으로 하는 압전 액추에이터 장치.
  2. 제1항에 있어서, 상기 구동전압은 그의 진폭이 완만한 상승에 이은 가파른 하강을 주기적으로 반복하거나 또는 가파른 상승에 이은 완만한 하강을 주기적으로 반복하는 톱니파형이고, 그 때 상기 압전진동부재는 진동을 일으켜 상기 탄성 마찰구동부가 스무드 임팩트 구동 메커니즘(Smooth Impact Drive Mechanism: SIDM)에 따라 상기 법선방향으로 느린 전진 후 빠른 후퇴를 주기적으로 반복하거나 또는 빠른 전진 후 느린 후퇴를 주기적으로 반복하면서 상기 피구동체의 안내면에 마찰력을 전달하게 하고, 그 결과 상기 압전 액추에이팅 장치는 상기 마찰력 및 상기 피구동체와 상기 압전 액추에이팅 장치 중 적어도 어느 하나의 관성력 간의 차이에 의해 상기 피구동체에 대하여 상기 안내면을 따라 상대 운동을 하는 것을 특징으로 하는 압전 액추에이팅 장치.
  3. 제1항에 있어서, 상기 압전진동부재의 상기 진동작용점에 결합되어 상기 압전진동부재를 진동 가능하게 지지해주는 진동지지부재를 더 구비하는 것을 특징으로 하는 압전 액추에이팅 장치.
  4. 제1항에 있어서, 상기 구동축을 진퇴가능하게 그 외측면을 지지하여 상기 구동축의 진퇴운동의 편차가 최소화되도록 안내하는 구동축 안내부를 더 구비하는 것을 특징으로 하는 압전 액추에이팅 장치.
  5. 제3항에 있어서, 상기 진동지지부재는, 기부와, 상기 기부에서 같은 방향으로 연장되어 상기 압전진동부재의 상기 진동작용점 부위와 결합되고 상기 압전진동부재가 상기 기부와 닿지 않은 상태에서 진동하도록 지지해주는 복수 개의 결합홀더를 포함하는 것을 특징으로 하는 압전 액추에이팅 장치.
  6. 제1항에 있어서, 상기 탄성 마찰구동부는, 피구동체와의 결합 전에 비해 결합 후의 형상이 변화될(왜곡될) 수 있고 그러한 변화(왜곡)된 형상으로 인해 얻어지는 텐션에 의해 피구동체와 보다 확실한 접촉을 유지하는 구조로 만들어지거나, 또는 상기 구동축의 일부 또는 그 일부에 일체로 연결된 고강성 부재의 외면에 적절한 탄성을 갖는 재질을 도포하거나 그러한 재질로 만든 쉬트로 접합 내지 덮어씌운 형태로 구성되는 것을 특징으로 하는 압전 액추에이팅 장치.
  7. 제6항에 있어서, 상기 형상 변화로 인해 텐션을 얻은 상기 탄성 마찰구동부의 내부 또는 외부에 체결되어 상기 마찰구동부의 상기 내면을 바깥으로 밀거나 상기 외면을 안쪽으로 밀어주어 상기 마찰구동부의 상기 피구동체에 대한 탄성 접촉력을 강화시켜주는 스프링을 더 구비하는 것을 특징으로 하는 압전 액추에이팅 장치.
  8. 제1항에 있어서, 상기 압전진동부재는 상기 구동축의 방향으로 볼 때 상하로 배치되고 상기 구동전압이 인가되면 동기되어 진동을 하도록 구성된 복수 개의 압전진동부재를 포함하는 것을 특징으로 하는 압전 액추에이팅 장치.
  9. 제1항에 있어서, 상기 구동축과 상기 탄성 마찰구동부 간에는 레벨 차이가 존재하여, 상기 압전 액추에이팅 장치는 상기 피구동체에 대하여 상대 운동을 하는 동안에 상기 탄성 마찰구동부만 상기 피구동체와 접촉할 뿐 나머지 부분은 상기 피구동체와 부딪히지 않는 것을 특징으로 하는 압전 액추에이팅 장치.
  10. 제1항에 있어서, 상기 탄성 마찰구동부의 상기 왕복운동은 앞뒤로 진퇴를 반복하는 선형 왕복운동 또는 시계방향과 반시계방향으로 소정각도만큼 스윙하는 회전 왕복 운동 중 어느 한 가지인 것을 특징으로 하는 압전 액추에이팅 장치.
  11. 제1항에 있어서, 상기 피구동체는 그의 길이방향으로 길게 평행하게 연장된 적어도 1개의 안내면을 가지고, 상기 탄성 마찰구동부는 상기 적어도 1개의 안내면과 탄성 접촉을 이루어 상기 마찰력을 전달함에 따라, 상기 압전 액추에이팅 장치는 상기 피구동체에 대하여 상기 적어도 1개의 안내면을 따라 선형적인 상대 운동을 구동하는 리니어 모터용 구동수단으로서 기능할 수 있는 것을 특징으로 하는 압전 액추에이팅 장치.
  12. 제11항에 있어서, 상기 적어도 1개의 안내면은 상기 피구동체의 길이방향으로 길게 마련된 일정한 폭을 가진 요홈부 내부의 양쪽 벽면, 또는 두 개의 평행한 안내레일 사이의 양쪽 벽면, 또는 상기 피구동체의 길이방향으로 길게 마련된 하나의 안내레일의 양쪽 측면인 것을 특징으로 하는 압전 액추에이팅 장치.
  13. 제1항에 있어서, 상기 피구동체는 환형으로 마련된 적어도 1개의 안내면을 가지고, 상기 탄성 마찰구동부는 상기 적어도 1개의 환형 안내면과 탄성 접촉을 이루어 상기 마찰력을 전달함에 따라, 상기 압전 액추에이팅 장치는 상기 피구동체에 대하여 환형의 상대 운동을 구동하는 회전 모터용 구동수단으로서 기능하는 것을 특징으로 하는 압전 액추에이팅 장치.
  14. 제13항에 있어서, 상기 적어도 1개의 안내면은 상기 피구동체의 소정 부위에 환형을 이루며 마련된 요홈부 내부의 양쪽 벽면, 또는 반지름이 다른 두 개의 동심 환형 안내레일 사이의 양쪽 벽면, 또는 상기 피구동체의 피구동 디스크의 적어도 어느 한 면에서 환형으로 그려지는 표면 일부인 것을 특징으로 하는 압전 액추에이팅 장치.
  15. 제1항에 있어서, 상기 탄성 마찰구동부는 탄성부재와 상기 탄성부재를 내삽하여 양쪽에서 누르면서 결합되어 상기 탄성부재의 탄성에 의해 서로간의 간격이 신축가능하게 결합되는 두 개의 원판형 부재를 포함하며,
    상기 탄성 마찰구동부는 피구동체 사이에 끼워 넣어 상기 두 개의 원판형 부재가 약간 압축되면서 상기 피구동체의 표면에 탄성적으로 접촉되어, 상기 구동축 부재의 진퇴에 부수하여 소정의 각도 범위 내에서 스윙동작을 하면서 상기 피구동체에 마찰력을 전달하는 것을 특징으로 하는 압전 액추에이팅 장치.
  16. 제1항에 있어서, 상기 압전진동부재와 한 몸체로 결합되어 상기 압전진동부재와 함께 진동하면서 상기 진동의 힘과 변위를 증폭시키는 웨이트부재를 더 구비하는 것을 특징으로 하는 압전 액추에이팅 장치.
  17. 제1항에 있어서, 상기 탄성 마찰구동부는 상기 구동축의 연장 방향으로 보아 전후로 또는 좌우로 배치된 복수 개의 탄성 마찰구동부를 포함하는 것을 특징으로 하는 압전 액추에이팅 장치.
  18. 제1항에 있어서, 상기 탄성 마찰구동부는 상기 구동축의 측면 또는 끝부분에 마련된 탄성 부재이고,
    상기 피구동체는 상기 구동축에 외삽되어 상기 탄성 마찰구동부를 살짝 누르면서 그것과 밀착되는 형태로 상기 구동축에 결합되며, 그러한 결합에 의해 상기 피구동체는 상기 탄성 마찰구동부가 제공하는 상기 구동력에 의해 이동할 때 상기 구동축에 의해 가이드 되어 그 구동축을 따라 이동하는 것을 특징으로 하는 압전 액추에이터 장치.
  19. 피구동체를 구동하기 위한 압전 액추에이터 장치로서,
    인가되는 구동전압의 변화에 의해, 고정된 진동작용점을 기준으로 진동을 일으키는 압전진동부재;
    상기 압전진동부재가 진동할 때 최대 변위를 일으키는 지점에 하단부가 결합된 채 상기 압전진동부재의 표면에 대해 법선방향으로 연장되어, 상기 압전진동부재가 진동하면 그에 따라 상기 법선방향으로 진퇴를 반복하는 구동축;
    상기 구동축의 타측 단부 또는 소정 부위에 연결되거나 일체로 마련되고, 상기 피구동체의 소정부위에 탄성적으로 접촉되어 상기 구동축의 진퇴에 부수하여 왕복운동을 하면서 상기 피구동체에 마찰력을 전달하는 탄성 마찰구동부;
    상기 압전진동부재의 상기 진동작용점에 결합되어 상기 압전진동부재를 진동 가능하게 지지해주는 진동지지부재; 및
    상기 진동지지부재의 일측에서 상기 구동축 방향으로 연장되어 상기 구동축을 진퇴가능하게 그 외측면을 지지하여 상기 구동축의 진퇴운동의 편차가 최소화되도록 안내하는 구동축 안내부를 구비하여,
    상기 피구동체의 안내면과의 마찰력과 관성력 간의 차이에 의해 상기 피구동체에 대하여 구동력을 제공하는 것을 특징으로 하는 압전 액추에이터 장치.
  20. 제19항에 있어서, 상기 탄성 마찰구동부는, 상기 피구동체와의 결합 전에 비해 결합 후의 형상이 변화될(왜곡될) 수 있고 그러한 변화(왜곡)된 형상으로 인해 얻어지는 텐션에 의해 피구동체와 보다 확실한 접촉을 유지하는 구조로 만들어지거나, 또는 상기 구동축의 일부 또는 그 일부에 일체로 연결된 고강성 부재의 외면에 적절한 탄성을 갖는 재질을 도포하거나 그러한 재질로 만든 쉬트로 접합 내지 덮어씌운 형태로 구성되는 것을 특징으로 하는 압전 액추에이팅 장치.
  21. 제19항에 있어서, 상기 형상 변화로 인해 텐션을 얻은 상기 탄성 마찰구동부의 내부 또는 외부에 체결되어 상기 마찰구동부의 상기 내면을 바깥으로 밀거나 상기 외면을 안쪽으로 밀어주어 상기 마찰구동부의 상기 피구동체에 대한 탄성 접촉력을 강화시켜주는 스프링을 더 구비하는 것을 특징으로 하는 압전 액추에이팅 장치.
  22. 제19항에 있어서, 상기 구동축과 상기 탄성 마찰구동부 간에는 레벨 차이가 존재하여, 상기 압전 액추에이팅 장치는 상기 피구동체에 대하여 상대 운동을 하는 동안에 상기 탄성 마찰구동부만 상기 피구동체와 접촉할 뿐 나머지 부분은 상기 피구동체와 부딪히지 않는 것을 특징으로 하는 압전 액추에이팅 장치.
  23. 제19항에 있어서, 상기 피구동체는 그의 길이방향으로 길게 평행하게 연장된 적어도 1개의 안내면을 가지고, 상기 탄성 마찰구동부는 상기 적어도 1개의 안내면과 탄성 접촉을 이루어 상기 마찰력을 전달함에 따라, 상기 압전 액추에이팅 장치는 상기 피구동체에 대하여 상기 적어도 1개의 안내면을 따라 선형적인 상대 운동을 구동하는 리니어 모터용 구동수단으로서 기능할 수 있는 것을 특징으로 하는 압전 액추에이팅 장치.
  24. 제19항에 있어서, 상기 피구동체는 환형으로 마련된 적어도 1개의 안내면을 가지고, 상기 탄성 마찰구동부는 상기 적어도 1개의 환형 안내면과 탄성 접촉을 이루어 상기 마찰력을 전달함에 따라, 상기 압전 액추에이팅 장치는 상기 피구동체에 대하여 환형의 상대 운동을 구동하는 회전 모터용 구동수단으로서 기능하는 것을 특징으로 하는 압전 액추에이팅 장치.
  25. 제19항에 있어서, 상기 압전진동부재에 인가되는 전압은 한 주기의 파형이 완만한 경사 구간과 가파른 경사 구간으로 구성된 톱니파 신호이어서,
    상기 완만한 경사 구간의 파형이 인가되는 동안에는, 상기 압전진동부재의 상기 구동축과 결합된 부분은 그 구간의 파형의 기울기에 대응하여 상대적으로 느리게 제1방향으로 이동하고, 그에 의해 상기 탄성 마찰구동부가 마찰력을 상기 이동 레일에 전달하여 상기 이동 레일을 상기 제1방향으로 미는 제1동작과,
    상기 가파른 경사 구간의 파형이 인가되는 동안에는, 상기 압전진동부재의 상기 구동축과 결합된 부분은 그 구간의 파형의 기울기에 대응하여 상대적으로 빠르게 상기 제1방향과 반대방향으로 이동하고, 그에 의해 상기 탄성 마찰구동부는 관성이 작용하고 있는 상기 이동 레일에 마찰력을 거의 전달하지 못하여 상기 이동 레일은 정지한 상태에서 자신만 상기 반대방향으로 이동하는 제2동작을 교대로 반복하는 이른바 스무드 임팩트 구동 메커니즘(smooth impact drive mechanism)에 따라 상기 이동 레일을 이동시키는 것을 특징으로 하는 압전 액추에이팅 장치.
  26. 제19항에 있어서, 상기 탄성 마찰구동부의 상기 왕복운동은 앞뒤로 진퇴를 반복하는 선형 왕복운동 또는 시계방향과 반시계방향으로 소정각도만큼 스윙하는 회전 왕복 운동 중 어느 한 가지인 것을 특징으로 하는 압전 액추에이팅 장치.
  27. 제19항에 있어서, 상기 탄성 마찰구동부는 탄성부재와 상기 탄성부재를 내삽하여 양쪽에서 누르면서 결합되어 상기 탄성부재의 탄성에 의해 서로간의 간격이 신축가능하게 결합되는 두 개의 원판형 부재를 포함하며,
    상기 탄성 마찰구동부는 피구동체 사이에 끼워 넣어 상기 두 개의 원판형 부재가 약간 압축되면서 상기 피구동체의 표면에 탄성적으로 접촉되어, 상기 구동축 부재의 진퇴에 부수하여 소정의 각도 범위 내에서 스윙동작을 하면서 상기 피구동체에 마찰력을 전달하는 것을 특징으로 하는 압전 액추에이팅 장치.
  28. 제19항에 있어서, 상기 탄성 마찰구동부는 상기 구동축의 측면 또는 끝부분에 마련된 탄성 부재이고,
    상기 피구동체는 상기 구동축에 외삽되어 상기 탄성 마찰구동부를 살짝 누르면서 그것과 밀착되는 형태로 상기 구동축에 결합되며, 그러한 결합에 의해 상기 피구동체는 상기 탄성 마찰구동부가 제공하는 상기 구동력에 의해 이동할 때 상기 구동축에 의해 가이드 되어 그 구동축을 따라 이동하는 것을 특징으로 하는 압전 액추에이터 장치.
PCT/KR2011/000015 2010-01-05 2011-01-04 압전 액추에이팅 장치 WO2011083944A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100000458A KR20110080297A (ko) 2010-01-05 2010-01-05 압전 액추에이팅 장치
KR10-2010-0000458 2010-01-05

Publications (2)

Publication Number Publication Date
WO2011083944A2 true WO2011083944A2 (ko) 2011-07-14
WO2011083944A3 WO2011083944A3 (ko) 2011-12-22

Family

ID=44305921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000015 WO2011083944A2 (ko) 2010-01-05 2011-01-04 압전 액추에이팅 장치

Country Status (2)

Country Link
KR (1) KR20110080297A (ko)
WO (1) WO2011083944A2 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038099A (zh) * 2014-05-15 2014-09-10 南京航空航天大学 一种精密定位装置及其工作方法
CN106487272A (zh) * 2016-11-11 2017-03-08 湖北三江航天红林探控有限公司 一种大位移微型作动器及其驱动方法
CN111092565A (zh) * 2020-01-09 2020-05-01 长春工业大学 基于螺旋铰链模式转换原理的压电驱动旋转台
CN112260579A (zh) * 2020-09-12 2021-01-22 西安交通大学 一种可断电保持位移的压电作动器及分时驱动的作动方法
CN112838782A (zh) * 2021-01-07 2021-05-25 歌尔股份有限公司 压电电机
CN113589466A (zh) * 2020-04-30 2021-11-02 维沃移动通信有限公司 驱动装置和电子设备
CN113805302A (zh) * 2020-05-28 2021-12-17 维沃移动通信有限公司 驱动装置和电子设备
CN114204841A (zh) * 2021-12-10 2022-03-18 南京航空航天大学 基于顺序控制策略的多模式压电驱动装置及其工作方法
CN118264149A (zh) * 2024-05-27 2024-06-28 吉林大学 一种平面三自由度惯性步进式压电执行器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101301632B1 (ko) * 2012-08-24 2013-08-29 주식회사 이노칩테크놀로지 압전 진동 장치
KR101513097B1 (ko) * 2013-12-16 2015-04-17 국방과학연구소 회전운동장치
CN106059377B (zh) * 2016-06-12 2017-11-24 吉林大学 一种步进压电驱动器
CN109039150B (zh) * 2018-09-25 2019-10-11 宁波大学 一种基于表面微结构摩擦调控的粘滑惯性直线驱动器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030076037A (ko) * 2002-03-22 2003-09-26 한국과학기술연구원 압전 선형초음파모터
US20060159295A1 (en) * 2003-12-26 2006-07-20 Yasuharu Onishi Piezoelectric actuator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178581A (ja) * 1989-12-06 1991-08-02 Sumitomo Metal Ind Ltd 超音波リニアモータ
JP3523488B2 (ja) * 1998-03-31 2004-04-26 京セラ株式会社 超音波リニアモータおよびこれを用いた駆動装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030076037A (ko) * 2002-03-22 2003-09-26 한국과학기술연구원 압전 선형초음파모터
US20060159295A1 (en) * 2003-12-26 2006-07-20 Yasuharu Onishi Piezoelectric actuator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038099A (zh) * 2014-05-15 2014-09-10 南京航空航天大学 一种精密定位装置及其工作方法
CN106487272A (zh) * 2016-11-11 2017-03-08 湖北三江航天红林探控有限公司 一种大位移微型作动器及其驱动方法
CN106487272B (zh) * 2016-11-11 2018-10-30 湖北三江航天红林探控有限公司 一种大位移微型作动器及其驱动方法
CN111092565A (zh) * 2020-01-09 2020-05-01 长春工业大学 基于螺旋铰链模式转换原理的压电驱动旋转台
CN113589466A (zh) * 2020-04-30 2021-11-02 维沃移动通信有限公司 驱动装置和电子设备
CN113805302B (zh) * 2020-05-28 2023-03-31 维沃移动通信有限公司 驱动装置和电子设备
CN113805302A (zh) * 2020-05-28 2021-12-17 维沃移动通信有限公司 驱动装置和电子设备
CN112260579B (zh) * 2020-09-12 2021-09-03 西安交通大学 一种可断电保持位移的压电作动器的分时驱动的作动方法
CN112260579A (zh) * 2020-09-12 2021-01-22 西安交通大学 一种可断电保持位移的压电作动器及分时驱动的作动方法
CN112838782A (zh) * 2021-01-07 2021-05-25 歌尔股份有限公司 压电电机
CN114204841A (zh) * 2021-12-10 2022-03-18 南京航空航天大学 基于顺序控制策略的多模式压电驱动装置及其工作方法
CN114204841B (zh) * 2021-12-10 2023-09-29 南京航空航天大学 基于顺序控制策略的多模式压电驱动装置及其工作方法
CN118264149A (zh) * 2024-05-27 2024-06-28 吉林大学 一种平面三自由度惯性步进式压电执行器

Also Published As

Publication number Publication date
WO2011083944A3 (ko) 2011-12-22
KR20110080297A (ko) 2011-07-13

Similar Documents

Publication Publication Date Title
WO2011083944A2 (ko) 압전 액추에이팅 장치
US7498719B2 (en) Small piezoelectric or electrostrictive linear motor
CN1898856B (zh) 小型压电或电致伸缩线性电机
JP4144171B2 (ja) 電気−機械変換素子を用いた駆動装置
CN1879232B (zh) 超声导螺杆电动机
WO2014010848A1 (ko) 복수의 진동전달경로를 갖는 진동 증폭형 압전진동장치 및 이를 진동수단으로 채용한 전자기기
KR100777636B1 (ko) 구동장치, 촬상장치 및 휴대전화
JP5387811B2 (ja) 駆動装置の駆動方法
CN1832324A (zh) 超声波马达
WO2012105734A1 (ko) 비틀림진동모드가 가능한 전극구조를 갖는 압전진동체 및 이를 포함하는 회전형 초음파 모터
JP3788053B2 (ja) 電気機械変換素子を使用したアクチエ−タ
JPH0389875A (ja) リニア超音波モータ
WO2010151022A2 (ko) 돔 형상의 선형 압전 모터
KR20130010760A (ko) 압전소자를 이용한 전력발생장치
CN110768571B (zh) 一种基于寄生惯性原理的仿生爬行式压电精密驱动装置
JP2008289349A (ja) 駆動装置
EP1753121A2 (en) Actuator
KR20100092806A (ko) 압전소자를 구비하는 발전장치
CN210093125U (zh) 一种配重式步进机构
JP2022057781A (ja) 振動型駆動装置およびこれを備えた装置
KR100460330B1 (ko) 선형 초음파모터의 하프-바이몰프형 진동자
KR100683933B1 (ko) 초소형 압전 리니어 모터
KR100683934B1 (ko) 초소형 압전 리니어 모터
KR100683932B1 (ko) 초소형 압전 리니어 모터
KR100728372B1 (ko) 초소형 압전 리니어 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.10.2012)

122 Ep: pct application non-entry in european phase

Ref document number: 11731882

Country of ref document: EP

Kind code of ref document: A2