WO2011083805A1 - 移動通信システムにおけるユーザ装置、基地局及び方法 - Google Patents

移動通信システムにおけるユーザ装置、基地局及び方法 Download PDF

Info

Publication number
WO2011083805A1
WO2011083805A1 PCT/JP2011/050061 JP2011050061W WO2011083805A1 WO 2011083805 A1 WO2011083805 A1 WO 2011083805A1 JP 2011050061 W JP2011050061 W JP 2011050061W WO 2011083805 A1 WO2011083805 A1 WO 2011083805A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
rank indicator
bits
user apparatus
category information
Prior art date
Application number
PCT/JP2011/050061
Other languages
English (en)
French (fr)
Inventor
尚人 大久保
哲士 阿部
安部田 貞行
Original Assignee
株式会社 エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 エヌ・ティ・ティ・ドコモ filed Critical 株式会社 エヌ・ティ・ティ・ドコモ
Priority to CN2011800131750A priority Critical patent/CN102792726A/zh
Priority to US13/520,984 priority patent/US20120307648A1/en
Priority to EP11731803A priority patent/EP2523498A1/en
Publication of WO2011083805A1 publication Critical patent/WO2011083805A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the present invention relates to a user apparatus, a base station, and a method in a mobile communication system.
  • the so-called third generation successor mobile communication system is being studied by the standardization organization 3GPP of the wideband code division multiple access (W-CDMA) system.
  • W-CDMA wideband code division multiple access
  • LTE Long Term Evolution
  • IMT Advanced LTE
  • HSDPA high-speed downlink packet access
  • HSUPA high-speed uplink packet access
  • downlink and uplink communications are performed by assigning one or more resource blocks (RB: Resource Block) to user equipment (UE: User Equipment). Resource blocks are shared by multiple user devices in the system.
  • RB Resource Block
  • UE User Equipment
  • Resource blocks are shared by multiple user devices in the system.
  • Sub-frame For each subframe (Sub-frame) of 1 ms in the LTE scheme, the base station apparatus determines to which user apparatus among a plurality of user apparatuses a resource block is allocated. A subframe is also called a transmission time interval (TTI). The process of determining how to allocate radio resources is called scheduling.
  • the base station apparatus transmits a shared channel using one or more resource blocks to the user apparatus selected by scheduling. This shared channel is called a downlink physical shared channel (PDSCH: Physical Downlink Shared CHannel).
  • PDSCH Physical Downlink Shared CHannel
  • the user apparatus selected by scheduling transmits a shared channel to the base station apparatus using one or more resource blocks. This shared channel is called an uplink physical shared channel (PUSCH
  • the control channel used for this signaling is called a physical downlink control channel (PDCCH: Physical Downlink Control CHannel) or a downlink L1 / L2 control channel (DL-L1 / L2 Control Channel).
  • PDCCH Physical Downlink Control CHannel
  • DL-L1 / L2 Control Channel downlink L1 / L2 Control channel
  • Downlink control signals include a physical control format indicator channel (PCFICH: Physical Control Format Indicator CHannel), a physical hybrid ARQ indicator channel (PHICH: Physical Hybrid ARQ Indicator CHannel), etc., in addition to the PDCCH.
  • PCFICH Physical Control Format Indicator CHannel
  • PHICH Physical Hybrid ARQ Indicator CHannel
  • the PDCCH may include the following information, for example: ⁇ Downlink Scheduling Information, -Uplink Scheduling Grant and-Transmission Power Control Command Bit.
  • the downlink scheduling information includes, for example, information related to the downlink shared channel. Specifically, downlink resource block allocation information, user apparatus identification information (UE-ID), number of streams, precoding vector (Pre-coding Vector) information, data size, modulation method, HARQ (Hybrid Automatic Repeat reQuest) information, etc. are included.
  • UE-ID user apparatus identification information
  • Pre-coding Vector Pre-coding Vector
  • data size modulation method
  • HARQ Hybrid Automatic Repeat reQuest
  • the uplink scheduling grant includes, for example, information related to the uplink shared channel, specifically, uplink resource block allocation information, user apparatus identification information (UE-ID), data size, This includes modulation scheme, uplink transmission power information, information on the demodulation reference signal in the uplink MIMO (Uplink MIMO), and the like.
  • information related to the uplink shared channel specifically, uplink resource block allocation information, user apparatus identification information (UE-ID), data size, This includes modulation scheme, uplink transmission power information, information on the demodulation reference signal in the uplink MIMO (Uplink MIMO), and the like.
  • UE-ID user apparatus identification information
  • Data size This includes modulation scheme, uplink transmission power information, information on the demodulation reference signal in the uplink MIMO (Uplink MIMO), and the like.
  • PCFICH is information for notifying the format of PDCCH. More specifically, the number of OFDM symbols to which PDCCH is mapped is notified by PCFICH. In LTE, the number of OFDM symbols mapped to PDCCH is 1, 2 or 3, and mapping is performed in order from the first OFDM symbol of the subframe.
  • PHICH includes an acknowledgment signal (ACK / NACK: Acknowledgement / Non-Acknowledgement signal) indicating whether or not retransmission is required for PUSCH transmitted in the uplink.
  • ACK / NACK Acknowledgement / Non-Acknowledgement signal
  • uplink user data (normal data signal) and accompanying control information are transmitted by PUSCH.
  • downlink quality information CQI: Channel Quality Indicator
  • PUCCH Physical Uplink Control CHannel
  • a signal ACK / NACK or the like is transmitted.
  • CQI is used for scheduling processing, adaptive modulation / demodulation and coding (AMCS), etc. of physical shared channel in downlink.
  • RACH random access channel
  • a MIMO (Multiple Input Multiple Output) method for wireless communication
  • a transmission diversity method and a spatial multiplexing method as a signal transmission method.
  • the same information signal is transmitted from a plurality of antennas, thereby increasing the spatial diversity gain and improving the reception quality.
  • the spatial multiplexing scheme is intended to improve the data rate by simultaneously transmitting different signals from each of a plurality of antennas.
  • Rank Adaptation there is a technology called Rank Adaptation.
  • Rank can be defined as the number of different data streams transmitted via multiple antennas, for example. For example, when the number of antennas is 2, transmission diversity can be performed by transmitting the same information from two antennas. In this case, the rank is 1. On the other hand, spatial multiplexing can also be performed by transmitting different information signals from the two antennas. In this case, the rank is 2. Further, when the number of antennas is 4, the rank can take a value of 1, 2, 3 or 4. In general, when the number of antennas is N, the possible values of the rank are 1, 2,.
  • the rank when the base station apparatus performs downlink data transmission is generally controlled by a technique called rank adaptation.
  • a user apparatus measures reception quality using the reference signal transmitted by a downlink, and determines an optimal rank.
  • the determined rank is notified to the base station apparatus as a rank indicator (RI) by an uplink control channel (PUCCH).
  • RI rank indicator
  • PUCCH uplink control channel
  • the user apparatus and the base station adaptively select a rank most suitable for the communication status from ranks that can be used by both, thereby improving signal quality. Therefore, the number of bits necessary to express RI differs depending on the capabilities (particularly, antenna configuration) of the user apparatus and the base station. For example, if RI is 1 or 2, it can be expressed by 1 bit, but if RI is 4, 2 bits are required. Furthermore, if RI is 8, 3 bits are required.
  • FIG. 1 shows an RRC message sequence of a user apparatus UE and a base station eNB in a mobile communication system that performs rank adaptation.
  • the user apparatus UE transmits a RACH preamble (RACH preamble) to the base station eNB, and displays an intention to start communication (S1).
  • the base station transmits a RACH response (RACH response) to the user apparatus UE (S2).
  • the user apparatus UE transmits an RRC connection request message (RRC Connection Request) (message 3) to the base station eNB (S3).
  • the base station eNB transmits an RRC connection setup message (RRC Connection Setup) (message 4) to the user apparatus UE (S4).
  • RRC Connection Request RRC connection request message
  • RRC Connection Setup RRC Connection Setup
  • This RRC connection setup message includes information such as a period of reporting downlink channel quality information CQI and rank indicator RI, and PUCCH dedicated resources for transmitting these control channels.
  • the user apparatus UE transmits an RRC connection setup complete message (RRC Connection Setup Complete) to the base station eNB (S5).
  • base station eNB inquires the capability of user apparatus UE by transmitting UE capability inquiry message (UE Capability Inquiry) (S6).
  • UE Capability Information UE Capability Information
  • UE Capability Information UE Capability Information
  • the base station eNB can know the rank indicator that can be used by the user apparatus UE, and can know the rank indicator that can be used by both the base station and the user apparatus.
  • the user apparatus UE since the user apparatus UE has acquired information on the number of antennas of the base station eNB from the broadcast information received before step S1, the user apparatus UE can know the rank indicators that can be used by both the user apparatus UE and the base station eNB. it can.
  • Non-Patent Documents 1 to 4 describe the mobile communication system as described above.
  • step S4 in the flow of FIG. 1 when the user apparatus UE receives an RRC connection setup message, the user apparatus UE tries to transmit a rank indicator at the notified frequency or cycle. However, the base station eNB does not know how many bits the rank indicator used by the user apparatus UE is expressed until the capability information of the user apparatus UE is received in step S7.
  • the rank of the user apparatus UE is 2
  • the rank of the base station eNB is 4, and the capability of the user apparatus UE is unknown to the base station eNB.
  • the rank indicator of the user apparatus UE can be expressed by 1 bit
  • the rank indicator of the base station eNB can be expressed by 2 bits.
  • the user apparatus UE transmits a 1-bit rank indicator
  • the base station eNB is assumed to receive a 2-bit rank indicator.
  • the number of bits of the rank indicator affects the number of bits of the entire control signal. As a result, there is a concern that not only the base station eNB cannot correctly recognize the 1-bit rank indicator reported by the user apparatus UE but also the control information transmitted by the user apparatus UE cannot be correctly received.
  • the base station eNB cannot correctly acquire information such as RI or CQI, and these When control information is transmitted by PUSCH, rate matching cannot be performed correctly, and PUSCH decoding and the like cannot be performed.
  • An object of the present invention is to reduce a possibility that a base station erroneously recognizes the number of bits of a rank indicator in a mobile communication system that performs rank adaptation.
  • a user equipment is: A user apparatus in a mobile communication system, An RI generator that generates a rank indicator based on the downlink channel state; A transmitter that transmits an uplink signal including the rank indicator to the base station, and reporting the rank indicator to the base station before notifying the base station of category information of the user apparatus, the RI generation
  • the unit is a user apparatus that generates a rank indicator of the number of bits known to the user apparatus and the base station.
  • a mobile communication system that performs rank adaptation, it is possible to reduce the possibility that the base station erroneously recognizes the number of bits of the rank indicator.
  • the user apparatus in a mobile communication system is used.
  • User equipment An RI generator that generates a rank indicator based on the downlink channel state;
  • a transmitter that transmits an uplink signal including the rank indicator to the base station, and reporting the rank indicator to the base station before notifying the base station of category information of the user apparatus, the RI generation
  • the unit is a user apparatus that generates a rank indicator of the number of bits known to the user apparatus and the base station.
  • the rank indicator When the category information of the user apparatus is unknown to the base station, when the rank indicator is reported to the base station, the rank indicator of the number of bits known to the user apparatus and the base station is reported. This can reduce the possibility that the base station erroneously recognizes the number of bits of the rank indicator.
  • the known number of bits may be a number of bits essential for expressing a rank indicator that can be used by all user apparatuses in the mobile communication system. This is preferable from the viewpoint of preventing generation of a rank indicator having an excessively large number of bits for all user apparatuses.
  • the user apparatus may further include a receiving unit that receives a delivery confirmation signal indicating an affirmative response or a negative response for the uplink signal including the category information.
  • the RI generation unit may generate a rank indicator of the number of bits determined based on the category information and the number of antennas of the base station. This is preferable from the viewpoint of generating a rank indicator with an optimum number of bits after the category information is no longer unknown to the base station eNB.
  • the optimum number of bits may be the number of bits necessary to express the maximum number of ranks that can be used in both the user equipment and the base station.
  • the known number of bits may be the number of bits determined according to the number of antennas of the base station. This number of bits may be, for example, the number of bits necessary to express the maximum rank number of the base station.
  • the RI generation unit may generate a rank indicator of the number of bits determined according to the number of antennas of the base station. . This is preferable from the viewpoint of reducing the processing load on the base station.
  • the user apparatus may further include a reception unit that receives a delivery confirmation signal indicating an acknowledgment or a negative response for the uplink signal including the category information.
  • the RI generation unit may generate a rank indicator of the number of bits determined based on the category information and the number of antennas of the base station.
  • the category information can uniquely specify the number of bits of the rank indicator that can be used by the user apparatus.
  • a base station in a mobile communication system is used.
  • Base station equipment A receiving unit that receives an uplink signal including a rank indicator from a user apparatus;
  • a transmission unit that transmits a downlink signal scheduled based on the rank indicator to a user apparatus, and the rank indicator received when the category information of the user apparatus is unknown to the base station includes the user apparatus and the
  • the base station is represented by the number of bits known to the base station.
  • the known number of bits may be a number of bits essential for expressing a rank indicator that can be used by all user apparatuses in the mobile communication system.
  • the rank indicator received after decoding the uplink signal including the category information may be expressed by the number of bits determined based on the category information and the number of antennas of the base station. .
  • the transmission unit transmits an acknowledgment signal indicating an acknowledgment or a negative response for the upstream signal including the category information
  • the rank indicator received after transmitting the acknowledgment may be expressed by the number of bits determined based on the category information and the number of antennas of the base station.
  • the known number of bits may be the number of bits determined according to the number of antennas of the base station.
  • the rank indicator received after correctly decoding the uplink signal including the category information or after transmitting an acknowledgment for the uplink signal including the category information is also determined according to the number of antennas of the base station. It may be expressed by the number of bits.
  • the category information can uniquely specify the number of bits of the rank indicator that can be used by the user apparatus.
  • a method in a mobile communication system is used.
  • This method A user equipment generating a rank indicator based on a downlink channel state and transmitting an uplink signal including the rank indicator to a base station;
  • the base station transmitting a downlink signal scheduled based on the received rank indicator to the user apparatus, and before the category information of the user apparatus is notified to the base station, the user apparatus
  • the rank indicator that reports to the base station is a method represented by the number of bits known to the user equipment and the base station.
  • the user apparatus in a mobile communication system is used.
  • This user device An RRC message generator for generating an RRC connection request message; RI bit number determination unit that determines the number of bits of the rank indicator; An RI generation unit that generates a rank indicator of the number of bits determined by the bit number determination unit based on a downlink channel state;
  • a transmission unit for transmitting the rank indicator to the base station at a reporting frequency notified from the base station after transmitting the RRC connection request message, and the RRC connection request message generated by the RRC message generation unit is: Category information that can uniquely identify the number of bits of the rank indicator, and the RI bit number determination unit determines the number of bits of the rank indicator based on the category information and the antenna configuration of the base station.
  • the base station uses it for both the user equipment and the base station before transmitting the RRC connection setup message. It is possible to know the maximum number of ranks possible, and hence the optimum number of RI bits. This is preferable from the viewpoint of preventing the base station from assuming an inappropriate number of RI bits when the base station receives the rank indicator.
  • a base station in a mobile communication system is used.
  • This base station An RRC processing unit that receives an RRC connection request message from a user apparatus and extracts category information that can uniquely specify the number of bits of a rank indicator from the RRC connection request message;
  • An RRC message generator for generating an RRC connection setup message indicating at least the reporting frequency of the rank indicator; RI bit number determination unit that determines the number of bits of the rank indicator based on the category information and the antenna configuration of the base station;
  • a base station comprising: a transmitter configured to transmit, to the user apparatus, a downlink message scheduled based on a rank indicator reported from the user apparatus after the RRC connection setup message is notified to the user apparatus. is there.
  • a method in a mobile communication system is used.
  • This method A user equipment transmits an RRC connection request message to a base station, and the base station extracts from the RRC connection request message category information capable of uniquely specifying the number of bits of a rank indicator;
  • the base station notifying the user equipment of an RRC connection setup message indicating at least the reporting frequency of the rank indicator;
  • the user equipment determining the number of bits of a rank indicator based on the category information and the antenna configuration of the base station, and generating the rank indicator of the determined number of bits based on a downlink channel state;
  • the base station determining a bit number of a rank indicator based on the category information and an antenna configuration of the base station, and receiving the rank indicator of the bit number from the user apparatus at the reporting frequency. is there.
  • FIG. 2 shows a sequence diagram for explaining an embodiment of the present invention.
  • the base station eNB in response to the user apparatus UE transmitting an RRC connection request message (RRC Connection Request) (message 3) to the base station eNB, the base station eNB transmits an RRC connection setup message (RRC Connection Setup) (A message 4) is transmitted to the user apparatus UE (S4).
  • RRC Connection setup message includes information such as a period of reporting downlink channel quality information CQI and rank indicator RI, and PUCCH dedicated resources for transmitting these control channels. Thereafter, a period for reporting the rank indicator RI comes, and in step S20, the user apparatus UE transmits an uplink signal including the rank indicator to the base station eNB.
  • This uplink signal is in principle PUCCH, but when the user apparatus UE transmits a shared data channel (PUSCH), it is transmitted by PUSCH instead of PUCCH. It is assumed that the capability of the user apparatus UE is unknown to the base station eNB at the time when the uplink signal is transmitted and received in step S20.
  • PUSCH shared data channel
  • the rank indicator RI reported to the base station eNB in step S20 is expressed by the number of bits known to both the user apparatus UE and the base station eNB.
  • the known number of bits is a bit determined in advance so as to be used until the user apparatus UE transmits information indicating its own capability to the base station eNB (between steps S4 and S7 in FIG. 1). Is a number.
  • the known number of bits is, for example, 1 bit.
  • the user apparatus UE When the capability of the user apparatus UE is unknown to the base station eNB, the user apparatus UE generates and transmits a rank indicator RI with 1 bit regardless of its capability, and the base station eNB also has 1 bit regardless of its capability. An upstream signal is received assuming a rank indicator.
  • FIG. 3 is a flowchart showing an operation example of the user apparatus.
  • step S31 the user apparatus UE receives an RRC connection setup message (RRC Connection Setup) and acquires information such as RI and CQI reporting frequencies, PUCCH resources, and the like.
  • RRC Connection Setup RRC Connection Setup
  • step S32 the user apparatus UE generates the rank indicator RI having the known number of bits and transmits it to the base station eNB.
  • the known number of bits is assumed to be 1 bit, but is not limited thereto.
  • the known number of bits may be determined from the viewpoint of the number of bits essential for expressing a rank that can be used by all user apparatuses operating in the mobile communication system. In this description, since it is assumed that the user apparatus UE having at most two antennas may exist in the mobile communication system, the known number of bits is set to 1 bit.
  • the rank indicator is generated as a value suitable for a downlink radio state measurement value (for example, CQI). Specifically, first, the base station eNB transmits a reference signal (RS) or a pilot signal from each of a plurality of antennas. The user apparatus UE can know the radio state by measuring the reception quality and spatial correlation of the reference signal (RS) received from the base station eNB, and generates a rank indicator RI suitable for the radio state.
  • RS reference signal
  • RI rank indicator
  • the throughput increases.
  • step S33 the user apparatus UE transmits UE capability information (UE Capability Information) to the base station eNB.
  • UE Capability Information UE Capability Information
  • the UE capability information may be transmitted through, for example, an uplink physical shared channel (PUSCH).
  • PUSCH uplink physical shared channel
  • the UE capability information is also referred to as category information.
  • the user apparatus UE is classified into several categories according to capabilities.
  • FIG. 4 shows an example of category information.
  • the user apparatus UE is classified into five categories (categories 1 to 5).
  • the number of classifications is not limited to five and may be any number. In general, the higher the category number, the higher the processing capability.
  • “Maximum number of bits of DL-SCH transport block received during 1 TTI” generally indicates the ability to receive a downlink shared data channel. As an example, two transport blocks are included in one subframe (TTI).
  • TTI subframe
  • the “total number of soft channel bits” indicates the number of bits to be stored in preparation for combining by retransmission without promptly discarding already transmitted information.
  • the “maximum number of layers supported for downlink spatial multiplexing” is information related to the rank indicator RI.
  • RI takes the value 1, 2, 3, or 4. If the value in this field is 2, RI takes the value 1 or 2, and the value in this field is 1. , RI is 1. Therefore, the rank indicator RI for the category 1 to 4 user apparatuses UE can be expressed by 1 bit.
  • the rank indicator RI for the category 5 user equipment UE can be expressed by 2 bits. Therefore, by knowing the category information of each user device, the number of bits of the rank indicator that can be used by each user device can be uniquely specified. Such category information is known to the user apparatus UE and the base station eNB.
  • step S33 of FIG. 3 the user apparatus UE notifies such category information to the base station eNB through PUSCH.
  • the base station eNB can determine the category of the user apparatus UE based on the received category information and know the optimal number of RI bits for both the user apparatus UE and the base station.
  • step S34 the delivery confirmation signal PHICH for the PUSCH transmitted in step S33 is received, and it is determined whether or not the PUSCH is properly received by the base station eNB.
  • the delivery confirmation signal PHICH is expressed by a positive response ACK or a negative response NACK. If the delivery confirmation signal PHICH indicates an affirmative response ACK, the flow proceeds to step S35.
  • step S35 the user apparatus UE determines the number of bits representing the rank indicator RI based on its own category information and the number of antennas of the base station eNB. For example, it is assumed that the user apparatus UE belongs to category 5 and the number of antennas of the base station eNB is 4. In this case, both the user apparatus UE and the base station eNB can perform communication with a rank of 4 at the maximum.
  • the number of bits set in step S32 is 1. Therefore, in step S35, the user apparatus UE changes the number of bits of the rank indicator RI from 1 to 2. As will be described later, the base station eNB similarly changes the number of bits of the rank indicator RI from 1 to 2.
  • the user apparatus UE generates and transmits a 2-bit rank indicator RI
  • the base station eNB receives the 2-bit rank indicator RI and performs processing such as scheduling based on the RI.
  • the user apparatus can only perform communication of rank 2 at most. In this case, since 1 bit is sufficient for the rank indicator RI, it is not necessary to change the number of bits representing the rank indicator.
  • step S34 if the delivery confirmation signal PHICH for the PUSCH transmitted in step S33 indicates a negative response NACK, the flow returns to step S33 and retransmits the previously transmitted PUSCH. Only when an acknowledgment ACK is received from the base station eNB, the user apparatus UE resets the number of bits of the rank indicator RI.
  • FIG. 5 is a flowchart showing an operation example of the base station eNB.
  • step S51 the base station eNB notifies the user apparatus UE of an RRC connection setup message (RRC Connection Setup).
  • RRC Connection Setup This step corresponds to step S4 in FIG.
  • the RRC connection setup message includes information such as RI and CQI reporting frequencies, PUCCH resources, and the like.
  • the base station eNB receives an uplink signal including the rank indicator RI from the user apparatus UE.
  • the uplink signal is transmitted on the PUCCH in principle, but when the user apparatus UE transmits a shared data channel, the uplink signal is transmitted multiplexed with the shared data channel on the PUSCH.
  • the rank indicator RI of the number of bits known to user apparatus UE and the base station eNB is received.
  • the known number of bits is 1 bit, but is not limited thereto.
  • the known number of bits may be determined from the viewpoint of the number of bits essential for expressing a rank that can be used by all user apparatuses operating in the mobile communication system. In this description, since it is assumed that the user apparatus UE having at most two antennas may exist in the mobile communication system, the known number of bits is set to 1 bit.
  • step S53 the base station eNB receives UE capability information or category information from the user apparatus UE.
  • Category information is included in PUSCH.
  • step S56 the base station eNB transmits a delivery confirmation signal PHICH indicating a negative response NACK to the user apparatus UE, requests retransmission of the PUSCH, and the flow returns to step S53.
  • the number of bits of the rank indicator RI reported from the user apparatus UE is a certain known value (for example, 1 bit). ). For this reason, the possibility that the base station eNB may erroneously recognize the number of bits of the rank indicator RI is reduced. Furthermore, according to this operation example, after the base station eNB receives the category information, the number of bits without excess or deficiency is set according to the rank that can be used by both the user apparatus UE and the base station eNB. Therefore, this embodiment is capable of coping with the case where the category information is unknown while complying with the rule that “the number of bits of RI is determined by the antenna configuration of the base station eNB and the category information of the user apparatus UE”. To preferred.
  • the number of bits known to the user apparatus UE and the base station eNB is from the viewpoint of the number of bits essential for expressing a usable rank for all user apparatuses operating in the mobile communication system. It was decided. However, the present invention is not limited to this, and a known number of bits may be determined from another viewpoint.
  • the user apparatus UE has received broadcast information (BCH) before transmitting the RACH preamble.
  • the broadcast information includes information on the number of antennas of the base station eNB. Therefore, in the first modification of the present invention, the number of bits determined according to the number of antennas of the base station eNB is set as the known number of bits. Specifically, the number of bits necessary for expressing the maximum rank number of the base station eNB is set as the known number of bits. For example, when the number of antennas of the base station eNB is 4, the maximum number of ranks is 4, so the known number of bits is set to 2.
  • the bit number of the rank indicator RI is reset based on the category information and the number of antennas of the base station eNB. That is, the RI bit number is reset to the number of bits necessary to express the maximum rank number that can be used by both the user apparatus and the base station.
  • the user apparatus UE when the base station eNB has not yet received the category information, the user apparatus UE generates and generates a 2-bit rank indicator RI even when the user apparatus UE has at most two antennas. Will be sent. Therefore, when the capability of the user apparatus UE is low, the rank indicator RI having a larger number of bits than the required number of bits is generated.
  • the rank of the category 3 user equipment UE can be originally expressed by 1 bit, but in the case of this modification, it is expressed by 2 bits. This modification is particularly advantageous when a large number of user apparatuses UE having high capabilities are present in the cell. This is because accurate rank indicators RI are generated for the large number of user apparatuses UE, and the throughput of the entire cell can be improved.
  • the number of bits derived according to the number of antennas of the base station eNB (specifically, the number of bits necessary to express the maximum number of ranks of the base station eNB) is the above known bit. Set as a number. Thereafter, when the base station eNB receives the category information, the number of bits of the rank indicator RI is reset based on the category information and the number of antennas of the base station eNB.
  • the number of bits of the rank indicator RI is always a value determined according to the number of antennas of the base station eNB.
  • FIG. 6 shows a sequence diagram for explaining this modification.
  • the user apparatus UE has already received broadcast information (BCH) and has acquired information such as the number of antennas of the base station eNB.
  • BCH broadcast information
  • the base station eNB in response to the user apparatus UE transmitting an RRC connection request message (RRC Connection Request) (message 3) to the base station eNB, the base station eNB sends an RRC connection setup message (RRC Connection Setup) (A message 4) is transmitted to the user apparatus UE (S4).
  • RRC Connection setup message includes information such as a period for reporting downlink channel quality information CQI and rank indicator RI, and PUCCH resources.
  • step S61 the user apparatus UE transmits an uplink signal including the rank indicator to the base station eNB.
  • This uplink signal is transmitted on the PUCCH in principle.
  • the uplink signal is transmitted multiplexed with the shared data channel not on the PUCCH but on the PUSCH.
  • the capability of the user apparatus UE is unknown to the base station eNB.
  • the rank indicator RI reported to the base station eNB in step S61 is expressed by the number of bits known to both the user apparatus UE and the base station eNB.
  • the known number of bits is a value derived from the number of antennas of the base station eNB, and specifically, the number of bits necessary to express the maximum number of ranks of the base station eNB.
  • the number of bits is 2 (assuming that the number of antennas of the base station eNB is 4).
  • step S7 the category information of the user equipment UE is notified to the base station eNB by the PUSCH. It is assumed that this PUSCH is properly received, that is, an acknowledgment ACK is transmitted from the base station eNB to the user apparatus UE. Then comes the RI reporting cycle.
  • step S62 the user apparatus UE generates and transmits a 2-bit rank indicator RI as in the process in step S61. Unlike the first modification, the number of bits of the rank indicator RI is not reset, so that a 2-bit rank indicator RI is generated and transmitted.
  • the user equipment UE and the base station eNB do not need to change the number of bits of the rank indicator RI, so this modification is preferable in that the processing load can be reduced.
  • the existing RRC connection request message (RRC Connection Request) is changed so that the RRC connection request message includes the category information of the user apparatus UE.
  • FIG. 7 is a sequence diagram for explaining this modification.
  • step S71 the user apparatus UE transmits an RRC connection request message to the base station eNB.
  • this RRC connection request message includes category information of the user apparatus UE. Therefore, the base station eNB that has received the RRC connection request message can determine the optimal number of RI bits based on the category information and the number of antennas of the base station eNB. Specifically, the number of RI bits is determined to be the number of bits necessary to express the maximum number of ranks that can be used by both the user apparatus and the base station.
  • the user apparatus UE Since the user apparatus UE has already acquired information on the number of antennas of the base station eNB from the broadcast information, the user apparatus UE also determines the same optimal number of RI bits based on the category information and the number of antennas of the base station eNB. can do.
  • step S4 the base station eNB transmits an RRC connection setup message (RRC Connection Setup) (message 4) to the user apparatus UE.
  • RRC connection setup message includes information such as a period for reporting downlink channel quality information CQI and rank indicator RI, and PUCCH dedicated resources for transmitting these control channels.
  • step S72 the user apparatus UE transmits an uplink signal including the rank indicator having the optimal number of RI bits to the base station eNB.
  • the base station eNB since step S71 and subsequent steps, the base station eNB knows the category information of the user apparatus UE, and thus can correctly recognize the number of bits of the rank indicator RI.
  • the above-described operation principle and the process for resetting the RI bit number in the first modification are not necessary.
  • the third modified example is preferable in that the user apparatus UE having a low capability does not need to generate the rank indicator RI with an excessively large number of bits. In this regard, the third modification is more advantageous than the second modification.
  • FIG. 8 shows a schematic block diagram of the user apparatus UE. As shown in the figure, among various processing units provided in the user apparatus UE, a control information receiving unit 81, a CQI measuring unit 82, an RRC processing unit 83, an RRC message generating unit 84, an RI bit number determining unit 85, an RI generation A unit 86, a RACH generation unit 87, and a transmission signal generation unit 88 are shown.
  • the control information receiving unit 81 extracts various information from the received signal received on the downlink.
  • broadcast information BCH, reference signal RS, RACH response message (RACH response), RRC message, and delivery confirmation signal PHICH (ACK / NACK) are shown among various types of extracted information.
  • the CQI measurement unit 82 measures downlink reception quality or reception level based on the received reference signal RS, and generates information (for example, CQI) indicating the quality of the downlink radio state.
  • the reception level may be expressed by, for example, reception power, field strength RSSI, desired wave reception power RSCP, path loss, S / N, SIR, Ec / N 0 or the like.
  • the RRC processing unit 83 performs processing according to the received RRC message. For example, when a RACH response message (RACH response) is received, generation of an RRC connection request message (RRC Connection Request) is prompted.
  • RACH response a RACH response message
  • RRC Connection Request an RRC connection request message
  • the RRC message generator 84 generates an RRC message to be notified to the base station eNB.
  • the RRC message generation unit 84 generates an RRC connection request message including category information.
  • the RI bit number determining unit 85 determines the number of bits of the rank indicator RI.
  • the RI bit number is determined to be a bit number (for example, 1 bit) known to the user apparatus UE and the base station eNB.
  • the RI bit number determination unit 85 optimizes the RI bit number based on the category information and the number of antennas of the base station eNB. Determine the correct value. The optimum value is the number of bits necessary to express the maximum number of ranks that can be used by both the user apparatus UE and the base station eNB.
  • the number of bits specified according to the number of antennas of the base station eNB (that is, the number of bits necessary to express the maximum number of ranks of the base station eNB) is determined as the number of RI bits.
  • the optimal number of RI bits based on the category information of the user apparatus UE and the number of antennas of the base station eNB is used from the beginning.
  • the optimal number of RI bits is the number of bits necessary to express the maximum number of ranks that can be used by both the user apparatus UE and the base station eNB.
  • the RI generation unit 86 determines the rank indicator RI based on the measured reception quality, CQI, and the like.
  • the number of bits of the rank indicator RI is a value determined by the RI bit number determination unit 85.
  • RACH generation unit 87 generates a RACH preamble using broadcast information BCH.
  • the transmission signal generator 88 performs channel coding, data modulation, interleaving, and the like on the information to be transmitted, and multiplexes various channels to generate a transmission signal.
  • the generated transmission signal is transmitted through a transmission unit (not shown).
  • FIG. 9 shows a schematic block diagram of the base station.
  • a control information receiving unit 91 an RRC processing unit 92, an RRC message generating unit 93, an RI bit number determining unit 94, a user data generating unit 95, a scheduler 96
  • a transmission signal generation unit 97 is shown.
  • the control information receiving unit 91 extracts various signals from the received signals received on the uplink.
  • CQI, RACH preamble, RRC message, rank indicator RI, and UE category are shown among various pieces of extracted information.
  • the RRC processing unit 92 performs processing according to the received RRC message. For example, when an RRC connection request message (RRC Connection Request) is received, generation of an RRC connection setup message (RRC Connection Setup) is prompted.
  • RRC Connection Request an RRC connection request message
  • RRC Connection Setup an RRC connection setup message
  • the RRC message generator 93 creates an RRC message to be notified to the user apparatus UE.
  • the RI bit number determination unit 94 determines the number of bits of the rank indicator RI.
  • the RI bit number is determined to be a bit number (for example, 1 bit) known to the user apparatus UE and the base station eNB. Thereafter, when the category information is notified from the user apparatus UE, the RI bit number determination unit 94 re-determines the RI bit number to an optimal value based on the category information and the number of antennas of the base station eNB.
  • the optimum value is the number of bits necessary to express the maximum number of ranks that can be used for both the user apparatus UE and the base station eNB.
  • the number of bits specified according to the number of antennas of the base station eNB (that is, the number of bits necessary to express the maximum number of ranks of the base station eNB) is determined as the number of RI bits.
  • the optimal number of RI bits based on the category information of the user apparatus UE and the number of antennas of the base station eNB is used from the beginning.
  • the optimal number of RI bits is the number of bits necessary to express the maximum number of ranks that can be used by both the user apparatus UE and the base station eNB.
  • the user data generation unit 95 generates user data or user traffic data.
  • the scheduler 96 determines how to allocate radio resources to the user apparatus UE based on the CQI and RI.
  • the transmission signal generation unit 97 performs channel coding, data modulation, interleaving, and the like on the information to be transmitted in accordance with an instruction from the scheduler 96, and multiplexes various channels to generate a transmission signal.
  • the generated transmission signal is transmitted through a transmission unit (not shown).
  • the present invention has been described above with reference to specific embodiments, they are merely illustrative, and those skilled in the art will appreciate various variations, modifications, alternatives, substitutions, and the like.
  • the present invention may be applied to any appropriate mobile communication system that performs rank adaptation.
  • the present invention may be applied to HSDPA / HSUPA W-CDMA systems, LTE systems, IMT-Advanced systems, WiMAX systems, Wi-Fi systems, and the like.
  • specific numerical examples have been described in order to facilitate understanding of the invention, these numerical values are merely examples and any appropriate values may be used unless otherwise specified.
  • the classification of items in the description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary.
  • the device according to the embodiment of the present invention has been described using a functional block diagram. However, such a device may be realized by hardware, software, or a combination thereof.
  • the software is available on random access memory (RAM), flash memory, read only memory (ROM), EPROM, EEPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server and any other suitable storage medium May be.
  • RAM random access memory
  • ROM read only memory
  • EPROM EPROM
  • EEPROM electrically erasable programmable read-only memory
  • registers hard disk
  • HDD hard disk
  • removable disk CD-ROM
  • database database
  • server server and any other suitable storage medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 ユーザ装置は、下りリンクのチャネル状態に基づいてランクインジケータを生成するRI生成部と、ランクインジケータを含む上り信号を基地局に送信する送信部とを有する。ユーザ装置のカテゴリ情報を基地局に通知する前に、ランクインジケータを基地局に報告する場合、RI生成部は、ユーザ装置及び基地局にとって既知のビット数のランクインジケータを生成する。

Description

移動通信システムにおけるユーザ装置、基地局及び方法
 本発明は、移動通信システムにおけるユーザ装置、基地局及び方法に関する。
 この種の技術分野では、いわゆる第3世代の後継となる移動通信方式が、ワイドバンド符号分割多重接続(W-CDMA)方式の標準化団体3GPPにより検討されている。特に、W-CDMA方式、高速ダウンリンクパケットアクセス(HSDPA)方式及び高速アップリンクパケットアクセス(HSUPA)方式等の後継として、ロングタームエボリューション(LTE: Long Term Evolution)方式や、さらに後継のIMTアドバンスト(IMT-Advanced)方式等が挙げられる。
 LTE方式等のシステムでは、ユーザ装置(UE: User Equipment)に1つ以上のリソースブロック(RB: Resource Block)を割り当てることで、下りリンク及び上りリンクの通信が行われる。リソースブロックはシステム内の多数のユーザ装置で共有される。LTE方式の場合1msであるサブフレーム(Sub-frame)毎に、基地局装置は、複数のユーザ装置の内どのユーザ装置にリソースブロックを割り当てるかを決定する。サブフレームは送信時間間隔(TTI: Transmission Time Interval)とも呼ばれる。無線リソースの割り当て方を決定する処理はスケジューリングと呼ばれる。下りリンクの場合、スケジューリングで選択されたユーザ装置宛に、基地局装置は1以上のリソースブロックで共有チャネルを送信する。この共有チャネルは、下り物理共有チャネル(PDSCH: Physical Downlink Shared CHannel)と呼ばれる。上りリンクの場合、スケジューリングで選択されたユーザ装置が、1以上のリソースブロックで基地局装置に共有チャネルを送信する。この共有チャネルは、上り物理共有チャネル(PUSCH: Physical Uplink Shared CHannel)と呼ばれる。
 このような共有チャネルを用いた通信システムでは、原則としてサブフレーム毎にどのユーザ装置に共有チャネルを割り当てるかをシグナリング(通知)する必要がある。このシグナリングに用いられる制御チャネルは、物理下りリンク制御チャネル(PDCCH: Physical Downlink Control CHannel)または下りL1/L2制御チャネル (DL-L1/L2 Control Channel)と呼ばれる。
 下り制御信号には、このPDCCHに加えて、物理制御フォーマットインジケータチャネル(PCFICH: Physical Control Format Indicator CHannel)や、物理ハイブリッドARQインジケータチャネル(PHICH: Physical Hybrid ARQ Indicator CHannel)等が含まれる。
 PDCCHには、例えば次の情報が含まれてもよい:
 ・下りスケジューリング情報(Downlink Scheduling Information)、
 ・上りリンクスケジューリンググラント(Uplink Scheduling Grant)及び
 ・送信電力制御コマンドビット(Transmission Power Control Command Bit)。
 下りスケジューリング情報には、例えば、下りリンクの共有チャネルに関する情報が含まれ、具体的には、下りリンクのリソースブロックの割り当て情報、ユーザ装置の識別情報(UE-ID)、ストリーム数、プリコーディングベクトル(Pre-coding Vector)に関する情報、データサイズ、変調方式、HARQ(Hybrid Automatic Repeat reQuest)に関する情報等が含まれる。
 また、上りリンクスケジューリンググラントには、例えば、上りリンクの共有チャネルに関する情報が含まれ、具体的には、上りリンクのリソースブロックの割り当て情報、ユーザ装置の識別情報(UE-ID)、データサイズ、変調方式、上りリンクの送信電力情報、アップリンクMIMO(Uplink MIMO)におけるデモジュレーションレファレンスシグナル(Demodulation Reference Signal)の情報等が含まれる。
 PCFICHは、PDCCHのフォーマットを通知するための情報である。より具体的には、PDCCHのマッピングされるOFDMシンボル数が、PCFICHにより通知される。LTEでは、PDCCHのマッピングされるOFDMシンボル数は1,2又は3であり、サブフレームの先頭のOFDMシンボルから順にマッピングされる。
 PHICHは、上りリンクで伝送されたPUSCHについて再送を要するか否かを示す送達確認信号(ACK/NACK: Acknowledgement/Non-Acknowledgement signal)を含む。
 上りリンクの場合、PUSCHによりユーザデータ(通常のデータ信号)及びそれに付随する制御情報が伝送される。また、PUSCHとは別に、上りリンク制御チャネル(PUCCH: Physical Uplink Control CHannel)により、下りリンクの品質情報(CQI: Channel Quality Indicator)、上りリンクの無線リソース割り当て要求を示す信号、及びPDSCHの送達確認信号(ACK/NACK)等が伝送される。CQIは、下りリンクにおける物理共有チャネルのスケジューリング処理や適応変復調及び符号化処理(AMCS: Adaptive Modulation and Coding Scheme)等に使用される。上りリンクでは、その他、初期接続時に用いるランダムアクセスチャネル(RACH)や、上りリンクの受信品質を測定するためのSounding Reference Signal等も必要に応じて伝送される。
 ところで、無線通信にMIMO(Multiple Input Multiple Output)方式が使用される場合、信号の伝送方式として、送信ダイバーシチ方式及び空間多重方式がある。送信ダイバーシチ方式は、複数のアンテナから同一の情報の信号を送信することで、空間的なダイバーシチゲインを増やし、受信品質を向上させようとするものである。空間多重方式は、複数のアンテナ各々から異なる信号を同時に送信することで、データレートを向上させようとするものである。一般に、無線伝搬状況が悪い場合は送信ダイバーシチ方式を使用し、無線伝搬状況が良い場合は空間多重方式を使用することが望ましい。これを実現するため、ランクアダプテーション(Rank Adaptation)と呼ばれる技術がある。
 ランク (Rank)は、例えば、複数のアンテナを介して伝送される異なるデータストリーム数として定義できる。例えば、アンテナ数が2であった場合、2本のアンテナから同一の情報を送信することで送信ダイバーシチを行うことができる。この場合、ランクは、1である。一方、2本のアンテナ各々から異なる情報の信号を送信することで空間多重を行うこともできる。この場合、ランクは、2である。さらに、アンテナ数が4であった場合、ランクは、1、2、3又は4の値をとり得る。一般に、アンテナ数がNであった場合、ランクのとり得る値は、1、2、...又はNである。
 基地局装置が下りデータ送信を行う際のランクは、一般的にはランクアダプテーションと呼ばれる技術により制御される。ユーザ装置は、下りリンクで送信される参照信号を用いて、受信品質を測定し、最適なランクを決定する。決定されたランクは上りリンク制御チャネル (PUCCH)により、ランクインジケータ(RI:Rank Indicator)として基地局装置へ通知する。ランクアダプテーションの場合、ユーザ装置及び基地局は、双方で使用可能なランクの内、通信状況に最も相応しいランクを適応的に選択し、信号品質の向上を図る。
 したがって、RIを表現するのに必要なビット数は、ユーザ装置及び基地局の能力(特に、アンテナ構成)に応じて異なる。例えば、RIが1又は2であれば、それは1ビットで表現できるが、RIが4であった場合は2ビット必要になる。さらにRIが8であった場合は3ビット必要になる。
 図1は、ランクアダプテーションを行う移動通信システムにおけるユーザ装置UE及び基地局eNBのRRCメッセージシーケンスを示す。先ず、ユーザ装置UEはRACHプリアンブル(RACH preamble)を基地局eNBに送信し、通信開始の意思表示を行う(S1)。基地局は、これに応答して、RACHレスポンス(RACH response)をユーザ装置UEに送信する(S2)。ユーザ装置UEは、RRC接続要求メッセージ(RRC Connection Request)(メッセージ3)を基地局eNBに送信する(S3)。基地局eNBは、これに応答して、RRC接続セットアップメッセージ(RRC Connection Setup)(メッセージ4)をユーザ装置UEに送信する(S4)。このRRC接続セットアップメッセージは、下りリンクのチャネル品質情報CQIやランクインジケータRIを報告する周期や、これらの制御チャネルを送信するためのPUCCHの個別リソース等の情報を含む。ユーザ装置UEは、これに応答して、RRC接続セットアップコンプリートメッセージ(RRC Connection Setup Complete)を基地局eNBに送信する(S5)。そして、基地局eNBは、UE能力問い合わせメッセージ(UE Capability Enquiry)を送信することで、ユーザ装置UEの能力を問い合わせる(S6)。ユーザ装置UEは、これに応答して、UE能力情報メッセージ(UE Capability Information)を送信し、自身の能力を基地局eNBに通知する(S7)。これにより、基地局eNBは、ユーザ装置UEが使用可能なランクインジケータを知ることができ、基地局及びユーザ装置双方で使用可能なランクインジケータを知ることができる。一方、ユーザ装置UEは、ステップS1以前に受信した報知情報から、基地局eNBのアンテナ数の情報を取得しているので、ユーザ装置UE及び基地局eNB双方で使用可能なランクインジケータを知ることができる。
 上記のような移動通信システムについては、非特許文献1ないし4に記載されている。
3GPP TS 36.211 v8.9.0(2009-12) 3GPP TS 36.212 v8.8.0(2009-12) 3GPP TS 36.213 v8.9.0(2009-9) 3GPP TS 36.331 v8.7.0(2009-9)
 図1のフローにおけるステップS4において、ユーザ装置UEがRRC接続セットアップメッセージを受信すると、ユーザ装置UEは、通知された頻度又は周期でランクインジケータを送信しようとする。しかしながら、基地局eNBは、ステップS7によりユーザ装置UEの能力情報を受信するまで、ユーザ装置UEが使用するランクインジケータが何ビットで表現されるかを知らない。
 例えば、ユーザ装置UEのランクが2であり、基地局eNBのランクが4であり、基地局eNBにとってユーザ装置UEの能力が未知であったとする。この場合、ユーザ装置UEのランクインジケータは1ビットで表現でき、基地局eNBのランクインジケータは2ビットで表現できる。ユーザ装置UEは1ビットのランクインジケータを送信し、基地局eNBは2ビットのランクインジケータを受信することを想定していたとする。ランクインジケータのビット数は、制御信号全体のビット数に影響する。その結果、ユーザ装置UEが報告する1ビットのランクインジケータを、基地局eNBは正しく認識できないだけでなく、ユーザ装置UEが送信した制御情報も正しく受信できないことが懸念される。このように、ランクインジケータのビット数について、ユーザ装置UE及び基地局eNBの間で認識が一致していなかった場合、基地局eNBはRIやCQI等の情報を正しく取得できず、また、これらの制御情報がPUSCHにより送信される場合には、レートマッチングが正しく行うことができず、PUSCHの復号等もできなくなってしまう。
 本発明の課題は、ランクアダプテーションを行う移動通信システムにおいて、ランクインジケータのビット数を基地局が誤って認識してしまうおそれを減らすことである。
 一実施例によるユーザ装置は、
 移動通信システムにおけるユーザ装置であって、
 下りリンクのチャネル状態に基づいてランクインジケータを生成するRI生成部と、
 前記ランクインジケータを含む上り信号を基地局に送信する送信部と
 を有し、当該ユーザ装置のカテゴリ情報を前記基地局に通知する前に、ランクインジケータを前記基地局に報告する場合、前記RI生成部は、当該ユーザ装置及び前記基地局にとって既知のビット数のランクインジケータを生成する、ユーザ装置である。
 一実施例によれば、ランクアダプテーションを行う移動通信システムにおいて、ランクインジケータのビット数を基地局が誤って認識してしまうおそれを減らすことができる。
ユーザ装置及び基地局間のシーケンスを示す図。 動作原理を説明するためのシーケンス図。 ユーザ装置の動作例を示すフローチャート。 カテゴリ情報の一例を示す図。 基地局の動作例を示すフローチャート。 第2変形例を説明するためのシーケンス図。 第3変形例を説明するためのシーケンス図。 ユーザ装置の概略ブロック図。 基地局の概略ブロック図。
 (1)本発明の一形態によれば、移動通信システムにおけるユーザ装置が使用される。ユーザ装置は、
 下りリンクのチャネル状態に基づいてランクインジケータを生成するRI生成部と、
 前記ランクインジケータを含む上り信号を基地局に送信する送信部と
 を有し、当該ユーザ装置のカテゴリ情報を前記基地局に通知する前に、ランクインジケータを前記基地局に報告する場合、前記RI生成部は、当該ユーザ装置及び前記基地局にとって既知のビット数のランクインジケータを生成する、ユーザ装置である。
 ユーザ装置のカテゴリ情報が基地局にとって未知であった場合に、ランクインジケータを前記基地局に報告する場合、ユーザ装置及び基地局にとって既知のビット数のランクインジケータが報告される。これにより、ランクインジケータのビット数を基地局が誤って認識してしまうおそれを減らすことができる。
 (2)前記既知のビット数は、前記移動通信システムにおける全てのユーザ装置が使用可能なランクインジケータを表現するのに必須のビット数でもよい。これは、全てのユーザ装置に対して、ビット数が余分に多いランクインジケータを生成しないようにする等の観点から好ましい。
 (3)ユーザ装置は、前記カテゴリ情報を含む上り信号について肯定応答又は否定応答を示す送達確認信号を受信する受信部をさらに備えてもよい。そして、前記肯定応答が得られた場合、前記RI生成部は、前記カテゴリ情報及び前記基地局のアンテナ数に基づいて決定されたビット数のランクインジケータを生成してもよい。これは、基地局eNBにとってカテゴリ情報が未知でなくなった後、最適なビット数でランクインジケータを生成する等の観点から好ましい。最適なビット数は、ユーザ装置及び基地局双方で使用可能な最大ランク数を表現するのに必要なビット数でもよい。
 (4)前記既知のビット数は、前記基地局のアンテナ数に応じて決定されたビット数でもよい。このビット数は、例えば、基地局の最大ランク数を表現するのに必要なビット数でもよい。
 (5)前記カテゴリ情報を含む上り信号について肯定応答が得られた後においても、前記RI生成部は、前記基地局のアンテナ数に応じて決定されたビット数のランクインジケータを生成してもよい。これは、基地局の処理負担を軽減する観点から好ましい。
 (6)ユーザ装置は、前記カテゴリ情報を含む上り信号について肯定応答又は否定応答を示す送達確認信号を受信する受信部をさらに備えてもよい。そして、前記肯定応答が得られた場合、前記RI生成部は、前記カテゴリ情報及び前記基地局のアンテナ数に基づいて決定されたビット数のランクインジケータを生成してもよい。
 (7)前記カテゴリ情報は、当該ユーザ装置が使用可能なランクインジケータのビット数を一意に特定することが可能である。
 (8)本発明の一形態によれば、移動通信システムにおける基地局が使用される。基地局装置は、
 ランクインジケータを含む上り信号をユーザ装置から受信する受信部と、
 前記ランクインジケータに基づいてスケジューリングした下り信号をユーザ装置に送信する送信部と
 を有し、前記ユーザ装置のカテゴリ情報が当該基地局にとって未知である場合に受信するランクインジケータは、前記ユーザ装置及び当該基地局にとって既知のビット数により表現されている、基地局である。
 (9)前記既知のビット数は、前記移動通信システムにおける全てのユーザ装置が使用可能なランクインジケータを表現するのに必須のビット数でもよい。
 (10)前記送信部は、前記カテゴリ情報を含む上り信号を復号した後に受信するランクインジケータは、前記カテゴリ情報及び当該基地局のアンテナ数に基づいて決定されたビット数により表現されていてもよい。
 (11)前記送信部は、前記カテゴリ情報を含む上り信号について肯定応答又は否定応答を示す送達確認信号を送信し、
 前記肯定応答を送信した後に受信するランクインジケータは、前記カテゴリ情報及び当該基地局のアンテナ数に基づいて決定されたビット数により表現されていてもよい。
 (12)前記既知のビット数は、当該基地局のアンテナ数に応じて決定されたビット数でもよい。
 (13)前記カテゴリ情報を含む上り信号を正しく復号した後、あるいは、前記カテゴリ情報を含む上り信号について肯定応答を送信した後に受信するランクインジケータも、当該基地局のアンテナ数に応じて決定されたビット数により表現されていてもよい。
 (14)前記カテゴリ情報は、前記ユーザ装置が使用可能なランクインジケータのビット数を一意に特定することが可能である。
 (15)本発明の一形態によれば、移動通信システムにおける方法が使用される。本方法は、
 ユーザ装置が、下りリンクのチャネル状態に基づいてランクインジケータを生成し、該ランクインジケータを含む上り信号を基地局に送信するステップと、
 前記基地局が、受信した前記ランクインジケータに基づいてスケジューリングした下り信号を前記ユーザ装置に送信するステップと
 を有し、前記ユーザ装置のカテゴリ情報が前記基地局に通知される前に、前記ユーザ装置が前記基地局に報告するランクインジケータは、前記ユーザ装置及び前記基地局にとって既知のビット数により表現されている、方法である。
 (16)本発明の一形態によれば、移動通信システムにおけるユーザ装置が使用される。本ユーザ装置は、
 RRC接続要求メッセージを生成するRRCメッセージ生成部と、
 ランクインジケータのビット数を決定するRIビット数決定部と、
 下りリンクのチャネル状態に基づいて、前記ビット数決定部により決定されたビット数のランクインジケータを生成するRI生成部と、
 前記RRC接続要求メッセージを送信した後に基地局から通知された報告頻度で、前記ランクインジケータを前記基地局に送信する送信部と
 を有し、前記RRCメッセージ生成部が生成するRRC接続要求メッセージは、ランクインジケータのビット数を一意に特定することが可能なカテゴリ情報を含み、前記RIビット数決定部は、前記カテゴリ情報及び前記基地局のアンテナ構成に基づいてランクインジケータのビット数を決定する、ユーザ装置である。
 RRC接続要求メッセージは、ランクインジケータのビット数を一意に特定することが可能なカテゴリ情報を含んでいるので、基地局は、RRC接続設定メッセージを送信する前に、ユーザ装置及び基地局双方に使用可能な最大ランク数、ひいては最適なRIビット数を知ることができる。これは、基地局がランクインジケータを受信する際、基地局が不適切なRIビット数を想定してしまうのを防ぐ等の観点から好ましい。
 (17)本発明の一形態によれば、移動通信システムにおける基地局が使用される。本基地局は、
 RRC接続要求メッセージをユーザ装置から受信し、ランクインジケータのビット数を一意に特定することが可能なカテゴリ情報を前記RRC接続要求メッセージから抽出するRRC処理部と、
 ランクインジケータの報告頻度を少なくとも示すRRCコネクション設定メッセージを生成するRRCメッセージ生成部と、
 前記カテゴリ情報及び当該基地局のアンテナ構成に基づいてランクインジケータのビット数を決定するRIビット数決定部と、
 前記RRCコネクション設定メッセージがユーザ装置に通知された後に、前記報告頻度で前記ユーザ装置から報告されたランクインジケータに基づいてスケジューリングした下りメッセージを、前記ユーザ装置に送信する送信部と
 を有する基地局である。
 (18)本発明の一形態によれば、移動通信システムにおける方法が使用される。本方法は、
 ユーザ装置がRRC接続要求メッセージを基地局に送信し、前記基地局が、ランクインジケータのビット数を一意に特定することが可能なカテゴリ情報を前記RRC接続要求メッセージから抽出するステップと、
 前記基地局が、ランクインジケータの報告頻度を少なくとも示すRRCコネクション設定メッセージを前記ユーザ装置に通知するステップと、
 前記ユーザ装置が、前記カテゴリ情報及び前記基地局のアンテナ構成に基づいてランクインジケータのビット数を決定し、該決定したビット数のランクインジケータを下りリンクのチャネル状態に基づいて生成するステップと、
 前記基地局が、前記カテゴリ情報及び前記基地局のアンテナ構成に基づいてランクインジケータのビット数を決定し、該ビット数のランクインジケータを前記ユーザ装置から前記報告頻度で受信するステップと
 を有する方法である。
 以下の観点から本発明の実施例を説明する。
 1.動作原理
 2.変形例1
 3.変形例2
 4.変形例3
 5.ユーザ装置
 6.基地局
 <1.動作原理>
 図2は、本発明の実施例を説明するためのシーケンス図を示す。上述したように、ユーザ装置UEがRRC接続要求メッセージ(RRC Connection Request)(メッセージ3)を基地局eNBに送信したことに応答して、基地局eNBは、RRC接続セットアップメッセージ(RRC Connection Setup)(メッセージ4)をユーザ装置UEに送信する(S4)。このRRC接続セットアップメッセージは、下りリンクのチャネル品質情報CQIやランクインジケータRIを報告する周期や、これらの制御チャネルを送信するためのPUCCHの個別リソース等の情報を含む。その後、ランクインジケータRIを報告する周期が訪れ、ステップS20において、ユーザ装置UEは、ランクインジケータを含む上り信号を基地局eNBに送信する。この上り信号は、原則としてPUCCHであるが、ユーザ装置UEが共有データチャネル(PUSCH)を送信する場合は、PUCCHではなくPUSCHにより送信される。なお、ステップS20において上り信号が送受信される時点では、基地局eNBにとってユーザ装置UEの能力は未知であるとする。
 本実施例では、ステップS20において基地局eNBに報告されるランクインジケータRIは、ユーザ装置UE及び基地局eNB双方にとって既知のビット数で表現される。既知のビット数は、ユーザ装置UEが自身の能力を示す情報を基地局eNBに送信するまでの間(図1のステップS4からS7までの間)に使用されるように、予め定められたビット数である。具体的には、既知のビット数は、例えば1ビットである。基地局eNBにとってユーザ装置UEの能力が未知である場合、ユーザ装置UEは自身の能力によらず1ビットでランクインジケータRIを生成及び送信し、基地局eNBも自身の能力によらず、1ビットのランクインジケータを想定して上り信号を受信する。
 図3は、ユーザ装置の動作例を示すフローチャートである。
 ステップS31において、ユーザ装置UEは、RRC接続セットアップメッセージ(RRC Connection Setup)を受信し、RI及びCQIの報告頻度や、PUCCHのリソース等の情報を取得する。
 ステップS32において、ユーザ装置UEは、上記の既知のビット数のランクインジケータRIを生成し、それを基地局eNBに送信する。説明の便宜上、既知のビット数は、1ビットであるとするが、これに限定されない。移動通信システム内で動作するすべてのユーザ装置が使用可能なランクを表現するのに必須のビット数という観点から、既知のビット数が決定されてもよい。本説明では、高々2アンテナしか備わっていないユーザ装置UEが、移動通信システム内に存在してもよいことを想定しているので、既知のビット数が1ビットに設定されている。
 ランクインジケータは、下りリンクの無線状態の測定値(例えば、CQI)に相応しい値として生成される。具体的には、先ず基地局eNBは、複数のアンテナ各々からリファレンス信号(RS)又はパイロット信号を送信している。ユーザ装置UEは、基地局eNBから受信したリファレンス信号(RS)の受信品質や空間相関を測定することで無線状態を知ることができ、その無線状態に相応しいランクインジケータRIを生成する。
 例えば、ユーザ装置UEがセル端に位置し、RI = 1を想定した場合の受信品質がRI = 2の受信品質よりも良くなり、データレート向上よりも受信品質向上を優先するためのランクインジケータ(例えば、RI=1)が生成される。逆に、ユーザ装置UEが基地局eNB近傍に位置し、RI = 2を想定した場合の受信品質がRI =1の受信品質よりも良くなり、データレート向上が見込める場合には、スループットが高くなるランクインジケータ(例えば、RI=2)が生成される。
 ステップS33において、ユーザ装置UEは、UE能力情報(UE Capability Information)を基地局eNBに送信する。このステップは、図1のステップS7に相当する。UE能力情報は、例えば、上り物理共有チャネル(PUSCH)により伝送されてもよい。UE能力情報は、カテゴリ情報とも言及される。概して、ユーザ装置UEは、能力に応じて幾つかのカテゴリに分類される。
 図4は、カテゴリ情報の一例を示す。図示の例の場合、ユーザ装置UEは5つのカテゴリ(カテゴリ1~5)に分類されている。分類数は5つに限定されず、いくつでもよい。概して、カテゴリ番号が多いほど、処理能力が高いことを示す。「1TTIの間に受信するDL-SCHトランスポートブロックの最大ビット数」は、概して、下りの共有データチャネルを受信する能力を示す。一例として、1つのサブフレーム(TTI)の中に2つのトランスポートブロックが含まれる。「ソフトチャネルビット総数」は、既に送信した情報を速やかには破棄せずに、再送による合成に備えて保存しておくビット数を示す。「下りリンクの空間多重に対してサポートしている最大レイヤ数」は、上記のランクインジケータRIに関連する情報である。この欄の値が4の場合、RIは1、2、3又は4の値をとり、この欄の値が2の場合、RIは1又は2の値をとり、この欄の値が1の場合、RIは1である。したがって、カテゴリ1~4のユーザ装置UEに対するランクインジケータRIは、1ビットで表現できる。カテゴリ5のユーザ装置UEに対するランクインジケータRIは、2ビットで表現できる。したがって、ユーザ装置個々のカテゴリ情報を知ることで、個々のユーザ装置が使用可能なランクインジケータのビット数を一意に特定することができる。このようなカテゴリ情報は、ユーザ装置UE及び基地局eNBにとって既知である。
 図3のステップS33では、ユーザ装置UEは、このようなカテゴリ情報をPUSCHにより基地局eNBに通知する。基地局eNBは、受信したカテゴリ情報に基づいてユーザ装置UEのカテゴリを判別し、ユーザ装置UE及び基地局双方に最適なRIビット数を知ることができる。
 ステップS34では、ステップS33で送信したPUSCHに対する送達確認信号PHICHを受信し、PUSCHが基地局eNBで適切に受信されたか否かを判断する。送達確認信号PHICHは、肯定応答ACK又は否定応答NACKにより表現される。送達確認信号PHICHが肯定応答ACKを示していた場合、フローはステップS35に進む。
 ステップS35において、ユーザ装置UEは、自身のカテゴリ情報と基地局eNBのアンテナ数とに基づいて、ランクインジケータRIを表現するビット数を決定する。例えば、ユーザ装置UEがカテゴリ5に属し、基地局eNBのアンテナ数が4であったとする。この場合、ユーザ装置UEも基地局eNBも最大でランクが4の通信を行うことができる。ステップS32において設定されているビット数は1である。そこで、ステップS35において、ユーザ装置UEは、ランクインジケータRIのビット数を1から2に変更する。後述するように、基地局eNBも同様にランクインジケータRIのビット数を1から2に変更する。以後、ユーザ装置UEは2ビットのランクインジケータRIを生成及び送信し、基地局eNBは2ビットのランクインジケータRIを受信し、そのRIに基づいてスケジューリング等の処理を行う。なお、ユーザ装置UEがカテゴリ5でなかった場合、そのユーザ装置は高々ランクが2の通信を行うことしかできない。この場合、ランクインジケータRIは1ビットで十分であるので、ランクインジケータを表現するビット数を変更する必要はない。
 一方、ステップS34において、ステップS33で送信したPUSCHに対する送達確認信号PHICHが否定応答NACKを示していた場合、フローはステップS33に戻り、以前に送信したPUSCHを再送する。ユーザ装置UEは、基地局eNBから肯定応答ACKを受信した場合にのみ、ランクインジケータRIのビット数を再設定する。
 図5は、基地局eNBの動作例を示すフローチャートである。
 ステップS51において、基地局eNBは、RRC接続セットアップメッセージ(RRC Connection Setup)をユーザ装置UEに通知する。このステップは、図1のステップS4に相当する。上述したように、RRC接続セットアップメッセージは、RI及びCQIの報告頻度や、PUCCHのリソース等の情報を含んでいる。
 ステップS52において、基地局eNBは、ユーザ装置UEからランクインジケータRIを含む上り信号を受信する。上り信号は、原則としてPUCCHで送信されるが、ユーザ装置UEが共有データチャネルを送信する場合はPUSCHにより共有データチャネルと多重して送信される。さらに、本実施例の場合、ユーザ装置UE及び基地局eNBにとって既知のビット数のランクインジケータRIが、受信される。説明の便宜上、既知のビット数は、1ビットであるが、これに限定されない。移動通信システム内で動作するすべてのユーザ装置が使用可能なランクを表現するのに必須のビット数という観点から、既知のビット数が決定されてもよい。本説明では、高々2アンテナしか備わっていないユーザ装置UEが、移動通信システム内に存在してもよいことを想定しているので、既知のビット数が1ビットに設定されている。
 ステップS53において、基地局eNBは、UE能力情報又はカテゴリ情報をユーザ装置UEから受信する。カテゴリ情報は、PUSCHに含まれている。
 ステップS54において、基地局eNBは、カテゴリ情報を含むPUSCHについて誤り判定を行う。誤っていなかった場合(CRC=OK)、基地局eNBは肯定応答ACKを示す送達確認信号PHICHをユーザ装置UEに送信し、フローはステップS55に進む。
 ステップS55では、図3のステップS35と同様に、基地局eNBは、カテゴリ情報と基地局eNBのアンテナ数とに基づいて、以後の通信でやりとりするランクインジケータRIのビット数を決定する。具体的には、ユーザ装置及び基地局双方で使用可能な最大ランク数を表現するのに必要なビット数が選択される。なお、ステップS55は、基地局eNBが肯定応答ACKを示す送達確認信号を行う前に、CRC=OKと判定した直後に切り替えてもよい。
 一方、ステップS54において、誤っていた場合(CRC=NG)、フローはステップS56に進む。
 ステップS56では、基地局eNBは否定応答NACKを示す送達確認信号PHICHをユーザ装置UEに送信し、PUSCHの再送を要求し、フローはステップS53に戻る。
 本動作例によれば、基地局eNBがユーザ装置UEのカテゴリ情報を未だ受信していなかった場合、ユーザ装置UEから報告されるランクインジケータRIのビット数は、ある既知の値(例えば、1ビット)に強制される。このため、基地局eNBが、ランクインジケータRIのビット数を誤って認識するおそれは、軽減される。さらに、本動作例によれば、基地局eNBがカテゴリ情報を受信した後、ユーザ装置UE及び基地局eNB双方が使用できるランクに応じて、過不足のないビット数が設定される。したがって、本実施例は、「基地局eNBのアンテナ構成とユーザ装置UEのカテゴリ情報によって、RIのビット数が決定される」という規則を順守しつつ、カテゴリ情報が未知の場合にも対処できる観点から好ましい。
 <2.変形例1>
 ところで、上記の動作例では、移動通信システム内で動作するすべてのユーザ装置が使用可能なランクを表現するのに必須のビット数という観点から、ユーザ装置UE及び基地局eNBにとって既知のビット数が決定されていた。しかしながら、本発明はこれに限定されず、他の観点から既知のビット数が決定されてもよい。
 ユーザ装置UEは、RACHプリアンブルの送信前に報知情報(BCH)を受信している。報知情報は、基地局eNBのアンテナ数の情報も含んでいる。そこで、本発明の第1変形例では、基地局eNBのアンテナ数に応じて決定されるビット数が、上記の既知のビット数として設定される。具体的には、基地局eNBの最大ランク数を表現するのに必要なビット数が、既知のビット数として設定される。例えば、基地局eNBのアンテナ数が4であった場合、最大ランク数は4であるので、既知のビット数は、2に設定される。その後、基地局eNBがカテゴリ情報を受信すると、そのカテゴリ情報及び基地局eNBのアンテナ数に基づいて、ランクインジケータRIのビット数が再設定される。すなわち、RIビット数は、ユーザ装置及び基地局双方で使用可能な最大ランク数を表現するのに必要なビット数に再設定される。
 本変形例において、基地局eNBがカテゴリ情報を未だ受信していなかった場合、ユーザ装置UEが高々2本のアンテナしか備えていなかった場合でも、ユーザ装置UEは2ビットのランクインジケータRIを生成及び送信することになる。したがって、ユーザ装置UEの能力が低い場合、必須のビット数より多いビット数のランクインジケータRIが生成される。例えば、カテゴリ3のユーザ装置UEのランクは、本来1ビットで表現できるが、本変形例の場合、2ビットで表現される。本変形例は、高い能力を有するユーザ装置UEがセル内に多数在圏している場合に特に有利である。それら多数のユーザ装置UEについて正確なランクインジケータRIが生成され、セル全体のスループットを向上させることができるからである。
 <3.変形例2>
 第1変形例では、基地局eNBのアンテナ数に応じて導出されるビット数(具体的には、基地局eNBの最大ランク数を表現するのに必要なビット数)が、上記の既知のビット数として設定された。その後、基地局eNBがカテゴリ情報を受信すると、そのカテゴリ情報及び基地局eNBのアンテナ数に基づいて、ランクインジケータRIのビット数が再設定されていた。
 第2実施例では、そのような再設定は行われず、終始、ランクインジケータRIのビット数は、基地局eNBのアンテナ数に応じて決定された値のままである。
 図6は、本変形例を説明するためのシーケンス図を示す。ユーザ装置UEは、既に報知情報(BCH)を受信しており、基地局eNBのアンテナ数等の情報を取得している。上述したように、ユーザ装置UEがRRC接続要求メッセージ(RRC Connection Request)(メッセージ3)を基地局eNBに送信したことに応答して、基地局eNBは、RRC接続セットアップメッセージ(RRC Connection Setup)(メッセージ4)をユーザ装置UEに送信する(S4)。このRRC接続セットアップメッセージは、下りリンクのチャネル品質情報CQIやランクインジケータRIを報告する周期、PUCCHのリソース等の情報を含む。
 その後、ランクインジケータRIを報告する周期が訪れ、ステップS61において、ユーザ装置UEは、ランクインジケータを含む上り信号を基地局eNBに送信する。この上り信号は、原則としてPUCCHで送信されるが、ユーザ装置UEが共有データチャネル(PUSCH)を送信する場合、PUCCHではなくPUSCHにより共有データチャネルと多重して送信される。ステップS61において上り信号が送受信される時点では、基地局eNBにとってユーザ装置UEの能力は未知である。ステップS61において基地局eNBに報告されるランクインジケータRIは、ユーザ装置UE及び基地局eNB双方にとって既知のビット数で表現されている。本変形例の場合、既知のビット数は、基地局eNBのアンテナ数から導出された値であり、具体的には、基地局eNBの最大ランク数を表現するのに必要なビット数である。一例として、そのビット数は2である(基地局eNBのアンテナ数は4であることを想定している。)。
 ステップS7において、ユーザ装置UEのカテゴリ情報がPUSCHにより基地局eNBに通知される。このPUSCHは適切に受信されたものとする、すなわち、基地局eNBからユーザ装置UEへ肯定応答ACKが送信されたことを仮定している。その後、RIを報告する周期が訪れる。
 ステップS62において、ユーザ装置UEは、ステップS61における処理と同様に、2ビットのランクインジケータRIを生成及び送信する。第1変形例とは異なり、ランクインジケータRIのビット数は再設定されないので、2ビットのランクインジケータRIが生成及び送信される。
 本変形例によれば、ユーザ装置UE及び基地局eNBにおいて、ランクインジケータRIのビット数を変更しなくてよいので、本変形例は処理負担を軽減できる等の点で好ましい。
 <4.変形例3>
 上述したように、図1のステップS7によりユーザ装置UEがカテゴリ情報を基地局eNBに通知する前の状態においては、基地局eNBは、ランクインジケータRIのビット数を誤って認識するおそれがある。ランクインジケータRIの報告は、ステップS4以降から開始される。したがって、ステップS4からS7の間に、RIビット数の誤認識の問題が生じる。
 第3変形例では、既存のRRC接続要求メッセージ(RRC Connection Request)を変更し、RRC接続要求メッセージが、ユーザ装置UEのカテゴリ情報を含むようにする。
 図7は、本変形例を説明するためのシーケンス図を示す。
 ステップS71では、ユーザ装置UEが、RRC接続要求メッセージを基地局eNBに送信する。従来とは異なり、このRRC接続要求メッセージは、ユーザ装置UEのカテゴリ情報を含む。したがって、RRC接続要求メッセージを受信した基地局eNBは、カテゴリ情報及び基地局eNBのアンテナ数に基づいて最適なRIビット数を決定することができる。具体的には、RIビット数は、ユーザ装置及び基地局双方で使用可能な最大ランク数を表現するのに必要なビット数に決定される。ユーザ装置UEは、基地局eNBのアンテナ数の情報を報知情報から既に取得しているので、ユーザ装置UEも、カテゴリ情報及び基地局eNBのアンテナ数に基づいて同一の最適なRIビット数を決定することができる。
 ステップS4において、基地局eNBは、RRC接続セットアップメッセージ(RRC Connection Setup)(メッセージ4)をユーザ装置UEに送信する。このRRC接続セットアップメッセージは、下りリンクのチャネル品質情報CQIやランクインジケータRIを報告する周期やこれらの制御チャネルを送信するためのPUCCHの個別リソース等の情報を含む。
 その後、ランクインジケータRIを報告する周期が訪れると、ステップS72において、ユーザ装置UEは、上記の最適なRIビット数のランクインジケータを含む上り信号を基地局eNBに送信する。
 本変形例の場合、図1のステップS6及びS7に相当する処理は不要である。本変形例による図7のステップS71において、カテゴリ情報が既に基地局eNBに通知されているからである。
 本変形例によれば、ステップS71以降、基地局eNBはユーザ装置UEのカテゴリ情報を知っているので、ランクインジケータRIのビット数を正しく認識できる。第3変形例では、上記の動作原理や第1変形例におけるRIビット数の再設定を行う処理は不要である。第3変形例は、能力が低いユーザ装置UEが余分に多いビット数でランクインジケータRIを生成しなくてよい点で好ましい。この点、第3変形例は第2変形例よりも有利である。
 <5.ユーザ装置>
 図8は、ユーザ装置UEの概略ブロック図を示す。図示されているように、ユーザ装置UEに備わる様々な処理部の内、制御情報受信部81、CQI測定部82、RRC処理部83、RRCメッセージ生成部84、RIビット数決定部85、RI生成部86、RACH生成部87及び送信信号生成部88が示されている。
 制御情報受信部81は、下りリンクで受信した受信信号から各種の情報を抽出する。図示の例では、抽出される各種の情報の内、報知情報BCH、リファレンス信号RS、RACH応答メッセージ(RACH response)、RRCメッセージ及び送達確認信号PHICH(ACK/NACK)が示されている。
 CQI測定部82は、受信したリファレンス信号RSに基づいて、下りリンクの受信品質又は受信レベルを測定し、下りリンクの無線状態の良否を示す情報(例えば、CQI)を生成する。受信レベルは、例えば受信電力、電界強度RSSI、希望波受信電力RSCP、パスロス、S/N、SIR、Ec/N0等で表現されてもよい。
 RRC処理部83は、受信したRRCメッセージに応じて処理を行う。例えば、RACH応答メッセージ(RACH response)を受信した場合、RRC接続要求メッセージ(RRC Connection Request)の生成を促す。
 RRCメッセージ生成部84は、基地局eNBに通知するRRCメッセージを生成する。上記の第3変形例の場合、RRCメッセージ生成部84は、カテゴリ情報を含むRRC接続要求メッセージを生成する。
 RIビット数決定部85は、ランクインジケータRIのビット数を決定する。上記の動作原理及び第1変形例の場合、先ず、RIビット数は、ユーザ装置UE及び基地局eNBにとって既知のビット数(例えば、1ビット)に決定される。その後、カテゴリ情報を含むPUSCHに対する送達確認信号ACK/NACKが、肯定応答ACKであった場合、RIビット数決定部85は、RIビット数を、カテゴリ情報及び基地局eNBのアンテナ数に基づいて最適な値に決定し直す。最適な値とは、ユーザ装置UE及び基地局eNB双方で使用可能な最大ランク数を表現するのに必要なビット数である。第2変形例の場合、基地局eNBのアンテナ数に応じて特定されるビット数(すなわち、基地局eNBの最大ランク数を表現するのに必要なビット数)が、RIビット数として決定される。第3変形例の場合、ユーザ装置UEのカテゴリ情報及び基地局eNBのアンテナ数に基づく最適なRIビット数が、当初から使用される。最適なRIビット数は、ユーザ装置UE及び基地局eNB双方で使用可能な最大ランク数を表現するのに必要なビット数である。
 RI生成部86は、測定した受信品質やCQI等に基づいて、ランクインジケータRIを決定する。ランクインジケータRIのビット数は、RIビット数決定部85において決定された値である。
 RACH生成部87は、報知情報BCHを利用して、RACHプリアンブルを生成する。
 送信信号生成部88は、送信する情報に対してチャネル符号化、データ変調及びインターリーブ等を施し、各種のチャネルを多重して送信信号を生成する。生成された送信信号は不図示の送信部を経て送信される。
 <6.基地局>
 図9は、基地局の概略ブロック図を示す。図示の例の場合、基地局eNBに備わる様々な処理部の内、制御情報受信部91、RRC処理部92、RRCメッセージ生成部93、RIビット数決定部94、ユーザデータ生成部95、スケジューラ96及び送信信号生成部97が示されている。
 制御情報受信部91は、上りリンクで受信した受信信号から各種の信号を抽出する。図示の例では、抽出される各種の情報の内、CQI、RACHプリアンブル、RRCメッセージ、ランクインジケータRI及びUEカテゴリが示されている。
 RRC処理部92は、受信したRRCメッセージに応じて処理を行う。例えば、RRC接続要求メッセージ(RRC Connection Request)を受信した場合、RRC接続セットアップメッセージ(RRC Connection Setup)の生成を促す。
 RRCメッセージ生成部93は、ユーザ装置UEに通知するRRCメッセージを作成する。
 RIビット数決定部94は、ランクインジケータRIのビット数を決定する。上記の動作原理及び第1変形例の場合、先ず、RIビット数は、ユーザ装置UE及び基地局eNBにとって既知のビット数(例えば、1ビット)に決定される。その後、ユーザ装置UEからカテゴリ情報が通知された場合、RIビット数決定部94は、RIビット数を、カテゴリ情報及び基地局eNBのアンテナ数に基づいて最適な値に決定し直す。最適な値は、ユーザ装置UE及び基地局eNB双方に使用可能な最大ランク数を表現するのに必要なビット数である。第2変形例の場合、基地局eNBのアンテナ数に応じて特定されるビット数(すなわち、基地局eNBの最大ランク数を表現するのに必要なビット数)が、RIビット数として決定される。第3変形例の場合、ユーザ装置UEのカテゴリ情報及び基地局eNBのアンテナ数に基づく最適なRIビット数が、当初から使用される。最適なRIビット数は、ユーザ装置UE及び基地局eNB双方で使用可能な最大ランク数を表現するのに必要なビット数である。
 ユーザデータ生成部95は、ユーザデータ又はユーザトラフィックデータを生成する。
 スケジューラ96は、CQI及びRIに基づいて、ユーザ装置UEに対する無線リソースの割り当て方を決定する。
 送信信号生成部97は、スケジューラ96からの指示にしたがって、送信する情報に対してチャネル符号化、データ変調及びインターリーブ等を施し、各種のチャネルを多重して送信信号を生成する。生成された送信信号は不図示の送信部を経て送信される。
 以上本発明は特定の実施例を参照しながら説明されてきたが、それらは単なる例示に過ぎず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。本発明は、ランクアダプテーションを行う適切な如何なる移動通信システムに適用されてもよい。例えば本発明は、HSDPA/HSUPA方式のW-CDMAシステム、LTE方式のシステム、IMT-Advancedシステム、WiMAX、Wi-Fi方式のシステム等に適用されてもよい。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。説明中の項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてもよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。説明の便宜上、本発明の実施例に係る装置は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせにより実現されてもよい。ソフトウェアは、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に用意されてもよい。本発明は上記実施例に限定されず、本発明の精神から逸脱することなく、様々な変形例、修正例、代替例、置換例等が本発明に包含される。
 本国際出願は2010年1月8日に出願した日本国特許出願第2010-3034号に基づく優先権を主張するものであり、その全内容を本国際出願に援用する。

Claims (18)

  1.  移動通信システムにおけるユーザ装置であって、
     下りリンクのチャネル状態に基づいてランクインジケータを生成するRI生成部と、
     前記ランクインジケータを含む上り信号を基地局に送信する送信部と
     を有し、当該ユーザ装置のカテゴリ情報を前記基地局に通知する前に、ランクインジケータを前記基地局に報告する場合、前記RI生成部は、当該ユーザ装置及び前記基地局にとって既知のビット数のランクインジケータを生成する、ユーザ装置。
  2.  前記既知のビット数は、前記移動通信システムにおける全てのユーザ装置が使用可能なランクインジケータを表現するのに必須のビット数である、請求項1記載のユーザ装置。
  3.  前記カテゴリ情報を含む上り信号について肯定応答又は否定応答を示す送達確認信号を受信する受信部をさらに有し、
     前記肯定応答が得られた場合、前記RI生成部は、前記カテゴリ情報及び前記基地局のアンテナ数に基づいて決定されたビット数のランクインジケータを生成する、請求項1又は2に記載のユーザ装置。
  4.  前記既知のビット数は、前記基地局のアンテナ数に応じて決定されたビット数である、請求項1記載のユーザ装置。
  5.  前記カテゴリ情報を含む上り信号について肯定応答が得られた後においても、前記RI生成部は、前記基地局のアンテナ数に応じて決定されたビット数のランクインジケータを生成する、請求項4記載のユーザ装置。
  6.  前記カテゴリ情報を含む上り信号について肯定応答又は否定応答を示す送達確認信号を受信する受信部をさらに有し、
     前記肯定応答が得られた場合、前記RI生成部は、前記カテゴリ情報及び前記基地局のアンテナ数に基づいて決定されたビット数のランクインジケータを生成する、請求項4に記載のユーザ装置。
  7.  前記カテゴリ情報は、当該ユーザ装置が使用可能なランクインジケータのビット数を一意に特定することが可能である、請求項1ないし6の何れか1項に記載のユーザ装置。
  8.  移動通信システムにおける基地局であって、
     ランクインジケータを含む上り信号をユーザ装置から受信する受信部と、
     前記ランクインジケータに基づいてスケジューリングした下り信号をユーザ装置に送信する送信部と
     を有し、前記ユーザ装置のカテゴリ情報が当該基地局にとって未知である場合に受信するランクインジケータは、前記ユーザ装置及び当該基地局にとって既知のビット数により表現されている、基地局。
  9.  前記既知のビット数は、前記移動通信システムにおける全てのユーザ装置が使用可能なランクインジケータを表現するのに必須のビット数である、請求項8記載の基地局。
  10.  前記送信部は、前記カテゴリ情報を含む上り信号について肯定応答又は否定応答を示す送達確認信号を送信し、
     前記カテゴリ情報を含む上り信号を復号した後、あるいは、前記肯定応答を送信した後に受信するランクインジケータは、前記カテゴリ情報及び当該基地局のアンテナ数に基づいて決定されたビット数により表現されている、請求項8又は9に記載の基地局。
  11.  前記既知のビット数は、当該基地局のアンテナ数に応じて決定されたビット数である、請求項8記載の基地局。
  12.  前記カテゴリ情報を含む上り信号を復号した後、あるいは、前記カテゴリ情報を含む上り信号について肯定応答を送信した後に受信するランクインジケータも、当該基地局のアンテナ数に応じて決定されたビット数により表現されている、請求項11記載の基地局。
  13.  前記送信部は、前記カテゴリ情報を含む上り信号について肯定応答又は否定応答を示す送達確認信号を送信し、
     前記カテゴリ情報を含む上り信号を復号した後、あるいは、前記肯定応答を送信した後に受信するランクインジケータは、前記カテゴリ情報及び当該基地局のアンテナ数に基づいて決定されたビット数により表現されている、請求項11に記載の基地局。
  14.  前記カテゴリ情報は、前記ユーザ装置が使用可能なランクインジケータのビット数を一意に特定することが可能である、請求項8ないし13の何れか1項に記載の基地局。
  15.  移動通信システムにおける方法であって、
     ユーザ装置が、下りリンクのチャネル状態に基づいてランクインジケータを生成し、該ランクインジケータを含む上り信号を基地局に送信するステップと、
     前記基地局が、受信した前記ランクインジケータに基づいてスケジューリングした下り信号を前記ユーザ装置に送信するステップと
     を有し、前記ユーザ装置のカテゴリ情報が前記基地局に通知される前に、前記ユーザ装置が前記基地局に報告するランクインジケータは、前記ユーザ装置及び前記基地局にとって既知のビット数により表現されている、方法。
  16.  移動通信システムにおけるユーザ装置であって、
     RRC接続要求メッセージを生成するRRCメッセージ生成部と、
     ランクインジケータのビット数を決定するRIビット数決定部と、
     下りリンクのチャネル状態に基づいて、前記ビット数決定部により決定されたビット数のランクインジケータを生成するRI生成部と、
     前記RRC接続要求メッセージを送信した後に基地局から通知された報告頻度で、前記ランクインジケータを前記基地局に送信する送信部と
     を有し、前記RRCメッセージ生成部が生成するRRC接続要求メッセージは、当該ユーザ装置が使用可能なランクインジケータのビット数を一意に特定することが可能なカテゴリ情報を含み、前記RIビット数決定部は、前記カテゴリ情報及び前記基地局のアンテナ構成に基づいてランクインジケータのビット数を決定する、ユーザ装置。
  17.  移動通信システムにおける基地局であって、
     RRC接続要求メッセージをユーザ装置から受信し、ランクインジケータのビット数を一意に特定することが可能なカテゴリ情報を前記RRC接続要求メッセージから抽出するRRC処理部と、
     ランクインジケータの報告頻度を少なくとも示すRRCコネクション設定メッセージを生成するRRCメッセージ生成部と、
     前記カテゴリ情報及び当該基地局のアンテナ構成に基づいてランクインジケータのビット数を決定するRIビット数決定部と、
     前記RRCコネクション設定メッセージがユーザ装置に通知された後に、前記報告頻度で前記ユーザ装置から報告されたランクインジケータに基づいてスケジューリングした下りメッセージを、前記ユーザ装置に送信する送信部と
     を有する基地局。
  18.  移動通信システムにおける方法であって、
     ユーザ装置がRRC接続要求メッセージを基地局に送信し、前記基地局が、当該ユーザ装置が使用可能なランクインジケータのビット数を一意に特定することが可能なカテゴリ情報を前記RRC接続要求メッセージから抽出するステップと、
     前記基地局が、ランクインジケータの報告頻度を少なくとも示すRRCコネクション設定メッセージを、前記ユーザ装置に通知するステップと、
     前記ユーザ装置が、前記カテゴリ情報及び前記基地局のアンテナ構成に基づいてランクインジケータのビット数を決定し、該決定したビット数のランクインジケータを下りリンクのチャネル状態に基づいて生成するステップと、
     前記基地局が、前記カテゴリ情報及び前記基地局のアンテナ構成に基づいてランクインジケータのビット数を決定し、該ビット数のランクインジケータを前記ユーザ装置から前記報告頻度で受信するステップと
     を有する方法。
PCT/JP2011/050061 2010-01-08 2011-01-05 移動通信システムにおけるユーザ装置、基地局及び方法 WO2011083805A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800131750A CN102792726A (zh) 2010-01-08 2011-01-05 移动通信系统中的用户装置、基站以及方法
US13/520,984 US20120307648A1 (en) 2010-01-08 2011-01-05 User device, base station, and method for mobile communication systems
EP11731803A EP2523498A1 (en) 2010-01-08 2011-01-05 User equipment, base station and method in mobile communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010003034A JP5124597B2 (ja) 2010-01-08 2010-01-08 移動通信システムにおけるユーザ装置、基地局及び方法
JP2010-003034 2010-01-08

Publications (1)

Publication Number Publication Date
WO2011083805A1 true WO2011083805A1 (ja) 2011-07-14

Family

ID=44305542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050061 WO2011083805A1 (ja) 2010-01-08 2011-01-05 移動通信システムにおけるユーザ装置、基地局及び方法

Country Status (5)

Country Link
US (1) US20120307648A1 (ja)
EP (1) EP2523498A1 (ja)
JP (1) JP5124597B2 (ja)
CN (1) CN102792726A (ja)
WO (1) WO2011083805A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095054A2 (zh) * 2012-03-01 2012-07-19 华为技术有限公司 无线通信方法、用户设备、基站和系统
WO2013091231A1 (zh) * 2011-12-23 2013-06-27 华为技术有限公司 处理层指示ri的方法、装置及系统
JP2014529937A (ja) * 2011-08-15 2014-11-13 アルカテル−ルーセント 3dアンテナ構成用のコードブックを設計する方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8995550B2 (en) * 2010-01-22 2015-03-31 Sharp Kabushiki Kaisha Transmission device, reception device, communication system, and communication method
EP2702792A4 (en) * 2011-04-29 2015-06-24 Ericsson Telefon Ab L M METHOD AND ARRANGEMENT FOR SUPPORTING A NETWORK MANAGEMENT UNIT
EP2903383B1 (en) * 2012-11-02 2018-01-10 Huawei Technologies Co., Ltd. Method, base station, and user equipment for determining channel loss
KR102117024B1 (ko) 2012-11-28 2020-06-01 삼성전자 주식회사 무선 통신 시스템의 통신 방법 및 장치
EP3493631B1 (en) * 2012-11-28 2022-11-02 Samsung Electronics Co., Ltd. Method and apparatus for performing communication in a wireless communication system
MX345319B (es) 2013-01-18 2017-01-25 Huawei Tech Co Ltd Método para determinar número de bits de ri de indicación de jerarquía, estación base, y terminal.
US9337982B2 (en) * 2013-04-05 2016-05-10 Qualcomm Incorporated Adaptive antenna management in LTE
WO2014190550A1 (zh) * 2013-05-31 2014-12-04 华为技术有限公司 一种通讯方法、基站及用户设备
CN105493459B (zh) * 2013-08-22 2020-03-03 Lg 电子株式会社 在无线接入系统中通过使用空间调制方案发送数据的方法和设备
EP3061304B1 (en) * 2013-11-14 2018-08-01 Sony Corporation Communications system, infrastructure equipment, communications devices and method
CN110890906B (zh) * 2014-08-30 2022-08-26 华为技术有限公司 一种天线信息的发送、接收方法和设备
WO2016199855A1 (ja) * 2015-06-11 2016-12-15 株式会社Nttドコモ ユーザ装置、基地局、及び情報受信方法
JP6055034B1 (ja) 2015-06-26 2016-12-27 株式会社Nttドコモ ユーザ装置、及び上り制御情報ビット幅決定方法
WO2017006873A1 (ja) * 2015-07-03 2017-01-12 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
KR102577011B1 (ko) 2015-07-20 2023-09-11 삼성전자 주식회사 무선 통신 시스템에서 통신 방법 및 장치
KR102525739B1 (ko) * 2015-07-27 2023-04-26 삼성전자 주식회사 무선 통신 시스템에서 랭크 관련 정보를 결정하는 방법 및 장치
US9848279B2 (en) 2015-09-11 2017-12-19 At&T Intellectual Property I, L.P. User equipment categories for machine-to-machine devices operating in an internet of things network
JP2019009484A (ja) * 2015-11-13 2019-01-17 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
US10200102B2 (en) * 2015-11-13 2019-02-05 Qualcomm Incorporated Channel station information reporting and transmission mode for enhanced machine type communication
CN108270470B (zh) * 2016-12-30 2021-02-23 华为技术有限公司 一种数据传输的方法及发送端设备、接收端设备
JP6492116B2 (ja) * 2017-04-04 2019-03-27 華為技術有限公司Huawei Technologies Co.,Ltd. ランク指示(ri)ビット数を決定する方法、基地局、及び端末
US11032844B2 (en) * 2017-06-22 2021-06-08 Qualcomm Incorporated Physical shared channel transmission to acknowledgement delay optimization
US20220209833A1 (en) * 2019-05-10 2022-06-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and network device for rank selection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003034A (ja) 2008-06-19 2010-01-07 Boatstaff:Kk オリジナル旅行プラン作製方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4026118B2 (ja) * 2002-02-20 2007-12-26 日本電気株式会社 移動端末、緊急呼管理装置、緊急呼管理システム及び緊急呼の管理方法
US7904055B2 (en) * 2005-08-23 2011-03-08 Lg Electronics Inc. Communicating message in mobile communication system
US8559362B2 (en) * 2005-11-04 2013-10-15 Lg Electronics Inc. Random access channel hopping for frequency division multiplexing access systems
GB2435157B (en) * 2006-02-10 2011-01-19 Nokia Corp Communicating Data to User Equipment Outside of Dedicated Channel State
US8126464B2 (en) * 2006-03-24 2012-02-28 Panasonic Corporation Radio communication base station device
KR20080036493A (ko) * 2006-10-23 2008-04-28 엘지전자 주식회사 이동통신 시스템에서의 망 접속 방법 및 이를 지원하는단말기
JP4879325B2 (ja) * 2006-11-01 2012-02-22 エルジー エレクトロニクス インコーポレイティド 無線通信システムでページングメッセージを伝送する方法及び受信する方法
WO2008084422A2 (en) * 2007-01-04 2008-07-17 Nokia Corporation Allocation of time-frequency resources to a control channel
KR101382894B1 (ko) * 2007-03-12 2014-04-08 엘지전자 주식회사 다중 안테나 시스템에서의 제어정보 전송방법
US8160012B2 (en) * 2007-08-10 2012-04-17 Lg Electronics Inc. Methods of setting up channel in wireless communication system
KR101397359B1 (ko) * 2007-08-14 2014-05-19 엘지전자 주식회사 다중안테나 시스템에서의 채널정보 전송방법
KR100991937B1 (ko) * 2007-10-08 2010-11-04 엘지전자 주식회사 무선통신 시스템에서 제어신호 전송 방법
KR101476202B1 (ko) * 2008-01-08 2014-12-24 엘지전자 주식회사 주기적/비주기적 채널상태정보 송수신 방법
US8223808B2 (en) * 2008-02-05 2012-07-17 Texas Instruments Incorporated Data and control multiplexing in PUSCH in wireless networks
US9007988B2 (en) * 2008-02-11 2015-04-14 Texas Instruments Incorporated Partial CQI feedback in wireless networks
US8665804B2 (en) * 2008-03-19 2014-03-04 Qualcomm Incorporated Filtering semi-persistent scheduling false alarms
US8724684B2 (en) * 2008-03-24 2014-05-13 Texas Instruments Incorporated CQI feedback structure
US8259651B2 (en) * 2008-03-25 2012-09-04 Samsung Electronics Co., Ltd. System and method for multiplexing on an LTE uplink control channel
US8811353B2 (en) * 2008-04-22 2014-08-19 Texas Instruments Incorporated Rank and PMI in download control signaling for uplink single-user MIMO (UL SU-MIMO)
US8345794B2 (en) * 2008-04-29 2013-01-01 Qualcomm Incorporated Encoded control channel information interleaving
RU2459362C1 (ru) * 2008-06-04 2012-08-20 Нокиа Сименс Нетуоркс Ой Сигнализация о качестве канала для процедур постоянного/полупостоянного выделения радиоресурсов
CN101610523B (zh) * 2008-06-20 2011-06-08 大唐移动通信设备有限公司 一种时分双工系统中上报信道信息的方法和系统
CN101330306A (zh) * 2008-07-24 2008-12-24 中兴通讯股份有限公司 秩指示信息的发送方法
US8264992B2 (en) * 2008-11-26 2012-09-11 Research In Motion Limited Control information feedback over the long-term evolution physical uplink shared channel
US8265626B2 (en) * 2008-12-16 2012-09-11 Industrial Technology Research Institute Method of setting up connection in a communication system, radio network controller, and communication system
CN101588223B (zh) * 2009-06-22 2012-08-08 华为技术有限公司 多输入多输出信道信息的获取方法、装置和系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003034A (ja) 2008-06-19 2010-01-07 Boatstaff:Kk オリジナル旅行プラン作製方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Radio Resource Control (RRC); Protocol Specification (Release 9)", 3GPP TS 25.331 V9.0.0, no. 9, September 2009 (2009-09-01), pages 588 - 591, XP008164367 *
3GPP TS 36.211 V8.9.0, December 2009 (2009-12-01)
3GPP TS 36.212 V8.8.0, December 2009 (2009-12-01)
3GPP TS 36.213 V8.9.0, September 2009 (2009-09-01)
3GPP TS 36.331 V8.7.0, September 2009 (2009-09-01)
ICERA SEMICONDUCTOR: "Dropping of RI/PMI Report on PUCCH", 3GPP TSG RAN WG1 MEETING #54 R1- 083201, 18 August 2008 (2008-08-18), XP050316630 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529937A (ja) * 2011-08-15 2014-11-13 アルカテル−ルーセント 3dアンテナ構成用のコードブックを設計する方法
US9203660B2 (en) 2011-08-15 2015-12-01 Alcatel Lucent Method of designing codebook for 3D antenna configuration
WO2013091231A1 (zh) * 2011-12-23 2013-06-27 华为技术有限公司 处理层指示ri的方法、装置及系统
WO2012095054A2 (zh) * 2012-03-01 2012-07-19 华为技术有限公司 无线通信方法、用户设备、基站和系统
CN102754498A (zh) * 2012-03-01 2012-10-24 华为技术有限公司 无线通信方法、用户设备、基站和系统
WO2012095054A3 (zh) * 2012-03-01 2013-02-21 华为技术有限公司 无线通信方法、用户设备、基站和系统
CN102754498B (zh) * 2012-03-01 2016-09-07 华为技术有限公司 无线通信方法、用户设备、基站和系统

Also Published As

Publication number Publication date
US20120307648A1 (en) 2012-12-06
JP2011142570A (ja) 2011-07-21
EP2523498A1 (en) 2012-11-14
CN102792726A (zh) 2012-11-21
JP5124597B2 (ja) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5124597B2 (ja) 移動通信システムにおけるユーザ装置、基地局及び方法
CN110875814B (zh) 发送和接收混合自动重传请求确认信息的方法、通信装置
JP7227294B2 (ja) 無線ネットワークノード、無線デバイス、および、それらにおいて実行される方法
JP5068832B2 (ja) 移動通信システムにおける基地局装置及び方法
CN107743693B (zh) 用于pdcch链路自适应的方法和无线电接入节点
US11716609B2 (en) Delaying transmission depending on transmission type and UE processing capabilities
US20130272281A1 (en) Method and apparatus for determining harq mode
US10616381B2 (en) Method and apparatus for performing hybrid automatic repeat request in wireless communication system
US20180167126A1 (en) Method for indicating a transmission time offset of a feedback message
CA2877000A1 (en) System and method for uplink mimo transmission
JP7493636B2 (ja) 無線ネットワークノード、無線デバイス、および、それらにおいて実行される方法
OA19006A (en) Radio-network node, wireless device and methods performed therein.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013175.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011731803

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1974/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13520984

Country of ref document: US