WO2011078258A1 - Method for vacuum-degassing molten glass and process for producing glass product - Google Patents

Method for vacuum-degassing molten glass and process for producing glass product Download PDF

Info

Publication number
WO2011078258A1
WO2011078258A1 PCT/JP2010/073197 JP2010073197W WO2011078258A1 WO 2011078258 A1 WO2011078258 A1 WO 2011078258A1 JP 2010073197 W JP2010073197 W JP 2010073197W WO 2011078258 A1 WO2011078258 A1 WO 2011078258A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
glass
molten glass
alkali
pressure
Prior art date
Application number
PCT/JP2010/073197
Other languages
French (fr)
Japanese (ja)
Inventor
新吾 浦田
準一郎 加瀬
礼 北村
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2011547608A priority Critical patent/JPWO2011078258A1/en
Priority to CN2010800562282A priority patent/CN102666408A/en
Publication of WO2011078258A1 publication Critical patent/WO2011078258A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica

Definitions

  • the present invention relates to a vacuum degassing method for molten glass and a glass product manufacturing method using the vacuum degassing method.
  • the molten glass is introduced into the reduced-pressure atmosphere, and bubbles in the molten glass flow that continuously flows under this reduced-pressure atmosphere are greatly grown to lift and remove bubbles contained in the molten glass,
  • a vacuum degassing method for discharging from a vacuum atmosphere is known.
  • oxide refining agents such as As 2 O 3 , Sb 2 O 3 and SnO 2
  • sulfate refining agents such as CaSO 4 and BaSO 4
  • alkali metal chlorides such as NaCl
  • sulfate-type fining agents in the case of alkali-free glass with low basicity, have a low solubility of SO 4 2 ⁇ , and thus the effect of removing bubbles from the molten glass is insufficient.
  • As 2 O 3 and Sb 2 O 3 particularly As 2 O 3 , have a large environmental load, and thus their use is required to be suppressed.
  • SnO 2 has a high oxygen releasing temperature of 1500 ° C. or higher, and it may be difficult to effectively use it as a fining agent.
  • Alkali metal chloride is a clarifier that cannot be used because an alkali metal is contained in the alkali-free glass when a sufficient amount is added for clarification.
  • chloride fining agents include BaCl 2 , SrCl 2 , CaCl 2 , MgCl 2 , AlCl 3 and NH 4 Cl.
  • Patent Documents 1 and 2 The conditions such as pressure and temperature in the vacuum degassing tank when performing vacuum degassing are shown in Patent Documents 1 and 2 and the like.
  • the present invention is based on the above findings, and an object of the present invention is to provide a non-alkali glass defoaming method that provides optimum defoaming conditions when defoaming using a chloride clarifier.
  • the present invention is a method for degassing molten glass by flowing molten glass into a vacuum degassing tank whose inside is maintained in a reduced pressure state,
  • the molten glass is alkali-free glass
  • the pressure in the vacuum degassing tank at the time of carrying out the vacuum defoaming is equal to or lower than the bubble growth starting pressure P bg (mmHg) of the molten glass represented by the following formula (1) or formula (2), and the following formula (3) providing vacuum degassing method for molten glass, characterized in that to hold in the above reboil pressure P rb of molten glass (mmHg) represented.
  • the present invention also includes a glass melting step for producing a molten glass by melting a glass raw material, a vacuum defoaming step by the above-described vacuum degassing method for molten glass, and a glass product for molding the vacuum degassed molten glass.
  • the manufacturing method of the glass product which has a formation process and has these processes in this order is provided.
  • the alkali-free glass in the present invention is a glass that does not contain an alkali metal, that is, a glass that does not substantially contain an alkali metal, except that it is inevitably mixed as an impurity.
  • vacuum degassing can be carried out under optimum conditions when performing vacuum degassing of alkali-free glass using a chloride clarifier.
  • a chloride clarifier As a result, bubbles and foreign substances in the molten glass after the vacuum degassing treatment are reduced, and a high-performance and high-quality glass with few defects can be produced.
  • the reduced pressure defoaming method of the present invention uses a chloride clarifier, the human body and the global environment are not adversely affected.
  • glass products manufactured using the vacuum degassing method of the present invention do not require any special precautions regarding the suppression of bubbles in handling at manufacturing plants and processing plants, resulting in problems in recycling of glass products. Absent.
  • FIG. 1 is a cross-sectional view showing a configuration example of a vacuum degassing apparatus used in the vacuum degassing method of the present invention.
  • FIG. 2 is a graph plotting the relationship between T 2 and the coefficient a in equation (4).
  • FIG. 3 is a graph plotting the relationship between T 2 and the coefficient b in Equation (4).
  • FIG. 4 is a graph plotting the relationship between T 2 and the coefficient c in equation (5).
  • FIG. 5 is a graph plotting the relationship between T 2 and the coefficient d in equation (5).
  • FIG. 6 is a graph plotting the relationship between the reboil pressure P rb and the bubble growth start pressure P bg .
  • FIG. 1 is a cross-sectional view showing a configuration example of a vacuum degassing apparatus used in the vacuum degassing method of the present invention.
  • FIG. 2 is a graph plotting the relationship between T 2 and the coefficient a in equation (4).
  • FIG. 3 is
  • FIG. 7 shows the experimental value (mmHg) of the bubble growth start pressure P bg and the bubble growth start when the chlorine content (% by mass) is 0.12% by mass or more for the alkali-free glass compositions A, B, and C.
  • FIG. 8 shows the experimental value (mmHg) of the bubble growth start pressure P bg and the bubble growth start when the chlorine content (% by mass) is less than 0.12 mass% for the alkali-free glass compositions A, B, and C.
  • the graph which plotted the relationship with the calculated value (mmHg) of the pressure Pbg is
  • FIG. 1 is a cross-sectional view showing a configuration example of a vacuum degassing apparatus used in the vacuum degassing method of the present invention.
  • a cylindrical vacuum degassing tank 12 is housed and disposed in the vacuum housing 11 so that its long axis is oriented in the horizontal direction.
  • a rising pipe 13 oriented in the vertical direction is attached to the lower surface of one end of the vacuum degassing tank 12, and a lowering pipe 14 is attached to the lower surface of the other end.
  • a part of the ascending pipe 13 and the descending pipe 14 is located in the decompression housing 11.
  • the ascending pipe 13 communicates with the vacuum degassing tank 12 and introduces the molten glass G from the melting tank 20 into the vacuum degassing tank 12.
  • the downcomer 14 communicates with the vacuum degassing tank 12 and guides the molten glass G after the vacuum degassing to the next processing tank (not shown).
  • a heat insulating material 15 such as a heat insulating brick is provided around the decompression defoaming tank 12, the ascending pipe 13 and the descending pipe 14 to insulate these.
  • the vacuum degassing tank 12, the rising pipe 13, and the descending pipe 14 are made of a material excellent in heat resistance and corrosion resistance against molten glass because they are conduits for molten glass. ing.
  • it is made of platinum, platinum alloy, or reinforced platinum obtained by dispersing a metal oxide in platinum or platinum alloy.
  • it may be made of a ceramic nonmetallic inorganic material, that is, a dense refractory. Further, a dense refractory material with platinum or a platinum alloy lined may be used.
  • the molten glass G supplied from the melting tank 20 is passed through the vacuum degassing tank 12 depressurized to a predetermined degree of vacuum to perform vacuum degassing. It is preferable that the molten glass G is continuously supplied to and discharged from the vacuum degassing tank 12.
  • the flow rate of the molten glass is preferably 1 to 200 tons / day from the viewpoint of productivity.
  • the vacuum degassing tank 12 has an internal temperature range of 1200 ° C. to 1600 ° C., particularly 1350 ° C. to 1550 ° C. It is preferable to be heated.
  • the molten glass G used in the vacuum degassing method of the present invention is an alkali-free glass, and the following chloride-based clarifier is added to a glass raw material for producing the alkali-free glass.
  • the chloride fining agent include at least one selected from the group consisting of BaCl 2 , SrCl 2 , CaCl 2 , MgCl 2 , AlCl 3 and NH 4 Cl.
  • alkaline earth chlorides such as BaCl 2 , SrCl 2 , CaCl 2 and MgCl 2 , AlCl 3 and NH 4 Cl are usually present as hydrated salts.
  • the chloride fining agent added in the production of the alkali-free glass of the present invention includes, among these, BaCl 2 .2H 2 O, SrCl 2 .6H 2 O, and NH 4 Cl is preferred.
  • the content of chlorine in the alkali-free glass (hereinafter sometimes referred to as [Cl] in the present specification) is preferably 0.03 to 0.3% by mass. [Cl] is more preferably 0.05 to 0.25% by mass. When [Cl] is less than 0.03% by mass, the clarification effect of the alkali-free glass may be insufficient.
  • an alkali metal chloride is also considered as a chloride-based fining agent, adding an amount sufficient for clarification of molten glass will cause the alkali metal to be contained in the alkali-free glass.
  • a fining agent consisting of chlorides is not suitable.
  • the air in the decompression housing 11 is exhausted from the outside by a vacuum decompression means (not shown) such as a vacuum pump through a suction opening 16 provided at a predetermined location of the decompression housing 11. .
  • a vacuum decompression means such as a vacuum pump
  • the air in the decompression defoaming tank 12 accommodated in the decompression housing 11 is indirectly exhausted, and the inside of the decompression defoaming tank 12 is decompressed to a predetermined pressure.
  • the pressure in the vacuum degassing tank 12 is maintained below the bubble growth starting pressure P bg (mmHg) represented by the following formula (1) or (2).
  • T 2 represents a temperature (° C.) at which the viscosity of the molten glass is 10 2 dPa ⁇ s, and can be measured using a high-temperature rotational viscometer.
  • the viscosity of 10 2 dPa ⁇ s is a reference viscosity indicating that the viscosity of the molten glass is sufficiently low. Therefore, the temperature T 2 at which the viscosity of the molten glass is 10 2 dPa ⁇ s is the reference temperature of the molten glass, and is 1500 to 1750 ° C. in the case of the alkali-free glass for a TFT liquid crystal display substrate. It is preferable that T 2 is 1500 to 1720 ° C.
  • T 2 is more preferably 1560 to 1700 ° C., and further preferably 1590 to 1680 ° C.
  • [ ⁇ -OH] represents the ⁇ -OH value (mm ⁇ 1 ) of the alkali-free glass.
  • the ⁇ -OH value is used as an indicator of the amount of water in the glass.
  • the ⁇ -OH value was measured by using a Fourier transform infrared spectrophotometer (FT-IR) to measure the transmittance of a non-alkali glass test piece obtained by molding molten glass after degassing under reduced pressure into a plate shape. Can be obtained.
  • FT-IR Fourier transform infrared spectrophotometer
  • ⁇ -OH value (1 / X) log 10 (T 1 / T 2 ) -X: Glass wall thickness (mm)
  • T 1 Transmittance (%) at a reference wave number of 4000 cm ⁇ 1
  • T 2 Minimum transmittance (%) in the vicinity of hydroxyl absorption wave number 3570 cm ⁇ 1
  • the ⁇ -OH value of the alkali-free glass is preferably 0.15 to 0.6 mm ⁇ 1 .
  • the ⁇ -OH value of the alkali-free glass is governed by the water content in the raw material, the water vapor concentration in the melting tank, the combustion method (oxygen combustion, air combustion), and the like. A method for adjusting ⁇ -OH by the water vapor concentration in the dissolution tank will be described later.
  • the ⁇ -OH value is particularly preferably 0.2 to 0.55 mm ⁇ 1 .
  • the ⁇ -OH value after vitrification is generally used.
  • the bubble growth starting pressure P bg is defined as follows.
  • the volume of bubbles (bubble diameter) in the molten glass in the vacuum degassing tank 12 increases according to Boyle's law.
  • the pressure in the vacuum degassing tank 12 is reduced to a certain pressure, the volume of bubbles in the molten glass (the diameter of the bubbles) suddenly increases outside Boyle's law. This pressure is referred to as a bubble growth starting pressure P bg .
  • the bubble growth starting pressure P bg can be determined by the following procedure.
  • a quartz glass crucible containing a non-alkali glass cullet is placed in a vacuum vacuum vessel.
  • the crucible is heated to a predetermined temperature (for example, 1300 ° C. or 1400 ° C.) to melt the alkali-free glass. After the alkali-free glass is completely melted, the diameter of the bubbles in the molten glass is observed while reducing the pressure in the vacuum vacuum container.
  • the bubbles in the molten glass may be photographed using a CCD camera from a viewing window provided in the vacuum decompression container. It should be noted that the number of bubble samples for measuring the bubble diameter is 20 or more.
  • the pressure in the vacuum decompression vessel is lowered, the diameter of bubbles in the molten glass increases according to Boyle's law.
  • the diameter of bubbles in the molten glass deviates from Boyle's law and increases rapidly.
  • the degree of decompression in the vacuum decompression vessel at this time is defined as a bubble growth starting pressure P bg .
  • alkali-free glasses A to C having different T 2 the ⁇ -OH value [ ⁇ -OH] of the alkali-free glass or the chlorine content [Cl] in the alkali-free glass is different, and other composition values are the same alkali-free.
  • Glass was prepared, and the bubble growth starting pressure P bg was determined by the above procedure.
  • NH 4 Cl was used as the chloride clarifier.
  • the ⁇ -OH value of the alkali-free glass can be adjusted by adjusting the ratio of oxygen and air mixed with the fuel.
  • the compositions of alkali-free glasses A to C and T 2 are as follows.
  • the composition of the following alkali-free glass is expressed in mass% in terms of the following oxide.
  • Non-alkali glass A SiO 2 : 59.5% by mass, Al 2 O 3 : 17.7% by mass, B 2 O 3 : 7.9% by mass, MgO: 3.2% by mass, CaO: 3.7% by mass, SrO: 7.9% by mass, BaO: 0.1% by mass.
  • T 2 1660 ° C.
  • Non-alkali glass B SiO 2 : 59.4% by mass, Al 2 O 3 : 16.9% by mass, B 2 O 3 : 8.6% by mass, MgO: 4.0% by mass, CaO: 5.4% by mass, SrO: 5.7% by mass, BaO: 0.0 mass%.
  • FIG. 2 is a graph plotting the relationship between T 2 and the coefficient a of Equation (4) based on the results obtained above.
  • FIG. 3 is a graph plotting the relationship between T 2 and the coefficient b of Equation (4) based on the results obtained above.
  • the equation (1) is obtained from the regression line shown in FIGS.
  • FIG. 4 is a graph plotting the relationship between T 2 and the coefficient c of Equation (5) based on the results obtained above.
  • FIG. 5 is a graph plotting the relationship between T 2 and the coefficient d of Equation (5) based on the results obtained above.
  • the equation (2) is obtained from the regression line shown in FIGS.
  • the pressure in the vacuum degassing tank 12 is maintained below the bubble growth starting pressure P bg (mmHg) represented by the above formula (1).
  • P bg bubble growth starting pressure
  • the pressure in the vacuum degassing tank 12 is maintained at or above the reboiling pressure P rb (mmHg) of the molten glass represented by the following formula (3).
  • P rb 0.8325 ⁇ P bg -59.5
  • reboiled pressure P rb are defined as follows. In order to sufficiently grow the bubbles contained in the molten glass, it is preferable to reduce the pressure in the vacuum degassing tank 12 as much as possible. However, when the pressure in the vacuum degassing tank 12 is extremely low, bubbles may be generated at the glass interface in contact with the molten defoaming tank 12 made of platinum, a platinum alloy, or a dense refractory. This phenomenon is called the reboiling (reboil), the pressure in the vacuum degassing vessel 12 at this time that reboil pressure P rb. Incidentally, reboil pressure P rb can be obtained by the following procedure.
  • a quartz glass crucible containing a non-alkali glass cullet is placed in a vacuum vacuum vessel.
  • the crucible is heated to a predetermined temperature (for example, 1300 ° C. or 1400 ° C.) to melt the alkali-free glass.
  • a test piece made of a material constituting the vacuum defoaming tank more precisely, a material constituting the glass contact surface of the vacuum defoaming tank (platinum, platinum alloy, or dense refractory) is put in the molten glass. Immerse. In this state, the inside of the vacuum decompression vessel is gradually decompressed, and the generation of bubbles at the glass interface of the test piece is observed.
  • FIG. 6 is a graph plotting the relationship between the reboil pressure P rb and the bubble growth start pressure P bg .
  • a platinum-rhodium alloy (platinum 90% by mass, rhodium 10% by mass) was used as a test piece immersed in molten glass. Further, alkali-free glasses A to C were used as the molten glass. The temperature of the molten glass was 1400 ° C.
  • the pressure in the vacuum degassing tank 12 is maintained at or above the reboiling pressure P rb (mmHg).
  • P rb reboiling pressure
  • the pressure in the vacuum degassing tank 12 is equal to or lower than the bubble growth starting pressure P bg (mmHg) represented by the above formulas (1) and (2), and the above formula (3).
  • P bg bubble growth starting pressure
  • P rb reboil pressure
  • the reboil pressure P rb (mmHg) or higher represented by the formula bubbles contained in the molten glass can be sufficiently grown in the vacuum degassing vessel 12, and the bubbles in the molten glass are efficiently removed.
  • reboiling is prevented from occurring in the molten glass flowing in the vacuum degassing vessel 12.
  • bubbles remaining in the molten glass after the vacuum defoaming treatment are extremely reduced, and a high-performance and high-quality glass with extremely few bubbles can be produced.
  • the composition of the alkali free glass containing the following components by the mass% display of the following oxide conversion is mentioned preferably.
  • SiO 2 50 to 66% by mass
  • Al 2 O 3 10.5 to 24% by mass
  • B 2 O 3 0 to 12% by mass
  • the composition of the alkali free glass containing the following components by the mass% display of the following oxide conversion is mentioned more preferably.
  • SiO 2 58 to 66% by mass
  • Al 2 O 3 15-22% by mass
  • B 2 O 3 0 to 12% by mass
  • CaO 0 to 9% by mass
  • SrO 3 to 12.5% by mass
  • BaO 0-2% by mass
  • the SiO 2 content exceeds 66%, the solubility of the glass decreases and the glass tends to devitrify. Preferably it is 64% or less, More preferably, it is 62% or less. If it is less than 50%, the specific gravity increases, the strain point decreases, the thermal expansion coefficient increases, and the chemical resistance decreases. Preferably it is 58% or more, further 58.5% or more, more preferably 59% or more.
  • Al 2 O 3 is a component that suppresses the phase separation of the glass and increases the strain point, and is essential. If it exceeds 24%, devitrification tends to occur, and chemical resistance decreases. Preferably it is 22% or less, further 20% or less, more preferably 18% or less. If it is less than 10.5%, the glass tends to undergo phase separation or the strain point decreases. Preferably it is 15% or more, further 15.5% or more, more preferably 16% or more.
  • B 2 O 3 is not essential, but is a component that reduces the specific gravity, increases the solubility of the glass, and makes it difficult to devitrify. If it exceeds 22%, the strain point is lowered, the chemical resistance is lowered, or the volatilization at the time of melting the glass becomes remarkable, so that the inhomogeneity of the glass is increased. Preferably it is 12% or less, More preferably, it is 9% or less. If it is less than 5%, the specific gravity increases, the solubility of the glass decreases, and devitrification easily occurs, so 5% or more is desirable, preferably 6% or more, more preferably 7% or more.
  • MgO is not essential, but is a component that reduces the specific gravity and improves the solubility of the glass. If it exceeds 8%, the glass tends to undergo phase separation, devitrification tends to occur, or chemical resistance decreases. Preferably it is 6% or less, More preferably, it is 5% or less. When it contains MgO, it is preferable to make it contain 1% or more. In particular, it is preferable to contain 3% or more in order to reduce the specific gravity while maintaining the solubility.
  • CaO is not essential, but can be contained up to 14.5% in order to increase the solubility of the glass and make it difficult to devitrify. If it exceeds 14.5%, the specific gravity increases, the coefficient of thermal expansion increases, and devitrification tends to occur. Preferably it is 9% or less, further 8% or less, more preferably 7% or less.
  • When CaO is contained it is preferable to contain 2% or more. More preferably, it is 3.5% or more.
  • SrO is a component that suppresses the phase separation of glass and makes it difficult to devitrify. If it exceeds 24%, the specific gravity increases, the coefficient of thermal expansion increases, and devitrification tends to occur. Preferably it is 12.5% or less, further 10.5% or less, more preferably 8.5% or less.
  • chloride as a fining agent, there is no concern about deliquescence and it is easy to remain in the glass when the raw material is melted. Therefore, it is preferable to use SrCl 2 ⁇ 6H 2 O or BaCl 2 ⁇ 2H 2 O.
  • BaO can be contained up to 13.5% in order to suppress phase separation of the glass and make it difficult to devitrify. If it exceeds 13.5%, the specific gravity increases and the thermal expansion coefficient becomes large. Preferably it is 2% or less, further 1% or less, more preferably 0.1% or less. In particular, when importance is attached to the weight reduction of the glass substrate, it is preferably not contained substantially.
  • As 2 O 3 and Sb 2 O 3 are not contained except for those inevitably mixed as impurities or the like, that is, not substantially contained.
  • ZrO 2 other trace ingredients up to 5% by weight in total.
  • the hardly-soluble alkali-free glass D (described below) containing more SiO 2 and Al 2 O 3 than the alkali-free glasses A to C described above. Also for the oxide-based mass% display), it is possible to carry out vacuum degassing under optimum conditions, and the effect of reducing the generation of bubbles and foreign matters can be obtained.
  • Non-alkali glass D SiO 2 : 62% by mass, Al 2 O 3 : 20% by weight, B 2 O 3 : 0% by mass, MgO: 4.7% by mass, CaO: 4.4% by mass, SrO: 8.1% by mass, ZrO 2 : 0.9% by mass.
  • T 2 1690 ° C.
  • a clarifier other than the chlorinated clarifier may be used in combination.
  • specific examples of other fining agents that can be used in combination include SO 3 , F, SnO 2, and the like. These other fining agents can be contained in the alkali-free glass in an amount of 2% by mass or less, preferably 1% by mass or less, more preferably 0.5% by mass or less.
  • the vacuum degassing method of the present invention it may be necessary to adjust [ ⁇ -OH], that is, the moisture content of the molten glass.
  • the amount of water in the molten glass can be adjusted by changing the composition of the gas mixed with the fuel when the fuel is burned, that is, the ratio of oxygen and air mixed with the fuel.
  • the dimension of each component of the vacuum degassing apparatus used in the vacuum degassing method of the present invention can be appropriately selected as necessary.
  • the dimensions of the vacuum degassing tank can be appropriately selected according to the vacuum degassing apparatus to be used regardless of whether the vacuum degassing tank is made of platinum, platinum alloy, or dense refractory.
  • the specific example of the dimension is as follows. Horizontal length: 1-20m Inner diameter: 0.2-3m (circular cross section)
  • the wall thickness is preferably 0.5 to 4 mm.
  • the decompression housing 11 is made of metal, for example, stainless steel, and has a shape and size that can accommodate a decompression deaeration tank. Regardless of whether the riser pipe 13 and the downfall pipe 14 are made of platinum, a platinum alloy, or a dense refractory, they can be appropriately selected according to the vacuum degassing apparatus to be used.
  • the dimensions of the ascending pipe 13 and the descending pipe 14 can be configured as follows. ⁇ Inner diameter: 0.05 to 0.8m ⁇ Length: 0.2-6m When the ascending pipe 13 and the descending pipe 14 are made of platinum or a platinum alloy, the thickness is preferably 0.4 to 5 mm.
  • the method for producing a glass product of the present invention comprises a glass melting step in which a glass raw material is melted to produce a molten glass, a vacuum degassing step by the vacuum degassing method for the molten glass, and a vacuum glass defoamed molten glass. It has each process with the glass product molding process to form in this order.
  • the glass melting step described above can employ, for example, a conventionally known glass melting method.
  • a predetermined glass is prepared by heating a glass material mixed and mixed according to the type of glass to about 1400 ° C. or higher. This is a process of melting the raw material.
  • the glass raw material used is not particularly limited as long as it is a raw material adapted to the alkali-free glass to be produced.
  • the glass raw material prepared so that it may become the composition of the target alkali-free glass product can be used.
  • a predetermined amount of the above-described chloride fining agent employed in the present invention is added to the glass raw material.
  • molding process can also employ
  • various forming methods such as a float plate glass forming method, a roll-out forming method, and a fusion forming method can be used.
  • Example 1 In this example, alkali-free glass A, which is known in advance that [ ⁇ -OH] is 0.29 mm ⁇ 1 , is used. NH 4 Cl is added as a chloride clarifier. NH 4 Cl is added in such an amount that the mass% of chlorine with respect to the total mass after vitrification becomes 0.20 mass%. From the above formula (1), the bubble growth starting pressure P bg is 270 mmHg. From the P bg obtained here and the above equation (3), the reboil pressure P rb is 165 mmHg.
  • Pt 90% / Rh 10% platinum alloy with 45mm width, 7mm depth and 1mm thickness is placed in a quartz glass container of width 50mm x depth 10mm x height 50mm. Put. Thereafter, the quartz glass container is placed in an electric furnace and heated to 1400 ° C. to melt the alkali-free glass A. Next, the atmospheric pressure of the electric furnace is reduced to a predetermined pressure, and the amount of bubbles in the molten glass is observed. The amount of bubbles in the molten glass is confirmed by visual observation from a viewing window provided on the side surface of the electric furnace.
  • Atmospheric pressure in an electric furnace or 165mmHg is reboiled pressure P rb, and, when held to 270mmHg below a bubble growth starting pressure P bg, it is confirmed the amount of bubbles remaining in the molten glass is very low.
  • P rb reboiled pressure
  • Example 2 In this example, the same procedure as in Example 1 was performed except that NH 4 Cl was added to the alkali-free glass A in such an amount that the mass% of chlorine with respect to the total mass after vitrification was 0.07 mass%.
  • the bubble growth starting pressure P bg is 127 mmHg.
  • the reboil pressure P rb is 46 mmHg. Atmospheric pressure in an electric furnace, or 46mmHg is reboiled pressure P rb, and, when held to 127mmHg below a bubble growth starting pressure P bg, it is confirmed the amount of bubbles remaining in the molten glass is very low.
  • alkali-free glass B which is known in advance that [ ⁇ -OH] is 0.29 mm ⁇ 1 , is used.
  • NH 4 Cl is added as a chloride clarifier.
  • NH 4 Cl is added in such an amount that the mass% of chlorine with respect to the total mass after vitrification becomes 0.20 mass%.
  • the bubble growth starting pressure P bg is 248 mmHg.
  • the reboil pressure P rb is 147 mmHg.
  • Atmospheric pressure in an electric furnace or 147mmHg is reboiled pressure P rb, and, when held to 248mmHg below a bubble growth starting pressure P bg, it is confirmed the amount of bubbles remaining in the molten glass is very low.
  • P rb reboiled pressure
  • Example 4 In this example, the same procedure as in Example 3 was performed except that NH 4 Cl was added to the alkali-free glass B in such an amount that the mass% of chlorine with respect to the total mass after vitrification was 0.07 mass%.
  • the bubble growth starting pressure P bg is 125 mmHg.
  • the reboil pressure P rb is 45 mmHg. Atmospheric pressure in an electric furnace, or 45mmHg is reboiled pressure P rb, and, when held to 125mmHg below a bubble growth starting pressure P bg, it is confirmed the amount of bubbles remaining in the molten glass is very low.
  • Example 5 alkali-free glass C, which is known in advance that [ ⁇ -OH] is 0.29 mm ⁇ 1 , is used.
  • NH 4 Cl is added as a chloride clarifier.
  • NH 4 Cl is added in such an amount that the mass% of chlorine with respect to the total mass after vitrification becomes 0.20 mass%.
  • the bubble growth starting pressure P bg is 237 mmHg.
  • reboiled pressure P rb becomes 138MmHg.
  • Atmospheric pressure in an electric furnace or 138mmHg is reboiled pressure P rb, and, when held to 237mmHg below a bubble growth starting pressure P bg, it is confirmed the amount of bubbles remaining in the molten glass is very low.
  • P rb reboiled pressure
  • Example 6 In this example, the same procedure as in Example 5 was performed except that NH 4 Cl was added to the alkali-free glass C in such an amount that the mass% of chlorine with respect to the total mass after vitrification was 0.07 mass%. To do. From the above formula (2), the bubble growth starting pressure P bg is 123 mmHg. From P bg obtained here and the above equation (3), the reboil pressure P rb is 43 mmHg. Atmospheric pressure in an electric furnace, or 43mmHg is reboiled pressure P rb, and, when held to 123mmHg below a bubble growth starting pressure P bg, it is confirmed the amount of bubbles remaining in the molten glass is very low.
  • Example 7 an alkali-free glass D that is known in advance that T 2 is 1690 ° C. and [ ⁇ -OH] is 0.29 mm ⁇ 1 is used.
  • NH 4 Cl is added as a chloride clarifier. NH 4 Cl is added in such an amount that the mass% of chlorine with respect to the total mass after vitrification becomes 0.20 mass%.
  • the bubble growth starting pressure P bg is 285 mmHg.
  • the reboil pressure P rb is 178 mmHg.
  • Pt 90% / Rh 10% platinum alloy of width 45mm, depth 7mm, thickness 1mm is put in a quartz glass container of width 50mm x depth 10mm x height 50mm. Put. Thereafter, the quartz glass container is put in an electric furnace and heated to 1475 ° C. to melt the alkali-free glass D. Next, the atmospheric pressure of the electric furnace is reduced to a predetermined pressure, and the amount of bubbles in the molten glass is observed. The amount of bubbles in the molten glass is confirmed by visual observation from a viewing window provided on the side surface of the electric furnace.
  • Atmospheric pressure in an electric furnace or 178mmHg is reboiled pressure P rb, and, when held to 285mmHg below a bubble growth starting pressure P bg, it is confirmed the amount of bubbles remaining in the molten glass is very low.
  • P rb reboiled pressure
  • Example 8 In this example, the same procedure as in Example 3 was performed except that NH 4 Cl was added to the alkali-free glass D in such an amount that the mass% of chlorine with respect to the total mass after vitrification was 0.07 mass%.
  • the bubble growth starting pressure P bg is 129 mmHg.
  • the reboil pressure P rb is 48 mmHg. Atmospheric pressure in an electric furnace, or 48mmHg is reboiled pressure P rb, and, when held to 129mmHg below a bubble growth starting pressure P bg, it is confirmed the amount of bubbles remaining in the molten glass is very low.
  • Example 9 Tables 1 to 5 and FIGS. 7 to 8 show experimental results showing the effectiveness of the formulas (1) and (2) for the alkali-free glasses A, B, and C described above.
  • the bubble growth initiation pressure P bg was obtained by changing the ⁇ -OH value (mm ⁇ 1 ) and the chlorine content (mass%) for each glass composition.
  • Each glass is melted at a predetermined temperature in an electric furnace having an observation window by putting about 50 g of molten glass in a quartz cell. After the glass is melted, the pressure is reduced to a desired pressure at a constant speed, and then the change of the bubble diameter is photographed with a CCD camera and recorded under a constant pressure. After the experiment was completed, the change in the bubble diameter was analyzed to determine the bubble growth start pressure P bg .
  • Tables 1 to 5 show the glass temperature at the time of bubble observation, ⁇ -OH value (mm ⁇ 1 ), chlorine content (mass%), experimental value of bubble growth starting pressure P bg (mmHg), and bubble growth start.
  • the calculated value (mmHg) of the pressure P bg according to the formula (1) or the formula (2) is described.
  • Tables 1 to 3 show the respective results for 122 examples of the alkali-free glass compositions A, B, and C having a chlorine content (% by mass) of 0.12% by mass or more.
  • Tables 4 to 5 show the results of 41 cases with non-alkali glass compositions A, B, and C and a chlorine content (mass%) of less than 0.12 mass%.
  • FIG. 7 shows the experimental value (mmHg) of the bubble growth starting pressure P bg and the bubble growth when the chlorine content (% by mass) is 0.12% by mass or more for the alkali-free glass compositions A, B, and C.
  • pieces of the calculated value (mmHg) of the starting pressure Pbg is shown.
  • FIG. 8 shows the experimental value (mmHg) of the bubble growth starting pressure P bg and the bubble growth when the chlorine content (% by mass) is less than 0.12% by mass for the alkali-free glass compositions A, B, and C.
  • pieces of the calculated value (mmHg) of the starting pressure Pbg is shown.
  • Equation (1) can estimate the experimental value well.
  • FIG. 8 shows that the slope of the regression equation is 0.97 and the square of the correlation coefficient is 0.89, and Equation (2) is able to estimate the experimental value well. From these, it can be seen that the equations (1) and (2) are effective in estimating the bubble growth starting pressure P bg . Plotting the data of the example for the alkali-free glass D on the graphs of FIGS. 7 and 8 gives the same result. Tables 1 to 5 show glass temperatures when bubbles are observed, but the glass temperature at which bubbles are generated is not defined in the formulas (1) and (2) of the present invention. This is considered to be because the clarification according to the present invention is a clarification mainly involving water, and water has a small temperature dependency of solubility.
  • the pressure in the vacuum degassing tank is maintained at a bubble growth starting pressure P bg or lower and a reboyl pressure P rb (mmHg) or higher. Bubbles contained in the molten glass can be sufficiently grown, and the bubbles in the molten glass can be efficiently removed, while reboiling is prevented from occurring in the molten glass flowing through the vacuum degassing tank. Bubbles remaining in the molten glass after the foam treatment are extremely reduced, and a high-performance and high-quality glass with extremely few bubbles can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)

Abstract

Disclosed is a method in which optimal vacuum-degassing conditions are used when a molten glass is vacuum-degassed using a chloride-based clarificant. The method for vacuum-degassing a molten glass comprises passing the molten glass through a vacuum-degassing tank, the inside of which is kept in a vacuum state, to thereby vacuum-degas the molten glass. The method is characterized in that the molten glass is an alkali-free glass, and that the internal pressure of the vacuum-degassing tank during the vacuum degassing is kept not higher than the bubble growth initiation pressure for the molten glass, Pbg (mmHg), but not lower than the reboiling pressure for the molten glass, Prb (mmHg).

Description

溶融ガラスの減圧脱泡方法およびガラス製品の製造方法Vacuum degassing method for molten glass and glass product manufacturing method
 本発明は、溶融ガラスの減圧脱泡方法およびこの減圧脱泡方法を用いたガラス製品の製造方法に関する。 The present invention relates to a vacuum degassing method for molten glass and a glass product manufacturing method using the vacuum degassing method.
 従来、成形されたガラス製品の品質を向上させるために、溶解炉で原料を溶解した溶融ガラスを成形装置で成形する前に溶融ガラス内に発生した気泡を除去する清澄工程が利用されている。
 この清澄工程では、清澄剤を原料内に予め添加し、原料を溶融して得られた溶融ガラスを所定温度に一定時間貯留、維持することで、清澄剤によって溶融ガラス内の気泡を成長させて浮上させて除去する方法が知られている。また、減圧雰囲気内に溶融ガラスを導入し、この減圧雰囲気下、連続的に流れる溶融ガラス流内の気泡を大きく成長させて溶融ガラス内に含まれる気泡を浮上させ破泡させて除去し、その後減圧雰囲気から排出する減圧脱泡方法が知られている。
 溶融ガラスから効率よく気泡を除去するためには、上記した二つの方法を組み合わせて実施すること、すなわち、清澄剤が添加された溶融ガラスを用いて減圧脱泡方法を実施することが好ましい。
2. Description of the Related Art Conventionally, in order to improve the quality of a molded glass product, a clarification process for removing bubbles generated in the molten glass before the molten glass in which the raw material is melted in a melting furnace is molded by a molding apparatus has been used.
In this fining step, a fining agent is added to the raw material in advance, and the molten glass obtained by melting the raw material is stored and maintained at a predetermined temperature for a certain period of time. A method for removing the surface by floating is known. In addition, the molten glass is introduced into the reduced-pressure atmosphere, and bubbles in the molten glass flow that continuously flows under this reduced-pressure atmosphere are greatly grown to lift and remove bubbles contained in the molten glass, A vacuum degassing method for discharging from a vacuum atmosphere is known.
In order to efficiently remove bubbles from the molten glass, it is preferable to carry out the above two methods in combination, that is, to carry out the vacuum degassing method using the molten glass to which a clarifier is added.
 ガラスの清澄剤としては、As23、Sb23、SnO2等の酸化物系清澄剤、CaSO4、BaSO4等の硫酸塩系の清澄剤、NaClなどのアルカリ金属の塩化物系の清澄剤等が存在する。これらのうち、硫酸塩系の清澄剤は、塩基性度が低い無アルカリガラスの場合、SO4 2-の溶解度が低いため、溶融ガラスから気泡を除去する効果が不十分であった。
 また、As23およびSb23、特にAs23は、環境への負荷が大きいため、その使用の抑制が求められている。
 また、SnO2は、酸素を放出する温度が1500℃以上と高く、清澄剤として有効に利用することが難しい場合がある。
 また、アルカリ金属の塩化物は、清澄に十分な量を添加すると、無アルカリガラスにアルカリ金属が含有されることになるため、利用することができない清澄剤である。
As glass refining agents, oxide refining agents such as As 2 O 3 , Sb 2 O 3 and SnO 2 , sulfate refining agents such as CaSO 4 and BaSO 4 , and alkali metal chlorides such as NaCl There are clarifiers. Among these, sulfate-type fining agents, in the case of alkali-free glass with low basicity, have a low solubility of SO 4 2− , and thus the effect of removing bubbles from the molten glass is insufficient.
In addition, As 2 O 3 and Sb 2 O 3 , particularly As 2 O 3 , have a large environmental load, and thus their use is required to be suppressed.
In addition, SnO 2 has a high oxygen releasing temperature of 1500 ° C. or higher, and it may be difficult to effectively use it as a fining agent.
Alkali metal chloride is a clarifier that cannot be used because an alkali metal is contained in the alkali-free glass when a sufficient amount is added for clarification.
 本発明者らは、先に無アルカリガラスの清澄剤としての可能性を調べた結果、塩素を含有する化合物が減圧脱泡と組み合わせた清澄剤として優れた効果を発揮することを発見した。こうした塩化物清澄剤として、BaCl2、SrCl2、CaCl2、MgCl2、AlCl3およびNH4Clが例示される。 As a result of investigating the possibility as a clarifier of alkali-free glass, the present inventors have found that a compound containing chlorine exhibits an excellent effect as a clarifier combined with vacuum degassing. Examples of such chloride fining agents include BaCl 2 , SrCl 2 , CaCl 2 , MgCl 2 , AlCl 3 and NH 4 Cl.
 減圧脱泡を実施する際の減圧脱泡槽内の圧力や温度といった条件は、特許文献1、2等に示されている。 The conditions such as pressure and temperature in the vacuum degassing tank when performing vacuum degassing are shown in Patent Documents 1 and 2 and the like.
国際公開WO2008/029649号公報International Publication WO2008 / 029649 国際公開WO2008/093580号公報International Publication WO2008 / 093580
 本発明者は、無アルカリガラスの清澄剤としてNH4ClやSrCl2といった塩化物系清澄剤を使用した場合、ガラス組成に含まれる塩化物の割合が好適な減圧脱泡条件に対して影響することを見出した。
 本発明は、上記の知見に基づくものであり、塩化物系清澄剤を用いて減圧脱泡する際に、最適な減圧脱泡条件を与える無アルカリガラスの減圧脱泡方法を提供することを目的とする。
When the present inventors use a chloride-based clarifier such as NH 4 Cl or SrCl 2 as a clarifier for an alkali-free glass, the ratio of chloride contained in the glass composition affects the preferred vacuum degassing conditions. I found out.
The present invention is based on the above findings, and an object of the present invention is to provide a non-alkali glass defoaming method that provides optimum defoaming conditions when defoaming using a chloride clarifier. And
 上記の目的を達成するため、本発明は、内部が減圧状態に保持された減圧脱泡槽中に溶融ガラスを流すことにより、溶融ガラスを減圧脱泡する方法であって、
 溶融ガラスが、無アルカリガラスであり、
 減圧脱泡の実施時における減圧脱泡槽内の圧力を、下記式(1)または式(2)で表される溶融ガラスの泡成長開始圧Pbg(mmHg)以下、かつ下記式(3)で表される溶融ガラスのリボイル圧Prb(mmHg)以上に保持することを特徴とする溶融ガラスの減圧脱泡方法を提供する。
  ・Pbg=(2.6082×T2-3538.2)×[β-OH]+(-1.2102×T2+2612.2)×[Cl]-80.3 ………(1)
  ・ Pbg=(-0.2462×T2+1121.7)×[β-OH]+(1.9714×T2-1730.6)×[Cl]-187.3 ………(2)
  ・Prb=0.8325×Pbg-59.5 ………(3)
(上記式中、T2は溶融ガラスの粘度が102dPa・sとなる温度(℃)を示し、[β-OH]は無アルカリガラスのβ-OH値(mm-1)を示し、[Cl]は無アルカリガラス中の塩素の含有量(質量%)を示す。[Cl]が0.12質量%以上の場合、Pbgは式(1)で表わされ、[Cl]が0.12質量%未満の場合、Pbgは式(2)で表わされる。)
 また、前記[β-OH]は、0.15~0.6mm-1であることが好まく、また前記[Cl]は、0.03~0.3質量%であることが好ましい。
 また、前記T2は、1500~1750℃であることが好ましい。
 また、本発明は、ガラス原料を溶融して溶融ガラスを製造するガラス溶融工程と、前記した溶融ガラスの減圧脱泡方法による減圧脱泡工程と、減圧脱泡された溶融ガラスを成形するガラス製品成形工程とを備え、これらの工程をこの順に有するガラス製品の製造方法を提供する。
 なお、本発明における無アルカリガラスとは、不純物として不可避的に混入するものを除き、アルカリ金属が含有されないもの、すなわち、実質的にアルカリ金属が含有されないものである。
In order to achieve the above object, the present invention is a method for degassing molten glass by flowing molten glass into a vacuum degassing tank whose inside is maintained in a reduced pressure state,
The molten glass is alkali-free glass,
The pressure in the vacuum degassing tank at the time of carrying out the vacuum defoaming is equal to or lower than the bubble growth starting pressure P bg (mmHg) of the molten glass represented by the following formula (1) or formula (2), and the following formula (3) providing vacuum degassing method for molten glass, characterized in that to hold in the above reboil pressure P rb of molten glass (mmHg) represented.
P bg = (2.6082 × T 2 −3538.2) × [β-OH] + (− 1.2102 × T 2 +2612.2) × [Cl] −80.3 (1)
P bg = (− 0.2462 × T 2 +111.7) × [β-OH] + (1.9714 × T 2 −1730.6) × [Cl] −187.3 (2)
・ P rb = 0.8325 × P bg -59.5 (3)
(In the above formula, T 2 represents the temperature (° C.) at which the viscosity of the molten glass is 10 2 dPa · s, [β-OH] represents the β-OH value (mm −1 ) of the alkali-free glass, [ Cl] represents the chlorine content (mass%) in the alkali-free glass.When [Cl] is 0.12 mass% or more, P bg is represented by the formula (1), and [Cl] is 0.00. In the case of less than 12% by mass, P bg is represented by the formula (2).)
The [β-OH] is preferably 0.15 to 0.6 mm −1 , and the [Cl] is preferably 0.03 to 0.3% by mass.
The T 2 is preferably 1500 to 1750 ° C.
The present invention also includes a glass melting step for producing a molten glass by melting a glass raw material, a vacuum defoaming step by the above-described vacuum degassing method for molten glass, and a glass product for molding the vacuum degassed molten glass. The manufacturing method of the glass product which has a formation process and has these processes in this order is provided.
The alkali-free glass in the present invention is a glass that does not contain an alkali metal, that is, a glass that does not substantially contain an alkali metal, except that it is inevitably mixed as an impurity.
 本発明の減圧脱泡方法によれば、塩化物系清澄剤を用いて無アルカリガラスの減圧脱泡を行う際に、最適な条件で減圧脱泡を実施することができる。この結果、減圧脱泡処理後の溶融ガラス中の気泡や異物が低減され、欠点の少ない高機能高品質のガラスを製造することができる。
 本発明の減圧脱泡方法は、塩化物系清澄剤を用いるため、人体や地球環境に悪影響を及ぼすことがない。また、本発明の減圧脱泡方法を用いて製造されたガラス製品は、製造工場や処理工場での取り扱い上、泡の抑制に関する特別な注意が必要ではなく、ガラス製品のリサイクルにも支障が生じない。
According to the vacuum degassing method of the present invention, vacuum degassing can be carried out under optimum conditions when performing vacuum degassing of alkali-free glass using a chloride clarifier. As a result, bubbles and foreign substances in the molten glass after the vacuum degassing treatment are reduced, and a high-performance and high-quality glass with few defects can be produced.
Since the reduced pressure defoaming method of the present invention uses a chloride clarifier, the human body and the global environment are not adversely affected. In addition, glass products manufactured using the vacuum degassing method of the present invention do not require any special precautions regarding the suppression of bubbles in handling at manufacturing plants and processing plants, resulting in problems in recycling of glass products. Absent.
図1は、本発明の減圧脱泡方法に用いる減圧脱泡装置の一構成例を示した断面図。FIG. 1 is a cross-sectional view showing a configuration example of a vacuum degassing apparatus used in the vacuum degassing method of the present invention. 図2は、T2と、式(4)の係数aと、の関係をプロットしたグラフ。FIG. 2 is a graph plotting the relationship between T 2 and the coefficient a in equation (4). 図3は、T2と、式(4)の係数bと、の関係をプロットしたグラフ。FIG. 3 is a graph plotting the relationship between T 2 and the coefficient b in Equation (4). 図4は、T2と、式(5)の係数cと、の関係をプロットしたグラフ。FIG. 4 is a graph plotting the relationship between T 2 and the coefficient c in equation (5). 図5は、T2と、式(5)の係数dと、の関係をプロットしたグラフ。FIG. 5 is a graph plotting the relationship between T 2 and the coefficient d in equation (5). 図6は、リボイル圧Prbと、泡成長開始圧Pbgと、の関係をプロットしたグラフ。FIG. 6 is a graph plotting the relationship between the reboil pressure P rb and the bubble growth start pressure P bg . 図7は、無アルカリガラス組成A、B、Cについて、塩素の含有量(質量%)が0.12質量%以上の場合で、泡成長開始圧力Pbgの実験値(mmHg)と泡成長開始圧力Pbgの計算値(mmHg)との関係をプロットしたグラフ。FIG. 7 shows the experimental value (mmHg) of the bubble growth start pressure P bg and the bubble growth start when the chlorine content (% by mass) is 0.12% by mass or more for the alkali-free glass compositions A, B, and C. The graph which plotted the relationship with the calculated value (mmHg) of the pressure Pbg . 図8は、無アルカリガラス組成A、B、Cについて、塩素の含有量(質量%)が0.12質量%未満の場合で、泡成長開始圧力Pbgの実験値(mmHg)と泡成長開始圧力Pbgの計算値(mmHg)との関係をプロットしたグラフ。FIG. 8 shows the experimental value (mmHg) of the bubble growth start pressure P bg and the bubble growth start when the chlorine content (% by mass) is less than 0.12 mass% for the alkali-free glass compositions A, B, and C. The graph which plotted the relationship with the calculated value (mmHg) of the pressure Pbg .
 以下、図面を用いて本発明の減圧脱泡方法を説明する。図1は、本発明の減圧脱泡方法に用いる減圧脱泡装置の一構成例を示した断面図である。図1に示す減圧脱泡装置1において、円筒形状をした減圧脱泡槽12は、その長軸が水平方向に配向するように減圧ハウジング11内に収納配置されている。減圧脱泡槽12の一端の下面には垂直方向に配向する上昇管13が、他端の下面には下降管14が取り付けられている。上昇管13および下降管14は、その一部が減圧ハウジング11内に位置している。
 上昇管13は、減圧脱泡槽12と連通しており、溶解槽20からの溶融ガラスGを減圧脱泡槽12に導入する。下降管14は、減圧脱泡槽12に連通しており、減圧脱泡後の溶融ガラスGを次の処理槽(図示せず)に導出する。減圧ハウジング11内において、減圧脱泡槽12、上昇管13および下降管14の周囲には、これらを断熱被覆する断熱用レンガなどの断熱材15が配設されている。
Hereinafter, the vacuum degassing method of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a configuration example of a vacuum degassing apparatus used in the vacuum degassing method of the present invention. In the vacuum degassing apparatus 1 shown in FIG. 1, a cylindrical vacuum degassing tank 12 is housed and disposed in the vacuum housing 11 so that its long axis is oriented in the horizontal direction. A rising pipe 13 oriented in the vertical direction is attached to the lower surface of one end of the vacuum degassing tank 12, and a lowering pipe 14 is attached to the lower surface of the other end. A part of the ascending pipe 13 and the descending pipe 14 is located in the decompression housing 11.
The ascending pipe 13 communicates with the vacuum degassing tank 12 and introduces the molten glass G from the melting tank 20 into the vacuum degassing tank 12. The downcomer 14 communicates with the vacuum degassing tank 12 and guides the molten glass G after the vacuum degassing to the next processing tank (not shown). In the decompression housing 11, a heat insulating material 15 such as a heat insulating brick is provided around the decompression defoaming tank 12, the ascending pipe 13 and the descending pipe 14 to insulate these.
 図1に示す減圧脱泡装置1において、減圧脱泡槽12、上昇管13および下降管14は、溶融ガラスの導管であるため、耐熱性および溶融ガラスに対する耐食性に優れた材料を用いて作製されている。一例を挙げると、白金製、白金合金製、または、白金もしくは白金合金に金属酸化物を分散させてなる強化白金製である。また、セラミックス系の非金属無機材料製、すなわち、緻密質耐火物製であってもよい。また、緻密質耐火物に白金または白金合金を内張したものであってもよい。 In the vacuum degassing apparatus 1 shown in FIG. 1, the vacuum degassing tank 12, the rising pipe 13, and the descending pipe 14 are made of a material excellent in heat resistance and corrosion resistance against molten glass because they are conduits for molten glass. ing. For example, it is made of platinum, platinum alloy, or reinforced platinum obtained by dispersing a metal oxide in platinum or platinum alloy. Further, it may be made of a ceramic nonmetallic inorganic material, that is, a dense refractory. Further, a dense refractory material with platinum or a platinum alloy lined may be used.
 本発明の減圧脱泡方法では、溶解槽20から供給される溶融ガラスGを所定の減圧度に減圧された減圧脱泡槽12を通過させて減圧脱泡を行う。溶融ガラスGは、減圧脱泡槽12に連続的に供給・排出されることが好ましい。なお、溶融ガラスの流量が1~200トン/日であることが生産性の点から好ましい。
 溶解槽20から供給される溶融ガラスGとの温度差が生じることを防止するために、減圧脱泡槽12は、内部が1200℃~1600℃、特に1350℃~1550℃の温度範囲になるように加熱されていることが好ましい。
In the vacuum degassing method of the present invention, the molten glass G supplied from the melting tank 20 is passed through the vacuum degassing tank 12 depressurized to a predetermined degree of vacuum to perform vacuum degassing. It is preferable that the molten glass G is continuously supplied to and discharged from the vacuum degassing tank 12. The flow rate of the molten glass is preferably 1 to 200 tons / day from the viewpoint of productivity.
In order to prevent a temperature difference from the molten glass G supplied from the melting tank 20, the vacuum degassing tank 12 has an internal temperature range of 1200 ° C. to 1600 ° C., particularly 1350 ° C. to 1550 ° C. It is preferable to be heated.
 本発明の減圧脱泡方法で用いる溶融ガラスGは、無アルカリガラスであり、無アルカリガラスを製造するガラス原料に下記する塩化物系清澄剤が添加されているものである。塩化物系清澄剤の具体例としては、BaCl2、SrCl2、CaCl2、MgCl2、AlCl3およびNH4Clからなる群から選ばれる少なくとも1種が挙げられる。これらの中で、BaCl2、SrCl2、CaCl2、MgCl2等のアルカリ土類塩化物や、AlCl3およびNH4Clは、通常含水塩として存在する。従って、本発明の無アルカリガラスの製造において添加される塩化物系清澄剤としては、これらの中でも、潮解性の心配が無い観点から、BaCl2・2H2O、SrCl2・6H2O、およびNH4Clが好ましい。
 無アルカリガラス中の塩素の含有量(以下、本明細書において、[Cl]と示す場合がある。)は、0.03~0.3質量%であることが好ましい。[Cl]は0.05~0.25質量%であることがより好ましい。[Cl]が0.03質量%未満の場合、無アルカリガラスの清澄効果が不十分になるおそれがある。
 なお、塩化物系清澄剤として、アルカリ金属の塩化物の使用も考えられるが、溶融ガラスの清澄に十分な量を添加すると、無アルカリガラスにアルカリ金属が含有されることになるため、アルカリ金属の塩化物からなる清澄剤は不適である。
The molten glass G used in the vacuum degassing method of the present invention is an alkali-free glass, and the following chloride-based clarifier is added to a glass raw material for producing the alkali-free glass. Specific examples of the chloride fining agent include at least one selected from the group consisting of BaCl 2 , SrCl 2 , CaCl 2 , MgCl 2 , AlCl 3 and NH 4 Cl. Among these, alkaline earth chlorides such as BaCl 2 , SrCl 2 , CaCl 2 and MgCl 2 , AlCl 3 and NH 4 Cl are usually present as hydrated salts. Therefore, the chloride fining agent added in the production of the alkali-free glass of the present invention includes, among these, BaCl 2 .2H 2 O, SrCl 2 .6H 2 O, and NH 4 Cl is preferred.
The content of chlorine in the alkali-free glass (hereinafter sometimes referred to as [Cl] in the present specification) is preferably 0.03 to 0.3% by mass. [Cl] is more preferably 0.05 to 0.25% by mass. When [Cl] is less than 0.03% by mass, the clarification effect of the alkali-free glass may be insufficient.
In addition, although the use of an alkali metal chloride is also considered as a chloride-based fining agent, adding an amount sufficient for clarification of molten glass will cause the alkali metal to be contained in the alkali-free glass. A fining agent consisting of chlorides is not suitable.
 減圧脱泡を実施する際、減圧ハウジング11内の空気は、減圧ハウジング11の所定箇所に設けられた吸引開口部16を通して、外部から真空ポンプ等の真空減圧手段(図示せず)によって排気される。これにより、減圧ハウジング11内に収容された減圧脱泡槽12内の空気が間接的に排気され、減圧脱泡槽12内部は所定の圧力まで減圧される。本発明の減圧脱泡方法では、減圧脱泡槽12内の圧力を下記式(1)または(2)で表される泡成長開始圧Pbg(mmHg)以下に保持する。
  ・Pbg=(2.6082×T2-3538.2)×[β-OH]+(-1.2102×T2+2612.2)×[Cl]-80.3 ………(1)
  ・Pbg=(-0.2462×T2+1121.7)×[β-OH]+(1.9714×T2-1730.6)×[Cl]-187.3 ………(2)
 ここで、式(1)、(2)中の[Cl]は無アルカリガラス中の塩素の含有量(質量%)を表わす。[Cl]が0.12質量%以上の場合、泡成長開始圧Pbgは上記式(1)で表わされる。一方、[Cl]が0.12質量%未満の場合、Pbgは式(2)で表わされる。
When decompression defoaming is performed, the air in the decompression housing 11 is exhausted from the outside by a vacuum decompression means (not shown) such as a vacuum pump through a suction opening 16 provided at a predetermined location of the decompression housing 11. . Thereby, the air in the decompression defoaming tank 12 accommodated in the decompression housing 11 is indirectly exhausted, and the inside of the decompression defoaming tank 12 is decompressed to a predetermined pressure. In the vacuum degassing method of the present invention, the pressure in the vacuum degassing tank 12 is maintained below the bubble growth starting pressure P bg (mmHg) represented by the following formula (1) or (2).
P bg = (2.6082 × T 2 −3538.2) × [β-OH] + (− 1.2102 × T 2 +2612.2) × [Cl] −80.3 (1)
P bg = (− 0.2462 × T 2 +111.7) × [β−OH] + (1.9714 × T 2 −1730.6) × [Cl] −187.3 (2)
Here, [Cl] in the formulas (1) and (2) represents the chlorine content (mass%) in the alkali-free glass. When [Cl] is 0.12% by mass or more, the bubble growth starting pressure P bg is represented by the above formula (1). On the other hand, when [Cl] is less than 0.12% by mass, P bg is represented by the formula (2).
 式(1),(2)中、T2は溶融ガラスの粘度が102dPa・sとなる温度(℃)を示し、高温回転粘度計を用いて測定することができる。
 粘度102dPa・sは、溶融ガラスの粘度が十分低くなっていることを示す基準粘度である。したがって、溶融ガラスの粘度が102dPa・sとなる温度T2は、溶融ガラスの基準温度であり、TFT液晶ディスプレイ基板用無アルカリガラスの場合、1500~1750℃である。
 T2が1500~1720℃であると、溶融ガラス中の泡の浮上速度が速くなり、減圧脱泡時の脱泡性能に優れることから好ましい。T2は1560~1700℃がより好ましく、1590~1680℃がさらに好ましい。
In formulas (1) and (2), T 2 represents a temperature (° C.) at which the viscosity of the molten glass is 10 2 dPa · s, and can be measured using a high-temperature rotational viscometer.
The viscosity of 10 2 dPa · s is a reference viscosity indicating that the viscosity of the molten glass is sufficiently low. Therefore, the temperature T 2 at which the viscosity of the molten glass is 10 2 dPa · s is the reference temperature of the molten glass, and is 1500 to 1750 ° C. in the case of the alkali-free glass for a TFT liquid crystal display substrate.
It is preferable that T 2 is 1500 to 1720 ° C. because the rising speed of bubbles in the molten glass is increased and the defoaming performance at the time of degassing under reduced pressure is excellent. T 2 is more preferably 1560 to 1700 ° C., and further preferably 1590 to 1680 ° C.
 式(1),(2)中、[β-OH]は、無アルカリガラスのβ-OH値(mm-1)を示す。β-OH値は、ガラス中の水分量の指標として用いられる。β-OH値は、減圧脱泡後の溶融ガラスを板状に成形した無アルカリガラス試験片の透過率をフーリエ変換赤外分光光度計(FT-IR)を用いて測定し、下記式を用いて求めることができる。
  ・β-OH 値 = (1/X)log10(T1/T2
    ・X :ガラス肉厚(mm)
    ・T1:参照波数4000cm-1における透過率(%)
    ・T2:水酸基吸収波数3570cm-1付近における最小透過率(%)
 無アルカリガラスのβ-OH値は、0.15~0.6mm-1であることが好ましい。無アルカリガラスのβ-OH値は、原料中の水分量、溶解槽中の水蒸気濃度、燃焼方法(酸素燃焼、空気燃焼)などに支配される。溶解槽中の水蒸気濃度によるβ-OHの調整方法については後述する。β-OH値は、特に0.2~0.55mm-1であることが好ましい。なお、β-OH値は、ガラス化後のβ-OH値が一般的に用いられる。
In the formulas (1) and (2), [β-OH] represents the β-OH value (mm −1 ) of the alkali-free glass. The β-OH value is used as an indicator of the amount of water in the glass. The β-OH value was measured by using a Fourier transform infrared spectrophotometer (FT-IR) to measure the transmittance of a non-alkali glass test piece obtained by molding molten glass after degassing under reduced pressure into a plate shape. Can be obtained.
Β-OH value = (1 / X) log 10 (T 1 / T 2 )
-X: Glass wall thickness (mm)
T 1 : Transmittance (%) at a reference wave number of 4000 cm −1
T 2 : Minimum transmittance (%) in the vicinity of hydroxyl absorption wave number 3570 cm −1
The β-OH value of the alkali-free glass is preferably 0.15 to 0.6 mm −1 . The β-OH value of the alkali-free glass is governed by the water content in the raw material, the water vapor concentration in the melting tank, the combustion method (oxygen combustion, air combustion), and the like. A method for adjusting β-OH by the water vapor concentration in the dissolution tank will be described later. The β-OH value is particularly preferably 0.2 to 0.55 mm −1 . As the β-OH value, the β-OH value after vitrification is generally used.
 本明細書において、泡成長開始圧Pbgは以下のように定義される。
 温度一定の条件で、減圧脱泡槽12を減圧していった場合、減圧脱泡槽12内の溶融ガラス中に存在する気泡の体積(気泡の径)はボイルの法則にしたがって増加する。しかしながら、減圧脱泡槽12内がある圧力まで減圧されると、溶融ガラス中の気泡の体積(気泡の径)がボイルの法則を外れて急激に増加する。この圧力のことを泡成長開始圧Pbgという。減圧脱泡槽12内の圧力を泡成長開始圧Pbg(mmHg)以下に保持した場合、減圧脱泡槽12内で溶融ガラスに含まれる気泡を十分成長させることができる。この結果、溶融ガラス中の気泡を効率よく除去を行うことができる。
In the present specification, the bubble growth starting pressure P bg is defined as follows.
When the vacuum degassing tank 12 is depressurized under a constant temperature condition, the volume of bubbles (bubble diameter) in the molten glass in the vacuum degassing tank 12 increases according to Boyle's law. However, when the pressure in the vacuum degassing tank 12 is reduced to a certain pressure, the volume of bubbles in the molten glass (the diameter of the bubbles) suddenly increases outside Boyle's law. This pressure is referred to as a bubble growth starting pressure P bg . When the pressure in the vacuum degassing tank 12 is kept below the bubble growth starting pressure P bg (mmHg), bubbles contained in the molten glass can be sufficiently grown in the vacuum degassing tank 12. As a result, bubbles in the molten glass can be efficiently removed.
 本発明において、泡成長開始圧Pbgは、以下の手順で求めることができる。
 減圧脱泡槽12内の状況を再現するために、無アルカリガラスのカレットが入った石英ガラス製のるつぼを真空減圧容器内に配置する。るつぼを所定の温度(例えば、1300℃または1400℃)まで加熱して、無アルカリガラスを溶融させる。無アルカリガラスが完全に溶融した後、真空減圧容器内を減圧しながら、溶融ガラス中の気泡の径を観察する。溶融ガラス中の気泡の径を観察するには、例えば、溶融ガラス中の気泡を真空減圧容器に設けた覗き窓からCCDカメラを用いて撮影すればよい。なお、気泡の径の測定を行う気泡のサンプル個数は20個以上である。
 真空減圧容器内の圧力を下げていくと、溶融ガラス中の気泡の径がボイルの法則にしたがって増加する。しかしながら、真空減圧容器内がある圧力まで減圧されると、溶融ガラス中の気泡の径がボイルの法則から外れて急激に増加してくる。この時の真空減圧容器内の減圧度を泡成長開始圧Pbgとする。
In the present invention, the bubble growth starting pressure P bg can be determined by the following procedure.
In order to reproduce the situation in the vacuum degassing vessel 12, a quartz glass crucible containing a non-alkali glass cullet is placed in a vacuum vacuum vessel. The crucible is heated to a predetermined temperature (for example, 1300 ° C. or 1400 ° C.) to melt the alkali-free glass. After the alkali-free glass is completely melted, the diameter of the bubbles in the molten glass is observed while reducing the pressure in the vacuum vacuum container. In order to observe the diameter of the bubbles in the molten glass, for example, the bubbles in the molten glass may be photographed using a CCD camera from a viewing window provided in the vacuum decompression container. It should be noted that the number of bubble samples for measuring the bubble diameter is 20 or more.
As the pressure in the vacuum decompression vessel is lowered, the diameter of bubbles in the molten glass increases according to Boyle's law. However, when the inside of the vacuum decompression container is depressurized to a certain pressure, the diameter of bubbles in the molten glass deviates from Boyle's law and increases rapidly. The degree of decompression in the vacuum decompression vessel at this time is defined as a bubble growth starting pressure P bg .
 本願発明者らは、泡成長開始圧Pbgと、無アルカリガラスの減圧脱泡に関連する種々のパラメータと、の関係について鋭意検討した結果、溶融ガラスの粘度が102dPa・sとなる温度(T2)、無アルカリガラスのβ-OH値([β-OH])、および、無アルカリガラス中の塩素の含有量([Cl])が、泡成長開始圧Pbgに影響を及ぼすことを見出した。この知見に基づいて、泡成長開始圧Pbgと、T2、[β-OH]、および、[Cl]と、の関係を実験的に導き出したのが上記した式(1),(2)である。式(1),(2)の導出手順について、より具体的に説明する。 As a result of intensive investigations on the relationship between the bubble growth starting pressure P bg and various parameters related to the vacuum degassing of the alkali-free glass, the inventors of the present application have found that the temperature at which the viscosity of the molten glass becomes 10 2 dPa · s. (T 2 ), the β-OH value of the alkali-free glass ([β-OH]), and the chlorine content ([Cl]) in the alkali-free glass affect the bubble growth starting pressure P bg I found. Based on this finding, the relationship between the bubble growth starting pressure P bg and T 2 , [β-OH], and [Cl] was experimentally derived. The above formulas (1) and (2) It is. The procedure for deriving equations (1) and (2) will be described more specifically.
 T2が異なる無アルカリガラスA~Cについて、無アルカリガラスのβ-OH値[β-OH]または無アルカリガラス中の塩素の含有量[Cl]が異なり、他の組成値は同一の無アルカリガラスを準備し、上記手順で泡成長開始圧Pbgを求めた。ここで、塩化物清澄剤にはNH4Clを使用した。詳しくは後述するが、溶解槽20で無アルカリガラスを溶解する際に、燃料と混合させる酸素と空気との割合を調節することによって、無アルカリガラスのβ-OH値を調節できる。無アルカリガラスA~Cの組成、および、T2はそれぞれ以下の通りである。以下の無アルカリガラスの組成は、下記酸化物換算の質量%表示である。
 (無アルカリガラスA)
   SiO2:59.5質量%、
   Al23:17.7質量%、
   B23:7.9質量%、
   MgO:3.2質量%、
   CaO:3.7質量%、
   SrO:7.9質量%、
   BaO:0.1質量%。
    (T2:1660℃)
 (無アルカリガラスB)
   SiO2:59.4質量%、
   Al23:16.9質量%、
   B23:8.6質量%、
   MgO:4.0質量%、
   CaO:5.4質量%、
   SrO:5.7質量%、
   BaO:0.0質量%。
    (T2:1617℃)
 (無アルカリガラスC)
   SiO2:59.5質量%、
   Al23:17.0質量%、
   B23:8.0質量%、
   MgO:4.7質量%、
   CaO:6.0質量%、
   SrO:4.8質量%、
   BaO:0.0質量%。
    (T2:1597℃)
For alkali-free glasses A to C having different T 2, the β-OH value [β-OH] of the alkali-free glass or the chlorine content [Cl] in the alkali-free glass is different, and other composition values are the same alkali-free. Glass was prepared, and the bubble growth starting pressure P bg was determined by the above procedure. Here, NH 4 Cl was used as the chloride clarifier. As will be described in detail later, when the alkali-free glass is melted in the melting tank 20, the β-OH value of the alkali-free glass can be adjusted by adjusting the ratio of oxygen and air mixed with the fuel. The compositions of alkali-free glasses A to C and T 2 are as follows. The composition of the following alkali-free glass is expressed in mass% in terms of the following oxide.
(Non-alkali glass A)
SiO 2 : 59.5% by mass,
Al 2 O 3 : 17.7% by mass,
B 2 O 3 : 7.9% by mass,
MgO: 3.2% by mass,
CaO: 3.7% by mass,
SrO: 7.9% by mass,
BaO: 0.1% by mass.
(T 2 : 1660 ° C.)
(Non-alkali glass B)
SiO 2 : 59.4% by mass,
Al 2 O 3 : 16.9% by mass,
B 2 O 3 : 8.6% by mass,
MgO: 4.0% by mass,
CaO: 5.4% by mass,
SrO: 5.7% by mass,
BaO: 0.0 mass%.
(T 2 : 1617 ° C)
(Non-alkali glass C)
SiO 2 : 59.5% by mass,
Al 2 O 3 : 17.0% by mass,
B 2 O 3 : 8.0% by mass,
MgO: 4.7% by mass,
CaO: 6.0% by mass,
SrO: 4.8% by mass,
BaO: 0.0 mass%.
(T 2 : 1597 ° C)
 各無アルカリガラスA~Cのいずれにおいても、無アルカリガラス中の塩素の含有量[Cl]が0.12質量%以上の場合、泡成長開始圧Pbg、無アルカリガラスのβ-OH値([β-OH])、および、無アルカリガラス中の塩素の含有量([Cl])について、下記式(4)で示される関係が成り立つことを見出した。
  ・Pbg=a×[β-OH]+b×[Cl]-80.3  ………(4)
 各無アルカリガラスA~Cに対する式(4)は各々以下の通りである。
 (無アルカリガラスA)
  ・Pbg=800.6×[β-OH]+660.1×[Cl]-80.3  ………(4-A)
 (無アルカリガラスB)
  ・Pbg=650.0×[β-OH]+664.9×[Cl]-80.3  ………(4-B)
 (無アルカリガラスC)
  ・Pbg=646.9×[β-OH]+672.8×[Cl]-80.3  ………(4-C)
In each of the alkali-free glasses A to C, when the chlorine content [Cl] in the alkali-free glass is 0.12% by mass or more, the bubble growth starting pressure P bg , the β-OH value of the alkali-free glass ( It has been found that the relationship represented by the following formula (4) holds for the [β-OH]) and the chlorine content ([Cl]) in the alkali-free glass.
P bg = a × [β-OH] + b × [Cl] −80.3 (4)
Equation (4) for each alkali-free glass A to C is as follows.
(Non-alkali glass A)
· P bg = 800.6 × [β -OH] + 660.1 × [Cl] -80.3 ......... (4-A)
(Non-alkali glass B)
・ P bg = 650.0 × [β-OH] + 664.9 × [Cl] −80.3 (4-B)
(Non-alkali glass C)
· P bg = 646.9 × [β -OH] + 672.8 × [Cl] -80.3 ......... (4-C)
 図2は、上記で得られた結果に基づいて、T2と、式(4)の係数aと、の関係をプロットしたグラフである。図3は、上記で得られた結果に基づいて、T2と、式(4)の係数bと、の関係をプロットしたグラフである。
 図2,3に示す回帰直線から求めたのが上記式(1)である。
FIG. 2 is a graph plotting the relationship between T 2 and the coefficient a of Equation (4) based on the results obtained above. FIG. 3 is a graph plotting the relationship between T 2 and the coefficient b of Equation (4) based on the results obtained above.
The equation (1) is obtained from the regression line shown in FIGS.
 一方、無アルカリガラス中の塩素の含有量が0.12質量%未満の場合、Pbg、[β-OH]、[Cl]について、下記式(5)で示される関係が成り立つことを見出した。
  ・Pbg=c×[β-OH]+d×[Cl]-187.3  ………(5)
 各無アルカリガラスA~Cに対する式(5)は各々以下の通りである。
 (無アルカリガラスA)
  ・Pbg=713.6×[β-OH]+1530.0×[Cl]-187.3  ………(5-A)
 (無アルカリガラスB)
  ・Pbg=721.7×[β-OH]+1494.6×[Cl]-187.3  ………(5-B)
 (無アルカリガラスC)
  ・Pbg=729.8×[β-OH]+1392.1×[Cl]-187.3  ………(5-C)
On the other hand, when the chlorine content in the alkali-free glass is less than 0.12% by mass, the relationship represented by the following formula (5) is established for P bg , [β-OH], and [Cl]. .
P bg = c × [β-OH] + d × [Cl] -187.3 (5)
Formula (5) for each alkali-free glass A to C is as follows.
(Non-alkali glass A)
P bg = 713.6 × [β-OH] + 1530.0 × [Cl] -187.3 (5-A)
(Non-alkali glass B)
P bg = 721.7 × [β-OH] + 1494.6 × [Cl] -187.3 (5-B)
(Non-alkali glass C)
P bg = 729.8 × [β-OH] + 1392.1 × [Cl] -187.3 (5-C)
 図4は、上記で得られた結果に基づいて、T2と、式(5)の係数cと、の関係をプロットしたグラフである。図5は、上記で得られた結果に基づいて、T2と、式(5)の係数dと、の関係をプロットしたグラフである。
 図4,5に示す回帰直線から求めたのが上記式(2)である。
FIG. 4 is a graph plotting the relationship between T 2 and the coefficient c of Equation (5) based on the results obtained above. FIG. 5 is a graph plotting the relationship between T 2 and the coefficient d of Equation (5) based on the results obtained above.
The equation (2) is obtained from the regression line shown in FIGS.
 上記したように、本発明の減圧脱泡方法では、減圧脱泡槽12内の圧力を上記式(1)で表される泡成長開始圧Pbg(mmHg)以下に保持するが、減圧脱泡槽12内の圧力が極端に低い場合、減圧脱泡槽12を流れる溶融ガラスでリボイルが発生するおそれがある。
 このため、本発明の減圧脱泡方法では、減圧脱泡槽12内の圧力を下記式(3)で表される溶融ガラスのリボイル圧Prb(mmHg)以上に保持する。
  ・Prb=0.8325×Pbg-59.5 ………(3)
As described above, in the vacuum degassing method of the present invention, the pressure in the vacuum degassing tank 12 is maintained below the bubble growth starting pressure P bg (mmHg) represented by the above formula (1). When the pressure in the tank 12 is extremely low, reboiling may occur in the molten glass flowing in the vacuum degassing tank 12.
For this reason, in the vacuum degassing method of the present invention, the pressure in the vacuum degassing tank 12 is maintained at or above the reboiling pressure P rb (mmHg) of the molten glass represented by the following formula (3).
・ P rb = 0.8325 × P bg -59.5 (3)
 本明細書において、リボイル圧Prbは以下のように定義される。
 溶融ガラスに含まれる気泡を十分成長させるためには、減圧脱泡槽12内の圧力をできるだけ低くすることが好ましい。しかしながら、減圧脱泡槽12内の圧力を極端に低くした場合、白金製若しくは白金合金製、または緻密質耐火物製の溶融脱泡槽12と接するガラス界面で気泡が発生する場合がある。この現象をリボイル(reboil)といい、この時の減圧脱泡槽12内の圧力をリボイル圧Prbという。
 なお、リボイル圧Prbは以下の手順で求めることができる。
 減圧脱泡槽12内の状況を再現するために、無アルカリガラスのカレットが入った石英ガラス製のるつぼを真空減圧容器内に配置する。るつぼを所定の温度(例えば、1300℃または1400℃)まで加熱して無アルカリガラスを溶融させる。減圧脱泡槽を構成する材料、より正確には減圧脱泡槽のガラス接触面を構成する材料(白金若しくは白金合金、または緻密質耐火物)を用いて作製された試験片を溶融ガラス中に浸漬する。この状態で真空減圧容器内を徐々に減圧して、試験片のガラス界面における気泡の発生を観察する。ガラス界面で気泡が発生した際の真空減圧容器の減圧度をリボイル圧Prbとする。
In this specification, reboiled pressure P rb are defined as follows.
In order to sufficiently grow the bubbles contained in the molten glass, it is preferable to reduce the pressure in the vacuum degassing tank 12 as much as possible. However, when the pressure in the vacuum degassing tank 12 is extremely low, bubbles may be generated at the glass interface in contact with the molten defoaming tank 12 made of platinum, a platinum alloy, or a dense refractory. This phenomenon is called the reboiling (reboil), the pressure in the vacuum degassing vessel 12 at this time that reboil pressure P rb.
Incidentally, reboil pressure P rb can be obtained by the following procedure.
In order to reproduce the situation in the vacuum degassing vessel 12, a quartz glass crucible containing a non-alkali glass cullet is placed in a vacuum vacuum vessel. The crucible is heated to a predetermined temperature (for example, 1300 ° C. or 1400 ° C.) to melt the alkali-free glass. A test piece made of a material constituting the vacuum defoaming tank, more precisely, a material constituting the glass contact surface of the vacuum defoaming tank (platinum, platinum alloy, or dense refractory) is put in the molten glass. Immerse. In this state, the inside of the vacuum decompression vessel is gradually decompressed, and the generation of bubbles at the glass interface of the test piece is observed. The decompression degree of the vacuum decompression container when bubbles occur in the glass interface and reboiling pressure P rb.
 本願発明者らは、リボイル圧Prbと、無アルカリガラスの減圧脱泡に関連する種々のパラメータと、の関係について鋭意検討した結果、リボイル圧Prbと、泡成長開始圧Pbgと、の間には特定の関係が成り立つことを見出した。
 上記式(3)は、リボイル圧Prbと、泡成長開始圧Pbgと、の関係をプロットすることで特定することができる。図6は、リボイル圧Prbと、泡成長開始圧Pbgと、の関係をプロットしたグラフである。
 図6において、溶融ガラスに浸漬する試験片には、白金-ロジウム合金(白金90質量%、ロジウム10質量%)を使用した。また、溶融ガラスとして無アルカリガラスA~Cを用いた。溶融ガラスの温度は1400℃であった。
The present inventors have found that a reboiled pressure P rb, various parameters and a result of extensive studies on the relationship associated with the vacuum degassing of the alkali-free glass, and reboiled pressure P rb, bubble growth starting and pressure P bg, of I found out that there was a specific relationship between them.
The above formula (3) can be specified by plotting the relationship between the reboil pressure P rb and the bubble growth starting pressure P bg . FIG. 6 is a graph plotting the relationship between the reboil pressure P rb and the bubble growth start pressure P bg .
In FIG. 6, a platinum-rhodium alloy (platinum 90% by mass, rhodium 10% by mass) was used as a test piece immersed in molten glass. Further, alkali-free glasses A to C were used as the molten glass. The temperature of the molten glass was 1400 ° C.
 本発明の減圧脱泡方法では、減圧脱泡槽12内の圧力を、リボイル圧Prb(mmHg)以上に保持する。減圧脱泡槽12内の圧力をリボイル圧Prb(mmHg)以上に保持した場合、減圧脱泡槽12を流れる溶融ガラスでリボイルが発生することが防止される。この結果、減圧脱泡処理後の溶融ガラスに残留する気泡の数が低減され、気泡の少ない高機能高品質のガラスを製造することができる。 In the vacuum degassing method of the present invention, the pressure in the vacuum degassing tank 12 is maintained at or above the reboiling pressure P rb (mmHg). When holding the pressure in the vacuum degassing vessel 12 to reboil pressure P rb (mmHg) or higher, reboiled in the molten glass flowing in the vacuum degassing vessel 12 is prevented from being generated. As a result, the number of bubbles remaining in the molten glass after the vacuum defoaming treatment is reduced, and a high-functional and high-quality glass with few bubbles can be produced.
 すなわち、本発明の減圧脱泡方法では、減圧脱泡槽12内の圧力を上記式(1)、(2)で表される泡成長開始圧Pbg(mmHg)以下、かつ上記式(3)で表されるリボイル圧Prb(mmHg)以上に保持することにより、減圧脱泡槽12内で溶融ガラスに含まれる気泡を十分成長させることができ、溶融ガラス中の気泡を効率よく除去を行うことができる一方で、減圧脱泡槽12を流れる溶融ガラスでリボイルが発生することが防止される。この結果、減圧脱泡処理後の溶融ガラスに残留する気泡が極めて低減され、極めて気泡の少ない高機能高品質のガラスを製造することができる。 That is, in the vacuum degassing method of the present invention, the pressure in the vacuum degassing tank 12 is equal to or lower than the bubble growth starting pressure P bg (mmHg) represented by the above formulas (1) and (2), and the above formula (3). By maintaining the reboil pressure P rb (mmHg) or higher represented by the formula, bubbles contained in the molten glass can be sufficiently grown in the vacuum degassing vessel 12, and the bubbles in the molten glass are efficiently removed. On the other hand, reboiling is prevented from occurring in the molten glass flowing in the vacuum degassing vessel 12. As a result, bubbles remaining in the molten glass after the vacuum defoaming treatment are extremely reduced, and a high-performance and high-quality glass with extremely few bubbles can be produced.
 本発明の減圧脱泡方法において適用される無アルカリガラスの第1の例としては、下記酸化物換算の質量%表示で以下の成分を含有する無アルカリガラスの組成が、好ましく挙げられる。
   SiO:50~66質量%、
   Al:10.5~24質量%、
   B:0~12質量%、
   MgO:0~8質量%、
   CaO:0~14.5質量%、
   SrO:0~24質量%、
   BaO:0~13.5質量%、
   MgO+CaO+SrO+BaO:9~29.5質量%。
 本発明の減圧脱泡方法において適用される無アルカリガラスの第2の例としては、下記酸化物換算の質量%表示で以下の成分を含有する無アルカリガラスの組成が、より好ましく挙げられる。
   SiO2:58~66質量%、
   Al23:15~22質量%、
   B23:0~12質量%、
   MgO:0~8質量%、
   CaO:0~9質量%、
   SrO:3~12.5質量%、
   BaO:0~2%質量、
   MgO+CaO+SrO+BaO :9~18質量%。
As a 1st example of the alkali free glass applied in the vacuum degassing method of this invention, the composition of the alkali free glass containing the following components by the mass% display of the following oxide conversion is mentioned preferably.
SiO 2 : 50 to 66% by mass,
Al 2 O 3 : 10.5 to 24% by mass,
B 2 O 3 : 0 to 12% by mass,
MgO: 0 to 8% by mass,
CaO: 0 to 14.5% by mass,
SrO: 0 to 24% by mass,
BaO: 0 to 13.5% by mass,
MgO + CaO + SrO + BaO: 9 to 29.5% by mass.
As a 2nd example of the alkali free glass applied in the vacuum degassing method of this invention, the composition of the alkali free glass containing the following components by the mass% display of the following oxide conversion is mentioned more preferably.
SiO 2 : 58 to 66% by mass,
Al 2 O 3 : 15-22% by mass,
B 2 O 3 : 0 to 12% by mass,
MgO: 0 to 8% by mass,
CaO: 0 to 9% by mass,
SrO: 3 to 12.5% by mass,
BaO: 0-2% by mass,
MgO + CaO + SrO + BaO: 9 to 18% by mass.
 上記した無アルカリガラス組成の各成分の範囲の限定理由について、以下に説明する。
 SiO2は、66%超ではガラスの溶解性が低下し、また失透しやすくなる。好ましくは64%以下、より好ましくは62%以下である。50%未満では比重増加、歪点低下、熱膨張係数増加、耐薬品性の低下が起こる。好ましくは58%以上さらには58.5%以上、より好ましくは59%以上である。
The reason for limiting the range of each component of the above alkali-free glass composition will be described below.
If the SiO 2 content exceeds 66%, the solubility of the glass decreases and the glass tends to devitrify. Preferably it is 64% or less, More preferably, it is 62% or less. If it is less than 50%, the specific gravity increases, the strain point decreases, the thermal expansion coefficient increases, and the chemical resistance decreases. Preferably it is 58% or more, further 58.5% or more, more preferably 59% or more.
 Al23はガラスの分相を抑制し、また歪点を高くする成分であり必須である。24%超では失透しやすくなり、耐薬品性の低下が起こる。好ましくは22%以下さらには20%以下、より好ましくは18%以下である。10.5%未満ではガラスが分相しやすくなる、または歪点が低下する。好ましくは15%以上さらには15.5%以上、より好ましくは16%以上である。 Al 2 O 3 is a component that suppresses the phase separation of the glass and increases the strain point, and is essential. If it exceeds 24%, devitrification tends to occur, and chemical resistance decreases. Preferably it is 22% or less, further 20% or less, more preferably 18% or less. If it is less than 10.5%, the glass tends to undergo phase separation or the strain point decreases. Preferably it is 15% or more, further 15.5% or more, more preferably 16% or more.
 B23は必須ではないが、比重を小さくし、ガラスの溶解性を高くし、失透しにくくする成分である。22%超では歪点が低下する、耐薬品性が低下する、またはガラス溶解時の揮散が顕著になりガラスの不均質性が増加する。好ましくは12%以下であり、より好ましくは9%以下である。5%未満の場合、比重が増加し、ガラスの溶解性が低下し、また失透しやすくなるため、5%以上が望ましく、好ましくは6%以上、より好ましくは7%以上である。 B 2 O 3 is not essential, but is a component that reduces the specific gravity, increases the solubility of the glass, and makes it difficult to devitrify. If it exceeds 22%, the strain point is lowered, the chemical resistance is lowered, or the volatilization at the time of melting the glass becomes remarkable, so that the inhomogeneity of the glass is increased. Preferably it is 12% or less, More preferably, it is 9% or less. If it is less than 5%, the specific gravity increases, the solubility of the glass decreases, and devitrification easily occurs, so 5% or more is desirable, preferably 6% or more, more preferably 7% or more.
 MgOは必須ではないが、比重を小さくしガラスの溶解性を向上させる成分である。8%超ではガラスが分相しやすくなる、失透しやすくなる、または耐薬品性が低下する。好ましくは6%以下であり、より好ましくは5%以下である。MgOを含有する場合、1%以上含有させることが好ましい。特に溶解性を維持しながら比重を低下させるためには3%以上含有することが好ましい。 MgO is not essential, but is a component that reduces the specific gravity and improves the solubility of the glass. If it exceeds 8%, the glass tends to undergo phase separation, devitrification tends to occur, or chemical resistance decreases. Preferably it is 6% or less, More preferably, it is 5% or less. When it contains MgO, it is preferable to make it contain 1% or more. In particular, it is preferable to contain 3% or more in order to reduce the specific gravity while maintaining the solubility.
 CaOは必須ではないが、ガラスの溶解性を高め、失透しにくくするため14.5%まで含有することができる。14.5%超では比重が増加し、熱膨張係数を大きくなり、また、かえって失透しやすくなる。好ましくは9%以下さらには8%以下、より好ましくは7%以下である。CaOを含有する場合、2%以上含有させることが好ましい。より好ましくは3.5%以上である。 CaO is not essential, but can be contained up to 14.5% in order to increase the solubility of the glass and make it difficult to devitrify. If it exceeds 14.5%, the specific gravity increases, the coefficient of thermal expansion increases, and devitrification tends to occur. Preferably it is 9% or less, further 8% or less, more preferably 7% or less. When CaO is contained, it is preferable to contain 2% or more. More preferably, it is 3.5% or more.
 SrOはガラスの分相を抑制し、失透しにくくする成分である。24%超では比重が増加し、熱膨張係数が大きくなり、また、かえって失透しやすくなる。好ましくは12.5%以下さらには10.5%以下、より好ましくは8.5%以下である。清澄剤としての塩化物添加を考慮すると、潮解性の心配が無く、原料溶解時にガラスに残存し易いことから、SrCl2・6H2OもしくはBaCl2・2H2Oを使用することが好ましい。Clの添加量に自由度を持たせるため、ガラス成分としては、3%以上のSrOを含有することが好ましい。SrOが3%未満では Clの添加量に制約が発生するため好ましくない。好ましくは4%以上、より好ましくは4.5%以上である。 SrO is a component that suppresses the phase separation of glass and makes it difficult to devitrify. If it exceeds 24%, the specific gravity increases, the coefficient of thermal expansion increases, and devitrification tends to occur. Preferably it is 12.5% or less, further 10.5% or less, more preferably 8.5% or less. Considering the addition of chloride as a fining agent, there is no concern about deliquescence and it is easy to remain in the glass when the raw material is melted. Therefore, it is preferable to use SrCl 2 · 6H 2 O or BaCl 2 · 2H 2 O. In order to give a degree of freedom to the addition amount of Cl, it is preferable to contain 3% or more of SrO as the glass component. If SrO is less than 3%, the amount of Cl added is restricted, which is not preferable. Preferably it is 4% or more, More preferably, it is 4.5% or more.
 BaOはガラスの分相を抑制し、失透しにくくするため13.5%まで含有することができる。13.5%超では比重が増加し、また、熱膨張係数が大きくなる。好ましくは2%以下さらには1%以下、より好ましくは0.1%以下である。特にガラス基板の軽量化を重視する場合には実質的に含有しないことが好ましい。 BaO can be contained up to 13.5% in order to suppress phase separation of the glass and make it difficult to devitrify. If it exceeds 13.5%, the specific gravity increases and the thermal expansion coefficient becomes large. Preferably it is 2% or less, further 1% or less, more preferably 0.1% or less. In particular, when importance is attached to the weight reduction of the glass substrate, it is preferably not contained substantially.
 As23およびSb23は、不純物等として不可避的に混入するものを除き含有されないこと、すなわち、実質的に含有されないこと、が好ましい。なお、本発明の目的に反しない範囲で、溶解性向上等のために、ZrOその他の微量成分を総量で5質量%まで含有させることができる。 It is preferable that As 2 O 3 and Sb 2 O 3 are not contained except for those inevitably mixed as impurities or the like, that is, not substantially contained. Incidentally, within a range not contrary to the object of the present invention, because of such solubility enhancing, may contain ZrO 2 other trace ingredients up to 5% by weight in total.
 本発明の減圧脱泡方法によれば、例えば、上記した無アルカリガラスA~Cに比べ、SiO2およびAl23を多く含有する下記するような、難溶解性の無アルカリガラスD(下記酸化物換算の質量%表示)に対しても、最適な条件で減圧脱泡を実施することができ、泡や異物の発生を低減できるという効果が得られる。
 (無アルカリガラスD)
   SiO2:62質量%、
   Al23:20重量%、
   B23:0質量%、
   MgO:4.7質量%、
   CaO:4.4質量%、
   SrO:8.1質量%、
   ZrO:0.9質量%。
    (T2:1690℃)
According to the vacuum defoaming method of the present invention, for example, the hardly-soluble alkali-free glass D (described below) containing more SiO 2 and Al 2 O 3 than the alkali-free glasses A to C described above. Also for the oxide-based mass% display), it is possible to carry out vacuum degassing under optimum conditions, and the effect of reducing the generation of bubbles and foreign matters can be obtained.
(Non-alkali glass D)
SiO 2 : 62% by mass,
Al 2 O 3 : 20% by weight,
B 2 O 3 : 0% by mass,
MgO: 4.7% by mass,
CaO: 4.4% by mass,
SrO: 8.1% by mass,
ZrO 2 : 0.9% by mass.
(T 2 : 1690 ° C.)
 本発明の減圧脱泡方法において、清澄剤として、塩化系清澄剤以外のものを併用してもよい。この場合、併用可能な他の清澄剤としては、具体的には例えば、SO3、F、SnO2等が挙げられる。これら他の清澄剤は、無アルカリガラス中に2質量%以下、好ましくは1質量%以下、より好ましくは0.5質量%以下含有させることができる。 In the vacuum degassing method of the present invention, a clarifier other than the chlorinated clarifier may be used in combination. In this case, specific examples of other fining agents that can be used in combination include SO 3 , F, SnO 2, and the like. These other fining agents can be contained in the alkali-free glass in an amount of 2% by mass or less, preferably 1% by mass or less, more preferably 0.5% by mass or less.
 本発明の減圧脱泡方法では、[β-OH]、すなわち、溶融ガラスの水分量を調節することが必要となる場合もある。溶融ガラス中の水分量は、燃料を燃焼させる際に該燃料と混合させる気体の組成、すなわち、燃料と混合させる酸素と空気との割合を変えることで調節することができる。 In the vacuum degassing method of the present invention, it may be necessary to adjust [β-OH], that is, the moisture content of the molten glass. The amount of water in the molten glass can be adjusted by changing the composition of the gas mixed with the fuel when the fuel is burned, that is, the ratio of oxygen and air mixed with the fuel.
 本発明の減圧脱泡方法に用いる減圧脱泡装置の各構成要素の寸法は、必要に応じて適宜選択することができる。減圧脱泡槽の寸法は、減圧脱泡槽が白金製若しく白金合金製、または緻密質耐火物製であるかによらず、使用する減圧脱泡装置に応じて適宜選択することができる。図1に示す減圧脱泡槽12の場合、その寸法の具体例は以下の通りである。
水平方向における長さ:1~20m
内径:0.2~3m(断面円形)
 減圧脱泡槽12が白金製若しくは白金合金製である場合、肉厚は0.5~4mmであることが好ましい。
The dimension of each component of the vacuum degassing apparatus used in the vacuum degassing method of the present invention can be appropriately selected as necessary. The dimensions of the vacuum degassing tank can be appropriately selected according to the vacuum degassing apparatus to be used regardless of whether the vacuum degassing tank is made of platinum, platinum alloy, or dense refractory. In the case of the vacuum degassing tank 12 shown in FIG. 1, the specific example of the dimension is as follows.
Horizontal length: 1-20m
Inner diameter: 0.2-3m (circular cross section)
When the vacuum degassing tank 12 is made of platinum or a platinum alloy, the wall thickness is preferably 0.5 to 4 mm.
 減圧ハウジング11は、金属製、例えばステンレス製であり、減圧脱泡槽を収容可能な形状および寸法を有している。
 上昇管13および下降管14は、白金製若しくは白金合金製、または緻密質耐火物製であるかによらず、使用する減圧脱泡装置に応じて適宜選択することができる。例えば、上昇管13および下降管14の寸法は以下のように構成することができる。
   ・内径:0.05~0.8m
   ・長さ:0.2~6m
 上昇管13および下降管14が白金製若しくは白金合金製である場合、肉厚は0.4~5mmであることが好ましい。
 本発明のガラス製品の製造方法は、ガラス原料を溶融して溶融ガラスを製造するガラス溶融工程と、前記した溶融ガラスの減圧脱泡方法による減圧脱泡工程と、減圧脱泡された溶融ガラスを成形するガラス製品成形工程との各工程をこの順に有する。
 前記したガラス溶融工程は、例えば従来からの公知なガラス溶融方法を採用することができ、例えばガラスの種類に応じて配合、混合されたガラス原料を約1400℃以上に加熱することによって所定のガラス原料を溶融する工程である。用いられるガラス原料も製造する無アルカリガラスに適合させる原材料であれば特に限定されず、例えば硅砂、ホウ酸、石灰石、酸化アルミニウム、炭酸ストロンチウム、酸化マグネシウム、その他公知なガラス成分となる原料を使用し、目的とする無アルカリガラスの製品の組成となるように調合したガラス原料を用いることができる。前記した、本発明において採用される塩化物系の清澄剤は、かかるガラス原料に対し所定量添加される。また、ガラス製品成形工程も、従来公知なガラス製品の成形方法を採用することができる。ガラス製品としてガラス板を製造する場合には、例えばフロート板ガラス成形方法、ロールアウト成形方法、フュージョン成形方法等の各種成形方法を利用することができる。
The decompression housing 11 is made of metal, for example, stainless steel, and has a shape and size that can accommodate a decompression deaeration tank.
Regardless of whether the riser pipe 13 and the downfall pipe 14 are made of platinum, a platinum alloy, or a dense refractory, they can be appropriately selected according to the vacuum degassing apparatus to be used. For example, the dimensions of the ascending pipe 13 and the descending pipe 14 can be configured as follows.
・ Inner diameter: 0.05 to 0.8m
・ Length: 0.2-6m
When the ascending pipe 13 and the descending pipe 14 are made of platinum or a platinum alloy, the thickness is preferably 0.4 to 5 mm.
The method for producing a glass product of the present invention comprises a glass melting step in which a glass raw material is melted to produce a molten glass, a vacuum degassing step by the vacuum degassing method for the molten glass, and a vacuum glass defoamed molten glass. It has each process with the glass product molding process to form in this order.
The glass melting step described above can employ, for example, a conventionally known glass melting method. For example, a predetermined glass is prepared by heating a glass material mixed and mixed according to the type of glass to about 1400 ° C. or higher. This is a process of melting the raw material. The glass raw material used is not particularly limited as long as it is a raw material adapted to the alkali-free glass to be produced. For example, cinnabar, boric acid, limestone, aluminum oxide, strontium carbonate, magnesium oxide, and other raw materials that become known glass components are used. The glass raw material prepared so that it may become the composition of the target alkali-free glass product can be used. A predetermined amount of the above-described chloride fining agent employed in the present invention is added to the glass raw material. Moreover, the glass product shaping | molding process can also employ | adopt the conventionally well-known molding method of glass products. When manufacturing a glass plate as a glass product, for example, various forming methods such as a float plate glass forming method, a roll-out forming method, and a fusion forming method can be used.
 以下、実施例に基づいて本発明をより具体的に説明する。但し、本発明はこれに限定されるものではない。
(実施例1)
 本実施例では、[β-OH]が0.29mm-1であることが予めわかっている無アルカリガラスAを使用する。塩化物清澄剤としてNH4Clを添加する。なお、NH4Clは、ガラス化後の合計質量に対する塩素の質量%が0.20質量%になる量、添加する。
 上記式(1)から、泡成長開始圧Pbgは270mmHgとなる。
 ここで得られたPbgと上記式(3)から、リボイル圧Prbは165mmHgとなる。
Hereinafter, based on an Example, this invention is demonstrated more concretely. However, the present invention is not limited to this.
Example 1
In this example, alkali-free glass A, which is known in advance that [β-OH] is 0.29 mm −1 , is used. NH 4 Cl is added as a chloride clarifier. NH 4 Cl is added in such an amount that the mass% of chlorine with respect to the total mass after vitrification becomes 0.20 mass%.
From the above formula (1), the bubble growth starting pressure P bg is 270 mmHg.
From the P bg obtained here and the above equation (3), the reboil pressure P rb is 165 mmHg.
 幅45mm、奥行き7mm、厚さ1mmのPt90%/Rh10%の白金合金を、幅50mm×奥行10mm×高さ50mmの石英ガラス製容器に入れ、その上に、塊状の無アルカリガラスAを50gを置く。その後、石英ガラス製容器を電気炉に入れて、1400℃まで加熱して無アルカリガラスAを溶融させる。
 次に、電気炉の雰囲気圧力を所定の圧力まで減圧して、溶融ガラス中の気泡量を観察する。なお、溶融ガラス中の気泡量は、電気炉の側面に設けられた覗き窓から目視により確認する。
Pt 90% / Rh 10% platinum alloy with 45mm width, 7mm depth and 1mm thickness is placed in a quartz glass container of width 50mm x depth 10mm x height 50mm. Put. Thereafter, the quartz glass container is placed in an electric furnace and heated to 1400 ° C. to melt the alkali-free glass A.
Next, the atmospheric pressure of the electric furnace is reduced to a predetermined pressure, and the amount of bubbles in the molten glass is observed. The amount of bubbles in the molten glass is confirmed by visual observation from a viewing window provided on the side surface of the electric furnace.
 電気炉の雰囲気圧力を、リボイル圧Prbである165mmHg以上、かつ、泡成長開始圧Pbgである270mmHg以下に保持すると、溶融ガラス中に残存する気泡量が非常に少ないことが確認される。一方、電気炉の雰囲気圧力をリボイル圧Prbである165mmHg未満に保持すると、溶融ガラス中の白金板から発生する気泡量に顕著な増加が認められるため、溶融ガラス中に残存する気泡量が非常に多いことが確認される。 Atmospheric pressure in an electric furnace, or 165mmHg is reboiled pressure P rb, and, when held to 270mmHg below a bubble growth starting pressure P bg, it is confirmed the amount of bubbles remaining in the molten glass is very low. On the other hand, when holding the atmospheric pressure in an electric furnace to less than 165mmHg is reboiled pressure P rb, for significant increase in the amount of bubbles generated from a platinum plate in the molten glass is observed, the amount of bubbles remaining in the molten glass are very It is confirmed that there are many.
(実施例2)
 本実施例では、無アルカリガラスAに、ガラス化後の合計質量に対する塩素の質量%が0.07質量%になる量でNH4Clが添加されていること以外は実施例1と同様に実施する。
 上記式(2)から、泡成長開始圧Pbgは127mmHgとなる。
 ここで得られたPbgと上記式(3)から、リボイル圧Prbは46mmHgとなる。
 電気炉の雰囲気圧力を、リボイル圧Prbである46mmHg以上、かつ、泡成長開始圧Pbgである127mmHg以下に保持すると、溶融ガラス中に残存する気泡量が非常に少ないことが確認される。一方、電気炉の雰囲気圧力をリボイル圧Prbである46mmHg未満に保持すると、溶融ガラス中の白金板から発生する気泡量に顕著な増加が認められるため、溶融ガラス中に残存する気泡量が非常に多いことが確認される。
(Example 2)
In this example, the same procedure as in Example 1 was performed except that NH 4 Cl was added to the alkali-free glass A in such an amount that the mass% of chlorine with respect to the total mass after vitrification was 0.07 mass%. To do.
From the above formula (2), the bubble growth starting pressure P bg is 127 mmHg.
From P bg obtained here and the above equation (3), the reboil pressure P rb is 46 mmHg.
Atmospheric pressure in an electric furnace, or 46mmHg is reboiled pressure P rb, and, when held to 127mmHg below a bubble growth starting pressure P bg, it is confirmed the amount of bubbles remaining in the molten glass is very low. On the other hand, when holding the atmospheric pressure in an electric furnace to below 46mmHg is reboiled pressure P rb, for significant increase in the amount of bubbles generated from a platinum plate in the molten glass is observed, the amount of bubbles remaining in the molten glass are very It is confirmed that there are many.
(実施例3)
 本実施例では、[β-OH]が0.29mm-1であることが予めわかっている無アルカリガラスBを使用する。塩化物清澄剤としてNH4Clを添加する。なお、NH4Clは、ガラス化後の合計質量に対する塩素の質量%が0.20質量%になる量、添加する。
 上記式(1)から、泡成長開始圧Pbgは248mmHgとなる。
 ここで得られたPbgと上記式(3)から、リボイル圧Prbは147mmHgとなる。
(Example 3)
In this example, alkali-free glass B, which is known in advance that [β-OH] is 0.29 mm −1 , is used. NH 4 Cl is added as a chloride clarifier. NH 4 Cl is added in such an amount that the mass% of chlorine with respect to the total mass after vitrification becomes 0.20 mass%.
From the above formula (1), the bubble growth starting pressure P bg is 248 mmHg.
From the P bg obtained here and the above equation (3), the reboil pressure P rb is 147 mmHg.
 幅45mm、奥行き7mm、厚さ1mmのPt90%/Rh10%の白金合金を、幅50mm×奥行10mm×高さ50mmの石英ガラス製容器に入れ、その上に、塊状の無アルカリガラスBを50gを置く。その後、石英ガラス製容器を電気炉に入れて、1400℃まで加熱して無アルカリガラスBを溶融させる。
 次に、電気炉の雰囲気圧力を所定の圧力まで減圧して、溶融ガラス中の気泡量を観察する。なお、溶融ガラス中の気泡量は、電気炉の側面に設けられた覗き窓から目視により確認する。
Put platinum alloy of Pt90% / Rh10% of width 45mm, depth 7mm, thickness 1mm into a quartz glass container of width 50mm x depth 10mm x height 50mm. On top of that, 50g of block alkali-free glass B Put. Thereafter, the quartz glass container is placed in an electric furnace and heated to 1400 ° C. to melt the alkali-free glass B.
Next, the atmospheric pressure of the electric furnace is reduced to a predetermined pressure, and the amount of bubbles in the molten glass is observed. The amount of bubbles in the molten glass is confirmed by visual observation from a viewing window provided on the side surface of the electric furnace.
 電気炉の雰囲気圧力を、リボイル圧Prbである147mmHg以上、かつ、泡成長開始圧Pbgである248mmHg以下に保持すると、溶融ガラス中に残存する気泡量が非常に少ないことが確認される。一方、電気炉の雰囲気圧力をリボイル圧Prbである147mmHg未満に保持すると、溶融ガラス中の白金板から発生する気泡量に顕著な増加が認められるため、溶融ガラス中に残存する気泡量が非常に多いことが確認される。 Atmospheric pressure in an electric furnace, or 147mmHg is reboiled pressure P rb, and, when held to 248mmHg below a bubble growth starting pressure P bg, it is confirmed the amount of bubbles remaining in the molten glass is very low. On the other hand, when holding the atmospheric pressure in an electric furnace to less than 147mmHg is reboiled pressure P rb, for significant increase in the amount of bubbles generated from a platinum plate in the molten glass is observed, the amount of bubbles remaining in the molten glass are very It is confirmed that there are many.
(実施例4)
 本実施例では、無アルカリガラスBに、ガラス化後の合計質量に対する塩素の質量%が0.07質量%になる量でNH4Clが添加されていること以外は実施例3と同様に実施する。
 上記式(2)から、泡成長開始圧Pbgは125mmHgとなる。
 ここで得られたPbgと上記式(3)から、リボイル圧Prbは45mmHgとなる。
 電気炉の雰囲気圧力を、リボイル圧Prbである45mmHg以上、かつ、泡成長開始圧Pbgである125mmHg以下に保持すると、溶融ガラス中に残存する気泡量が非常に少ないことが確認される。一方、電気炉の雰囲気圧力をリボイル圧Prbである45mmHg未満に保持すると、溶融ガラス中の白金板から発生する気泡量に顕著な増加が認められるため、溶融ガラス中に残存する気泡量が非常に多いことが確認される。
Example 4
In this example, the same procedure as in Example 3 was performed except that NH 4 Cl was added to the alkali-free glass B in such an amount that the mass% of chlorine with respect to the total mass after vitrification was 0.07 mass%. To do.
From the above formula (2), the bubble growth starting pressure P bg is 125 mmHg.
From P bg obtained here and the above equation (3), the reboil pressure P rb is 45 mmHg.
Atmospheric pressure in an electric furnace, or 45mmHg is reboiled pressure P rb, and, when held to 125mmHg below a bubble growth starting pressure P bg, it is confirmed the amount of bubbles remaining in the molten glass is very low. On the other hand, when holding the atmospheric pressure in an electric furnace to below 45mmHg is reboiled pressure P rb, for significant increase in the amount of bubbles generated from a platinum plate in the molten glass is observed, the amount of bubbles remaining in the molten glass are very It is confirmed that there are many.
(実施例5)
 本実施例では、[β-OH]が0.29mm-1であることが予めわかっている無アルカリガラスCを使用する。塩化物清澄剤としてNH4Clを添加する。なお、NH4Clは、ガラス化後の合計質量に対する塩素の質量%が0.20質量%になる量、添加する。
 上記式(1)から、泡成長開始圧Pbgは237mmHgとなる。
 ここで得られたPbgと上記式(3)から、リボイル圧Prbは138mmHgとなる。
(Example 5)
In this example, alkali-free glass C, which is known in advance that [β-OH] is 0.29 mm −1 , is used. NH 4 Cl is added as a chloride clarifier. NH 4 Cl is added in such an amount that the mass% of chlorine with respect to the total mass after vitrification becomes 0.20 mass%.
From the above formula (1), the bubble growth starting pressure P bg is 237 mmHg.
From The obtained P bg and the formula (3), reboiled pressure P rb becomes 138MmHg.
 幅45mm、奥行き7mm、厚さ1mmのPt90%/Rh10%の白金合金を、幅50mm×奥行10mm×高さ50mmの石英ガラス製容器に入れ、その上に、塊状の無アルカリガラスCを50gを置く。その後、石英ガラス製容器を電気炉に入れて、1400℃まで加熱して無アルカリガラスCを溶融させる。
 次に、電気炉の雰囲気圧力を所定の圧力まで減圧して、溶融ガラス中の気泡量を観察する。なお、溶融ガラス中の気泡量は、電気炉の側面に設けられた覗き窓から目視により確認する。
Put platinum alloy of Pt90% / Rh10% of width 45mm, depth 7mm, thickness 1mm in a quartz glass container of width 50mm x depth 10mm x height 50mm. On top of that, 50g of block alkali-free glass C Put. Thereafter, the quartz glass container is placed in an electric furnace and heated to 1400 ° C. to melt the alkali-free glass C.
Next, the atmospheric pressure of the electric furnace is reduced to a predetermined pressure, and the amount of bubbles in the molten glass is observed. The amount of bubbles in the molten glass is confirmed by visual observation from a viewing window provided on the side surface of the electric furnace.
 電気炉の雰囲気圧力を、リボイル圧Prbである138mmHg以上、かつ、泡成長開始圧Pbgである237mmHg以下に保持すると、溶融ガラス中に残存する気泡量が非常に少ないことが確認される。一方、電気炉の雰囲気圧力をリボイル圧Prbである138mmHg未満に保持すると、溶融ガラス中の白金板から発生する気泡量に顕著な増加が認められるため、溶融ガラス中に残存する気泡量が非常に多いことが確認される。 Atmospheric pressure in an electric furnace, or 138mmHg is reboiled pressure P rb, and, when held to 237mmHg below a bubble growth starting pressure P bg, it is confirmed the amount of bubbles remaining in the molten glass is very low. On the other hand, when holding the atmospheric pressure in an electric furnace to less than 138mmHg is reboiled pressure P rb, for significant increase in the amount of bubbles generated from a platinum plate in the molten glass is observed, the amount of bubbles remaining in the molten glass are very It is confirmed that there are many.
(実施例6)
 本実施例では、無アルカリガラスCに、ガラス化後の合計質量に対する塩素の質量%が0.07質量%になる量でNH4Clが添加されていること以外は実施例5と同様に実施する。
 上記式(2)から、泡成長開始圧Pbgは123mmHgとなる。
 ここで得られたPbgと上記式(3)から、リボイル圧Prbは43mmHgとなる。
 電気炉の雰囲気圧力を、リボイル圧Prbである43mmHg以上、かつ、泡成長開始圧Pbgである123mmHg以下に保持すると、溶融ガラス中に残存する気泡量が非常に少ないことが確認される。一方、電気炉の雰囲気圧力をリボイル圧Prbである43mmHg未満に保持すると、溶融ガラス中の白金板から発生する気泡量に顕著な増加が認められるため、溶融ガラス中に残存する気泡量が非常に多いことが確認される。
(Example 6)
In this example, the same procedure as in Example 5 was performed except that NH 4 Cl was added to the alkali-free glass C in such an amount that the mass% of chlorine with respect to the total mass after vitrification was 0.07 mass%. To do.
From the above formula (2), the bubble growth starting pressure P bg is 123 mmHg.
From P bg obtained here and the above equation (3), the reboil pressure P rb is 43 mmHg.
Atmospheric pressure in an electric furnace, or 43mmHg is reboiled pressure P rb, and, when held to 123mmHg below a bubble growth starting pressure P bg, it is confirmed the amount of bubbles remaining in the molten glass is very low. On the other hand, when holding the atmospheric pressure in an electric furnace to below 43mmHg is reboiled pressure P rb, for significant increase in the amount of bubbles generated from a platinum plate in the molten glass is observed, the amount of bubbles remaining in the molten glass are very It is confirmed that there are many.
(実施例7)
 本実施例では、T2が1690℃、[β-OH]が0.29mm-1であることが予めわかっている無アルカリガラスDを使用する。塩化物清澄剤としてNH4Clを添加する。なお、NH4Clは、ガラス化後の合計質量に対する塩素の質量%が0.20質量%になる量、添加する。
 上記式(1)から、泡成長開始圧Pbgは285mmHgとなる。
 ここで得られたPbgと上記式(3)から、リボイル圧Prbは178mmHgとなる。
(Example 7)
In this example, an alkali-free glass D that is known in advance that T 2 is 1690 ° C. and [β-OH] is 0.29 mm −1 is used. NH 4 Cl is added as a chloride clarifier. NH 4 Cl is added in such an amount that the mass% of chlorine with respect to the total mass after vitrification becomes 0.20 mass%.
From the above formula (1), the bubble growth starting pressure P bg is 285 mmHg.
From the P bg obtained here and the above equation (3), the reboil pressure P rb is 178 mmHg.
 幅45mm、奥行き7mm、厚さ1mmのPt90%/Rh10%の白金合金を、幅50mm×奥行10mm×高さ50mmの石英ガラス製容器に入れ、その上に、塊状の無アルカリガラスDを50gを置く。その後、石英ガラス製容器を電気炉に入れて、1475℃まで加熱して無アルカリガラスDを溶融させる。
 次に、電気炉の雰囲気圧力を所定の圧力まで減圧して、溶融ガラス中の気泡量を観察する。なお、溶融ガラス中の気泡量は、電気炉の側面に設けられた覗き窓から目視により確認する。
Pt 90% / Rh 10% platinum alloy of width 45mm, depth 7mm, thickness 1mm is put in a quartz glass container of width 50mm x depth 10mm x height 50mm. Put. Thereafter, the quartz glass container is put in an electric furnace and heated to 1475 ° C. to melt the alkali-free glass D.
Next, the atmospheric pressure of the electric furnace is reduced to a predetermined pressure, and the amount of bubbles in the molten glass is observed. The amount of bubbles in the molten glass is confirmed by visual observation from a viewing window provided on the side surface of the electric furnace.
 電気炉の雰囲気圧力を、リボイル圧Prbである178mmHg以上、かつ、泡成長開始圧Pbgである285mmHg以下に保持すると、溶融ガラス中に残存する気泡量が非常に少ないことが確認される。一方、電気炉の雰囲気圧力をリボイル圧Prbである178mmHg未満に保持すると、溶融ガラス中の白金板から発生する気泡量に顕著な増加が認められるため、溶融ガラス中に残存する気泡量が非常に多いことが確認される。 Atmospheric pressure in an electric furnace, or 178mmHg is reboiled pressure P rb, and, when held to 285mmHg below a bubble growth starting pressure P bg, it is confirmed the amount of bubbles remaining in the molten glass is very low. On the other hand, when holding the atmospheric pressure in an electric furnace to less than 178mmHg is reboiled pressure P rb, for significant increase in the amount of bubbles generated from a platinum plate in the molten glass is observed, the amount of bubbles remaining in the molten glass are very It is confirmed that there are many.
(実施例8)
 本実施例では、無アルカリガラスDに、ガラス化後の合計質量に対する塩素の質量%が0.07質量%になる量でNH4Clが添加されていること以外は実施例3と同様に実施する。
 上記式(2)から、泡成長開始圧Pbgは129mmHgとなる。
 ここで得られたPbgと上記式(3)から、リボイル圧Prbは48mmHgとなる。
 電気炉の雰囲気圧力を、リボイル圧Prbである48mmHg以上、かつ、泡成長開始圧Pbgである129mmHg以下に保持すると、溶融ガラス中に残存する気泡量が非常に少ないことが確認される。一方、電気炉の雰囲気圧力をリボイル圧Prbである48mmHg未満に保持すると、溶融ガラス中の白金板から発生する気泡量に顕著な増加が認められるため、溶融ガラス中に残存する気泡量が非常に多いことが確認される。
(Example 8)
In this example, the same procedure as in Example 3 was performed except that NH 4 Cl was added to the alkali-free glass D in such an amount that the mass% of chlorine with respect to the total mass after vitrification was 0.07 mass%. To do.
From the above formula (2), the bubble growth starting pressure P bg is 129 mmHg.
From the P bg obtained here and the above formula (3), the reboil pressure P rb is 48 mmHg.
Atmospheric pressure in an electric furnace, or 48mmHg is reboiled pressure P rb, and, when held to 129mmHg below a bubble growth starting pressure P bg, it is confirmed the amount of bubbles remaining in the molten glass is very low. On the other hand, when holding the atmospheric pressure in an electric furnace to below 48mmHg is reboiled pressure P rb, for significant increase in the amount of bubbles generated from a platinum plate in the molten glass is observed, the amount of bubbles remaining in the molten glass are very It is confirmed that there are many.
(実施例9)
 ここでは、前述した無アルカリガラスA、B、Cについて、式(1)と式(2)の有効性を表す実験結果を、表1~5及び図7~8に示す。実験では、各ガラス組成に対して、β-OH値(mm-1)および塩素の含有量(質量%)を変えて、泡成長開始圧Pbgを求めた。各ガラスは、石英製のセルに溶融ガラス約50gを入れ、観察用の窓を有する電気炉にて所定の温度で溶解する。ガラスが溶解した後、一定速度で下所望の圧力まで減圧し、その後、一定の圧力下で泡径の変化をCCDカメラで撮影し、録画する。実験終了後、泡径の変化を解析し、泡成長開始圧力Pbgを求めた。
Example 9
Here, Tables 1 to 5 and FIGS. 7 to 8 show experimental results showing the effectiveness of the formulas (1) and (2) for the alkali-free glasses A, B, and C described above. In the experiment, the bubble growth initiation pressure P bg was obtained by changing the β-OH value (mm −1 ) and the chlorine content (mass%) for each glass composition. Each glass is melted at a predetermined temperature in an electric furnace having an observation window by putting about 50 g of molten glass in a quartz cell. After the glass is melted, the pressure is reduced to a desired pressure at a constant speed, and then the change of the bubble diameter is photographed with a CCD camera and recorded under a constant pressure. After the experiment was completed, the change in the bubble diameter was analyzed to determine the bubble growth start pressure P bg .
 表1~表5には、泡観察時のガラス温度、β-OH値(mm-1)、塩素の含有量(質量%)、泡成長開始圧力Pbgの実験値(mmHg)、泡成長開始圧力Pbgの式(1)または式(2)による計算値(mmHg)を記載した。表1~表3には、無アルカリガラス組成A、B、およびCについて、それぞれ塩素の含有量(質量%)が0.12質量%以上の122の例についてのそれぞれの結果を示す。また、表4~5には、無アルカリガラス組成A、B、Cで、塩素の含有量(質量%)が0.12質量%未満の41ケースの結果を示す。 Tables 1 to 5 show the glass temperature at the time of bubble observation, β-OH value (mm −1 ), chlorine content (mass%), experimental value of bubble growth starting pressure P bg (mmHg), and bubble growth start. The calculated value (mmHg) of the pressure P bg according to the formula (1) or the formula (2) is described. Tables 1 to 3 show the respective results for 122 examples of the alkali-free glass compositions A, B, and C having a chlorine content (% by mass) of 0.12% by mass or more. Tables 4 to 5 show the results of 41 cases with non-alkali glass compositions A, B, and C and a chlorine content (mass%) of less than 0.12 mass%.
 図7には、無アルカリガラス組成A、B、Cについて、塩素の含有量(質量%)が0.12質量%以上の場合で、泡成長開始圧力Pbgの実験値(mmHg)と泡成長開始圧力Pbgの計算値(mmHg)の122点の相関関係を示す。図8には、無アルカリガラス組成A、B、Cについて、塩素の含有量(質量%)が0.12質量%未満の場合で、泡成長開始圧力Pbgの実験値(mmHg)と泡成長開始圧力Pbgの計算値(mmHg)の41点の相関関係を示す。 FIG. 7 shows the experimental value (mmHg) of the bubble growth starting pressure P bg and the bubble growth when the chlorine content (% by mass) is 0.12% by mass or more for the alkali-free glass compositions A, B, and C. The correlation of 122 points | pieces of the calculated value (mmHg) of the starting pressure Pbg is shown. FIG. 8 shows the experimental value (mmHg) of the bubble growth starting pressure P bg and the bubble growth when the chlorine content (% by mass) is less than 0.12% by mass for the alkali-free glass compositions A, B, and C. The correlation of 41 points | pieces of the calculated value (mmHg) of the starting pressure Pbg is shown.
 図7の結果は、回帰式の傾きが0.92、相関係数の二乗が0.82となり、式(1)が実験値をよく推定できていることを示している。図8の結果は、回帰式の傾きが0.97、相関係数の二乗が0.89となり、式(2)が実験値をよく推定できていることを示している。これらより、式(1)と式(2)が泡成長開始圧力Pbgを推定する上で有効であることがわかる。図7および図8のグラフ上に無アルカリガラスDについての実施例のデータをプロットしても同様の結果となる。なお、表1~5には泡を観察した際のガラス温度を示したが、本発明の式(1)と式(2)には泡が発生する際のガラス温度については規定されていない。これは、本発明に係る清澄は、主に水が絡んだ清澄であり、水は溶解度の温度依存性が小さいためであると考えられる。 The result of FIG. 7 shows that the slope of the regression equation is 0.92 and the square of the correlation coefficient is 0.82, and Equation (1) can estimate the experimental value well. The result of FIG. 8 shows that the slope of the regression equation is 0.97 and the square of the correlation coefficient is 0.89, and Equation (2) is able to estimate the experimental value well. From these, it can be seen that the equations (1) and (2) are effective in estimating the bubble growth starting pressure P bg . Plotting the data of the example for the alkali-free glass D on the graphs of FIGS. 7 and 8 gives the same result. Tables 1 to 5 show glass temperatures when bubbles are observed, but the glass temperature at which bubbles are generated is not defined in the formulas (1) and (2) of the present invention. This is considered to be because the clarification according to the present invention is a clarification mainly involving water, and water has a small temperature dependency of solubility.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明の溶融ガラスの減圧脱泡方法によれば、減圧脱泡槽の圧力を泡成長開始圧Pbg以下、かつリボイル圧Prb(mmHg)以上に保持することにより、減圧脱泡槽内で溶融ガラスに含まれる気泡を十分成長させることができ、溶融ガラス中の気泡を効率よく除去できる一方で、減圧脱泡槽を流れる溶融ガラスでリボイルが発生することが防止され、その結果、減圧脱泡処理後の溶融ガラスに残留する気泡が極めて低減され、極めて気泡の少ない高機能高品質のガラスを製造することができる。このように、泡品質にきわめて優れた溶融ガラスおよびガラス製品を得ることができ、特にFPD用の無アルカリガラス基板を製造することができ、有用である。
 なお、2009年12月25日に出願された日本特許出願2009-294230号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
According to the vacuum degassing method for molten glass of the present invention, the pressure in the vacuum degassing tank is maintained at a bubble growth starting pressure P bg or lower and a reboyl pressure P rb (mmHg) or higher. Bubbles contained in the molten glass can be sufficiently grown, and the bubbles in the molten glass can be efficiently removed, while reboiling is prevented from occurring in the molten glass flowing through the vacuum degassing tank. Bubbles remaining in the molten glass after the foam treatment are extremely reduced, and a high-performance and high-quality glass with extremely few bubbles can be produced. Thus, it is possible to obtain molten glass and glass products that are extremely excellent in foam quality, and in particular, it is possible to produce an alkali-free glass substrate for FPD, which is useful.
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2009-294230 filed on Dec. 25, 2009 are incorporated herein as the disclosure of the present invention. .
  1:減圧脱泡装置
 11:減圧ハウジング
 12:減圧脱泡槽
 13:上昇管
 14:下降管
 15:断熱材
 16:吸引開口部
 20:溶解槽 
DESCRIPTION OF SYMBOLS 1: Depressurization degassing apparatus 11: Decompression housing 12: Depressurization degassing tank 13: Ascending pipe 14: Downcomer pipe 15: Heat insulating material 16: Suction opening 20: Dissolution tank

Claims (7)

  1.  内部が減圧状態に保持された減圧脱泡槽中に溶融ガラスを流すことにより、溶融ガラスを減圧脱泡する方法であって、
     溶融ガラスが、無アルカリガラスであり、
     減圧脱泡の実施時における減圧脱泡槽内の圧力を、下記式(1)または式(2)で表される溶融ガラスの泡成長開始圧Pbg(mmHg)以下、かつ下記式(3)で表される溶融ガラスのリボイル圧Prb(mmHg)以上に保持することを特徴とする溶融ガラスの減圧脱泡方法。
     Pbg=(2.6082×T2-3538.2)×[β-OH]+(-1.2102×T2+2612.2)×[Cl]-80.3 ………(1)
     Pbg=(-0.2462×T2+1121.7)×[β-OH]+(1.9714×T2-1730.6)×[Cl]-187.3 ………(2)
     Prb=0.8325×Pbg-59.5 ………(3)
    (式中、T2は溶融ガラスの粘度が102dPa・sとなる温度(℃)を示し、[β-OH]は無アルカリガラスのβ-OH値(mm-1)を示し、[Cl]は無アルカリガラス中の塩素の含有量(質量%)を示す。[Cl]が0.12質量%以上の場合、Pbgは式(1)で表わされ、[Cl]が0.12質量%未満の場合、Pbgは式(2)で表わされる。)
    A method of degassing molten glass by flowing molten glass into a vacuum degassing tank whose inside is maintained in a reduced pressure state,
    The molten glass is alkali-free glass,
    The pressure in the vacuum degassing tank at the time of carrying out the vacuum defoaming is equal to or lower than the bubble growth starting pressure P bg (mmHg) of the molten glass represented by the following formula (1) or formula (2), and the following formula (3) A reduced pressure defoaming method for molten glass, characterized in that the molten glass is maintained at a reboiling pressure P rb (mmHg) or higher.
    P bg = (2.6082 × T 2 −3538.2) × [β-OH] + (− 1.2102 × T 2 +2612.2) × [Cl] −80.3 (1)
    P bg = (− 0.2462 × T 2 +111.7) × [β-OH] + (1.9714 × T 2 −1730.6) × [Cl] −187.3 (2)
    P rb = 0.8325 × P bg -59.5 (3)
    (Wherein T 2 represents the temperature (° C.) at which the viscosity of the molten glass is 10 2 dPa · s, [β-OH] represents the β-OH value (mm −1 ) of the alkali-free glass, and [Cl ] Represents the content (mass%) of chlorine in the alkali-free glass.When [Cl] is 0.12 mass% or more, P bg is represented by the formula (1), and [Cl] is 0.12 In the case of less than% by mass, P bg is represented by the formula (2).)
  2.  前記[β-OH]が、0.15~0.6mm-1である請求項1に記載の溶融ガラスの減圧脱泡方法。 The method for degassing a molten glass according to claim 1 , wherein the [β-OH] is 0.15 to 0.6 mm -1 .
  3.  前記[Cl]が、0.03~0.3質量%である請求項1または2に記載の溶融ガラスの減圧脱泡方法。 The method for degassing a molten glass according to claim 1 or 2, wherein the [Cl] is 0.03 to 0.3 mass%.
  4.  前記T2が、1500~1750℃である請求項1~3のいずれか1項に記載の溶融ガラスの減圧脱泡方法。 The method for degassing a molten glass according to any one of claims 1 to 3, wherein the T 2 is 1500 to 1750 ° C.
  5.  前記無アルカリガラスは、下記酸化物換算の質量%表示で以下の成分を含有する請求項1~4のいずれか1項に記載の溶融ガラスの減圧脱泡方法。
       SiO:50~66質量%、
       Al:10.5~24質量%、
       B:0~12質量%、
       MgO:0~8質量%、
       CaO:0~14.5質量%、
       SrO:0~24質量%、
       BaO:0~13.5質量%、
       MgO+CaO+SrO+BaO:9~29.5質量%。
    The method for degassing a molten glass according to any one of claims 1 to 4, wherein the alkali-free glass contains the following components in terms of mass% in terms of the following oxide.
    SiO 2 : 50 to 66% by mass,
    Al 2 O 3 : 10.5 to 24% by mass,
    B 2 O 3 : 0 to 12% by mass,
    MgO: 0 to 8% by mass,
    CaO: 0 to 14.5% by mass,
    SrO: 0 to 24% by mass,
    BaO: 0 to 13.5% by mass,
    MgO + CaO + SrO + BaO: 9 to 29.5% by mass.
  6.  前記無アルカリガラスは、下記酸化物換算の質量%表示で以下の成分を含有する請求項1~4のいずれか1項に記載の溶融ガラスの減圧脱泡方法。
       SiO2 :58~66質量%、
       Al23 :15~22質量%、
       B23 :0~12質量%、
       MgO:0~8質量%、
       CaO:0~9質量%、
       SrO:3~12.5質量%、
       BaO:0~2質量%、
       MgO+CaO+SrO+BaO :9~18質量%。
    The method for degassing a molten glass according to any one of claims 1 to 4, wherein the alkali-free glass contains the following components in terms of mass% in terms of the following oxide.
    SiO 2 : 58 to 66% by mass,
    Al 2 O 3 : 15-22% by mass,
    B 2 O 3 : 0 to 12% by mass,
    MgO: 0 to 8% by mass,
    CaO: 0 to 9% by mass,
    SrO: 3 to 12.5% by mass,
    BaO: 0 to 2% by mass,
    MgO + CaO + SrO + BaO: 9 to 18% by mass.
  7.  ガラス原料を溶融して溶融ガラスを製造するガラス溶融工程と、請求項1~6のいずれか1項に記載の溶融ガラスの減圧脱泡方法による減圧脱泡工程と、減圧脱泡された溶融ガラスを成形するガラス製品成形工程とを備え、これらの工程をこの順に有するガラス製品の製造方法。 A glass melting step for producing a molten glass by melting a glass raw material, a vacuum degassing step by the vacuum degassing method for molten glass according to any one of claims 1 to 6, and a vacuum glass defoamed molten glass A glass product forming step for forming a glass product, and a glass product manufacturing method having these steps in this order.
PCT/JP2010/073197 2009-12-25 2010-12-22 Method for vacuum-degassing molten glass and process for producing glass product WO2011078258A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011547608A JPWO2011078258A1 (en) 2009-12-25 2010-12-22 Vacuum degassing method for molten glass and glass product manufacturing method
CN2010800562282A CN102666408A (en) 2009-12-25 2010-12-22 Method for vacuum-degassing molten glass and process for producing glass product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-294230 2009-12-25
JP2009294230 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011078258A1 true WO2011078258A1 (en) 2011-06-30

Family

ID=44195785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073197 WO2011078258A1 (en) 2009-12-25 2010-12-22 Method for vacuum-degassing molten glass and process for producing glass product

Country Status (5)

Country Link
JP (1) JPWO2011078258A1 (en)
KR (1) KR20120115209A (en)
CN (1) CN102666408A (en)
TW (1) TW201130760A (en)
WO (1) WO2011078258A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013032289A2 (en) * 2011-09-02 2013-03-07 주식회사 엘지화학 Alkali-free glass and method for manufacturing same
EP2698354A1 (en) * 2011-04-12 2014-02-19 Asahi Glass Company, Limited Method for vacuum-degassing of molten glass, device for vacuum-degassing of molten glass, method for producing molten glass, device for producing molten glass, method for producing article made of glass, and device for producing article made of glass
CN103717543A (en) * 2011-09-02 2014-04-09 Lg化学株式会社 Alkali-free glass and method for manufacturing same
WO2014129424A1 (en) * 2013-02-19 2014-08-28 旭硝子株式会社 Alkali-free glass and method for producing same
US8962502B2 (en) 2011-09-02 2015-02-24 Lg Chem, Ltd. Alkali-free glass and preparation thereof
KR102141856B1 (en) * 2019-03-19 2020-08-07 에이지씨 가부시키가이샤 Alkali-free glass substrate
KR102141857B1 (en) * 2019-03-19 2020-08-07 에이지씨 가부시키가이샤 Alkali-free glass substrate
US20200299179A1 (en) * 2019-03-19 2020-09-24 AGC Inc. Alkali-free glass substrate
JPWO2019102895A1 (en) * 2017-11-21 2020-11-19 Agc株式会社 Molten glass transfer device, glass manufacturing device and glass manufacturing method
KR20220106698A (en) 2021-01-22 2022-07-29 에이지씨 가부시키가이샤 Float glass substrate
US11505487B2 (en) 2017-03-16 2022-11-22 Corning Incorporated Method for decreasing bubble lifetime on a glass melt surface
US11655176B2 (en) 2018-11-21 2023-05-23 Corning Incorporated Method for decreasing bubble lifetime on a glass melt surface

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584002A (en) * 2012-02-29 2012-07-18 成都中光电科技有限公司 Clarifying agent for TFT-LCD (Thin Film Transistor Liquid Crystal Display) glass, application and use method thereof
WO2015088009A1 (en) * 2013-12-13 2015-06-18 旭硝子株式会社 Glass for chemical strengthening, chemically strengthened glass, and method for producing chemically strengthened glass
CN106830624A (en) * 2017-04-06 2017-06-13 蚌埠玻璃工业设计研究院 A kind of staged vacuum degassing apparatus for improving melten glass liquid clear quality
US11629092B2 (en) * 2017-09-05 2023-04-18 Nippon Electric Glass Co., Ltd. Method for manufacturing alkali-free glass substrate and alkali-free glass substrate
KR102634707B1 (en) * 2017-09-20 2024-02-08 에이지씨 가부시키가이샤 Alkali-free glass substrate
CN109775963B (en) * 2018-12-28 2020-12-15 中建材蚌埠玻璃工业设计研究院有限公司 Decompression melting clarification method for alkali-free glass
CN111499185B (en) * 2020-04-29 2021-04-13 湖南旗滨医药材料科技有限公司 Composite clarifying agent, borosilicate glass and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080444A1 (en) * 2005-01-31 2006-08-03 Nippon Sheet Glass Company, Limited Process for producing glass
WO2007111079A1 (en) * 2006-03-27 2007-10-04 Asahi Glass Company, Limited Glass-making process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4941872B2 (en) * 2003-09-02 2012-05-30 日本電気硝子株式会社 Transparent alkali-free glass substrate for liquid crystal display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080444A1 (en) * 2005-01-31 2006-08-03 Nippon Sheet Glass Company, Limited Process for producing glass
WO2007111079A1 (en) * 2006-03-27 2007-10-04 Asahi Glass Company, Limited Glass-making process

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2698354A1 (en) * 2011-04-12 2014-02-19 Asahi Glass Company, Limited Method for vacuum-degassing of molten glass, device for vacuum-degassing of molten glass, method for producing molten glass, device for producing molten glass, method for producing article made of glass, and device for producing article made of glass
EP2698354A4 (en) * 2011-04-12 2014-12-17 Asahi Glass Co Ltd Method for vacuum-degassing of molten glass, device for vacuum-degassing of molten glass, method for producing molten glass, device for producing molten glass, method for producing article made of glass, and device for producing article made of glass
CN103717543B (en) * 2011-09-02 2016-09-21 Lg化学株式会社 Alkali-free glass and preparation method thereof
CN103717543A (en) * 2011-09-02 2014-04-09 Lg化学株式会社 Alkali-free glass and method for manufacturing same
US8895462B2 (en) 2011-09-02 2014-11-25 Lg Chem, Ltd. Alkali-free glass and preparation thereof
WO2013032289A3 (en) * 2011-09-02 2013-04-25 주식회사 엘지화학 Alkali-free glass and method for manufacturing same
US8962502B2 (en) 2011-09-02 2015-02-24 Lg Chem, Ltd. Alkali-free glass and preparation thereof
TWI498306B (en) * 2011-09-02 2015-09-01 Lg Chemical Ltd Alkali-free glass and method for manufacturing the same
TWI498305B (en) * 2011-09-02 2015-09-01 Lg Chemical Ltd Alkali-free glass and method for manufacturing the same
WO2013032289A2 (en) * 2011-09-02 2013-03-07 주식회사 엘지화학 Alkali-free glass and method for manufacturing same
WO2014129424A1 (en) * 2013-02-19 2014-08-28 旭硝子株式会社 Alkali-free glass and method for producing same
US11505487B2 (en) 2017-03-16 2022-11-22 Corning Incorporated Method for decreasing bubble lifetime on a glass melt surface
JP7167937B2 (en) 2017-11-21 2022-11-09 Agc株式会社 Molten glass conveying device, glass manufacturing device and glass manufacturing method
JPWO2019102895A1 (en) * 2017-11-21 2020-11-19 Agc株式会社 Molten glass transfer device, glass manufacturing device and glass manufacturing method
US11655176B2 (en) 2018-11-21 2023-05-23 Corning Incorporated Method for decreasing bubble lifetime on a glass melt surface
US20200299179A1 (en) * 2019-03-19 2020-09-24 AGC Inc. Alkali-free glass substrate
JP2020152602A (en) * 2019-03-19 2020-09-24 Agc株式会社 Non-alkali glass substrate
JP7127587B2 (en) 2019-03-19 2022-08-30 Agc株式会社 Alkali-free glass substrate
KR102141857B1 (en) * 2019-03-19 2020-08-07 에이지씨 가부시키가이샤 Alkali-free glass substrate
KR102141856B1 (en) * 2019-03-19 2020-08-07 에이지씨 가부시키가이샤 Alkali-free glass substrate
US11584680B2 (en) 2019-03-19 2023-02-21 AGC Inc. Alkali-free glass substrate
US11718553B2 (en) * 2019-03-19 2023-08-08 AGC Inc. Alkali-free glass substrate
KR20220106698A (en) 2021-01-22 2022-07-29 에이지씨 가부시키가이샤 Float glass substrate

Also Published As

Publication number Publication date
CN102666408A (en) 2012-09-12
KR20120115209A (en) 2012-10-17
TW201130760A (en) 2011-09-16
JPWO2011078258A1 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
WO2011078258A1 (en) Method for vacuum-degassing molten glass and process for producing glass product
US7475568B2 (en) Method of fining glass
JP5737285B2 (en) Vacuum degassing method for molten glass
KR102141857B1 (en) Alkali-free glass substrate
JP2016084242A (en) Non-alkali glass and manufacturing method therefor
US9352994B2 (en) Method for vacuum-degassing molten glass, apparatus for vacuum-degassing molten glass, process for producing molten glass, apparatus for producing molten glass, process for producing glass product, and apparatus for producing glass product
KR102634707B1 (en) Alkali-free glass substrate
JP5757209B2 (en) Method for producing borosilicate glass
TWI833928B (en) Alkali-free glass substrate
JP2024023627A (en) Alkali-free glass substrate
US20220234939A1 (en) Float glass substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080056228.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547608

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127008233

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839488

Country of ref document: EP

Kind code of ref document: A1