TW201130760A - Method for vacuum-degassing molten glass and process for producing glass product - Google Patents

Method for vacuum-degassing molten glass and process for producing glass product Download PDF

Info

Publication number
TW201130760A
TW201130760A TW099145854A TW99145854A TW201130760A TW 201130760 A TW201130760 A TW 201130760A TW 099145854 A TW099145854 A TW 099145854A TW 99145854 A TW99145854 A TW 99145854A TW 201130760 A TW201130760 A TW 201130760A
Authority
TW
Taiwan
Prior art keywords
mass
glass
molten glass
pressure
vacuum degassing
Prior art date
Application number
TW099145854A
Other languages
Chinese (zh)
Inventor
Shingo Urata
Junichiro Kase
Rei Kitamura
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of TW201130760A publication Critical patent/TW201130760A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica

Abstract

Disclosed is a method in which optimal vacuum-degassing conditions are used when a molten glass is vacuum-degassed using a chloride-based clarificant. The method for vacuum-degassing a molten glass comprises passing the molten glass through a vacuum-degassing tank, the inside of which is kept in a vacuum state, to thereby vacuum-degas the molten glass. The method is characterized in that the molten glass is an alkali-free glass, and that the internal pressure of the vacuum-degassing tank during the vacuum degassing is kept not higher than the bubble growth initiation pressure for the molten glass, Pbg (mmHg), but not lower than the reboiling pressure for the molten glass, Prb (mmHg).

Description

201130760 六、發明說明: 【潑'明所屬之_制牙領】 發明領域 本發明係有關一種熔融玻璃之減壓脫泡方法,及使用 該減壓脫泡方法之玻璃製品之製造方法。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum degassing method for molten glass, and a method for producing a glass product using the vacuum degassing method.

L U 發明背景 迄今,為使經成形之玻璃製品品質提升,會利用在以 成形裝置將已以熔解爐熔解原料之熔融玻璃予以成形前, 除去產生在熔融玻璃内之氣泡之澄清步驟。 在該澄清步驟中,已知有下述方法,即:預先將澄清 劑(dariflcant)添加至原料内,且將熔融原料所得之熔融玻 璃以預定溫度貯存並維持一定時間,藉此以澄清劑使熔融 玻璃内之氣泡成長浮起並加以除去者。又,已知有一種減 壓脫泡方法,係將熔融玻璃導入減壓環境氣體内,並在該 減壓環境氣體下使連續流動的熔融玻璃流内之氣泡大幅成 長,而使含於熔融玻璃内之氣泡浮起、破泡且加以除去後, 自減壓環境氣體排出者。 為有效地從熔融玻璃除去氣泡,宜組合上述兩種方法 加以實’即’宜使用添加有澄清劑之炫融麵來實施減 壓脫泡方法。 ' 作為玻璃之澄清劑,有As2〇3、Sb2〇3、Sn〇2等氧化物 系澄清劑;CaS〇4、BaS〇4等硫酸鹽系澄清劑;及犯口等 驗金屬之氣化㈣澄清劑等。該等中,#硫酸鹽系澄清劑BACKGROUND OF THE INVENTION Heretofore, in order to improve the quality of a formed glass product, a clarification step of removing bubbles generated in the molten glass before forming the molten glass in which the raw material of the melting furnace is melted by a molding apparatus is used. In the clarification step, a method is known in which a clarifant is added to a raw material in advance, and the molten glass obtained by melting the raw material is stored at a predetermined temperature for a certain period of time, whereby a clarifying agent is used. The bubbles in the molten glass grow up and are removed. Further, a vacuum degassing method is known in which a molten glass is introduced into a reduced-pressure atmosphere gas, and bubbles in a continuously flowing molten glass flow are greatly grown under the reduced-pressure atmosphere gas to be contained in the molten glass. After the bubbles are floated, broken, and removed, the gas is discharged from the decompressed atmosphere. In order to effectively remove the bubbles from the molten glass, it is preferred to combine the above two methods to carry out the depressurization defoaming method by using a blooming surface to which a clarifying agent is added. As a clarifying agent for glass, there are oxide-based clarifying agents such as As2〇3, Sb2〇3, and Sn〇2; sulphate-based clarifying agents such as CaS〇4 and BaS〇4; and gasification of metal such as smear (4) Clarifying agent, etc. Among these, # sulfate clarifier

S 201130760 為低驗度之無驗玻璃時,由於SO,之轉度低,因此自炫 融玻璃除去氣泡之效果並不充分。 又,由於〜2〇3及讥2〇3(尤其As2〇3)對環境的負荷报 大,因而必須抑制其使用。 又,Sn〇2會有釋放氧氣之溫度在高達15〇〇。〇 以上,而 且難以作為澄清劑有效利用的情況。 又,鹼金屬之氣化物一旦於澄清中添有足夠的量即 會造成於無鹼玻璃中含有鹼金屬的情況,因而為無法利用 的證·清劑。 本發明人等首先調查作為無鹼玻璃之澄清劑之可能 性,結果發現含氯之化合物作為與減壓脫泡組合之澄清劑 可發揮優異的效果。此種氣化物澄清劑例如有BaC12、S 201130760 When the glass is low-inspection, the effect of removing bubbles from the glass is not sufficient due to the low degree of rotation of SO. Moreover, since ~2〇3 and 讥2〇3 (especially As2〇3) have an environmental load, it is necessary to suppress their use. In addition, Sn〇2 will release oxygen at temperatures up to 15 〇〇. 〇 Above, and it is difficult to use it effectively as a clarifying agent. Further, when a sufficient amount of the alkali metal vapor is added to the clarification, the alkali metal is contained in the alkali-free glass, and thus it is an unacceptable proof. The present inventors first investigated the possibility of being a clarifying agent for an alkali-free glass, and as a result, it was found that a chlorine-containing compound exerts an excellent effect as a clarifying agent in combination with a vacuum degassing. Such a vapor clarifying agent is, for example, BaC12,

SrCl2、CaCl2、MgCl2、A1C13 及ΝΗ4α。 實施減壓脫泡時之減壓脫泡槽内之壓力或溫度等條件 乃顯示於專利文獻1、2等中。 先前技術文獻 專利文獻 專利文獻1 :國際公開W02008/029649號公報 專利文獻2 :國際公開W02008/093580號公報 【發明内容】 發明概要 發明欲解決之課題 本發明人發現’當使用NH4C1或SrCl2等氯化物系澄清 劑作為無鹼玻璃之澄清劑時,含於玻璃組成之氯化物之比 201130760 例會對適合的減壓脫泡條件造成影響。 本發明係基於上述知識者,其目的在於提供一種無鹼 玻璃之減壓脫泡方法,可在使用氯化物系澄清劑進行減壓 脫泡時,提供最佳的減壓脫泡條件。 用以欲解決課題之手段 為達成上述目的,本發明提供一種熔融玻璃之減壓脫 泡方法,其係將熔融玻璃流入已將内部保持在減壓狀態之 減壓脫泡槽中,藉此減壓脫泡熔融玻璃之方法,其特徵在 於:熔融玻璃為無鹼玻璃,該方法係將在減壓脫泡實施時 之減壓脫泡槽内之壓力保持在以下述式(1)或式(2)表示之 熔融玻璃之氣泡成長開始壓Pbg(mmHg)以下,且保持在以 下述式(3)表示之熔融玻璃之再沸壓Prb(mmHg)以上: • Pbg=(2.6082xT2-3538.2)x[P-OH]+(-1.2102xT2+2612.2)x [Cl]-80.3……(1) • Pbg=(-0.2462xT2 + l 121.7)χ[β-ΟΗ]+(1.9714χΤ2-1730.6)x [Cl]-187.3……(2) • Prb=0.8325xPbg-59.5 ……(3) (上述式中,T2表示熔融玻璃之黏度呈102dPa · s之溫 度(°C)、[β-〇Η]表示無鹼玻璃之β-ΟΗ值(mm·1)、且[Cl]為表 示無鹼玻璃中之氣含量(質量%)。當[C1]為0·12質量%以上 時,Pbg係以式(1)表示;當[C1]為未滿0.12質量%時,Pbg係 以式(2)表示)。 又,前述|>0印宜為0.15〜0.6〇1111_1,此外,前述[(:1] 宜為0.03〜0.3質量%。 201130760 又’前述丁2宜為boo〜1750T:。 又’本發明乃提供一種玻璃製品之製造方法,其係依 序具備有下述該等步驟:玻璃熔融步騾,係熔融玻螭原料, 並製造炼融玻螭者;減壓脫泡步驟,係依據前述熔融玻璃 之減壓脫泡方法者;及玻璃製品成形步驟,係將經減壓脫 泡之熔融玻璃予以成形者。 再者’本發明中之無鹼玻璃係指除不可避免地混入雜 質者以外乃未含有驗金屬者,即實f上未含㈣金屬者。 發明效果 豕个知Θ之減壓脫泡方法,可於使用氣化物系澄清 劑進行無驗麵之減壓脫泡時,以最佳條件實施減壓脫 /包其結果’可降低減壓脫泡處理後之炼融玻璃中之氣泡 或異物,製造少缺關高功能高品質之玻璃。 本發月之減壓脫泡方法係使用氣化物系澄清劑,因此 :會對人體統球料造成不良料。又,使用本發明之 1脫泡方法所製造的_製品,在製造工廠或處理工廠 ^理上’無須對於氣泡之抑制特職意且於玻璃製品之 回收上亦不會發生阻礙。 圖式簡單說明 A ®系..’|不用於本發明之減壓脫泡方法之減歷脫泡 褒置之—構成例的剖面圖。 圖裘A。圖系將I與式(4)之係數a之關係加以繪 圖(plot)之 第3圖係將I與式(4)之 係數b之關係加以繪圖之圖表 201130760 第4圖係將Τ2與式(5)之係數c之關係加以繪圖之圖表。 第5圖係將T2與式(5)之係數d之關係加以繪圖之圖表。 第6圖係將再沸狂b與氣泡成長開始壓&之關係加 以繪圖之圖表。 第7圖#'就無驗_組成A、B、c ’在氣含量(質量%) 為0.12質量。/。以上的情況下,將氣泡成長開始壓&之實驗 值(mmHg)與氣泡成長開始壓Pb g之計算值(mmHg)之關係 加以繪圖之圖表。 弟8圖係就無驗玻璃組成a、b、(2 ,在氯含量(質量%) 未滿0.12質量%的情況下’將氣泡成長開始壓Pbg之實驗值 (mmHg)與氣泡成長開始壓Pb g之計算值(mmHg)之關係加 以繪圖之圖表。SrCl2, CaCl2, MgCl2, A1C13 and ΝΗ4α. Conditions such as pressure or temperature in the vacuum degassing tank at the time of performing vacuum degassing are shown in Patent Documents 1, 2 and the like. CITATION LIST Patent Literature Patent Literature 1: International Publication No. WO2008/029649 (Patent Document 2) International Publication No. WO2008/093580 SUMMARY OF INVENTION Summary of the Invention The present inventors have found that 'when chlorine such as NH4C1 or SrCl2 is used When the clarifier for a compound is used as a clarifying agent for an alkali-free glass, the ratio of the chloride contained in the glass composition to 201130760 may affect the suitable conditions for decompression and defoaming. The present invention is based on the above-mentioned knowledge, and an object thereof is to provide a vacuum degassing method for an alkali-free glass which can provide optimum conditions for decompression and defoaming when degassing under reduced pressure using a chloride-based clarifying agent. Means for Solving the Problems In order to achieve the above object, the present invention provides a vacuum degassing method for molten glass by flowing molten glass into a vacuum degassing vessel which has maintained the inside in a reduced pressure state, thereby reducing A method for defoaming molten glass, characterized in that the molten glass is an alkali-free glass, and the pressure in the vacuum degassing tank at the time of performing vacuum degassing is maintained at the following formula (1) or formula ( 2) The bubble growth start pressure Pbg (mmHg) or less of the molten glass is not less than the reboil pressure Prb (mmHg) of the molten glass represented by the following formula (3): • Pbg=(2.6082xT2-3538.2)x [P-OH]+(-1.2102xT2+2612.2)x [Cl]-80.3......(1) • Pbg=(-0.2462xT2 + l 121.7)χ[β-ΟΗ]+(1.9714χΤ2-1730.6)x [ Cl]-187.3 (2) • Prb=0.8325xPbg-59.5 (3) (In the above formula, T2 represents the viscosity of the molten glass at a temperature of 102 dPa·s (°C), and [β-〇Η] The β-ΟΗ value (mm·1) of the alkali-free glass, and [Cl] represents the gas content (% by mass) in the alkali-free glass. When [C1] is 0.12 mass% or more, the Pbg system is 1) indicates; when [C1] is not When the content is 0.12% by mass, Pbg is represented by the formula (2). Further, the above-mentioned |>0 print is preferably 0.15 to 0.6〇1111_1, and the above [(:1] is preferably 0.03 to 0.3% by mass. 201130760] The above-mentioned Ding 2 is preferably boo~1750T: Provided is a method for producing a glass product, which is provided with the following steps: a glass melting step, a molten glass material, and a smelting glass bottle; and a vacuum degassing step according to the molten glass And the glass product forming step is a method of forming a molten glass which is defoamed under reduced pressure. Further, the alkali-free glass in the present invention means that it is not in addition to impurities inevitably mixed. Those who have the metal tester, that is, the metal does not contain (4) metal. The effect of the invention is that the vacuum degassing method can be optimized by using the vapor-based clarifying agent for vacuum degassing without surface inspection. Under the condition of decompression and degassing, the result can reduce the bubbles or foreign matter in the smelting glass after the vacuum degassing treatment, and produce the glass with less high functionality and high quality. The vacuum defoaming method of this month is used. Vapor-based clarifying agent, therefore: will be the body ball In addition, the _ product manufactured by using the defoaming method of the present invention does not need to be suppressed for the bubble and does not occur in the recovery of the glass product in the manufacturing plant or the processing plant. The figure is a cross-sectional view of a configuration example of the subtractive defoaming device which is not used in the vacuum degassing method of the present invention. Fig. A. The figure will be I and (4) The relationship between the coefficient a and the plot 3 is a plot plotting the relationship between I and the coefficient b of equation (4). 201130760. Figure 4 shows the relationship between Τ2 and the coefficient c of equation (5). Chart of drawing. Fig. 5 is a graph plotting the relationship between T2 and the coefficient d of equation (5). Fig. 6 is a graph plotting the relationship between the reboiling b and the bubble growth start pressure & Figure #' is not tested _ composition A, B, c 'in the gas content (% by mass) is 0.12 mass / / or more, the bubble growth start pressure & experimental value (mmHg) and bubble growth start pressure The relationship between the calculated value of Pb g (mmHg) is plotted. The brother 8 shows that there is no glass composition a, b, (2, in chlorine (Mass%) at less than 0.12 mass% "bubble growth starting pressure of Pbg Found (mmHg) and the bubble growth starting pressure Calcd Pb g of (mmHg) was added to the chart plot of the relationship.

【實施方式;J 用以實施發明之形態 以下,以圖式說明本發明之減壓脫泡方法。第丨圖係顯 示用於本發明之減壓脫泡方法之減壓脫泡裝置之一構成例 的剖面圖。在顯示於第i圖中之減壓脫泡裝置丄中,呈圓筒 形狀的減壓脫泡槽12乃以其長轴配向呈水平方向的方式, 收納配置在減壓箱11内β於減壓脫泡槽12之一端下面安裝 有配向呈垂直方向的上昇管13,且於另一端下面安裝有下 降管14。上昇官13及下降管14,其一部分乃位於減壓箱u 内。 上昇管13係與減壓脫泡槽12相連通,並將來自熔解槽 20之熔融玻璃G導入減壓脫泡槽12。下降管14係與減壓脫泡[Embodiment] J. Mode for Carrying Out the Invention Hereinafter, the vacuum degassing method of the present invention will be described with reference to the drawings. The second drawing shows a cross-sectional view showing a configuration example of a vacuum degassing apparatus used in the vacuum degassing method of the present invention. In the vacuum degassing apparatus 显示 shown in Fig. i, the cylindrical decompression degassing tank 12 is arranged in the horizontal direction of the long axis alignment, and is accommodated in the decompression chamber 11 by β. Below the one end of the pressure deaeration tank 12, a riser pipe 13 having a vertical direction is attached, and a down pipe 14 is attached below the other end. The ascending official 13 and the downcomer 14 are partially located in the decompression chamber u. The riser 13 is in communication with the vacuum degassing tank 12, and the molten glass G from the melting tank 20 is introduced into the vacuum degassing tank 12. Down tube 14 series with decompression decompression

S 7 201130760 槽12相連通’並將減壓脫泡後之熔融玻璃g導出至下— 卜一個處 理槽(未圖示)。在減壓箱11内’減壓脫泡槽12、上昇势13 及下降管14之周圍配設有絕熱覆蓋其等之絕熱用磚等=絕 熱材15。 在顯示於第1圖中之減壓脫泡裝置丨中,減壓脫泡槽 12、上昇管13及下降管14乃用以熔融玻璃之導管,係以^ 熱性及對熔融玻璃耐蝕性優異的材料所製作。舉例而_ 可為白金製、白金合金製,或是使金屬氧化物分散至白金 或白金合金所製成之強化白金製。又,亦可為陶:是系之非 金屬無機材料製’即緻密質耐火物製。又,亦可為於緻密 質耐火物内襯有白金或白金合金者。 在本發明之減壓脫泡方法中’使自熔解槽2〇供給之溶 融玻璃G,通過已減壓至預定減壓度數之減壓脫泡槽12來進 行減壓脫泡。熔融玻璃G宜連續供給至減壓脫泡槽12並排 出。再者,就生產性之觀點而言,熔融玻璃之流量以^200 噸/日為宜。 為防止與自熔解槽20供給之熔融玻璃G產生溫度差,減 壓脫泡槽12宜加熱到内部呈1200°C〜1600°C,尤宜加熱到呈 1350t>1550°C之溫度範圍。 在本發明之減壓脫泡方法中使用的熔融玻璃G為無驗 玻璃,係於製造無驗玻璃之玻璃原料中添加有下述氣化物 系澄清劑者。作為氯化物系澄清劑之具體例,可舉例如至 少 1 種選自於由BaCl2、SrCl2、CaCl2、MgCl2、A1C13&NH4C1 形成的群者。於其等中,BaCl2、SrCl2、CaCl2、MgCl2等 201130760 驗土類氯化物或就丨3及NH4C1_般為鹽水合物。因此,從 沒有易潮解困擾之觀點看來,作為本發明之紐玻璃之製 造十添加的氣化物系澄清劑’該等中又以Baci2 ·2Η2〇、S 7 201130760 The tank 12 is connected to each other' and the molten glass g defoamed under reduced pressure is led to the next - a treatment tank (not shown). In the inside of the decompression chamber 11, the heat-reducing bricks, such as heat-insulating bricks, and the like, are placed around the decompression defoaming tank 12, the rising potential 13, and the downcomer 14. In the vacuum degassing apparatus 显示 shown in Fig. 1, the vacuum degassing tank 12, the riser pipe 13, and the downcomer 14 are pipes for melting glass, which are excellent in heat resistance and corrosion resistance to molten glass. Made of materials. For example, _ can be made of platinum, platinum alloy, or reinforced platinum made by dispersing metal oxides into platinum or platinum alloys. Further, it may be made of a non-metallic inorganic material, that is, a dense refractory material. Further, it may be a case where the dense refractory is lined with platinum or platinum alloy. In the vacuum degassing method of the present invention, the molten glass G supplied from the melting tank 2 is subjected to vacuum degassing by a vacuum degassing vessel 12 which has been reduced in pressure to a predetermined degree of pressure reduction. The molten glass G is preferably continuously supplied to the vacuum degassing tank 12 and discharged. Further, from the viewpoint of productivity, the flow rate of the molten glass is preferably 200 tons/day. In order to prevent a temperature difference from the molten glass G supplied from the melting tank 20, the degassing defoaming tank 12 is preferably heated to 1200 ° C to 1600 ° C inside, and is preferably heated to a temperature of 1350 t > 1550 ° C. The molten glass G used in the vacuum degassing method of the present invention is a non-existing glass, and the following vapor-based clarifying agent is added to a glass raw material for producing a glass-free glass. Specific examples of the chloride-based clarifying agent include, for example, at least one selected from the group consisting of BaCl2, SrCl2, CaCl2, MgCl2, A1C13 & NH4C1. Among them, BaCl2, SrCl2, CaCl2, MgCl2, etc. 201130760 The soil-like chloride or salt hydrate is the same as 丨3 and NH4C1_. Therefore, from the viewpoint of no troubles caused by deliquescence, as a clarifying agent for the production of the glazing of the present invention, the addition of Baci2·2Η2〇,

SrCl2 · 6Η2〇及NH4CI為佳。 無驗玻璃中之氯含量(以下在本說明書中有時以[⑶表 示),以0.03〜0.3質量%為佳。⑹⑽〇5〜〇 25質量%更佳。 當[C1]未滿0.03質量%時,會有無驗玻璃之澄清效果不夠充 分之虞。 〆再者,作為氯化㈣澄清劑,雖亦有考慮使用驗金屬 之氣化物,但若在熔融玻璃之澄清中添加充分的劑量,即 會造成紐玻璃中含有驗金屬的情況,因而由驗金屬之氣 化物形成的澄清劑並不適當。 實施減壓脫泡時,減壓箱丨丨内之空氣係通過已設置在 減壓箱11内預定處的吸引開口部16,自外部藉由真空果等 真空減壓機構(未圖示)加以排氣。藉此,經收容在減壓箱u 内之減壓脫泡槽12内的空氣可間接排氣,使減壓脫泡槽以 内部減壓至預定壓力。在本發明之減壓脫泡方法中,係將 減壓脫泡槽12内之壓力保持在以下述式(丨)或(2)表示之氣 泡成長開始壓Pbg(mmHg)以下。 • Pbg=(2.6082xT2-3538.2)x[p-〇H]+(-1.21〇2xT2+2612.2)x [C1J-80.3......(1) • Pbg=(-〇.2462xT2 + 1121.7)x[p-〇H]+(1.97l4xT2-i730.6)x [C1J-187.3......⑺ 在此,式(1)、(2)中之[Cl]乃表不無驗玻璃中之氯含量 201130760 (貝里%)。當[Cl]為〇_12質量%以上時,氣泡成長開始壓Pbg 係以上述式⑴表示。另—方面,當[Cl]未滿G 12質量%時, Pbg係以式(2)表示。 式(丨)(2)中,丁2乃表示熔融玻璃之黏度呈102dPa.s 之/皿度(C) ’可使用高溫旋轉黏度計加以測定。 黏度10 dPa . s係顯示炫融玻璃之黏度有充分變低之基 準黏度。因此,溶融玻璃黏度呈1〇2dPa· s之溫度A為炼融 玻璃之基準溫度,當為TFT液晶顯示器基板用紐玻璃時乃 1500〜1750〇C 。 若I為1500〜1720°C,則熔融玻璃令之泡之浮起速度會 變快,且具優異的減壓脫泡時之脫泡性能,故而適宜。T2 以1560〜1700°C較佳,以159〇〜168〇。^更佳。 式⑴、(2)中’ [β_〇Η]係表示無驗玻璃之β_〇Η值 (mm )° β-OH值係使用作為玻璃中之水量指標。可使用傅 立葉變換紅外光譜儀(FT_IR),測定將減壓脫泡後之熔融玻 璃成形呈板狀之無鹼玻璃試驗片的透射率,並以下述式求 得β-ΟΗ值。 • β-OH 值=(i/x)logl〇(T|/T2) • X :玻璃厚度(mm) • Τι :參考波數4000cm·1中之透射率(%) • I :羥基吸收波數3570cm-i附近之最小透射率(0/〇) 無鹼玻璃之β_〇Η值以0.15〜0.6mm」為佳。無鹼玻璃之 β-ΟΗ值乃受原料中之水量、熔解槽中之水蒸氣濃度、燃燒 方法(氧氣燃燒、空氣燃燒)等支配。有關熔解槽中之依水蒸 10 201130760 氣濃度之β-OH調整方法將於後述。p_〇H值尤以 〇·2〜0.55mm 1為佳。再者,β_〇Η值一般係使用玻化後之 β-0Η 值。 在本說明書中’氣泡成長開始壓Pbg係如以下定義。 在溫度一定之條件下’當已將減壓脫泡槽12減壓時, 存於減壓脫泡槽12内之熔融玻璃中之氣泡體積(氣泡之直 係依照波以耳定律增加。然而,—旦減壓脫泡槽12内減 【至某程度壓力,則炼融坡璃中之氣泡體積(氣泡之直徑) 會打破波以耳定律而急速増加。該壓力係稱之為氣泡成長 開始壓Pbg。當將減壓脫泡槽12内之壓力保持在氣泡成長開 始壓Pbg(mmHg)以下時’可在減壓脫泡槽12内使含於熔融 破璃之氣泡充分成長。此結果,可有效地除去熔融玻璃中 之氣泡。 在本發明中,可以下述順序求算氣泡成長開始壓Pbg。 為重現減壓脫泡槽12内之狀況,將裝有無鹼玻璃之玻 璃屑的石英玻璃製坩堝配置在真空減壓容器内。將坩堝加 熱至預定溫度(例如,1300。(:或1400。〇,使無鹼玻璃熔融。 虽無驗玻璃完全熔融後’一邊將真空減壓容器内予以減壓 並一邊觀察炫融玻璃中之氣泡之直徑。用以觀察熔融玻璃 中之氣泡之直徑,例如可使用CCD攝影機,自設置於真空 減壓容器之探測窗,拍攝熔融玻璃中之氣泡。再者,進行 氣泡直徑測定的氣泡樣本數為2〇個以上。 隨著真空減壓容器内之壓力下降,炼融玻璃中之氣泡 之直後會依照波以耳定律增加。然而,一旦真空減壓容器SrCl2 · 6Η2〇 and NH4CI are preferred. The chlorine content in the non-test glass (hereinafter sometimes referred to as [(3) in the present specification) is preferably 0.03 to 0.3% by mass. (6) (10) 〇 5 ~ 〇 25% by mass is better. When [C1] is less than 0.03 mass%, there is a lack of clarification effect of the glass. Furthermore, as a chlorinated (iv) clarifying agent, although the use of metal oxides is also considered, if a sufficient dose is added to the clarification of the molten glass, it will cause a metal test in the glass. The clarifying agent formed by the vaporization of the metal is not suitable. When the vacuum degassing is performed, the air in the decompression chamber is passed through the suction opening portion 16 provided at a predetermined position in the decompression chamber 11, and is externally vacuum-reduced by a vacuum decompression mechanism (not shown). exhaust. Thereby, the air contained in the vacuum degassing tank 12 housed in the decompression tank u can be indirectly exhausted, and the decompression degassing tank can be internally depressurized to a predetermined pressure. In the vacuum degassing method of the present invention, the pressure in the vacuum degassing tank 12 is maintained at or below the bubble growth start pressure Pbg (mmHg) expressed by the following formula (丨) or (2). • Pbg=(2.6082xT2-3538.2)x[p-〇H]+(-1.21〇2xT2+2612.2)x [C1J-80.3...(1) • Pbg=(-〇.2462xT2 + 1121.7) x[p-〇H]+(1.97l4xT2-i730.6)x [C1J-187.3 (7) Here, [Cl] in the formulas (1) and (2) is not without glass The chlorine content in the 201130760 (Berry%). When [Cl] is 〇_12% by mass or more, the bubble growth start pressure Pbg is expressed by the above formula (1). On the other hand, when [Cl] is less than 12% by mass of G, Pbg is represented by the formula (2). In the formula (2), (2), the viscosity of the molten glass is 102 dPa·s / the degree of the dish (C) can be measured using a high temperature rotational viscometer. The viscosity of 10 dPa . s shows that the viscosity of the glazed glass has a sufficiently low basic viscosity. Therefore, the viscosity of the molten glass is 1 〇 2 dPa·s, and the temperature A is the reference temperature of the fused glass, and is 1500 to 1750 〇C when it is used for the TFT liquid crystal display substrate. When I is 1500 to 1720 ° C, the molten glass makes it easy to float, and has excellent defoaming performance at the time of vacuum degassing. T2 is preferably 1560 to 1700 ° C, and is 159 〇 to 168 。. ^ Better. In the formulas (1) and (2), '[β_〇Η] indicates the β_〇Η value (mm) of the glass without the test. The β-OH value is used as an indicator of the amount of water in the glass. The transmittance of the alkali-free glass test piece in which the molten glass after defoaming under reduced pressure was formed into a plate shape was measured using a Fourier transform infrared spectrometer (FT_IR), and the β-ΟΗ value was obtained by the following formula. • β-OH value = (i/x)logl〇(T|/T2) • X : glass thickness (mm) • Τι : transmittance in reference wave number 4000cm·1 (%) • I: hydroxyl absorption wave number The minimum transmittance (0/〇) near the 3570 cm-i is preferably 0.15 to 0.6 mm of the alkali-free glass. The β-ΟΗ value of the alkali-free glass is governed by the amount of water in the raw material, the concentration of water vapor in the melting tank, and the combustion method (oxygen combustion, air combustion). The method for adjusting the β-OH of the gas concentration in the melting tank 10 201130760 will be described later. The p_〇H value is preferably 〇·2 to 0.55 mm 1 . Furthermore, the β_〇Η value is generally the value of β-0Η after vitrification. In the present specification, the bubble growth start pressure Pbg is defined as follows. Under the condition that the temperature is constant, when the vacuum degassing tank 12 has been decompressed, the volume of the bubbles in the molten glass stored in the vacuum degassing tank 12 (the bubble is directly increased according to the wave law of the wave. However, Once the pressure in the vacuum degassing tank 12 is reduced [to a certain degree of pressure, the volume of the bubble in the smelting glass (the diameter of the bubble) will break the wave of the ear and the rapid increase. This pressure is called the bubble growth start pressure. When the pressure in the vacuum degassing tank 12 is kept below the bubble growth start pressure Pbg (mmHg), the bubbles contained in the molten glass can be sufficiently grown in the vacuum degassing tank 12. In the present invention, the bubble growth start pressure Pbg can be obtained in the following order. In order to reproduce the condition in the vacuum degassing tank 12, the quartz glass containing the alkali-free glass swarf is prepared. The crucible is placed in a vacuum decompression vessel. The crucible is heated to a predetermined temperature (for example, 1300. (or 1400. 〇, so that the alkali-free glass is melted. Although no glass is completely melted), the vacuum decompression vessel is placed inside. Decompression and observation of the fused glass The diameter of the bubble. To observe the diameter of the bubble in the molten glass, for example, a bubble detector can be used to detect the bubble in the molten glass from the detection window of the vacuum decompression container. Further, the bubble sample for measuring the bubble diameter can be used. The number is more than 2 。. As the pressure in the vacuum decompression vessel drops, the bubble in the smelting glass will increase according to the law of the wave. However, once the vacuum decompression container

11 S 201130760 内減壓至某程朗力,祕融玻射之氣泡之直徑會打破 波以耳定律而急迷増加。令此時之真线壓容器内之減壓 度數為氣泡成長開始壓pb g。 本申請發明人等精闢檢討氣泡成長開始壓Pbg及與無 鹼玻璃之減壓脫泡相關聯的種種參數之關係後,結果發現 到:熔融玻璃黏度呈102dPa.s之溫度(丁2)、無鹼玻璃之ρ·〇Η 值([β-ΟΗ])及無鹼玻璃中之氯含量([C1])會對氣泡成長開始 壓Pbg造成影響。依據該知識’以實驗性導出氣泡成長開始 壓Pbg與τ2 ' [β-OH]及[C1]之關係者,乃上述式⑴、(2)。以 下,將更具體說明有關式(1)、(2)之導出順序。 就Τ2相異之無鹼玻璃Α〜C,準備無鹼玻璃之β-〇Η值 [β-ΟΗ]或無鹼玻璃中之氣含量[C1]相異,且其他組成值相同 的無鹼玻璃,並以上述順序求算氣泡成長開始壓Pbg。在此 於氣化物澄清劑中係使用NI^Cl。詳細雖將於後述,,= 炼解槽20炫解無驗玻璃時,可藉由調節與燃料在合 及空氣之比例,來調節無鹼玻璃之β-〇Η值。無鹼取 之組成及Τ2分別如下。以下之無鹼玻璃之組成係以 化物換算之質量。/。表示。 (無鹼玻璃Α)11 S 201130760 Internal pressure reduction to a certain range of force, the diameter of the bubbles of the secret glass will break the wave of the ear law and eager to add. The pressure reduction degree in the positive line pressure vessel at this time is the bubble growth start pressure pb g. The inventors of the present application have intensively reviewed the relationship between the bubble growth start pressure Pbg and the various parameters associated with the vacuum defoaming of the alkali-free glass, and found that the viscosity of the molten glass is 102 dPa·s (d 2), The ρ·〇Η value of the alkali glass ([β-ΟΗ]) and the chlorine content ([C1]) in the alkali-free glass affect the bubble growth start pressure Pbg. According to this knowledge, the relationship between the bubble growth start pressure Pbg and τ2 '[β-OH] and [C1] is experimentally derived, and is the above formulas (1) and (2). Hereinafter, the order of derivation of the equations (1) and (2) will be described in more detail. For the alkali-free glass Α~C of Τ2, prepare the alkali-free glass with β-〇Η value [β-ΟΗ] of alkali-free glass or gas content [C1] in alkali-free glass, and other composition values are the same. And the bubble growth start pressure Pbg is calculated in the above order. Here, NI^Cl is used in the vapor clarifier. Although it will be described later in detail, when the refining tank 20 is used to disperse the glass, the β-〇Η value of the alkali-free glass can be adjusted by adjusting the ratio of the fuel to the air. The composition without alkali and Τ2 are as follows. The composition of the following alkali-free glass is based on the mass of the compound. /. Said. (alkali-free glass crucible)

Si〇2 : 59.5 質量°/〇、 Α!2〇3 : 17.7 質量%、 Β2〇3 : 7.9 質量 %、Si〇2 : 59.5 mass ° / 〇, Α! 2 〇 3 : 17.7 mass %, Β 2 〇 3 : 7.9 mass %,

Mg〇 : 3.2質量%、Mg〇 : 3.2% by mass,

CaO : 3.7質量%、 12 201130760CaO : 3.7 mass%, 12 201130760

SrO : 7.9 質量%、SrO : 7.9 mass%,

BaO : 0.1 質量%。 (T2 : 1660°〇 (無驗玻璃Β)BaO : 0.1% by mass. (T2 : 1660°〇 (no glass test)

Si02 : 59.4 質量%、Si02 : 59.4% by mass,

Al2〇3 : 16.9質量%、 B203 : 8.6質量%、Al2〇3 : 16.9 mass%, B203: 8.6 mass%,

MgO : 4.0 質量%、MgO : 4.0% by mass,

CaO : 5.4質量%、CaO : 5.4% by mass,

SrO : 5.7質量%、SrO : 5.7 mass%,

BaO : 0.0 質量 %。 (T2 : 1617°〇 (無鹼玻璃C)BaO : 0.0 mass %. (T2: 1617°〇 (alkali-free glass C)

Si02 : 59·5 質量%、 Α12〇3 : 17.0質量%、 Β2〇3 : 8.0質量%、Si02 : 59·5 mass%, Α12〇3 : 17.0 mass%, Β2〇3 : 8.0 mass%,

MgO : 4.7質量°/〇、MgO : 4.7 mass ° / 〇,

CaO : 6.0 質量%、CaO : 6.0% by mass,

SrO : 4.8 質量%、SrO : 4.8 mass%,

BaO : 0.0質量%。 (T2 : 1597〇C) 在各無鹼玻璃A〜C中皆發現:當無鹼玻璃中之氯含量 [C1]為0.12質量%以上時,氣泡成長開始壓Pbg、無驗玻璃之 β-ΟΗ值([β-ΟΗ])及無鹼玻璃中之氣含量([C1])會成立以下BaO : 0.0% by mass. (T2: 1597〇C) It is found in each of the alkali-free glasses A to C that when the chlorine content [C1] in the alkali-free glass is 0.12% by mass or more, the bubble growth start pressure Pbg, and the glass-free β-ΟΗ The value ([β-ΟΗ]) and the gas content in the alkali-free glass ([C1]) will hold the following

S 13 201130760 述式(4)表示之關係。 • Pbg=ax[p-OH]+bx[Cl]-80.3......(4) 對應於各無鹼玻璃A〜C之式(4)分別如下° (無驗玻璃A) • Pbg=800.6x[P-OH]+660.1x[Cl]-80.3......(4_A) (無驗玻璃B) • Pbg=650.0x[p-OH]+664.9x[Cl]-80.3......(4-B) (無鹼玻璃C) • Pbg=646.9x[P-OH]+672.8x[Cl]-80.3......(4-C) 第2圖係依據上述所得的結果,將T2與式(4)之係數&之 關係加以繪圖之圖表。第3圖係依據上述所得之結果,將Τ2 與式(4)之係數b之關係加以繪圖之圖表。 由第2圖 ⑴ 、第3圖中顯示之回歸直線所求^去5上述式 另一方面,當無鹼玻璃中之氯含量未滿〇 12杯旦負里時, 發現Pbg、[β-ΟΗ]、[C1]會成立以下述式〇表 • Pbg=cx[p-OH]+dx[Cl]-187.3......(5) 對應於各無鹼玻璃A〜C之式(5)分別如下。 (無驗玻璃A) 之關係 .Pbg=713.6x[p-〇H]+1530.0x[Cl]-i87 3 (無驗玻璃B) • Pbg=721.7x[P-〇H]+1494.6x[Cl]-i87 3 (無鹼玻璃C) (5-B) .Pbg=729.8x[p-〇H]+1392.1x[Cl]-l87 3 (5-C) 14 201130760 第4圖係依據上述所得的結果,將Τ2與式(5)之係數c之 關係加以繪圖之圖表。第5圖係依據上述所得之結果,將T2 與式(5)之係數d之關係加以繪圖之圖表。 由第4圖、第5圖中顯示之回歸直線所求算者乃上述式 (2)。 如上述,在本發明之減壓脫泡方法中,雖將減壓脫泡 槽12内之壓力保持在以上述式(1)表示之氣泡成長開始壓 Pbg(mmHg)以下,然而當減壓脫泡槽12内之壓力極度低 時,在減壓脫泡槽12流動之熔融玻璃會有發生再沸之虞。 因此,在本發明之減壓脫泡方法中,係將減壓脫泡槽 12内之壓力保持在以下述式(3)表示之熔融玻璃之再沸壓 Prb(mmHg)以上。 • Prb=0.8325xPbg-59.5......(3) 本說明書中,再沸壓Prb乃如下定義。 為使含於熔融玻璃之氣泡充分成長,宜盡量將減壓脫 泡槽12内之壓力予以壓低。然而,當使減壓脫泡槽12内之 壓力極度降低時,會有在與白金製或白金合金製、或者緻 密質耐火物製之熔融脫泡槽12相接的玻璃界面產生氣泡的 情況。該現象稱為再沸(reboil),此時之減壓脫泡槽12内之 壓力稱為再沸壓Prb。 再者,再沸壓Prb可以以下順序求得。 為重現減壓脫泡槽12内之狀況,將裝有無鹼玻璃之玻 璃屑的石英玻璃製坩堝配置在真空減壓容器内。將坩堝加 熱至預定溫度(例如,1300°C或1400°C),使無鹼玻璃熔融。S 13 201130760 The relationship expressed by equation (4). • Pbg=ax[p-OH]+bx[Cl]-80.3 (4) Corresponding to the formula (4) of each alkali-free glass A to C as follows (no glass A) • Pbg =800.6x[P-OH]+660.1x[Cl]-80.3......(4_A) (no glass B) • Pbg=650.0x[p-OH]+664.9x[Cl]-80.3. .....(4-B) (alkali-free glass C) • Pbg=646.9x[P-OH]+672.8x[Cl]-80.3......(4-C) Figure 2 is based on As a result of the above, a graph plotting the relationship between T2 and the coefficient & Figure 3 is a graph plotting the relationship between Τ2 and the coefficient b of equation (4) based on the results obtained above. According to the regression line shown in Fig. 2 (1) and Fig. 3, the above formula is used. On the other hand, when the chlorine content in the alkali-free glass is less than 12 cups, Pbg, [β-ΟΗ is found. ], [C1] will be established by the following formula: • Pbg=cx[p-OH]+dx[Cl]-187.3 (5) Corresponding to the formula of each alkali-free glass A~C (5) ) are as follows. (No glass A) relationship. Pbg=713.6x[p-〇H]+1530.0x[Cl]-i87 3 (no glass B) • Pbg=721.7x[P-〇H]+1494.6x[Cl ]-i87 3 (alkali-free glass C) (5-B) .Pbg=729.8x[p-〇H]+1392.1x[Cl]-l87 3 (5-C) 14 201130760 Figure 4 is based on the above As a result, a graph plotting the relationship between Τ2 and the coefficient c of the equation (5) is plotted. Figure 5 is a graph plotting the relationship between T2 and the coefficient d of equation (5) based on the results obtained above. The operator of the regression line shown in Figs. 4 and 5 is the above formula (2). As described above, in the vacuum degassing method of the present invention, the pressure in the vacuum degassing vessel 12 is maintained at a bubble growth start pressure Pbg (mmHg) expressed by the above formula (1). When the pressure in the bubble tank 12 is extremely low, the molten glass flowing in the vacuum degassing tank 12 may be reboiled. Therefore, in the vacuum degassing method of the present invention, the pressure in the vacuum degassing vessel 12 is maintained at a pressure equal to or higher than the reboil pressure Prb (mmHg) of the molten glass represented by the following formula (3). • Prb = 0.8325xPbg - 59.5 (3) In this specification, the reboiling pressure Prb is defined as follows. In order to sufficiently grow the bubbles contained in the molten glass, it is preferable to lower the pressure in the vacuum degassing tank 12 as much as possible. However, when the pressure in the vacuum degassing vessel 12 is extremely lowered, bubbles may be generated at the interface of the glass which is in contact with the molten defoaming tank 12 made of platinum or platinum alloy or the dense refractory. This phenomenon is called reboil, and the pressure in the vacuum degassing tank 12 at this time is called reboil pressure Prb. Further, the reboiling pressure Prb can be obtained in the following order. In order to reproduce the inside of the vacuum degassing tank 12, a quartz glass crucible containing glass particles of alkali-free glass was placed in a vacuum decompression vessel. The hydrazine is heated to a predetermined temperature (for example, 1300 ° C or 1400 ° C) to melt the alkali-free glass.

S 15 201130760 將以構成減壓脫泡槽之材料一較正確而言,以構成減壓脫 泡槽之玻璃接觸面之材料(白金或白金合金或緻密質耐火 物)一所製作之試驗片’浸泡至熔融玻璃中。在該狀態下將 真空減壓容器内緩緩地減壓並觀察試驗片之玻璃界面中之 氣泡產生。令在玻璃界面產生氣泡時的真空減壓容器之減 壓度數為再沸壓prb。 本申請發明人等精闢檢討再沸壓prb及與無鹼玻璃之 減壓脫泡相關聯的種種參數之關係後,結果發現到,於再 沸壓Prb與氣泡成長開始壓Pbg之間有特定關係成立。 上述式(3)可藉由繪製再沸壓Prb與氣泡成長開始壓Pbg 之關係而加以特定。第6圖係將再沸壓prb與氣泡成長開始 壓pb g之關係加以綠圖之圖表。 第6圖中,浸泡於熔融玻璃之試驗片中,使用有白金· 铑u金(白金9〇質量%、铑1〇質量%)。又,使用無鹼玻璃A〜c 來作為熔融玻璃。熔融玻璃之溫度為1400°C。 在本發明之減壓脫泡方法中,係將減壓脫泡槽12内之 壓力保持在再沸壓prb(mmHg)以上。當將減壓脫泡槽12内 之麗力保持在再沸壓Pr b (mmHg)以上時,可防止在減壓脫 泡槽12流動之熔融玻璃中產生再沸之情況。因此,可減低 殘留於減壓脫泡處理後之熔融玻璃中的氣泡數量,以製造 少氣泡的高功能高品質之玻璃。 亦即,在本發明之減壓脫泡方法中’藉由將減壓脫泡 槽12内之壓力保持在以上述式(1)、(2)表示之氣泡成長開始 壓pb g (mmHg)以下,且保持在以上述式(3)表示之再沸壓 16 201130760S 15 201130760 A test piece made of a material (white gold or platinum alloy or dense refractory) which constitutes the glass contact surface of the vacuum degassing tank, which is a material which constitutes the vacuum degassing tank. Soak into the molten glass. In this state, the inside of the vacuum decompression vessel was gradually decompressed and the generation of bubbles in the glass interface of the test piece was observed. The degree of depressurization of the vacuum decompression vessel at the time of generating bubbles at the glass interface is the reboiling pressure prb. The inventors of the present application have intensively reviewed the relationship between the reboiling pressure prb and the various parameters associated with the vacuum degassing of the alkali-free glass, and found that there is a specific relationship between the reboiling pressure Prb and the bubble growth starting pressure Pbg. Established. The above formula (3) can be specified by plotting the relationship between the reboiling pressure Prb and the bubble growth starting pressure Pbg. Fig. 6 is a graph showing the relationship between the reboiling pressure prb and the bubble growth start pressure pb g as a green map. In Fig. 6, the test piece immersed in the molten glass was made of platinum, ruthenium gold (platinum 9 〇 mass%, 铑1 〇 mass%). Further, the alkali-free glass A to c was used as the molten glass. The temperature of the molten glass was 1400 °C. In the vacuum degassing method of the present invention, the pressure in the vacuum degassing vessel 12 is maintained at a pressure equal to or higher than the reboiling pressure prb (mmHg). When the Lili in the vacuum degassing tank 12 is maintained at a reboiling pressure Pr b (mmHg) or more, it is possible to prevent reboiling in the molten glass flowing through the decompression defoaming tank 12. Therefore, the number of bubbles remaining in the molten glass after the vacuum degassing treatment can be reduced to produce a highly functional and high quality glass having less bubbles. In other words, in the vacuum degassing method of the present invention, the pressure in the vacuum degassing vessel 12 is maintained at a bubble growth start pressure pb g (mmHg) expressed by the above formulas (1) and (2). And maintaining the reboiling pressure expressed by the above formula (3) 16 201130760

Prb(mmHg)以上’可使減壓脫泡槽I2内含於熔融玻璃之氣 泡充刀成長,而可有效率地除去熔融玻璃中之氣泡,另一 面亦可防止在減壓脫泡槽12流動之炫融玻璃中產生再 弗之隋况。此結果,殘留於減壓脫泡處理後之熔融玻璃中 的乳泡將極度減低’而可製造具極少氣泡的高功能高品質 之坡璃。 就本發明之減壓脫泡方法中適用之無鹼玻璃之第1例 ’較佳可舉例如以下述氧化物換算之質量%表示來 含有以下成分之無鹼玻璃之組成。Prb (mmHg) or more 'can increase the bubble contained in the molten glass in the vacuum degassing tank I2, and can efficiently remove the bubbles in the molten glass, and the other side can also prevent the flow in the vacuum degassing tank 12 In the dazzling glass, there is a situation in which it is produced. As a result, the emulsions remaining in the molten glass after the vacuum degassing treatment are extremely reduced, and a highly functional and high-quality glass having few bubbles can be produced. The first example of the alkali-free glass to be used in the vacuum degassing method of the present invention is preferably a composition containing an alkali-free glass of the following composition, expressed by mass% in terms of the following oxide.

Si02 : 50〜66 質量%、Si02 : 50 to 66% by mass,

Ak〇3 : 10.5〜24質量〇/〇、 B2〇3 : 0〜12質量%、Ak〇3 : 10.5~24 mass 〇/〇, B2〇3 : 0~12% by mass,

MgO : 〇〜8質量%、MgO : 〇~8 mass%,

CaO : 〇〜14.5質量%、CaO : 〇~14.5% by mass,

SrO : 〇〜24質量%、SrO : 〇~24% by mass,

BaO : 〇〜13.5質量%、且BaO : 〇~13.5% by mass, and

Mg〇+Ca0+Sr0+Ba0:9〜29 5 質量%。 就本發明之減壓脫泡方法中適用之無鹼玻璃之第2例 =言’較佳可舉例如以下迷氣化物換算之質量%表示,來 3有以下成分之無鹼玻璃之組成。 8幻2:58〜66質量%、Mg〇+Ca0+Sr0+Ba0: 9 to 29 5 mass%. The second example of the alkali-free glass to be used in the vacuum degassing method of the present invention is preferably a composition of, for example, the mass% of the following gasification, and the composition of the alkali-free glass having the following composition. 8 Magic 2: 58~66% by mass,

Al2〇3 : 15〜22質量%、 B2〇3 : 0〜12質量%、Al2〇3 : 15 to 22% by mass, B2〇3: 0 to 12% by mass,

MgO : 〇〜8質量。/〇、MgO : 〇 ~ 8 mass. /〇,

S 17 201130760S 17 201130760

CaO : 0〜9質量%、CaO : 0 to 9 mass%,

SrO : 3〜12.5質量%、SrO : 3 to 12.5 mass%,

BaO : 0〜2%質量、且 MgO+CaO+SrO+BaO : 9〜18 質量 °/〇。 有關上述無鹼玻璃組成之各成分範圍的限定理由,將 於以下說明。BaO : 0 to 2% by mass, and MgO + CaO + SrO + BaO : 9 to 18 mass ° / 〇. The reason for limiting the range of each component of the above alkali-free glass composition will be described below.

Si〇2在超過66%時,玻璃之炼解性會降低且會易於失 透。較佳為64%以下,更佳為62%以下。未滿5〇%時,會產 生比重增加、應變點降低、熱膨脹係數增加、抗化學腐蝕 性之降低。較佳為58%以上,更佳為58 5%以上,又更佳為 5 9%以上。When Si〇2 exceeds 66%, the refining property of the glass is lowered and it is liable to be devitrified. It is preferably 64% or less, more preferably 62% or less. When it is less than 5〇%, the specific gravity increases, the strain point decreases, the coefficient of thermal expansion increases, and the chemical corrosion resistance decreases. It is preferably 58% or more, more preferably 58 5% or more, and still more preferably 5 9% or more.

Al2〇3為抑制玻璃之分相且提高應變點之成分,乃為必 須。超過24%時,易產生失透及抗化學腐蝕性之降低。較 佳為22%以下,更佳為20%以下,又較佳為18%以下。未滿 10.5°/。時,玻璃易於分相,或應變點降低。較佳為Μ%以上, 更佳為15.5%以上,又更佳為16%以上。 B2〇3雖非必須,但為可減輕比重、提高玻璃之熔解性 且難以失透之成分。超過22%時,會使應變點降低、抗化 學腐錄降低、或使玻祕解時之昇華變得顯著而使玻璃 之非均質性增b較佳為12%以下,又更佳為9%以下。未 滿5。/。時,由於會料重增加、玻璃之轉性降低且易於失 透等情況,因而以5%以上為佳,更佳為6%以上又更佳為Al2〇3 is necessary to suppress the phase separation of the glass and increase the composition of the strain point. When it exceeds 24%, it is easy to cause devitrification and chemical corrosion resistance. Preferably, it is 22% or less, more preferably 20% or less, and still more preferably 18% or less. Less than 10.5°/. At the time, the glass is easily separated, or the strain point is lowered. It is preferably Μ% or more, more preferably 15.5% or more, and still more preferably 16% or more. Although B2〇3 is not essential, it is a component which can reduce the specific gravity, improve the melting property of glass, and is difficult to devitrify. When it exceeds 22%, the strain point is lowered, the chemical corrosion resistance is lowered, or the sublimation at the time of glass mystery is made remarkable, and the glass heterogeneity b is preferably 12% or less, and more preferably 9%. the following. Less than 5. /. When the weight is increased, the glass transition property is lowered, and the glass is easily devitrified, it is preferably 5% or more, more preferably 6% or more, and more preferably

Mg〇雖非必須 但為可減輕比重且提升_之炫解性 18 201130760 之成分。超過8%時’玻璃會易於分相、失透、或抗化學腐 齡降低。較佳為6%以下’又更佳為5%以下。含有Mg〇 時以使含有1%以上為佳。尤其,為使維持炫解性且同時 降低比重,以含有3%以上為佳。Although Mg〇 is not necessary, it is a component that can reduce the specific gravity and improve the leaching property of 18 201130760. Above 8%, the glass will be susceptible to phase separation, devitrification, or reduced chemical age. It is preferably 6% or less and more preferably 5% or less. When Mg? is contained, it is preferable to contain 1% or more. In particular, it is preferable to contain 3% or more in order to maintain the deliability and at the same time reduce the specific gravity.

CaO雖非必須’但可提高玻璃之炫解性且難以失透, 因而可含有在14.5%以内之量。超過14 5%時,比重會增加 使熱膨脹紐變大,又,反而易於失透。較佳為州以下, 更佳為8%以下,又更佳為7%以下。含有㈤時以使含有 2%以上含有為佳。又更佳為3 5%以上。Although CaO is not required, it can improve the devitrification property of the glass and is difficult to devitrify, so it can be contained in an amount of 14.5% or less. When it exceeds 145%, the specific gravity will increase, causing the thermal expansion bond to become larger, and on the contrary, it will be devitrified. It is preferably below the state, more preferably 8% or less, and still more preferably 7% or less. It is preferable to contain (5) so as to contain 2% or more. More preferably, it is more than 35%.

SrO為抑制玻璃之分相且難以失透之成分。超過24% 時,比重會增加使熱膨脹係數變大,又,反而易於失透。 較佳為12.5%以下,更佳為10.5%以下,又更佳為8 5%以下。 若慮及作為澄清劑之氯化物添加,從沒有易潮解之困擾且 於原料熔解時易殘存於玻璃内之觀點看來,以使用&^^ · 6H2〇或BaCb · 2出0為佳。為使(^之添加量具有自由度, 玻璃成分十以含有3%以上之Sr〇為佳。由於當&◦未滿3% 時,對C1之添加量會有所限制,故非適當。較佳為4%以上, 又更佳為4.5%以上。 由於BaO可抑制玻璃之分相且難以失透,因而可含有 在13_5〇/。以内之量。超過13.5%,則比重會増加且熱膨脹係 數變大。較佳為2%以下’更佳為1%以下,又更佳為〇1% 以下。尤其,當重視玻璃基板之輕量化的情況下,實質上 以未含有為佳。SrO is a component that inhibits phase separation of glass and is difficult to devitrify. When it exceeds 24%, the specific gravity increases to increase the coefficient of thermal expansion, and on the contrary, it is easy to devitrify. It is preferably 12.5% or less, more preferably 10.5% or less, still more preferably 85% or less. In consideration of the addition of chloride as a clarifying agent, it is preferable to use the &^^ · 6H2〇 or BaCb · 2 out of the viewpoint that it is not easily deliquescent and tends to remain in the glass when the raw material is melted. In order to make the addition amount of (^) have a degree of freedom, it is preferable that the glass component contains Sr〇 of 3% or more. Since the addition amount of C1 is limited when & ◦ is less than 3%, it is not appropriate. It is preferably 4% or more, and more preferably 4.5% or more. Since BaO can suppress phase separation of glass and is difficult to devitrify, it can be contained in an amount of 13 〇 5 〇 /. When it exceeds 13.5%, the specific gravity increases and thermal expansion The coefficient is large, preferably 2% or less, more preferably 1% or less, still more preferably 〇1% or less. In particular, when weight reduction of the glass substrate is emphasized, it is preferable that it is substantially not contained.

As。〇3及Sh>2 〇3除作為雜質等而不可避免地混入者以As. 〇3 and Sh>2 〇3 are inevitably mixed as impurities or the like

S 19 201130760 外,以不含有(即實質上不含有)為佳。再者,在未違反本發 明目的之範圍内,為使熔解性提升等,可在總量在5質量% 以内含有Zr02其他微量成分。 依據本發明之減壓脫泡方法,即使在對例如與上述無 鹼玻璃Α〜C相比含有較多Si02及Α12〇3之下述難熔解性的 無鹼玻璃D(以下述氧化物換算之質量%表示),亦可在最佳 的條件下實施減壓脫泡,且獲得可減低氣泡或異物產生之 效果。 (無驗玻璃D)S 19 201130760 is preferably not contained (ie, substantially not contained). In addition, in order to improve the meltability, etc., it is possible to contain other trace components of ZrOO in a total amount of 5 mass% or less in the range which does not violate the object of this invention. According to the vacuum degassing method of the present invention, for example, the following non-alkali glass D containing a large amount of SiO 2 and Α 12 〇 3 is contained in comparison with the above-mentioned alkali-free glass Α C C (in terms of the following oxides) It is also possible to carry out vacuum degassing under the optimum conditions, and to obtain an effect of reducing the generation of bubbles or foreign matter. (No glass D)

Si02 : 62 質量%、 A1203 : 20重量%、 B203 : 0質量%、Si02 : 62% by mass, A1203: 20% by weight, B203: 0% by mass,

MgO : 4.7 質量%、MgO : 4.7 mass%,

CaO : 4.4 質量%、CaO : 4.4% by mass,

SrO : 8.1質量%、SrO : 8.1% by mass,

Zr02 : 0.9質量0/〇、且 (T2 : 1690°C) 在本發明之減壓脫泡方法中,亦可併用氯化物系澄清 劑以外者作為澄清劑。此時,可併用之其他澄清劑,具體 而言可舉例如有S03、F、Sn02等。該等其他澄清劑可在無 鹼玻璃中使其含有2質量%以下,較佳為1質量%以下,又更 佳為0·5質量%以下。 在本發明之減壓脫泡方法中,有時亦必須調節 [β-ΟΗ],即,調節熔融玻璃之水量。熔融玻璃中之水量, 20 201130760 在使燃料燃燒時,可藉由改變與該燃料混合之氣體組成 (即,改變與燃料混合之氧氣與空氣之比例)而調節。 用於本發明之減壓脫泡方法的減壓脫泡裝置之各構成 要素之尺寸可應需求加以適當選擇。減壓脫泡槽之尺寸不 論減壓脫泡槽為白金製或白金合金製、或是敏密質对火物 製,可因應於使用之減壓脫泡裝置而適當地選擇。如第1圖 中顯示之減壓脫泡槽12的情況,其尺寸之具體例如下。 水平方向之長度:1〜20m 内徑:0.2〜3m(剖面圓形) 當減壓脫泡槽12為白金製或白金合金製時,厚度以 0.5〜4mm為佳。 減壓箱11為金屬製(例如不鏽鋼製),且具有可收容減壓 脫泡槽之形狀及尺寸。 上昇管13及下降管14不論是白金製或白金合金製、或 是緻密質耐火物製,皆可因應於使用之減壓脫泡裝置加以 適當選擇。例如,上昇管13及下降管14之尺寸可如下般構 成。 •内徑:0.05〜0.8m .長度:0.2〜6m 當上昇管13及下降管14為白金製或白金合金製時,厚 度以0.4〜5mm為佳。 本發明之玻璃製品之製造方法乃依序具有下述各步 驟:玻璃熔融步驟,係熔融玻璃原料、製造熔融玻璃者; 減壓脫泡步驟,係依據前述之熔融玻璃之減壓脫泡方法Zr02 : 0.9 mass 0 / 〇, and (T2 : 1690 ° C) In the vacuum degassing method of the present invention, a chloride-based clarifying agent may be used in combination as a clarifying agent. In this case, other clarifying agents which can be used in combination include, for example, S03, F, Sn02 and the like. These other clarifying agents may be contained in the alkali-free glass in an amount of 2% by mass or less, preferably 1% by mass or less, and more preferably 0.5% by mass or less. In the vacuum degassing method of the present invention, it is sometimes necessary to adjust [β-ΟΗ], that is, to adjust the amount of water of the molten glass. The amount of water in the molten glass, 20 201130760, can be adjusted by varying the composition of the gas mixed with the fuel (i.e., changing the ratio of oxygen to air mixed with the fuel) when the fuel is burned. The dimensions of the constituent elements of the vacuum degassing apparatus used in the vacuum degassing method of the present invention can be appropriately selected as required. The size of the vacuum degassing tank is not limited to that of the vacuum degassing tank, which is made of platinum or platinum alloy, or is sensitive to fire, and can be appropriately selected in accordance with the vacuum degassing apparatus to be used. The case of the vacuum degassing tank 12 shown in Fig. 1 is as follows. Length in the horizontal direction: 1 to 20 m Inner diameter: 0.2 to 3 m (circular cross section) When the vacuum degassing tank 12 is made of platinum or platinum alloy, the thickness is preferably 0.5 to 4 mm. The decompression chamber 11 is made of metal (for example, made of stainless steel) and has a shape and a size that can accommodate a decompression degassing tank. The riser pipe 13 and the downcomer pipe 14 can be appropriately selected depending on the vacuum degassing apparatus to be used, whether it is made of platinum or platinum alloy or a dense refractory. For example, the size of the riser 13 and the downcomer 14 can be configured as follows. • Inner diameter: 0.05 to 0.8 m. Length: 0.2 to 6 m When the riser 13 and the downcomer 14 are made of platinum or platinum alloy, the thickness is preferably 0.4 to 5 mm. The method for producing a glass product of the present invention has the following steps: a glass melting step, which is a molten glass raw material, and a method for producing molten glass; and a vacuum degassing step, which is based on the aforementioned vacuum glass defoaming method.

S 21 201130760 者;及玻璃製品成形步驟’係將經減壓脫泡之㈣玻璃予 以成形者。 前述玻璃炼融步驟係可採用如迄今眾所皆知之玻魏 融方法’例如可將對應於玻璃種類所配合混合之玻璃原料 加熱至dl4G〇C以上’藉此熔融預定玻璃原料之步驟。所 使用之玻璃原料亦只要可適合於製造之無驗玻璃的原材 料’即無特別限定’可使用如石夕石少、喊、石灰石、氧化 紹、碳酸錄、氧化鎂及其他眾所皆知的玻璃成分之原料, 且可使用以製成作為目的的無鹼玻璃製品之組成的方式所 調合之玻柄料。前述在本發明所採㈣氣化物系澄清劑 係對該玻璃原料添加預定量。又,玻璃製品成形步驟亦可 採用迄今眾所皆知的玻璃製品之成形方法。當製造玻璃板 作為玻璃製品時,例如可利用浮法板玻璃(fl〇atplateglass) 成形方法、滚減(rolled out)成形方法、熔合(fusi〇n)成形方 法等各種成形方法。 實施例 以下’將依據實施例更具體地說明本發明。但,本發 明並非限於該等者。 (實施例1) 在本實施例中,使用預先已知[β-ΟΗ]為0.29mm·1之無 驗玻璃A ^添加NH4C1來作為氣化物澄清劑。再者,乃以氣 對玻化後之合計質量的質量%為0.20質量。/。之量來添加 NH4C1 〇 由上述式(1)求算,氣泡成長開始壓Pbg為270mmHg〇 22 201130760 由在此所得的Pbg與上述式(3)求算,再沸壓Prb為 165mmHg 0 將寬45mm、深7mm、厚度lmm之Pt90%/Rhl0%之白金 合金,放入寬50mmx深lOmmx高50mm之石英玻璃製容器, 並置入塊狀的無鹼玻璃A50g。爾後,將石英玻璃製容器放 入電爐内加熱直至1400°C為止,使無鹼玻璃A熔融。 接著,將電爐之環境氣體壓力減壓直至預定壓力為 止,並觀察熔融玻璃中之氣泡量。再者,熔融玻璃中之氣 泡量可從設置在電爐側面的探測窗以目測確認。 在將電爐之環境氣體壓力保持在再沸壓Prb為 165mmHg以上’且保持在氣泡成長開始壓pbg為27〇mmHg 以下時,確認到殘存於熔融玻璃中之氣泡量非常少。另一 方面’在將電爐之環境氣體壓力保持在再沸壓Prb為未滿 165mmHg時’由於發現自熔融玻璃中之白金板產生的氣泡 量有顯著增加,故可確認殘存於熔融玻璃中之氣泡量非常 多。 (實施例2) 在本實施例中,除於無驗玻璃A中以氯對玻化後之合計 質量的質量。/◦為〇·〇7質量。之量添加有NH4C1以外,以與實 施例1同樣的方式加以實施。 由上述式(2)求算,氣泡成長開始壓Pbg為127mmHg。 由在此所得的Pbg與上述式(3)求算,再沸壓Prb為 46mmHg。 在將電爐之環境氣體麼力保持在再沸壓Pr b為46mmHgS 21 201130760; and the glass forming step ′ is to form the (four) glass which has been defoamed under reduced pressure. The glass refining step may be carried out by a glass-blending method as conventionally known, for example, by heating a glass raw material which is blended correspondingly to the glass type to dl4G〇C or more to thereby melt the predetermined glass raw material. The glass raw materials used are also as long as they are suitable for the production of raw materials without glass, that is, there is no particular limitation. For example, Shi Xi Shi Shao, shout, limestone, oxidized Shao, carbonic acid, magnesium oxide and others are well known. A raw material of a glass component, and a handle material blended in such a manner as to constitute a composition of the intended alkali-free glass product can be used. The above-mentioned (iv) vapor-based clarifying agent in the present invention is added to the glass raw material in a predetermined amount. Further, the glass product forming step can also employ a forming method of a glass article which has hitherto been known. When a glass plate is produced as a glass product, various molding methods such as a float sheet glass forming method, a rolled out forming method, and a fusion forming method can be used. EXAMPLES Hereinafter, the present invention will be more specifically described based on examples. However, the present invention is not limited to these. (Example 1) In the present example, NH4C1 was added as a vapor clarifying agent using an amorphous glass A ^ previously known as [β-ΟΗ] of 0.29 mm·1. Further, the mass % of the total mass after the vitrification is 0.20 mass. /. The amount of NH4C1 added is calculated by the above formula (1), and the bubble growth start pressure Pbg is 270 mmHg 〇 22 201130760. From the Pbg obtained here and the above formula (3), the reboiling pressure Prb is 165 mmHg 0 and the width is 45 mm. A platinum alloy of Pt90%/Rhl0% having a depth of 7 mm and a thickness of 1 mm was placed in a quartz glass container having a width of 50 mm x a depth of 10 mm and a height of 50 mm, and a block-shaped alkali-free glass A50g was placed. Thereafter, the quartz glass container was placed in an electric furnace and heated up to 1400 ° C to melt the alkali-free glass A. Next, the ambient gas pressure of the electric furnace was reduced to a predetermined pressure, and the amount of bubbles in the molten glass was observed. Further, the amount of the bubble in the molten glass can be visually confirmed from the detection window provided on the side of the electric furnace. When the ambient gas pressure of the electric furnace was maintained at a reboil pressure Prb of 165 mmHg or more and the bubble growth start pressure pbg was 27 〇mmHg or less, it was confirmed that the amount of bubbles remaining in the molten glass was extremely small. On the other hand, 'when the ambient gas pressure of the electric furnace is maintained at the reboil pressure Prb of less than 165 mmHg, the amount of bubbles generated from the platinum plate in the molten glass is significantly increased, so that the bubbles remaining in the molten glass can be confirmed. The amount is very large. (Example 2) In the present example, the mass of the mass after the vitrification of chlorine in the non-experimented glass A was excluded. /◦ is 〇·〇7 quality. The same procedure as in Example 1 was carried out except that NH4C1 was added in an amount. From the above formula (2), the bubble growth start pressure Pbg was 127 mmHg. From the Pbg obtained here and the above formula (3), the reboil pressure Prb was 46 mmHg. In the electric furnace, the ambient gas force is maintained at a reboiling pressure Pr b of 46 mmHg.

S 23 201130760 以上’且保持在氣泡成長開始壓Pbg為127mmHg以下時,確 認殘存於熔融玻璃中之氣泡量非常少。另一方面,在將電 爐之私·丨兄氣體壓力保持在再》弗壓Prb為未滿46mmHg時,由 於發現自熔融玻璃中之白金板產生的氣泡量有顯著增加, 故可確認殘存於熔融玻璃中之氣泡量非常多。 (實施例3) 在本實施例中,使用預先已知[β-OH]為0.29mm-1之無 驗玻璃B。添加NH4C1來作為氯化物澄清劑。再者,乃以氯 對玻化後之合計質量的質量%為〇.2〇質量❶/◦之量來添加 ΝΗ4α。 由上述式(1)求算,氣泡成長開始壓卩1^為2481111111^。 由在此所得的Pbg與上述式(3)求算,再沸壓Prb為 147mmHg。 將寬45mm、深7mm、厚度1mm之Pt90%/Rhl0%之白金 合金放入寬50mmx深lOmmx高50mm之石英玻璃製容器,且 置入塊狀的無鹼玻璃B50g。爾後,將石英玻璃製容器放入 電爐内加熱直至1400°C為止,使無鹼玻璃B熔融。 接著,將電爐之環境氣體壓力減壓直至預定壓力為 止’並觀察熔融玻璃中之氣泡量。再者,熔融玻璃中之氣 泡量可從設置在電爐側面的探測窗以目測確認。 在將電爐之環境氣體壓力保持在再沸壓Prb為 147mmHg以上,且保持在氣泡成長開始壓?4為248〇11111^ 以下時,確認到殘存於熔融玻璃中之氣泡量非常少。另一 方面,在將電爐之環境氣體壓力保持在再沸壓Prb為未滿 24 201130760 147mmHg時,由於發現自熔融玻璃中之白金板產生的氣泡 量有顯著增加,故可確認殘存於熔融玻璃中之氣泡量非常 多。 (實施例4) 在本實施例中’除於無鹼玻璃B中以氣對玻化後之合計 質量的質量%為〇.〇7質量%之量添加有nh4C1以外,以與實 施例3同樣的方式加以實施。 由上述式(2)求异’氣泡成長開始壓pbg為i25mmHg。 由在此所得的卩^與上述式(3)求算,再沸壓Prb為 45mmHg。 在將電爐之%境氣體壓力保持在再鴻壓b為45mmHg 以上’且保持在氣泡成長開始壓Pb g為125mmHg以下時,確 認到殘存於炫融玻璃中之氣泡量非常少。另一方面,在將 電爐之環境氣體壓力保持在再沸壓Prb為未滿45mmtlg時, 由於發現自熔融玻璃中之白金板產生的氣泡量有顯著增 力口 ’故可確認殘存於溶融玻璃中之氣泡量非常多。 (實施例5) 在本實施例中’使用預先已知[β·0Η]為0 29mm-!之無 鹼玻璃C。添加NH4C1來作為氯化物澄清劑。再者,乃以氣 對玻化後之合計質量的質量%為0 20質量%之量來添加 NH4 C1。 由上述式(1)求算,氣泡成長開始壓pbg為237mmHg。 由在此所得的pbg與上述式(3)求算,再沸壓Prb為 138mmHg。 25 201130760 將見45mm、深7mm、厚度imm之pt9〇%/RhlO%之白金 合金放入寬50mmx深i〇mmx高5〇mm之石英玻璃製容器,且 置入塊狀的無鹼玻璃C5〇g。爾後,將石英玻璃製容器放入 電爐加熱直至14〇〇1為止,使無鹼玻璃c熔融。 接著’將電爐之環境氣體壓力減壓直至預定壓力為 止,並觀察熔融玻璃中之氣泡量。再者,溶融玻璃中之氣 泡罝可從設置在電爐側面的探測窗以目測確認。 .在將電爐之環境氣體壓力保持在再沸壓prb為 138mmHg以上’且保持在氣泡成長開始壓Pbg為237minHg 以下時,確認到殘存於熔融玻璃中之氣泡量非常少。另一 方面’在將電爐之環境氣體壓力保持在再沸壓Prb為未滿 138mmHg時,由於發現自熔融玻璃中之白金板產生的氣泡 量有顯著增加,故可確認殘存於熔融玻璃中之氣泡量非常 多。 (實施例6) 在本實施例中,除於無鹼玻璃C以氣對玻化後之合計質 量的質量%為〇.〇7質量%之量添加有]^114(:1以外,以與實施 例5同樣的方式加以實施。 由上述式(2)求算,氣泡成長開始壓Pbg為i23mmHg。 由在此所得的Pbg與上述式(3)求算,再沸壓Prb為 43mmHg。 在將電爐之環境氣體壓力保持在再沸壓Prb為43mmHg 以上,且保持在氣泡成長開始壓?4為1231111111^以下時,確 認到殘存於熔融玻璃中之氣泡量非常少。另一方面,在將 26 201130760 電爐之i兄氣體壓力保持在再彿壓Pr b為未滿43mmHg時, 由於發現自熔融玻璃中之白金板產生的氣泡量有顯著增 加,故可確認殘存於炫融玻璃中之氣泡量非常多。 (實施例7) 在本實施例中,使用預先已知T2為1690°C且[β-ΟΗ]為 0.29mm 1之無驗玻璃D。添力口NH4C1來作為氣化物澄清劑。 再者’乃以氣對玻化後之合計質量的質量%為〇.2〇質量%之 量來添加NH4C1。 由上述式(1)求算,氣泡成長開始壓Pbg為285mmHg。 由在此所得的Pbg與上述式(3)求算,再沸壓prb為 178mmHg 〇 將寬45mm、深7mm、厚度1mm之Pt90%/Rhl0%之白金 合金放入寬50mmx深lOmmx高50mm之石英玻璃製容器,且 置入塊狀的無鹼玻璃D50g。爾後,將石英玻璃製容器放入 電爐加熱直至1475°C為止,使無鹼玻璃D熔融。 接著,將電爐之環境氣體壓力減壓直至預定壓力為 止,並觀察熔融玻璃中之氣泡量。再者,熔融玻璃中之氣 泡量可從設置在電爐側面的探測窗以目測確認。 在將電爐之環境氣體壓力保持在再沸壓Prb為 178mmHg以上’且保持在氣泡成長開始壓卩!^為2851111111^ 以下時,確認到殘存於熔融玻璃中之氣泡量非常少。另一 方面,在將電爐之環境氣體壓力保持在再沸壓Prb為未滿 178mmHg時,由於發現自熔融玻璃中之白金板產生的氣泡 量有顯著增加’故可確認殘存於熔融玻璃中之氣泡量非常 £ 27 201130760 多。 (實施例8) 在本實施例中,除於無驗坡璃D以氣對玻化後之合計質 量的質量%為0 07質量。/。之量添加有NEUC1以外,以與實施 例3同樣的方式加以實施。 由上述式(2)求算,氟泡成長開始壓pbg為129mmHg。 由在此所得的Pbg與上述式(3)求算’再沸壓pr b為 48mmHg 〇 在將電爐之環境氣體壓力保持在再彿壓Pr b為48mniHg 以上’且保持在氣泡成長開始壓Pbg為129mmHg以下時’確 認殘存於熔融玻璃中之氣泡量非常少。另一方面,在將電 爐之環境氣體壓力保持在再沸壓Prb為未滿48mmHg時,由 於發現自熔融玻璃中之白金板產生的氣泡量有顯著增加, 故可確認殘存於熔融玻璃中之氣泡量非常多。 (實施例9) 在此,就前述無鹼玻璃A、B、C ’將顯示式(1)與式 之有效性的實驗結果顯示在表1〜5及第7圖〜第8圖。實驗 中,對各玻璃組成改變β-OH值(nrnT1)及氯含量(質量〇/〇), 以求算氣泡成長開始壓Pbg。各玻璃係於石英製之槽(cell) 中放入熔融玻璃約50g’並以具有觀察用窗之電爐使用預定 溫度加以熔解。玻璃熔解後,以一定速度下減壓至所期望 的壓力為止,之後在一定壓力下使用CCD攝影機拍攝錄影 泡徑之變化。實驗結束後,解析泡徑之變化,以求算氣泡 成長開始壓Pbg。 28 201130760 表1〜表5中記載有觀察氣泡時的玻璃溫度、β-ΟΗ值 (mnT1)、氣含量(質量%)、氣泡成長開始壓Pbg之實驗值 (mmHg) '氣泡成長開始壓pbg之式⑴或式(2)之計算值 (mmHg) 〇於表卜表3,就無鹼玻璃組成A、B及C分另丨J顯示 氣含量(質量%)在0.12質量%以上之122例的相關個別結 果。又,表4〜5中顯示在無鹼玻璃組成A、B、C中,氣含量 (質量%)為未滿〇.12質量%之41例的結果。 第7圖中係就無鹼玻璃組成A、B、C,顯示當氣含量(質 量%)為0.12質量%以上時,氣泡成長開始壓pbg之實驗值 (mmHg)與氣泡成長開始壓Pb g之計算值(mmHg)之122點之 相關關係。第8圖中係顯示就無鹼玻璃組成A、B、C,當氣 含量(質量%)未滿〇·12質量%時,氣泡成長開始壓Pbg之實驗 值(mmHg)與氣泡成長開始壓pb g之計算值(mrnHg)之41點 之相關關係。 第7圖的結果係回歸式之斜率為〇_92、且相關係數之平 方為〇·82 ’顯示出式(1)有很適當地推定出實驗值。第8圖的 結果係回歸式之斜率為〇 97、且相關係數之平方為〇 89,顯 示出式(2)有很適當地推定出實驗值。自其等可知,式(1)與 式(2)在推定氣泡成長開始壓Pbg之上很有效。於第7圖及第8 圖的圖表上繪製有關無鹼玻璃D之實施例之資料亦得同樣 結果。再者,表1〜5中雖有顯示觀察氣泡時的玻璃溫度,但 在本發月之式(1)與式(2)中並未有規定產生氣泡時之玻璃 溫度。此認為{因為本發明之澄清主要是有關水之澄清, 而水的熔解度之溫度依賴性很 小之緣故。When the bubble growth start pressure Pbg is 127 mmHg or less, it is confirmed that the amount of bubbles remaining in the molten glass is extremely small. On the other hand, when the pressure of the private gas of the electric furnace is maintained at a pressure of less than 46 mmHg, it is found that the amount of bubbles generated from the platinum plate in the molten glass is remarkably increased, so that it is confirmed that it remains in the molten state. The amount of bubbles in the glass is very large. (Example 3) In the present example, an unexamined glass B in which [β-OH] was previously known to be 0.29 mm-1 was used. NH4C1 was added as a chloride fining agent. Further, ΝΗ4α is added by the mass % of chlorine to the total mass after vitrification, which is 量.2〇 mass ❶/◦. Calculated by the above formula (1), the bubble growth start pressure is 1 241111111. From the Pbg obtained here and the above formula (3), the reboil pressure Prb was 147 mmHg. A platinum alloy of Pt 90%/Rhl 0% having a width of 45 mm, a depth of 7 mm and a thickness of 1 mm was placed in a quartz glass vessel having a width of 50 mm x a depth of 10 mm and a height of 50 mm, and a block-shaped alkali-free glass B50g was placed. Thereafter, the quartz glass container was placed in an electric furnace and heated up to 1400 ° C to melt the alkali-free glass B. Next, the ambient gas pressure of the electric furnace was depressurized until the predetermined pressure was stopped, and the amount of bubbles in the molten glass was observed. Further, the amount of the bubble in the molten glass can be visually confirmed from the detection window provided on the side of the electric furnace. When the ambient gas pressure of the electric furnace is maintained at a reboil pressure Prb of 147 mmHg or more, and the bubble growth start pressure is maintained. When 4 was 248 〇 11111 Ω or less, it was confirmed that the amount of bubbles remaining in the molten glass was very small. On the other hand, when the ambient gas pressure of the electric furnace is maintained at the reboil pressure Prb of less than 24 201130760 147 mmHg, since the amount of bubbles generated from the platinum plate in the molten glass is remarkably increased, it is confirmed that it remains in the molten glass. The amount of bubbles is very large. (Example 4) In the present Example, the same as in Example 3 except that nh4C1 was added in an amount of 7% by mass of the total mass after the vitrification in the alkali-free glass B. The way to implement it. The bubble growth start pressure pbg obtained by the above formula (2) is i25 mmHg. From the hydrazine obtained here and the above formula (3), the reboil pressure Prb was 45 mmHg. When the gas pressure of the electric furnace was maintained at a pressure of 45 mmHg or more and the bubble growth start pressure Pbg was 125 mmHg or less, it was confirmed that the amount of bubbles remaining in the glass was extremely small. On the other hand, when the ambient gas pressure of the electric furnace is maintained at a reboil pressure Prb of less than 45 mmtlg, it is found that the amount of bubbles generated from the platinum plate in the molten glass has a significant increase in the number of ports, so that it remains in the molten glass. The amount of bubbles is very large. (Example 5) In the present example, 'alkali-free glass C having a known [β·0Η] of 0 29 mm-! was used. NH4C1 was added as a chloride fining agent. Further, NH4 C1 was added in an amount of 0% by mass based on the mass% of the total mass after the vitrification. From the above formula (1), the bubble growth start pressure pbg was 237 mmHg. From the pbg obtained here and the above formula (3), the reboil pressure Prb was 138 mmHg. 25 201130760 The platinum alloy of 45mm, depth 7mm, thickness imm pt9〇%/RhlO% is placed in a quartz glass container with a width of 50mmx deep i〇mmx and a height of 5〇mm, and a block-shaped alkali-free glass C5〇 is placed. g. Thereafter, the quartz glass container was placed in an electric furnace and heated until 14 〇〇1 to melt the alkali-free glass c. Then, the ambient gas pressure of the electric furnace was depressurized until the predetermined pressure was reached, and the amount of bubbles in the molten glass was observed. Further, the bubble enthalpy in the molten glass can be visually confirmed from the detection window provided on the side of the electric furnace. When the ambient gas pressure of the electric furnace was maintained at a reboiling pressure prb of 138 mmHg or more and the bubble growth start pressure Pbg was 237 minHg or less, it was confirmed that the amount of bubbles remaining in the molten glass was extremely small. On the other hand, when the ambient gas pressure of the electric furnace is maintained at a reboil pressure Prb of less than 138 mmHg, since the amount of bubbles generated from the platinum plate in the molten glass is remarkably increased, the bubbles remaining in the molten glass can be confirmed. The amount is very large. (Example 6) In the present example, in addition to the alkali-free glass C, the mass % of the total mass after the vitrification of the gas is 〇.〇7 mass%, and the addition of ^114 (:1, The bubble growth start pressure Pbg was i23 mmHg calculated from the above formula (2). From the Pbg obtained here and the above formula (3), the reboil pressure Prb was 43 mmHg. When the ambient gas pressure of the electric furnace is maintained at a reboil pressure Prb of 43 mmHg or more, and the bubble growth start pressure is maintained at 4,311,111,111 cm or less, it is confirmed that the amount of bubbles remaining in the molten glass is extremely small. 201130760 The electric pressure of the electric furnace of the electric furnace is maintained at a pressure of Pr b of less than 43 mmHg. Since the amount of bubbles generated from the platinum plate in the molten glass is significantly increased, it is confirmed that the amount of bubbles remaining in the glazed glass is very large. (Example 7) In the present example, a non-existing glass D having a T2 of 1690 ° C and a [β-ΟΗ] of 0.29 mm 1 was used in advance, and a force NH4C1 was added as a vapor clarifier. The quality of the total mass after the vitrification is 〇.2〇 From the above formula (1), the bubble growth start pressure Pbg is 285 mmHg. From the Pbg obtained here and the above formula (3), the reboiling pressure prb is 178 mmHg, and the width is 45 mm. A platinum alloy of Pt90%/Rhl0% with a depth of 7 mm and a thickness of 1 mm is placed in a quartz glass container having a width of 50 mm x a depth of 10 mm and a height of 50 mm, and a block-shaped alkali-free glass D50g is placed. Thereafter, the quartz glass container is placed in an electric furnace for heating. The alkali-free glass D is melted until 1475 ° C. Next, the ambient gas pressure of the electric furnace is reduced to a predetermined pressure, and the amount of bubbles in the molten glass is observed. Further, the amount of bubbles in the molten glass can be set from The detection window on the side of the electric furnace was confirmed by visual inspection. When the pressure of the ambient gas of the electric furnace was maintained at a reboil pressure Prb of 178 mmHg or more and the pressure was raised at the beginning of the bubble growth, it was confirmed to be in the molten glass. On the other hand, when the ambient gas pressure of the electric furnace is maintained at a reboil pressure Prb of less than 178 mmHg, a significant increase in the amount of bubbles generated from the platinum plate in the molten glass is found. It can be confirmed that the amount of bubbles remaining in the molten glass is much more than 27 201130760. (Embodiment 8) In the present embodiment, the mass % of the total mass after the vitrification of the non-inspective glass D is 0 07 mass. The addition of NEUC1 was carried out in the same manner as in Example 3. From the above formula (2), the fluorine bubble growth start pressure pbg was 129 mmHg. The Pbg obtained here and the above formula (3) In the case where the reboiling pressure pr b is 48 mmHg, and the ambient gas pressure in the electric furnace is maintained at a pressure of Pr b of 48 mniHg or more, and the bubble growth start pressure Pbg is 129 mmHg or less, it is confirmed that it remains in the molten glass. The amount of bubbles is very small. On the other hand, when the ambient gas pressure of the electric furnace is maintained at a reboil pressure Prb of less than 48 mmHg, the amount of bubbles generated from the platinum plate in the molten glass is remarkably increased, so that the bubbles remaining in the molten glass can be confirmed. The amount is very large. (Example 9) Here, the results of experiments showing the validity of the formula (1) and the formula for the alkali-free glass A, B, and C' are shown in Tables 1 to 5 and Figs. 7 to 8. In the experiment, the β-OH value (nrnT1) and the chlorine content (mass 〇/〇) were changed for each glass composition to calculate the bubble growth starting pressure Pbg. Each of the glasses was placed in a quartz cell and placed in a molten glass of about 50 g' and melted at a predetermined temperature using an electric furnace having an observation window. After the glass is melted, the pressure is reduced to a desired pressure at a constant speed, and then the CCD camera is used to measure the change in the video bubble diameter under a certain pressure. After the end of the experiment, the change in the bubble diameter is analyzed to calculate the bubble growth start pressure Pbg. 28 201130760 Table 1 to Table 5 show the glass temperature, β-ΟΗ value (mnT1), gas content (% by mass), and experimental value (mmHg) of the bubble growth start pressure Pbg when the bubble is observed. 'The bubble growth start pressure pbg Calculated value of formula (1) or formula (2) (mmHg) 表 Table 3, in the case of alkali-free glass composition A, B and C, another 122J shows that the gas content (% by mass) is more than 0.12% by mass in 122 cases. Relevant individual results. Further, Tables 4 to 5 show the results of 41 cases in which the gas content (% by mass) was less than 12.12% by mass in the alkali-free glass compositions A, B, and C. In Fig. 7, the alkali-free glass compositions A, B, and C show that when the gas content (% by mass) is 0.12% by mass or more, the experimental value (mmHg) of the bubble growth start pressure pbg and the bubble growth start pressure Pb g Calculate the correlation of 122 points of the value (mmHg). In Fig. 8, the composition of the alkali-free glass composition A, B, and C, when the gas content (% by mass) is less than 12% by mass, the experimental value (mmHg) of the bubble growth start pressure Pbg and the bubble growth start pressure pb The correlation of the calculated value of g (mrnHg) of 41 points. The result of Fig. 7 is that the slope of the regression equation is 〇_92, and the square of the correlation coefficient is 〇·82 ′, which shows that the experimental value is appropriately estimated. The result of Fig. 8 is that the slope of the regression equation is 〇 97, and the square of the correlation coefficient is 〇 89, which shows that the experimental value is appropriately estimated by equation (2). It can be seen from the above that the equations (1) and (2) are effective in estimating the bubble growth start pressure Pbg. The same results were obtained by plotting the examples for the alkali-free glass D on the graphs of Figures 7 and 8. Further, although the glass temperatures at the time of observing the bubbles are shown in Tables 1 to 5, the glass temperatures at the time of bubble generation are not defined in the formulas (1) and (2) of the present month. This is considered to be because the clarification of the present invention is mainly related to the clarification of water, and the temperature dependence of the degree of melting of water is small.

S 29 201130760 表1S 29 201130760 Table 1

No 觀察氣泡時的玻璃溫度(°c) β-ΟΗ Cl Pbg實驗值 式(:丨)計#值 A1 1450 0.331 0.194 313 299 A2 1500 0.331 0.194 315 299 A3 1550 0.331 0.194 351 299 A4 1450 0.291 0.207 289 275 A5 1500 0.291 0.207 295 275 A6 1550 0.291 0.207 311 275 A7 1450 0.265 0.152 222 221 A8 1500 0.265 0.152 240 221 A9 1550 0.265 0.152 258 221 A10 1450 0.352 0.192 324 314 A11 1500 0,352 0.192 350 314 A12 1550 0.352 0.192 368 314 A13 1450 0.351 0.185 319 309 A14 1500 0.351 0.185 345 309 A15 1550 0.351 0.185 360 309 A16 1400 0.301 0.19 307 273 A17 1400 0.323 0.176 317 282 A18 1400 0.328 0.173 330 284 A19 1400 0.279 0.187 253 253 A20 1400 0.278 0.186 255 252 A21 1400 0.275 0.187 251 250 A22 1425 0.279 0.187 261 253 A23 1425 0.278 0.186 260 252 A24 1425 0.275 0.187 261 250 A25 1400 0.32 0.203 304 295 A26 1450 0.331 0.194 304 299 A27 1450 0.331 0.194 320 299 A28 1450 0.331 0.194 317 299 A29 1450 0.292 0.209 298 277 A30 1450 0.292 0.209 298 277 A31 1450 0.292 0.209 301 277 A32 1400 0.28 0.197 266 260 A33 1400 0.272 0.197 275 254 A34 1400 0.272 0.19 275 250 A35 1400 0.282 0.199 285 263 A36 1400 0.293 0.189 274 266 A37 1400 0.348 0.201 348 316 A38 1400 0.389 0.176 340 334 A39 1400 0.389 0.176 343 334 A40 1350 0,333 0.188 283 297 A41 1350 0.336 0.186 283 298 A42 1350 0.321 0.186 280 286 A43 1375 0.335 0.189 315 299 A44 1375 0.336 0.186 320 298 A45 1375 0.321 0.186 290 286 A46 1400 0.341 0.183 317 300 A47 1400 0.293 0.176 262 258 A48 1425 0.293 0.176 274 258 A49 1400 0.28 0.174 243 246 A50 1425 0.28 0.174 260 246 A51 1450 0.306 0.203 308 284 A52 1450 0.306 0.203 306 284 A53 1450 0.306 0.203 346 284 A54 1450 0.29 0.203 288 272 A55 1450 0.278 0.215 285 269 30 201130760 表2No Glass temperature at observation of bubbles (°c) β-ΟΗ Cl Pbg Experimental value (:丨)# Value A1 1450 0.331 0.194 313 299 A2 1500 0.331 0.194 315 299 A3 1550 0.331 0.194 351 299 A4 1450 0.291 0.207 289 275 A5 1500 0.291 0.207 295 275 A6 1550 0.291 0.207 311 275 A7 1450 0.265 0.152 222 221 A8 1500 0.265 0.152 240 221 A9 1550 0.265 0.152 258 221 A10 1450 0.352 0.192 324 314 A11 1500 0,352 0.192 350 314 A12 1550 0.352 0.192 368 314 A13 1450 0.351 0.185 319 309 A14 1500 0.351 0.185 345 309 A15 1550 0.351 0.185 360 309 A16 1400 0.301 0.19 307 273 A17 1400 0.323 0.176 317 282 A18 1400 0.328 0.173 330 284 A19 1400 0.279 0.187 253 253 A20 1400 0.278 0.186 255 252 A21 1400 0.275 0.187 251 250 A22 1425 0.279 0.187 261 253 A23 1425 0.278 0.186 260 252 A24 1425 0.275 0.187 261 250 A25 1400 0.32 0.203 304 295 A26 1450 0.331 0.194 304 299 A27 1450 0.331 0.194 320 299 A28 1450 0.331 0.194 317 299 A29 1450 0.292 0.209 298 277 A30 1450 0.292 0.209 298 277 A31 1450 0.292 0.209 301 277 A32 1400 0.28 0.197 266 260 A33 1400 0.272 0.197 275 254 A34 1400 0.272 0.19 275 250 A35 1400 0.282 0.199 285 263 A36 1400 0.293 0.189 274 266 A37 1400 0.348 0.201 348 316 A38 1400 0.389 0.176 340 334 A39 1400 0.389 0.176 343 334 A40 1350 0,333 0.188 283 297 A41 1350 0.336 0.186 283 298 A42 1350 0.321 0.186 280 286 A43 1375 0.335 0.189 315 299 A44 1375 0.336 0.186 320 298 A45 1375 0.321 0.186 290 286 A46 1400 0.341 0.183 317 300 A47 1400 0.293 0.176 262 258 A48 1425 0.293 0.176 274 258 A49 1400 0.28 0.174 243 246 A50 1425 0.28 0.174 260 246 A51 1450 0.306 0.203 308 284 A52 1450 0.306 0.203 306 284 A53 1450 0.306 0.203 346 284 A54 1450 0.29 0.203 288 272 A55 1450 0.278 0.215 285 269 30 201130760 Table 2

No 觀察氣泡時的玻璃溫度rc) β-ΟΗ Cl Pbs實驗菹 式(l)计算值 B1 1365 0.385 0.197 358 310 B2 1390 0.385 0.197 366 310 B3 1420 0.385 0.197 382 310 B4 1365 0.355 0.189 314 285 B5 1390 0.355 0.189 309 285 86 1420 0.355 0.189 322 285 B7 1365 0.283 0.186 255 234 B8 1390 0.283 0.186 252 234 B9 1420 0.283 0.186 281 234 B10 1365 0.319 0.192 277 262 B11 1390 0.319 0.192 276 262 B12 1420 0.319 0.192 294 262No Glass temperature when observing bubbles rc) β-ΟΗ Cl Pbs Experimental formula (l) Calculated value B1 1365 0.385 0.197 358 310 B2 1390 0.385 0.197 366 310 B3 1420 0.385 0.197 382 310 B4 1365 0.355 0.189 314 285 B5 1390 0.355 0.189 309 285 86 1420 0.355 0.189 322 285 B7 1365 0.283 0.186 255 234 B8 1390 0.283 0.186 252 234 B9 1420 0.283 0.186 281 234 B10 1365 0.319 0.192 277 262 B11 1390 0.319 0.192 276 262 B12 1420 0.319 0.192 294 262

S 31 201130760 表3S 31 201130760 Table 3

No 觀察泡時的玻璃溫度(°c) iS-OH Cl Pta實驗值 式(1)計算值 C1 1365 0.312 0.205 286 255 C2 1420 0.312 0.205 280 255 C3 1365 0.368 0.185 328 276 C4 1420 0.368 0.185 322 276 C5 1365 0.238 0.275 264 256 C6 1420 0.238 0.275 277 256 C7 1365 0.245 0.213 245 218 C8 1365 0.245 0.213 229 218 C9 1365 0.245 0.213 202 218 CIO 1505 0.277 0.184 242 218 C11 1505 0.277 0.184 245 218 C12 1505 0.277 0.184 228 218 C13 1505 0.241 0.189 229 199 C14 1505 0.241 0.189 227 199 C15 1325 0.296 0,132 213 195 C16 1365 0.296 0.132 212 195 C17 1365 0.296 0.132 189 195 C18 1420 0.296 0.132 198 195 C19 1325 0.278 0.139 243 188 C20 1365 0.278 0.139 183 188 C21 1420 0.278 0.139 186 188 C22 1365 0.25 0.18 197 199 C23 1390 0.25 0.18 199 199 C24 1420 0.25 0.18 205 199 C25 1365 0.252 0.159 188 186 C26 1390 0.252 0.159 190 186 C27 1420 0.252 0.159 197 186 C28 1365 0.272 0.157 210 197 C29 1365 0.272 0.157 210 197 C30 1390 0.272 0‘157 212 197 C31 1390 0.272 0,157 212 197 C32 1420 0.272 0.157 222 197 C33 1420 0.272 0.157 214 197 C34 1390 0.275 0.153 200 196 C35 1390 0.271 0.16 211 198 C36 1390 0.271 0.16 209 198 C37 1390 0.268 0.159 206 196 C38 1390 0.268 0.159 204 196 C39 1390 0.271 0.156 199 196 C40 1390 0.271 0.156 195 196 C41 1390 0.27 0.162 201 199 C42 1330 0.27 0*162 205 199 C43 1360 0.27 0.162 194 199 C44 1330 0.273 0.158 210 198 C45 1360 0.273 0.158 211 198 C46 1390 0.273 0.158 206 198 C47 1365 0.313 0.146 261 215 C48 1390 0.313 0.146 268 215 C49 1420 0.313 0.146 272 215 C50 1365 0.392 0.194 337 297 C51 1390 0,392 0.194 352 297 C52 1420 0.392 0.194 370 297 C53 1365 0.371 0.145 279 251 C54 1390 0.371 0.145 276 251 C55 1420 0.371 0.145 370 251 32 201130760 表4No Glass temperature at observation bubble (°c) iS-OH Cl Pta Experimental value (1) Calculated value C1 1365 0.312 0.205 286 255 C2 1420 0.312 0.205 280 255 C3 1365 0.368 0.185 328 276 C4 1420 0.368 0.185 322 276 C5 1365 0.238 0.275 264 256 C6 1420 0.238 0.275 277 256 C7 1365 0.245 0.213 245 218 C8 1365 0.245 0.213 229 218 C9 1365 0.245 0.213 202 218 CIO 1505 0.277 0.184 242 218 C11 1505 0.277 0.184 245 218 C12 1505 0.277 0.184 228 218 C13 1505 0.241 0.189 229 199 C14 1505 0.241 0.189 227 199 C15 1325 0.296 0,132 213 195 C16 1365 0.296 0.132 212 195 C17 1365 0.296 0.132 189 195 C18 1420 0.296 0.132 198 195 C19 1325 0.278 0.139 243 188 C20 1365 0.278 0.139 183 188 C21 1420 0.278 0.139 186 188 C22 1365 0.25 0.18 197 199 C23 1390 0.25 0.18 199 199 C24 1420 0.25 0.18 205 199 C25 1365 0.252 0.159 188 186 C26 1390 0.252 0.159 190 186 C27 1420 0.252 0.159 197 186 C28 1365 0.272 0.157 210 197 C29 1365 0.272 0.157 210 197 C30 1390 0.272 0'157 212 197 C31 1390 0.272 0,157 212 197 C32 14 20 0.272 0.157 222 197 C33 1420 0.272 0.157 214 197 C34 1390 0.275 0.153 200 196 C35 1390 0.271 0.16 211 198 C36 1390 0.271 0.16 209 198 C37 1390 0.268 0.159 206 196 C38 1390 0.268 0.159 204 196 C39 1390 0.271 0.156 199 196 C40 1390 0.271 0.156 195 196 C41 1390 0.27 0.162 201 199 C42 1330 0.27 0*162 205 199 C43 1360 0.27 0.162 194 199 C44 1330 0.273 0.158 210 198 C45 1360 0.273 0.158 211 198 C46 1390 0.273 0.158 206 198 C47 1365 0.313 0.146 261 215 C48 1390 0.313 0.14 268 215 C49 1420 0.313 0.146 272 215 C50 1365 0.392 0.194 337 297 C51 1390 0,392 0.194 352 297 C52 1420 0.392 0.194 370 297 C53 1365 0.371 0.145 279 251 C54 1390 0.371 0.145 276 251 C55 1420 0.371 0.145 370 251 32 201130760 Table 4

No :觀察氣泡時的玻璃溫度rc) β-ΟΗ Cl Ρ1)β實驗值 式(2)計算值 Alb 1400 0.308 0.074 188 146 A2b 1450 0.308 0.074 153 146 A3b 1400 0.306 0.1 157 185 A4b 1450 0.306 0.1 162 185 A5b 1400 0.353 0.076 174 182 A6b 1450 0.353 0.076 191 182 A 7b 1400 0.37 0.073 176 189 A8b 1450 0.37 0.073 191 189 A9b 1400 0.643 0.048 376 345 A10b 1450 0.643 0Ό48 358 345 A11b 1400 0.681 0.039 369 358 A12b 1450 0.681 0.039 346 358 A13b 1400 0.597 0.101 369 394 A14b 1450 0.597 0.101 377 394 A15b 1400 0.604 0.11 367 413 A16b 1450 0.604 0.11 364 413 A17b 1400 0.522 0.122 428 373 A18b 1450 0.522 0.122 452 373 A19b 1375 0.506 0.128 426 371 A20b 1375 0.518 0.131 460 384 表5No : glass temperature when observing bubbles rc) β-ΟΗ Cl Ρ1) β experimental value (2) Calculated value Alb 1400 0.308 0.074 188 146 A2b 1450 0.308 0.074 153 146 A3b 1400 0.306 0.1 157 185 A4b 1450 0.306 0.1 162 185 A5b 1400 0.353 0.076 174 182 A6b 1450 0.353 0.076 191 182 A 7b 1400 0.37 0.073 176 189 A8b 1450 0.37 0.073 191 189 A9b 1400 0.643 0.048 376 345 A10b 1450 0.643 0Ό48 358 345 A11b 1400 0.681 0.039 369 358 A12b 1450 0.681 0.039 346 358 A13b 1400 0.597 0.101 369 394 A14b 1450 0.597 0.101 377 394 A15b 1400 0.604 0.11 367 413 A16b 1450 0.604 0.11 364 413 A17b 1400 0.522 0.122 428 373 A18b 1450 0.522 0.122 452 373 A19b 1375 0.506 0.128 426 371 A20b 1375 0.518 0.131 460 384 Table 5

No 覲察氣泡時的玻璃溫度Ct) β-ΟΗ Cl PbK實驗值 式(2)計算值 B1b 1365 0.304 0.132 193 225 B2b 1390 0.304 0.132 199 225 B3b 1420 0.304 0.132 200 225 B4b 1365 0.328 0.121 213 226 B5b 1390 0.328 0.121 219 226 B6b 1420 0.328 0.121 215 226 B7b 1365 0.269 0.117 227 178 B8b 1390 0.269 0.117 205 178 B9b 1420 0.269 0.117 202 178 C1b 1365 0.373 0.113 253 245 C2b 1420 0.373 0.113 233 245 C3b 1365 0.387 0.094 252 228 C4b 1420 0.387 0.094 249 228 C5b 1365 0.248 0.118 150 161 C6b 1420 0.248 0.118 161 161 C7b 1365 0.395 0.092 248 231 C8b 1420 0.395 0.092 222 231 C9b 1325 0.254 0.118 180 165 C10b 1475 0,254 0.118 170 165 C11b 1325 0.406 0.115 263 272 C12b 1475 0.406 0.115 278 272 產業上之可利用性 依據本發明之熔融玻璃之減壓脫泡方法,將減壓脫泡 33 201130760 槽之壓力保持在氣泡成長開始壓pbg以下且保持在再沸壓 Prb(mmHg)以上’可藉此使在減壓脫泡槽内含於熔融玻璃 之氣泡充分成長,亦可有效地去除熔融玻璃中之氣泡,另 一方面可防止在流入減壓脫泡槽之熔融玻璃中產生再沸, 結果可極度減低殘留在減壓脫泡處理後之熔融玻璃中的氣 泡,以製造具極少氣泡的高功能高品質之玻璃。如此一來, 可獲得具極優異氣泡品質的熔融玻璃及玻璃製品’尤其可 製造FPD用無鹼玻璃基板,而相當有用。 再者’於此引用已在2009年12月25日提出申請之曰本 專利申請案2009-294230號的說明書、申請專利範圍、圖式 及摘要的全内容,並作為本發明之揭示予以納入。 C圖式簡單說明3 第1圖係顯示用於本發明之減壓脫泡方法之減壓脫泡 裝置之一構成例的剖面圖。 第2圖係將T2與式(4)之係數a之關係加以繪圖(pi〇t)之 圖表。 第3圖係將丁2與式(4)之係數b之關係加以繪圖之圖表。 第4圖係將丁2與式(5)之係數c之關係加以繪圖之圖表。 第5圖係將T2與式(5)之係數d之關係加以繪圖之圖表。 第6圖係將再沸壓Prb與氣泡成長開始壓pbg2關係加 以繪圖之圖表。 第7圖係就無鹼玻璃組成A ' B、C,在氯含量(質量%) 為0.12質量%以上的情況下’將氣泡成長開始壓Pbg之實驗 值(mmHg)與氣泡成長開始壓Pb g之計算值(mmHg)之關係 34 201130760 加以繪圖之圖表。 第8圖係就無鹼玻璃組成A、B、C,在氣含量(質量%) 未滿0.12質量%的情況下,將氣泡成長開始壓Pbgi實驗值 (Γηηιί^)與氣泡成長開始壓Pb g之計算值(mmHg)之關係力口 以繪圖之圖表。 【主要元件符號說明】 1···減壓脫泡裝置 ll···減壓箱 12…減壓脫泡槽 13…上昇管 14…下降管 15…絕熱材 16…吸引開口部 20…熔解槽 G···熔融玻璃No Glass temperature when observing bubbles Ct) β-ΟΗ Cl PbK experimental value (2) Calculated value B1b 1365 0.304 0.132 193 225 B2b 1390 0.304 0.132 199 225 B3b 1420 0.304 0.132 200 225 B4b 1365 0.328 0.121 213 226 B5b 1390 0.328 0.121 219 226 B6b 1420 0.328 0.121 215 226 B7b 1365 0.269 0.117 227 178 B8b 1390 0.269 0.117 205 178 B9b 1420 0.269 0.117 202 178 C1b 1365 0.373 0.113 253 245 C2b 1420 0.373 0.113 233 245 C3b 1365 0.387 0.094 252 228 C4b 1420 0.387 0.094 249 228 C5b 1365 0.248 0.118 150 161 C6b 1420 0.248 0.118 161 161 C7b 1365 0.395 0.092 248 231 C8b 1420 0.395 0.092 222 231 C9b 1325 0.254 0.118 180 165 C10b 1475 0,254 0.118 170 165 C11b 1325 0.406 0.115 263 272 C12b 1475 0.406 0.115 278 272 Industry According to the vacuum degassing method of the molten glass of the present invention, the pressure of the vacuum degassing 33 201130760 tank is maintained below the bubble growth start pressure pbg and maintained above the reboiling pressure Prb (mmHg). Therefore, the bubbles contained in the molten glass in the vacuum degassing tank are sufficiently grown, and can also be effectively The bubbles in the molten glass are removed, and on the other hand, the reboiling in the molten glass flowing into the vacuum degassing tank can be prevented, and as a result, the bubbles remaining in the molten glass after the vacuum degassing treatment can be extremely reduced, so that the production is extremely small. High-performance, high-quality glass with bubbles. As a result, a molten glass and a glass article having excellent bubble quality can be obtained, and in particular, an alkali-free glass substrate for FPD can be produced, which is quite useful. Further, the entire contents of the specification, the patent application, the drawings and the abstract of the patent application No. 2009-294230, filed on Dec. 25, 2009, are hereby incorporated by reference. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a configuration example of a vacuum degassing apparatus used in the vacuum degassing method of the present invention. Figure 2 is a plot of the relationship between T2 and the coefficient a of equation (4) (pi〇t). Figure 3 is a graph plotting the relationship between D2 and the coefficient b of equation (4). Figure 4 is a graph plotting the relationship between D2 and the coefficient c of equation (5). Figure 5 is a graph plotting the relationship between T2 and the coefficient d of equation (5). Fig. 6 is a graph in which the relationship between the reboiling pressure Prb and the bubble growth start pressure pbg2 is plotted. 7 is an experimental value (mmHg) of the bubble growth start pressure Pbg and a bubble growth start pressure Pb g in the case where the chlorine content (% by mass) is 0.12% by mass or more. The relationship between the calculated values (mmHg) 34 201130760 The chart to be plotted. Fig. 8 shows the composition of the alkali-free glass A, B, and C. When the gas content (% by mass) is less than 0.12% by mass, the bubble growth start pressure Pbgi experimental value (Γηηιί^) and the bubble growth start pressure Pb g The calculated value (mmHg) is related to the graph of the drawing. [Explanation of main component symbols] 1···Decompression defoaming device ll···Reducing tank 12...Pressure degassing tank 13...Upward pipe 14...Down pipe 15...Insulation material 16...Attraction opening 20...Solution tank G··· molten glass

Pbg…氣泡成長開始壓Pbg... bubble growth start pressure

Prb···再沸壓 T2…溫度 a、b、c、d...係數Prb···reboil pressure T2...temperature a, b, c, d... coefficient

S 35S 35

Claims (1)

201130760 七、申請專利範圍: L -祕融_之減魏財法,係㈣融玻璃流入已將 内部保持在減壓狀態之減壓脫泡射,藉此進行減壓脫 泡熔融玻璃之方法,其特徵在於: 熔融玻璃為無鹼玻璃; 該方法係將在減壓脫泡實施時之減壓脫泡槽内之 壓力保持在以下述式(1)或式(2)表示之熔融玻璃之氣泡 成長開始壓Pbg(mmHg)以下,且保持在以下述式(3)表示 之熔融玻璃之再沸壓Prb(mmHg)以上; Pbg=(2.6082 X Τ2-3538.2) χ [β-〇Η]+(-1.2102 χ T2+2612.2)x[C1]-80.3......⑴; Pbg=(-0.2462 χ T2 + 1121.7) χ [β-ΟΗ]+(1.9714 x T2-1730.6)x[C1]-187.3......(2); Prb=〇.8325xPbg-59.5......(3); (式中,T2表示熔融玻璃之黏度呈l〇2dPa · s之溫度 (。〇 ; [β-ΟΗ]表示無鹼玻璃之β-ΟΗ值(mm·1);且[Cl]表 示無鹼玻璃中之氯含量(質量%);當[C1]為0.12質量%以 上時,Pbg係以式(1)表示;當[C1]為未滿0.12質量%時, Pbg係以式(2)表示)。 2. 如申請專利範圍第1項之熔融玻璃之減壓脫泡方法,其 中前述[0-〇抝為〇.15〜〇.6!11111·1。 3. 如申請專利範圍第1或2項之熔融玻璃之減壓脫泡方 法,其中前述[C1]為0·03〜0.3質量°/〇。 4. 如申請專利範圍第1至3項中任一項之熔融玻璃之減壓 36 201130760 脫泡方法,其中前述丁2為1500〜1750°C。 5. 如申請專利範圍第1至4項中任一項之熔融玻璃之減壓 脫泡方法,其中前述無鹼玻璃以下述氧化物換算之質 量%表示,含有以下成分: Si02 : 50〜66質量0/〇 ; Al2〇3 : 10.5〜24質量% ; B2〇3 : 0〜12質量% ; MgO : 0~8 質量 % ; CaO : 0〜14.5質量% ; SrO : 0~24質量% ; BaO : 0-13.5 質量% ;及 MgO+CaO+SrO+BaO : 9〜29.5 質量 %。 6. 如申請專利範圍第1至4項中任一項之熔融玻璃之減壓 脫泡方法,其中前述無鹼玻璃以下述氧化物換算之質量 %表示,含有以下成分: Si02 : 58〜66質量% ; Al2〇3 : 15〜22質量% ; B2〇3 : 0〜12 質量 % ; MgO : 0〜8質量% ; CaO : 0〜9質量% ; SrO : 3~12.5 質量% ; BaO : 0〜2質量% ;及 MgO+CaO+SrO+BaO : 9〜18 質量 %。 7. —種玻璃製品之製造方法,其依序係具有下述該等步 S 37 201130760 驟: 玻璃炼融步驟,係溶融玻璃原料,並製造溶融玻璃 者; 減壓脫泡步驟,係依據如申請專利範圍第1至6項中 任一項之熔融玻璃之減壓脫泡方法者;及 玻璃製品成形步驟,係將經減壓脫泡之熔融玻璃予 以成形者。 38201130760 VII. Scope of application for patents: L - Mi Rong _ 减 魏 财 魏 , , , , 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏The molten glass is an alkali-free glass; the method is to maintain the pressure in the vacuum degassing tank at the time of performing the vacuum degassing in the bubble growth of the molten glass represented by the following formula (1) or (2) The pressure Pbg (mmHg) or less is maintained at a reboil pressure Prb (mmHg) or more of the molten glass represented by the following formula (3); Pbg = (2.6082 X Τ 2-3538.2) χ [β-〇Η] + (-1.2102 χ T2+2612.2)x[C1]-80.3...(1); Pbg=(-0.2462 χ T2 + 1121.7) χ [β-ΟΗ]+(1.9714 x T2-1730.6)x[C1]-187.3. .....(2); Prb=〇.8325xPbg-59.5 (3); (wherein, T2 represents the viscosity of the molten glass at a temperature of l〇2dPa·s (.〇; [β -ΟΗ] represents the β-ΟΗ value of the alkali-free glass (mm·1); and [Cl] represents the chlorine content (% by mass) in the alkali-free glass; when [C1] is 0.12% by mass or more, the Pbg is of the formula (1) indicates that when [C1] is less than 0.12% by mass, Pbg is represented by formula (2) 2. The vacuum degassing method for molten glass according to item 1 of the patent application, wherein the above [0-〇拗 is 〇.15~〇.6!11111·1. 3. If the patent application range is 1 or 2 The vacuum degassing method of the molten glass of the present invention, wherein the aforementioned [C1] is from 0. 03 to 0.3 mass% / 〇. 4. The reduced pressure of the molten glass according to any one of claims 1 to 3, 2011. The defoaming method, wherein the butyl hydride is in the range of 1500 to 1750 ° C. The vacuum degassing method of the molten glass according to any one of claims 1 to 4, wherein the alkali-free glass is converted into the following oxides The mass % indicates that the following components are contained: Si02: 50 to 66 mass 0/〇; Al2〇3: 10.5 to 24% by mass; B2〇3: 0 to 12% by mass; MgO: 0 to 8% by mass; CaO: 0 ~ 14.5 mass%; SrO: 0 to 24 mass%; BaO: 0-13.5 mass%; and MgO+CaO+SrO+BaO: 9 to 29.5 mass%. 6. As in any of claims 1 to 4 The vacuum defoaming method of the molten glass according to the item, wherein the alkali-free glass is represented by mass% of the following oxides, and contains the following components: Si02: 58-66 Amount %; Al2〇3: 15 to 22% by mass; B2〇3: 0 to 12% by mass; MgO: 0 to 8% by mass; CaO: 0 to 9% by mass; SrO: 3 to 12.5% by mass; BaO: 0 ~2% by mass; and MgO+CaO+SrO+BaO: 9 to 18% by mass. 7. A method for producing a glass product, which has the following steps: S 37 201130760: a glass refining step, which melts the glass raw material and produces a molten glass; the vacuum degassing step is based on The method for forming a vacuum defoaming of molten glass according to any one of claims 1 to 6; and the step of forming a glass product by molding a molten glass which has been defoamed under reduced pressure. 38
TW099145854A 2009-12-25 2010-12-24 Method for vacuum-degassing molten glass and process for producing glass product TW201130760A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294230 2009-12-25

Publications (1)

Publication Number Publication Date
TW201130760A true TW201130760A (en) 2011-09-16

Family

ID=44195785

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099145854A TW201130760A (en) 2009-12-25 2010-12-24 Method for vacuum-degassing molten glass and process for producing glass product

Country Status (5)

Country Link
JP (1) JPWO2011078258A1 (en)
KR (1) KR20120115209A (en)
CN (1) CN102666408A (en)
TW (1) TW201130760A (en)
WO (1) WO2011078258A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584002A (en) * 2012-02-29 2012-07-18 成都中光电科技有限公司 Clarifying agent for TFT-LCD (Thin Film Transistor Liquid Crystal Display) glass, application and use method thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141152A1 (en) * 2011-04-12 2012-10-18 旭硝子株式会社 Method for vacuum-degassing of molten glass, device for vacuum-degassing of molten glass, method for producing molten glass, device for producing molten glass, method for producing article made of glass, and device for producing article made of glass
JP5806406B2 (en) * 2011-09-02 2015-11-10 エルジー・ケム・リミテッド Alkali-free glass and method for producing the same
WO2013032289A2 (en) * 2011-09-02 2013-03-07 주식회사 엘지화학 Alkali-free glass and method for manufacturing same
CN103781735B (en) 2011-09-02 2016-02-10 Lg化学株式会社 Non-alkali glass and preparation method thereof
JP2016084242A (en) * 2013-02-19 2016-05-19 旭硝子株式会社 Non-alkali glass and manufacturing method therefor
WO2015088009A1 (en) * 2013-12-13 2015-06-18 旭硝子株式会社 Glass for chemical strengthening, chemically strengthened glass, and method for producing chemically strengthened glass
TWI755502B (en) 2017-03-16 2022-02-21 美商康寧公司 Method for decreasing bubble lifetime on a glass melt surface
CN106830624A (en) * 2017-04-06 2017-06-13 蚌埠玻璃工业设计研究院 A kind of staged vacuum degassing apparatus for improving melten glass liquid clear quality
US11629092B2 (en) * 2017-09-05 2023-04-18 Nippon Electric Glass Co., Ltd. Method for manufacturing alkali-free glass substrate and alkali-free glass substrate
KR102634707B1 (en) * 2017-09-20 2024-02-08 에이지씨 가부시키가이샤 Alkali-free glass substrate
CN111344260B (en) * 2017-11-21 2022-08-02 Agc株式会社 Molten glass conveying device, glass manufacturing device, and glass manufacturing method
WO2020106539A1 (en) 2018-11-21 2020-05-28 Corning Incorporated Method for decreasing bubble lifetime on a glass melt surface
CN109775963B (en) * 2018-12-28 2020-12-15 中建材蚌埠玻璃工业设计研究院有限公司 Decompression melting clarification method for alkali-free glass
JP7127587B2 (en) 2019-03-19 2022-08-30 Agc株式会社 Alkali-free glass substrate
KR102141856B1 (en) * 2019-03-19 2020-08-07 에이지씨 가부시키가이샤 Alkali-free glass substrate
US11718553B2 (en) 2019-03-19 2023-08-08 AGC Inc. Alkali-free glass substrate
CN111499185B (en) * 2020-04-29 2021-04-13 湖南旗滨医药材料科技有限公司 Composite clarifying agent, borosilicate glass and preparation method thereof
JP2022112743A (en) 2021-01-22 2022-08-03 Agc株式会社 float glass substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4941872B2 (en) * 2003-09-02 2012-05-30 日本電気硝子株式会社 Transparent alkali-free glass substrate for liquid crystal display
JP2008105860A (en) * 2005-01-31 2008-05-08 Nippon Sheet Glass Co Ltd Process for producing glass
WO2007111079A1 (en) * 2006-03-27 2007-10-04 Asahi Glass Company, Limited Glass-making process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584002A (en) * 2012-02-29 2012-07-18 成都中光电科技有限公司 Clarifying agent for TFT-LCD (Thin Film Transistor Liquid Crystal Display) glass, application and use method thereof

Also Published As

Publication number Publication date
WO2011078258A1 (en) 2011-06-30
CN102666408A (en) 2012-09-12
JPWO2011078258A1 (en) 2013-05-09
KR20120115209A (en) 2012-10-17

Similar Documents

Publication Publication Date Title
TW201130760A (en) Method for vacuum-degassing molten glass and process for producing glass product
US7582581B2 (en) Alkali-free glass
KR102169675B1 (en) High volume production of display quality glass sheets having low zirconia levels
TW201825421A (en) Glass
JP5737285B2 (en) Vacuum degassing method for molten glass
JP7127587B2 (en) Alkali-free glass substrate
US9352994B2 (en) Method for vacuum-degassing molten glass, apparatus for vacuum-degassing molten glass, process for producing molten glass, apparatus for producing molten glass, process for producing glass product, and apparatus for producing glass product
TWI828574B (en) Alkali-free glass and manufacturing method thereof
JP2021505507A (en) Equipment and methods for manufacturing glass
US10974986B2 (en) Alkali-free glass substrate
JP2022105215A (en) Glass
TWI836035B (en) Alkali-free glass substrate
TWI833928B (en) Alkali-free glass substrate
JP2024023627A (en) Alkali-free glass substrate
KR102141856B1 (en) Alkali-free glass substrate
KR20230037001A (en) Method of making a glass product, and a glass product
JP2005053708A (en) Glass for flat panel display
WO2023036880A1 (en) Glass product, glass composition, and method of making a glass product
JP2022112743A (en) float glass substrate