WO2006080444A1 - Process for producing glass - Google Patents

Process for producing glass Download PDF

Info

Publication number
WO2006080444A1
WO2006080444A1 PCT/JP2006/301331 JP2006301331W WO2006080444A1 WO 2006080444 A1 WO2006080444 A1 WO 2006080444A1 JP 2006301331 W JP2006301331 W JP 2006301331W WO 2006080444 A1 WO2006080444 A1 WO 2006080444A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
water
molten
atmosphere
raw material
Prior art date
Application number
PCT/JP2006/301331
Other languages
French (fr)
Japanese (ja)
Inventor
Yutaka Senshu
Junji Kurachi
Akihiro Koyama
Hiromitsu Seto
Kazuhiro Yamamoto
Daisuke Miyabe
Original Assignee
Nippon Sheet Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Company, Limited filed Critical Nippon Sheet Glass Company, Limited
Publication of WO2006080444A1 publication Critical patent/WO2006080444A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/004Refining agents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass

Definitions

  • the present invention relates to a glass manufacturing method, and more specifically to a glass manufacturing method suitable for manufacturing an alkali-free glass used for a display substrate or the like.
  • a glass composition substantially free of an alkali component, particularly sodium is suitable.
  • the melting temperature of a glass composition substantially free from alkali components is higher than that of a general glass composition such as soda lime glass.
  • a fining agent used in the production of alkali-free glass an arsenic compound such as Aso, which has a good fining action even in a high temperature range, has been representative.
  • Aso an arsenic compound such as Aso, which has a good fining action even in a high temperature range
  • the glass production process is such that j8-OH in the obtained glass is less than about 0.5.
  • antimony compounds such as Sb 2 O, which are usually not as efficient at high melting temperatures, can be used as fining agents instead of As O.
  • the preferred content of the obtained glass is in the range of 0.2 to 0.5 mol%.
  • a clarifier that does not contain antimony as well as arsenic, but the method described in Document 1 is difficult.
  • Reference 1 shows that a halide is reduced to a glass raw material batch as a desiccant to reduce the amount of water in the glass!
  • References 3 and 4 include Na SO, As O and Sb O in the glass manufacturing process.
  • Documents 3 to 5 are methods for producing glass containing a large amount of alkali components.
  • a sulfate raw material is generally used as a fining agent.
  • a sulfate raw material is used as a fining agent.
  • a glass composition having a low basicity such as an alkali-free glass, the solubility of SO in the glass composition is low, and SO tends to remain as bubbles.
  • the present invention provides an arsenic compound such as As O and an antimony compound such as Sb 2 O as a clarifying agent.
  • the method for producing a glass of the present invention comprises an alkali metal oxide, AsO and a fining agent.
  • Introduction of water into the melting atmosphere that forms the molten glass and introduction of water into the molten glass At least one of them forms a molten glass containing water, and the formed molten glass is clarified in a reduced pressure atmosphere having a water vapor partial pressure lower than that of the molten atmosphere.
  • j8-OH reflects the content of hydroxyl groups (hydroxyl groups) in the glass and is a value measured by infrared spectroscopy (IR spectroscopy).
  • the amount of moisture in the glass can be estimated from the value of ⁇ OH, and the larger the value, the greater the amount of moisture.
  • ⁇ OH may be obtained as follows.
  • a glass with a reduced number of bubbles can be obtained by a high clarification effect without using an arsenic compound and an antimony compound as a clarifier.
  • FIG. 1 is a diagram showing the relationship between j8-OH and the number of bubbles in a glass sample produced in the example.
  • the amount of water contained is increased compared to the conventional method! A molten glass is formed. That is, the proportion of water (H 2 O) in the gas components dissolved in the molten glass is substantially equal to the alkali metal oxide formed in the conventional melting process.
  • the melting step an equilibrium is established between a gas component dissolved in the molten glass and a gas corresponding to the gas component in the melting atmosphere, for example, water vapor when the gas component is water. Yes.
  • the water vapor partial pressure in the molten atmosphere can be increased by increasing the amount of water contained in the molten glass.
  • the partial pressure is increased, the partial pressures of nitrogen and carbon dioxide in the molten atmosphere are decreased, and thus the partial pressures of these gases in the bubbles contained in the molten glass are also decreased.
  • the molten glass formed in the melting step is clarified in a reduced pressure atmosphere (clarified atmosphere) with a partial pressure of water vapor lower than that of the molten atmosphere so as to be in the range of 2 to 0.35 mm 1 .
  • the clarification step by using the clarification atmosphere, the amount of water contained in the molten glass can be reduced and clarification can be promoted. A clarification effect can be obtained.
  • the production method of the present invention a molten glass having a large amount of moisture is formed in the melting step, and the amount of moisture is reduced in the refining step. It can be said that there is.
  • the melting process is performed in a melting atmosphere having a relatively high water vapor partial pressure so that j8-OH in the obtained glass is in the range of 0.2 to 0.35 mm- 1 .
  • the clarification process is performed in a clarification atmosphere with a relatively low water vapor partial pressure.
  • the production method of the present invention is different from the production method disclosed in Document 1 in which the moisture content in the molten glass in the glass production process is kept low.
  • the amount of moisture in the molten glass can be effectively reduced by setting the clarification atmosphere.
  • the glass is homogeneously mixed by stirring for the purpose of reducing striae.
  • the generation of bubbles in the steps after the clarification step can be suppressed, for example, the generation of bubbles due to the cavity can be suppressed.
  • the molten glass is formed by the melting step so that 13 OH in the obtained glass is 0.3 mm 1 or less, and the formed molten glass is clarified by the clarification step. It is preferable.
  • the molten glass is formed by the melting step so that j8-OH in the obtained glass is 0.24 mm 1 or more, and the formed molten glass is clarified by the clarification step. It is preferable to do. In these cases, a higher clarification effect can be realized, and a glass with a reduced number of bubbles can be obtained.
  • the above melting and clarification steps may be performed so that j8—OH in the obtained glass is in the range of 0.24-0.3 mm- 1 . ⁇ .
  • a method for forming a molten glass containing water over the melting step is as follows.
  • At least one force is selected.
  • a molten glass containing water can be formed.
  • the melting step in the production method of the present invention is general except that the molten glass containing water is formed by at least one of the above methods so that j8-OH of the obtained glass falls within a predetermined range. Apply the melting process in the alkali-free glass manufacturing method.
  • the selection method of (A) is not particularly limited. For example, if the glass raw material containing water as the component and at least one glass raw material selected to generate water during melting are selected. Good.
  • a glass raw material that generates water at the time of melting for example, a hydrate having hydrated water (crystal water), a hydroxide or the like may be used.
  • the addition method of (B) is not particularly limited. For example, after spraying water onto a glass raw material batch, the batch may be melted.
  • the method for introducing (C) is not particularly limited. For example, (C 1) supply of water to the melting atmosphere, and (C 2) generation of water in the melting atmosphere, and at least one selected by force are performed. Just do it.
  • the method of (C-1) is not particularly limited.
  • water or separately formed water vapor is melted into a melting atmosphere via a pipe or the like, more specifically, to a melting tank for melting a glass raw material batch. , Supply.
  • water may be sprayed into the melting atmosphere (to the inside of the melting tank).
  • waste heat from a melting tank or a clarification tank for clarification of molten glass may be used.
  • the method (C-2) is not particularly limited.
  • a gas containing hydrogen gas may be burned in a melting atmosphere.
  • the heat generated by the combustion of the gas can be used as a heat source for melting the glass raw material batch.
  • the combustion power must not be the main heat source for melting the glass raw material batch.
  • the method for introducing (D) is not particularly limited.
  • water vapor may be published into the molten glass.
  • the water content in the molten glass is relatively easy to control. It is preferable to form a molten glass containing. Among them, it is preferable to introduce water into the melting atmosphere by the method (C1) because of its low cost and easy control of the amount of water introduced into the melting atmosphere.
  • the method for obtaining a clarified atmosphere having a reduced partial pressure of water vapor and a reduced pressure as compared with the melting atmosphere is not particularly limited.
  • the degree of decompression it is preferable to increase the degree of decompression, but excessive decompression causes an increase in production cost and makes it difficult to configure the production equipment.
  • the temperature of the molten glass at the time of clarification is usually in the range of about 1400 to 1600 ° C, more preferably in the range of about 1450 to 1550 ° C.
  • heating of the molten glass is necessary in the clarification step, it is preferable to perform the heating by a method that does not generate water vapor. In this case, compared to the water vapor partial pressure of the molten atmosphere. Thus, the water vapor partial pressure in the clear atmosphere can be kept lower.
  • heating methods include heater heating, heating by direct energization of glass, induction using electromagnetic waves and dielectric heating, and combustion of fuels that do not contain hydrogen, such as carbon monoxide and carbon. The method used is mentioned.
  • the clarification step in the production method of the present invention is a general production of alkali-free glass except that the molten glass is clarified in the clarification atmosphere so that the ⁇ -OH of the obtained glass falls within a predetermined range.
  • the clarification process in the method may be applied.
  • the production method of the present invention may include an optional step such as a homogenization step in addition to the melting step and the clarification step.
  • a refining agent usually used in the production of alkali-free glass may be used.
  • chlorine may be used as a refining agent.
  • Chlorine forms hydrogen chloride in the molten glass by reaction with water, and the formed salt hydrogen can remove the molten glass force relatively easily. Chlorine also has the effect of reducing the surface tension of the molten glass. For these reasons, clarification of the molten glass in the clarification process can be promoted by using chlorine as a clarifier.
  • a glass raw material batch may contain salty soup.
  • the chloride content in the batch is usually in the range of about 0.02 to 5% by weight in terms of C1 and an external number relative to the total of components other than chloride.
  • the range of 0.02 to 1% by weight is preferable, and the range of 0.02% to less than 0.5% by weight is more preferable.
  • chloride it is preferable to use MgCl and Z or CaCl! /.
  • the C1 content in the obtained glass becomes smaller than the C1 content in the glass raw material batch due to the desorption of C1 in the clarification step.
  • the content of C1 in the obtained glass is not particularly limited, but is, for example, in the range of 0.01 to 2.5% by weight, preferably in the range of 0.01 to 2% by weight. A range of 5% by weight is more preferred.
  • fluorine may be used together with chlorine as a fining agent.
  • fluorine is less effective in reducing the surface tension of molten glass than chlorine, It has the effect of reducing the viscosity of the gas and increasing the rising speed of the bubbles. For this reason, the clarification of the molten glass in the clarification process can be further promoted by using fluorine together with chlorine as a clarifier.
  • a glass raw material batch may further contain fluoride.
  • the content of food salt in the batch is an F number and an external number relative to the total of components other than chloride and fluoride, and usually contains chloride in the batch. It may be less than the rate. More specifically, for example, the range up to about 3% by weight is preferred, the range up to about 1% by weight is preferred, and the range up to 0.5% by weight is more preferred.
  • the F content in the obtained glass is smaller than the F content in the glass raw material batch, as in the case of C1.
  • the content of F in the obtained glass is not particularly limited, but is, for example, in the range of 0 to 1.5% by weight, preferably in the range of 0 to 0.5% by weight. 0 to 0.3% by weight % Range is more preferred.
  • the production method of the present invention can be widely applied regardless of its glass composition as long as it is non-alkali glass, and in particular, can be suitably applied to the production of aluminoborosilicate glass.
  • alkali-free means substantially an alkali metal oxide, specifically Na 0, K ⁇ and Li O.
  • the glass obtained by the production method of the present invention contains As O and Sb.
  • impurities inevitably mixed from industrial glass raw materials are intended to allow trace components of less than 0.1% by weight.
  • the production method of the present invention may be used for the production of glass (glass composition) having the following composition.
  • Preferred ranges of the content of each of the above components in the glass obtained by the production method of the present invention are as follows.
  • the display of “%” in the description of each component means “heavy transition%”.
  • SiO 2 is an essential component that forms a glass network, and its content is less than 45%.
  • the chemical durability of the glass will decrease, and if it exceeds 75%, the meltability of the glass will deteriorate.
  • the content of SiO is preferably in the range of 58 to 65%, more preferably in the range of 59 to 64.5%.
  • Al O is an essential component that suppresses devitrification of glass and improves its heat resistance.
  • the Al O content is preferably in the range of 10 to 20%, more preferably in the range of 10% or more and less than 17%.
  • 23 3 is an essential component that lowers the viscosity of the molten glass and facilitates melting of the glass by acting as a flux.
  • the content of B 2 O is less than 2%, it is difficult to melt and clarify the glass.
  • the content of B 2 O is preferably in the range of 5 to 17%, more preferably in the range of 8 to 16%.
  • the lower limit of the content of B 2 O is preferably 8% by weight or more, more preferably 10% by weight or more.
  • MgO is an optional component that improves the meltability of the glass without lowering the strain point of the resulting glass. If the MgO content exceeds 10%, the devitrification temperature of the glass increases.
  • the content of MgO is preferably in the range of 0 to 5%, more preferably in the range of 1 to 2.5%.
  • CaO is an optional component that reduces the high temperature viscosity of the glass. If the CaO content exceeds 15%, the devitrification temperature of the glass increases.
  • the CaO content is preferably in the range of 3 to 10%, more preferably in the range of 5 to 9%.
  • SrO is an optional component that improves its meltability without reducing the devitrification resistance of the glass. is there. If the SrO content exceeds 15%, the thermal expansion coefficient of the glass becomes too large.
  • the SrO content is preferably in the range of 0 to 3%, more preferably in the range of 0 to 2.5%.
  • BaO is an optional component that suppresses devitrification of the glass. If the BaO content exceeds 25%, the thermal expansion coefficient of the glass becomes too large.
  • the content of BaO is preferably in the range of 0 to 2%, and more preferably in the range of 0 to 0.5%.
  • the meltability of the glass decreases, and if it exceeds 35%, the thermal expansion coefficient becomes too large.
  • the total is preferably in the range of 5-20%, more preferably in the range of 7-13%.
  • a range of 0.01 to 2% is preferred.
  • a range of 0.01 to 0. 5% is more preferred.
  • a range of 0 to 0.5% is preferred.
  • a range of 0 to 0.3% is more preferred.
  • the glass obtained by the production method of the present invention may contain components other than the above-described components as necessary. These components include, for example, NiO, CoO, CrO, etc.
  • the glass obtained by the production method of the present invention may be substantially free of SO.
  • CaO 8%, SrO: and such that 1% of the composition (all weight 0/0), mixed with glass material.
  • CaCl and CaF as clarifying agents, 0.24 parts by weight and 0.1 part by weight were further added to obtain a glass raw material batch.
  • the glass raw material use the hydroxide for A1 and B (boron), and use MgO hydrate for Mg.
  • the water content in the glass raw material batch is 7.7% by weight. I made it.
  • the glass raw material batch thus prepared was put into a platinum crucible housed in a furnace maintained at atmospheric pressure and melted at 1600 ° C. for 2 hours using the furnace. At this time, the water vapor partial pressure in the melting atmosphere was adjusted by continuously supplying a certain amount of water into the furnace from the start to the end of the melting.
  • the water supply was stopped and the furnace temperature was set to 1500 ° C, and the furnace pressure was reduced to about 10 kPa (0.1 atm) by applying the pressure in the furnace for 20 minutes. Subsequently, after maintaining this pressure and temperature for 30 minutes, while maintaining the temperature, the pressure in the furnace was increased for 20 minutes to return to atmospheric pressure, whereby the molten glass was clarified under reduced pressure. Thereafter, the crucible was taken out from the furnace and rapidly cooled to room temperature, and the obtained glass lump was gradually cooled to obtain a glass sample for evaluation.
  • the furnace pressure was reduced to about 10 kPa (0.1 atm) by applying the pressure in the furnace for 20 minutes. Subsequently, after maintaining this pressure and temperature for 30 minutes, while maintaining the temperature, the pressure in the furnace was increased for 20 minutes to return to atmospheric pressure, whereby the molten glass was clarified under reduced pressure. Thereafter, the crucible was taken out from the furnace and rapidly cooled to room temperature, and the obtained glass lump was gradually cooled to obtain a glass sample for
  • J8-OH in the glass sample obtained as described above was determined by the method described above.
  • the residual ratio of the fining agents (C1 and F) in the glass samples obtained as described above was determined by semi-quantitative analysis using fluorescent X-rays.
  • required residual rate is a value as a content rate in a glass composition.
  • Example 1 with respect to Example Samples 1 to 2 in which the amount of water supplied was changed in the melting process, and Comparative Sample A with no water supplied, the number of bubbles, ⁇ - ⁇ , And the clarifier residual rate was evaluated.
  • Table 1 below shows the evaluation results together with the amount of water supplied in each sample.
  • a glass raw material batch was prepared by further adding parts by weight and 0.1 part by weight. In the same manner as in Example 1, the water content in the glass raw material batch was adjusted to 11.5% by weight.
  • Example 2 with respect to Example Samples 3 to 5 in which the amount of water supplied was changed in the melting step, and Comparative Sample B with no water supplied, the number of bubbles, ⁇ - ⁇ , And the clarifier residual rate was evaluated.
  • Example Samples 3 to 5 which were in the range of 35 mm- 1 , good fining could be realized and the number of bubbles could be reduced.
  • the lower limit of ⁇ -OH may be determined according to the desired quality with respect to the number of bubbles in the obtained glass. According to the results of the above example, when the value of ⁇ OH is at least about 0.24 mm 1 , the number of bubbles was reduced particularly, that is, the number of bubbles. A glass having a particularly good quality is obtained.
  • the upper limit of ⁇ OH is considered to be determined by the amount of water contained in the molten glass and the partial pressure of water vapor in the clarified atmosphere.
  • a high clarification effect can be realized without using an arsenic compound and an antimony compound as a clarifier, and a glass with a reduced number of bubbles can be obtained.
  • the glass obtained by the production method of the present invention is suitable for substrates for various displays such as a liquid crystal display substrate and a plasma display substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)

Abstract

A process for producing a glass containing substantially no alkali metal oxide and substantially no clarifier which is As2O3 or Sb2O3. It has a high clarifying effect. A molten glass containing water is formed by at least one means selected among selecting ingredients for a raw glass material batch, adding water to a raw glass material batch, introducing water into a melting atmosphere for molten-glass formation, and introducing water into a molten glass so as to yield a glass having a β-OH in the range of 0.2-0.35 mm-1. The molten glass formed is clarified in a reduced-pressure atmosphere which has a lower partial water vapor pressure than the melting atmosphere.

Description

明 細 書  Specification
ガラスの製造方法  Glass manufacturing method
技術分野  Technical field
[0001] 本発明は、ガラスの製造方法、より具体的には、ディスプレイ基板などに用いられる 無アルカリガラスの製造に適したガラスの製造方法に関する。  The present invention relates to a glass manufacturing method, and more specifically to a glass manufacturing method suitable for manufacturing an alkali-free glass used for a display substrate or the like.
背景技術  Background art
[0002] 液晶ディスプレイなど、各種ディスプレイの基板に用いられるガラスには、アルカリ 成分、特にナトリウムを実質的に含まないガラス組成物が適している。アルカリ成分を 実質的に含まないガラス組成物 (無アルカリガラス)の熔融温度は、ソーダライムガラ スなどの一般的なガラス組成物に比べて高い。このため、無アルカリガラスの製造に 用いる清澄剤としては、従来、高い温度領域においても良好な清澄作用を有する As oなどの砒素化合物が代表的である。しかし、環境に対する負荷を軽減する観点か [0002] As a glass used for substrates of various displays such as a liquid crystal display, a glass composition substantially free of an alkali component, particularly sodium is suitable. The melting temperature of a glass composition substantially free from alkali components (non-alkali glass) is higher than that of a general glass composition such as soda lime glass. For this reason, as a fining agent used in the production of alkali-free glass, an arsenic compound such as Aso, which has a good fining action even in a high temperature range, has been representative. However, from the viewpoint of reducing the environmental load
2 3 twenty three
ら、砒素を含まない清澄剤の使用が望まれる。  Therefore, it is desirable to use a clarifier that does not contain arsenic.
[0003] 例えば、国際公開 WO98/03442パンフレット(特表 2001-500098号公報:文献 1)に は、得られたガラスにおける j8—OHが約 0. 5未満となるように、ガラス製造工程にお ける熔融ガラス中の水分量を低く維持することにより、通常、高い熔融温度ではそれ ほど効率的ではない Sb Oなどのアンチモン化合物を As Oに代わって清澄剤とし [0003] For example, in the international publication WO98 / 03442 pamphlet (Japanese Patent Publication No. 2001-500098: reference 1), the glass production process is such that j8-OH in the obtained glass is less than about 0.5. By keeping the water content in the molten glass low, antimony compounds such as Sb 2 O, which are usually not as efficient at high melting temperatures, can be used as fining agents instead of As O.
2 3 2 3  2 3 2 3
て使用し、良好な清澄を実施できることが示されている。文献 1の製造方法では、砒 素を実質的に含まな ヽ (含有率にして 0. 02モル%未満)無アルカリガラスが製造で きるが、その実施例にも示されているように、清澄剤として Sb Oの使用が好ましいと  It has been shown that good fining can be performed. According to the production method of Document 1, alkali-free glass that contains substantially no arsenic (concentration of less than 0.02 mol%) can be produced. The use of Sb 2 O as the agent is preferred
2 3  twenty three
され、得られたガラスにおけるその好ましい含有率は 0. 2〜0. 5モル%の範囲である 。環境に対する負荷をより軽減するためには、砒素のみならず、アンチモンを含まな い清澄剤の使用が望まれるが、文献 1の方法では困難である。なお、文献 1では、ガ ラス中の水分量を低減させる乾燥剤として、ハロゲン化物をガラス原料バッチにカロえ てちょ 、ことが示されて!/、る。  The preferred content of the obtained glass is in the range of 0.2 to 0.5 mol%. In order to further reduce the burden on the environment, it is desirable to use a clarifier that does not contain antimony as well as arsenic, but the method described in Document 1 is difficult. Reference 1 shows that a halide is reduced to a glass raw material batch as a desiccant to reduce the amount of water in the glass!
[0004] 文献 1とは別に、熔融ガラス中の水分を利用したガラスの製造方法が、例えば、特 開 2000-128549号公報(文献 2)、特開平 10-114529号公報(文献 3)、特開平 11-797 55号公報(文献 4)、および、特開 2002-293547号公報(文献 5)に開示されている。 [0004] In addition to Reference 1, glass manufacturing methods using moisture in molten glass are disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-128549 (Reference 2), Japanese Patent Application Laid-Open No. 10-114529 (Reference 3), Kaihei 11-797 No. 55 (Reference 4) and Japanese Unexamined Patent Application Publication No. 2002-293547 (Reference 5).
[0005] 文献 2には、燃料と酸素ガスとの燃焼により得られた熱によりガラス原料を熔融して 、従来より水および二酸ィ匕炭素の含有率が大きい熔融ガラスとすることによって、従 来よりも減圧の程度を低減させながら良好に減圧清澄できることが示されている。し かし、文献 2の方法は酸素ガスの使用が前提とされ、必要なコストが高い。 [0005] In Document 2, the glass raw material is melted by heat obtained by the combustion of fuel and oxygen gas to obtain a molten glass having a higher content of water and carbon dioxide than before. It has been shown that it can be clarified under reduced pressure better while reducing the degree of reduced pressure. However, the method of Document 2 is predicated on the use of oxygen gas and requires a high cost.
[0006] 文献 3、 4には、ガラス製造プロセスにおいて、 Na SO、 As Oおよび Sb Oのよう [0006] References 3 and 4 include Na SO, As O and Sb O in the glass manufacturing process.
2 4 2 3 2 3 な慣用の清澄剤と溶解水とを併用することにより、清澄剤の量を低減できることが示さ れている。文献 5には、熔融ガラスにおける水の含有率と、減圧清澄時の圧力との関 係を規定することにより、得られたガラスにおける泡およびアッシュ欠点を低減できる ことが示されている。文献 3〜5の方法は、アルカリ成分を多く含むガラスの製造方法 である。このようなアルカリ含有ガラスの製造時には、清澄剤として硫酸塩原料の使 用が一般的であり、例えば、文献 3〜5の実施例では、全て清澄剤として硫酸塩原料 が用いられている。しかし、無アルカリガラスのような塩基性の低いガラス組成物では 、当該ガラス組成物への SOの溶解度が低ぐ SOが気泡として残留しやすいために  It has been shown that the amount of fining agent can be reduced by using a conventional fining agent such as 2 4 2 3 2 3 and dissolved water in combination. Reference 5 shows that by defining the relationship between the water content in molten glass and the pressure during clarification under reduced pressure, bubbles and ash defects in the obtained glass can be reduced. Documents 3 to 5 are methods for producing glass containing a large amount of alkali components. In the production of such an alkali-containing glass, a sulfate raw material is generally used as a fining agent. For example, in Examples 3 to 5, a sulfate raw material is used as a fining agent. However, in a glass composition having a low basicity such as an alkali-free glass, the solubility of SO in the glass composition is low, and SO tends to remain as bubbles.
3 2  3 2
、清澄剤として硫酸塩原料を用いることは好ましくない。このため、文献 3〜5の方法 を、そのまま無アルカリガラスの製造に適用することは困難である。  It is not preferable to use a sulfate raw material as a fining agent. For this reason, it is difficult to apply the methods of References 3 to 5 to the production of alkali-free glass as they are.
[0007] また、文献 2〜4では、アンチモンィ匕合物を用いることなく清澄を良好に行う方法、 および、得られたガラスにおける β—OHについて、開示も示唆もなされていない。 発明の開示 [0007] In addition, in References 2 to 4, there is no disclosure or suggestion of a method for performing clarification well without using antimony compound and β-OH in the obtained glass. Disclosure of the invention
[0008] 本発明は、清澄剤として、 As Oなどの砒素化合物、および、 Sb Oなどのアンチモ  [0008] The present invention provides an arsenic compound such as As O and an antimony compound such as Sb 2 O as a clarifying agent.
2 3 2 3  2 3 2 3
ン化合物を用いることなぐ高い清澄効果が得られるガラスの製造方法の提供を目的 とする。  It is an object of the present invention to provide a method for producing a glass that can provide a high clarification effect without using a copper compound.
[0009] 本発明のガラスの製造方法は、アルカリ金属酸化物と、清澄剤としての As Oおよ  [0009] The method for producing a glass of the present invention comprises an alkali metal oxide, AsO and a fining agent.
2 3 び Sb Oとを実質的に含まないガラス、すなわち、清澄剤としての As Oおよび Sb O 2 3 Glass with virtually no Sb O, i.e. As O and Sb O as fining agents
2 3 2 3 2 3 を実質的に含まない無アルカリガラス、の製造方法である。本発明の製造方法では、 得られたガラスにおける j8—OHが 0. 2〜0. 35mm— 1の範囲となるように、ガラス原 料バッチにおける成分の選択、ガラス原料バッチへの水の添加、熔融ガラスを形成 する熔融雰囲気への水の導入、および、熔融ガラス中への水の導入力 選ばれる少 なくとも 1つにより、水を含有する熔融ガラスを形成し、当該形成した熔融ガラスを、上 記熔融雰囲気よりも水蒸気分圧が低ぐかつ、減圧された雰囲気にて清澄する。 This is a method for producing alkali-free glass substantially free of 2 3 2 3 2 3. In the production method of the present invention, selection of components in the glass raw material batch, addition of water to the glass raw material batch, so that j8-OH in the obtained glass is in the range of 0.2 to 0.35 mm- 1 . Introduction of water into the melting atmosphere that forms the molten glass and introduction of water into the molten glass At least one of them forms a molten glass containing water, and the formed molten glass is clarified in a reduced pressure atmosphere having a water vapor partial pressure lower than that of the molten atmosphere.
[0010] ここで、 j8—OHとは、ガラスにおけるヒドロキシル基 (水酸基)の含有率を反映し、 赤外分光分析法 (IR分光分析)により測定される値である。 β OHの値により、ガラ ス中の水分量を推定でき、その値が大きいほど、当該水分量が多いと考えられる。  [0010] Here, j8-OH reflects the content of hydroxyl groups (hydroxyl groups) in the glass and is a value measured by infrared spectroscopy (IR spectroscopy). The amount of moisture in the glass can be estimated from the value of β OH, and the larger the value, the greater the amount of moisture.
[0011] β OHは、以下のようにして求めればよい。  [0011] β OH may be obtained as follows.
(1) 得られたガラスにおける、波長 2700〜2900nmの範囲の赤外吸収スペクトル を測定し、当該スペクトルにおける透過率の最小値を Tとする。  (1) Measure the infrared absorption spectrum of the obtained glass in the wavelength range of 2700-2900 nm, and let T be the minimum transmittance in the spectrum.
1  1
(2) 上記(1)とは別に、得られたガラスにおける波長 2500nmの赤外透過率を測定 し、当該透過率を Tとする。波長 2500nmは、ガラス中のヒドロキシル基に由来する  (2) Separately from the above (1), measure the infrared transmittance of the obtained glass at a wavelength of 2500 nm, and let the transmittance be T. The wavelength of 2500 nm is derived from the hydroxyl group in the glass
0  0
吸収がない波長領域に位置し、 β OHを求める際の参照波長となる。  It is located in the wavelength region where there is no absorption, and is the reference wavelength for determining β OH.
(3) 上記(1)、(2)の測定に用いたガラスサンプルの厚さを d (mm)とし、式: β— Ο H= (1/d) · (log (T ZT ) )により β OHを求めればよい。  (3) Let d (mm) be the thickness of the glass sample used for the measurements in (1) and (2) above, and β according to the formula: β— Ο H = (1 / d) Find OH.
10 0 1  10 0 1
[0012] 本発明の製造方法によれば、清澄剤として砒素化合物およびアンチモンィ匕合物を 用いることなぐ高い清澄効果により、気泡の数が低減されたガラスを得ることができ る。  [0012] According to the production method of the present invention, a glass with a reduced number of bubbles can be obtained by a high clarification effect without using an arsenic compound and an antimony compound as a clarifier.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]図 1は、実施例において作製したガラスサンプルにおける j8— OHと気泡の数と の関係を示す図である。  FIG. 1 is a diagram showing the relationship between j8-OH and the number of bubbles in a glass sample produced in the example.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明を詳細に説明する。 [0014] Hereinafter, the present invention will be described in detail.
[0015] 本発明の製造方法における熔融工程では、含まれる水分量を従来より増力!]させた 熔融ガラスを形成している。すなわち、当該熔融ガラスに溶存するガス成分に占める 水 (H O)の割合は、従来の熔融工程で形成される、アルカリ金属酸化物を実質的に [0015] In the melting step in the production method of the present invention, the amount of water contained is increased compared to the conventional method! A molten glass is formed. That is, the proportion of water (H 2 O) in the gas components dissolved in the molten glass is substantially equal to the alkali metal oxide formed in the conventional melting process.
2 2
含まな 、組成 (無アルカリの組成)を有する熔融ガラスよりも大き 、。  It is larger than a molten glass having a composition (non-alkali composition).
[0016] ここで、得られたガラスにおける 13—OHが 0. 2〜0. 35mm— 1の範囲である限り、熔 融工程において形成される熔融ガラスに含まれる水分量が多い方が、より高い清澄 効果を得ることができる。その理由は明確ではないが、例えば、以下に示す理由が考 えられる。 [0016] Here, as long as 13-OH in the obtained glass is in the range of 0.2 to 0.35mm- 1 , the amount of water contained in the molten glass formed in the melting step is larger. High clarification effect can be obtained. The reason for this is not clear, but for example, consider the following reasons: available.
[0017] 熔融工程では、熔融ガラスに溶存するガス成分と、熔融雰囲気における当該ガス 成分に対応するガス、例えば、ガス成分が水である場合には水蒸気、との間に、平衡 が成立している。このため、熔融ガラスに含まれる水分量を増カロさせることで、熔融雰 囲気における水蒸気分圧を高くできる。当該分圧が高くなると、逆に、熔融雰囲気に おける窒素や二酸ィ匕炭素の分圧が低くなり、したがって、熔融ガラスに含まれる気泡 中におけるこれらのガス分圧も低下する。窒素や二酸化炭素は、熔融ガラス中での 拡散速度や、熔融ガラスへの溶解度が小さいため、窒素や二酸化炭素のガス分圧が 低下した気泡は、熔融ガラスが固化する過程でガラス中に吸収されやすい。このため 、熔融雰囲気における窒素および二酸ィ匕炭素の分圧を低減するほど、清澄効果を 高くできると考えられる。  [0017] In the melting step, an equilibrium is established between a gas component dissolved in the molten glass and a gas corresponding to the gas component in the melting atmosphere, for example, water vapor when the gas component is water. Yes. For this reason, the water vapor partial pressure in the molten atmosphere can be increased by increasing the amount of water contained in the molten glass. On the contrary, when the partial pressure is increased, the partial pressures of nitrogen and carbon dioxide in the molten atmosphere are decreased, and thus the partial pressures of these gases in the bubbles contained in the molten glass are also decreased. Since nitrogen and carbon dioxide have a low diffusion rate in the molten glass and a low solubility in the molten glass, bubbles whose nitrogen or carbon dioxide partial pressure has been reduced are absorbed into the glass as the molten glass solidifies. Cheap. For this reason, it is considered that the clarification effect can be enhanced as the partial pressures of nitrogen and carbon dioxide in the molten atmosphere are reduced.
[0018] 本発明の製造方法における清澄工程では、得られたガラスにおける β—OHが 0.  [0018] In the clarification step in the production method of the present invention, β-OH in the obtained glass is 0.
2〜0. 35mm 1の範囲となるように、上記熔融工程において形成した熔融ガラスを、 熔融雰囲気よりも水蒸気分圧が低ぐかつ、減圧された雰囲気 (清澄雰囲気)にて清 澄する。 The molten glass formed in the melting step is clarified in a reduced pressure atmosphere (clarified atmosphere) with a partial pressure of water vapor lower than that of the molten atmosphere so as to be in the range of 2 to 0.35 mm 1 .
[0019] 清澄工程では、上記清澄雰囲気とすることにより、熔融ガラスに含まれる水分量を 減少させるとともに清澄を促進させることができ、清澄剤として砒素化合物およびアン チモンィ匕合物を用いることなぐ高い清澄効果を得ることができる。  [0019] In the clarification step, by using the clarification atmosphere, the amount of water contained in the molten glass can be reduced and clarification can be promoted. A clarification effect can be obtained.
[0020] すなわち、熔融ガラスに含まれる水分量の観点から見ると、本発明の製造方法では 、当該水分量が多い熔融ガラスを熔融工程において形成し、清澄工程において当 該水分量を低減させているともいえる。換言すれば、本発明の製造方法は、得られた ガラスにおける j8—OHが 0. 2〜0. 35mm— 1の範囲となるように、熔融工程を相対的 に水蒸気分圧が高い熔融雰囲気にて行い、清澄工程を相対的に水蒸気分圧が低 い清澄雰囲気にて行う製造方法である、ともいえる。このように本発明の製造方法は 、文献 1に開示されているような、ガラス製造工程における熔融ガラス中の水分量を 低く維持する製造方法とは異なって 、る。 That is, from the viewpoint of the amount of moisture contained in the molten glass, in the production method of the present invention, a molten glass having a large amount of moisture is formed in the melting step, and the amount of moisture is reduced in the refining step. It can be said that there is. In other words, in the production method of the present invention, the melting process is performed in a melting atmosphere having a relatively high water vapor partial pressure so that j8-OH in the obtained glass is in the range of 0.2 to 0.35 mm- 1 . It can be said that the clarification process is performed in a clarification atmosphere with a relatively low water vapor partial pressure. As described above, the production method of the present invention is different from the production method disclosed in Document 1 in which the moisture content in the molten glass in the glass production process is kept low.
[0021] また、上記清澄雰囲気とすることにより熔融ガラス中の水分量を効果的に減少でき 、例えば、清澄工程の後に、脈理の低減などを目的として攪拌によりガラスを均質ィ匕 する場合にも、キヤビテーシヨンによる気泡の発生を抑制できるなど、清澄工程以後 の工程における気泡の発生を抑制できる。 [0021] Further, the amount of moisture in the molten glass can be effectively reduced by setting the clarification atmosphere. For example, after the clarification step, the glass is homogeneously mixed by stirring for the purpose of reducing striae. In this case, the generation of bubbles in the steps after the clarification step can be suppressed, for example, the generation of bubbles due to the cavity can be suppressed.
[0022] 本発明の製造方法では、得られたガラスにおける 13 OHが 0. 3mm 1以下となる ように、上記熔融工程により熔融ガラスを形成し、形成した熔融ガラスを上記清澄ェ 程により清澄することが好ましい。本発明の製造方法では、また、得られたガラスにお ける j8— OHが 0. 24mm 1以上となるように、上記熔融工程により熔融ガラスを形成 し、形成した熔融ガラスを上記清澄工程により清澄することが好ましい。これらの場合 、より高い清澄効果を実現でき、気泡の数がより低減されたガラスを得ることができる 。得られたガラスにおける j8—OHが 0. 24-0. 3mm— 1の範囲となるように、上記熔 融工程および清澄工程を行ってもよ!ヽ。 [0022] In the production method of the present invention, the molten glass is formed by the melting step so that 13 OH in the obtained glass is 0.3 mm 1 or less, and the formed molten glass is clarified by the clarification step. It is preferable. In the production method of the present invention, the molten glass is formed by the melting step so that j8-OH in the obtained glass is 0.24 mm 1 or more, and the formed molten glass is clarified by the clarification step. It is preferable to do. In these cases, a higher clarification effect can be realized, and a glass with a reduced number of bubbles can be obtained. The above melting and clarification steps may be performed so that j8—OH in the obtained glass is in the range of 0.24-0.3 mm- 1 .ヽ.
[0023] 熔融工程にぉ ヽて水を含有する熔融ガラスを形成する方法は、  [0023] A method for forming a molten glass containing water over the melting step is as follows.
(A)ガラス原料バッチにおける成分の選択、  (A) selection of ingredients in glass raw material batch,
(B)ガラス原料バッチへの水の添加、  (B) adding water to the glass raw material batch,
(C)熔融雰囲気への水の導入、および、  (C) introduction of water into the melting atmosphere, and
(D)熔融ガラス中への水の導入、  (D) introduction of water into the molten glass,
力も選ばれる少なくとも 1つであればよい。例えば (C)の方法においても、熔融雰囲 気中の水蒸気と熔融ガラス中の水との間に平衡が成立するため、水を含有する熔融 ガラスを形成できる。なお、本発明の製造方法における熔融工程は、得られたガラス の j8— OHが所定の範囲となるように、上記少なくとも 1つの方法により水を含有する 熔融ガラスを形成する以外は、一般的な無アルカリガラスの製造方法における熔融 工程を応用して実施すればょ ヽ。  It is sufficient that at least one force is selected. For example, also in the method (C), since equilibrium is established between water vapor in the molten atmosphere and water in the molten glass, a molten glass containing water can be formed. The melting step in the production method of the present invention is general except that the molten glass containing water is formed by at least one of the above methods so that j8-OH of the obtained glass falls within a predetermined range. Apply the melting process in the alkali-free glass manufacturing method.
[0024] (A)の選択方法は特に限定されず、例えば、上記成分として、水を含有するガラス 原料、および、熔融時に水を生成するガラス原料力 選ばれる少なくとも 1つのガラス 原料を選択すればよい。  [0024] The selection method of (A) is not particularly limited. For example, if the glass raw material containing water as the component and at least one glass raw material selected to generate water during melting are selected. Good.
[0025] 熔融時に水を生成するガラス原料としては、例えば、水和水(結晶水)を有する水 和物や、水酸ィ匕物などを用いてもよい。  [0025] As a glass raw material that generates water at the time of melting, for example, a hydrate having hydrated water (crystal water), a hydroxide or the like may be used.
[0026] (B)の添加方法は特に限定されな 、。例えば、ガラス原料バッチへ水を噴霧した後 に、当該バッチを熔融すればよい。 [0027] (C)の導入方法は特に限定されず、例えば、(C 1)熔融雰囲気への水の供給、 および、(C 2)熔融雰囲気における水の生成、力 選ばれる少なくとも 1つにより行 えばよい。 [0026] The addition method of (B) is not particularly limited. For example, after spraying water onto a glass raw material batch, the batch may be melted. [0027] The method for introducing (C) is not particularly limited. For example, (C 1) supply of water to the melting atmosphere, and (C 2) generation of water in the melting atmosphere, and at least one selected by force are performed. Just do it.
[0028] (C- 1)の方法は特に限定されず、例えば、水または別途形成した水蒸気を、配管 などを介して熔融雰囲気へ、より具体的には、ガラス原料バッチを熔融させる熔融槽 へ、供給すればよい。水を供給する場合、例えば、熔融雰囲気へ (熔融槽の内部へ) 水を噴霧してもよい。なお、供給する水蒸気の形成には、熔融槽ゃ、熔融ガラスの清 澄を行う清澄槽の廃熱を利用してもよい。  [0028] The method of (C-1) is not particularly limited. For example, water or separately formed water vapor is melted into a melting atmosphere via a pipe or the like, more specifically, to a melting tank for melting a glass raw material batch. , Supply. When supplying water, for example, water may be sprayed into the melting atmosphere (to the inside of the melting tank). In addition, for the formation of water vapor to be supplied, waste heat from a melting tank or a clarification tank for clarification of molten glass may be used.
[0029] (C- 2)の方法は特に限定されず、例えば、熔融雰囲気内で、水素ガスを含むガス を燃焼させればよい。当該ガスの燃焼により発生する熱は、ガラス原料バッチを熔融 するための熱源として利用可能であるが、製造コストの観点力もは、当該燃焼をガラ ス原料バッチを熔融する主たる熱源としな ヽことが好ま 、。  [0029] The method (C-2) is not particularly limited. For example, a gas containing hydrogen gas may be burned in a melting atmosphere. The heat generated by the combustion of the gas can be used as a heat source for melting the glass raw material batch. However, in terms of manufacturing cost, the combustion power must not be the main heat source for melting the glass raw material batch. Favored ,.
[0030] (D)の導入方法は特に限定されず、例えば、熔融ガラス中へ水蒸気をパブリングす ればよい。  [0030] The method for introducing (D) is not particularly limited. For example, water vapor may be published into the molten glass.
[0031] 上記 (A)、 (B)、 (C)および (D)の方法のなかでは、熔融ガラス中の水分量の制御 が比較的容易であることから、(C)の方法により、水を含有する熔融ガラスを形成する ことが好ましい。なかでも、低コストであり、熔融雰囲気への水の導入量の制御が容易 であることから、(C 1)の方法により、熔融雰囲気へ水を導入することが好ましい。  [0031] Among the above methods (A), (B), (C) and (D), the water content in the molten glass is relatively easy to control. It is preferable to form a molten glass containing. Among them, it is preferable to introduce water into the melting atmosphere by the method (C1) because of its low cost and easy control of the amount of water introduced into the melting atmosphere.
[0032] 清澄工程において、熔融雰囲気よりも水蒸気分圧が低ぐかつ、減圧された清澄雰 囲気とする方法は特に限定されな ヽ。  [0032] In the clarification step, the method for obtaining a clarified atmosphere having a reduced partial pressure of water vapor and a reduced pressure as compared with the melting atmosphere is not particularly limited.
[0033] より高い清澄効果を得るためには、減圧の程度を大きくすることが好ましいが、過度 の減圧は製造コストを増大させる要因となり、また、製造設備の構成が困難となる。具 体的には、例えば、清澄雰囲気を約 51kPa (0. 5気圧)以下とすればよぐ約 lOkPa (0. 1気圧)未満とすることが好ましい。  [0033] In order to obtain a higher clarification effect, it is preferable to increase the degree of decompression, but excessive decompression causes an increase in production cost and makes it difficult to configure the production equipment. Specifically, for example, it is preferable to set the clarified atmosphere to about 51 kPa (0.5 atm) or less and to less than about lOkPa (0.1 atm).
[0034] 清澄時における熔融ガラスの温度は、通常、 1400〜1600°C程度の範囲であり、よ り好ましくは、 1450〜1550°C程度の範囲とすればよい。  [0034] The temperature of the molten glass at the time of clarification is usually in the range of about 1400 to 1600 ° C, more preferably in the range of about 1450 to 1550 ° C.
[0035] 清澄工程にぉ 、て熔融ガラスの加熱が必要である場合、当該加熱を、水蒸気を発 生しない方法により行うことが好ましぐこの場合、熔融雰囲気の水蒸気分圧に比べ て、清澄雰囲気の水蒸気分圧をより低く保持できる。このような加熱方法として、例え ば、ヒーター加熱、ガラスの直接通電による加熱、電磁波による誘導'誘電加熱など の電力を用いた方法や、一酸ィ匕炭素など、水素を含まない燃料の燃焼を用いた方法 が挙げられる。 [0035] When heating of the molten glass is necessary in the clarification step, it is preferable to perform the heating by a method that does not generate water vapor. In this case, compared to the water vapor partial pressure of the molten atmosphere. Thus, the water vapor partial pressure in the clear atmosphere can be kept lower. Examples of such heating methods include heater heating, heating by direct energization of glass, induction using electromagnetic waves and dielectric heating, and combustion of fuels that do not contain hydrogen, such as carbon monoxide and carbon. The method used is mentioned.
[0036] 本発明の製造方法における清澄工程は、得られたガラスの β—OHが所定の範囲 となるように、上記清澄雰囲気において熔融ガラスを清澄する以外は、一般的な無ァ ルカリガラスの製造方法における清澄工程を応用して実施すればよい。  [0036] The clarification step in the production method of the present invention is a general production of alkali-free glass except that the molten glass is clarified in the clarification atmosphere so that the β-OH of the obtained glass falls within a predetermined range. The clarification process in the method may be applied.
[0037] 本発明の製造方法は、上記熔融工程および清澄工程以外に、均質化工程などの 任意の工程を含んで 、てもよ!/、。  [0037] The production method of the present invention may include an optional step such as a homogenization step in addition to the melting step and the clarification step.
[0038] 本発明の製造方法では、砒素化合物およびアンチモンィ匕合物を除き、無アルカリ ガラスの製造に通常用いられる清澄剤を用いてもよぐ例えば、清澄剤として塩素を 用いてもよい。塩素は、熔融ガラス中において、水との反応により塩化水素を形成し、 形成された塩ィ匕水素は比較的容易に熔融ガラス力も除去できる。また、塩素は、熔 融ガラスの表面張力を低減させる作用を有する。これらの理由から、清澄剤として塩 素を用いることにより、清澄工程における熔融ガラスの清澄を促進できる。  [0038] In the production method of the present invention, except for arsenic compounds and antimony compounds, a refining agent usually used in the production of alkali-free glass may be used. For example, chlorine may be used as a refining agent. Chlorine forms hydrogen chloride in the molten glass by reaction with water, and the formed salt hydrogen can remove the molten glass force relatively easily. Chlorine also has the effect of reducing the surface tension of the molten glass. For these reasons, clarification of the molten glass in the clarification process can be promoted by using chlorine as a clarifier.
[0039] 清澄剤として塩素を用いるためには、例えば、ガラス原料バッチが塩ィ匕物を含めば よい。ガラス原料バッチが塩化物を含む場合、当該バッチにおける塩化物の含有率 は、 C1換算、および、塩化物以外の成分の合計に対する外数で、通常、 0. 02〜5重 量%程度の範囲とすればよぐ 0. 02〜1重量%の範囲が好ましぐ 0. 02重量%以 上 0. 5重量%未満の範囲がより好ましい。  [0039] In order to use chlorine as a fining agent, for example, a glass raw material batch may contain salty soup. When a glass raw material batch contains chloride, the chloride content in the batch is usually in the range of about 0.02 to 5% by weight in terms of C1 and an external number relative to the total of components other than chloride. The range of 0.02 to 1% by weight is preferable, and the range of 0.02% to less than 0.5% by weight is more preferable.
[0040] 塩化物としては、 MgClおよび Zまたは CaClを用いることが好まし!/、。  [0040] As the chloride, it is preferable to use MgCl and Z or CaCl! /.
2 2  twenty two
[0041] ガラス原料バッチが塩化物を含む場合、得られたガラスにおける C1の含有率は、清 澄工程における C1の脱離により、ガラス原料バッチにおける C1の含有率よりも小さく なる。得られたガラスにおける C1の含有率は特に限定されないが、例えば、 0. 01〜 2. 5重量%の範囲であり、 0. 01〜2重量%の範囲が好ましぐ 0. 01〜0. 5重量% の範囲がより好ましい。  [0041] When the glass raw material batch contains a chloride, the C1 content in the obtained glass becomes smaller than the C1 content in the glass raw material batch due to the desorption of C1 in the clarification step. The content of C1 in the obtained glass is not particularly limited, but is, for example, in the range of 0.01 to 2.5% by weight, preferably in the range of 0.01 to 2% by weight. A range of 5% by weight is more preferred.
[0042] 本発明の製造方法では、清澄剤として、塩素とともにフッ素を用いてもよい。フッ素 は、塩素に比べて、熔融ガラスの表面張力を低減させる作用は劣るものの、熔融ガラ スの粘性を低減させ、気泡の浮上速度を増大させる作用を有する。このため、清澄剤 としてフッ素を塩素とともに用いることにより、清澄工程における熔融ガラスの清澄をさ らに促進できる。 [0042] In the production method of the present invention, fluorine may be used together with chlorine as a fining agent. Although fluorine is less effective in reducing the surface tension of molten glass than chlorine, It has the effect of reducing the viscosity of the gas and increasing the rising speed of the bubbles. For this reason, the clarification of the molten glass in the clarification process can be further promoted by using fluorine together with chlorine as a clarifier.
[0043] 清澄剤としてフッ素を用いるためには、例えば、ガラス原料バッチがフッ化物をさら に含めばよい。ガラス原料バッチがフッ化物を含む場合、当該バッチにおけるフツイ匕 物の含有率は、 F換算、および、塩化物およびフッ化物以外の成分の合計に対する 外数で、通常、当該バッチにおける塩化物の含有率未満であればよい。より具体的 には、、例えば、 3重量%程度までの範囲とすればよぐ 1重量%程度までの範囲が 好ましぐ 0. 5重量%までの範囲がより好ましい。  [0043] In order to use fluorine as a fining agent, for example, a glass raw material batch may further contain fluoride. When a glass raw material batch contains fluoride, the content of food salt in the batch is an F number and an external number relative to the total of components other than chloride and fluoride, and usually contains chloride in the batch. It may be less than the rate. More specifically, for example, the range up to about 3% by weight is preferred, the range up to about 1% by weight is preferred, and the range up to 0.5% by weight is more preferred.
[0044] フッ素による清澄促進の効果は、塩素による熔融ガラスの表面張力低減作用を前 提としているため、塩素の含有率以上にフッ素の含有率を過度に大きくしたとしても、 清澄を促進する効果はほとんど向上しないと考えられる。  [0044] Since the effect of clarification promotion by fluorine is based on the effect of reducing the surface tension of molten glass by chlorine, the effect of promoting clarification even if the fluorine content is excessively increased beyond the chlorine content. Is thought to improve little.
[0045] フッ化物としては、 MgFおよび  [0045] As fluorides, MgF and
2 Zまたは CaFを用いることが好まし!/、。  2 Use Z or CaF! /.
2  2
[0046] ガラス原料バッチがフッ化物を含む場合、得られたガラスにおける Fの含有率は、 C 1の場合と同様に、ガラス原料バッチにおける Fの含有率よりも小さくなる。得られたガ ラスにおける Fの含有率は特に限定されないが、例えば、 0〜1. 5重量%の範囲であ り、 0〜0. 5重量%の範囲が好ましぐ 0〜0. 3重量%の範囲がより好ましい。  [0046] When the glass raw material batch contains fluoride, the F content in the obtained glass is smaller than the F content in the glass raw material batch, as in the case of C1. The content of F in the obtained glass is not particularly limited, but is, for example, in the range of 0 to 1.5% by weight, preferably in the range of 0 to 0.5% by weight. 0 to 0.3% by weight % Range is more preferred.
[0047] 本発明の製造方法は、無アルカリガラスである限り、そのガラス組成に依らず幅広く 適用でき、なかでも、アルミノホウケィ酸塩ガラスの製造に好適に適用できる。ここで、 無アルカリとは、アルカリ金属酸化物、具体的には、 Na 0、 K Οおよび Li Oを実質  [0047] The production method of the present invention can be widely applied regardless of its glass composition as long as it is non-alkali glass, and in particular, can be suitably applied to the production of aluminoborosilicate glass. Here, alkali-free means substantially an alkali metal oxide, specifically Na 0, K Ο and Li O.
2 2 2 的に含まないことをいう。本発明の製造方法により得られたガラスが As Oおよび Sb  2 2 2 means not included. The glass obtained by the production method of the present invention contains As O and Sb.
2 3 2 2 3 2
Oを実質的に含まないことを含め、本明細書における「実質的に含まない」とは、特In the present specification, “substantially free”, including the fact that it does not substantially contain O.
3 Three
に記載がない限り、工業ガラス原料から不可避的に混入する不純物などについては 、含有率にして 0. 1重量%未満の微量成分を許容する趣旨である。  Unless stated in the above, impurities inevitably mixed from industrial glass raw materials are intended to allow trace components of less than 0.1% by weight.
[0048] 上記アルミノホウケィ酸塩ガラスの具体的な組成は特に限定されないが、本発明の 製造方法を、以下の組成を有するガラス (ガラス組成物)の製造に用いてもょ ヽ。  [0048] Although the specific composition of the aluminoborosilicate glass is not particularly limited, the production method of the present invention may be used for the production of glass (glass composition) having the following composition.
[0049] 重量%により表示して、  [0049] Expressed by weight percent,
SiO 45〜75% AI O 5〜25% SiO 45-75% AI O 5-25%
B O 2〜20%  B O 2-20%
2 3  twenty three
MgO 0〜10%  MgO 0-10%
CaO 0〜15%  CaO 0-15%
SrO 0〜15%  SrO 0-15%
BaO 0〜25%  BaO 0-25%
MgO + CaO + SrO + BaO  MgO + CaO + SrO + BaO
ZnO 0〜10%  ZnO 0-10%
CI 0. 01〜2. 5%  CI 0.01-2.5%
F 0〜1. 5%  F 0 ~ 1.5%
を含む。  including.
[0050] また、本発明の製造方法を、  [0050] Further, the production method of the present invention,
SiO 45〜75%  SiO 45-75%
2  2
AI O 5〜25%  AI O 5-25%
2 3  twenty three
B O 2〜20%  B O 2-20%
2 3  twenty three
MgO 0〜10%  MgO 0-10%
CaO 0〜15%  CaO 0-15%
SrO 0〜15%  SrO 0-15%
BaO 0〜25%  BaO 0-25%
MgO 4 - CaO + SrO + BaO  MgO 4-CaO + SrO + BaO
ZnO 0〜10%  ZnO 0-10%
CI 0. 01〜2. 5%  CI 0.01-2.5%
F 0〜1. 5%  F 0 ~ 1.5%
力もなるガラスの製造に用いてもょ 、。  It can be used to make powerful glass.
[0051] 本発明の製造方法によって得られたガラスにおける上記各成分の好ましい含有率 の範囲は以下の通りである。なお、各成分の説明における「%」の表示は、全て「重遷 %」を意味する。  [0051] Preferred ranges of the content of each of the above components in the glass obtained by the production method of the present invention are as follows. In addition, the display of “%” in the description of each component means “heavy transition%”.
[0052] (SiO ) SiOは、ガラスのネットワークを形成する必須成分であり、その含有率が 45%未満[0052] (SiO 2) SiO is an essential component that forms a glass network, and its content is less than 45%.
2 2
になるとガラスの化学的耐久性が低下し、 75%を超えるとガラスの熔解性が悪ィ匕する  The chemical durability of the glass will decrease, and if it exceeds 75%, the meltability of the glass will deteriorate.
[0053] SiOの含有率は、 58〜65%の範囲が好ましぐ 59〜64. 5%の範囲がより好まし [0053] The content of SiO is preferably in the range of 58 to 65%, more preferably in the range of 59 to 64.5%.
2  2
い。  Yes.
[0054] (Al O )  [0054] (Al O)
2 3  twenty three
Al Oは、ガラスの失透を抑制するとともに、その耐熱性を向上させる必須成分であ Al O is an essential component that suppresses devitrification of glass and improves its heat resistance.
2 3 twenty three
る。 Al Oの含有率が 5%未満になるとガラスの耐熱性が低下し、 25%を超えるとガラ The When the Al O content is less than 5%, the heat resistance of the glass decreases.
2 3 twenty three
スの耐酸性が低下するとともに熔解性が悪ィ匕する。  As the acid resistance of the steel decreases, the meltability deteriorates.
[0055] Al Oの含有率は、 10〜20%の範囲が好ましぐ 10%以上 17%未満の範囲がより [0055] The Al O content is preferably in the range of 10 to 20%, more preferably in the range of 10% or more and less than 17%.
2 3  twenty three
好ましい。  preferable.
[0056] (B O ) [0056] (B O)
2 3  twenty three
B O  B O
2 3は、融剤として働くことにより、熔融ガラスの粘性を下げ、ガラスの熔融を容易 にする必須成分である。 B Oの含有率が 2%未満になるとガラスの熔融や清澄が困  23 3 is an essential component that lowers the viscosity of the molten glass and facilitates melting of the glass by acting as a flux. When the content of B 2 O is less than 2%, it is difficult to melt and clarify the glass.
2 3  twenty three
難となり、 20%を超えると得られたガラスの歪点が低下する。  When it exceeds 20%, the strain point of the obtained glass is lowered.
[0057] B Oの含有率は、 5〜17%の範囲が好ましぐ 8〜16%の範囲がより好ましい。 [0057] The content of B 2 O is preferably in the range of 5 to 17%, more preferably in the range of 8 to 16%.
2 3  twenty three
[0058] また、 B Oの含有率の下限は、 8重量%以上が好ましぐ 10重量%以上がより好ま  [0058] Further, the lower limit of the content of B 2 O is preferably 8% by weight or more, more preferably 10% by weight or more.
2 3  twenty three
しい。  That's right.
[0059] (MgO) [0059] (MgO)
MgOは、得られたガラスの歪点を下げずに、ガラスの熔解性を向上させる任意成 分である。 MgOの含有率が 10%を超えるとガラスの失透温度が高くなる。  MgO is an optional component that improves the meltability of the glass without lowering the strain point of the resulting glass. If the MgO content exceeds 10%, the devitrification temperature of the glass increases.
[0060] MgOの含有率は、 0〜5%の範囲が好ましぐ 1〜2. 5%の範囲がより好ましい。 [0060] The content of MgO is preferably in the range of 0 to 5%, more preferably in the range of 1 to 2.5%.
[0061] (CaO) [0061] (CaO)
CaOは、ガラスの高温粘性を低下させる任意成分である。 CaOの含有率が 15%を 超えるとガラスの失透温度が高くなる。  CaO is an optional component that reduces the high temperature viscosity of the glass. If the CaO content exceeds 15%, the devitrification temperature of the glass increases.
[0062] CaOの含有率は、 3〜 10%の範囲が好ましぐ 5〜9%の範囲がより好ましい。 [0062] The CaO content is preferably in the range of 3 to 10%, more preferably in the range of 5 to 9%.
[0063] (SrO) [0063] (SrO)
SrOは、ガラスの耐失透性を低下させずに、その熔解性を向上させる任意成分で ある。 SrOの含有率が 15%を超えるとガラスの熱膨張係数が大きくなりすぎる。 SrO is an optional component that improves its meltability without reducing the devitrification resistance of the glass. is there. If the SrO content exceeds 15%, the thermal expansion coefficient of the glass becomes too large.
[0064] SrOの含有率は、 0〜3%の範囲が好ましぐ 0〜2. 5%の範囲がより好ましい。 [0064] The SrO content is preferably in the range of 0 to 3%, more preferably in the range of 0 to 2.5%.
[0065] (BaO) [0065] (BaO)
BaOは、ガラスの失透を抑制する任意成分である。 BaOの含有率が 25%を超える とガラスの熱膨張係数が大きくなりすぎる。  BaO is an optional component that suppresses devitrification of the glass. If the BaO content exceeds 25%, the thermal expansion coefficient of the glass becomes too large.
[0066] BaOの含有率は、 0〜2%の範囲が好ましぐ 0〜0. 5%の範囲がより好ましい。 [0066] The content of BaO is preferably in the range of 0 to 2%, and more preferably in the range of 0 to 0.5%.
[0067] (MgO + CaO + SrO + BaO) [0067] (MgO + CaO + SrO + BaO)
MgO、 CaO、 SrOおよび BaOの含有率の合計が 5%未満になるとガラスの熔解性 が低下し、 35%を超えると熱膨張係数が大きくなりすぎる。当該合計は、 5〜20%の 範囲が好ましぐ 7〜13%の範囲がより好ましい。  If the total content of MgO, CaO, SrO and BaO is less than 5%, the meltability of the glass decreases, and if it exceeds 35%, the thermal expansion coefficient becomes too large. The total is preferably in the range of 5-20%, more preferably in the range of 7-13%.
[0068] (C1) [0068] (C1)
0. 01〜2%の範囲が好ましぐ 0. 01-0. 5%の範囲がより好ましい。  A range of 0.01 to 2% is preferred. A range of 0.01 to 0. 5% is more preferred.
[0069] (F) [0069] (F)
0〜0. 5%の範囲が好ましぐ 0〜0. 3%の範囲がより好ましい。  A range of 0 to 0.5% is preferred. A range of 0 to 0.3% is more preferred.
[0070] 本発明の製造方法によって得られたガラスは、必要に応じ、上記各成分以外の成 分を含んでいてもよい。これらの成分としては、例えば、 NiO、 CoO、 Cr Oなどの着 [0070] The glass obtained by the production method of the present invention may contain components other than the above-described components as necessary. These components include, for example, NiO, CoO, CrO, etc.
2 3 色成分が挙げられ、その含有率は、通常 1重量%未満であり、 0. 5重量%未満が好 ましく、 0. 2重量%未満、 0. 1重量%未満の順にさらに好ましい。  2 3 color components are included, and the content thereof is usually less than 1% by weight, preferably less than 0.5% by weight, more preferably less than 0.2% by weight and less than 0.1% by weight.
[0071] 本発明の製造方法によって得られたガラスは、実質的に SOを含んでいなくてもよ [0071] The glass obtained by the production method of the present invention may be substantially free of SO.
3  Three
い。  Yes.
実施例  Example
[0072] 以下、実施例により、本発明をより詳細に説明する。本発明は、以下に示す実施例 に限定されない。  [0072] Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not limited to the following examples.
[0073] (実施例 1) [0073] (Example 1)
(ガラス原料バッチの調製)  (Preparation of glass raw material batch)
最初に、酸化物に換算して、 SiO : 60%、 Al O: 14%、 B O: 15%、 MgO : 2%、  First, in terms of oxide, SiO: 60%, Al 2 O: 14%, B 2 O: 15%, MgO: 2%,
2 2 3 2 3  2 2 3 2 3
CaO: 8%、 SrO: 1%の組成 (全て重量0 /0)となるように、ガラス原料を混合した。次に 、得られた混合物 100重量部に対して、清澄剤として CaClおよび CaFを、それぞれ 、 0. 24重量部および 0. 1重量部さらにカ卩えて、ガラス原料バッチとした。なお、ガラ ス原料として、 A1および B (ホウ素)については、その水酸化物を、 Mgについては、 MgOの水和物を用い、ガラス原料バッチにおける水分の含有率が 7. 7重量%となる よつにした。 CaO: 8%, SrO: and such that 1% of the composition (all weight 0/0), mixed with glass material. Next, with respect to 100 parts by weight of the obtained mixture, CaCl and CaF as clarifying agents, 0.24 parts by weight and 0.1 part by weight were further added to obtain a glass raw material batch. As the glass raw material, use the hydroxide for A1 and B (boron), and use MgO hydrate for Mg. The water content in the glass raw material batch is 7.7% by weight. I made it.
[0074] (熔融工程)  [0074] (Melting process)
このようにして調製したガラス原料バッチを、大気圧に保持した炉の内部に収容さ れた白金坩堝に投入し、当該炉を用いて 1600°Cで 2時間熔融した。このとき、熔融 の開始から終了まで、一定量の水を炉の内部に供給し続けることにより、熔融雰囲気 における水蒸気分圧を調節した。  The glass raw material batch thus prepared was put into a platinum crucible housed in a furnace maintained at atmospheric pressure and melted at 1600 ° C. for 2 hours using the furnace. At this time, the water vapor partial pressure in the melting atmosphere was adjusted by continuously supplying a certain amount of water into the furnace from the start to the end of the melting.
[0075] 炉内への水の供給は、炉の底部中央に外部から白金製のパイプを貫通させ、当該 ノイブを介して行った。このとき、安定した水の供給を実現し、かつ、供給する水がガ ラス原料バッチを熔融する白金坩堝に直接接触しないように、耐火レンガを用いて炉 内に坩堝用の台座を組み、白金坩堝を炉の底部から離れた状態で収容した。また、 熔融の間、炉の開口部に蓋をして、水の供給により炉内において発生した水蒸気を 閉じこめるようにした。水の供給量の制御には、チュービングポンプを用いた。  [0075] Water was supplied to the inside of the furnace through the nove by passing a platinum pipe from the outside through the center of the bottom of the furnace. At this time, a base for the crucible is assembled in the furnace using refractory bricks so that the stable water supply is achieved and the supplied water does not directly contact the platinum crucible for melting the glass raw material batch. The crucible was housed away from the bottom of the furnace. During melting, the opening of the furnace was covered so that the water vapor generated in the furnace was confined by supplying water. A tubing pump was used to control the amount of water supplied.
[0076] (清澄工程)  [0076] (Clarification process)
次に、水の供給を止めるとともに、炉内の温度を 1500°Cとし、炉内の圧力を 20分 力けて約 10kPa (0. 1気圧)未満になるまで減圧した。続いて、この圧力および温度 を 30分間保持した後、温度を保持したまま、炉内の圧力を 20分力ゝけて大気圧に戻 すことにより、熔融ガラスを減圧清澄した。その後、炉から坩堝を取り出して室温まで 急冷し、得られたガラス塊を徐冷処理し、評価用のガラスサンプルを得た。  Next, the water supply was stopped and the furnace temperature was set to 1500 ° C, and the furnace pressure was reduced to about 10 kPa (0.1 atm) by applying the pressure in the furnace for 20 minutes. Subsequently, after maintaining this pressure and temperature for 30 minutes, while maintaining the temperature, the pressure in the furnace was increased for 20 minutes to return to atmospheric pressure, whereby the molten glass was clarified under reduced pressure. Thereafter, the crucible was taken out from the furnace and rapidly cooled to room temperature, and the obtained glass lump was gradually cooled to obtain a glass sample for evaluation.
[0077] (気泡の数の評価)  [0077] (Evaluation of the number of bubbles)
このようにして得たガラスサンプルにおける、表層部に泡層が見られない部分に、 3 cm X 3cmの区画を設定し、当該区画における表層力も深さ 10mmまでに存在する 気泡の数をカウントした。当該気泡の数は、各サンプルの下側から光を照射し、サン プルを透過した光をスクリーン上に投影 (拡大率 10倍)してカウントした。カウントの対 象とする気泡は、その長径方向の長さにして、原寸で 50 m以上とし、カウントした 気泡の数を、ガラス lg当たりの数に換算した。 [0078] ( |8— OHの評価) In the glass sample obtained in this way, a section of 3 cm X 3 cm was set in the part where the foam layer was not seen in the surface layer part, and the number of bubbles existing up to a depth of 10 mm was also counted in the surface layer force in the section. . The number of bubbles was counted by irradiating light from the lower side of each sample and projecting the light transmitted through the sample on the screen (magnification factor 10 times). The bubbles to be counted were taken to have a length in the major axis direction of 50 m or more at the original size, and the number of counted bubbles was converted to the number per lg of glass. [0078] (| 8—OH rating)
上記のようにして得たガラスサンプルにおける j8— OHを、上述した方法により求め た。  J8-OH in the glass sample obtained as described above was determined by the method described above.
[0079] (清澄剤の残存率の評価)  [0079] (Evaluation of remaining ratio of fining agent)
上記のようにして得たガラスサンプルにおける清澄剤(C1および F)の残存率を、各 々、蛍光 X線による半定量分析により求めた。なお、求めた残存率は、ガラス組成物 における含有率としての値である。  The residual ratio of the fining agents (C1 and F) in the glass samples obtained as described above was determined by semi-quantitative analysis using fluorescent X-rays. In addition, the calculated | required residual rate is a value as a content rate in a glass composition.
[0080] 実施例 1では、熔融工程において水の供給量を変化させた実施例サンプル 1〜2、 および、水を供給しな力つた比較例サンプル Aについて、上記気泡の数、 β—ΟΗ、 および、清澄剤残存率の評価を行った。 [0080] In Example 1, with respect to Example Samples 1 to 2 in which the amount of water supplied was changed in the melting process, and Comparative Sample A with no water supplied, the number of bubbles, β-ΟΗ, And the clarifier residual rate was evaluated.
[0081] 各サンプルにおける水の供給量とともに、各評価結果を、以下の表 1に示す。 [0081] Table 1 below shows the evaluation results together with the amount of water supplied in each sample.
[0082] [表 1] [0082] [Table 1]
Figure imgf000015_0001
Figure imgf000015_0001
[0083] 表 1に示すように、得られたガラスサンプルにおける j8—OHの値が 0. 2mm 1未満 であった比較例サンプル Aに比べて、上記 j8— OHの値が 0. 2〜0. 35mm— 1の範囲 であった実施例サンプル 1〜2では、気泡の数を低減できた。 [0083] As shown in Table 1, the value of j8-OH in the obtained glass sample was 0.2 to 0 compared to Comparative Sample A in which the value of j8-OH was less than 0.2 mm 1. In Example Samples 1 and 2 that were in the range of 35 mm— 1 , the number of bubbles could be reduced.
[0084] (実施例 2)  [0084] (Example 2)
酸化物に換算して、 SiO : 63%、A1 0 : 16%、 B O: 11 %、 MgO : 2%、 CaO : 6  In terms of oxide, SiO: 63%, A1 0: 16%, B 2 O: 11%, MgO: 2%, CaO: 6
2 2 3 2 3  2 2 3 2 3
%、 SrO : 2%の組成 (全て重量%)となるようにガラス原料を混合した後に、得られた 混合物 100重量部に対して、清澄剤として CaClおよび CaFを、それぞれ、 0. 24重  %, SrO: After mixing the glass raw materials so as to have a composition of 2% (all by weight%), CaCl and CaF were added as fining agents to 100 parts by weight of the obtained mixture, respectively.
2 2  twenty two
量部および 0. 1重量部さらにカ卩えて、ガラス原料バッチとした。なお、実施例 1と同様 にして、ガラス原料バッチにおける水分の含有率が 11. 5重量%となるようにした。  A glass raw material batch was prepared by further adding parts by weight and 0.1 part by weight. In the same manner as in Example 1, the water content in the glass raw material batch was adjusted to 11.5% by weight.
[0085] 次に、当該ガラス原料バッチを用いた以外は実施例 1と同様にして、ガラスサンプ ルを得た。 [0085] Next, a glass sample was obtained in the same manner as in Example 1 except that the glass raw material batch was used. I got it.
[0086] 次に、このようにして得たガラスサンプルにおける気泡の数、 j8—OH、および、清 澄剤残存率を、実施例 1と同様にして求めた。  [0086] Next, the number of bubbles, j8-OH, and the clarifying agent remaining rate in the glass sample thus obtained were determined in the same manner as in Example 1.
[0087] 実施例 2では、熔融工程において水の供給量を変化させた実施例サンプル 3〜5、 および、水を供給しな力つた比較例サンプル Bについて、上記気泡の数、 β—ΟΗ、 および、清澄剤残存率の評価を行った。 [0087] In Example 2, with respect to Example Samples 3 to 5 in which the amount of water supplied was changed in the melting step, and Comparative Sample B with no water supplied, the number of bubbles, β-ΟΗ, And the clarifier residual rate was evaluated.
[0088] 各サンプルにおける水の供給量とともに、各評価結果を、以下の表 2に示す。 [0088] The evaluation results are shown in Table 2 below together with the amount of water supplied in each sample.
[0089] [表 2] [0089] [Table 2]
Figure imgf000016_0001
Figure imgf000016_0001
[0090] 表 2に示すように、得られたガラスサンプルにおける 13—OHの値が 0. 2mm 未満 であった比較例サンプル Bに比べて、上記 j8— OHの値が 0. 2〜0. 35mm— 1の範囲 であった実施例サンプル 3〜5では良好な清澄を実現でき、気泡の数を低減できた。 [0090] As shown in Table 2, the value of j8-OH was 0.2 to 0. 0 compared to Comparative Sample B in which the 13-OH value in the obtained glass sample was less than 0.2 mm. In Example Samples 3 to 5 which were in the range of 35 mm- 1 , good fining could be realized and the number of bubbles could be reduced.
[0091] 実施例 1および 2の結果を、横軸を β OHに、縦軸を気泡の数に設定したグラフ により、図 1にまとめて示す。  [0091] The results of Examples 1 and 2 are collectively shown in Fig. 1 by a graph in which the horizontal axis is set to β OH and the vertical axis is set to the number of bubbles.
[0092] 図 1に示すように、得られたガラスサンプルにおける j8— OHの値が 0. 2mm 1以上 である場合に高い清澄効果が得られ、かつ、 β OHの値が大きくなるほど、より高 い清澄効果が得られることがわかった。 j8—OHの範囲としては、 0. 2〜0. 35mm"1 力 S好ましく、 0. 24〜0. 35mm"\ 0. 2〜0. 3mm— 1力 Sより好ましく、 0. 24〜0. 3mm" 1がさらに好ましい結果となった。 [0092] As shown in FIG. 1, a high clarification effect is obtained when the value of j8-OH in the obtained glass sample is 0.2 mm 1 or more, and the higher the β OH value, the higher the value. It was found that a clear clarification effect was obtained. The range of j8-OH, 0. 2~0. 35mm "1 force S preferably, 0. 24~0. 35mm" \ 0. 2~0. 3mm- preferably from 1 force S, 0. 24~0. 3 mm "1 gave even more favorable results.
[0093] β—OHの下限値については、得られたガラスにおける、気泡の数に関して望む品 質に応じて、決定すればよい。上記実施例の結果によれば、 β OHの値が少なくと も 0. 24mm 1程度である場合に、特に気泡の数が低減された、すなわち、気泡の数 に関して特に良好な品質を有する、ガラスが得られている。 [0093] The lower limit of β-OH may be determined according to the desired quality with respect to the number of bubbles in the obtained glass. According to the results of the above example, when the value of β OH is at least about 0.24 mm 1 , the number of bubbles was reduced particularly, that is, the number of bubbles. A glass having a particularly good quality is obtained.
[0094] 一方、 β OHの上限値については、熔融ガラスに含まれる水分量と、清澄雰囲気 の水蒸気分圧などによって決定されると考えられる。  [0094] On the other hand, the upper limit of βOH is considered to be determined by the amount of water contained in the molten glass and the partial pressure of water vapor in the clarified atmosphere.
[0095] ここで、熔融ガラスに含まれる水分量を大きくしょうとしても、例えば、以下の点からHere, even if an attempt is made to increase the amount of water contained in the molten glass, for example, from the following points:
、当該水分量の増加には限度がある。 There is a limit to the increase in the amount of moisture.
(1)ガラス原料として用いることができる化合物の種類には限りがあり、例えば、水分 の供給源となりうる水和物、水酸ィ匕物の選択肢がそれほど多くはない。  (1) The types of compounds that can be used as a glass raw material are limited. For example, there are not many choices of hydrates and hydroxides that can supply moisture.
(2)原料バッチに過剰の水を添加すると、バッチ投入時に不具合を生じたり、ガラス の均質性が損なわれる。またガラスを熔融するためのエネルギーが余分に必要となり 、経済性が損なわれる。  (2) If excessive water is added to the raw material batch, defects will occur when the batch is charged, and the homogeneity of the glass will be impaired. Further, extra energy is required to melt the glass, and the economic efficiency is impaired.
(3)多量の水蒸気を熔融雰囲気に供給すると、水の吸熱によるエネルギー損失が大 きぐ炉内の温度が低下して、エネルギーが余分に必要となり、経済性が損なわれる  (3) If a large amount of water vapor is supplied to the molten atmosphere, the energy loss due to the endotherm of water will be large, the temperature in the furnace will decrease, and extra energy will be required, which will impair economic efficiency.
[0096] したがって、熔融ガラスに含ませ得る水分量には限度があり、その結果、得られたガ ラスの ι8— OHの値も制限される。 β—OHの上限値としては、気泡の数に関する品 質の向上の度合いを考慮して、 0. 35mm 1以下が好適であり、 0. 3mm 1以下がより 好適である。 [0096] Therefore, there is a limit to the amount of water that can be contained in the molten glass, and as a result, the value of ι8-OH in the obtained glass is also limited. The upper limit of beta-OH, in consideration of the degree of quality improvement of on the number of bubbles, 0. 35 mm 1 or less are preferred, 0. 3 mm 1 or less is more preferable.
[0097] 本発明は、その意図および本質的な特徴力 逸脱しない限り、他の実施形態に適 用しうる。この明細書に開示されている実施形態は、あらゆる点で説明的なものであ つてこれに限定されない。本発明の範囲は、上記説明ではなく添付したクレームによ つて示されており、クレームと均等な意味および範囲にあるすベての変更はそれに含 まれる。  [0097] The present invention can be applied to other embodiments without departing from its intent and essential characteristics. The embodiments disclosed in this specification are illustrative in all respects and are not limited thereto. The scope of the present invention is shown not by the above description but by the appended claims, and all modifications that are equivalent in meaning and scope to the claims are included therein.
産業上の利用可能性  Industrial applicability
[0098] 以上説明したように、本発明によれば、清澄剤として砒素化合物およびアンチモン 化合物を用いることなぐ高い清澄効果を実現でき、気泡の数が低減されたガラスを 得ることができる。本発明の製造方法により得られたガラスは、液晶ディスプレイ基板 を始め、プラズマディスプレイ基板など、各種ディスプレイ用の基板に適している。 [0098] As described above, according to the present invention, a high clarification effect can be realized without using an arsenic compound and an antimony compound as a clarifier, and a glass with a reduced number of bubbles can be obtained. The glass obtained by the production method of the present invention is suitable for substrates for various displays such as a liquid crystal display substrate and a plasma display substrate.

Claims

請求の範囲 The scope of the claims
[1] アルカリ金属酸化物と、清澄剤としての As Oおよび Sb Oとを実質的に含まない  [1] Substantially free of alkali metal oxides and As O and Sb O as fining agents
2 3 2 3  2 3 2 3
ガラスの製造方法であって、  A method for producing glass,
得られたガラスにおける j8—OHが 0. 2〜0. 35mm— 1の範囲となるように、 ガラス原料バッチにおける成分の選択、ガラス原料バッチへの水の添加、熔融ガラ スを形成する熔融雰囲気への水の導入、および、熔融ガラス中への水の導入、から 選ばれる少なくとも 1つにより、水を含有する熔融ガラスを形成し、 Selection of components in the glass raw material batch, addition of water to the glass raw material batch, and melting atmosphere for forming molten glass so that j8-OH in the obtained glass is in the range of 0.2 to 0.35 mm- 1 . Water-containing molten glass is formed by at least one selected from introduction of water into the glass and introduction of water into the molten glass,
前記形成した熔融ガラスを、前記熔融雰囲気よりも水蒸気分圧が低ぐかつ、減圧 された雰囲気にて清澄する、ガラスの製造方法。  A method for producing glass, wherein the formed molten glass is clarified in an atmosphere having a reduced partial pressure of water vapor and lower pressure than the molten atmosphere.
[2] 前記 β— OHが 0. 3mm 1以下となるように、前記熔融ガラスを形成し、前記形成し た熔融ガラスを清澄する、請求項 1に記載のガラスの製造方法。 [2] The method for producing glass according to claim 1, wherein the molten glass is formed so that the β-OH is 0.3 mm 1 or less, and the formed molten glass is clarified.
[3] 前記 β— OHが 0. 24mm 1以上となるように、前記熔融ガラスを形成し、前記形成 した熔融ガラスを清澄する、請求項 1に記載のガラスの製造方法。 [3] The method for producing glass according to claim 1, wherein the molten glass is formed so that the β-OH is 0.24 mm 1 or more, and the formed molten glass is clarified.
[4] 前記 β— OHが 0. 24-0. 3mm 1の範囲となるように、前記熔融ガラスを形成し、 前記形成した熔融ガラスを清澄する、請求項 1に記載のガラスの製造方法。 [4] The beta-OH such that the range of 0. 24-0. 3 mm 1, wherein the forming the molten glass, fining the molten glass obtained by the forming method of the glass according to claim 1.
[5] 前記熔融雰囲気への水の導入により、前記水を含有する熔融ガラスを形成する、 請求項 1に記載のガラスの製造方法。 5. The method for producing glass according to claim 1, wherein the molten glass containing the water is formed by introducing water into the molten atmosphere.
[6] 前記成分として、水を含有するガラス原料、および、熔融時に水を生成するガラス 原料力も選ばれる少なくとも 1つのガラス原料を選択する、請求項 1に記載のガラスの 製造方法。 6. The glass production method according to claim 1, wherein a glass raw material containing water and at least one glass raw material capable of generating water at the time of melting are also selected as the component.
[7] 前記熔融雰囲気への水の導入は、前記熔融雰囲気への水の供給、および、前記 熔融雰囲気における水の生成、力 選ばれる少なくとも 1つにより行う、請求項 1に記 載のガラスの製造方法。  [7] The introduction of water into the melting atmosphere is performed by at least one selected from supply of water to the melting atmosphere and generation and force of water in the melting atmosphere. Production method.
[8] 前記熔融ガラス中への水の導入は、前記熔融ガラス中に水蒸気を供給することに より行う、請求項 1に記載のガラスの製造方法。 8. The method for producing glass according to claim 1, wherein the introduction of water into the molten glass is performed by supplying water vapor into the molten glass.
[9] 前記ガラス原料バッチが、塩化物を含む請求項 1に記載のガラスの製造方法。 [9] The method for producing glass according to [1], wherein the glass raw material batch contains a chloride.
[10] 前記ガラス原料バッチが、フッ化物をさらに含む請求項 9に記載のガラスの製造方 法。 10. The method for producing glass according to claim 9, wherein the glass raw material batch further contains a fluoride.
[11] 前記ガラスが、アルミノホウケィ酸塩ガラスである請求項 1に記載のガラスの製造方 法。 [11] The method for producing glass according to [1], wherein the glass is an aluminoborosilicate glass.
[12] 前記ガラスが、重量%により表示して、  [12] The glass is expressed by weight%,
SiO 45 ■75%  SiO 45 75%
2  2
〇 〇  〇 〇
Al O 5 '25%  Al O 5 '25%
2 3  twenty three
B O 2 20%  B O 2 20%
2 3 twenty three
O L  O L
MgO 0' 10%  MgO 0 '10%
CaO 0 -15%  CaO 0 -15%
SrO 0 -15%  SrO 0 -15%
BaO 0- -25%  BaO 0- -25%
MgO— CaO- f SrO + BaO  MgO— CaO- f SrO + BaO
ZnO 0 -10%  ZnO 0 -10%
CI  CI
F 0 -1.5%  F 0 -1.5%
を含む請求項 1に記載のガラスの製造方法。  The method for producing glass according to claim 1, comprising:
[13] 前記ガラスが、重量%により表示して、実質的  [13] The glass is substantially represented by weight percent.
SiO 45 75%  SiO 45 75%
2  2
Al O 5 25%  Al O 5 25%
2 3  twenty three
B O 2 20%  B O 2 20%
2 3  twenty three
MgO 0 L0%  MgO 0 L0%
CaO 0 15%  CaO 0 15%
SrO 0 15%  SrO 0 15%
BaO 0 25%  BaO 0 25%
MgO— - CaO + SrO + BaO  MgO—-CaO + SrO + BaO
ZnO 0 10%  ZnO 0 10%
CI  CI
F 0 1.5%  F 0 1.5%
からなる請求項 12に記載のガラスの製造方法。 The method for producing glass according to claim 12, comprising:
[14] 前記ガラスにおける B Oの含有率が、 10重量%以上である請求項 12に記載のガ 14. The gas according to claim 12, wherein the content of B 2 O in the glass is 10% by weight or more.
2 3  twenty three
ラスの製造方法。  A manufacturing method for laths.
[15] 前記ガラスが、 SOを実質的に含まない請求項 1に記載のガラスの製造方法。  15. The method for producing glass according to claim 1, wherein the glass does not substantially contain SO.
PCT/JP2006/301331 2005-01-31 2006-01-27 Process for producing glass WO2006080444A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-024486 2005-01-31
JP2005024486A JP2008105860A (en) 2005-01-31 2005-01-31 Process for producing glass

Publications (1)

Publication Number Publication Date
WO2006080444A1 true WO2006080444A1 (en) 2006-08-03

Family

ID=36740468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301331 WO2006080444A1 (en) 2005-01-31 2006-01-27 Process for producing glass

Country Status (2)

Country Link
JP (1) JP2008105860A (en)
WO (1) WO2006080444A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029799A1 (en) * 2006-09-04 2008-03-13 Nippon Electric Glass Co., Ltd. Process for producing glass
JP2009073674A (en) * 2006-09-04 2009-04-09 Nippon Electric Glass Co Ltd Method for producing glass
JP2009084073A (en) * 2007-09-27 2009-04-23 Asahi Glass Co Ltd Method for producing glass
JP2010030876A (en) * 2008-06-27 2010-02-12 Nippon Electric Glass Co Ltd Tempered glass and manufacturing method for the same
JP2011042556A (en) * 2009-07-24 2011-03-03 Nippon Electric Glass Co Ltd Method for manufacturing optical glass
WO2011078258A1 (en) * 2009-12-25 2011-06-30 旭硝子株式会社 Method for vacuum-degassing molten glass and process for producing glass product
JP2012092000A (en) * 2010-09-28 2012-05-17 Nippon Electric Glass Co Ltd Method of manufacturing borosilicate glass
WO2012132449A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Method for producing glass substrate
WO2012141152A1 (en) * 2011-04-12 2012-10-18 旭硝子株式会社 Method for vacuum-degassing of molten glass, device for vacuum-degassing of molten glass, method for producing molten glass, device for producing molten glass, method for producing article made of glass, and device for producing article made of glass
WO2013161903A1 (en) * 2012-04-27 2013-10-31 旭硝子株式会社 Non-alkali glass and method for producing same
CN105073670A (en) * 2013-02-19 2015-11-18 旭硝子株式会社 Alkali-free glass and method for producing same
CN111718119A (en) * 2019-03-19 2020-09-29 Agc株式会社 Alkali-free glass substrate

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5943502B2 (en) * 2010-06-14 2016-07-05 日本電気硝子株式会社 Method for producing natural marble-like crystallized glass
JPWO2013005401A1 (en) * 2011-07-01 2015-02-23 AvanStrate株式会社 Glass substrate for flat panel display and manufacturing method thereof
JPWO2013005402A1 (en) * 2011-07-01 2015-02-23 AvanStrate株式会社 Glass substrate for flat panel display and manufacturing method thereof
KR101528396B1 (en) * 2011-07-01 2015-06-11 아반스트레이트 가부시키가이샤 Glass substrate for flat pannel display
JP2013095638A (en) * 2011-11-01 2013-05-20 Nippon Electric Glass Co Ltd Glass production apparatus and glass production method using the apparatus
JP5862952B2 (en) * 2012-05-24 2016-02-16 日本電気硝子株式会社 Method for producing borosilicate glass
CN105130184B (en) * 2012-06-22 2017-07-14 Hoya株式会社 Glass, optical glass, compression molding glass blank and optical element
KR101440549B1 (en) * 2012-12-18 2014-09-17 재단법인 포항산업과학연구원 Method for preparing CO using exhaust gas and method for utilizing the same
TW201542485A (en) * 2014-05-15 2015-11-16 Asahi Glass Co Ltd Glass substrate for solar cell and solar cell using the same
JP2021075410A (en) * 2019-11-06 2021-05-20 日本電気硝子株式会社 Glass plate and method for manufacturing glass plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128549A (en) * 1998-10-21 2000-05-09 Asahi Glass Co Ltd Production of glass, using vacuum defoaming
JP2001089158A (en) * 1999-08-21 2001-04-03 Carl Zeiss:Fa Method for clarifying melted glass
JP2002293547A (en) * 2001-03-28 2002-10-09 Asahi Glass Co Ltd Method for producing glass for cathode ray tube
JP2003137591A (en) * 2002-11-06 2003-05-14 Nippon Electric Glass Co Ltd Process for making no-alkali glass
JP2004284949A (en) * 2004-05-12 2004-10-14 Asahi Glass Co Ltd Method of clarifying alkali-free glass
JP2005041704A (en) * 2003-07-22 2005-02-17 Nippon Electric Glass Co Ltd Alkali-free glass substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128549A (en) * 1998-10-21 2000-05-09 Asahi Glass Co Ltd Production of glass, using vacuum defoaming
JP2001089158A (en) * 1999-08-21 2001-04-03 Carl Zeiss:Fa Method for clarifying melted glass
JP2002293547A (en) * 2001-03-28 2002-10-09 Asahi Glass Co Ltd Method for producing glass for cathode ray tube
JP2003137591A (en) * 2002-11-06 2003-05-14 Nippon Electric Glass Co Ltd Process for making no-alkali glass
JP2005041704A (en) * 2003-07-22 2005-02-17 Nippon Electric Glass Co Ltd Alkali-free glass substrate
JP2004284949A (en) * 2004-05-12 2004-10-14 Asahi Glass Co Ltd Method of clarifying alkali-free glass

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029799A1 (en) * 2006-09-04 2008-03-13 Nippon Electric Glass Co., Ltd. Process for producing glass
JP2009073674A (en) * 2006-09-04 2009-04-09 Nippon Electric Glass Co Ltd Method for producing glass
JP2009084073A (en) * 2007-09-27 2009-04-23 Asahi Glass Co Ltd Method for producing glass
JP2010030876A (en) * 2008-06-27 2010-02-12 Nippon Electric Glass Co Ltd Tempered glass and manufacturing method for the same
JP2011042556A (en) * 2009-07-24 2011-03-03 Nippon Electric Glass Co Ltd Method for manufacturing optical glass
WO2011078258A1 (en) * 2009-12-25 2011-06-30 旭硝子株式会社 Method for vacuum-degassing molten glass and process for producing glass product
CN102666408A (en) * 2009-12-25 2012-09-12 旭硝子株式会社 Method for vacuum-degassing molten glass and process for producing glass product
JP2012092000A (en) * 2010-09-28 2012-05-17 Nippon Electric Glass Co Ltd Method of manufacturing borosilicate glass
KR20140001873A (en) * 2011-03-31 2014-01-07 아반스트레이트 가부시키가이샤 Method for producing glass substrate
KR20150038641A (en) * 2011-03-31 2015-04-08 아반스트레이트 가부시키가이샤 Method for producing glass substrate
CN107253822A (en) * 2011-03-31 2017-10-17 安瀚视特控股株式会社 The manufacture method of glass substrate
KR101589422B1 (en) 2011-03-31 2016-01-29 아반스트레이트 가부시키가이샤 Method for producing glass substrate
WO2012132449A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Method for producing glass substrate
KR101583121B1 (en) 2011-03-31 2016-01-07 아반스트레이트 가부시키가이샤 Method for producing glass substrate
JP5480383B2 (en) * 2011-03-31 2014-04-23 AvanStrate株式会社 Manufacturing method of glass substrate
US9352994B2 (en) 2011-04-12 2016-05-31 Asahi Glass Company Limited Method for vacuum-degassing molten glass, apparatus for vacuum-degassing molten glass, process for producing molten glass, apparatus for producing molten glass, process for producing glass product, and apparatus for producing glass product
EP2698354A4 (en) * 2011-04-12 2014-12-17 Asahi Glass Co Ltd Method for vacuum-degassing of molten glass, device for vacuum-degassing of molten glass, method for producing molten glass, device for producing molten glass, method for producing article made of glass, and device for producing article made of glass
CN103476715B (en) * 2011-04-12 2015-12-23 旭硝子株式会社 The manufacturing installation of the manufacture method of the vacuum deaerator method of melten glass, the vacuum degassing apparatus of melten glass, melten glass, the manufacturing installation of melten glass, the manufacture method of glasswork and glasswork
EP2698354A1 (en) * 2011-04-12 2014-02-19 Asahi Glass Company, Limited Method for vacuum-degassing of molten glass, device for vacuum-degassing of molten glass, method for producing molten glass, device for producing molten glass, method for producing article made of glass, and device for producing article made of glass
CN103476715A (en) * 2011-04-12 2013-12-25 旭硝子株式会社 Method for vacuum-degassing of molten glass, device for vacuum-degassing of molten glass, method for producing molten glass, device for producing molten glass, method for producing article made of glass, and device for producing article made of glass
WO2012141152A1 (en) * 2011-04-12 2012-10-18 旭硝子株式会社 Method for vacuum-degassing of molten glass, device for vacuum-degassing of molten glass, method for producing molten glass, device for producing molten glass, method for producing article made of glass, and device for producing article made of glass
JP5975022B2 (en) * 2011-04-12 2016-08-23 旭硝子株式会社 Method for defoaming molten glass, apparatus for defoaming molten glass, method for producing molten glass, apparatus for producing molten glass, method for producing glass product, and apparatus for producing glass product
WO2013161903A1 (en) * 2012-04-27 2013-10-31 旭硝子株式会社 Non-alkali glass and method for producing same
CN105073670A (en) * 2013-02-19 2015-11-18 旭硝子株式会社 Alkali-free glass and method for producing same
CN111718119A (en) * 2019-03-19 2020-09-29 Agc株式会社 Alkali-free glass substrate
US11584680B2 (en) 2019-03-19 2023-02-21 AGC Inc. Alkali-free glass substrate

Also Published As

Publication number Publication date
JP2008105860A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
WO2006080444A1 (en) Process for producing glass
TWI394733B (en) Glass composition for substrate and method for producing the same
KR101489983B1 (en) Method for production of non-alkali glass
CN1443143B (en) Method for producing aluminosilicate glass
JP5109162B2 (en) Glass manufacturing method
TWI409238B (en) E-glass and its manufacturing method
EP2634150B1 (en) Glass plate and process for production thereof
JP6342338B2 (en) Methods for producing glass, glass-ceramics and their use
JP2007126296A (en) Method and apparatus for manufacturing optical glass
US20050096209A1 (en) Glass and method for producing glass
CN107129142A (en) Alkali-free glass substrate and preparation method thereof
JP5194682B2 (en) Glass manufacturing method
JPWO2016017558A1 (en) High transmission glass
JP7418947B2 (en) glass
JP2013212943A (en) Method for manufacturing glass substrate for flat panel display
CN110028240A (en) A kind of alumina silicate glass and preparation method thereof
JP5304643B2 (en) Method for producing alkali-free glass
US20230074664A1 (en) Glass or glass ceramic as well as method for melting and refining glass or glass ceramic
JPH11217235A (en) High-temperature resistant aluminosilicate glass for lamp bulb and its use
JP2007126298A (en) Optical glass
US6191059B1 (en) Metal silicides as performance modifiers for glass compositions
JP2006206336A (en) Substrate glass for display device
JP4466371B2 (en) Glass and glass manufacturing method
KR101445108B1 (en) Preparation of alkali borosilicate glass batches for heat resistant glass containing TFT-LCD glass cullet or waste glass
WO2021117360A1 (en) Method for producing alkaline earth aluminoborosilicate glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712497

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712497

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP