WO2011078181A1 - Dielectric barrier discharge lamp and ultraviolet irradiation device using the same - Google Patents

Dielectric barrier discharge lamp and ultraviolet irradiation device using the same Download PDF

Info

Publication number
WO2011078181A1
WO2011078181A1 PCT/JP2010/073028 JP2010073028W WO2011078181A1 WO 2011078181 A1 WO2011078181 A1 WO 2011078181A1 JP 2010073028 W JP2010073028 W JP 2010073028W WO 2011078181 A1 WO2011078181 A1 WO 2011078181A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge tube
dielectric barrier
light shielding
barrier discharge
wall plate
Prior art date
Application number
PCT/JP2010/073028
Other languages
French (fr)
Japanese (ja)
Inventor
和也 畑瀬
毅 片桐
佳憲 金森
弘実 坂元
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2011547578A priority Critical patent/JPWO2011078181A1/en
Priority to CN2010800349987A priority patent/CN102473586A/en
Priority to KR1020127003056A priority patent/KR101389786B1/en
Publication of WO2011078181A1 publication Critical patent/WO2011078181A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/35Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings

Definitions

  • the present invention relates to a dielectric barrier discharge lamp for irradiating vacuum ultraviolet rays, and more particularly to a dielectric barrier discharge lamp having a flat discharge tube shape on the irradiation side and a semi-open type ultraviolet irradiation apparatus using the same.
  • Patent Documents 1, 2, 3, etc. dielectric barrier discharge lamps having a discharge tube with a flat surface on the irradiation side are known (Patent Documents 1, 2, 3, etc.).
  • the feature is that the in-plane uniformity of the irradiation light is good, and it is not necessary to provide an expensive front glass (corresponding to the window portion 102 in Patent Document 2 and FIG. 8) between the discharge tube and the irradiation object. Therefore, an ultraviolet irradiation device can be manufactured at low cost by connecting to a predetermined power supply device, and there is an advantage that vacuum ultraviolet rays can be directly irradiated to an irradiation object (Patent Document 3).
  • Such a type that does not have a front glass and can directly irradiate an irradiation object with vacuum ultraviolet rays is called a semi-open type ultraviolet irradiation device. Since this type of dielectric barrier discharge lamp does not have a front glass, various scattered matters are likely to adhere to the discharge tube due to the airflow in the lamp house that houses the discharge tube, and crystallization (solidification) that adheres to the tube wall There is a problem that the discharge tube is damaged by the deposited matter (hereinafter referred to as “solidified deposit” or “white powder”). Deposits adhered to the outer wall of the discharge tube can be periodically wiped away, but cannot be removed after solidifying to some extent after being exposed to ultraviolet rays for a long time.
  • the adhering of the flying material flying to the discharge tube is an “organosilicon compound” such as organic HMDS (hexamethylene disilazane).
  • organic HMDS hexamethylene disilazane
  • the white powder adhering to the discharge tube is generated because the organosilicon compound is decomposed into a siloxane precursor by ultraviolet light from the discharge tube and deposited on the outer peripheral surface of the discharge tube, and the white powder is oxidized and dehydrated by light and heat. It is inferred that the polymerization reaction proceeds and a strong glassy adhesion film is formed. The adhesion of white powder causes the performance of the discharge tube to deteriorate significantly.
  • the discharge tube can also be a source of contamination of the workpiece (object to be irradiated).
  • Patent Document 1 discloses that a “vacuum ultraviolet protection layer” is formed on the inner surfaces of front and rear end wall plates and left and right side wall plates in a discharge vessel of a dielectric barrier discharge lamp formed in a very long shape on the front and rear sides. It discloses that deterioration of the wallboard can be suppressed (paragraphs 10 to 11).
  • This vacuum ultraviolet protective layer is composed of at least absorbing or reflecting vacuum ultraviolet (the 20th paragraph, etc.).
  • FIG. 11 is a schematic diagram of a measuring apparatus.
  • the measuring device 60 includes a surface plate 62, a discharge tube fixing base 63, a micrometer fixing base 64, and a micrometer 65.
  • the measuring device 60 fixes the discharge tube fixing base 63 and the micrometer fixing base 64 to the surface plate 62, the micrometer 65 to the micrometer fixing base 64, and the discharge tube 61 to the discharge tube fixing base 63, respectively.
  • the measurement position is not misaligned.
  • a micrometer 65 manufactured by MITUTOYO (model name: M810-50) was used.
  • the film thickness of the solidified deposit is measured by using the measuring device 60, first measuring the width of the discharge tube 61 before lighting without deposits, and then lighting the discharge tube 61 with an average illuminance of 100 mW / cm 2.
  • the width of the discharge tube 61 was measured after a predetermined time (10 hours, 100 hours, 1000 hours), and finally, the difference between the width before lighting of the discharge tube 61 and the width after lighting was obtained.
  • FIG. 6 is a graph showing the relationship of the film thickness of the solidified deposit with respect to the ultraviolet light shielding rate.
  • the horizontal axis represents the ultraviolet light shielding rate
  • the vertical axis represents the film thickness [ ⁇ m] of the solidified deposit when solidified (vitrified) when the light shielding rate is changed from 0 to 100%.
  • the irradiation time of 1000 hours is a sufficient time that solidification is considered to be saturated. Comparing the three graphs of irradiation time of 10 hours, 100 hours, and 1000 hours, it can be seen that the film thickness of the solidified deposit is drastically reduced when the ultraviolet light shielding rate is increased to some extent.
  • the most effective method for reducing the adhesion and solidification of flying objects flying on the discharge tube is to shield the discharge tube from solidification as much as possible even if it adheres to the discharge tube.
  • alumina fine particles or silica / alumina mixed fine particles are known as materials that diffusely reflect ultraviolet light, and examples of use as a reflective film of a dielectric barrier discharge lamp are known. It cannot be shielded enough. Therefore, the light shielding is incomplete, the adhering scattered matter is solidified, and the discharge tube is damaged. In particular, distortion tends to concentrate on the wall surface located on the long side surface in the longitudinal direction (front-rear direction).
  • the present invention has been made in view of the above, and in a dielectric barrier discharge lamp for irradiating vacuum ultraviolet light, suppression of adhering to the wall surface located on the long side surface of the flying scattered matter to the discharge tube and solidification Reducing the amount of deposits is a technical issue.
  • a dielectric barrier discharge lamp includes a discharge tube that encloses a discharge gas for excimer light emission and irradiates ultraviolet rays downward through a lower wall plate having a flat surface, and an external portion of the discharge tube.
  • a dielectric barrier discharge lamp having an electrode on at least one side The wall surface located on the long side surface around the lower wall plate in the discharge tube is constituted by a light shielding member that shields at least 50% of ultraviolet rays. From the result of FIG. 6, it can be seen that the solidified deposit starts to decrease when the ultraviolet light shielding rate exceeds about 50%.
  • the dielectric barrier discharge lamp according to the present invention it is possible to suppress the adhering of scattered matter flying on the wall surface of the discharge tube constituted by the light shielding member and to prevent the solidification.
  • the wall surface located on the long side surface (or the four side surfaces including the short side surface) around the lower wall plate with a light shielding member adhesion of scattered matter flying on the side surface or the upper surface with respect to the irradiation surface of the discharge tube or its Solidification is suppressed and the life of the discharge tube can be improved.
  • the upper wall plate may be made of the same light shielding member. Since a discharge tube that irradiates vacuum ultraviolet rays attaches a lot of scattered matter to the wall surface, a great effect can be expected.
  • the “discharge tube that irradiates ultraviolet rays downward through the lower wall plate” defines the shape of the discharge tube, which is a prerequisite for carrying out the present invention.
  • This is the shortest and almost flat top and bottom wall plates facing each other up and down, which are almost in the shape of a rectangular box having a shape substantially parallel to each other, or “in an elongated cylinder, a part of the arc of the outer peripheral wall is crushed and flattened.
  • Such as an arch-shaped curved surface portion and a flat plate-shaped flat portion that connects both end edges of the arc in the curved surface portion, etc. all have a lower wall plate having a flat portion instead of the front glass. And what is irradiated with ultraviolet rays through the lower wall board corresponds.
  • the light blocking ratio of the light blocking member constituting the wall of the discharge tube is preferably as high as possible. If the light blocking ratio is 70% or more, for example, 90% or more, the solidified deposits have a relative film thickness to reduce the solidification of the scattered matter. In some cases, it can be suppressed to 5% or less of 1000 hours of irradiation.
  • the output intensity I of the light transmitted through the film having the film thickness t is obtained by using the input intensity I 0 , the absorption coefficient ⁇ , and the film thickness t.
  • I I 0 ⁇ e ⁇ t (Formula 1) (However, e is the base of natural logarithm) It is expressed. Since the transmittance is expressed as I / I 0 , the light shielding rate is calculated as (1 ⁇ I / I 0 ).
  • shielding means to block light, so it can occur when “shielding” is realized by “reflection”, “absorption”, or “refraction”.
  • the vacuum ultraviolet ray can not be blocked by 50% or more (more preferably 70% or more, more preferably 90% or more), the adhesion of scattered matter and its solidification can be prevented. It should be noted that no effect can be obtained.
  • the “light shielding member” is a member that blocks light, and may be composed of one kind of material or may be composed of two or more kinds of materials.
  • a dielectric barrier discharge lamp includes a discharge tube that encloses a discharge gas for excimer light emission, and irradiates ultraviolet rays downward through a lower wall plate having a flat surface.
  • a dielectric barrier discharge lamp having an electrode on at least one of the outside The wall surface located on the long side surface around the lower wall plate in the discharge tube is shielded so that the average illuminance of ultraviolet rays radiated from the wall surface to the outside of the discharge tube is 50 mW / cm 2 or less when the lamp is turned on. It is characterized by comprising a light shielding member. From the results shown in FIG.
  • the solidified deposits decreased after the ultraviolet light shielding rate exceeded about 50%, that is, when the average illuminance of ultraviolet rays radiated to the outside of the discharge tube became 50 mW / cm 2 or less. You can see that it is starting. In other words, it can be seen that the decrease starts when the average illuminance of ultraviolet rays radiated to the outside of the discharge tube becomes 50 mW / cm 2 or less. More preferably, it is desirable to turn on the light so that the average illuminance of ultraviolet rays radiated to the outside of the discharge tube is 30 mW / cm 2 or less, and more preferably, the light shielding member shields light so that it becomes 10 mW / cm 2 or less. It is good to be composed of.
  • the average illuminance is an average value when the surface illuminance of the discharge tube is measured at five locations.
  • the average illuminance of the side wall surface can be calculated based on the average illuminance of the lower wall plate and the light shielding rate of the side wall surface.
  • a dielectric barrier discharge lamp lighting method includes a discharge tube in which discharge gas for excimer light emission is enclosed and irradiated with ultraviolet rays downward through a lower wall plate having a flat surface, and the discharge tube
  • the solidified deposits decreased after the ultraviolet light shielding rate exceeded about 50%, that is, when the average illuminance of ultraviolet rays radiated to the outside of the discharge tube became 50 mW / cm 2 or less. You can see that it is starting. More preferably, lighting is performed so that the average illuminance of ultraviolet rays radiated to the outside of the discharge tube is 30 mW / cm 2 or less, and more preferably, lighting is performed so as to be 10 mW / cm 2 or less. desirable.
  • the illuminance of light irradiating the object to be irradiated may be small, or when irradiating the object to be irradiated after collecting the light irradiated from the lower wall plate, the illuminance of the entire discharge lamp is lowered.
  • the average illuminance of ultraviolet rays emitted from the wall surface located on the long side surface around the lower wall plate to the outside of the discharge tube can be set to 50 mW / cm 2 or less.
  • the wall surface located on the long side surface around the lower wall plate is made of a light shielding member, so that the discharge from the wall surface located on the long side surface around the lower wall plate can be achieved. You may light so that the average illumination intensity of the ultraviolet-ray radiated
  • a member including a transparent member and a light shielding film can be used as the light shielding member.
  • the light shielding film only needs to be disposed at a position where the ultraviolet rays irradiated to the outside through the transparent member can be shielded.
  • the light shielding film may be formed on the surface of the transparent member.
  • a synthetic quartz plate or a fused quartz plate can be used as the transparent member.
  • a light shielding film is preferably formed on the wall surface of the discharge tube located on the long side surface around the lower wall plate.
  • the plate and the transparent member are not necessarily the same member.
  • the physical properties such as the strength of the discharge tube can be easily adjusted on the transparent member side, and the light shielding property against ultraviolet rays can be easily adjusted on the light shielding film side. it can.
  • a fired product of slurry (turbid liquid) in which fine particles of oxide having ultraviolet light shielding properties are turbid in a solvent can be used.
  • This light shielding film may be formed inside the discharge tube or outside.
  • the primary particle diameter of the fine particles is preferably 3 ⁇ m or less.
  • alcohols ethanol, isopropyl alcohol, n-butanol, etc.
  • xylene toluene and the like
  • a surfactant such as a polycarboxylic acid partial alkyl ester, a polyether, or a polyhydric alcohol ester may be added.
  • the primary particle diameter of the oxide fine particles is 10 to 100 nm. If the particle diameter of the fine particles is larger than 100 nm, the dispersibility in the slurry is deteriorated, which may result in a non-uniform light shielding film. Furthermore, since the space between the particles is widened, the ultraviolet light shielding rate is lowered. Further, if the particle diameter of the fine particles is smaller than 10 nm, the surface energy of the particles is high, and the particles aggregate and precipitate in the slurry.
  • the oxide fine particles are mainly composed of yttrium oxide (Y 2 O 3 ).
  • Yttrium oxide has ultraviolet absorptivity and is an insulator. Therefore, when providing a light shielding film inside the discharge tube, it is possible to form a light shielding film that has ultraviolet light shielding properties and does not cause abnormal discharge in the discharge tube during discharge, and provides a light shielding film outside the discharge tube. In this case, it is not necessary to worry about the electrical contact with the electrode provided outside the discharge tube.
  • ultrafine particles mainly composed of zinc oxide (ZnO) or titanium oxide (TiO 2 ) coated with silica (SiO 2 ) may be used. These materials are useful for vacuum ultraviolet light having a center wavelength of 172 nm when xenon gas is used as the discharge gas.
  • the light shielding film used in the dielectric barrier discharge lamp according to the present invention shields light mainly by ultraviolet absorption. This is because the light shielding film can be made thin.
  • the ultraviolet reflectivity is more dependent on the film thickness than the ultraviolet absorptivity. For this reason, in order to increase the light shielding rate to 50% or more with a light-shielding film having ultraviolet reflectivity, it is necessary to make the film thicker than when a light-shielding film having ultraviolet absorptivity is used. In particular, when the light shielding rate is 70% or more and 90% or more, the difference is remarkable.
  • the thickness of the light shielding film is preferably 10 ⁇ m or less.
  • “mainly shielding light by ultraviolet absorption” means that the light shielding rate by “absorption” is larger than the light shielding rate by “reflection” or “refraction”.
  • Examples of the material that shields light mainly by ultraviolet absorptivity include yttrium oxide (Y 2 O 3 ), zinc oxide (ZnO), zirconium oxide (ZrO 2 ), and the like. Also good.
  • the lower wall plate may be formed of a synthetic quartz plate, while the four side surfaces (both side walls in the front-rear direction and the left-right direction) around the lower wall plate or the upper wall plate may be formed of a fused quartz plate. Since a fused quartz plate contains more impurities than synthetic quartz, the shielding rate against vacuum ultraviolet rays is usually 70% or more, and since it can be easily welded to synthetic quartz by heating, Suitable as a member.
  • the arc tube itself is composed entirely of a synthetic quartz plate, but the four side surfaces around the lower wall plate (both side walls in the front-rear direction and the left-right direction) or the surface of the upper wall plate until the light shielding rate becomes 70% or more, for example.
  • the dielectric barrier discharge lamp according to the present invention is an ultraviolet irradiation device by using a power supply device that outputs electric power for generating excimer light emission and a lead wire for supplying electric power from the power supply device. be able to.
  • a power supply device that outputs electric power for generating excimer light emission
  • a lead wire for supplying electric power from the power supply device.
  • the organosilicon compound may be used as an intermediate layer for improving the adhesion between the irradiated object and the resist when the resist is applied to the irradiated object.
  • the wall surface located on the long side surface or the four side surfaces around the lower wall plate in the discharge tube is composed of a light shielding member that shields at least 50% of ultraviolet rays. It is possible to suppress the adhering of scattered matter flying on the wall surface of the discharge tube constituted by the members and prevent solidification.
  • FIG. 1A is a cross-sectional view of a discharge tube 1a of FIG. 1 cut along a long central axis and viewed from the side
  • FIG. 1B is a dielectric barrier discharge.
  • Sectional view of the lamp in the longitudinal direction, (c) is a sectional view taken along line BB of (a) (A) and (b) both form an ultraviolet light shielding film on the inner wall surface located on the four side surfaces around the lower wall plate in the discharge tube 1 of the dielectric barrier discharge lamp shown in FIGS.
  • FIG. 1 Figure showing (A) And (b) shows the 2nd Embodiment of this invention and its modification, Comprising: Sectional drawing of the elongate direction of a dielectric barrier discharge lamp
  • Side sectional view of the ultraviolet irradiation device of the fourth embodiment A barrier discharge lamp according to a fourth embodiment, which is a cross-sectional view in a plane perpendicular to the length direction of the discharge tube of the ultraviolet irradiation device of FIG. 7 (b) of the fourth embodiment shown in (a).
  • First modification of barrier discharge lamp Second modification of the barrier discharge lamp of the fourth embodiment shown in FIG.
  • FIG. 1 and 2 show a first embodiment of the present invention and are perspective views in which a long central portion of a dielectric barrier discharge lamp is omitted.
  • FIG. 2A is a cross-sectional view of the discharge tube 1a of FIG. 1 taken along the long central axis and viewed from the side.
  • 2B is a cross-sectional view in the longitudinal direction of the dielectric barrier discharge lamp, that is, a cross-sectional view taken along line AA in FIG. 2A
  • FIG. 2C is a cross-sectional view taken along line BB in FIG. It is line sectional drawing.
  • a discharge tube 1 of this dielectric barrier discharge lamp is made of a synthetic quartz glass having a substantially square box shape and a synthetic quartz glass having substantially the same shape as the cross section of the square tube 1a.
  • the front and rear end wall plates 1b and 1b are respectively welded and closed. Xenon gas is sealed inside.
  • the square tube 1a is a rectangular tube having a vertical cross-sectional height of several tens of mm and a horizontal width of several tens of mm.
  • the length in the front-rear direction is, for example, 1 m or more. Accordingly, the square tube 1a is composed of flat upper and lower wall plates facing each other vertically and flat left and right side wall plates facing each other in the left and right direction.
  • Tip tubes 1c and 1c project in advance from front and rear end wall plates 1b and 1b, respectively, which are welded to the opening portions at both ends of the square tube 1a.
  • Each tip tube 1c is a fused silica glass tube member welded so as to protrude further outward from the outer surface of the front and rear end wall plate 1b, and the inside of the tube is formed in advance in the approximate center of the front and rear end wall plate 1b. It is provided so as to communicate with the opening hole.
  • metal thin films of electrodes 2 and 3 are formed on the outer surfaces of the upper and lower wall plates of the square tube 1a.
  • the electrode 2 is formed so as to cover almost the entire upper surface of the upper wall plate of the square tube 1a except for an uncoated portion for a sensor for inspecting the intensity of vacuum ultraviolet rays emitted from the dielectric barrier discharge lamp. Is done.
  • the electrode 3 is formed in a mesh pattern on almost the entire lower surface of the lower wall plate of the square tube 1a.
  • Ultraviolet light shielding films 4 a obtained by firing a slurry containing yttrium oxide (Y 2 O 3 ) are provided on four inner wall surfaces located on the four side surfaces around the lower wall plate in the discharge tube 1.
  • This film can block 172 nm vacuum ultraviolet light, and the light blocking rate can be adjusted by the film thickness.
  • an ultraviolet irradiation device is configured by connecting to a power supply device, and a dielectric barrier discharge lamp is turned on by applying a predetermined power to the electrode via a lead wire, and through this flat lower wall plate, FIG. In the direction of the arrows a) and (b), 172 nm vacuum ultraviolet rays are irradiated vertically downward in FIG. 2C.
  • an ultraviolet light shielding film is formed on the inner wall surface located on the four side surfaces around the lower wall plate in the discharge tube 1 of the dielectric barrier discharge lamp shown in FIGS. It shows how to do.
  • the square tube 1a is tilted so that the side faces downward as shown in the figure, and a slurry containing yttrium oxide (Y 2 O 3 ) is injected from the tip tube 1c and dried.
  • a slurry containing yttrium oxide Y 2 O 3
  • firing is performed at 500 ° C. for 30 minutes.
  • the gas is discharged from the tip tube 1c, a discharge gas (for example, xenon gas) is injected, and the inside is filled with the discharge gas.
  • a discharge gas for example, xenon gas
  • Test lamp A Prototype lamp 1 ... Side ultraviolet light shielding film (yttrium oxide) formation
  • Light shielding rate 99% (no dilution) Average illuminance from the lower wall plate of 101 mW / cm 2 Average illuminance from side wall surface 1 mW / cm 2
  • Prototype lamp 2 ...
  • FIG. 10 shows a schematic diagram of the experimental apparatus.
  • the arrows indicate the direction of fluid flow.
  • the irradiation tool 50 includes one of the above-mentioned six kinds of test lamps 54 disposed in a container 56 between a dummy substrate 53 and a punching metal plate 55.
  • Nitrogen gas containing HMDS is configured to flow in air A1 and A2 from the side of the container 56 and exhaust the exhaust gas E after irradiation.
  • the bubbling container 51 stores the HMDS 52 therein.
  • Nitrogen gas containing HMDS is obtained by flowing nitrogen gas N (N 2 ) into the HMDS 52 with a nozzle, and flows into the irradiation tool 50 through a pipe.
  • the content of the HMDS is such that the bubble size of the nitrogen gas passing through the HMDS 52 and the rising distance of the bubble, that is, the nitrogen gas is HMDS 52 while the temperature of the bubbling container 51 is kept constant at 20 ° C. It is adjusted by the distance from the tip of the nozzle flowing into the liquid to the liquid level. Since the HMDS 52 decreases with the inflow of nitrogen gas N, it is appropriately replenished until the experiment is completed. (4) HMDS: Always supply (5) Total nitrogen amount: 50 L / min (6) Lighting time: 1000 hours
  • Illuminance measurement The surface illuminance of the lower wall plate of the discharge tube is measured at five locations with an ultraviolet illuminance meter (UIT150 / VUV-S172, manufactured by USHIO), and the average value is defined as the average illuminance.
  • the measurement location is a region in which the pair of electrodes face each other (a region corresponding to the discharge space) is equally divided into five in the longitudinal direction, and is near the center. Accordingly, the measurement points are set at approximately equal intervals.
  • the average illuminance of the side wall surface is calculated using the average illuminance of the lower wall plate and the light shielding rate (1-I / I 0 ) of the side wall surface.
  • the transmittance of the side wall surface is I / I 0 , so the average illuminance E of the lower wall plate and the transmittance I / I of the side wall surface By multiplying by 0 , the average illuminance of the side wall surface is obtained.
  • the prototype lamp 2 which shielded 90% of UV rays on the side face had a small amount of white powder adhering, the vitrification film thickness at that time was 15 ⁇ m, and vitrification (solidification) was slightly observed.
  • Prototype lamp 3 that shielded 71% of ultraviolet rays on the side also had a small amount of white powder, but the vitrification film thickness at that time was 69 ⁇ m, and a little vitrification was observed.
  • the prototype lamp 4 which shielded the ultraviolet rays on the side by 56% had a larger white powder adhesion amount than the prototype lamp 3, and the vitrified film thickness at that time was 159 ⁇ m.
  • the prototype lamp 5 which shielded 30% of ultraviolet rays on the side surface had a larger white powder adhesion amount than the prototype lamp 4, and the vitrified film thickness at that time was 306 ⁇ m.
  • the conventional lamp which did not shield the ultraviolet rays on the side face had a very large amount of white powder adhered, and the vitrified film thickness at that time was 300 ⁇ m. From these facts, the following became clear. 1.
  • the side shading has the effect of reducing the amount of white powder attached. 2.
  • Shading of 56% or more of the side surface has an effect of preventing vitrification (solidification). In view of the tendency, it is recognized that the effect is effective at 50% or more. It is remarkable at 71% or more, and more remarkable at 90% or more. This result is in good agreement with the graph of FIG.
  • FIGS. 4A and 4B show a second embodiment of the present invention and its modification, and are sectional views in the longitudinal direction of a dielectric barrier discharge lamp.
  • the mode in which the light shielding film is provided on the inner wall surface located on the four side surfaces around the lower wall plate has been described.
  • the ultraviolet light shielding film 4b is provided on the outer periphery of the discharge tube. Also good.
  • light shielding films are also provided on the front and rear end faces.
  • a metal oxide sintered body is used as the light shielding film, it is preferable to perform a coating, drying and firing process of the light shielding film before the electrode forming process.
  • a heat treatment step is unnecessary, a light shielding film may be formed on the side surface of the discharge tube after the electrodes are formed. It is considered that the degree of freedom in the manufacturing process is increased as compared with the case where a light shielding film is formed inside the discharge tube, and the material selection range of the light shielding film is widened.
  • the inner wall surface itself located on the four side surfaces around the lower wall plate may be formed of a light shielding member and bonded to the upper and lower wall plates by welding or glass frit.
  • the lower wall plate may be composed of a synthetic quartz plate
  • the four side surfaces (both wall surfaces in the front-rear direction and the left-right direction) around the lower wall plate or the upper wall plate may be composed of a fused quartz plate 4c.
  • Fused quartz is a natural quartz (natural silica) melted and solidified into a plate shape. Since it contains a large amount of impurities, it has a high light shielding ratio of 70% or more for vacuum ultraviolet rays and is heated. This is because welding with synthetic quartz is easy. The same effect can be obtained by using a ceramic plate instead of natural quartz as the light shielding member. In this case, glass frit can be used as a bonding agent because it cannot be welded to synthetic quartz.
  • FIG. 5 shows a third embodiment of the present invention, and is a perspective view in which a long central portion of a dielectric barrier discharge lamp is omitted.
  • FIG. 5A is a cross-sectional view of the discharge tube 1a of FIG. 1 taken along the long central axis and viewed from the side.
  • 5B is a cross-sectional view of the dielectric barrier discharge lamp in the longitudinal direction, that is, a cross-sectional view taken along line AA in FIG. 5A
  • FIG. 5C is a cross-sectional view taken along line BB in FIG. It is line sectional drawing.
  • the arc tube itself is composed entirely of a synthetic quartz plate.
  • the four side surfaces (both side walls in the front-rear direction and the left-right direction) around the flat lower wall plate or the surface of the upper wall plate are shielded, for example.
  • the surface is roughened until the rate reaches 70% or more.
  • Roughening is to increase the surface roughness of the mirror-like wall surface.
  • a roughening method for example, a method of roughening the surface by chemically eroding by contact with hydrofluoric acid. And a method of roughening the surface by physically losing the specular state by spraying fine particles such as sandblast.
  • rough surfaces 4d having an ultraviolet shielding effect are formed on the four side surfaces (both side walls in the front-rear direction and the left-right direction) around the lower wall plate.
  • hydrofluoric acid is injected from the tip tube 1c into the discharge tube, and the four side surfaces around the lower wall plate (front-rear direction and left-right direction).
  • the two side walls in the direction) or the upper wall plate may be dissolved with hydrofluoric acid to roughen the surface.
  • the dielectric barrier discharge lamp having the rectangular tube shape and the long rectangular tube and the ultraviolet irradiation apparatus using the dielectric tube discharge lamp have been described.
  • the present invention is not limited to such a shape, and may be a semi-open type ultraviolet irradiation device that irradiates vacuum ultraviolet rays downward through a lower wall plate having no flat glass and having a flat surface. All are applicable.
  • another embodiment of the present invention will be described.
  • FIG. 7 and 8 are side sectional views of the ultraviolet irradiation device, and FIG. 8 is a sectional view in a plane perpendicular to the length direction of the discharge tube of the ultraviolet irradiation device of FIG.
  • the ultraviolet irradiation device 10 shown in FIG. 7 includes a barrier discharge lamp 11 and an AC power supply device 22 connected via lead wires 20 and 21.
  • the discharge tube 12 of the barrier discharge lamp 11 has a double tube structure composed of an outer tube portion 13 and an inner tube portion 14, and an outer tube portion 13 and an inner tube portion 14 inserted into the outer tube portion 13. It has.
  • the outer tube portion 13 includes an arch-shaped curved surface portion 15 that is flattened by crushing a part of the arc of the outer peripheral wall in an elongated cylinder, and both end edges of the arc in the curved surface portion 15.
  • a flat plate-like flat portion 16 (lower wall plate) is provided. Vacuum ultraviolet rays are irradiated through the flat portion 16.
  • the corner portion 15A where the curved surface portion 15 and the flat portion 16 are joined is rounded.
  • the inner tube portion 14 has a cylindrical shape smaller in diameter than the outer tube portion 13, and the outer tube portion 13 and the inner tube portion 14 that are arranged at the center position in the lateral direction on the inner wall surface of the flat portion 16. Are joined to each other at both ends, and a discharge gas such as xenon gas is enclosed in a discharge space 17 surrounded by both.
  • Electrodes 18 and 19 are provided outside the discharge tube 12.
  • the upper electrode 18 is made of a metal film fixed to the outer wall surface of the curved surface portion in the outer tube portion 13.
  • a material of the upper electrode 18 it is preferable to use a material that reflects ultraviolet rays.
  • aluminum can be used as a material of the upper electrode 18.
  • the film thickness of the upper electrode 18 is preferably higher in reflectance, and is preferably at least 70% or more, more preferably 90% or more so as not to transmit ultraviolet rays to the outside.
  • the lower electrode 19 is made of a nickel wire and is inserted into the inner tube portion 14 over almost the entire length. The lower electrode 19 is provided at a position equidistant from each point on the upper electrode 18.
  • One end portions of the lead wires 20 and 21 are connected to the electrodes 18 and 19, and the other end portions of the lead wires 20 and 21 are connected to an AC power supply apparatus.
  • slurry containing yttrium oxide (Y 2 O 3 ) is fired on the four inner wall surfaces located on the four side surfaces around the flat portion 16 in the outer tube portion 13.
  • An ultraviolet light shielding film 4e is provided. This film can block 172 nm vacuum ultraviolet light, and the light blocking rate can be adjusted by the film thickness.
  • the ultraviolet light shielding film 4e is preferably composed of a light shielding member that shields light at least 50% or more, more preferably 70% or more, and still more preferably 90% or more. Further, as illustrated in FIG. 8, it is preferable to provide an ultraviolet light shielding film so as to partially overlap the end portion 18 ⁇ / b> A of the upper electrode 18 that also functions as an ultraviolet reflection film. In this way, ultraviolet rays leaking outside the outer tube portion 13 can be reliably shielded by the ultraviolet reflecting film 4e, and even if scattered matter adheres to the surface of the outer tube portion 13, it is solidified as much as possible. You can prevent it from progressing. This also applies to the following modifications 1 and 2.
  • FIG. 8B shows a first modification of the barrier discharge lamp of the fourth embodiment shown in FIG.
  • the barrier discharge lamp 30 has a discharge tube 31 having a single tube structure without an inner tube portion, and the upper electrode 34 is formed on an arch-shaped curved portion 32 of the discharge tube 31.
  • the lower electrode 35 is provided on the flat portion 33 (lower wall plate).
  • Ultraviolet light shielding films 4f obtained by firing a slurry containing yttrium oxide (Y 2 O 3 ) are provided on four inner wall surfaces located on the four side surfaces around the flat portion 33. This film can block 172 nm vacuum ultraviolet light, and the light blocking rate can be adjusted by the film thickness.
  • FIG. 9 shows a second modification of the barrier discharge lamp of the fourth embodiment shown in FIG.
  • the structure of the discharge tube 41 is a double tube structure comprising an outer tube portion 42 and an inner tube portion 43, and the upper electrode 47 is formed of the discharge tube 41.
  • the lower electrode 48 is inserted into the inner tube portion 14 over almost the entire length.
  • the lower electrode 48 is provided at a position equidistant from each point on the upper electrode 47.
  • One end portions of the lead wires 20 and 21 are connected to the electrodes 47 and 48, and the other end portions of the lead wires 20 and 21 are connected to an AC power supply apparatus.
  • an auxiliary electrode 49 is provided over the entire outer surface of the outer tube portion of the flat portion 45 (lower wall plate) of the discharge tube 41.
  • the auxiliary electrode 49 assists the main discharge between the pair of electrodes 47 and 48.
  • the auxiliary electrode 49 is formed in a mesh shape so as not to block light emitted from the inside of the discharge tube 41 as much as possible, and is provided over the entire length of the discharge tube 41 in the length direction.
  • the four inner wall surfaces positioned on the four side surfaces around the flat portion 45 are provided with an ultraviolet light shielding film 4g obtained by firing a slurry containing yttrium oxide (Y 2 O 3 ).
  • This film can block 172 nm vacuum ultraviolet light, and the light blocking rate can be adjusted by the film thickness.
  • the dielectric barrier discharge lamp according to the present invention is not limited to a strictly rectangular box-shaped discharge tube in a strict sense, as long as it is a semi-open type ultraviolet irradiation device that does not require a front glass. It can also be applied to arcuate discharge tubes. Furthermore, in this case, an auxiliary electrode may be provided in the case of a double tube structure regardless of whether the structure of the discharge tube is a double tube structure or a single tube structure.
  • the dielectric barrier discharge lamp according to the present invention is a substantially rectangular box-shaped dielectric barrier discharge lamp that does not require a front glass, not only can the manufacturing cost be reduced, but also on both side walls in the longitudinal direction (front-rear direction). Industrial applicability is great in that the strain can be prevented from being concentrated and the life of the discharge tube can be extended.

Abstract

In order to reduce the deposition and solidification of debris flying into the discharge tube, a semi-open dielectric barrier discharge lamp for generating vacuum ultraviolet radiation is provided with a discharge tube (1) which internally seals a discharge gas for the generation of excimer radiation and irradiates the vacuum ultraviolet radiation downwards via a bottom wall plate not provided with a front glass but having a flat surface, and electrodes (2, 3) disposed inside said discharge tube. The sidewalls located on the long side surfaces surrounding the bottom wall plate in the discharge tube are configured from a light shielding member (4a) which shields at least 50% of ultraviolet rays.

Description

誘電体バリア放電ランプ及びこれを用いた紫外線照射装置Dielectric barrier discharge lamp and ultraviolet irradiation apparatus using the same
 本発明は、真空紫外線を照射するための誘電体バリア放電ランプ、特に放電管の形状が照射側に平坦な面を有する誘電体バリア放電ランプ及びこれを用いた半開放型の紫外線照射装置に関する。 The present invention relates to a dielectric barrier discharge lamp for irradiating vacuum ultraviolet rays, and more particularly to a dielectric barrier discharge lamp having a flat discharge tube shape on the irradiation side and a semi-open type ultraviolet irradiation apparatus using the same.
 近年、放電管の形状が照射側に平坦な面を有する誘電体バリア放電ランプが知られている(特許文献1、2、3等)。その特徴は、照射光の面内均一性がよく、放電管と照射対象物の間に高価な前面ガラス(特許文献2、図8の窓部102に相当)を設ける必要が無いことである。そのため、所定の電源装置に接続することにより低コストで紫外線照射装置を製造でき、照射対象物に直接真空紫外線を照射できる利点がある(特許文献3)。このような前面ガラスの無い、照射対象物に直接真空紫外線を照射できるタイプを半開放型の紫外線照射装置という。この種の誘電体バリア放電ランプは前面ガラスが無いために放電管を収納するランプハウス内の気流等によって種々の飛散物が放電管に付着しやすく、その管壁に付着する結晶化(固化)した付着物(以下、「固化付着物」又は「白粉」という。)によって放電管にダメージを与えるという問題がある。放電管の外壁に付着した付着物は定期的に拭き取って除去することも可能であるが、長時間紫外線に曝されてある程度固化が進むと除去できなくなる。 In recent years, dielectric barrier discharge lamps having a discharge tube with a flat surface on the irradiation side are known ( Patent Documents 1, 2, 3, etc.). The feature is that the in-plane uniformity of the irradiation light is good, and it is not necessary to provide an expensive front glass (corresponding to the window portion 102 in Patent Document 2 and FIG. 8) between the discharge tube and the irradiation object. Therefore, an ultraviolet irradiation device can be manufactured at low cost by connecting to a predetermined power supply device, and there is an advantage that vacuum ultraviolet rays can be directly irradiated to an irradiation object (Patent Document 3). Such a type that does not have a front glass and can directly irradiate an irradiation object with vacuum ultraviolet rays is called a semi-open type ultraviolet irradiation device. Since this type of dielectric barrier discharge lamp does not have a front glass, various scattered matters are likely to adhere to the discharge tube due to the airflow in the lamp house that houses the discharge tube, and crystallization (solidification) that adheres to the tube wall There is a problem that the discharge tube is damaged by the deposited matter (hereinafter referred to as “solidified deposit” or “white powder”). Deposits adhered to the outer wall of the discharge tube can be periodically wiped away, but cannot be removed after solidifying to some extent after being exposed to ultraviolet rays for a long time.
 放電管に飛来する飛散物の付着は有機系のHMDS(ヘキサメチレンジシラザン)などの、「有機ケイ素化合物」であると考えられる。放電管に付着する白粉は、放電管からの紫外光によって有機ケイ素化合物がシロキサン前駆体に分解されて放電管の外周表面に堆積するために生じ、その白粉が光と熱により酸化及び脱水反応によって重合反応が進み、強固なガラス質の付着膜を形成するものと推察される。白粉の付着は放電管の性能を著しく劣化させる原因となる。また、放電管に付着した白粉が照射装置内の放電管背面或いは側面から流される窒素ガス等によって脱落すれば、放電管がワーク(被照射対象物)の汚染源にもなりうる。 It is thought that the adhering of the flying material flying to the discharge tube is an “organosilicon compound” such as organic HMDS (hexamethylene disilazane). The white powder adhering to the discharge tube is generated because the organosilicon compound is decomposed into a siloxane precursor by ultraviolet light from the discharge tube and deposited on the outer peripheral surface of the discharge tube, and the white powder is oxidized and dehydrated by light and heat. It is inferred that the polymerization reaction proceeds and a strong glassy adhesion film is formed. The adhesion of white powder causes the performance of the discharge tube to deteriorate significantly. Moreover, if the white powder adhering to the discharge tube falls off by nitrogen gas or the like flowing from the back surface or the side surface of the discharge tube in the irradiation device, the discharge tube can also be a source of contamination of the workpiece (object to be irradiated).
 特許文献1は、前後を極めて長尺な形状に形成した誘電体バリア放電ランプの放電容器内の前後端壁板や左右側壁板の内面に「真空紫外線保護層」を形成することによって、前後端壁板の劣化を抑えられることを開示している(第10~11段落等)。この真空紫外線保護層は、少なくとも真空紫外線を吸収するか反射するもので構成される(第20段落等)。 Patent Document 1 discloses that a “vacuum ultraviolet protection layer” is formed on the inner surfaces of front and rear end wall plates and left and right side wall plates in a discharge vessel of a dielectric barrier discharge lamp formed in a very long shape on the front and rear sides. It discloses that deterioration of the wallboard can be suppressed (paragraphs 10 to 11). This vacuum ultraviolet protective layer is composed of at least absorbing or reflecting vacuum ultraviolet (the 20th paragraph, etc.).
特開2004-127710号公報JP 2004-127710 A WO2007/013602WO2007 / 013602 特開2009-183949号公報JP 2009-183949 A
 本発明者らは紫外線の遮光率に対する固化付着物の膜厚の関係を調べたところ、遮光率がある一定値以上において有意にその膜厚が減少する条件を見いだした。まず、固化付着物の膜厚の測定方法について説明する。図11は、測定装置の概略図である。測定装置60は、定盤62と、放電管固定台63と、マイクロメーター固定台64と、マイクロメーター65とを備えている。そして、測定装置60は、放電管固定台63及びマイクロメーター固定台64を定盤62に、マイクロメーター65をマイクロメーター固定台64に、放電管61を放電管固定台63にそれぞれ固定して、測定位置がずれないようになっている。マイクロメーター65は、MITUTOYO社製(型名:M810-50)を用いた。固化付着物の膜厚は、測定装置60を用いて、まず、付着物の無い点灯前の放電管61の幅を測定し、次に、放電管61を平均照度100mW/cmで点灯して所定時間(10時間、100時間、1000時間)後に放電管61の幅を測定し、最後に、放電管61の点灯前の幅と点灯後の幅との差を求めることにより得た。図6は、紫外線の遮光率に対する固化付着物の膜厚の関係を表すグラフである。横軸は紫外線の遮光率をとり、縦軸は遮光率を0~100%まで変化させたときの固化(ガラス化)した固化付着物の膜厚[μm]を表している。ここで、照射時間1000時間は、固化が飽和すると考えられる十分な時間である。照射時間10時間、100時間、1000時間の3つのグラフを比較すると、いずれも紫外線遮光率がある程度高くなると急激に固化付着物の膜厚が減少していることが分かる。 The present inventors examined the relationship between the film thickness of the solidified deposit and the ultraviolet light shielding rate, and found that the film thickness significantly decreased when the light shielding rate was above a certain value. First, a method for measuring the thickness of the solidified deposit will be described. FIG. 11 is a schematic diagram of a measuring apparatus. The measuring device 60 includes a surface plate 62, a discharge tube fixing base 63, a micrometer fixing base 64, and a micrometer 65. The measuring device 60 fixes the discharge tube fixing base 63 and the micrometer fixing base 64 to the surface plate 62, the micrometer 65 to the micrometer fixing base 64, and the discharge tube 61 to the discharge tube fixing base 63, respectively. The measurement position is not misaligned. A micrometer 65 manufactured by MITUTOYO (model name: M810-50) was used. The film thickness of the solidified deposit is measured by using the measuring device 60, first measuring the width of the discharge tube 61 before lighting without deposits, and then lighting the discharge tube 61 with an average illuminance of 100 mW / cm 2. The width of the discharge tube 61 was measured after a predetermined time (10 hours, 100 hours, 1000 hours), and finally, the difference between the width before lighting of the discharge tube 61 and the width after lighting was obtained. FIG. 6 is a graph showing the relationship of the film thickness of the solidified deposit with respect to the ultraviolet light shielding rate. The horizontal axis represents the ultraviolet light shielding rate, and the vertical axis represents the film thickness [μm] of the solidified deposit when solidified (vitrified) when the light shielding rate is changed from 0 to 100%. Here, the irradiation time of 1000 hours is a sufficient time that solidification is considered to be saturated. Comparing the three graphs of irradiation time of 10 hours, 100 hours, and 1000 hours, it can be seen that the film thickness of the solidified deposit is drastically reduced when the ultraviolet light shielding rate is increased to some extent.
 すなわち、放電管に飛来する飛散物の付着及びその固化を減らすために最も効果的な方法は、放電管に飛散物が付着しても、そこからなるべく固化が進行しないよう遮光することであるという知見が導かれる。この知見によれば、例えば、アルミナ微粒子或いはシリカ・アルミナ混合微粒子などは紫外光を拡散反射する材料として知られ、誘電体バリア放電ランプの反射膜として用いられる例が知られているが、紫外線を十分に遮光することはできない。そのため、遮光が不完全となり、付着した飛散物の固化が進行し、放電管にダメージを与える原因となる。特に、長尺方向(前後方向)の長側面に位置する壁面では、歪みが集中しやすい。 In other words, the most effective method for reducing the adhesion and solidification of flying objects flying on the discharge tube is to shield the discharge tube from solidification as much as possible even if it adheres to the discharge tube. Find knowledge. According to this knowledge, for example, alumina fine particles or silica / alumina mixed fine particles are known as materials that diffusely reflect ultraviolet light, and examples of use as a reflective film of a dielectric barrier discharge lamp are known. It cannot be shielded enough. Therefore, the light shielding is incomplete, the adhering scattered matter is solidified, and the discharge tube is damaged. In particular, distortion tends to concentrate on the wall surface located on the long side surface in the longitudinal direction (front-rear direction).
 本発明は、上記に鑑みてなされたものであり、真空紫外線を照射するための誘電体バリア放電ランプにおいて、飛来する飛散物の放電管への長側面に位置する壁面への付着の抑制及び固化付着物量を減らすことを技術的課題とする。 The present invention has been made in view of the above, and in a dielectric barrier discharge lamp for irradiating vacuum ultraviolet light, suppression of adhering to the wall surface located on the long side surface of the flying scattered matter to the discharge tube and solidification Reducing the amount of deposits is a technical issue.
 本発明に係る誘電体バリア放電ランプは、内部にエキシマ発光のための放電用ガスを封入し、平坦な面を有する下壁板を通して紫外線を下方に照射する放電管と、この放電管の外部の少なくとも一方に電極を備えた誘電体バリア放電ランプにおいて、
 この放電管における下壁板の周囲の長側面に位置する壁面が、紫外線を少なくとも50%以上遮光する遮光部材で構成されたことを特徴とする。図6の結果より、固化付着物は紫外線遮光率が約50%を超えたあたりから減少を始めていることが分かる。
A dielectric barrier discharge lamp according to the present invention includes a discharge tube that encloses a discharge gas for excimer light emission and irradiates ultraviolet rays downward through a lower wall plate having a flat surface, and an external portion of the discharge tube. In a dielectric barrier discharge lamp having an electrode on at least one side,
The wall surface located on the long side surface around the lower wall plate in the discharge tube is constituted by a light shielding member that shields at least 50% of ultraviolet rays. From the result of FIG. 6, it can be seen that the solidified deposit starts to decrease when the ultraviolet light shielding rate exceeds about 50%.
 本発明に係る誘電体バリア放電ランプによれば、遮光部材で構成した放電管の壁面に飛来する飛散物の付着が抑えられ、かつ固化することを防止することができる。特に、下壁板の周囲の長側面(或いは短側面を含む四側面)に位置する壁面を遮光部材で構成することにより、放電管の照射面に対する側面や上面に飛来する飛散物の付着やその固化が抑えられ、放電管の寿命を向上させることができる。必要により上壁板も同様の遮光部材で構成してもよい。真空紫外線を照射する放電管は、その壁面に飛散物を多く付着するため、大きな効果を期待できる。 According to the dielectric barrier discharge lamp according to the present invention, it is possible to suppress the adhering of scattered matter flying on the wall surface of the discharge tube constituted by the light shielding member and to prevent the solidification. In particular, by constructing the wall surface located on the long side surface (or the four side surfaces including the short side surface) around the lower wall plate with a light shielding member, adhesion of scattered matter flying on the side surface or the upper surface with respect to the irradiation surface of the discharge tube or its Solidification is suppressed and the life of the discharge tube can be improved. If necessary, the upper wall plate may be made of the same light shielding member. Since a discharge tube that irradiates vacuum ultraviolet rays attaches a lot of scattered matter to the wall surface, a great effect can be expected.
 なお、「下壁板を通して紫外線を下方に照射する放電管」とは、本発明を実施するうえで前提となる放電管の形状を規定したものであり、例えば、「前後に最長であり上下が最短になると共にこの上下で向かい合うほぼ平坦な上下壁板が互いにほぼ平行な形状を有する略方形箱形のもの」、或いは、「細長の円筒において外周壁の円弧の一部を潰して平坦化したようなアーチ状の曲面部と、この曲面部における円弧の両端縁を繋ぐ平板状の平坦部とを備えたもの」など、いずれも前面ガラスの代わりとなる平坦部を有する下壁板を有し、かつその下壁板を通して紫外線が照射されるものが該当する。 The “discharge tube that irradiates ultraviolet rays downward through the lower wall plate” defines the shape of the discharge tube, which is a prerequisite for carrying out the present invention. This is the shortest and almost flat top and bottom wall plates facing each other up and down, which are almost in the shape of a rectangular box having a shape substantially parallel to each other, or “in an elongated cylinder, a part of the arc of the outer peripheral wall is crushed and flattened. Such as an arch-shaped curved surface portion and a flat plate-shaped flat portion that connects both end edges of the arc in the curved surface portion, etc., all have a lower wall plate having a flat portion instead of the front glass. And what is irradiated with ultraviolet rays through the lower wall board corresponds.
 放電管の壁面を構成する遮光部材の遮光率は高いほど好ましく、70%以上、例えば90%以上の遮光率とすれば固化した固化付着物の相対膜厚を飛散物の固化を遮光率0の場合で1000時間照射した場合の5%以下にまで抑えることができる。 The light blocking ratio of the light blocking member constituting the wall of the discharge tube is preferably as high as possible. If the light blocking ratio is 70% or more, for example, 90% or more, the solidified deposits have a relative film thickness to reduce the solidification of the scattered matter. In some cases, it can be suppressed to 5% or less of 1000 hours of irradiation.
 ここで、膜厚tの膜を透過した光の出力強度Iは、入力強度I、吸収係数α、膜厚tを用いて、
   I=I・e-αt      ・・・・・(式1)
 (但し、eは自然対数の底)
と表される。透過率はI/Iと表されるので、遮光率は(1-I/I)と求められる。
Here, the output intensity I of the light transmitted through the film having the film thickness t is obtained by using the input intensity I 0 , the absorption coefficient α, and the film thickness t.
I = I 0 · e −αt (Formula 1)
(However, e is the base of natural logarithm)
It is expressed. Since the transmittance is expressed as I / I 0 , the light shielding rate is calculated as (1−I / I 0 ).
 一般に「遮光」とは、光を遮断するということ意味するので、「反射」や「吸収」、又は「屈折」によって「遮光」を実現する場合は起こりうる。しかし、本発明においては、結果的に真空紫外線を遮光率50%以上(より好ましくは70%以上、さらに好ましくは90%以上)遮断できるものでなければ飛散物の付着やその固化を防止するという効果を得ることはできない点に留意すべきである。また、「遮光部材」とは、光を遮断する部材のことであり、1種類の材料で構成されていてもよいし、2種類以上の材料で構成されていてもよい。 In general, “shielding” means to block light, so it can occur when “shielding” is realized by “reflection”, “absorption”, or “refraction”. However, in the present invention, as a result, if the vacuum ultraviolet ray can not be blocked by 50% or more (more preferably 70% or more, more preferably 90% or more), the adhesion of scattered matter and its solidification can be prevented. It should be noted that no effect can be obtained. Further, the “light shielding member” is a member that blocks light, and may be composed of one kind of material or may be composed of two or more kinds of materials.
 また、本発明に係る誘電体バリア放電ランプは、内部にエキシマ発光のための放電用ガスを封入し、平坦な面を有する下壁板を通して紫外線を下方に照射する放電管と、この放電管の外部の少なくとも一方に電極を備えた誘電体バリア放電ランプにおいて、
 この放電管における下壁板の周囲の長側面に位置する壁面が、当該ランプの点灯時に、前記壁面から放電管の外部に放射される紫外線の平均照度が50mW/cm以下となるように遮光する遮光部材で構成されていることを特徴とする。図6の結果より、固化付着物は紫外線遮光率が約50%を超えたあたり、つまり、放電管の外部へと放射される紫外線の平均照度が50mW/cm以下となったあたりから減少を始めていることが分かる。つまり、放電管の外部へと放射される紫外線の平均照度が50mW/cm以下となったあたりから減少を始めていることが分かる。より好ましくは、放電管の外部へと放射される紫外線の平均照度が30mW/cm以下となるように点灯することが望ましく、さらに好ましくは、10mW/cm以下となるように遮光する遮光部材で構成されているとよい。なお、平均照度とは、放電管の表面照度を5箇所測定した際の平均値である。後述するように、側壁面の平均照度は、下壁板の平均照度と側壁面の遮光率に基づいて算出することができる。
In addition, a dielectric barrier discharge lamp according to the present invention includes a discharge tube that encloses a discharge gas for excimer light emission, and irradiates ultraviolet rays downward through a lower wall plate having a flat surface. In a dielectric barrier discharge lamp having an electrode on at least one of the outside,
The wall surface located on the long side surface around the lower wall plate in the discharge tube is shielded so that the average illuminance of ultraviolet rays radiated from the wall surface to the outside of the discharge tube is 50 mW / cm 2 or less when the lamp is turned on. It is characterized by comprising a light shielding member. From the results shown in FIG. 6, the solidified deposits decreased after the ultraviolet light shielding rate exceeded about 50%, that is, when the average illuminance of ultraviolet rays radiated to the outside of the discharge tube became 50 mW / cm 2 or less. You can see that it is starting. In other words, it can be seen that the decrease starts when the average illuminance of ultraviolet rays radiated to the outside of the discharge tube becomes 50 mW / cm 2 or less. More preferably, it is desirable to turn on the light so that the average illuminance of ultraviolet rays radiated to the outside of the discharge tube is 30 mW / cm 2 or less, and more preferably, the light shielding member shields light so that it becomes 10 mW / cm 2 or less. It is good to be composed of. The average illuminance is an average value when the surface illuminance of the discharge tube is measured at five locations. As will be described later, the average illuminance of the side wall surface can be calculated based on the average illuminance of the lower wall plate and the light shielding rate of the side wall surface.
 本発明に係る誘電体バリア放電ランプの点灯方法は、内部にエキシマ発光のための放電用ガスを封入し、平坦な面を有する下壁板を通して紫外線を下方に照射する放電管と、この放電管の外部の少なくとも一方に電極を備えた誘電体バリア放電ランプの点灯方法であって、
 この放電管における下壁板の周囲の長側面に位置する壁面から放電管の外部へと放射される紫外線の平均照度が50mW/cm以下であることを特徴とする。図6の結果より、固化付着物は紫外線遮光率が約50%を超えたあたり、つまり、放電管の外部へと放射される紫外線の平均照度が50mW/cm以下となったあたりから減少を始めていることが分かる。より好ましくは、放電管の外部へと放射される紫外線の平均照度が30mW/cm以下となるように点灯することが望ましく、さらに好ましくは、10mW/cm以下となるように点灯することが望ましい。
A dielectric barrier discharge lamp lighting method according to the present invention includes a discharge tube in which discharge gas for excimer light emission is enclosed and irradiated with ultraviolet rays downward through a lower wall plate having a flat surface, and the discharge tube A method of lighting a dielectric barrier discharge lamp comprising an electrode on at least one of the outside of
The average illuminance of ultraviolet rays radiated from the wall surface located on the long side surface around the lower wall plate in the discharge tube to the outside of the discharge tube is 50 mW / cm 2 or less. From the results shown in FIG. 6, the solidified deposits decreased after the ultraviolet light shielding rate exceeded about 50%, that is, when the average illuminance of ultraviolet rays radiated to the outside of the discharge tube became 50 mW / cm 2 or less. You can see that it is starting. More preferably, lighting is performed so that the average illuminance of ultraviolet rays radiated to the outside of the discharge tube is 30 mW / cm 2 or less, and more preferably, lighting is performed so as to be 10 mW / cm 2 or less. desirable.
 被照射対象物に照射する光の照度が小さくてもよい場合、また、下壁板から照射された光を集光した後に被照射対象物に照射する場合、放電ランプ全体としての照度を低くすることで、下壁板の周囲の長側面に位置する壁面から放電管の外部へと放射される紫外線の平均照度を50mW/cm以下とすることができる。また、放電ランプ全体としての照度を低くすることに加え、下壁板の周囲の長側面に位置する壁面を遮光部材で構成することによって、下壁板の周囲の長側面に位置する壁面から放電管の外部へと放射される紫外線の平均照度が50mW/cm以下となるように点灯してもよい。 When the illuminance of light irradiating the object to be irradiated may be small, or when irradiating the object to be irradiated after collecting the light irradiated from the lower wall plate, the illuminance of the entire discharge lamp is lowered. Thus, the average illuminance of ultraviolet rays emitted from the wall surface located on the long side surface around the lower wall plate to the outside of the discharge tube can be set to 50 mW / cm 2 or less. In addition to lowering the illuminance of the entire discharge lamp, the wall surface located on the long side surface around the lower wall plate is made of a light shielding member, so that the discharge from the wall surface located on the long side surface around the lower wall plate can be achieved. You may light so that the average illumination intensity of the ultraviolet-ray radiated | emitted to the exterior of a pipe | tube may be 50 mW / cm < 2 > or less.
 本発明に係る誘電体バリア放電ランプにおいて、遮光部材として、透明部材と遮光膜とを含む部材を用いることができる。遮光膜は透明部材を通して外部に照射される紫外線を遮光できる位置に配置されていればよく、例えば、透明部材の表面に遮光膜を形成した構成とすればよい。透明部材には、合成石英板や溶融石英板などを用いることができる。放電管全体を合成石英板などの同一の透明部材で構成した後に、この放電管における下壁板の周囲の長側面に位置する壁面に対して、遮光膜を形成するのが好ましいが、下壁板と透明部材が必ずしも同一の部材である必要は無い。このように、遮光部材を透明部材と遮光膜とで構成することで、放電管の強度等の物理的性質は透明部材側に、紫外線に対する遮光性は遮光膜側により、容易に調整することができる。 In the dielectric barrier discharge lamp according to the present invention, a member including a transparent member and a light shielding film can be used as the light shielding member. The light shielding film only needs to be disposed at a position where the ultraviolet rays irradiated to the outside through the transparent member can be shielded. For example, the light shielding film may be formed on the surface of the transparent member. A synthetic quartz plate or a fused quartz plate can be used as the transparent member. After the entire discharge tube is made of the same transparent member such as a synthetic quartz plate, a light shielding film is preferably formed on the wall surface of the discharge tube located on the long side surface around the lower wall plate. The plate and the transparent member are not necessarily the same member. Thus, by configuring the light shielding member with the transparent member and the light shielding film, the physical properties such as the strength of the discharge tube can be easily adjusted on the transparent member side, and the light shielding property against ultraviolet rays can be easily adjusted on the light shielding film side. it can.
 さらに、この透明部材として、紫外線遮光性を有する酸化物の微粒子を溶剤に混濁させたスラリー(混濁液)の焼成物を用いることができる。この遮光膜は、放電管の内側に形成してもよく、外側に形成してもよい。この微粒子の一次粒子径は、3μm以下であることが好ましい。粒子径の小さな微粒子を遮光膜の材料に用いることで、粒子径の大きなものを用いた場合に比べて、粒子間の空間が少ない、粒子が密に並んだ遮光膜を形成することができる。その結果、紫外線が粒子間の空間を通り抜ける確率が減少するため、容易に紫外線遮光率を上げることができる。さらに、遮光率全体の遮光率のむらを減らすことができる。 Furthermore, as this transparent member, a fired product of slurry (turbid liquid) in which fine particles of oxide having ultraviolet light shielding properties are turbid in a solvent can be used. This light shielding film may be formed inside the discharge tube or outside. The primary particle diameter of the fine particles is preferably 3 μm or less. By using fine particles having a small particle size as the material of the light shielding film, it is possible to form a light shielding film in which particles are closely arranged and the space between the particles is small compared to the case where a material having a large particle size is used. As a result, since the probability that ultraviolet rays pass through the space between the particles decreases, the ultraviolet light shielding rate can be easily increased. Furthermore, the unevenness of the light shielding rate of the entire light shielding rate can be reduced.
 溶剤には、アルコール類(エタノール、イソプロピルアルコール、n-ブタノールなど)、キシレン、トルエンなどを用いることができる。また、超微粒子を溶剤中に分散させるために、ポリカルボン酸部分アルキルエステル系、ポリエーテル系、多価アルコールエステル系などの界面活性剤を添加するとよい。 As the solvent, alcohols (ethanol, isopropyl alcohol, n-butanol, etc.), xylene, toluene and the like can be used. In order to disperse the ultrafine particles in the solvent, a surfactant such as a polycarboxylic acid partial alkyl ester, a polyether, or a polyhydric alcohol ester may be added.
 また、好ましくは、酸化物の微粒子の一次粒子径は、10~100nmであるとよい。微粒子の粒子径が100nmより大きいと、スラリー中の分散性が悪くなり、不均一な遮光膜となるおそれがある。さらに、粒子間の空間が広がるため、紫外線遮光率が低下してしまう。また、微粒子の粒子径が10nmより小さいと、粒子の表面エネルギーが高く、粒子同士が凝集してスラリー中に沈殿してしまうためである。 Preferably, the primary particle diameter of the oxide fine particles is 10 to 100 nm. If the particle diameter of the fine particles is larger than 100 nm, the dispersibility in the slurry is deteriorated, which may result in a non-uniform light shielding film. Furthermore, since the space between the particles is widened, the ultraviolet light shielding rate is lowered. Further, if the particle diameter of the fine particles is smaller than 10 nm, the surface energy of the particles is high, and the particles aggregate and precipitate in the slurry.
 さらに、好ましくは、酸化物の微粒子は、酸化イットリウム(Y)を主成分とするとよい。酸化イットリウムは、紫外線吸収性を有し、かつ絶縁体である。そのため、放電管の内側に遮光膜を設ける場合は、紫外線遮光性を有するとともに、放電中に放電管内で異常放電を起こさない遮光膜を形成することができ、放電管の外側に遮光膜を設ける場合は、放電管の外部に備えられた電極との電気的な接触を気にしなくて良い。酸化イットリウムの他に、酸化亜鉛(ZnO)や、酸化チタン(TiO)をシリカ(SiO)でコーティングしたものを主成分とする超微粒子を使用してもよい。これらの材料は、キセノンガスを放電ガスとした際の172nmを中心波長とする真空紫外光に対して、有用である。 More preferably, the oxide fine particles are mainly composed of yttrium oxide (Y 2 O 3 ). Yttrium oxide has ultraviolet absorptivity and is an insulator. Therefore, when providing a light shielding film inside the discharge tube, it is possible to form a light shielding film that has ultraviolet light shielding properties and does not cause abnormal discharge in the discharge tube during discharge, and provides a light shielding film outside the discharge tube. In this case, it is not necessary to worry about the electrical contact with the electrode provided outside the discharge tube. In addition to yttrium oxide, ultrafine particles mainly composed of zinc oxide (ZnO) or titanium oxide (TiO 2 ) coated with silica (SiO 2 ) may be used. These materials are useful for vacuum ultraviolet light having a center wavelength of 172 nm when xenon gas is used as the discharge gas.
 また、本発明に係る誘電体バリア放電ランプに用いる遮光膜が、主として紫外線吸収性によって遮光をすると好ましい。なぜなら、遮光膜を薄くすることができるからである。紫外線反射性は紫外線吸収性に比べると、膜厚に対する依存性が高い。そのため、紫外線反射性を有する遮光膜によって遮光率を50%以上にするためには、紫外線吸収性を有する遮光膜を用いた場合に比べて、より厚膜である必要がある。特に、遮光率を70%以上、90%以上とした際、その差は顕著である。下壁板の周囲の長側面に位置する壁面に厚膜の遮光膜を形成した場合、放電管の保温効果が上がる結果、ランプ点灯時に放電管内の温度が上昇し、発光効率が低下してしまう。さらに、厚い膜となるほど、透明部材と遮光膜との熱膨張率の差により、ランプ点灯時に遮光膜に亀裂が入りやすくなる。そのため、好ましくは遮光膜の膜厚が10μm以下であるとよい。なお、ここで示す「主として紫外線吸収性によって遮光をする」とは、「反射」や「屈折」による遮光率に比べて、「吸収」による遮光率の方が大きい場合のことである。主として紫外線吸収性によって遮光する材料として、例えば、酸化イットリウム(Y)、酸化亜鉛(ZnO)、酸化ジルコニウム(ZrO)などが挙げられ、また、これらを複合材料としたものを用いてもよい。 Further, it is preferable that the light shielding film used in the dielectric barrier discharge lamp according to the present invention shields light mainly by ultraviolet absorption. This is because the light shielding film can be made thin. The ultraviolet reflectivity is more dependent on the film thickness than the ultraviolet absorptivity. For this reason, in order to increase the light shielding rate to 50% or more with a light-shielding film having ultraviolet reflectivity, it is necessary to make the film thicker than when a light-shielding film having ultraviolet absorptivity is used. In particular, when the light shielding rate is 70% or more and 90% or more, the difference is remarkable. When a thick light-shielding film is formed on the long side wall around the lower wall plate, the heat retention effect of the discharge tube is increased, resulting in an increase in the temperature in the discharge tube when the lamp is turned on and a decrease in luminous efficiency. . Furthermore, the thicker the film, the easier it is for the light-shielding film to crack when the lamp is lit due to the difference in thermal expansion coefficient between the transparent member and the light-shielding film. Therefore, the thickness of the light shielding film is preferably 10 μm or less. Here, “mainly shielding light by ultraviolet absorption” means that the light shielding rate by “absorption” is larger than the light shielding rate by “reflection” or “refraction”. Examples of the material that shields light mainly by ultraviolet absorptivity include yttrium oxide (Y 2 O 3 ), zinc oxide (ZnO), zirconium oxide (ZrO 2 ), and the like. Also good.
 また、下壁板を合成石英板で構成する一方、下壁板の周囲の四側面(前後方向及び左右方向の両側壁面)或いは上壁板を溶融石英板で構成してもよい。溶融石英板は、合成石英に比べて不純物を多く含んでいるため、通常、真空紫外線に対する遮光率が70%以上であり、さらに、加熱することで合成石英との溶着も容易であるため、遮光部材として適している。 Alternatively, the lower wall plate may be formed of a synthetic quartz plate, while the four side surfaces (both side walls in the front-rear direction and the left-right direction) around the lower wall plate or the upper wall plate may be formed of a fused quartz plate. Since a fused quartz plate contains more impurities than synthetic quartz, the shielding rate against vacuum ultraviolet rays is usually 70% or more, and since it can be easily welded to synthetic quartz by heating, Suitable as a member.
 或いは、発光管自体は全体を合成石英板で構成するが、下壁板の周囲の四側面(前後方向及び左右方向の両側壁面)或いは上壁板の表面を例えば遮光率70%以上になるまで粗面化してもよい。粗面化とは鏡面状態の壁面と比べて表面粗さを大きくすることであり、フッ酸などを接触することにより化学的に浸食させて表面を粗面化する方法と、サンドブラストなど微粒子を吹き付けることにより物理的に鏡面状態を失わせて表面を粗面化する方法がある。 Alternatively, the arc tube itself is composed entirely of a synthetic quartz plate, but the four side surfaces around the lower wall plate (both side walls in the front-rear direction and the left-right direction) or the surface of the upper wall plate until the light shielding rate becomes 70% or more, for example. You may roughen. Roughening is to increase the surface roughness compared to a mirror-finished wall. The surface is chemically eroded by contact with hydrofluoric acid or the like, and fine particles such as sandblast are sprayed. There is a method of roughening the surface by physically losing the specular state.
 本発明に係る誘電体バリア放電ランプは、エキシマ発光を生じさせるための電力を出力する電源装置と、前記電源装置からの電力を供給するためのリード線とを用いることで、紫外線照射装置とすることができる。このような紫外線照射装置によって、被照射面に有機ケイ素化合物の層が形成されている被照射対象物を照射する場合、大気中にもともと浮遊している有機ケイ素化合物に加えて、被照射対象物からも有機ケイ素化合物が飛来するため、放電管の壁面に飛散物がより飛来しやすくなる。そのため、被照射面の一部に有機ケイ素化合物の層が形成された被照射対照物を用いる場合、飛散物の付着の抑制や固化防止作用が顕著となる。なお、有機ケイ素化合物は、被照射対象物に対してレジストを施す場合に、被照射対象物とレジストとの密着性を向上させるための中間層として用いられることがある。 The dielectric barrier discharge lamp according to the present invention is an ultraviolet irradiation device by using a power supply device that outputs electric power for generating excimer light emission and a lead wire for supplying electric power from the power supply device. be able to. When irradiating an irradiated object having an organosilicon compound layer formed on the surface to be irradiated by such an ultraviolet irradiation device, in addition to the organic silicon compound originally suspended in the air, the irradiated object Since the organosilicon compound also comes from, the scattered matter is more likely to fly to the wall surface of the discharge tube. Therefore, when using the irradiated control object in which the layer of the organosilicon compound is formed on a part of the irradiated surface, the effect of suppressing the adhesion of the scattered material and the solidification preventing action become remarkable. The organosilicon compound may be used as an intermediate layer for improving the adhesion between the irradiated object and the resist when the resist is applied to the irradiated object.
 本発明に係る誘電体バリア放電ランプによると、この放電管における下壁板の周囲の長側面或いは四側面に位置する壁面が、紫外線を少なくとも50%以上遮光する遮光部材で構成されるため、遮光部材で構成した放電管の壁面に飛来する飛散物の付着が抑えられ、かつ固化することを防止することができる。 According to the dielectric barrier discharge lamp of the present invention, the wall surface located on the long side surface or the four side surfaces around the lower wall plate in the discharge tube is composed of a light shielding member that shields at least 50% of ultraviolet rays. It is possible to suppress the adhering of scattered matter flying on the wall surface of the discharge tube constituted by the members and prevent solidification.
第1の実施形態を示すものであって、誘電体バリア放電ランプの長尺な中央部を省略した斜視図The perspective view which shows 1st Embodiment and abbreviate | omitted the elongate center part of the dielectric barrier discharge lamp 第1の実施形態を示すものであって、(a)は、図1の放電管1aを長尺の中心軸で切断して側面方向から見た断面図、(b)は、誘電体バリア放電ランプの長尺方向の断面図、(c)は、(a)のB-B線断面図1A and 1B show a first embodiment, in which FIG. 1A is a cross-sectional view of a discharge tube 1a of FIG. 1 cut along a long central axis and viewed from the side, and FIG. 1B is a dielectric barrier discharge. Sectional view of the lamp in the longitudinal direction, (c) is a sectional view taken along line BB of (a) (a)及び(b)は、いずれも図1及び図2に示す誘電体バリア放電ランプの放電管1における下壁板の周囲の四側面に位置する内壁面に、紫外線遮光膜を形成する様子を示す図(A) and (b) both form an ultraviolet light shielding film on the inner wall surface located on the four side surfaces around the lower wall plate in the discharge tube 1 of the dielectric barrier discharge lamp shown in FIGS. Figure showing (a)及び(b)は、本発明の第2の実施形態及びその変形例を示すものであって、誘電体バリア放電ランプの長尺方向の断面図(A) And (b) shows the 2nd Embodiment of this invention and its modification, Comprising: Sectional drawing of the elongate direction of a dielectric barrier discharge lamp 本発明の第3の実施形態を示すものであって、誘電体バリア放電ランプの長尺な中央部を省略した斜視図The perspective view which showed the 3rd Embodiment of this invention and abbreviate | omitted the long center part of the dielectric barrier discharge lamp 紫外線の遮光率に対する固化付着物の膜厚の関係を表すグラフA graph showing the relationship between the film thickness of solidified deposits and the ultraviolet light shielding rate 第4の実施形態の紫外線照射装置の側断面図Side sectional view of the ultraviolet irradiation device of the fourth embodiment (a)第4の実施形態のバリア放電ランプであって、図7の紫外線照射装置の放電管の長さ方向に垂直な面における断面図 (b)(a)に示す第4の実施形態のバリア放電ランプの第1の変形例(A) A barrier discharge lamp according to a fourth embodiment, which is a cross-sectional view in a plane perpendicular to the length direction of the discharge tube of the ultraviolet irradiation device of FIG. 7 (b) of the fourth embodiment shown in (a). First modification of barrier discharge lamp 図8(a)に示す第4の実施形態のバリア放電ランプの第2の変形例Second modification of the barrier discharge lamp of the fourth embodiment shown in FIG. 実験装置の概略図Schematic diagram of experimental equipment 測定装置の概略図Schematic diagram of measuring device
 以下、図面を参照して本発明の各実施形態について説明する。同一又は同類の部材には同一の符号を用いるか又は添字のみ異ならせて表示するものとし、重複した説明を省略しているが、各実施形態の記載は本発明の技術的思想を理解するために合目的的に解釈され、実施形態の記載に限定解釈されるべきものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are used for the same or similar members, or only the subscripts are displayed differently, and duplicated descriptions are omitted. However, the description of each embodiment is for understanding the technical idea of the present invention. Should not be construed as limited to the description of the embodiments.
(第1の実施形態)
 図1及び図2は、本発明の第1の実施形態を示すものであって、誘電体バリア放電ランプの長尺な中央部を省略した斜視図である。図2(a)は、図1の放電管1aを長尺の中心軸で切断して側面方向から見た断面図である。図2(b)は、誘電体バリア放電ランプの長尺方向の断面図、すなわち図2(a)のA-A線断面図、図2(c)は、図2(a)のB-B線断面図である。
(First embodiment)
1 and 2 show a first embodiment of the present invention and are perspective views in which a long central portion of a dielectric barrier discharge lamp is omitted. FIG. 2A is a cross-sectional view of the discharge tube 1a of FIG. 1 taken along the long central axis and viewed from the side. 2B is a cross-sectional view in the longitudinal direction of the dielectric barrier discharge lamp, that is, a cross-sectional view taken along line AA in FIG. 2A, and FIG. 2C is a cross-sectional view taken along line BB in FIG. It is line sectional drawing.
 この誘電体バリア放電ランプの放電管1は略方形箱形で長尺な合成石英製ガラス製の角管1aの両端開口部に、この角管1aの横断面とほぼ同じ形状の合成石英ガラス製の前後端壁板1b、1bをそれぞれ溶着して塞ぐことにより形成される。内部にはキセノンガスが封入されている。角管1aは、横断面の上下方向の高さが十数mmであり、左右方向の幅が数十mmの方形の管であって、前後方向の長さは例えば1m以上となる。従って、この角管1aは、上下で向かい合う平坦な上下壁板と左右方向で向かい合う平坦な左右側壁板とで構成される。この角管1aの両端開口部に溶着される前後端壁板1b、1bには、事前にそれぞれチップ管1c、1cが突設されている。各チップ管1cは、前後端壁板1bの外面からさらに外側に突出するように溶着された溶融石英ガラス製の管材であり、管内がこの前後端壁板1bのほぼ中央部に予め形成された開口孔に通じるように設けられている。この放電容器1は、角管1aの両端開口部に前後端壁板1b、1bを溶着する前又は後に、この角管1aの上下壁板の外面に電極2,3の金属薄膜が成膜される。電極2は、誘電体バリア放電ランプが放射する真空紫外線の強度を検査するためのセンサ用の未塗膜部を除けば、角管1aの上壁板の上面のほぼ全面を覆うように成膜される。また、電極3は、この角管1aの下壁板の下面のほぼ全面に網目状のパターンで成膜される。 A discharge tube 1 of this dielectric barrier discharge lamp is made of a synthetic quartz glass having a substantially square box shape and a synthetic quartz glass having substantially the same shape as the cross section of the square tube 1a. The front and rear end wall plates 1b and 1b are respectively welded and closed. Xenon gas is sealed inside. The square tube 1a is a rectangular tube having a vertical cross-sectional height of several tens of mm and a horizontal width of several tens of mm. The length in the front-rear direction is, for example, 1 m or more. Accordingly, the square tube 1a is composed of flat upper and lower wall plates facing each other vertically and flat left and right side wall plates facing each other in the left and right direction. Tip tubes 1c and 1c project in advance from front and rear end wall plates 1b and 1b, respectively, which are welded to the opening portions at both ends of the square tube 1a. Each tip tube 1c is a fused silica glass tube member welded so as to protrude further outward from the outer surface of the front and rear end wall plate 1b, and the inside of the tube is formed in advance in the approximate center of the front and rear end wall plate 1b. It is provided so as to communicate with the opening hole. In the discharge vessel 1, before or after the front and rear end wall plates 1b and 1b are welded to the opening portions at both ends of the square tube 1a, metal thin films of electrodes 2 and 3 are formed on the outer surfaces of the upper and lower wall plates of the square tube 1a. The The electrode 2 is formed so as to cover almost the entire upper surface of the upper wall plate of the square tube 1a except for an uncoated portion for a sensor for inspecting the intensity of vacuum ultraviolet rays emitted from the dielectric barrier discharge lamp. Is done. The electrode 3 is formed in a mesh pattern on almost the entire lower surface of the lower wall plate of the square tube 1a.
 この放電管1における下壁板の周囲の四側面に位置する四方の内壁面には、酸化イットリウム(Y)を含むスラリーを焼成して得られる紫外線遮光膜4aが設けられている。この膜は、172nmの真空紫外線を遮光することができるものであり、遮光率は膜厚によって調整することができる。そして、電源装置に接続することで紫外線照射装置を構成し、リード線を介して電極に所定の電力を印加することで誘電体バリア放電ランプが点灯し、この平坦な下壁板を通して図2(a)、(b)の矢印の方向へ、図2(c)では紙面垂直下方に、172nmの真空紫外線が照射される。 Ultraviolet light shielding films 4 a obtained by firing a slurry containing yttrium oxide (Y 2 O 3 ) are provided on four inner wall surfaces located on the four side surfaces around the lower wall plate in the discharge tube 1. This film can block 172 nm vacuum ultraviolet light, and the light blocking rate can be adjusted by the film thickness. Then, an ultraviolet irradiation device is configured by connecting to a power supply device, and a dielectric barrier discharge lamp is turned on by applying a predetermined power to the electrode via a lead wire, and through this flat lower wall plate, FIG. In the direction of the arrows a) and (b), 172 nm vacuum ultraviolet rays are irradiated vertically downward in FIG. 2C.
 図3(a)及び(b)は、いずれも図1及び図2に示す誘電体バリア放電ランプの放電管1における下壁板の周囲の四側面に位置する内壁面に、紫外線遮光膜を形成する様子を示している。まず、角管1aを図のように側面が下になるように傾けてチップ管1cから酸化イットリウム(Y)を含むスラリーを注入し、乾燥させる。この作業を両側面及び前後端壁板について実施した後、500℃で30分間焼成する。その後、チップ管1cから排気して放電用ガス(例えばキセノンガス)を注入し、内部に放電用ガスを充填する。そして、双方のチップ管1cの先端部を溶融封止させて内部を密閉する。その後、電極用の金属を蒸着してパターニングし、最後にフッ化マグネシウム(MgF)を蒸着することで電極を保護するためのコーティング膜を形成し、放電管が完成する。なお、一次粒子径が33nmである酸化イットリウムを10重量%含む、YAP10WT%-X480(CIKナノテック製)を原液とし、この原液をn-ブタノールで希釈したものをスラリーとして使用する。希釈の程度を変えることで、紫外線遮光膜の遮光率を変化させることができる。 3 (a) and 3 (b), an ultraviolet light shielding film is formed on the inner wall surface located on the four side surfaces around the lower wall plate in the discharge tube 1 of the dielectric barrier discharge lamp shown in FIGS. It shows how to do. First, the square tube 1a is tilted so that the side faces downward as shown in the figure, and a slurry containing yttrium oxide (Y 2 O 3 ) is injected from the tip tube 1c and dried. After carrying out this operation on both side surfaces and front and rear end wall plates, firing is performed at 500 ° C. for 30 minutes. Thereafter, the gas is discharged from the tip tube 1c, a discharge gas (for example, xenon gas) is injected, and the inside is filled with the discharge gas. And the front-end | tip part of both the tip pipe | tubes 1c is melt-sealed, and the inside is sealed. Thereafter, electrode metal is deposited and patterned, and finally magnesium fluoride (MgF 2 ) is deposited to form a coating film for protecting the electrode, thereby completing the discharge tube. YAP10WT% -X480 (manufactured by CIK Nanotech) containing 10% by weight of yttrium oxide having a primary particle size of 33 nm is used as a stock solution, and this stock solution diluted with n-butanol is used as a slurry. By changing the degree of dilution, the light shielding rate of the ultraviolet light shielding film can be changed.
-実験-
 ここで、上述した製造方法に従って酸化イットリウムの膜厚のみが異なる6種類の放電管を試作して、その管壁に付着する固化した固化付着物(白粉)の付着量と固化の程度を調べた。実験条件は以下の通りである。
(1)供試ランプ
 A.試作ランプ1・・・側面紫外線遮光膜(酸化イットリウム)形成
            遮光率99%(希釈なし)
            下壁板からの平均照度101mW/cm
            側壁面からの平均照度1mW/cm
 B.試作ランプ2・・・側面紫外線遮光膜(酸化イットリウム)形成
            遮光率90%(4倍希釈)
            下壁板からの平均照度98mW/cm
            側壁面からの平均照度10mW/cm
 C.試作ランプ3・・・側面紫外線遮光膜(酸化イットリウム)形成
            遮光率71%(6倍希釈)
            下壁板からの平均照度101mW/cm
            側壁面からの平均照度29mW/cm
 D.試作ランプ4・・・側面紫外線遮光膜(酸化イットリウム)形成
            遮光率56%(10倍希釈)
            下壁板からの平均照度107mW/cm
            側壁面からの平均照度47mW/cm
 E.試作ランプ5・・・側面紫外線遮光膜(酸化イットリウム)形成
            遮光率30%(20倍希釈)
            下壁板からの平均照度104mW/cm
            側壁面からの平均照度73mW/cm
 F.従来品   ・・・遮光率0%
            下壁板からの平均照度109mW/cm
            側壁面からの平均照度109mW/cm
(2)電源:ランプ印加ピーク電圧3.8kV,駆動周波数70kHz(概略矩形波)
-Experiment-
Here, six types of discharge tubes differing only in the film thickness of yttrium oxide according to the manufacturing method described above were prototyped, and the amount of solidified deposit (white powder) adhering to the tube wall and the degree of solidification were examined. . The experimental conditions are as follows.
(1) Test lamp A. Prototype lamp 1 ... Side ultraviolet light shielding film (yttrium oxide) formation Light shielding rate 99% (no dilution)
Average illuminance from the lower wall plate of 101 mW / cm 2
Average illuminance from side wall surface 1 mW / cm 2
B. Prototype lamp 2 ... Side UV shielding film (yttrium oxide) formation Light shielding rate 90% (4 times dilution)
Average illuminance from the lower wall plate of 98 mW / cm 2
Average illuminance from the side wall surface 10 mW / cm 2
C. Prototype lamp 3 ... Side ultraviolet light shielding film (yttrium oxide) formation Light shielding rate 71% (6 times dilution)
Average illuminance from the lower wall plate of 101 mW / cm 2
Average illuminance from the side wall of 29 mW / cm 2
D. Prototype lamp 4 ... Side ultraviolet light shielding film (yttrium oxide) formation Light shielding rate 56% (diluted 10 times)
Average illuminance from lower wall plate 107mW / cm 2
Average illumination from the side wall surface 47 mW / cm 2
E. Prototype lamp 5 ... Side ultraviolet light shielding film (yttrium oxide) formation Light shielding rate 30% (20 times dilution)
Average illuminance from the lower wall plate of 104 mW / cm 2
Average illuminance from the side wall surface 73 mW / cm 2
F. Conventional product ・ ・ ・ Shading rate 0%
Average illuminance from lower wall plate 109mW / cm 2
Average illuminance from the side wall surface of 109 mW / cm 2
(2) Power source: lamp applied peak voltage 3.8 kV, driving frequency 70 kHz (generally rectangular wave)
(3)照射器具:
 図10は、実験装置の概略図を示す。なお、矢印は、流体の流れ方向を示す。図10に示すように、照射器具50は、容器56内に、上記6種類のいずれか1つの供試ランプ54を、ダミー基板53とパンチングメタル板55との間に配置し、バブリング容器51からHMDSを含有する窒素ガスを、容器56の横側から空気A1、A2をそれぞれ流入し、照射後の排気ガスEを排出するように構成している。バブリング容器51は、HMDS52を内部に貯留している。HMDSを含有する窒素ガスは、そのHMDS52の内部にノズルで窒素ガスN(N)を流入させて得、配管を介して照射器具50に流入させる。
このとき、HMDSの含有量は、バブリング容器51の温度を20℃の一定に保った状態で、HMDS52内を通過させる窒素ガスの気泡の大きさと、その気泡の上昇距離、つまり、窒素ガスがHMDS52に流入するノズルの先端から液面までの距離とにより調整する。HMDS52は、窒素ガスNの流入量に伴って減少するため、実験が終了するまで適宜補給する。
(4)HMDS:常時供給
(5)Total窒素量:50L/min
(6)点灯時間:1000時間
(3) Irradiation equipment:
FIG. 10 shows a schematic diagram of the experimental apparatus. The arrows indicate the direction of fluid flow. As shown in FIG. 10, the irradiation tool 50 includes one of the above-mentioned six kinds of test lamps 54 disposed in a container 56 between a dummy substrate 53 and a punching metal plate 55. Nitrogen gas containing HMDS is configured to flow in air A1 and A2 from the side of the container 56 and exhaust the exhaust gas E after irradiation. The bubbling container 51 stores the HMDS 52 therein. Nitrogen gas containing HMDS is obtained by flowing nitrogen gas N (N 2 ) into the HMDS 52 with a nozzle, and flows into the irradiation tool 50 through a pipe.
At this time, the content of the HMDS is such that the bubble size of the nitrogen gas passing through the HMDS 52 and the rising distance of the bubble, that is, the nitrogen gas is HMDS 52 while the temperature of the bubbling container 51 is kept constant at 20 ° C. It is adjusted by the distance from the tip of the nozzle flowing into the liquid to the liquid level. Since the HMDS 52 decreases with the inflow of nitrogen gas N, it is appropriately replenished until the experiment is completed.
(4) HMDS: Always supply (5) Total nitrogen amount: 50 L / min
(6) Lighting time: 1000 hours
(7)照度測定:
 紫外線照度計(UIT150/VUV-S172、ウシオ電機製)にて、放電管の下壁板の表面照度を5箇所測定し、その平均値を平均照度とする。その際、測定箇所は、一対の電極が対向する領域(放電空間に相当する領域)を長尺方向に5等分し、その中央付近とする。従って、測定箇所はおおむね等間隔に設定されている。
 また、ここでは、側壁面の平均照度は、下壁板の平均照度と側壁面の遮光率(1-I/I)とを用いて算出する。側壁面の遮光率が(1-I/I)で表されるとき、側壁面の透過率がI/Iであるため、下壁板の平均照度Eと側壁面の透過率I/Iとを乗ずることによって、側壁面の平均照度が求まる。
(7) Illuminance measurement:
The surface illuminance of the lower wall plate of the discharge tube is measured at five locations with an ultraviolet illuminance meter (UIT150 / VUV-S172, manufactured by USHIO), and the average value is defined as the average illuminance. At that time, the measurement location is a region in which the pair of electrodes face each other (a region corresponding to the discharge space) is equally divided into five in the longitudinal direction, and is near the center. Accordingly, the measurement points are set at approximately equal intervals.
Here, the average illuminance of the side wall surface is calculated using the average illuminance of the lower wall plate and the light shielding rate (1-I / I 0 ) of the side wall surface. When the light shielding rate of the side wall surface is represented by (1−I / I 0 ), the transmittance of the side wall surface is I / I 0 , so the average illuminance E of the lower wall plate and the transmittance I / I of the side wall surface By multiplying by 0 , the average illuminance of the side wall surface is obtained.
-結果-
 表1は、1000時間後の実験結果を示している。側面の紫外線を90%遮光した試作ランプ2は白粉付着量が少なく、そのときのガラス化膜厚が15μmであり、ガラス化(固化)がわずかに見られた。側面の紫外線を71%遮光した試作ランプ3も白粉付着量が少なかったが、そのときのガラス化膜厚が69μmであり、ガラス化が少し見られた。側面の紫外線を56%遮光した試作ランプ4は白粉付着量が試作ランプ3よりも多めであり、そのときのガラス化膜厚が159μmであった。これらに対し、側面の紫外線を30%遮光した試作ランプ5は、白粉付着量が試作ランプ4よりも多く、そのときのガラス化膜厚が306μmであった。また、側面の紫外線を遮光しなかった従来のランプは、白粉付着量が非常に多く、そのときのガラス化膜厚が300μmであった。これらの事実から、以下のことが明らかとなった。
  1.側面の遮光は白粉付着量を低下する効果がある。
  2.側面の56%以上の遮光は、ガラス化(固化)防止効果がある。傾向からみて、50%以上で効果があると認められる。71%以上で顕著であり、90%以上でさらに顕著である。この結果は図6のグラフともよく一致するものである。
-result-
Table 1 shows the experimental results after 1000 hours. The prototype lamp 2 which shielded 90% of UV rays on the side face had a small amount of white powder adhering, the vitrification film thickness at that time was 15 μm, and vitrification (solidification) was slightly observed. Prototype lamp 3 that shielded 71% of ultraviolet rays on the side also had a small amount of white powder, but the vitrification film thickness at that time was 69 μm, and a little vitrification was observed. The prototype lamp 4 which shielded the ultraviolet rays on the side by 56% had a larger white powder adhesion amount than the prototype lamp 3, and the vitrified film thickness at that time was 159 μm. On the other hand, the prototype lamp 5 which shielded 30% of ultraviolet rays on the side surface had a larger white powder adhesion amount than the prototype lamp 4, and the vitrified film thickness at that time was 306 μm. Moreover, the conventional lamp which did not shield the ultraviolet rays on the side face had a very large amount of white powder adhered, and the vitrified film thickness at that time was 300 μm. From these facts, the following became clear.
1. The side shading has the effect of reducing the amount of white powder attached.
2. Shading of 56% or more of the side surface has an effect of preventing vitrification (solidification). In view of the tendency, it is recognized that the effect is effective at 50% or more. It is remarkable at 71% or more, and more remarkable at 90% or more. This result is in good agreement with the graph of FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このように、放電管の側面に有機ケイ素化合物が付着しても、紫外線を遮光することでそこからなるべく化学反応が進行しないようにして、強固なガラス質の付着物を抑えることができる。付着物そのものの量が少なくなるのは、側面近傍の空間中で白粉そのものができにくいことによるものと考えられる。 As described above, even if an organosilicon compound adheres to the side surface of the discharge tube, it is possible to suppress a strong glassy deposit by preventing the chemical reaction from proceeding as much as possible by shielding ultraviolet rays. It is considered that the amount of the adhered material itself is reduced because white powder itself is difficult to form in the space near the side surface.
(第2の実施形態)
 図4(a)及び(b)は、本発明の第2の実施形態及びその変形例を示すものであって、誘電体バリア放電ランプの長尺方向の断面図である。第1の実施形態では下壁板の周囲の四側面に位置する内壁面に遮光膜を設けた態様を説明したが、この図に示すように、放電管の外周に紫外線遮光膜4bを設けてもよい。なお、図示は省略するが前後端面にも遮光膜が設けられている。遮光膜として、金属酸化物の焼結体を用いる場合は、電極形成工程の前に遮光膜の塗布・乾燥・焼成工程を実施することが好ましい。電極パターン形成後に焼成工程を行うと電極を劣化させるなどの不都合が生じるおそれがあるためである。但し、熱処理工程が不要であれば、電極形成後に放電管の側面部に遮光膜を形成してもよい。放電管の内部に遮光膜を形成する場合よりも製造工程の自由度が増し、遮光膜の材料選択の幅も広がると考えられる。
(Second Embodiment)
FIGS. 4A and 4B show a second embodiment of the present invention and its modification, and are sectional views in the longitudinal direction of a dielectric barrier discharge lamp. In the first embodiment, the mode in which the light shielding film is provided on the inner wall surface located on the four side surfaces around the lower wall plate has been described. However, as shown in this figure, the ultraviolet light shielding film 4b is provided on the outer periphery of the discharge tube. Also good. Although not shown, light shielding films are also provided on the front and rear end faces. When a metal oxide sintered body is used as the light shielding film, it is preferable to perform a coating, drying and firing process of the light shielding film before the electrode forming process. This is because the firing process after the electrode pattern is formed may cause inconveniences such as deterioration of the electrode. However, if a heat treatment step is unnecessary, a light shielding film may be formed on the side surface of the discharge tube after the electrodes are formed. It is considered that the degree of freedom in the manufacturing process is increased as compared with the case where a light shielding film is formed inside the discharge tube, and the material selection range of the light shielding film is widened.
-変形例-
 或いは、図4(b)に示すように、下壁板の周囲の四側面に位置する内壁面自体を遮光部材で構成し、上下壁板と溶着或いはガラスフリットなどにより、接着してもよい。この場合、下壁板を合成石英板で構成する一方、下壁板の周囲の四側面(前後方向及び左右方向の両側壁面)或いは上壁板を溶融石英板4cで構成してもよい。溶融石英は天然石英(天然シリカ)を溶融して板状に固化したものであり、不純物を多く含むため真空紫外線に対して通常遮光率70%以上の高い遮光率を有し、かつ加熱することで合成石英との溶着も容易であるからである。遮光部材として、天然石英に変えて、セラミック板を用いても同等の効果が得られる。この場合、合成石英と溶着することはできないため、接合剤としてガラスフリットを用いることができる。
-Modification-
Alternatively, as shown in FIG. 4 (b), the inner wall surface itself located on the four side surfaces around the lower wall plate may be formed of a light shielding member and bonded to the upper and lower wall plates by welding or glass frit. In this case, the lower wall plate may be composed of a synthetic quartz plate, while the four side surfaces (both wall surfaces in the front-rear direction and the left-right direction) around the lower wall plate or the upper wall plate may be composed of a fused quartz plate 4c. Fused quartz is a natural quartz (natural silica) melted and solidified into a plate shape. Since it contains a large amount of impurities, it has a high light shielding ratio of 70% or more for vacuum ultraviolet rays and is heated. This is because welding with synthetic quartz is easy. The same effect can be obtained by using a ceramic plate instead of natural quartz as the light shielding member. In this case, glass frit can be used as a bonding agent because it cannot be welded to synthetic quartz.
 このような構成とすることにより、放電管の側面に有機ケイ素化合物が付着しても、紫外線を遮光することにより、そこからなるべく化学反応が進行しないようにして、強固なガラス質の付着物の形成を抑えることができる。 By adopting such a configuration, even if an organosilicon compound adheres to the side surface of the discharge tube, the chemical reaction does not proceed as much as possible by shielding ultraviolet rays so that a strong vitreous deposit can be formed. Formation can be suppressed.
(第3の実施形態)
 図5は、本発明の第3の実施形態を示すものであって、誘電体バリア放電ランプの長尺な中央部を省略した斜視図である。図5(a)は、図1の放電管1aを長尺の中心軸で切断して側面方向から見た断面図である。図5(b)は、誘電体バリア放電ランプの長尺方向の断面図、すなわち図5(a)のA-A線断面図、図5(c)は、図2(a)のB-B線断面図である。
(Third embodiment)
FIG. 5 shows a third embodiment of the present invention, and is a perspective view in which a long central portion of a dielectric barrier discharge lamp is omitted. FIG. 5A is a cross-sectional view of the discharge tube 1a of FIG. 1 taken along the long central axis and viewed from the side. 5B is a cross-sectional view of the dielectric barrier discharge lamp in the longitudinal direction, that is, a cross-sectional view taken along line AA in FIG. 5A, and FIG. 5C is a cross-sectional view taken along line BB in FIG. It is line sectional drawing.
 第3の実施形態では、発光管自体は全体を合成石英板で構成するが、平坦な下壁板の周囲の四側面(前後方向及び左右方向の両側壁面)或いは上壁板の表面を例えば遮光率70%以上になるまで粗面化する。粗面化とは鏡面状態の壁面の表面粗さを大きくすることであり、粗面化の方法としては、例えば、フッ酸を接触することにより化学的に浸食させて表面を粗面化する方法と、サンドブラストなど微粒子を吹き付けることにより物理的に鏡面状態を失わせて表面を粗面化する方法等がある。 In the third embodiment, the arc tube itself is composed entirely of a synthetic quartz plate. However, the four side surfaces (both side walls in the front-rear direction and the left-right direction) around the flat lower wall plate or the surface of the upper wall plate are shielded, for example. The surface is roughened until the rate reaches 70% or more. Roughening is to increase the surface roughness of the mirror-like wall surface. As a roughening method, for example, a method of roughening the surface by chemically eroding by contact with hydrofluoric acid. And a method of roughening the surface by physically losing the specular state by spraying fine particles such as sandblast.
 図5(a)に示すように、下壁板の周囲の四側面(前後方向及び左右方向の両側壁面)に紫外線遮光作用を有する粗面4dが形成される。フッ酸を接触する方法は、第1の実施形態において上述したスラリーの注入工程と同様に、チップ管1cから放電管内にフッ酸を注入し、下壁板の周囲の四側面(前後方向及び左右方向の両側壁面)或いは上壁板をフッ酸で溶解させ、表面を粗面化すればよい。このようにしても、側面部から真空紫外線が露出しなくなり、放電管の側面に有機ケイ素化合物が付着しても、紫外線を遮光することでそこからなるべく化学反応が進行しないようにすることで強固なガラス質の付着物を抑えることができる。 As shown in FIG. 5 (a), rough surfaces 4d having an ultraviolet shielding effect are formed on the four side surfaces (both side walls in the front-rear direction and the left-right direction) around the lower wall plate. In the method of contacting hydrofluoric acid, as in the slurry injecting step described in the first embodiment, hydrofluoric acid is injected from the tip tube 1c into the discharge tube, and the four side surfaces around the lower wall plate (front-rear direction and left-right direction). The two side walls in the direction) or the upper wall plate may be dissolved with hydrofluoric acid to roughen the surface. Even if it does in this way, even if a vacuum ultraviolet ray is no longer exposed from a side part, even if an organosilicon compound adheres to the side of a discharge tube, it is strong by preventing a chemical reaction from progressing there as much as possible by shielding ultraviolet rays. Glassy deposits can be suppressed.
 紫外線遮光作用を有する粗面4dの形成には、フッ酸を用いた化学的な処理に代えて、サンドブラストを吹き付けることで物理的な処理を用いてもよい。 For the formation of the rough surface 4d having an ultraviolet light shielding effect, physical treatment by spraying sandblast may be used instead of chemical treatment using hydrofluoric acid.
(第4の実施形態)
 以上の第1~第3の実施形態では、いずれも放電管の形状がいずれも略方形箱形で長尺な角管を持つ誘電体バリア放電ランプとこれを用いた紫外線照射装置について説明してきたが、本発明は、このような形状に限らず、前面ガラスを備えずかつ平坦な面を有する下壁板を通して真空紫外線を下方に照射することを特徴とする半開放型の紫外線照射装置であれば全て適用可能である。第4の実施形態では本発明の他の実施形態について説明する。
(Fourth embodiment)
In the first to third embodiments described above, the dielectric barrier discharge lamp having the rectangular tube shape and the long rectangular tube and the ultraviolet irradiation apparatus using the dielectric tube discharge lamp have been described. However, the present invention is not limited to such a shape, and may be a semi-open type ultraviolet irradiation device that irradiates vacuum ultraviolet rays downward through a lower wall plate having no flat glass and having a flat surface. All are applicable. In the fourth embodiment, another embodiment of the present invention will be described.
 図7及び図8は、図7は紫外線照射装置の側断面図を示し、図8は、図7の紫外線照射装置の放電管の長さ方向に垂直な面における断面図を示している。図7に示す紫外線照射装置10は、バリア放電ランプ11と交流電源装置22とがリード線20、21を介して接続されてなる。バリア放電ランプ11の放電管12は外管部13と内管部14とからなる二重管構造となっており、外管部13と外管部13の内部に挿入された内管部14とを備えている。 7 and 8 are side sectional views of the ultraviolet irradiation device, and FIG. 8 is a sectional view in a plane perpendicular to the length direction of the discharge tube of the ultraviolet irradiation device of FIG. The ultraviolet irradiation device 10 shown in FIG. 7 includes a barrier discharge lamp 11 and an AC power supply device 22 connected via lead wires 20 and 21. The discharge tube 12 of the barrier discharge lamp 11 has a double tube structure composed of an outer tube portion 13 and an inner tube portion 14, and an outer tube portion 13 and an inner tube portion 14 inserted into the outer tube portion 13. It has.
 図8に示すように、外管部13は、細長の円筒において外周壁の円弧の一部を潰して平坦化したようなアーチ状の曲面部15と、この曲面部15における円弧の両端縁を繋ぐ平板状の平坦部16(下壁板)とを備えている。この平坦部16を通して真空紫外線を照射する。曲面部15と平坦部16とが接合する角部分15Aには丸みが付けられている。一方、内管部14は、外管部13よりも径の小さい円筒状であり、平坦部16の内壁面上において側方向の中心位置に配されている外管部13と内管部14とは、両端で互いに接合されており、両者に囲まれた放電空間17内にはキセノンガスなどの放電用ガスが封入されている。 As shown in FIG. 8, the outer tube portion 13 includes an arch-shaped curved surface portion 15 that is flattened by crushing a part of the arc of the outer peripheral wall in an elongated cylinder, and both end edges of the arc in the curved surface portion 15. A flat plate-like flat portion 16 (lower wall plate) is provided. Vacuum ultraviolet rays are irradiated through the flat portion 16. The corner portion 15A where the curved surface portion 15 and the flat portion 16 are joined is rounded. On the other hand, the inner tube portion 14 has a cylindrical shape smaller in diameter than the outer tube portion 13, and the outer tube portion 13 and the inner tube portion 14 that are arranged at the center position in the lateral direction on the inner wall surface of the flat portion 16. Are joined to each other at both ends, and a discharge gas such as xenon gas is enclosed in a discharge space 17 surrounded by both.
 この放電管12の外部には電極18、19が設けられている。これら一対の電極のうち上部電極18は、外管部13におおける曲面部の外壁面に固着された金属膜からなる。なお、上部電極18の材質としては、紫外線を反射するものを使用することが好ましい。このような材質のものとしては、例えばアルミニウムを使用することができる。上部電極18の膜厚は、反射率が高い方が好ましく、少なくとも70%以上、より好ましくは90%以上遮光して外部に紫外線を透過させない膜厚であることが好ましい。一方、下部電極19はニッケル線からなり、内管部14の内部にほぼ全長にわたって差し込まれている。下部電極19は、上部電極18上の各点から等距離の位置に設けられている。これらの電極18、19にリード線20、21の一端部が接続され、これらのリード線20、21の他端部は交流電源装置に接続されている。 Electrodes 18 and 19 are provided outside the discharge tube 12. Of the pair of electrodes, the upper electrode 18 is made of a metal film fixed to the outer wall surface of the curved surface portion in the outer tube portion 13. In addition, as a material of the upper electrode 18, it is preferable to use a material that reflects ultraviolet rays. As such a material, for example, aluminum can be used. The film thickness of the upper electrode 18 is preferably higher in reflectance, and is preferably at least 70% or more, more preferably 90% or more so as not to transmit ultraviolet rays to the outside. On the other hand, the lower electrode 19 is made of a nickel wire and is inserted into the inner tube portion 14 over almost the entire length. The lower electrode 19 is provided at a position equidistant from each point on the upper electrode 18. One end portions of the lead wires 20 and 21 are connected to the electrodes 18 and 19, and the other end portions of the lead wires 20 and 21 are connected to an AC power supply apparatus.
 図8(a)に示すように、この外管部13における平坦部16の周囲の四側面に位置する四方の内壁面には、酸化イットリウム(Y)を含むスラリーを焼成して得られる紫外線遮光膜4eが設けられている。この膜は、172nmの真空紫外線を遮光することができるものであり、遮光率は膜厚によって調整することができる。 As shown in FIG. 8 (a), slurry containing yttrium oxide (Y 2 O 3 ) is fired on the four inner wall surfaces located on the four side surfaces around the flat portion 16 in the outer tube portion 13. An ultraviolet light shielding film 4e is provided. This film can block 172 nm vacuum ultraviolet light, and the light blocking rate can be adjusted by the film thickness.
 紫外線遮光膜4eは、少なくとも50%以上、より好ましくは70%以上、さらに好ましくは90%以上遮光する遮光部材で構成されることが好ましい。また、図8に例示するように、紫外線反射膜としての機能を兼ねる上部電極18の端部18Aと一部オーバーラップするように紫外線遮光膜を設けることが好ましい。このようにすれば、外管部13の外部に漏れ出る紫外線を紫外線反射膜4eによって確実に遮光することができ、外管部13の表面に飛散物が付着しても、そこからなるべく固化が進行しないようすることができる。この点は以下の変形例1及び2においても同様である。 The ultraviolet light shielding film 4e is preferably composed of a light shielding member that shields light at least 50% or more, more preferably 70% or more, and still more preferably 90% or more. Further, as illustrated in FIG. 8, it is preferable to provide an ultraviolet light shielding film so as to partially overlap the end portion 18 </ b> A of the upper electrode 18 that also functions as an ultraviolet reflection film. In this way, ultraviolet rays leaking outside the outer tube portion 13 can be reliably shielded by the ultraviolet reflecting film 4e, and even if scattered matter adheres to the surface of the outer tube portion 13, it is solidified as much as possible. You can prevent it from progressing. This also applies to the following modifications 1 and 2.
-変形例1-
 図8(b)は、図8(a)に示す第4の実施形態のバリア放電ランプの第1の変形例を示している。この図に示すように、このバリア放電ランプ30は、放電管31の構造が、内管部の無い単管構造となっており、上部電極34は放電管31のアーチ状の曲面部32上に設けられ、下部電極35が平坦部33(下壁板)に設けられている。この平坦部33の周囲の四側面に位置する四方の内壁面には、酸化イットリウム(Y)を含むスラリーを焼成して得られる紫外線遮光膜4fが設けられている。この膜は、172nmの真空紫外線を遮光することができるものであり、遮光率は膜厚によって調整することができる。
-Modification 1-
FIG. 8B shows a first modification of the barrier discharge lamp of the fourth embodiment shown in FIG. As shown in this figure, the barrier discharge lamp 30 has a discharge tube 31 having a single tube structure without an inner tube portion, and the upper electrode 34 is formed on an arch-shaped curved portion 32 of the discharge tube 31. The lower electrode 35 is provided on the flat portion 33 (lower wall plate). Ultraviolet light shielding films 4f obtained by firing a slurry containing yttrium oxide (Y 2 O 3 ) are provided on four inner wall surfaces located on the four side surfaces around the flat portion 33. This film can block 172 nm vacuum ultraviolet light, and the light blocking rate can be adjusted by the film thickness.
-変形例2-
 図9は、図8(a)に示す第4の実施形態のバリア放電ランプの第2の変形例を示している。この図に示すように、このバリア放電ランプ40は、放電管41の構造が、外管部42と内管部43とからなる二重管構造となっており、上部電極47は放電管41のアーチ状の曲面部44上に設けられ、下部電極48は内管部14の内部にほぼ全長にわたって差し込まれている。下部電極48は、上部電極47上の各点から等距離の位置に設けられている。これらの電極47、48にリード線20、21の一端部が接続され、これらのリード線20、21の他端部は交流電源装置に接続されている。また、放電管41の平坦部45(下壁板)における、外管部の外側表面には、ほぼ全面にわたって、補助電極49が設けられている。この補助電極49が、一対の電極47、48間での主放電を補助する。補助電極49は放電管41の内側から放射される光をできるだけ遮らないようにメッシュ状に形成され、放電管41の長さ方向の全長にわたって設けられる。
-Modification 2-
FIG. 9 shows a second modification of the barrier discharge lamp of the fourth embodiment shown in FIG. As shown in this figure, in this barrier discharge lamp 40, the structure of the discharge tube 41 is a double tube structure comprising an outer tube portion 42 and an inner tube portion 43, and the upper electrode 47 is formed of the discharge tube 41. Provided on the arch-shaped curved surface portion 44, the lower electrode 48 is inserted into the inner tube portion 14 over almost the entire length. The lower electrode 48 is provided at a position equidistant from each point on the upper electrode 47. One end portions of the lead wires 20 and 21 are connected to the electrodes 47 and 48, and the other end portions of the lead wires 20 and 21 are connected to an AC power supply apparatus. In addition, an auxiliary electrode 49 is provided over the entire outer surface of the outer tube portion of the flat portion 45 (lower wall plate) of the discharge tube 41. The auxiliary electrode 49 assists the main discharge between the pair of electrodes 47 and 48. The auxiliary electrode 49 is formed in a mesh shape so as not to block light emitted from the inside of the discharge tube 41 as much as possible, and is provided over the entire length of the discharge tube 41 in the length direction.
 そして、平坦部45の周囲の四側面に位置する四方の内壁面には、酸化イットリウム(Y)を含むスラリーを焼成して得られる紫外線遮光膜4gが設けられている。この膜は、172nmの真空紫外線を遮光することができるものであり、遮光率は膜厚によって調整することができる。 The four inner wall surfaces positioned on the four side surfaces around the flat portion 45 are provided with an ultraviolet light shielding film 4g obtained by firing a slurry containing yttrium oxide (Y 2 O 3 ). This film can block 172 nm vacuum ultraviolet light, and the light blocking rate can be adjusted by the film thickness.
 以上のように、本発明に係る誘電体バリア放電ランプは前面ガラスを必要としない半開放型の紫外線照射装置であれば、厳密な意味での略方形箱形の放電管に限られず、断面がアーチ状の放電管にも適用可能である。さらにこの場合、放電管の構造が、二重管構造、単管構造を問わず、二重管構造の場合、補助電極が設けられていてもよい。 As described above, the dielectric barrier discharge lamp according to the present invention is not limited to a strictly rectangular box-shaped discharge tube in a strict sense, as long as it is a semi-open type ultraviolet irradiation device that does not require a front glass. It can also be applied to arcuate discharge tubes. Furthermore, in this case, an auxiliary electrode may be provided in the case of a double tube structure regardless of whether the structure of the discharge tube is a double tube structure or a single tube structure.
 本発明に係る誘電体バリア放電ランプは前面ガラスを必要としない略方形箱形の誘電体バリア放電ランプであるため製造コストを抑えることができるだけでなく、長尺方向(前後方向)の両側壁面に歪みが集中することを防止して放電管の寿命を伸ばすことができる点で、産業上の利用可能性は大きい。 Since the dielectric barrier discharge lamp according to the present invention is a substantially rectangular box-shaped dielectric barrier discharge lamp that does not require a front glass, not only can the manufacturing cost be reduced, but also on both side walls in the longitudinal direction (front-rear direction). Industrial applicability is great in that the strain can be prevented from being concentrated and the life of the discharge tube can be extended.
1 放電管
2 上部電極
3 下部電極
4 遮光部材
 4a 紫外線遮光膜
 4b 紫外線遮光膜
 4c 溶融石英板
 4d 紫外線遮光作用を有する粗面
 4e~4g 紫外線遮光膜
10 紫外線照射装置
11、30、40 バリア放電ランプ
12、31、41 放電管
13、42 外管部
14、43 内管部
15、32 アーチ状の曲面部
16、33、45 平坦部
17 放電空間
18、34、47 上部電極
19、35、48 下部電極
20、21 リード線
22 交流電源装置
49 補助電極
50 照射器具
51 バブリング容器
52 HMDS(ヘキサメチレンジシラザン)
53 ダミー基板(SUS)
54 供試ランプ
55 パンチングメタル板
60 測定装置
61 放電管
62 定盤
63 放電管固定台
64 マイクロメーター固定台
65 マイクロメーター
A1、A2 空気
N 窒素ガス
E 排気ガス
DESCRIPTION OF SYMBOLS 1 Discharge tube 2 Upper electrode 3 Lower electrode 4 Light shielding member 4a Ultraviolet light shielding film 4b Ultraviolet light shielding film 4c Fused quartz plate 4d Rough surface with ultraviolet light shielding action 4e to 4g Ultraviolet light shielding film 10 Ultraviolet irradiation device 11, 30, 40 Barrier discharge lamp 12, 31, 41 Discharge tube 13, 42 Outer tube portion 14, 43 Inner tube portion 15, 32 Arched curved surface portion 16, 33, 45 Flat portion 17 Discharge space 18, 34, 47 Upper electrode 19, 35, 48 Lower portion Electrode 20, 21 Lead wire 22 AC power supply device 49 Auxiliary electrode 50 Irradiation instrument 51 Bubbling container 52 HMDS (hexamethylene disilazane)
53 Dummy substrate (SUS)
54 Test Lamp 55 Punching Metal Plate 60 Measuring Device 61 Discharge Tube 62 Surface Plate 63 Discharge Tube Fixing Stand 64 Micrometer Fixing Stand 65 Micrometer A1, A2 Air N Nitrogen Gas E Exhaust Gas

Claims (20)

  1.  内部にエキシマ発光のための放電用ガスを封入し、平坦な面を有する下壁板を通して紫外線を下方に照射する放電管と、この放電管の外部の少なくとも一方に電極を備えた誘電体バリア放電ランプにおいて、
     この放電管における下壁板の周囲の長側面に位置する壁面が、紫外線を少なくとも50%以上遮光する遮光部材で構成されたことを特徴とする誘電体バリア放電ランプ。
    Dielectric barrier discharge with discharge gas for excimer light emission inside, a discharge tube that irradiates ultraviolet rays downward through a lower wall plate having a flat surface, and an electrode on at least one outside of the discharge tube In the ramp,
    A dielectric barrier discharge lamp characterized in that a wall surface located on a long side surface around a lower wall plate in the discharge tube is composed of a light shielding member that shields at least 50% of ultraviolet rays.
  2.  前記遮光部材は遮光率が70%以上であることを特徴とする請求項1記載の誘電体バリア放電ランプ。 2. The dielectric barrier discharge lamp according to claim 1, wherein the light shielding member has a light shielding ratio of 70% or more.
  3.  前記遮光部材は遮光率が90%以上であることを特徴とする請求項1記載の誘電体バリア放電ランプ。 2. The dielectric barrier discharge lamp according to claim 1, wherein the light shielding member has a light shielding ratio of 90% or more.
  4.  内部にエキシマ発光のための放電用ガスを封入し、平坦な面を有する下壁板を通して紫外線を下方に照射する放電管と、この放電管の外部の少なくとも一方に電極を備えた誘電体バリア放電ランプにおいて、
     この放電管における下壁板の周囲の長側面に位置する壁面が、当該ランプの点灯時に、前記壁面から放電管の外部に放射される紫外線の平均照度が50mW/cm以下となるように遮光する遮光部材で構成されたことを特徴とする誘電体バリア放電ランプ。
    Dielectric barrier discharge with discharge gas for excimer light emission inside, a discharge tube that irradiates ultraviolet rays downward through a lower wall plate having a flat surface, and an electrode on at least one outside of the discharge tube In the ramp,
    The wall surface located on the long side surface around the lower wall plate in the discharge tube is shielded so that the average illuminance of ultraviolet rays radiated from the wall surface to the outside of the discharge tube is 50 mW / cm 2 or less when the lamp is turned on. A dielectric barrier discharge lamp comprising a light shielding member.
  5.  この放電管における下壁板の周囲の長側面に位置する壁面が、当該ランプの点灯時に、前記壁面から放電管の外部に放射される紫外線の平均照度が30mW/cm以下となるように遮光する遮光部材で構成されたことを特徴とする請求項4記載の誘電体バリア放電ランプ。 The wall surface located on the long side surface around the lower wall plate in the discharge tube is shielded so that the average illuminance of ultraviolet rays radiated from the wall surface to the outside of the discharge tube is 30 mW / cm 2 or less when the lamp is turned on. 5. The dielectric barrier discharge lamp according to claim 4, wherein the dielectric barrier discharge lamp comprises a light shielding member.
  6.  この放電管における下壁板の周囲の長側面に位置する壁面が、当該ランプの点灯時に、前記壁面から放電管の外部に放射される紫外線の平均照度が30mW/cm以下となるように遮光する遮光部材で構成されたことを特徴とする請求項4記載の誘電体バリア放電ランプ。 The wall surface located on the long side surface around the lower wall plate in the discharge tube is shielded so that the average illuminance of ultraviolet rays radiated from the wall surface to the outside of the discharge tube is 30 mW / cm 2 or less when the lamp is turned on. 5. The dielectric barrier discharge lamp according to claim 4, wherein the dielectric barrier discharge lamp comprises a light shielding member.
  7.  内部にエキシマ発光のための放電用ガスを封入し、平坦な面を有する下壁板を通して紫外線を下方に照射する放電管と、この放電管の外部の少なくとも一方に電極を備えた誘電体バリア放電ランプの点灯方法において、
     この放電管における下壁板の周囲の長側面に位置する側面から放電管の外部に放射される紫外線の平均照度が、50mW/cm以下であることを特徴とする誘電体バリア放電ランプの点灯方法。
    Dielectric barrier discharge with discharge gas for excimer light emission inside, a discharge tube that irradiates ultraviolet rays downward through a lower wall plate having a flat surface, and an electrode on at least one outside of the discharge tube In the lighting method of the lamp,
    Lighting of a dielectric barrier discharge lamp characterized in that the average illuminance of ultraviolet rays radiated to the outside of the discharge tube from the side surface located on the long side surface around the lower wall plate of the discharge tube is 50 mW / cm 2 or less Method.
  8.  前記放電管における下壁板の周囲の長側面に位置する側面から放電管の外部に放射される紫外線の平均照度が、30mW/cm以下であることを特徴とする請求項7に記載の誘電体バリア放電ランプの点灯方法。 8. The dielectric according to claim 7, wherein an average illuminance of ultraviolet rays radiated to the outside of the discharge tube from a side surface located on a long side surface around the lower wall plate in the discharge tube is 30 mW / cm 2 or less. How to turn on the body barrier discharge lamp.
  9. 前記放電管における下壁板の周囲の長側面に位置する側面から放電管の外部に放射される紫外線の平均照度が、10mW/cm以下であることを特徴とする請求項7に記載の誘電体バリア放電ランプの点灯方法。 8. The dielectric according to claim 7, wherein an average illuminance of ultraviolet rays radiated to the outside of the discharge tube from a side surface located on a long side surface around the lower wall plate in the discharge tube is 10 mW / cm 2 or less. How to turn on the body barrier discharge lamp.
  10.  前記遮光部材は透明部材と遮光膜とを含む構成であることを特徴とする請求項1又は4に記載の誘電体バリア放電ランプ。 The dielectric barrier discharge lamp according to claim 1 or 4, wherein the light shielding member includes a transparent member and a light shielding film.
  11.  前記遮光膜は、紫外線遮蔽製を有する酸化物の微粒子を溶剤に混濁させたスラリー(混濁液)の焼成物で構成されることを特徴とする請求項10に記載の誘電体バリア放電ランプ。 11. The dielectric barrier discharge lamp according to claim 10, wherein the light shielding film is composed of a fired product of slurry (turbid liquid) in which fine particles of oxide having ultraviolet shielding properties are made turbid in a solvent.
  12.  前記酸化物の微粒子の一次粒子径が10~100nmであることを特徴とする請求項11に記載の誘電体バリア放電ランプ。 12. The dielectric barrier discharge lamp according to claim 11, wherein a primary particle diameter of the oxide fine particles is 10 to 100 nm.
  13.  前記酸化物の微粒子は、酸化イットリウムを主成分とすることを特徴とする請求項11に記載の誘電体バリア放電ランプ。 12. The dielectric barrier discharge lamp according to claim 11, wherein the oxide fine particles are mainly composed of yttrium oxide.
  14.  前記遮光膜は、主として紫外線吸収性による遮光をすることを特徴とする請求項10に記載の誘電体バリア放電ランプ。 11. The dielectric barrier discharge lamp according to claim 10, wherein the light shielding film shields light mainly by ultraviolet absorption.
  15.  前記遮光膜は、膜厚が10μm以下であることを特徴とする請求項10に記載の誘電体バリア放電ランプ。 The dielectric barrier discharge lamp according to claim 10, wherein the light-shielding film has a thickness of 10 µm or less.
  16.  前記下壁板を合成石英板で構成する一方、前記下壁板の周囲の四側面の前後方向及び左右方向の両側壁面或いは上壁板を溶融石英板で構成したことを特徴とする請求項1又は4に記載の誘電体バリア放電ランプ 2. The lower wall plate is composed of a synthetic quartz plate, and both side wall surfaces or upper wall plates in the front-rear direction and the left-right direction of the four side surfaces around the lower wall plate are composed of a fused quartz plate. Or dielectric barrier discharge lamp according to 4
  17.  前記下壁板の周囲の四側面の前後方向及び左右方向の両側壁面が粗面化された粗面化膜であって、前記粗面化膜は、前記下壁板の周囲の四側面の前後方向及び左右方向の両側壁面が合成石英で構成されると共に、
    前記下壁板の周囲の四側面の前後方向及び左右方向の両側壁面がフッ酸により粗面化された粗面化膜であることを特徴とする請求項1又は4に記載の誘電体バリア放電ランプ。
    A roughening film having roughened front and rear side walls on the four side surfaces around the lower wall plate, the roughening film being front and rear on the four side surfaces around the lower wall plate. Both side walls in the direction and left and right direction are made of synthetic quartz,
    5. The dielectric barrier discharge according to claim 1, wherein the front and rear side surfaces and the left and right side wall surfaces of the four side surfaces around the lower wall plate are roughened films roughened with hydrofluoric acid. lamp.
  18.  前記下壁板の周囲の四側面の前後方向及び左右方向の両側壁面が粗面化された粗面化膜であって、前記粗面化膜は、前記下壁板の周囲の四側面の前後方向及び左右方向の両側壁面にサンドブラストが吹き付けられてなることを特徴とする請求項1又は4に記載の誘電体バリア放電ランプ。 A roughening film having roughened front and rear side walls on the four side surfaces around the lower wall plate, the roughening film being front and rear on the four side surfaces around the lower wall plate. 5. The dielectric barrier discharge lamp according to claim 1, wherein sandblast is sprayed on both side walls in the horizontal direction.
  19.  請求項1又は4に記載の誘電体バリア放電ランプと、
     前記ランプ内でエキシマ発光を生じさせるための電力を出力する電源装置と、前記電源装置からの電力を供給するためのリード線とを備えた紫外線照射装置。
    The dielectric barrier discharge lamp according to claim 1 or 4,
    An ultraviolet irradiation device comprising: a power supply device that outputs electric power for generating excimer light emission in the lamp; and a lead wire for supplying electric power from the power supply device.
  20.  前記照射装置の被照射対象物の被照射面の一部には、有機ケイ素化合物を含んだ層が形成されていることを特徴とする請求項19に記載の紫外線照射装置。 21. The ultraviolet irradiation apparatus according to claim 19, wherein a layer containing an organosilicon compound is formed on a part of the irradiated surface of the irradiated object of the irradiation apparatus.
PCT/JP2010/073028 2009-12-22 2010-12-21 Dielectric barrier discharge lamp and ultraviolet irradiation device using the same WO2011078181A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011547578A JPWO2011078181A1 (en) 2009-12-22 2010-12-21 Dielectric barrier discharge lamp and ultraviolet irradiation apparatus using the same
CN2010800349987A CN102473586A (en) 2009-12-22 2010-12-21 Dielectric barrier discharge lamp and ultraviolet irradiation device using the same
KR1020127003056A KR101389786B1 (en) 2009-12-22 2010-12-21 Dielectric barrier discharge lamp and ultraviolet irradiation device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009291473 2009-12-22
JP2009-291473 2009-12-22

Publications (1)

Publication Number Publication Date
WO2011078181A1 true WO2011078181A1 (en) 2011-06-30

Family

ID=44195708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073028 WO2011078181A1 (en) 2009-12-22 2010-12-21 Dielectric barrier discharge lamp and ultraviolet irradiation device using the same

Country Status (5)

Country Link
JP (1) JPWO2011078181A1 (en)
KR (1) KR101389786B1 (en)
CN (1) CN102473586A (en)
TW (1) TWI480921B (en)
WO (1) WO2011078181A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891095A (en) * 2011-07-22 2013-01-23 拉碧斯半导体株式会社 Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JP2013211164A (en) * 2012-03-30 2013-10-10 Ushio Inc Excimer lamp
KR20130121742A (en) 2012-04-27 2013-11-06 가부시키가이샤 지에스 유아사 Dielectric barrier discharge lamp
JP2013232339A (en) * 2012-04-27 2013-11-14 Gs Yuasa Corp Dielectric barrier discharging lamp
JP2014065204A (en) * 2012-09-26 2014-04-17 Iwasaki Electric Co Ltd Ultraviolet radiator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105957799A (en) * 2016-06-23 2016-09-21 卜弘昊 High-power vacuum ultraviolet discharge lamp
CN105977131A (en) * 2016-06-23 2016-09-28 卜弘昊 High-frequency excitation medium electric-discharge lamp
CN106098531A (en) * 2016-06-23 2016-11-09 卜弘昊 A kind of narrow ripple ultraviolet source discharge lamp
TWI824580B (en) * 2022-06-24 2023-12-01 崇翌科技股份有限公司 Excimer lamp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347025A (en) * 2004-06-01 2005-12-15 Japan Storage Battery Co Ltd Dielectric barrier discharge lamp
JP2007095683A (en) * 2005-09-26 2007-04-12 Samsung Corning Co Ltd Flat light source device
JP2009181818A (en) * 2008-01-31 2009-08-13 Ushio Inc Excimer lamp

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06219788A (en) * 1992-02-27 1994-08-09 Toyo Glass Co Ltd Method for decorating glass by ion exchange
JPH05308474A (en) * 1992-04-28 1993-11-19 Nippon Sheet Glass Co Ltd Picture reader
JP4221561B2 (en) * 2002-10-02 2009-02-12 株式会社ジーエス・ユアサコーポレーション Excimer lamp
KR101011550B1 (en) * 2003-01-29 2011-01-27 미츠비시 레이온 가부시키가이샤 Area light source
JP2005222714A (en) * 2004-02-03 2005-08-18 Japan Storage Battery Co Ltd Dielectric barrier discharge lamp and dielectric barrier discharge device
JP2007142058A (en) * 2005-11-17 2007-06-07 Matsushita Electric Ind Co Ltd Semiconductor imaging element and manufacturing method thereof, and semiconductor imaging apparatus and manufacturing method thereof
JP2009252546A (en) * 2008-04-07 2009-10-29 Ushio Inc Discharge lamp for ultraviolet rays, and lamp unit having this
TWI440065B (en) * 2008-04-24 2014-06-01 Harison Toshiba Lighting Corp Ultraviolet discharge lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347025A (en) * 2004-06-01 2005-12-15 Japan Storage Battery Co Ltd Dielectric barrier discharge lamp
JP2007095683A (en) * 2005-09-26 2007-04-12 Samsung Corning Co Ltd Flat light source device
JP2009181818A (en) * 2008-01-31 2009-08-13 Ushio Inc Excimer lamp

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891095A (en) * 2011-07-22 2013-01-23 拉碧斯半导体株式会社 Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
CN102891095B (en) * 2011-07-22 2016-12-21 拉碧斯半导体株式会社 The manufacture method of semiconductor device and semiconductor-fabricating device
JP2013211164A (en) * 2012-03-30 2013-10-10 Ushio Inc Excimer lamp
KR20130121742A (en) 2012-04-27 2013-11-06 가부시키가이샤 지에스 유아사 Dielectric barrier discharge lamp
JP2013232339A (en) * 2012-04-27 2013-11-14 Gs Yuasa Corp Dielectric barrier discharging lamp
JP2014065204A (en) * 2012-09-26 2014-04-17 Iwasaki Electric Co Ltd Ultraviolet radiator

Also Published As

Publication number Publication date
KR101389786B1 (en) 2014-04-29
KR20120042920A (en) 2012-05-03
JPWO2011078181A1 (en) 2013-05-09
TW201140647A (en) 2011-11-16
TWI480921B (en) 2015-04-11
CN102473586A (en) 2012-05-23

Similar Documents

Publication Publication Date Title
WO2011078181A1 (en) Dielectric barrier discharge lamp and ultraviolet irradiation device using the same
TWI416583B (en) Excimer lamp
JP6764349B2 (en) Method for obtaining a substrate coated with a functional layer using a sacrificial layer
JP5266972B2 (en) Excimer lamp
CN1913097B (en) Excimer lamp and making method thereof
JP4998827B2 (en) Excimer lamp
CN101409203B (en) Excimer lamps
JP5971152B2 (en) Method for forming a titanium oxide film on the surface of a molded article made of glass
JP4962256B2 (en) Excimer lamp light irradiation device
WO2009145253A1 (en) External electrode discharge lamp and ultraviolet ray irradiating apparatus using the same
KR20130121742A (en) Dielectric barrier discharge lamp
JP5303905B2 (en) Excimer lamp
TW200921751A (en) Ultraviolet radiation treatment device
CN101651080B (en) Excimer lamp
JP2009146589A (en) Excimer discharge lamp
CN101409207B (en) Excimer lamps
JP5151816B2 (en) Excimer lamp
KR20210040697A (en) Excimer lamps comprising uv reflectors with improved lifetime and performance
JP2009199845A (en) Excimer lamp
JP2013098014A (en) Light irradiation device for film
JP4428687B2 (en) Quartz glass tube for lamp and laser excitation / amplification unit
JP2009289721A (en) Excimer lamp
JP5773277B2 (en) Dielectric barrier discharge lamp
JP5526724B2 (en) Discharge lamp
KR101698567B1 (en) Excimer lamp having uv reflecting layer having multilayer structure and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034998.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127003056

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011547578

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839411

Country of ref document: EP

Kind code of ref document: A1