JP4221561B2 - Excimer lamp - Google Patents

Excimer lamp Download PDF

Info

Publication number
JP4221561B2
JP4221561B2 JP2002289941A JP2002289941A JP4221561B2 JP 4221561 B2 JP4221561 B2 JP 4221561B2 JP 2002289941 A JP2002289941 A JP 2002289941A JP 2002289941 A JP2002289941 A JP 2002289941A JP 4221561 B2 JP4221561 B2 JP 4221561B2
Authority
JP
Japan
Prior art keywords
vacuum ultraviolet
discharge vessel
ultraviolet rays
wall plates
wall plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002289941A
Other languages
Japanese (ja)
Other versions
JP2004127710A5 (en
JP2004127710A (en
Inventor
江崎  真伍
吉川  智也
和也 畑瀬
細谷  浩二
弘実 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2002289941A priority Critical patent/JP4221561B2/en
Publication of JP2004127710A publication Critical patent/JP2004127710A/en
Publication of JP2004127710A5 publication Critical patent/JP2004127710A5/ja
Application granted granted Critical
Publication of JP4221561B2 publication Critical patent/JP4221561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内部に放電用ガスを封入した放電容器に電圧を印加することにより誘電体バリア放電によって真空紫外線を放射させて光洗浄や光灰化等に用いるエキシマランプに関する。
【0002】
【従来の技術】
エキシマランプは、エキシマ発光のための放電用ガスとして例えばキセノンが用いられた場合、中心波長が172nmの高エネルギーの真空紫外線を放射する。そこで、主に185nmと254nmの波長の紫外線を放射する低圧水銀灯に代えて、液晶表示装置のガラス基板や半導体ウエハ等の精密洗浄(光洗浄)を行う紫外線照射装置の光源として用いられることが多くなっている。真空紫外線は、波長が200nm以下50nm以上の範囲の紫外線をいう。この真空紫外線は、空気中の酸素に吸収されてオゾンを発生させるので、この空気中で液晶表示装置のガラス基板等の被処理物の表面に照射することにより、発生したオゾンと透過した真空紫外線の相乗効果によって被処理物の表面の有機物等を分解飛散させて洗浄を行うことができる。
【0003】
上記エキシマランプは、波長が172nmの場合、合成石英ガラス製の放電容器内にエキシマ発光のための放電用ガスを封入し、これに高周波電圧を印加することにより誘電体バリア放電を起こさせて真空紫外線を放射するものである。そして、従来は、二重構造の円筒管や小径の円筒管に放電用ガスを封入した放電容器が使われることが多かった(例えば、特許文献1参照。)。また、この二重円筒状の放電容器に代えて、方形箱形の放電容器を用いたエキシマランプも開発されている(例えば、特許文献2参照。)。
【0004】
波長172nmの真空紫外線は、極めてエネルギーが高いために、合成石英ガラスがこの真空紫外線の強い照射を長時間受けると、劣化により微細なひびやクラックが発生する。そして、エキシマランプは、この合成石英ガラスの劣化によって放電容器の気密性が損なわれるために、点灯不良となって寿命が尽きることが多い。しかも、合成石英ガラスは、温度が低いほどこの劣化が早く進行することから、放電容器の冷却部の内面に真空紫外線を吸収し及び/又は反射する保護層を形成し、この冷却部での合成石英ガラスの早期の劣化によりエキシマランプの寿命が短縮されるのを防止する発明が既になされている(例えば、特許文献3参照。)。
【0005】
【特許文献1】
特開2001−243920号公報(図4)
【特許文献2】
特開2000−260396号公報
【特許文献3】
特開2002−93377号公報
【0006】
【発明が解決しようとする課題】
ところが、最近では、図3に示すように、上記方形箱形の放電容器1を前後に極めて長尺な形状に形成したエキシマランプが開発されている。この放電容器1は、横断面の上下の高さが十数mmで左右の幅が数十mm程度の横長の薄い方形となる前後に1m以上の長尺な合成石英ガラス製の管の両端を塞ぎ、内部にキセノンガスを充填したものである。また、この放電容器1は、平坦な上下面にそれぞれ金属薄膜をパターン形成することにより電極2,3を形成している。放電容器1の上面の電極2は、この平坦な上面をほぼ全面覆うように形成されているが、下面の電極3は、網目状のパターンに形成され、この網目の隙間から下方に真空紫外線を照射することができるようになっている。真空紫外線は、酸素に吸収されるために、空気中では直ぐに減衰して短い距離しか到達することができず、例えば波長が172nmの場合には10mm以下程度の距離までしか到達することができない。そこで、エキシマランプが放射する真空紫外線をできるだけ広い面積に照射するには、放電容器1で最も広い面積を有する平坦な面から照射する必要があり、このために下面の電極3を網目状にしてその隙間から真空紫外線を下方に照射するようにしている。
【0007】
しかしながら、エキシマランプが放射する真空紫外線の強度は、エキシマ発光に自己吸収がないことから、放電容器1内の放電空間の距離が長いほど強くなる。このため、上記のような極めて長尺な放電容器1を用いる場合、実際の照射光として下方に取り出す真空紫外線は、上下方向の十数mm以下の短い距離の放電空間から放射されるのに対して、前後方向に放射される真空紫外線は、1m以上の距離の放電空間から放射されるために、極めて紫外線強度の強いものとなる。
【0008】
従って、放電容器1の最短方向に真空紫外線を照射するエキシマランプは、この最短方向を除く方向に放射される真空紫外線の強度が強くなり、特に最長方向に放射される真空紫外線の強度は極めて強くなるので、これらの方向の端部の壁板の劣化が早期に進行して、寿命が著しく短くなるという問題が生じていた。
【0009】
本発明は、かかる事情に対処するためになされたものであり、エキシマランプの放電容器の最長端部等の壁板を真空紫外線が透過し難くすることにより劣化を防止するエキシマランプを提供することを目的としている。
【0010】
【課題を解決するための手段】
請求項1のエキシマランプは、前後に最長であり上下が最短になると共に、この上下で向かい合うほぼ平坦な上下壁板が互いにほぼ平行な形状を有し、真空紫外線を透過する誘電体により構成された密閉容器であって、内部にエキシマ発光のための放電用ガスを封入した放電容器と、この放電容器の上下壁板の外面にそれぞれ形成された電極とを備え、この下壁板を通して真空紫外線を下方に照射するエキシマランプにおいて、この放電容器における少なくとも前後両端部の前後端壁板の内面に真空紫外線保護層が形成されたことを特徴とする。
【0011】
請求項1の発明によれば、放射される真空紫外線の強度が最も強い前後方向の両端部の前後端壁板の内面に真空紫外線保護層が形成されるので、この強度の強い真空紫外線により前後端壁板が早期に劣化するのを防止することができるようになる。また、上下方向に比べれば、左右方向の真空紫外線の強度も強くなるので、左右側壁板の内面にもこの真空紫外線保護層を形成して、これらの左右側壁板の劣化を防止するようにしてもよい。真空紫外線保護層とは、真空紫外線の照射に対して背後の壁板を保護するための層であり、例えば真空紫外線を吸収する層やこの真空紫外線を反射する層、これら吸収と反射を同時に行う層等が用いられる。
【0012】
なお、本明細書で示す前後、上下及び左右の各直交する方向は、それぞれの方向の間の関係を表すために便宜的に用いているにすぎないので、実際のエキシマランプの配置は任意である。
【0015】
請求項のエキシマランプは、前後に最長であり上下が最短になると共に、この上下で向かい合うほぼ平坦な上下壁板が互いにほぼ平行な形状を有し、少なくとも下壁板は真空紫外線を透過し、少なくとも前後両端部の前後端壁板はこの下壁板よりも真空紫外線の反射率が高い誘電体によって構成される密閉容器であって、内部にエキシマ発光のための放電用ガスを封入した放電容器と、この放電容器の上下壁板の外面にそれぞれ形成された電極とを備え、この下壁板を通して真空紫外線を下方に照射することを特徴とする。
【0016】
請求項の発明によれば、放射される真空紫外線の強度が最も強い前後方向の両端部の前後端壁板が真空紫外線を反射するので、この強度の強い真空紫外線により前後端壁板が早期に劣化するのを防止することができるようになる。また、上下方向に比べれば、左右方向の真空紫外線の強度も強くなるので、左右側壁板も真空紫外線を反射させて、これらの左右側壁板の劣化を防止するようにしてもよい。
【0017】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
【0018】
図1〜図2は本発明の一実施形態を示すものであって、図1はエキシマランプの長尺な中央部を省略した斜視図、図2はエキシマランプの長尺な中央部を省略した縦断面側面図である。なお、図3に示した従来例と同様の機能を有する構成部材には同じ番号を付記する。
【0019】
本実施形態は、図3に示したものと同様の前後方向に長尺な方形箱形の放電容器1を用いるエキシマランプについて説明する。この放電容器1は、図1及び図2に示すように、横断面が横長の方形となる長尺な合成石英ガラス製の角管1aの両端開口部に、この角管1aの横断面とほぼ同じ形状の合成石英ガラス製の前後端壁板1b,1bをそれぞれ溶着して塞ぐことにより形成される。角管1aは、横断面の上下方向の高さが十数mmであり、左右方向の幅が数十mmの方形の管であって、前後方向の長さは1m以上となる。従って、この角管1aは、上下で向かい合う平坦な上下壁板と左右方向で向かい合う平坦な左右側壁板とで構成される。この角管1aの両端開口部に溶着される前後端壁板1b,1bには、事前にそれぞれチップ管1c,1cが突設されている。各チップ管1cは、前後端壁板1bの外面からさらに外側に突出するように溶着された合成石英ガラス製の管材であり、管内がこの前後端壁板1bのほぼ中央部に予め形成された開口孔に通じるように設けられている。この放電容器1は、角管1aの両端開口部に前後端壁板1b,1bを溶着する前又は後に、この角管1aの上下壁板の外面に電極2,3の金属薄膜が成膜される。電極2は、エキシマランプが放射する真空紫外線の強度を検査するためのセンサ用の未塗膜部を除けば、角管1aの上壁板の上面のほぼ全面を覆うように成膜される。また、電極3は、この角管1aの下壁板の下面のほぼ全面に網目状のパターンで成膜される
【0020】
上記のようにして作製された放電容器1は、いずれか一方のチップ管1cを下向きにして放電容器1を直立させ、この下向きのチップ管1cから放電容器1内の下端部に真空紫外線保護材の懸濁液を注入する。真空紫外線保護材の懸濁液は、真空紫外線を吸収したり反射する真空紫外線保護材の微粉末を塗布のために液体中に分散させたものである。真空紫外線を吸収する作用を得るための真空紫外線保護材としては、ZnOやTiO等があり、真空紫外線を反射する作用を得るための真空紫外線保護材としては、AlO等がある。この真空紫外線保護材は、真空紫外線を吸収するものか反射するもののどちらかの1種以上を使用する他に、吸収するものと反射するものを1種以上ずつ混合して使用するようにしてもよい。この真空紫外線保護材の懸濁液を放電容器1内の下端部に注入して再び同じチップ管1cから排出すると、真空紫外線保護材が放電容器1の内面に塗布されることになり、これによって一方の端壁板1bの内面と角管1aの一方端部の内面に真空紫外線保護層4が形成される。また、放電容器1を逆向きに直立させて他方のチップ管1cを下向きにし、このチップ管1cから同じ真空紫外線保護材の懸濁液を注入し排出することにより、他方の端壁板1bの内面と角管1aの他方端部の内面にも真空紫外線保護層4が形成される。なお、角管1aの端部の内面に形成される真空紫外線保護層4は、この角管1aの外面の電極2,3とは重ならないように、これらの電極2,3の形成領域よりもさらに端部側にのみ形成することが好ましい。
【0021】
上記のようにして真空紫外線保護層4,4が形成された放電容器1は、一方のチップ管1cを通じて空気を排出すると共に、他方のチップ管1cを通じて放電用ガスを注入することにより、内部にこの放電用ガスを充填する。そして、双方のチップ管1cの先端部を溶融封止させて内部を密閉することによりエキシマランプも完成する。
【0022】
上記構成のエキシマランプによれば、放電空間の距離が最も長くなり放射される真空紫外線の強度も最強となる放電容器1の前後方向の両端部に配置される前後端壁板1b,1bの内面に真空紫外線保護層4が形成される。真空紫外線保護層4が真空紫外線を吸収するものである場合には、前後方向に放射された真空紫外線の多くがこの真空紫外線保護層4で吸収されるので、前後端壁板1b,1bを透過するものは僅かとなって劣化を抑制することができる。また、真空紫外線保護層4が真空紫外線を反射するものである場合にも、前後方向に放射された真空紫外線の多くがこの真空紫外線保護層4で反射されるので、この場合も前後端壁板1b,1bを透過するものは僅かとなって劣化を抑制することができる。このため、放電容器1の長尺な前後方向の両端部に配置される前後端壁板1b,1bが、角管1aの上下壁板や左右側壁板よりも極めて強い真空紫外線を受けることにより合成石英ガラスの劣化が急速に進行して、エキシマランプの寿命が短縮されるのを防止することができるようになる。しかも、角管1aの前後方向の両端部にも、この真空紫外線保護層4が形成されるので、前後端壁板1b,1bに準じて強い真空紫外線を受けるこれらの端部の合成石英ガラスが劣化するのも防止することができるようになる。
【0023】
また、上記放電容器1は、前後方向の両端部に配置された前後端壁板1b,1bにチップ管1c,1cが溶着されて、これらのチップ管1c,1cの先端が溶融封止されるまでは、内部と導通する開口部となるので、これらのチップ管1c,1cを通じて放電用ガスの充填を行う他に、真空紫外線保護層4の形成のための懸濁液の注入と排出に用いることができるようになる。しかも、これらのチップ管1c,1cは、電極2,3が形成される角管1aの上下壁板とは異なる前後端壁板1b,1bに設けられるので、電圧の印加や真空紫外線の本来の下方への照射を妨げるようなこともない。
【0024】
なお、上記実施形態では、放電容器1の前後端壁板1b,1bや角管1aの両端部の内面にのみ真空紫外線保護層4を設ける場合を示したが、この角管1aの左右側壁板の内面にも同様に真空紫外線保護層4を形成してもよい。これら左右側壁板も、上下方向よりは放電空間の距離が数倍長い左右方向の比較的強い真空紫外線を受けることになるので、上下壁板よりも早期に合成石英ガラスが劣化するおそれがあるが、前後端壁板1b,1bの内面等と同様の真空紫外線保護層4を形成すればこの劣化を防止することができるようになる。
【0025】
上記のように左右側壁板の内面にも真空紫外線保護層4を形成する場合、放電容器1を直立させて下方のチップ管1cから真空紫外線保護材の懸濁液を注入後に、この放電容器1を電極2,3が形成された面に直交する軸を中心にゆっくり1回転させれば、懸濁液が一方の端壁板1bの内面から一方の側壁板の内面に移動し、さらに他方の端壁板1bの内面から他方の側壁板の内面に移動するので、これら全ての壁板の内面に真空紫外線保護層4を形成することができるようになる。また、このように左右側壁板の内面にも真空紫外線保護層4を形成する場合には、チップ管1c,1cをこれら左右壁板に設けることもできる。しかも、放電用ガスの充填効率を多少犠牲にすれば、前後端壁板1b,1bや左右側壁板のいずれか一面の壁板にのみチップ管1cを設けることもできる。
【0026】
また、上記実施形態では、放電容器1の内部に通じる開口部を形成するためにチップ管1cを用いる場合を示したが、他の管材を取り付けたり、単なる開口孔を形成するだけでもよい。このようなチップ管1c等による開口部は、真空紫外線保護層4が形成されない放電容器1にも、放電用ガスの充填のために設けることができる。この際、真空紫外線の照射の妨げとならないように、少なくともこの真空紫外線の照射方向に直交する壁板を除く他の壁板に設けるようにする。
【0027】
また、上記実施形態では、放電容器1の壁板の内面に真空紫外線保護層4を形成する場合を示したが、この放電容器1の各壁板の一部の合成石英ガラスの材質を、真空紫外線の透過率が低いものや反射率が高いものに変更することにより、この壁板の劣化を防止することもできる。即ち、放電容器1における少なくとも前後方向の前後端壁板1b,1bを、本来の照射用の真空紫外線が透過する下壁板よりも真空紫外線の透過率が低いものに替えたり、この真空紫外線の反射率が高いものに替える。真空紫外線の透過率が低いものとしては、溶融石英や、天然の石英ガラスにチタンやバナジウム化合物を添加したオゾンフリー石英等がある。また、真空紫外線の反射率が高いものとしては、例えば合成石英ガラスの表面をスリガラス状に加工することにより、この真空紫外線を散乱させて反射率を高めたもの等がある。さらに、真空紫外線の透過率が低く反射率も高いものを用いることもできる。前後端壁板1b,1bが真空紫外線の吸収率の高いものである場合には、前後方向に放射された真空紫外線の多くが各前後端壁板1bの内面の表層部で吸収されるので、この前後端壁板1bを完全に透過するものは僅かとなって、表層部のみは劣化するが、他の大部分の劣化を抑制することができる。また、前後端壁板1b,1bが真空紫外線の反射率の高いものである場合にも、前後方向に放射された真空紫外線の多くが各前後端壁板1bで反射されるので、この前後端壁板1bを透過するものは僅かとなって劣化を抑制することができる。さらに、前後端壁板1b,1bに限らず、角管1aの両端部や左右側壁板をこのように真空紫外線の吸収率や反射率の高いものに変更することもできる。
【0028】
また、上記実施形態では、角管1aの両端開口部に前後端壁板1b,1bを溶着することにより放電容器1を作製する場合を示したが、この放電容器1の作製方法は任意である。例えば、合成石英ガラスの長尺な円筒管を横断面が横長の方形となるように成形したものの両端開口部に前後端壁板1b,1bを溶着するようにしてもよいし、角管1aや円筒管を成形したものの両端部を溶融封止して作製することもできる。このように作製した放電容器1は、電極2,3を形成する上下壁板の広い領域が平坦でほぼ平行になっていればよいので、例えば円筒管を成形した場合の左右側壁板は半円筒状に湾曲していてもよく、例えば溶融封止された前後端壁板も溶融によって湾曲していてもよい。また、合成石英ガラスの6枚の板材をそれぞれ溶着することにより放電容器1を作製することもできる。この場合、各壁板が異なる板材で構成されるので、任意の壁板を真空紫外線の吸収率や反射率の高いものに変更することが容易に可能となる。
【0029】
また、上記実施形態では、放電容器1の全ての壁板を合成石英ガラスで構成する場合を示したが、本来の照射用の真空紫外線が透過する壁板を除く他の壁板は、適宜の誘電体材料であれば、必ずしも合成石英ガラスである必要はない。さらに、上記実施形態では、波長172nmの真空紫外線を放射するエキシマランプについて説明したので、この波長の真空紫外線の透過率の高い合成石英ガラスを用いる場合を示したが、エキシマランプが使用する真空紫外線の波長に応じて適宜の誘電体材料を用いることができる。
【0030】
【発明の効果】
以上の説明から明らかなように、本発明のエキシマランプによれば、放射される真空紫外線の強度が最も強い前後方向の両端部の前後端壁板や、上下方向よりも真空紫外線の強度が強くなる左右方向の左右側壁板の劣化を防止することにより寿命が短縮されるのを防止することができるようになる。
【図面の簡単な説明】
【図1】 本発明の一実施形態を示すものであって、エキシマランプの長尺な中央部を省略した斜視図である。
【図2】 本発明の一実施形態を示すものであって、エキシマランプの長尺な中央部を省略した縦断面側面図である。
【図3】 従来例を示すものであって、エキシマランプの長尺な中央部を省略した斜視図である。
【符号の説明】
1 放電容器
1a 角管
1b 前後端壁板
1c チップ管
2 電極
3 電極
4 真空紫外線保護層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an excimer lamp which is emitting the vacuum ultraviolet rays by a dielectric barrier discharge is used to light cleaning or light ash, etc. By applying a voltage to the discharge vessel enclosing a discharge gas therein.
[0002]
[Prior art]
The excimer lamp emits high-energy vacuum ultraviolet rays having a center wavelength of 172 nm when, for example, xenon is used as a discharge gas for excimer light emission. Therefore, in place of a low-pressure mercury lamp that mainly emits ultraviolet rays having wavelengths of 185 nm and 254 nm, it is often used as a light source of an ultraviolet irradiation device that performs precision cleaning (light cleaning) of a glass substrate or a semiconductor wafer of a liquid crystal display device. It has become. Vacuum ultraviolet rays refer to ultraviolet rays having a wavelength in the range of 200 nm or less and 50 nm or more. Since this vacuum ultraviolet ray is absorbed by oxygen in the air and generates ozone, the vacuum ultraviolet ray transmitted through the generated ozone by irradiating the surface of the processing object such as the glass substrate of the liquid crystal display device in this air. By the synergistic effect, cleaning can be performed by decomposing and scattering organic substances on the surface of the object to be processed.
[0003]
When the excimer lamp has a wavelength of 172 nm, a discharge gas for excimer light emission is sealed in a discharge vessel made of synthetic quartz glass, and a high frequency voltage is applied to the discharge gas to cause a dielectric barrier discharge, thereby generating a vacuum. It emits ultraviolet rays. Conventionally, a discharge vessel in which a discharge gas is sealed in a double-structured cylindrical tube or a small-diameter cylindrical tube is often used (see, for example, Patent Document 1). Further, an excimer lamp using a rectangular box-shaped discharge vessel instead of the double cylindrical discharge vessel has been developed (see, for example, Patent Document 2).
[0004]
Since vacuum ultraviolet light having a wavelength of 172 nm is extremely high in energy, fine cracks and cracks are generated due to deterioration when synthetic quartz glass is subjected to strong irradiation of this vacuum ultraviolet light for a long time. The excimer lamp often loses its life due to poor lighting because the deterioration of the synthetic quartz glass impairs the hermeticity of the discharge vessel. In addition, since synthetic quartz glass deteriorates faster as the temperature is lower, a protective layer that absorbs and / or reflects vacuum ultraviolet rays is formed on the inner surface of the cooling part of the discharge vessel. An invention for preventing the life of the excimer lamp from being shortened due to the early deterioration of the quartz glass has already been made (see, for example, Patent Document 3).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-243920 (FIG. 4)
[Patent Document 2]
JP 2000-260396 A [Patent Document 3]
JP-A-2002-93377 [0006]
[Problems to be solved by the invention]
Recently, however, as shown in FIG. 3, an excimer lamp has been developed in which the rectangular box-shaped discharge vessel 1 is formed in a very long shape in the front and rear. This discharge vessel 1 has both ends of a synthetic quartz glass tube having a length of 1 m or more before and after forming a horizontally long thin square having a vertical cross-sectional height of several tens of millimeters and a lateral width of several tens of millimeters. Closed and filled with xenon gas. The discharge vessel 1 has electrodes 2 and 3 formed by patterning metal thin films on flat upper and lower surfaces. The electrode 2 on the upper surface of the discharge vessel 1 is formed so as to cover almost the entire flat upper surface, while the electrode 3 on the lower surface is formed in a mesh pattern, and vacuum ultraviolet rays are applied downward from the mesh space. It can be irradiated. Since the vacuum ultraviolet ray is absorbed by oxygen, it is attenuated in the air and can reach only a short distance. For example, when the wavelength is 172 nm, it can reach only a distance of about 10 mm or less. Therefore, in order to irradiate as much area as possible with the vacuum ultraviolet rays radiated by the excimer lamp, it is necessary to irradiate from the flat surface having the largest area in the discharge vessel 1. A vacuum ultraviolet ray is irradiated downward from the gap.
[0007]
However, the intensity of the vacuum ultraviolet rays emitted from the excimer lamp becomes stronger as the distance of the discharge space in the discharge vessel 1 becomes longer because there is no self-absorption in excimer emission. For this reason, when using the extremely long discharge vessel 1 as described above, the vacuum ultraviolet rays extracted downward as the actual irradiation light are radiated from the discharge space of a short distance of tens of mm or less in the vertical direction. Thus, since the vacuum ultraviolet rays radiated in the front-rear direction are emitted from the discharge space having a distance of 1 m or more, the ultraviolet rays have extremely high ultraviolet intensity.
[0008]
Therefore, the excimer lamp that irradiates vacuum ultraviolet rays in the shortest direction of the discharge vessel 1 has high intensity of vacuum ultraviolet rays radiated in directions other than the shortest direction, and in particular, the intensity of vacuum ultraviolet rays radiated in the longest direction is extremely strong. Therefore, there has been a problem that the deterioration of the wall plate at the end portion in these directions progresses at an early stage, and the life is remarkably shortened.
[0009]
The present invention has been made in order to cope with such circumstances, to provide an excimer lamp to prevent degradation by a wall plate of the longest edge or the like of the discharge vessel of the excimer lamp vacuum ultraviolet rays hardly transmitted The purpose is that.
[0010]
[Means for Solving the Problems]
The excimer lamp according to claim 1 is constituted by a dielectric that is longest in the front and back and shortest in the top and bottom, and has substantially flat top and bottom wall plates facing each other in the top and bottom, and substantially parallel to each other, and transmits vacuum ultraviolet rays. A closed vessel, which includes a discharge vessel filled with a discharge gas for excimer emission, and electrodes formed on the outer surfaces of the upper and lower wall plates of the discharge vessel. In the excimer lamp, the vacuum ultraviolet ray protection layer is formed on the inner surface of at least the front and rear end wall plates of the front and rear ends of the discharge vessel.
[0011]
According to the first aspect of the present invention, the vacuum ultraviolet protective layer is formed on the inner surfaces of the front and rear end wall plates at both ends in the front-rear direction where the intensity of the emitted vacuum ultraviolet light is strongest. It becomes possible to prevent the end wall plate from prematurely deteriorating. In addition, since the intensity of the vacuum ultraviolet rays in the left and right directions is stronger than in the vertical direction, this vacuum ultraviolet protective layer is also formed on the inner surfaces of the left and right side wall plates to prevent the deterioration of these left and right side wall plates. Also good. The vacuum ultraviolet protective layer is a layer for protecting the back wall plate against the irradiation of vacuum ultraviolet rays. For example, a layer that absorbs vacuum ultraviolet rays, a layer that reflects the vacuum ultraviolet rays, and absorbs and reflects them simultaneously. Layers or the like are used.
[0012]
Note that the orthogonal directions of front and rear, upper and lower, and left and right shown in this specification are merely used for convenience to express the relationship between the respective directions, so the actual arrangement of the excimer lamp is arbitrary. is there.
[0015]
The excimer lamp according to claim 2 is longest in the front and back and shortest in the top and bottom, and substantially flat top and bottom wall plates facing each other in the top and bottom have a shape substantially parallel to each other, and at least the bottom wall plate transmits vacuum ultraviolet rays. In addition, at least the front and rear end wall plates at both front and rear ends are sealed containers made of a dielectric material having a higher reflectivity of vacuum ultraviolet rays than the lower wall plate, and a discharge gas filled with a discharge gas for excimer emission is contained therein. A container and electrodes formed on the outer surfaces of the upper and lower wall plates of the discharge vessel are provided, and vacuum ultraviolet rays are irradiated downward through the lower wall plate.
[0016]
According to the invention of claim 2 , the front and rear end wall plates at both ends in the front-rear direction where the intensity of the radiated vacuum ultraviolet rays is the strongest reflect the vacuum ultraviolet rays. It becomes possible to prevent the deterioration. Further, since the intensity of the vacuum ultraviolet rays in the left and right directions is stronger than that in the vertical direction, the left and right side wall plates may also reflect the vacuum ultraviolet rays to prevent the deterioration of the left and right side wall plates.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0018]
1 and 2 show an embodiment of the present invention. FIG. 1 is a perspective view in which the long central portion of the excimer lamp is omitted, and FIG. 2 is a schematic view in which the long central portion of the excimer lamp is omitted. It is a longitudinal cross-sectional side view. In addition, the same number is attached | subjected to the structural member which has the function similar to the prior art example shown in FIG.
[0019]
In the present embodiment, an excimer lamp using a rectangular box-shaped discharge vessel 1 that is long in the front-rear direction similar to that shown in FIG. 3 will be described. As shown in FIG. 1 and FIG. 2, the discharge vessel 1 is substantially the same as the cross section of the square tube 1a at the openings at both ends of a long synthetic quartz glass square tube 1a having a horizontally long cross section. It is formed by welding and closing the front and rear end wall plates 1b and 1b made of synthetic quartz glass having the same shape. The square tube 1a is a rectangular tube having a horizontal cross-sectional height of several tens of millimeters and a horizontal width of several tens of millimeters, and the length in the front-rear direction is 1 m or more. Accordingly, the square tube 1a is composed of flat upper and lower wall plates facing each other vertically and flat left and right side wall plates facing each other in the left and right direction. Tip tubes 1c and 1c are projected in advance from the front and rear end wall plates 1b and 1b, which are welded to the openings at both ends of the square tube 1a. Each tip tube 1c is a tube made of synthetic quartz glass that is welded so as to protrude further outward from the outer surface of the front and rear end wall plate 1b, and the inside of the tube is formed in advance at substantially the center of the front and rear end wall plate 1b. It is provided so as to communicate with the opening hole. In the discharge vessel 1, before or after the front and rear end wall plates 1b and 1b are welded to both ends of the square tube 1a, metal thin films of electrodes 2 and 3 are formed on the outer surfaces of the upper and lower wall plates of the square tube 1a. The The electrode 2 is formed so as to cover substantially the entire upper surface of the upper wall plate of the square tube 1a except for the sensor non-coating portion for inspecting the intensity of vacuum ultraviolet rays emitted from the excimer lamp. The electrode 3 is formed in a mesh pattern on almost the entire lower surface of the lower wall plate of the square tube 1a .
[0020]
The discharge vessel 1 produced as described above has one of the tip tubes 1c facing downward to make the discharge vessel 1 stand upright. Inject the suspension. The suspension of the vacuum ultraviolet protective material is obtained by dispersing a fine powder of the vacuum ultraviolet protective material that absorbs or reflects the vacuum ultraviolet light in a liquid for application. Examples of the vacuum ultraviolet protective material for obtaining the action of absorbing vacuum ultraviolet rays include ZnO 2 and TiO 2, and examples of the vacuum ultraviolet protective material for obtaining the action of reflecting vacuum ultraviolet light include AlO 3 . In addition to using one or more of those that absorb or reflect vacuum ultraviolet rays, this vacuum ultraviolet protective material may be used by mixing one or more of absorbing and reflecting materials. Good. When the suspension of the vacuum ultraviolet protective material is injected into the lower end of the discharge vessel 1 and discharged again from the same tip tube 1c, the vacuum ultraviolet protective material is applied to the inner surface of the discharge vessel 1, thereby A vacuum ultraviolet protection layer 4 is formed on the inner surface of one end wall plate 1b and the inner surface of one end of the square tube 1a. Further, the discharge vessel 1 is made upright in the opposite direction so that the other tip tube 1c faces downward, and the suspension of the same vacuum ultraviolet protective material is injected and discharged from the tip tube 1c, so that the other end wall plate 1b The vacuum ultraviolet protective layer 4 is also formed on the inner surface and the inner surface of the other end of the square tube 1a. It should be noted that the vacuum ultraviolet ray protection layer 4 formed on the inner surface of the end portion of the square tube 1a is larger than the formation region of these electrodes 2 and 3 so as not to overlap with the electrodes 2 and 3 on the outer surface of the square tube 1a. Furthermore, it is preferable to form only on the end side.
[0021]
The discharge vessel 1 in which the vacuum ultraviolet ray protective layers 4 and 4 are formed as described above discharges air through one tip tube 1c and injects a discharge gas through the other tip tube 1c, so that the inside is discharged. This discharge gas is filled. Even completed by Rie Kishimaranpu to seal the interior of the distal portion of both the tip tube 1c was sealed melt sealing.
[0022]
According to the excimer lamp configured as described above, the inner surfaces of the front and rear end wall plates 1b and 1b disposed at both ends in the front-rear direction of the discharge vessel 1 where the distance of the discharge space is the longest and the intensity of the emitted vacuum ultraviolet rays is the strongest. Then, the vacuum ultraviolet protection layer 4 is formed. When the vacuum ultraviolet protective layer 4 absorbs vacuum ultraviolet rays, most of the vacuum ultraviolet rays radiated in the front-rear direction are absorbed by the vacuum ultraviolet protective layer 4, so that they pass through the front and rear end wall plates 1b and 1b. As a result, only a small amount can be suppressed, and deterioration can be suppressed. Even when the vacuum ultraviolet protective layer 4 reflects vacuum ultraviolet rays, most of the vacuum ultraviolet rays radiated in the front-rear direction are reflected by the vacuum ultraviolet protective layer 4. Deterioration can be suppressed because only a small amount passes through 1b and 1b. For this reason, the front and rear end wall plates 1b and 1b disposed at both ends in the longitudinal direction of the discharge vessel 1 are synthesized by receiving much stronger vacuum ultraviolet rays than the upper and lower wall plates and left and right side wall plates of the square tube 1a. It is possible to prevent the deterioration of the quartz glass from rapidly progressing and shortening the life of the excimer lamp. Moreover, since this vacuum ultraviolet protective layer 4 is formed at both ends in the front-rear direction of the square tube 1a, the synthetic quartz glass at these ends that receives strong vacuum ultraviolet rays in accordance with the front and rear end wall plates 1b and 1b. Deterioration can also be prevented.
[0023]
In the discharge vessel 1, tip tubes 1c and 1c are welded to front and rear end wall plates 1b and 1b arranged at both ends in the front and rear direction, and the tips of these tip tubes 1c and 1c are melt-sealed. Up to this point, the opening is electrically connected to the inside, so that it is used for filling and discharging the suspension for forming the vacuum ultraviolet ray protective layer 4 in addition to filling the discharge gas through the tip tubes 1c and 1c. Will be able to. Moreover, these tip tubes 1c and 1c are provided on the front and rear end wall plates 1b and 1b different from the upper and lower wall plates of the square tube 1a on which the electrodes 2 and 3 are formed. There is no such thing as blocking the downward irradiation.
[0024]
In the above embodiment, the case where the vacuum ultraviolet protective layers 4 are provided only on the inner surfaces of the front and rear end wall plates 1b and 1b and the square tube 1a of the discharge vessel 1 has been described. Similarly, the vacuum ultraviolet protection layer 4 may be formed on the inner surface of the substrate. These left and right side wall plates also receive a relatively strong vacuum ultraviolet ray in the left and right direction that is several times longer than the vertical direction, so there is a risk that the synthetic quartz glass will deteriorate earlier than the upper and lower wall plates. If the vacuum ultraviolet protective layer 4 similar to the inner surfaces of the front and rear end wall plates 1b and 1b is formed, this deterioration can be prevented.
[0025]
In the case where the vacuum ultraviolet protective layer 4 is also formed on the inner surfaces of the left and right side wall plates as described above, after the discharge vessel 1 is erected and the suspension of the vacuum ultraviolet protective material is injected from the lower tip tube 1c, the discharge vessel 1 Is slowly rotated around an axis orthogonal to the surface on which the electrodes 2 and 3 are formed, the suspension moves from the inner surface of one end wall plate 1b to the inner surface of one side wall plate, and the other Since it moves from the inner surface of the end wall plate 1b to the inner surface of the other side wall plate, the vacuum ultraviolet ray protection layer 4 can be formed on the inner surfaces of all these wall plates. Further, when the vacuum ultraviolet protective layer 4 is also formed on the inner surfaces of the left and right side wall plates, the tip tubes 1c and 1c can be provided on the left and right side wall plates. Moreover, if the charging efficiency of the discharge gas is sacrificed to some extent, the tip tube 1c can be provided only on one of the front and rear end wall plates 1b and 1b and the left and right side wall plates.
[0026]
In the above embodiment, the case where the tip tube 1c is used to form an opening communicating with the inside of the discharge vessel 1 has been described. However, another tube material may be attached or a simple opening hole may be formed. Such an opening formed by the tip tube 1c or the like can be provided in the discharge vessel 1 in which the vacuum ultraviolet ray protective layer 4 is not formed for filling the discharge gas. At this time, it is provided on at least other wall plates excluding the wall plate perpendicular to the direction of irradiation of vacuum ultraviolet rays so as not to hinder the irradiation of vacuum ultraviolet rays.
[0027]
Moreover, in the said embodiment, although the case where the vacuum ultraviolet-ray protective layer 4 was formed in the inner surface of the wall board of the discharge vessel 1 was shown, the material of the synthetic quartz glass of a part of each wall board of this discharge vessel 1 is made into vacuum. The wall plate can be prevented from deteriorating by changing to one having a low ultraviolet transmittance or a high reflectance. That is, at least the front and rear end wall plates 1b and 1b of the discharge vessel 1 are replaced with one having a lower transmittance of vacuum ultraviolet light than a lower wall plate through which vacuum ultraviolet light for original irradiation is transmitted. Change to one with higher reflectivity. Examples of materials having low transmittance of vacuum ultraviolet rays include fused quartz and ozone-free quartz in which titanium or vanadium compounds are added to natural quartz glass. Moreover, as a thing with a high reflectance of a vacuum ultraviolet ray, there exists a thing etc. which scattered the vacuum ultraviolet ray, for example by processing the surface of synthetic quartz glass in the shape of a glass, and raised the reflectance. Furthermore, the thing with the low transmittance | permeability of vacuum ultraviolet rays and a high reflectance can also be used. When the front and rear end wall plates 1b and 1b have a high absorption rate of vacuum ultraviolet rays, most of the vacuum ultraviolet rays radiated in the front and rear direction are absorbed by the surface layer portion of the inner surface of each front and rear end wall plate 1b. Only a small amount of light completely passes through the front and rear end wall plates 1b and only the surface layer portion deteriorates, but most other deterioration can be suppressed. Even when the front and rear end wall plates 1b and 1b have high vacuum ultraviolet reflectivity, most of the vacuum ultraviolet rays radiated in the front and rear direction are reflected by the front and rear end wall plates 1b. Only a small amount permeates the wall plate 1b, and deterioration can be suppressed. Furthermore, not only the front and rear end wall plates 1b and 1b, but also both end portions and the left and right side wall plates of the square tube 1a can be changed to those having a high vacuum ultraviolet ray absorption rate and reflectivity.
[0028]
Moreover, in the said embodiment, although the case where the discharge vessel 1 was produced by welding the front-and-back end wall plates 1b and 1b to the both-ends opening part of the square tube 1a was shown, the production methods of this discharge vessel 1 are arbitrary. . For example, a long cylindrical tube made of synthetic quartz glass is molded so that the cross section is a horizontally long square, and the front and rear end wall plates 1b and 1b may be welded to both end openings. It can also be produced by melting and sealing both ends of a cylindrical tube. Since the discharge vessel 1 produced in this way only needs to have flat and substantially parallel wide regions of the upper and lower wall plates forming the electrodes 2 and 3, for example, the left and right side wall plates when a cylindrical tube is formed are semicylindrical. For example, the melted and sealed front and rear end wall plates may be curved by melting. Alternatively, the discharge vessel 1 can be produced by welding six sheets of synthetic quartz glass. In this case, since each wall board is comprised with a different board | plate material, it becomes possible easily to change arbitrary wall boards into a thing with a high absorption factor and reflectance of a vacuum ultraviolet ray.
[0029]
Moreover, in the said embodiment, although the case where all the wall boards of the discharge vessel 1 were comprised with synthetic quartz glass was shown, other wall boards except the wall board which permeate | transmits the vacuum ultraviolet rays for original irradiation are appropriate. If it is a dielectric material, it is not necessarily required to be synthetic quartz glass. Further, in the above embodiment, an excimer lamp that emits vacuum ultraviolet light having a wavelength of 172 nm has been described. Therefore, a case where synthetic quartz glass having a high transmittance of vacuum ultraviolet light having this wavelength is used has been described, but vacuum ultraviolet light used by the excimer lamp is shown. An appropriate dielectric material can be used in accordance with the wavelength.
[0030]
【The invention's effect】
As apparent from the above description, according to the excimer lamp of the present invention, and front and rear end wall plate at both ends intensity of the strongest longitudinal direction of the vacuum ultraviolet rays emitted, the intensity of the vacuum ultraviolet rays than the vertical By preventing deterioration of the left and right side wall plates in the left and right direction, which is strengthened, it is possible to prevent the life from being shortened.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of the present invention and omitting a long central portion of an excimer lamp.
FIG. 2 shows an embodiment of the present invention, and is a longitudinal sectional side view in which a long central portion of an excimer lamp is omitted.
FIG. 3 is a perspective view showing a conventional example and omitting a long central portion of an excimer lamp.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Discharge vessel 1a Square tube 1b Front and rear end wall plate 1c Tip tube 2 Electrode 3 Electrode 4 Vacuum ultraviolet protective layer

Claims (2)

前後に最長であり上下が最短になると共に、この上下で向かい合うほぼ平坦な上下壁板が互いにほぼ平行な形状を有し、真空紫外線を透過する誘電体により構成された密閉容器であって、内部にエキシマ発光のための放電用ガスを封入した放電容器と、この放電容器の上下壁板の外面にそれぞれ形成された電極とを備え、この下壁板を通して真空紫外線を下方に照射するエキシマランプにおいて、
この放電容器における少なくとも前後両端部の前後端壁板の内面に真空紫外線保護層が形成されたことを特徴とするエキシマランプ。
It is a sealed container made of a dielectric material that has a longest front and back, a shortest top and bottom, and substantially flat top and bottom wall plates facing each other in a substantially parallel shape and transmitting vacuum ultraviolet rays. In an excimer lamp comprising a discharge vessel filled with a discharge gas for excimer emission and electrodes formed on the outer surfaces of the upper and lower wall plates of the discharge vessel and irradiating vacuum ultraviolet rays downward through the lower wall plate ,
An excimer lamp characterized in that a vacuum ultraviolet ray protection layer is formed on the inner surface of at least the front and rear end wall plates at both front and rear ends of the discharge vessel.
前後に最長であり上下が最短になると共に、この上下で向かい合うほぼ平坦な上下壁板が互いにほぼ平行な形状を有し、少なくとも下壁板は真空紫外線を透過し、少なくとも前後両端部の前後端壁板はこの下壁板よりも真空紫外線の反射率が高い誘電体によって構成される密閉容器であって、内部にエキシマ発光のための放電用ガスを封入した放電容器と、この放電容器の上下壁板の外面にそれぞれ形成された電極とを備え、この下壁板を通して真空紫外線を下方に照射することを特徴とするエキシマランプ。  The longest front and back, the top and bottom are the shortest, and the substantially flat top and bottom wall plates facing each other at the top and bottom have a substantially parallel shape to each other, at least the lower wall plate transmits vacuum ultraviolet rays, and at least the front and rear ends of both front and rear ends The wall plate is a hermetically sealed container made of a dielectric material having a higher vacuum ultraviolet reflectivity than the lower wall plate, and includes a discharge vessel in which a discharge gas for excimer emission is enclosed, and upper and lower sides of the discharge vessel. An excimer lamp comprising an electrode formed on an outer surface of a wall plate and irradiating vacuum ultraviolet rays downward through the lower wall plate.
JP2002289941A 2002-10-02 2002-10-02 Excimer lamp Expired - Lifetime JP4221561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289941A JP4221561B2 (en) 2002-10-02 2002-10-02 Excimer lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289941A JP4221561B2 (en) 2002-10-02 2002-10-02 Excimer lamp

Publications (3)

Publication Number Publication Date
JP2004127710A JP2004127710A (en) 2004-04-22
JP2004127710A5 JP2004127710A5 (en) 2005-11-24
JP4221561B2 true JP4221561B2 (en) 2009-02-12

Family

ID=32281967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289941A Expired - Lifetime JP4221561B2 (en) 2002-10-02 2002-10-02 Excimer lamp

Country Status (1)

Country Link
JP (1) JP4221561B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847564A (en) * 2009-03-23 2010-09-29 优志旺电机株式会社 Excimer lamp

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347025A (en) * 2004-06-01 2005-12-15 Japan Storage Battery Co Ltd Dielectric barrier discharge lamp
JP2006228597A (en) * 2005-02-18 2006-08-31 Sony Corp Process of manufacture of arc tube and arc tube, electronic apparatus
JP4662358B2 (en) * 2005-11-22 2011-03-30 ユーテック株式会社 External electrode discharge lamp
FR2915314B1 (en) * 2007-04-17 2011-04-22 Saint Gobain UV FLOOR LAMP WITH DISCHARGES AND USES.
JP4952472B2 (en) * 2007-09-20 2012-06-13 ウシオ電機株式会社 Excimer lamp and excimer lamp manufacturing method
JP4946773B2 (en) * 2007-10-11 2012-06-06 ウシオ電機株式会社 Excimer lamp
JP4946772B2 (en) * 2007-10-11 2012-06-06 ウシオ電機株式会社 Excimer lamp
JP5303905B2 (en) * 2007-11-06 2013-10-02 ウシオ電機株式会社 Excimer lamp
JP5092700B2 (en) * 2007-11-12 2012-12-05 ウシオ電機株式会社 Excimer lamp
JP5071085B2 (en) * 2007-12-11 2012-11-14 ウシオ電機株式会社 Excimer discharge lamp
JP4998832B2 (en) * 2008-03-19 2012-08-15 ウシオ電機株式会社 Excimer lamp
JP4962376B2 (en) * 2008-03-26 2012-06-27 ウシオ電機株式会社 Ultraviolet irradiation treatment method and ultraviolet irradiation treatment apparatus
TWI437609B (en) * 2008-05-30 2014-05-11 Gs Yuasa Int Ltd Discharge lamp of external electrode type and uv-irradiating device using the discharge lamp
JP5035121B2 (en) * 2008-06-02 2012-09-26 ウシオ電機株式会社 Excimer lamp
DE102008028233A1 (en) * 2008-06-16 2009-12-17 Heraeus Noblelight Gmbh Compact UV irradiation module
JP2010015839A (en) * 2008-07-04 2010-01-21 Ushio Inc Excimer lamp
JP5266972B2 (en) * 2008-08-29 2013-08-21 ウシオ電機株式会社 Excimer lamp
JPWO2011078181A1 (en) * 2009-12-22 2013-05-09 株式会社Gsユアサ Dielectric barrier discharge lamp and ultraviolet irradiation apparatus using the same
JP5471514B2 (en) * 2010-01-28 2014-04-16 ウシオ電機株式会社 Light processing equipment
US9927094B2 (en) * 2012-01-17 2018-03-27 Kla-Tencor Corporation Plasma cell for providing VUV filtering in a laser-sustained plasma light source
CN103377873B (en) 2012-04-27 2017-04-12 株式会社杰士汤浅国际 Dielectric barrier discharge lamp
JP6229404B2 (en) * 2013-09-27 2017-11-15 ウシオ電機株式会社 Excimer lamp device and light irradiation processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847564A (en) * 2009-03-23 2010-09-29 优志旺电机株式会社 Excimer lamp

Also Published As

Publication number Publication date
JP2004127710A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP4221561B2 (en) Excimer lamp
TWI457715B (en) Light source device
JP5182958B2 (en) Light source device
KR20190090058A (en) Plasma cell for providing vuv filtering in a laser-sustained plasma light source
KR101165127B1 (en) Excimer lamp and method of manufacturing the same
KR20060049169A (en) Excimer lamp apparatus
TWI480921B (en) Dielectric barrier discharge lamps, ultra violet irradiation device including the lamps and method for lighting dielectric barrier discharge lamps
JP2004111326A (en) Excimer lamp
TWI641020B (en) Discharging lamp
JP4561448B2 (en) Dielectric barrier discharge lamp and ultraviolet irradiation device
KR101572461B1 (en) External electrode discharge lamp and ultraviolet ray irradiating apparatus using the same
JP2004097986A (en) Ultraviolet irradiation device
JP4578051B2 (en) UV irradiation equipment
JP6202332B2 (en) UV lamp
JP2003092084A (en) Dielectric barrier discharge lamp unit
JP2004119942A (en) Ultraviolet irradiation device
JP2017220439A (en) Laser-driving light source device
KR100911009B1 (en) Plasma display panel and method for manufacturing exhausting hole of the plasma display panel
JP4066693B2 (en) Vacuum ultraviolet light irradiation device
KR101380425B1 (en) Lamp
JP2001006623A (en) Vacuum ultraviolet ray lamp
KR101374022B1 (en) Excimer lamp
WO2017212683A1 (en) Laser-driving light source device
CN104078304A (en) Uv lamp
JP2005332711A (en) Dielectric barrier discharge lamp

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081104

R150 Certificate of patent or registration of utility model

Ref document number: 4221561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

EXPY Cancellation because of completion of term