WO2011078157A1 - Film mirror, method for producing same, and reflecting device for solar thermal power generator - Google Patents

Film mirror, method for producing same, and reflecting device for solar thermal power generator Download PDF

Info

Publication number
WO2011078157A1
WO2011078157A1 PCT/JP2010/072980 JP2010072980W WO2011078157A1 WO 2011078157 A1 WO2011078157 A1 WO 2011078157A1 JP 2010072980 W JP2010072980 W JP 2010072980W WO 2011078157 A1 WO2011078157 A1 WO 2011078157A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film mirror
metal
ultraviolet
film
Prior art date
Application number
PCT/JP2010/072980
Other languages
French (fr)
Japanese (ja)
Inventor
丈範 熊谷
美佳 本田
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011547558A priority Critical patent/JP5962014B2/en
Publication of WO2011078157A1 publication Critical patent/WO2011078157A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/81Arrangements for concentrating solar-rays for solar heat collectors with reflectors flexible
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a film mirror having a good regular reflectance with respect to solar heat and excellent in adhesion, weather resistance and thermal shock resistance, a manufacturing method thereof, and a solar power generation reflecting device using the film mirror.
  • glass mirrors Since the reflection device is exposed to sunlight, ultraviolet rays, heat, wind and rain, sandstorms, etc., glass mirrors have been used conventionally. While glass mirrors are highly durable to the environment, they have problems such as damage during transportation and heavy construction, which increases the construction cost of the plant due to the strength of the frame on which the mirrors are installed.
  • the metal layer is made of silver having a high reflectance in the visible light region as disclosed in Patent Document 2.
  • silver for the reflective layer it is possible to increase the initial reflectivity, but due to deterioration of the resin due to ultraviolet rays, it is possible to sufficiently suppress the decrease in reflectivity when used for a long time. It was difficult.
  • Patent Document 3 proposes a technique of providing a layer containing a benzotriazole ultraviolet absorber on the surface layer of a film mirror.
  • Patent Document 3 by adding a crosslinkable monomer having a vinyl group to the surface layer, the compatibility of the benzotriazole-based ultraviolet absorber and the resin in the surface layer is improved, so that the amount of the ultraviolet absorber added
  • the technology which suppresses the deterioration of the plastic base material by ultraviolet rays is proposed.
  • Even with such a technique when used as a film mirror for solar power generation that is directly exposed to sunlight in an environment where the temperature and humidity changes drastically, it is contained in a large amount of 15% by mass or more.
  • UV absorbers ooze out over time (referred to as blooming in Patent Document 3, generally called bleed-out), causing peeling problems due to poor adhesion between layers, and deformation of the reflective layer made of metal, as a film mirror The problem that caused a decrease in the regular reflectance of the surface became obvious.
  • silver used as the metal in the reflective layer is a metal that is very susceptible to corrosion, so when it is installed outdoors, it will deteriorate due to complex factors such as water vapor, oxygen, and ultraviolet light present in the atmosphere. To do. Further, since silver transmits light having a wavelength of about 320 nm, it is necessary to form an ultraviolet absorbing layer for protecting the base material layer on the back surface of silver. Therefore, it is necessary to provide an ultraviolet absorption layer, a silver corrosion inhibitor layer, an oxygen or water vapor barrier layer, etc. in the layer configuration of the film mirror.
  • the film mirror for solar power generation disclosed in Patent Document 4 is (acrylic layer mixed with ultraviolet absorber) / (acrylic layer mixed with silver discoloration inhibitor) / (silver reflective layer) / (base The material is a PET layer) / (adhesive layer) / (release layer).
  • the film mirror produced in this configuration for solar thermal power generation because the ultraviolet absorption ability is insufficient, not only affects the silver when the film mirror is exposed to solar heat for a long time, It was found that the substrate deteriorated.
  • Patent Document 5 in order to solve this problem, an outermost UV absorbing layer was provided with an adhesive layer and an acrylic resin layer containing a UV absorber.
  • the ultraviolet transmittance decreases to about 5%, a high reflectance can be maintained for a long time.
  • the ultraviolet absorber itself is deteriorated by solar heat, so that the resin base material is deteriorated and the reflectance is deteriorated.
  • a ultraviolet absorber is added in large quantities, the problem that a bleed-out and the transmittance
  • an acrylic layer is used as a barrier layer for water vapor or oxygen, there is a problem that it cannot withstand long-term use because it cannot completely block water vapor or oxygen.
  • the present invention has been made in view of the above problems, and its purpose is to reduce the bleed-out of the ultraviolet absorber even when used as a film mirror for solar power generation for a long time in a harsh environment. It is possible to sufficiently suppress the decrease in reflectivity, it is lightweight and flexible, has a good regular reflectivity with respect to solar heat, which can reduce the manufacturing cost and increase the area and mass production, It is providing the film mirror which is excellent in adhesiveness, a weather resistance, and a thermal shock resistance, its manufacturing method, and the solar power generation reflective apparatus using the film mirror.
  • a film mirror having at least a reflective layer made of a metal and an ultraviolet absorbing layer on a resin substrate, wherein the ultraviolet absorbing layer is made of an ultraviolet absorbing layer containing a polymeric ultraviolet absorber, or made of the metal
  • the reflection layer is a silver reflection layer
  • the ultraviolet absorption layer is composed of an ultraviolet absorption layer (1) containing an ultraviolet absorber and an ultraviolet absorption layer (2) containing an ultraviolet absorber having an anticorrosive ability for silver.
  • a film mirror having at least a reflective layer made of a metal and an ultraviolet absorbing layer on a resin substrate, wherein the ultraviolet absorbing layer comprises an ultraviolet absorbing layer containing a polymer type ultraviolet absorber.
  • the resin substrate is a resin film containing polyester, polyethylene naphthalate, acrylic, polycarbonate, polyolefin, cellulose, or polyamide.
  • the layer containing the polymer type ultraviolet absorber is obtained by adding a polymer type ultraviolet absorber to a resin solution dissolved in an organic solvent and evaporating and drying the solvent after coating.
  • the film mirror as described in any one of 2 to 8 above.
  • the above-mentioned layers 2 to 10 are characterized in that the layer containing the polymeric ultraviolet absorber is obtained by adding a polymeric ultraviolet absorber to an ultraviolet curable monomer resin solution and curing it after coating.
  • a thioether-based, thiol-based, Ni-based organic compound-based, benzotriazole-based, imidazole-based, oxazole-based, tetrazaindene-based, pyrimidine-based or thiadiazole-based corrosion inhibitor layer is provided in contact with the reflective layer made of the metal. 14.
  • the film mirror as described in any one of 2 to 13 above, wherein
  • a film mirror having at least a reflective layer made of a metal and an ultraviolet absorbing layer on a resin base material, the reflective layer made of the metal being a silver reflective layer, and having a silver corrosion preventing ability on the silver reflective layer 2.
  • 21 The film mirror as described in any one of 15 to 20, wherein a scratch preventing layer is provided as an outermost layer.
  • the film mirror is attached to a metal substrate through an adhesive layer coated on the side having the reflective layer made of metal and on the opposite side of the resin substrate. Reflector for solar power generation.
  • the manufacturing method and the solar power generation reflective apparatus using the film mirror could be provided.
  • the present inventors have found that when a film mirror having a reflective layer made of metal is used as a reflection device for solar power generation, the use is high due to the high reflectance of the reflective layer made of metal Although it is possible to obtain a reflectance, it has been revealed that the problem of a decrease in regular reflectance occurs when exposed to strong sunlight for a long time.
  • the reflective layer made of metal, particularly silver has the property of transmitting ultraviolet light of 320 nm or less.
  • the ultraviolet light that has passed through the reflective layer made of metal passes through the layer below the reflective layer made of metal (on the side far from the light incident side), and then is reflected by the metal support and again from the reflective layer made of metal. The light enters the lower layer. Therefore, the lower layer of the reflective layer made of metal is deteriorated by ultraviolet rays, or the excitation between the reflective layer made of metal and the lower layer causes the deterioration of the reflective layer made of metal, and the reflective layer made of metal progresses. It was found that the regular reflectance was lowered.
  • the daily temperature difference may be 30 ° C or higher.
  • ultraviolet rays added to the film mirrors due to thermal shock. It was found that the absorbent bleeds out (sucks out to the surface, agglomerates and solidifies as if powder is blown), causing a decrease in regular reflectance.
  • a film mirror for solar power generation is provided on a resin substrate with a film mirror having at least a reflective layer made of a metal and a layer containing a polymer ultraviolet absorber. Even when used in harsh environments for a long period of time, it is possible to sufficiently suppress the decrease in regular reflectance, and it is lightweight and flexible, reducing the manufacturing cost and increasing the area and mass production. It was found that a film mirror having good regular reflectance with respect to solar heat and excellent in adhesion, weather resistance and thermal shock resistance can be obtained, and the present invention has been achieved.
  • the film mirror of the present invention is a film mirror in which at least a resin substrate, a reflective layer made of a metal, and an ultraviolet absorbing layer containing a polymer type ultraviolet absorber are provided as a constituent layer on a resin substrate. It is characterized by.
  • the reflective layer made of metal is preferably made of silver or a silver alloy because sunlight can be efficiently reflected from the infrared region to the visible region.
  • the ultraviolet absorbing layer containing the polymer type ultraviolet absorber is disposed on the light incident side of the reflective layer made of metal, so that the reflective layer made of metal is influenced by external oxygen and water vapor.
  • the surface accuracy is roughened because the resin base material and adhesive layer provided as the lower layer of the silver layer made of metal are deteriorated by ultraviolet rays that have passed through the reflective layer made of metal. It is possible to effectively suppress the problem that the regular reflectance decreases. Moreover, it discovered that the bleed-out of the ultraviolet absorber caused by a rapid thermal shock could be suppressed by using a polymer type ultraviolet absorber as the ultraviolet absorber.
  • an ultraviolet ray containing an ultraviolet absorber having a silver reflection layer on a resin base material and having a silver corrosion prevention ability on the silver reflection layer By providing an absorption layer (2), an ultraviolet absorption layer (1) containing an ultraviolet absorber on the absorption layer, and using an ultraviolet absorber having an anti-corrosion ability for preventing discoloration of silver in the ultraviolet absorption layer (2) Further, even when the ultraviolet absorber of the upper ultraviolet absorbing layer (1) is deteriorated over time, the ultraviolet absorber having the anticorrosive ability supplements the ultraviolet absorbing ability, so that the deterioration can be suppressed for a long period of time. It depends on you.
  • ⁇ Organic corrosion inhibitors have high UV absorption ability, but their performance deteriorates over time.
  • the ultraviolet absorption ability is not so high, but the performance over time does not deteriorate. Therefore, a high reflectance can be maintained for a longer period by using an inorganic ultraviolet absorber as the ultraviolet absorber and further combining a corrosion inhibitor having ultraviolet absorbing ability.
  • the inorganic barrier layer can almost completely block water vapor and oxygen, adhesion with an organic corrosion inhibitor layer may be problematic. Therefore, by providing an inorganic ultraviolet absorbing layer between them, an inorganic barrier layer can be provided, and a high reflectance can be maintained for a long period of time. By doing in this way, the solar reflective film mirror which can maintain a high reflectance over a long period of time can be developed.
  • the film mirror of the present invention comprises, on a resin substrate, at least a silver reflecting layer as a constituent layer, an ultraviolet absorbing layer (2) containing an ultraviolet absorber having an anticorrosive ability in an upper adjacent layer, and an ultraviolet absorber on the upper layer. It has the ultraviolet absorption layer (1) containing this, It is characterized by the above-mentioned.
  • the ultraviolet absorbing layer (1) containing the ultraviolet absorber is formed on the ultraviolet absorbing layer (2) containing the ultraviolet absorber having a corrosion preventing ability, so that it is included in the solar heat. It can absorb ultraviolet rays and suppress deterioration of the silver reflecting layer and the resin base material layer.
  • a material having an ultraviolet absorber having an ability to prevent silver corrosion bleeding out and a decrease in transmittance caused by adding a large amount of the ultraviolet absorber to the outermost layer can be suppressed. Therefore, it is possible to develop a film mirror that can suppress deterioration of each layer of the film mirror and maintain a high reflectance over a long period even in a harsh environment.
  • the film mirror of the present invention is a film mirror in which at least a reflective layer made of metal as a constituent layer, an ultraviolet absorber layer containing a polymer type ultraviolet absorber is provided on a resin substrate, or a resin substrate. Further, it is characterized in that at least a silver reflection layer, a silver corrosion inhibitor layer having an ultraviolet absorbing ability, and a film mirror provided with an ultraviolet absorbing layer thereon are provided as constituent layers. In addition to these layers, a special functional layer such as an adhesive layer, a gas barrier layer, or a scratch-preventing layer is preferably provided as a constituent layer.
  • resin base material As the resin base material (support) according to the present invention, various publicly known resin films can be used.
  • cellulose ester film cellulose este
  • a resin film containing polyester, polyethylene naphthalate, acrylic, polycarbonate, polyolefin, cellulose, or polyamide is preferable. These films are manufactured by solution casting even if they are films manufactured by melt casting. It may be a film made.
  • these resin base materials are provided on the side far from the light incident side of the reflective layer made of metal, deterioration due to ultraviolet rays transmitted through the reflective layer made of metal and the accompanying decrease in regular reflectance become a problem. According to the configuration of the invention, such a problem can be effectively suppressed.
  • the thickness of the resin base material is an appropriate thickness depending on the type and purpose of the resin. For example, it is generally in the range of 10 to 300 ⁇ m, preferably 20 to 200 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the reflective layer made of metal is preferably provided on the light incident side of the resin base material.
  • the reflective layer made of metal for example, silver or a silver alloy, gold, copper, aluminum, or an alloy thereof can be used. In particular, it is preferable to use silver.
  • a reflective layer serves as a reflective film that reflects light.
  • the visible light region means a wavelength region of 400 to 700 nm.
  • the incident angle means an angle with respect to a line perpendicular to the film surface.
  • the silver alloy is composed of silver and one or more other metals selected from the group consisting of gold, palladium, tin, gallium, indium, copper, titanium and bismuth from the viewpoint of improving the durability of the reflective layer. Alloys are preferred.
  • gold is particularly preferable from the viewpoint of high temperature humidity resistance and reflectance.
  • the reflective layer is a film made of a silver alloy
  • 90 to 99.8 atomic percent of silver is preferable in the total (100 atomic percent) of silver and other metals in the reflective layer.
  • the other metal is preferably 0.2 to 10 atomic% from the viewpoint of durability.
  • the film thickness of the reflective layer is preferably 60 to 300 nm, particularly preferably 80 to 200 nm. If the thickness of the reflective layer is less than 60 nm, the film thickness is thin and light is transmitted, so that the reflectance in the visible light region of the film mirror may be reduced. When the thickness of the reflective layer exceeds 300 nm, irregularities are likely to occur on the surface of the reflective layer, which causes light scattering, which may reduce the reflectance in the visible light region.
  • the reflective layer made of metal is preferably formed by wet plating, dry plating, or silver deposition.
  • Silver reflection layer As a method for forming the silver reflective layer according to the present invention, either a wet method or a dry method can be used.
  • the wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction.
  • the dry method is a general term for a vacuum film-forming method.
  • a resistance heating vacuum deposition method an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, a sputtering method, etc.
  • a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention. That is, as a film mirror manufacturing method for manufacturing the film mirror of the present invention, it is preferable to form the silver reflecting layer by silver vapor deposition.
  • the thickness of the silver reflective layer is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of reflectivity and the like.
  • the silver reflective layer may be on the light incident side or on the opposite side with respect to the resin base material (support), but since the support is a resin, resin degradation due to light rays is prevented.
  • the support is a resin, resin degradation due to light rays is prevented.
  • it is preferable to be positioned on the light incident side.
  • UV absorber layer One of the present invention has an ultraviolet absorbing layer (2) containing an ultraviolet absorber having an ability to prevent silver corrosion on the silver reflecting layer, and further on it for the purpose of preventing deterioration due to solar heat and ultraviolet rays, It is characterized by having an ultraviolet absorbing layer (1) containing an ultraviolet absorber.
  • UV absorbers contained in the UV absorbing layer (1) are roughly classified into inorganic UV absorbers and organic UV absorbers.
  • inorganic ultraviolet absorbers examples include titanium oxide, zinc oxide, cerium oxide, iron oxide, and zirconium oxide. Titanium oxide, zinc oxide, and cerium oxide are preferably used, and cerium oxide is more preferably used.
  • organic ultraviolet absorbers examples include benzophenone, benzotriazole, phenyl salicylate, and triazine.
  • benzophenone ultraviolet absorber examples include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone.
  • benzotriazole ultraviolet absorber examples include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2 -(2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole and the like.
  • phenyl salicylate ultraviolet absorber examples include phenylsalicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
  • hindered amine ultraviolet absorber examples include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
  • triazine ultraviolet absorbers examples include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-). Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-) Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2- Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxy
  • the ultraviolet absorber includes a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as thermal energy.
  • the ultraviolet absorber it is necessary to select one in which the light absorption wavelength of the ultraviolet absorber does not overlap with the effective wavelength of the photopolymerization initiator.
  • the amount of the ultraviolet absorber used is 0.1 to 20% by mass, preferably 1 to 15% by mass, and more preferably 3 to 10% by mass. When the amount is more than 20% by mass, the adhesion is deteriorated.
  • UV absorbing layer containing polymer UV absorber One aspect of the present invention is characterized by having an ultraviolet absorbing layer containing a polymeric ultraviolet absorber.
  • the polymer type ultraviolet absorber used in the present invention means an ultraviolet absorber having a weight average molecular weight of 500 or more.
  • the weight average molecular weight can be measured with a gel permeation chromatography (GPC) apparatus.
  • a compound represented by the following general formula (1) is preferable.
  • R represents a hydrogen atom or a methyl group
  • R 1 and R 2 represent a hydrogen atom, an alkyl group or an aryl group
  • R 3 represents a benzophenone group or a benzotriazole group.
  • L, m and n are 1) The above integers are represented, and the sum of l, m, and n is 100.
  • Examples of the alkyl group represented by R 1 and R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and 1-methylbutyl.
  • Examples of the aryl group represented by R 1 and R 2 include a phenyl group, a tolyl group, a xylyl group, an ethylphenyl group, a benzyl group, and a phenethyl group.
  • Examples of other polymer type ultraviolet absorbers include compounds described in JP-A-2004-42614. Specifically, [2-hydroxy-4- (methacryloyloxyethoxy) benzophenone] -methyl methacrylate copolymer, [2-hydroxy-4- (methacryloyloxymethoxy) benzophenone] -methyl methacrylate copolymer, [2 -Hydroxy-4- (methacryloyloxyoctoxy) benzophenone] -methyl methacrylate copolymer, [2-hydroxy-4- (methacryloyloxidedecyloxy) benzophenone] -methyl methacrylate copolymer, [2-hydroxy-4 -(Methacryloyloxybenzyloxy) benzophenone] -methyl methacrylate copolymer, [2,2'-dihydroxy-4- (methacryloyloxyethoxy) benzophenone] -methyl methacrylate copolymer, [2,2'-di
  • a compound in which an ultraviolet absorption unit is graft-polymerized on an acrylic polymer can also be used as a polymer ultraviolet absorber.
  • This is a compound having a structure in which an ultraviolet absorbing unit having an ultraviolet absorbing ability is introduced into a polymer chain of an acrylic polymer by graft polymerization.
  • Acrylic monomers constituting this acrylic polymer include acrylic acid, methacrylic acid, acrylic acid alkyl ester, methacrylic acid alkyl ester, acrylamide, methacrylamide, and vinyl compounds having a double bond copolymerizable with these acrylic monomers. And a copolymerized polymer.
  • Examples of the copolymerizable vinyl compound include alkyl vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; alkyl vinyl esters such as vinyl acetate, ethyl vinyl and 2-ethylhexyl vinyl; styrene and maleic anhydride. These acrylic polymers have a number average molecular weight of 20,000 to 200,000, preferably 50,000 to 200,000.
  • the ultraviolet absorption unit introduced into the acrylic polymer may be a compound having ultraviolet absorption ability, and examples thereof include the above-described benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, benzoate compounds, and the like. These compounds are introduced into the polymer chain of the acrylic polymer by graft polymerization. In this case, the proportion of the ultraviolet absorbing unit introduced into the acrylic polymer is 40 to 90% by mass, preferably 50 to 80% by mass, based on the total mass of the ultraviolet absorber.
  • a polymer type ultraviolet absorber in addition to a compound obtained by graft polymerization of an ultraviolet absorption unit to these acrylic polymers, a polymer type ultraviolet absorber may be added to a binder as described below. .
  • binder examples include those containing at least one of polymethacrylic acid ester, polymethacrylic acid, polyacrylic acid ester, polyacrylic acid, and copolymers thereof, and more specifically, dialnal.
  • BR-80 Mitsubishi Rayon Co., Ltd.
  • Dialnal BR-80 manufactured by Mitsubishi Rayon Co., Ltd. is polymethyl methacrylate.
  • the ratio of the mass of the polymeric ultraviolet absorber to the mass of the binder is preferably 0.25 to 0.60. More preferably, it is 30 to 0.60, and particularly preferably 0.40 to 0.55.
  • the ratio of the mass of the polymer type ultraviolet absorber to the mass of the binder is 0.25 or more, the cost is reduced and 0.60 or less. When it exists, it will become difficult for a ultraviolet absorber to bleed out.
  • ⁇ Polymethacrylate> As the monomer component of the polymethacrylic acid ester, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate, amyl methacrylate, hexyl methacrylate, cyclohexyl Methacrylate, benzyl methacrylate, chlorobenzyl methacrylate, octyl methacrylate, stearyl methacrylate, sulfopropyl methacrylate, N-ethyl-N-phenylaminoethyl methacrylate, 2- (3-phenylpropyloxy) ethyl methacrylate, dimethylaminophenoxyethyl methacrylate, full Furyl methacryl
  • ⁇ Polyacrylic acid ester examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate, amyl acrylate, and hexyl acrylate.
  • the formation of the layer containing the polymeric ultraviolet absorber is preferably obtained by applying and drying a polymeric ultraviolet absorbent liquid dispersed in an emulsion, and the polymeric ultraviolet absorbent is dissolved in a resin liquid dissolved in an organic solvent. It can also be obtained by adding an absorbent and evaporating and drying the solvent after coating.
  • the layer containing the polymeric UV absorber is preferably cured after being applied by adding the polymeric UV absorber to the UV curable monomer resin solution.
  • the layer containing a polymer type ultraviolet absorber preferably has a film thickness of 50 ⁇ m or less and an average value of light transmittance of 90% or more.
  • the film mirror of the present invention preferably contains a corrosion inhibitor for the reflective layer made of metal.
  • corrosion refers to a phenomenon in which metal (silver) is chemically or electrochemically eroded or deteriorated by the environmental material surrounding it (see JIS Z0103-2004).
  • the adhesive layer preferably contains an antioxidant
  • the adjacent layer of the reflective layer made of metal contains a corrosion inhibitor having an adsorptive group for silver.
  • the optimum amount of the corrosion inhibitor varies depending on the compound to be used, but generally it is preferably within the range of 0.1 to 1.0 g / m 2 .
  • a corrosion inhibitor and an antioxidant having an adsorptive group for silver are preferably used.
  • Corrosion inhibitor having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring, compounds having a pyrazole ring, compounds having a thiazole ring, compounds having an imidazole ring, indazole It is desirable to select from a compound having a ring, a copper chelate compound, a thiourea, a compound having a mercapto group, at least one kind of naphthalene, or a mixture thereof.
  • amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, O-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N- Dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysoidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate, diisopropyl Ammonium benzoate, diisopropylammonium nitrite Cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexylammonium
  • Examples of compounds having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5-dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, and N-phenyl-3. , 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
  • Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole
  • Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
  • Examples of the compound having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or a mixture thereof.
  • Compounds having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl.
  • Imidazole 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4 Formylimidazole, 4-methyl-5-formylimidazole, 2-ethyl-4-methyl-5-formylimidazole, 2-phenyl-4-methyl-4-formylimidazole, 2-mercaptobenzimidazole, etc., or These mixtures are mentioned.
  • Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
  • copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and the like, or a mixture thereof.
  • thioureas examples include thiourea, guanylthiourea, and the like, or a mixture thereof.
  • mercaptoacetic acid thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto
  • naphthalene-based compounds examples include thionalide.
  • an antioxidant can also be used.
  • the antioxidant it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, and a phosphite-based antioxidant.
  • phenolic antioxidants examples include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t- Butylphenol), tetrakis- [methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, stearyl- ⁇ - (3,5-di-t-butyl-4-hydroxyphenyl) propi , Triethylene glycol bis [3- (3-
  • thiol-based antioxidant examples include distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thiopropionate), and the like.
  • phosphite antioxidant examples include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol.
  • Diphosphite bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4'-biphenylene-diphosphonite 2,2'-methylenebis (4,6-di-t-butylphenyl) octyl phosphite and the like.
  • the above antioxidant and the following light stabilizer can be used in combination.
  • hindered amine light stabilizer examples include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6 6-Tetrame Lupiperidine, tetrakis (2,2,6,6
  • nickel-based UV stabilizers include [2,2'-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel (II), nickel complex-3,5-di-t-butyl-4- Hydroxybenzyl phosphate monoethylate, nickel dibutyl dithiocarbamate, etc. can also be used.
  • a hindered amine light stabilizer containing only a tertiary amine is preferable.
  • bis (1,2,2,6,6-pentamethyl-4-piperidyl) is preferable.
  • a condensate of 1,2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid is preferred.
  • Cu is in contact with the reflective layer made of metal, Cu is a layer, thioether, thiol, Ni organic compound, benzotriazole, imidazole, oxazole, It is preferable to provide a tetrazaindene-based, pyrimidine-based or thiadiazole-based corrosion inhibitor layer.
  • the present invention is characterized by having an ultraviolet absorbing layer containing an ultraviolet absorber having corrosion resistance on the silver reflective layer.
  • the content of the UV absorber contained in the UV absorber layer containing the UV absorber having corrosion prevention ability varies depending on the compound used, but is generally 0.1 to 1.0 g / preferably in the range of m 2.
  • the ultraviolet absorber having a corrosion preventing ability has an adsorptive group for silver and has an ultraviolet absorbing ability.
  • ⁇ Ultraviolet absorber with an adsorptive group for silver and anti-corrosion ability As an ultraviolet absorber having an adsorptive group for silver and having a corrosion inhibiting ability, amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring, compounds having a pyrazole ring, compounds having a thiazole ring, Desirably, the compound is selected from a compound having an imidazole ring, a compound having an indazole ring, a compound having a mercapto group, at least one kind of naphthalene, or a mixture thereof.
  • amines and their derivatives include O-toluidine, diphenylamine, benzamide, p-ethoxychrysidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate, diisopropylammonium benzoate, diisopropylammonium nitrite, cyclohexyl Amine carbamate, nitronaphthalene ammonium nitrate, cyclohexylamine benzoate, dicyclohexylammonium cyclohexanecarboxylate, cyclohexylamine cyclohexanecarboxylate, dicyclohexylammonium acrylate, cyclohexylamine acrylate, etc., or a mixture thereof Thing, and the like.
  • Examples of compounds having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5-dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, and N-phenyl-3. , 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
  • Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole
  • Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
  • Examples of the compound having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or a mixture thereof.
  • Compounds having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl.
  • Imidazole 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4 Formylimidazole, 4-methyl-5-formylimidazole, 2-ethyl-4-methyl-5-formylimidazole, 2-phenyl-4-methyl-4-formylimidazole, 2-mercaptobenzimidazole, etc., or These mixtures are mentioned.
  • Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
  • naphthalene-based compounds examples include thionalide.
  • the film mirror of the present invention preferably has a gas barrier layer.
  • the gas barrier layer according to the present invention is intended to prevent deterioration of the humidity, particularly deterioration of the resin base material and various functional elements protected by the resin base material due to high humidity. As long as the above characteristics are maintained, various types of gas barrier layers can be provided. In the present invention, it is preferable to provide a gas barrier layer above the reflective layer made of the metal.
  • the water vapor permeability at 40 ° C. and 90% RH is 100 g / m 2 ⁇ day / ⁇ m or less, preferably 50 g / m 2 ⁇ day / ⁇ m or less, more preferably 20 g / m 2.
  • -It is preferable to adjust the moisture-proof property of the gas barrier layer so as to be not more than day / ⁇ m.
  • the oxygen permeability is preferably 0.6 ml / m 2 / day / atm or less under the conditions of a measurement temperature of 23 ° C. and a humidity of 90% RH.
  • the gas barrier layer according to the present invention is not particularly limited in its formation method, but after applying the ceramic precursor of the inorganic oxide film, the inorganic oxide film is formed by heating and / or ultraviolet irradiation of the coating film.
  • the method is preferably used.
  • the gas barrier layer according to the present invention can be formed by applying a general heating method after applying a ceramic precursor that forms an inorganic oxide film by heating, but is preferably formed by local heating.
  • the ceramic precursor is preferably a sol-like organometallic compound or polysilazane.
  • the organometallic compound according to the present invention includes silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), and indium. It is preferable to contain at least one element of (In), tin (Sn), lanthanum (La), yttrium (Y), and niobium (Nb).
  • the organometallic compound is at least one element of silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), zinc (Zn), and barium (Ba). It is preferable to contain. Furthermore, it is preferable to contain at least one element of silicon (Si), aluminum (Al), and lithium (Li).
  • the organometallic compound is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include metal alkoxides.
  • the metal alkoxide is represented by the following general formula (I).
  • M represents a metal having an oxidation number n.
  • R 1 and R 2 each independently represents an alkyl group.
  • m represents an integer of 0 to (n ⁇ 1).
  • R 1 and R 2 may be the same or different.
  • R 1 and R 2 are preferably alkyl groups having 4 or less carbon atoms, for example, a methyl group CH 3 (hereinafter represented by Me), an ethyl group C 2 H 5 (hereinafter represented by Et), a propyl group.
  • C 3 H 7 (hereinafter represented by Pr), isopropyl group i-C 3 H 7 (hereinafter represented by i-Pr), butyl group C 4 H 9 (hereinafter represented by Bu), isobutyl group i- A lower alkyl group such as C 4 H 9 (hereinafter referred to as i-Bu) is more preferred.
  • Examples of the metal alkoxide represented by the general formula (I) include lithium ethoxide LiOEt, niobium ethoxide Nb (OEt) 5 , magnesium isopropoxide Mg (OPr-i) 2 , aluminum isopropoxide Al (OPr -I) 3 , zinc propoxide Zn (OPr) 2 , tetraethoxysilane Si (OEt) 4 , titanium isopropoxide Ti (OPr-i) 4 , barium ethoxide Ba (OEt) 2 , barium isopropoxide Ba ( OPr-i) 2 , triethoxyborane B (OEt) 3 , zirconium propoxide Zn (OPr) 4 , lanthanum propoxide La (OPr) 3 , yttrium propoxide Y (OPr) 3 , lead isopropoxide Pb (OPr- i) 2 etc. are mentioned suitably. All of these metal alkoxide
  • the inorganic oxide according to the present invention is formed by local heating from a sol using the organometallic compound as a raw material. Therefore, silicon (Si), aluminum (Al), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), indium (In) contained in the organometallic compound, It is an oxide of an element such as tin (Sn) or niobium (Nb).
  • silicon oxide aluminum oxide, zirconium oxide and the like. Of these, silicon oxide is preferable.
  • a method for forming an inorganic oxide from an organometallic compound it is preferable to use a so-called sol-gel method and a method of applying polysilazane.
  • the “sol-gel method” is to obtain a hydroxide sol by hydrolyzing an organometallic compound, etc., dehydrate it into a gel, and further heat-treat the gel. It refers to a method for preparing a metal oxide glass having a certain shape (film, particle, fiber, etc.).
  • a multi-component metal oxide glass can be obtained by a method of mixing a plurality of different sol solutions, a method of adding other metal ions, or the like.
  • an inorganic oxide by a sol-gel method having the following steps.
  • the organometallic compound in a reaction solution containing at least water and an organic solvent, is hydrolyzed and dehydrated and condensed while adjusting the pH to 4.5 to 5.0 using a halogen ion as a catalyst in the presence of boron ion.
  • Generation of fine pores due to high-temperature heat treatment is produced by a sol-gel method having a step of obtaining a reaction product by heating and vitrifying the reaction product at a temperature of 200 ° C. or less. And is particularly preferable from the viewpoint that no deterioration of the film occurs.
  • the organometallic compound used as a raw material is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include the metal alkoxides. .
  • the organometallic compound may be used for the reaction as it is, but it is preferably diluted with a solvent for easy control of the reaction.
  • the solvent for dilution is not particularly limited as long as it can dissolve the organometallic compound and can be uniformly mixed with water.
  • Preferred examples of such a solvent for dilution include aliphatic lower alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, ethylene glycol, propylene glycol, and mixtures thereof.
  • a mixed solvent of butanol, cellosolve, and butyl cellosolve or a mixed solvent of xylol, cellosolve acetate, methyl isobutyl ketone, and cyclohexane may be used.
  • the metal when the metal is Ca, Mg, Al or the like, it reacts with water in the reaction solution to form a hydroxide, or when carbonate ion CO 3 2- is present, a carbonate is formed. Therefore, it is preferable to add an alcohol solution of triethanolamine as a masking agent to the reaction solution.
  • the concentration of the organometallic compound when mixed and dissolved in a solvent is preferably 70% by mass or less, and more preferably diluted to a range of 5 to 70% by mass.
  • the reaction solution used in the sol-gel method contains at least water and an organic solvent.
  • the organic solvent is not particularly limited as long as it can form a uniform solution with water, acid, and alkali, and usually the same aliphatic lower alcohols used for diluting the organometallic compound are preferably used.
  • the aliphatic lower alcohols propanol, isopropanol, butanol, and isobutanol having a larger number of carbon atoms are preferable to methanol and ethanol. This is because the growth of the metal oxide glass film to be generated is stable.
  • the water ratio is preferably in the range of 0.2 to 50 mol / L as the concentration of water.
  • an organometallic compound is hydrolyzed in the reaction solution in the presence of boron ions using a halogen ion as a catalyst.
  • Preferred examples of the compound that gives the boron ion B 3+ include trialkoxyborane B (OR) 3 . Among these, triethoxyborane B (OEt) 3 is more preferable.
  • the B 3+ ion concentration in the reaction solution is preferably in the range of 1.0 to 10.0 mol / L.
  • halogen ion a fluorine ion and / or a chlorine ion are mentioned suitably. That is, fluorine ions alone, chlorine ions alone or a mixture thereof may be used.
  • the compound to be used is not particularly limited as long as it generates fluorine ions and / or chlorine ions in the reaction solution.
  • a fluorine ion source ammonium hydrogen fluoride NH 4 HF ⁇ HF, sodium fluoride NaF or the like is preferable.
  • Preferred examples of the chlorine ion source include ammonium chloride NH 4 Cl.
  • the concentration of the halogen ions in the reaction solution varies depending on the film thickness of an inorganic composition having an inorganic matrix to be produced and other conditions, but generally the reaction solution containing a catalyst. Is preferably in the range of 0.001 to 2 mol / kg, particularly 0.002 to 0.3 mol / kg. If the halogen ion concentration is lower than 0.001 mol / kg, hydrolysis of the organometallic compound does not proceed sufficiently, and film formation becomes difficult. Moreover, since the produced
  • boron used during the reaction, if to be contained as a B 2 O 3 component in the design the composition of the resulting inorganic matrix, by leaving product was added calculated amount of organic boron compound in accordance with the content of
  • boron can be removed by evaporation as boron methyl ester by heating after film formation in the presence of methanol as a solvent or by immersion in methanol.
  • a main agent solution in which a predetermined amount of the organometallic compound is usually mixed and dissolved in a mixed solvent containing a predetermined amount of water and an organic solvent,
  • the pH of the reaction solution is adjusted to a desired value with acid or alkali.
  • the reaction product is obtained by aging for several hours.
  • a predetermined amount of the boron compound is mixed and dissolved in advance in the main agent solution or reaction solution. Further, when alkoxyborane is used, it is advantageous to dissolve it in the main agent solution together with other organometallic compounds.
  • the pH of the reaction solution is selected depending on the purpose, and for the purpose of forming a film (film) made of an inorganic composition having an inorganic matrix (metal oxide glass), for example, the pH is adjusted using an acid such as hydrochloric acid. It is preferable to ripen the mixture by adjusting it to the range of 4.5 to 5. In this case, for example, it is convenient to use a mixture of methyl red and bromocresol green as an indicator.
  • the main component solution having the same concentration of the same component and the reaction solution including B 3+ and halogen ions
  • the reaction product can also be produced simply and continuously.
  • the concentration of the reaction solution is in the range of ⁇ 50% by mass
  • the concentration of water (including acid or alkali) is in the range of ⁇ 30% by mass
  • the concentration of halogen ions is in the range of ⁇ 30% by mass. Can be changed.
  • reaction product reaction solution after aging
  • reaction solution after aging reaction solution after aging
  • the temperature is raised gradually while paying particular attention to a temperature range of 50 to 70 ° C., followed by a preliminary drying (solvent volatilization) step and further raising the temperature.
  • This drying is important for forming a non-porous film in the case of film formation.
  • the temperature for heating and drying after the preliminary drying step is preferably 70 to 150 ° C, more preferably 80 to 130 ° C.
  • the gas barrier layer according to the present invention contains an inorganic oxide formed by local heating of a coating film after applying a ceramic precursor that forms an inorganic oxide film by heating.
  • the resin substrate is coated with a solution containing a catalyst in the polysilazane represented by the following general formula (II) and an organic solvent as necessary, and the solvent is added to the ceramic precursor. Evaporate and remove, thereby leaving a polysilazane layer having a layer thickness of 0.05-3.0 ⁇ m on the resin substrate, and oxygen, active oxygen, in some cases, and nitrogen in an atmosphere containing water vapor It is preferable to employ a method of forming a glass-like transparent film on the resin substrate by locally heating the polysilazane layer in the presence.
  • R 1 , R 2 , and R 3 are the same or different and are independently of each other hydrogen, or an optionally substituted alkyl group, aryl group, vinyl group or (trialkoxysilyl).
  • n is an integer, and n is determined so that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
  • catalysts preferably basic catalysts, in particular N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine or N-heterocyclic compounds are used.
  • the catalyst concentration is usually in the range of 0.1 to 10 mol%, preferably 0.5 to 7 mol%, based on polysilazane.
  • a solution containing perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms is used.
  • the coating according to the present invention comprises at least one polysilazane of the following general formula (III):
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are independently of each other hydrogen, optionally substituted alkyl group, aryl group, vinyl group or ( Represents a trialkoxysilyl) alkyl group, wherein n and p are integers, and n is defined such that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
  • R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 and R 5 represent methyl, R 1 , R 3 and R 6 represent hydrogen and R 2 , A compound in which R 4 represents methyl and R 5 represents vinyl, R 1 , R 3 , R 4 and R 6 represent hydrogen and R 2 and R 5 represent methyl.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently of one another hydrogen or optionally substituted alkyl.
  • R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 , R 5 and R 8 represent methyl, R 9 represents (triethoxysilyl) propyl and R 7 Is a compound in which represents alkyl or hydrogen.
  • the proportion of polysilazane in the solvent is generally 1 to 80% by mass, preferably 5 to 50% by mass, and particularly preferably 10 to 40% by mass.
  • an organic system that does not contain water and a reactive group (for example, a hydroxyl group or an amine group) and is inert to polysilazane, preferably an aprotic solvent, is particularly suitable.
  • a reactive group for example, a hydroxyl group or an amine group
  • an aprotic solvent is particularly suitable.
  • An additional component of the polysilazane solution can be a further binder such as those conventionally used in the manufacture of paints.
  • cellulose ethers and cellulose esters such as ethyl cellulose, nitrocellulose, cellulose acetate or cellulose acetobutyrate, natural resins such as rubber or rosin resins, or synthetic resins such as polymerized resins or condensed resins such as aminoplasts, in particular Urea resins and melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, or polysiloxanes.
  • Still other components of the polysilazane formulation include, for example, additives that affect the formulation viscosity, substrate wetting, film formability, lubrication or exhaust properties, or inorganic nanoparticles such as SiO 2 , TiO 2 , It can be ZnO, ZrO 2 or Al 2 O 3 .
  • the thickness of the coating film to be formed is preferably in the range of 100 nm to 2 ⁇ m.
  • a scratch preventing layer can be provided as the outermost layer of the film mirror.
  • the scratch prevention layer is provided for preventing scratches.
  • the scratch prevention layer can be composed of acrylic resin, urethane resin, melamine resin, epoxy resin, organic silicate compound, silicon resin, and the like.
  • silicon resins and acrylic resins are preferable in terms of hardness and durability. Further, in terms of curability, flexibility, and productivity, those made of an active energy ray-curable acrylic resin or a thermosetting acrylic resin are preferable.
  • the active energy ray-curable acrylic resin or thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer, or a reactive diluent as a polymerization curing component.
  • Acrylic oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, etc., including those in which a reactive acrylic group is bonded to an acrylic resin skeleton, and rigid materials such as melamine and isocyanuric acid. A structure in which an acrylic group is bonded to a simple skeleton can also be used.
  • the reactive diluent has a function of a solvent in the coating process as a medium of the coating agent, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component.
  • polyfunctional acrylic cured paints include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam (registered trademark)” series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol (registered trademark)” series, etc. ), Shin Nakamura Co., Ltd. (trade name “NK Ester” series, etc.), DIC Corporation; (trade name “UNIDIC (registered trademark)” series, etc.), Toagosei Co., Ltd.
  • various additives can be further blended in the scratch-preventing layer as required, as long as the effects of the present invention are not impaired.
  • stabilizers such as antioxidants, light stabilizers, ultraviolet absorbers, surfactants, leveling agents, antistatic agents, and the like can be used.
  • ⁇ Leveling agents are effective in reducing surface irregularities, especially when functional layers are applied.
  • a dimethylpolysiloxane-polyoxyalkylene copolymer for example, SH190 manufactured by Toray Dow Corning Co., Ltd.
  • SH190 manufactured by Toray Dow Corning Co., Ltd. is suitable as the silicon leveling agent.
  • the film mirror according to the present invention may have an adhesive layer.
  • the adhesive layer is used to enhance the adhesion between the reflective layer made of metal and the resin base material (resin film) (adhesiveness), the one that enhances the adhesion between other constituent layers, the reflective layer made of metal It may have heat resistance that can withstand the heat when it is formed by vacuum deposition, etc., and smoothness to bring out the high reflection performance inherent to the reflective layer made of metal, but it must be made of resin Is preferred.
  • the resin used for the adhesive layer is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, and smoothness.
  • Polyester resin, acrylic resin, melamine resin, epoxy resin, polyamide resin Resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin or the like can be used alone or a mixed resin thereof. From the viewpoint of weather resistance, a mixed resin of a polyester resin and a melamine resin is preferable. It is more preferable to use a thermosetting resin mixed with an agent.
  • polyester resins polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are preferable.
  • the thickness of the adhesive layer is preferably from 0.01 to 3 ⁇ m, more preferably from 0.1 to 1 ⁇ m, from the viewpoints of adhesion, smoothness, reflectance of the reflecting material, and the like.
  • the adhesive layer As a method for forming the adhesive layer, conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
  • the adhesive layer When the adhesive layer is a metal oxide, it can be formed by various vacuum film forming methods such as silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, and lanthanum nitride.
  • various vacuum film forming methods such as silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, and lanthanum nitride.
  • the metal layer according to the present invention has a sacrificial anticorrosive function for silver, it is necessary to use a layer adjacent to silver and having a higher ionization tendency than silver.
  • a layer adjacent to silver and having a higher ionization tendency for example, lithium, cesium, rubidium, potassium, barium, strontium, calcium, sodium, magnesium, aluminum, manganese, tantalum, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, etc.
  • aluminum, zinc, iron, tin, and copper are preferable.
  • the manufacturing method of the metal layer may be formed by a wet method collectively referred to as a plating method, or the above-described vacuum film forming method may be used.
  • the film thickness of the metal layer is in the range of 10 nm to 500 nm in consideration of the sacrificial anticorrosive function of silver.
  • the thickness is preferably 50 to 300 ⁇ m, more preferably 100 to 200 ⁇ m.
  • the total thickness of the film mirror according to the present invention is preferably 75 to 250 ⁇ m, more preferably 90 to 230 ⁇ m, and still more preferably 100 to 220 ⁇ m, from the viewpoints of prevention of deflection of the mirror, regular reflectance, handling properties, and the like.
  • the film mirror of the present invention can be preferably used for the purpose of collecting solar heat. Although it can also be used as a solar heat collector mirror with a single film mirror, more preferably, through an adhesive layer coated on the resin substrate surface opposite to the side having the silver reflective layer across the resin substrate, The film mirror is affixed on another base material, particularly on a metal base material, and used as a reflection device for solar thermal power generation.
  • the reflector When used as a reflector for solar power generation, the reflector is shaped like a bowl (semi-cylindrical), and a cylindrical member having fluid inside is provided in the center of the semicircle, and the solar heat is condensed on the cylindrical member.
  • the form which heats an internal fluid and converts the heat energy and generates electric power is mentioned as one form.
  • heat is obtained by installing flat reflectors at multiple locations, concentrating the solar heat reflected by each reflector on a single reflector (central reflector), and reflecting it by the reflector.
  • a form in which power is generated by converting energy in the power generation unit is also an example.
  • the film mirror of the present invention is particularly preferably used because a high regular reflectance is required for the reflection device used.
  • the adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used.
  • polyester resin urethane resin, polyvinyl acetate resin, acrylic resin, nitrile rubber or the like is used.
  • the laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
  • the thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 50 ⁇ m from the viewpoint of the pressure-sensitive adhesive effect, the drying speed, and the like.
  • the other substrate to be bonded to the film mirror of the present invention may be any substrate that can impart the protective property of the silver reflective layer, for example, an acrylic film or sheet, a polycarbonate film or sheet, Polyarylate film or sheet, polyethylene naphthalate film or sheet, polyethylene terephthalate film or sheet, plastic film or sheet such as fluorine film, or resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, etc.
  • a resin film or sheet that is coated with a resin kneaded with or is subjected to surface processing such as metal deposition is used.
  • the thickness of the laminated film or sheet is not particularly limited, but is usually preferably in the range of 12 to 250 ⁇ m.
  • these other base materials may be bonded after providing a concave portion or a convex portion before being bonded to the film mirror of the present invention, or may be formed to have a concave portion or a convex portion after being bonded.
  • the bonding and the molding so as to have a concave portion or a convex portion may be performed at the same time.
  • Metal substrate of the solar heat collecting mirror As the metal substrate of the solar heat collecting mirror according to the present invention, the steel sheet, copper plate, aluminum plate, aluminum plated steel plate, aluminum alloy plated steel plate, copper plated steel plate, tin plated steel plate, chrome plated steel plate, stainless steel plate, etc. High metal material can be used.
  • a plated steel plate In the present invention, it is particularly preferable to use a plated steel plate, a stainless steel plate, an aluminum plate or the like having good corrosion resistance.
  • Example 1 [Production of film mirror] (Preparation of film mirror 1) A biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 ⁇ m) was used as the resin substrate. On one side of this film, a silver reflective layer having a thickness of 80 nm was formed as a silver reflective layer by vacuum deposition. In a resin in which a polyester resin (Polyester SP-181, manufactured by Nippon Synthetic Chemical Co., Ltd.) and a TDI isocyanate (2,4-tolylene diisocyanate) are mixed at a resin solid content ratio of 10: 2 on the silver reflective layer.
  • a polyester resin Polyethylene terephthalate film, thickness 100 ⁇ m
  • a silver reflective layer having a thickness of 80 nm was formed as a silver reflective layer by vacuum deposition.
  • glycol dimercaptoacetate as a corrosion inhibitor, an amount adjusted to 0.3 g / m 2 is added and coated by a gravure coating method to form a silver protective polymer layer having a thickness of 0.1 ⁇ m. did. Furthermore, toluene containing 10% by mass of TINUVIN 328 (ultraviolet absorber, manufactured by BASF Japan) in a methyl acrylate: butyl acrylate copolymer (ratio 64:36, ultraviolet curable resin) as a layer containing an ultraviolet absorber thereon. The solution was coated by gravure coating and dried at 105 ° C. for 4 minutes.
  • TINUVIN 328 ultraviolet absorber, manufactured by BASF Japan
  • An acrylic adhesive Sdyne # 7851 (manufactured by Sekisui Chemical Co., Ltd.) is applied in a thickness of 5 ⁇ m on the surface of the resin base without the silver reflective layer to form an adhesive layer, and a film mirror 1 of a comparative example is produced. did.
  • TINUVIN 328 (ultraviolet absorber, manufactured by BASF Japan) of the layer containing the ultraviolet absorber is 10% by mass with respect to the ultraviolet curable resin, and TINUVIN 328 (ultraviolet absorber, manufactured by BASF Japan) is ultraviolet cured.
  • a film mirror 2 of a comparative example was produced in the same manner except that 5% by mass with respect to the resin and TINUVIN234 (ultraviolet absorber, manufactured by BASF Japan Ltd.) were changed to 5% by mass with respect to the ultraviolet curable resin.
  • methyl acrylate: butyl acrylate copolymer (ratio 64:36, ultraviolet curable resin) is replaced with isobornyl acrylate (ultraviolet curable resin), and TINUVIN 328 (ultraviolet absorber, manufactured by BASF Japan Ltd.) is used as an ultraviolet ray.
  • a film mirror 3 of a comparative example was produced in the same manner except that 10% by mass with respect to the cured resin and CGL-139 (UV absorber, manufactured by BASF Japan Ltd.) was replaced with 16% by mass with respect to the ultraviolet curable resin.
  • a biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 ⁇ m) was used as the resin substrate.
  • a silver reflective layer having a thickness of 80 nm was formed as a silver reflective layer by vacuum deposition.
  • a resin in which a polyester resin (Polyester SP-181, manufactured by Nippon Synthetic Chemical Co., Ltd.) and a TDI isocyanate (2,4-tolylene diisocyanate) are mixed at a resin solid content ratio of 10: 2 on the silver reflective layer.
  • glycol dimercaptoacetate as a corrosion inhibitor, an amount adjusted to 0.3 g / m 2 is added and coated by a gravure coating method to form a silver protective polymer layer having a thickness of 0.1 ⁇ m. did. Furthermore, as a layer containing an ultraviolet absorber, a water-dispersed emulsion type benzotriazole polymer ultraviolet absorbing coating solution UVA-1383MG (manufactured by BASF) is coated by a gravure coating method and dried at 55 ° C. for 4 minutes. did.
  • UVA-1383MG manufactured by BASF
  • An adhesive layer is formed by applying an acrylic adhesive Sdyne # 7851 (manufactured by Sekisui Chemical Co., Ltd.) to a thickness of 5 ⁇ m as an adhesive on the surface of the resin base without the silver reflecting layer, and the film mirror 4 of the present invention is formed. Produced.
  • the prepared film mirrors 1 to 6 are pasted on a slide glass having a thickness of 1 mm and a length of 25.4 mm ⁇ width of 76.2 mm through an adhesive layer having a thickness of 5 ⁇ m. 6 was produced.
  • Regular reflectance Cut out the reflector for solar power generation into 2.5cm square of measurement size, select the reflectance measurement mode of spectrophotometer U4000 (manufactured by Hitachi High-Technologies), and set the incident angle of incident light with respect to the normal of the reflecting surface The angle was adjusted to 5 °, and the reflected light of the incident light was guided to an integrating sphere to measure the regular reflectance.
  • the regular reflection average value was calculated by averaging the reflectance in the visible light region (400 to 800 nm) and evaluated according to the following criteria.
  • Regular reflectance average value is 90% or more
  • Regular reflectance average value is 80% or more and less than 90%
  • Regular reflectance average value is less than 80% (Adhesion)
  • the reflectance of the solar power generation reflecting device after being left for 30 days under the conditions of 85 ° C. and 85% RH was measured by the same method as the regular reflectance measurement.
  • the reduction rate of the regular reflectance of the film mirror before and after the forced deterioration test was calculated and evaluated according to the following criteria.
  • Reflectivity decrease rate is less than 5% 4: Reflectance decrease rate is 5% or more and less than 10% 3: Reflectance decrease rate is 10% or more and less than 15% 2: Reflectivity decrease rate is 15% or more Less than 20% 1: Decrease rate of reflectivity is 20% or more (cold thermal shock resistance)
  • An atmosphere of ⁇ 40 ° C. to + 80 ° C. was put into a thermal shock tester that repeats in a cycle of 6 hours for 10 days, and the bleed-out on the film mirror surface was visually observed and evaluated according to the following criteria.
  • 10 or less powders visually visible within an area of 1 cm square ⁇ 11 to 20 powders visually visible within an area of 1 cm square x 21 or more powders visually visible within an area of 1 cm square Evaluation The results are shown in Table 1.
  • the various characteristics of the solar power generation reflecting device of the present invention are superior to the various characteristics of the solar power generation reflecting device of the comparative example. That is, by the above means of the present invention, it is possible to prevent a decrease in the regular reflectance of the silver reflecting layer due to the deterioration of the constituent layers, and to be lightweight and flexible, to suppress the manufacturing cost, and to increase the area and mass production. It can be seen that a solar power generation reflecting device using a film mirror having excellent adhesion, weather resistance and cold shock durability and having good regular reflectance to solar heat can be obtained.
  • Example 2 [Production of film mirror] (Preparation of film mirror 1) A biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 ⁇ m) was used as the resin substrate. On one side of the polyethylene terephthalate film, a mixture of lanthanum oxide and aluminum oxide mixed at a ratio of 8: 2 was deposited to a thickness of 60 nm by a vacuum deposition method, and then a copper reflective layer having a thickness of 100 nm was deposited by a vacuum deposition method. In the same manner, a silver reflective layer was deposited to a thickness of 150 nm.
  • a resin in which a polyester resin and a TDI (tolylene diisocyanate) isocyanate are mixed at a resin solid content ratio of 10: 2 is coated on the silver reflective layer by a gravure coating method to have a thickness of 0.1 ⁇ m.
  • An inhibitor layer was formed to produce a comparative film mirror 1.
  • the corrosion inhibitor layer contains glycol dimercaptoacetate (corrosion inhibitor B, corrosion inhibitor having no UV absorbing ability) as a corrosion inhibitor so as to have a concentration of 0.3 g / m 2.
  • a film mirror 3 of a comparative example was produced in the same manner except that an ultraviolet absorber layer was formed by depositing cerium oxide with a thickness of 100 nm on the inhibitor layer by an electron beam heating vacuum deposition method.
  • a biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 ⁇ m) was used as the resin substrate.
  • a mixture of lanthanum oxide and aluminum oxide mixed at a ratio of 8: 2 was deposited to a thickness of 60 nm by a vacuum deposition method, and then a copper reflective layer having a thickness of 100 nm was deposited by a vacuum deposition method.
  • a silver reflective layer was deposited to a thickness of 150 nm.
  • a silver reflective layer in a resin in which polyester resin and TDI isocyanate are mixed at a resin solid content ratio of 10: 2, dicyclohexylammonium cyclohexanecarboxylate is adjusted to 0.3 g / m 2 as a corrosion inhibitor.
  • the obtained amount was added and coated by a gravure coating method to form a corrosion inhibitor layer having a thickness of 100 nm.
  • an amount of benzotriazole adjusted to 0.3 g / m 2 is added as an ultraviolet absorber to the polyester resin used as the binder for the corrosion inhibitor layer, and coating is performed by a gravure coating method. Then, an ultraviolet absorber layer having a thickness of 100 nm was formed to produce the film mirror 4 of the present invention.
  • the film mirror 5 of the present invention was produced in the same manner except that the ultraviolet absorber layer was formed by cesium oxide by a 100 nm vacuum vapor deposition method.
  • the film mirror of the present invention was similarly prepared except that the biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 ⁇ m) was replaced with the biaxially stretched polyester film (polyethylene terephthalate film, thickness 175 ⁇ m) in the production of the film mirror 7. 8 was produced.
  • the produced film mirrors 1 to 8 are attached on a stainless steel (SUS304) plate having a thickness of 0.1 mm and a length of 4 cm and a width of 5 cm through an adhesive layer having a thickness of 3 ⁇ m. 8 were produced.
  • SUS304 stainless steel
  • the specular reflectance after standing for 30 days under the conditions of 85 ° C. and 85% RH is measured by the same method as described above, and the weather resistance test is performed from the ratio of the regular reflectance before forced degradation and the regular reflectance after forced degradation. The decrease rate of the regular reflectance before and after was calculated.
  • the evaluation criteria for the weather resistance test are shown below.
  • the rate of decrease in regular reflectance is less than 5% 4: The rate of decrease in regular reflectance is 5% or more and less than 10% 3: The rate of decrease in regular reflectance is 10% or more but less than 15% 2: The rate of decrease in regular reflectance 15% or more and less than 20% 1: Regular reflectance decrease rate is 20% or more (light resistance) After irradiating with UV light for 7 days in an environment of 65 ° C using an I-superior eye super UV tester, the regular reflectance is measured by the above method, and the regular reflectance before forced degradation and regular reflectance after forced degradation. From the ratio of the ratio, the decrease rate of the regular reflectance before and after the light resistance test was calculated. The evaluation criteria for the light resistance test are shown below.
  • the rate of decrease in regular reflectance is less than 5% 4: The rate of decrease in regular reflectance is 5% or more and less than 10% 3: The rate of decrease in regular reflectance is 10% or more but less than 15% 2: The rate of decrease in regular reflectance 15% or more and less than 20% 1: Decrease rate of regular reflectance is 20% or more (pencil hardness) Based on JIS-K5400, the pencil hardness of each sample at 45 ° inclination and 1 kg load was measured.
  • the various characteristics of the solar power generation reflector using the film mirror of the present invention are superior to the solar power generator reflector using the film mirror of the comparative example. That is, the above-described means of the present invention prevents the decrease in regular reflectance due to the deterioration of the silver reflection layer, and is light and flexible, lightweight and flexible, and can be manufactured with a large area and mass production while suppressing manufacturing costs. It can be seen that a solar power generation reflecting device using a film mirror having excellent specularity and good regular reflectance with respect to solar heat can be obtained.

Abstract

Provided is a film mirror which does not cause an ultraviolet absorbing agent to bleed out even when used as a film mirror for a solar thermal power generator over a long period of time in harsh environments, can sufficiently minimize the drop in specular reflectance, is light weight and flexible, reduces manufacturing costs, can be increased in area and mass produced, exerts excellent adhesive properties and resistance to weather and thermal shock, and has a superior specular reflectance rate against sunlight. Also provided are a method for producing said film mirror, and a reflecting device for a solar thermal generator using said film mirror. The film mirror is provided, on a resin substrate, with an ultraviolet absorbing layer and a reflective layer comprising a metal, wherein: the ultraviolet absorbing layer is configured from an ultraviolet absorbing layer comprising a polymeric ultraviolet light absorber; or the reflective layer configured from the metal functions as the silver reflective layer, and the ultraviolet absorbing layer is configured from ultraviolet absorbing layer (1) containing an ultraviolet absorber, and ultraviolet absorbing layer (2) containing an ultraviolet absorber capable of preventing silver from corrosion.

Description

フィルムミラー、その製造方法及び太陽熱発電用反射装置FILM MIRROR, METHOD FOR MANUFACTURING THE SAME, AND REFLECTOR FOR SOLAR THERMAL POWER GENERATION
 本発明は、太陽熱に対して良好な正反射率を有し、密着性、耐候性及び冷熱衝撃耐性に優れるフィルムミラー、その製造方法及びそのフィルムミラーを用いた太陽熱発電用反射装置に関する。 The present invention relates to a film mirror having a good regular reflectance with respect to solar heat and excellent in adhesion, weather resistance and thermal shock resistance, a manufacturing method thereof, and a solar power generation reflecting device using the film mirror.
 近年、石油、天然ガス等の化石燃料エネルギーに代わる代替エネルギーとしては現在、バイオマスエネルギー、核エネルギー、並びに風力エネルギー及び太陽エネルギー等の自然エネルギーが検討されているが、化石燃料の代替エネルギーとして最も安定しており、且つ量の多い自然エネルギーは、太陽エネルギーであると考えられる。 In recent years, biomass energy, nuclear energy, and natural energy such as wind energy and solar energy have been studied as alternative energy alternatives to fossil fuel energy such as oil and natural gas. In addition, natural energy with a large amount is considered to be solar energy.
 しかしながら、太陽エネルギーは非常に有力な代替エネルギーであるものの、これを活用する観点からは、(1)太陽エネルギーのエネルギー密度が低いこと、並びに(2)太陽エネルギーの貯蔵及び移送が困難であることが、問題となると考えられる。 However, although solar energy is a very powerful alternative energy, from the viewpoint of utilizing this, (1) the energy density of solar energy is low, and (2) it is difficult to store and transfer solar energy. However, this is considered a problem.
 これに対して、太陽エネルギーのエネルギー密度が低いという問題は、巨大な反射装置で太陽エネルギーを集めることによって解決することが提案されている。 On the other hand, it has been proposed to solve the problem of low energy density of solar energy by collecting solar energy with a huge reflector.
 反射装置は、太陽光による紫外線や熱、風雨、砂嵐等に晒されるため、従来、ガラス製ミラーが用いられてきた。ガラス製ミラーは環境に対する耐久性が高い反面、輸送時に破損したり、重いためミラーを設置する架台の強度を持たせるためにプラントの建設費がかさむといった問題があった。 Since the reflection device is exposed to sunlight, ultraviolet rays, heat, wind and rain, sandstorms, etc., glass mirrors have been used conventionally. While glass mirrors are highly durable to the environment, they have problems such as damage during transportation and heavy construction, which increases the construction cost of the plant due to the strength of the frame on which the mirrors are installed.
 上記問題を解決するために、ガラス製ミラーを樹脂製反射シートに置き換えることが考えられてきた(例えば、特許文献1参照)。しかしながら、太陽熱発電用フィルムミラーとして用いる場合、フィルムミラーは太陽光に長時間直接さらされることとなる。そのため、樹脂基材が紫外線により劣化することで、変色して透過率が下がり、結果としてミラーとしての反射率が下がるという問題があった。 In order to solve the above problem, it has been considered to replace a glass mirror with a resin reflection sheet (for example, see Patent Document 1). However, when used as a film mirror for solar thermal power generation, the film mirror is directly exposed to sunlight for a long time. Therefore, when the resin base material is deteriorated by the ultraviolet rays, there is a problem that the transmittance is lowered due to discoloration, and as a result, the reflectance as a mirror is lowered.
 太陽光を集光する目的において、高い反射率を得るという観点では、特許文献2に開示されているように、金属層を可視光領域の反射率の高い銀で構成することが好ましい。しかしながら、銀を反射層に用いることで、初期の反射率を高めることは可能であるが、やはり紫外線による樹脂の劣化により、長期間使用した場合には反射率の低下を十分に抑制することは困難であった。 For the purpose of concentrating sunlight, from the viewpoint of obtaining a high reflectance, it is preferable that the metal layer is made of silver having a high reflectance in the visible light region as disclosed in Patent Document 2. However, by using silver for the reflective layer, it is possible to increase the initial reflectivity, but due to deterioration of the resin due to ultraviolet rays, it is possible to sufficiently suppress the decrease in reflectivity when used for a long time. It was difficult.
 そこで、特許文献3では、フィルムミラーの表面層にベンゾトリアゾール系紫外線吸収剤を含有させた層を設ける技術が提案されている。特許文献3では、表面層にビニル基を有する架橋可能なモノマーを添加することで、表面層中におけるベンゾトリアゾール系紫外線吸収剤と樹脂との相溶性を向上させることで、紫外線吸収剤の添加量を増加させ、紫外線によるプラスチック基材の劣化を抑制する技術を提案している。しかしながら、このような技術をもってしても、温湿度の変化が激しい環境下で、太陽光に直接晒される太陽熱発電用のフィルムミラーとして用いられた場合には、15質量%以上の大量に含まれる紫外線吸収剤が経年で沁み出し(特許文献3ではブルーミングといい、一般にはブリードアウトという)を起こし、層間の密着性低下による剥離の問題や、金属からなる反射層の変形を引き起こし、フィルムミラーとしての正反射率の低下を引き起こす問題が顕在化した。 Therefore, Patent Document 3 proposes a technique of providing a layer containing a benzotriazole ultraviolet absorber on the surface layer of a film mirror. In Patent Document 3, by adding a crosslinkable monomer having a vinyl group to the surface layer, the compatibility of the benzotriazole-based ultraviolet absorber and the resin in the surface layer is improved, so that the amount of the ultraviolet absorber added The technology which suppresses the deterioration of the plastic base material by ultraviolet rays is proposed. However, even with such a technique, when used as a film mirror for solar power generation that is directly exposed to sunlight in an environment where the temperature and humidity changes drastically, it is contained in a large amount of 15% by mass or more. UV absorbers ooze out over time (referred to as blooming in Patent Document 3, generally called bleed-out), causing peeling problems due to poor adhesion between layers, and deformation of the reflective layer made of metal, as a film mirror The problem that caused a decrease in the regular reflectance of the surface became obvious.
 また、金属からなる反射層の金属として用いられる銀は非常に腐食しやすい金属であるため、屋外に設置した場合に、大気中に存在する水蒸気、酸素や紫外光等の複合要因によって劣化が進行する。また、銀は320nm付近の波長光を透過するため、銀の裏面の基材層の保護のために紫外線吸収層を作る必要がある。そのため、フィルムミラーの層構成に紫外線吸収層、銀の腐食防止剤層、酸素や水蒸気のバリア層等を設ける必要がある。 In addition, silver used as the metal in the reflective layer is a metal that is very susceptible to corrosion, so when it is installed outdoors, it will deteriorate due to complex factors such as water vapor, oxygen, and ultraviolet light present in the atmosphere. To do. Further, since silver transmits light having a wavelength of about 320 nm, it is necessary to form an ultraviolet absorbing layer for protecting the base material layer on the back surface of silver. Therefore, it is necessary to provide an ultraviolet absorption layer, a silver corrosion inhibitor layer, an oxygen or water vapor barrier layer, etc. in the layer configuration of the film mirror.
 特許文献4に開示の太陽熱発電用のフィルムミラーは、最外層から、(紫外線吸収剤が混入したアクリル層)/(銀の変色防止剤が混入したアクリル層)/(銀反射層)/(基材であるPET層)/(接着層)/(剥離層)という構成である。本発明者がこの構成で作製したフィルムミラーを実際に太陽熱発電用として用いたところ、紫外線吸収能が不十分であるため、フィルムミラーを長期間太陽熱にさらすと銀に影響を与えるだけでなく、基材が劣化することが分かった。 From the outermost layer, the film mirror for solar power generation disclosed in Patent Document 4 is (acrylic layer mixed with ultraviolet absorber) / (acrylic layer mixed with silver discoloration inhibitor) / (silver reflective layer) / (base The material is a PET layer) / (adhesive layer) / (release layer). When the inventor actually used the film mirror produced in this configuration for solar thermal power generation, because the ultraviolet absorption ability is insufficient, not only affects the silver when the film mirror is exposed to solar heat for a long time, It was found that the substrate deteriorated.
 特許文献5では、この問題を解決するために、最外層の紫外線吸収層に接着層と紫外線吸収剤入りアクリル樹脂層を付与した。この場合、紫外線透過率は約5%まで低下するため、長時間高い反射率を保持することができる。しかし、過酷な環境下に長期間おかれた場合、紫外線吸収剤自体が太陽熱で劣化するため、樹脂基材が劣化して反射率が劣化する。また、大量に紫外線吸収剤を添加すると、ブリードアウトや透過率が低下するという問題が起こる。また、水蒸気や酸素のバリア層としてアクリル層を用いているが、完全に水蒸気や酸素を遮断することはできないため、長期間の使用には耐えられないという問題があった。 In Patent Document 5, in order to solve this problem, an outermost UV absorbing layer was provided with an adhesive layer and an acrylic resin layer containing a UV absorber. In this case, since the ultraviolet transmittance decreases to about 5%, a high reflectance can be maintained for a long time. However, when left in a harsh environment for a long time, the ultraviolet absorber itself is deteriorated by solar heat, so that the resin base material is deteriorated and the reflectance is deteriorated. Moreover, when a ultraviolet absorber is added in large quantities, the problem that a bleed-out and the transmittance | permeability fall will arise. Further, although an acrylic layer is used as a barrier layer for water vapor or oxygen, there is a problem that it cannot withstand long-term use because it cannot completely block water vapor or oxygen.
特開2005-59382号公報JP 2005-59382 A 特開平6-38860号公報JP-A-6-38860 特表2007-525550号公報Special table 2007-525550 gazette 特開昭61-154942号公報JP 61-154942 A 米国特許第6,989,924号明細書US Pat. No. 6,989,924
 本発明は、上記課題に鑑みなされたものであり、その目的は、太陽熱発電用フィルムミラーとして過酷な環境下で長期間用いられた場合であっても、紫外線吸収剤のブリードアウトが少なく、正反射率の低下を十分に抑制することが可能であり、軽量で柔軟性があり、製造コストを抑え大面積化・大量生産することのできる、太陽熱に対して良好な正反射率を有し、密着性、耐候性及び冷熱衝撃耐性に優れるフィルムミラー、その製造方法、及びそのフィルムミラーを用いた太陽熱発電用反射装置を提供することである。 The present invention has been made in view of the above problems, and its purpose is to reduce the bleed-out of the ultraviolet absorber even when used as a film mirror for solar power generation for a long time in a harsh environment. It is possible to sufficiently suppress the decrease in reflectivity, it is lightweight and flexible, has a good regular reflectivity with respect to solar heat, which can reduce the manufacturing cost and increase the area and mass production, It is providing the film mirror which is excellent in adhesiveness, a weather resistance, and a thermal shock resistance, its manufacturing method, and the solar power generation reflective apparatus using the film mirror.
 本発明の上記課題は、以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.樹脂基材上に、少なくとも金属からなる反射層及び紫外線吸収層を有するフィルムミラーであって、該紫外線吸収層が高分子型紫外線吸収剤を含有する紫外線吸収層からなる、または、該金属からなる反射層が銀反射層であり、該紫外線吸収層が紫外線吸収剤を含有する紫外線吸収層(1)及び銀の腐食防止能を有する紫外線吸収剤を含有する紫外線吸収層(2)からなることを特徴とするフィルムミラー。 1. A film mirror having at least a reflective layer made of a metal and an ultraviolet absorbing layer on a resin substrate, wherein the ultraviolet absorbing layer is made of an ultraviolet absorbing layer containing a polymeric ultraviolet absorber, or made of the metal The reflection layer is a silver reflection layer, and the ultraviolet absorption layer is composed of an ultraviolet absorption layer (1) containing an ultraviolet absorber and an ultraviolet absorption layer (2) containing an ultraviolet absorber having an anticorrosive ability for silver. Characteristic film mirror.
 2.樹脂基材上に、少なくとも金属からなる反射層及び紫外線吸収層を有するフィルムミラーであって、該紫外線吸収層が高分子型紫外線吸収剤を含有する紫外線吸収層からなることを特徴とする前記1に記載のフィルムミラー。 2. 1. A film mirror having at least a reflective layer made of a metal and an ultraviolet absorbing layer on a resin substrate, wherein the ultraviolet absorbing layer comprises an ultraviolet absorbing layer containing a polymer type ultraviolet absorber. The film mirror described in 1.
 3.前記樹脂基材が、ポリエステル、ポリエチレンナフタレート、アクリル、ポリカーボネート、ポリオレフィン、セルロースまたはポリアミドを含む樹脂フィルムであることを特徴とする前記1または2に記載のフィルムミラー。 3. 3. The film mirror as described in 1 or 2 above, wherein the resin substrate is a resin film containing polyester, polyethylene naphthalate, acrylic, polycarbonate, polyolefin, cellulose, or polyamide.
 4.前記金属からなる反射層が、金、銀、銅、アルミニウム、またはそれらの合金を含むことを特徴とする前記2~3のいずれか1項に記載のフィルムミラー。 4. 4. The film mirror according to any one of 2 to 3, wherein the reflective layer made of metal contains gold, silver, copper, aluminum, or an alloy thereof.
 5.前記金属からなる反射層が、湿式めっきで作製されたものであることを特徴とする前記2~4のいずれか1項に記載のフィルムミラー。 5. 5. The film mirror according to any one of 2 to 4, wherein the reflective layer made of metal is produced by wet plating.
 6.前記金属からなる反射層が、乾式めっきで作製されたものであることを特徴とする前記2~4のいずれか1項に記載のフィルムミラー。 6. 5. The film mirror according to any one of 2 to 4, wherein the reflective layer made of metal is produced by dry plating.
 7.前記金属からなる反射層が、樹脂基材よりも光入射側に設けられることを特徴とする前記2~6のいずれか1項に記載のフィルムミラー。 7. 7. The film mirror as described in any one of 2 to 6, wherein the reflective layer made of metal is provided on the light incident side with respect to the resin base material.
 8.前記高分子型紫外線吸収剤を含む層が、前記金属からなる反射層よりも光入射側に設けられることを特徴とする前記2~7のいずれか1項に記載のフィルムミラー。 8. 8. The film mirror according to any one of 2 to 7, wherein the layer containing the polymeric ultraviolet absorber is provided on the light incident side of the reflective layer made of the metal.
 9.前記高分子型紫外線吸収剤を含む層が、エマルジョン状に分散された高分子型紫外線吸収剤液を塗布乾燥させて得られたものであることを特徴とする前記2~7のいずれか1項に記載のフィルムミラー。 9. 8. The method according to any one of 2 to 7, wherein the layer containing the polymer type ultraviolet absorber is obtained by applying and drying a polymer type ultraviolet absorber liquid dispersed in an emulsion form. The film mirror described in 1.
 10.前記高分子型紫外線吸収剤を含む層が、有機溶剤にて溶解させた樹脂液に高分子型紫外線吸収剤を添加して塗布後に溶媒を揮発乾燥させて得られたものであることを特徴とする前記2~8のいずれか1項に記載のフィルムミラー。 10. The layer containing the polymer type ultraviolet absorber is obtained by adding a polymer type ultraviolet absorber to a resin solution dissolved in an organic solvent and evaporating and drying the solvent after coating. 9. The film mirror as described in any one of 2 to 8 above.
 11.前記高分子型紫外線吸収剤を含む層が、紫外線硬化性モノマー樹脂液に高分子型紫外線吸収剤を添加して塗布後に紫外線硬化させて得られたものであることを特徴とする前記2~10のいずれか1項に記載のフィルムミラー。 11. The above-mentioned layers 2 to 10 are characterized in that the layer containing the polymeric ultraviolet absorber is obtained by adding a polymeric ultraviolet absorber to an ultraviolet curable monomer resin solution and curing it after coating. The film mirror of any one of these.
 12.前記高分子型紫外線吸収剤を含む層が、膜厚は50μm以下であり、光線透過率の平均値は90%以上であることを特徴とする前記2~11のいずれか1項に記載のフィルムミラー。 12. 12. The film as described in any one of 2 to 11 above, wherein the layer containing the polymeric ultraviolet absorber has a thickness of 50 μm or less and an average value of light transmittance of 90% or more. mirror.
 13.前記金属からなる反射層と接して、Cu層が設けられていることを特徴とする前記2~12のいずれか1項に記載のフィルムミラー。 13. 13. The film mirror according to any one of 2 to 12, wherein a Cu layer is provided in contact with the reflective layer made of the metal.
 14.前記金属からなる反射層と接して、チオエーテル系、チオール系、Ni系有機化合物系、ベンゾトリアゾール系、イミダゾール系、オキサゾール系、テトラザインデン系、ピリミジン系またはチアジアゾール系の腐食防止剤層が設けられていることを特徴とする前記2~13のいずれか1項に記載のフィルムミラー。 14. A thioether-based, thiol-based, Ni-based organic compound-based, benzotriazole-based, imidazole-based, oxazole-based, tetrazaindene-based, pyrimidine-based or thiadiazole-based corrosion inhibitor layer is provided in contact with the reflective layer made of the metal. 14. The film mirror as described in any one of 2 to 13 above, wherein
 15.樹脂基材上に、少なくとも金属からなる反射層及び紫外線吸収層を有するフィルムミラーであって、該金属からなる反射層が銀反射層であり、該銀反射層の上に銀の腐食防止能を有する紫外線吸収剤を含有する紫外線吸収層(2)を有し、さらにその上に紫外線吸収剤を含有する紫外線吸収層(1)を有することを特徴とする前記1に記載のフィルムミラー。 15. A film mirror having at least a reflective layer made of a metal and an ultraviolet absorbing layer on a resin base material, the reflective layer made of the metal being a silver reflective layer, and having a silver corrosion preventing ability on the silver reflective layer 2. The film mirror according to 1 above, further comprising an ultraviolet absorbing layer (2) containing the ultraviolet absorber and further having an ultraviolet absorbing layer (1) containing the ultraviolet absorber.
 16.前記紫外線吸収層(2)に含まれる腐食防止能を有する紫外線吸収剤が、銀に対する吸着性基を有し、かつ紫外線吸収能を有することを特徴とする前記15に記載のフィルムミラー。 16. 16. The film mirror as described in 15 above, wherein the ultraviolet absorber having corrosion inhibiting ability contained in the ultraviolet absorbing layer (2) has an adsorptive group for silver and has ultraviolet absorbing ability.
 17.前記紫外線吸収層(1)に含まれる紫外線吸収剤が、無機紫外線吸収剤であることを特徴とする前記15または16に記載のフィルムミラー。 17. 17. The film mirror as described in 15 or 16 above, wherein the ultraviolet absorber contained in the ultraviolet absorbing layer (1) is an inorganic ultraviolet absorber.
 18.前記紫外線吸収層(2)と銀反射層の間に、銀よりもイオン化傾向の高い金属を含有する金属層が前記銀反射層に隣接していることを特徴とする前記15~17のいずれか1項に記載のフィルムミラー。 18. Any of the above 15 to 17, wherein a metal layer containing a metal having a higher ionization tendency than silver is adjacent to the silver reflective layer between the ultraviolet absorbing layer (2) and the silver reflective layer. The film mirror according to item 1.
 19.前記紫外線吸収層(2)と銀反射層もしくは、紫外線吸収層(2)と金属層の間に接着層を有することを特徴とする前記15~18のいずれか1項に記載のフィルムミラー。 19. 19. The film mirror as described in any one of 15 to 18, wherein an adhesive layer is provided between the ultraviolet absorbing layer (2) and the silver reflecting layer or between the ultraviolet absorbing layer (2) and the metal layer.
 20.前記銀反射層に隣接する層の上側に、ガスバリア層を有することを特徴とする前記15~19のいずれか1項に記載のフィルムミラー。 20. 20. The film mirror as described in any one of 15 to 19, further comprising a gas barrier layer above the layer adjacent to the silver reflective layer.
 21.最外層に傷防止層を有することを特徴とする前記15~20のいずれか1項に記載のフィルムミラー。 21. 21. The film mirror as described in any one of 15 to 20, wherein a scratch preventing layer is provided as an outermost layer.
 22.前記樹脂基材を含めた層全体の厚さが、75~250μmであることを特徴とする前記15~21のいずれか1項に記載のフィルムミラー。 22. The film mirror according to any one of 15 to 21, wherein the entire layer including the resin base has a thickness of 75 to 250 μm.
 23.前記1~22のいずれか1項に記載のフィルムミラーを製造するフィルムミラーの製造方法であって、前記金属からなる反射層を銀蒸着によって形成することを特徴とするフィルムミラーの製造方法。 23. 23. A film mirror manufacturing method for manufacturing the film mirror according to any one of 1 to 22, wherein the reflective layer made of the metal is formed by silver vapor deposition.
 24.前記1~22のいずれか1項に記載のフィルムミラー、または前記23に記載のフィルムミラーの製造方法により得られたフィルムミラーを用いた太陽熱発電用反射装置であって、前記樹脂基材を挟んで前記金属からなる反射層を有する側とその反対側の樹脂基材面に塗設された粘着層を介して、金属基材上に前記フィルムミラーを貼り付けて形成されたことを特徴とする太陽熱発電用反射装置。 24. 23. A solar power generation reflector using the film mirror according to any one of 1 to 22 or the film mirror obtained by the method for producing a film mirror according to 23, wherein the resin base material is sandwiched between the reflectors. The film mirror is attached to a metal substrate through an adhesive layer coated on the side having the reflective layer made of metal and on the opposite side of the resin substrate. Reflector for solar power generation.
 本発明により、太陽熱発電用フィルムミラーとして過酷な環境下で長期間用いられた場合であっても、紫外線吸収剤のブリードアウトが少なく、正反射率の低下を十分に抑制することが可能であり、軽量で柔軟性があり、製造コストを抑え大面積化・大量生産することのできる、太陽熱に対して良好な正反射率を有し、密着性、耐候性及び冷熱衝撃耐性に優れるフィルムミラー、その製造方法、及びそのフィルムミラーを用いた太陽熱発電用反射装置を提供することができた。 According to the present invention, even when used as a film mirror for solar power generation in a harsh environment for a long period of time, there is little bleeding out of the ultraviolet absorber, and it is possible to sufficiently suppress the decrease in regular reflectance. A film mirror that is lightweight, flexible, has a good regular reflectance to solar heat, has excellent adhesion, weather resistance, and thermal shock resistance, can be manufactured in large areas and mass-produced with reduced manufacturing costs The manufacturing method and the solar power generation reflective apparatus using the film mirror could be provided.
 本発明者は、上記課題に鑑み検討を行った結果、金属からなる反射層を有するフィルムミラーを太陽熱発電用の反射装置として用いる場合、金属からなる反射層の高い反射率により使用開始時は高い反射率を得ることができるものの、強い太陽光に長時間晒された場合に、正反射率が低下する問題が発生することが明らかになった。金属、特に銀からなる反射層は、320nm以下の紫外線を透過する性質があることがその要因の一つと考えられた。 As a result of investigations in view of the above problems, the present inventors have found that when a film mirror having a reflective layer made of metal is used as a reflection device for solar power generation, the use is high due to the high reflectance of the reflective layer made of metal Although it is possible to obtain a reflectance, it has been revealed that the problem of a decrease in regular reflectance occurs when exposed to strong sunlight for a long time. One of the factors was considered that the reflective layer made of metal, particularly silver, has the property of transmitting ultraviolet light of 320 nm or less.
 太陽熱発電用のミラーとしてフィルムミラーを使用する場合は、フィルムミラー自体では十分な自己支持性が得られないため、アルミニウム金属等の金属支持体に貼り付けられて使用されることとなる。その際、金属からなる反射層を透過した紫外線は、金属からなる反射層の下層(光入射側から遠い側)の層を透過した後、金属支持体により反射されて再度金属からなる反射層の下層に入射することとなる。そのため、紫外線により金属からなる反射層の下層が劣化するか、または金属からなる反射層と下層との間が励起されることで、金属からなる反射層の劣化が進み、金属からなる反射層の正反射率の低下を引き起こすことが分かった。 When a film mirror is used as a mirror for solar thermal power generation, sufficient self-supporting property cannot be obtained with the film mirror itself, so that it is used by being attached to a metal support such as aluminum metal. At this time, the ultraviolet light that has passed through the reflective layer made of metal passes through the layer below the reflective layer made of metal (on the side far from the light incident side), and then is reflected by the metal support and again from the reflective layer made of metal. The light enters the lower layer. Therefore, the lower layer of the reflective layer made of metal is deteriorated by ultraviolet rays, or the excitation between the reflective layer made of metal and the lower layer causes the deterioration of the reflective layer made of metal, and the reflective layer made of metal progresses. It was found that the regular reflectance was lowered.
 また、太陽熱発電用フィルムミラーの設置場所として好ましい赤道に近い砂漠地帯では1日の温度差が30℃以上になることもあり、このような厳しい環境下では冷熱衝撃によって、フィルムミラーに添加した紫外線吸収剤はブリードアウト(表面への沁み出し、凝集固化して粉を吹いたようになる)し、正反射率の低下を引き起こすことが分かった。 Also, in the desert area close to the equator, which is the preferred location for installation of film mirrors for solar power generation, the daily temperature difference may be 30 ° C or higher. Under such severe conditions, ultraviolet rays added to the film mirrors due to thermal shock. It was found that the absorbent bleeds out (sucks out to the surface, agglomerates and solidifies as if powder is blown), causing a decrease in regular reflectance.
 本発明者は、上記課題に鑑み鋭意検討を行った結果、樹脂基材上に、少なくとも金属からなる反射層及び高分子型紫外線吸収剤を含有する層を有するフィルムミラーにより、太陽熱発電用フィルムミラーとして過酷な環境下で長期間用いられた場合であっても、正反射率の低下を十分に抑制することが可能であり、軽量で柔軟性があり、製造コストを抑え大面積化・大量生産することのできる、太陽熱に対して良好な正反射率を有し、密着性、耐候性及び冷熱衝撃耐性に優れるフィルムミラーが得られることを見出し、本発明に至った次第である。 As a result of intensive studies in view of the above problems, the present inventor has found that a film mirror for solar power generation is provided on a resin substrate with a film mirror having at least a reflective layer made of a metal and a layer containing a polymer ultraviolet absorber. Even when used in harsh environments for a long period of time, it is possible to sufficiently suppress the decrease in regular reflectance, and it is lightweight and flexible, reducing the manufacturing cost and increasing the area and mass production. It was found that a film mirror having good regular reflectance with respect to solar heat and excellent in adhesion, weather resistance and thermal shock resistance can be obtained, and the present invention has been achieved.
 本発明のフィルムミラーは、樹脂基材上に、構成層として少なくとも、樹脂基材、金属からなる反射層、及び高分子型紫外線吸収剤を含有する紫外線吸収層が設けられたフィルムミラーであることを特徴とする。特に金属からなる反射層は太陽光を赤外域から可視域まで効率よく反射できることから銀または銀合金の使用が好ましい。本発明の形態によれば、高分子型紫外線吸収剤を含有する紫外線吸収層を金属からなる反射層よりも光入射側に配置することで、金属からなる反射層を外部の酸素、水蒸気の影響から遮断して正反射率の低下を抑制できるとともに、金属からなる銀層の下層として設けられる樹脂基材や接着層が金属からなる反射層を透過した紫外線により劣化することで表面精度が粗くなり正反射率が低下する問題を効果的に抑制することが可能となる。また、紫外線吸収剤を高分子型紫外線吸収剤とすることで、急激な冷熱衝撃によって引き起こされる紫外線吸収剤のブリードアウトを抑制することができることを見出したものである。 The film mirror of the present invention is a film mirror in which at least a resin substrate, a reflective layer made of a metal, and an ultraviolet absorbing layer containing a polymer type ultraviolet absorber are provided as a constituent layer on a resin substrate. It is characterized by. In particular, the reflective layer made of metal is preferably made of silver or a silver alloy because sunlight can be efficiently reflected from the infrared region to the visible region. According to the embodiment of the present invention, the ultraviolet absorbing layer containing the polymer type ultraviolet absorber is disposed on the light incident side of the reflective layer made of metal, so that the reflective layer made of metal is influenced by external oxygen and water vapor. The surface accuracy is roughened because the resin base material and adhesive layer provided as the lower layer of the silver layer made of metal are deteriorated by ultraviolet rays that have passed through the reflective layer made of metal. It is possible to effectively suppress the problem that the regular reflectance decreases. Moreover, it discovered that the bleed-out of the ultraviolet absorber caused by a rapid thermal shock could be suppressed by using a polymer type ultraviolet absorber as the ultraviolet absorber.
 本発明者は、さらに、上記課題に鑑み鋭意検討を行った結果、樹脂基材上に銀反射層を設け、該銀反射層の上に銀の腐食防止能を有する紫外線吸収剤を含有する紫外線吸収層(2)を設け、その上に紫外線吸収剤を含有する紫外線吸収層(1)を設け、銀の変色防止に腐食防止能を持つ紫外線吸収剤を紫外線吸収層(2)に用いることで、その上層の紫外線吸収層(1)の紫外線吸収剤が経時劣化しても、腐食防止能を持つ紫外線吸収剤が紫外線吸収能を補うため、長期間劣化を抑制できることを見出し、本発明に至った次第である。 The present inventor further conducted an intensive study in view of the above problems, and as a result, an ultraviolet ray containing an ultraviolet absorber having a silver reflection layer on a resin base material and having a silver corrosion prevention ability on the silver reflection layer. By providing an absorption layer (2), an ultraviolet absorption layer (1) containing an ultraviolet absorber on the absorption layer, and using an ultraviolet absorber having an anti-corrosion ability for preventing discoloration of silver in the ultraviolet absorption layer (2) Further, even when the ultraviolet absorber of the upper ultraviolet absorbing layer (1) is deteriorated over time, the ultraviolet absorber having the anticorrosive ability supplements the ultraviolet absorbing ability, so that the deterioration can be suppressed for a long period of time. It depends on you.
 有機腐食防止剤は、紫外線吸収能は高いが、経時で性能が劣化する。それに対して、無機腐食防止剤の場合、紫外線吸収能はそれほど高くないが、経時における性能は低下しない。そのため、紫外線吸収剤として、無機紫外線吸収剤を用い、さらに紫外線吸収能をもつ腐食防止剤を組み合わせることで、さらに長期間高い反射率を保つことができる。 ¡Organic corrosion inhibitors have high UV absorption ability, but their performance deteriorates over time. On the other hand, in the case of an inorganic corrosion inhibitor, the ultraviolet absorption ability is not so high, but the performance over time does not deteriorate. Therefore, a high reflectance can be maintained for a longer period by using an inorganic ultraviolet absorber as the ultraviolet absorber and further combining a corrosion inhibitor having ultraviolet absorbing ability.
 また、無機バリア層は水蒸気や酸素をほぼ完全に遮断できるが、有機物である腐食防止剤層との密着性が問題となる場合がある。そこで、無機紫外線吸収層をその間に設けることで、無機バリア層を設けることが可能になり、さらに長期間高い反射率を保つことができる。このようにすることで、長期間にわたって、高い反射率を保つことができる太陽熱反射フィルムミラーを開発することができる。 In addition, although the inorganic barrier layer can almost completely block water vapor and oxygen, adhesion with an organic corrosion inhibitor layer may be problematic. Therefore, by providing an inorganic ultraviolet absorbing layer between them, an inorganic barrier layer can be provided, and a high reflectance can be maintained for a long period of time. By doing in this way, the solar reflective film mirror which can maintain a high reflectance over a long period of time can be developed.
 本発明のフィルムミラーは、樹脂基材上に、構成層として少なくとも、銀反射層、上部隣接層に腐食防止能を持つ紫外線吸収剤を含有する紫外線吸収層(2)、その上層に紫外線吸収剤を含有する紫外線吸収層(1)を有することを特徴とする。 The film mirror of the present invention comprises, on a resin substrate, at least a silver reflecting layer as a constituent layer, an ultraviolet absorbing layer (2) containing an ultraviolet absorber having an anticorrosive ability in an upper adjacent layer, and an ultraviolet absorber on the upper layer. It has the ultraviolet absorption layer (1) containing this, It is characterized by the above-mentioned.
 本発明の形態によれば、腐食防止能を有する紫外線吸収剤を含有する紫外線吸収層(2)の上層に紫外線吸収剤を含有する紫外線吸収層(1)を形成することにより、太陽熱に含まれる紫外線を吸収し、銀反射層や樹脂基材層の劣化を抑制することができる。この時、銀の腐食防止能を有する紫外線吸収剤を持つものを用いることで、最外層に大量の紫外線吸収剤を添加することに起因するブリードアウトや透過率の低下を抑えることができる。そのため、過酷な環境下においても、フィルムミラー各層の劣化を抑えることができ、長期間にわたって高い反射率を維持することができるフィルムミラーを開発することができる。 According to the embodiment of the present invention, the ultraviolet absorbing layer (1) containing the ultraviolet absorber is formed on the ultraviolet absorbing layer (2) containing the ultraviolet absorber having a corrosion preventing ability, so that it is included in the solar heat. It can absorb ultraviolet rays and suppress deterioration of the silver reflecting layer and the resin base material layer. At this time, by using a material having an ultraviolet absorber having an ability to prevent silver corrosion, bleeding out and a decrease in transmittance caused by adding a large amount of the ultraviolet absorber to the outermost layer can be suppressed. Therefore, it is possible to develop a film mirror that can suppress deterioration of each layer of the film mirror and maintain a high reflectance over a long period even in a harsh environment.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail.
 (フィルムミラーの構成概要)
 本発明のフィルムミラーは、樹脂基材上に、構成層として少なくとも、金属からなる反射層、高分子型紫外線吸収剤を含有する紫外線吸収剤層が設けられたフィルムミラー、または、樹脂基材上に、構成層として少なくとも、銀反射層、紫外線吸収能を有する銀の腐食防止剤層及びその上層に紫外線吸収層が設けられたフィルムミラーであることを特徴とする。構成層として、これらの層の他に、接着層、ガスバリア層、傷防止層等の特別な機能層を設けることも好ましい態様である。
(Outline of film mirror configuration)
The film mirror of the present invention is a film mirror in which at least a reflective layer made of metal as a constituent layer, an ultraviolet absorber layer containing a polymer type ultraviolet absorber is provided on a resin substrate, or a resin substrate. Further, it is characterized in that at least a silver reflection layer, a silver corrosion inhibitor layer having an ultraviolet absorbing ability, and a film mirror provided with an ultraviolet absorbing layer thereon are provided as constituent layers. In addition to these layers, a special functional layer such as an adhesive layer, a gas barrier layer, or a scratch-preventing layer is preferably provided as a constituent layer.
 (樹脂基材)
 本発明に係る樹脂基材(支持体)としては、従来公地の種々の樹脂フィルムを用いることができる。例えば、セルロースエステルフィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリアリレートフィルム、ポリスルホン(ポリエーテルスルホンも含む)フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネンフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、ポリアクリルフィルム等を挙げることができる。中でも、ポリカーボネート系フィルム、ポリエステル系フィルム、ノルボルネンフィルム、及びセルロースエステルフィルム、ポリメチルメタクリレートフィルム、ポリアクリルフィルムが好ましい。
(Resin base material)
As the resin base material (support) according to the present invention, various publicly known resin films can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyester film such as polyethylene naphthalate, polyethylene film, polypropylene film, cellophane, cellulose diacetate film, Cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene film, polymethylpentene film, polyether Le ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and a polyacrylic film, or the like. Among these, a polycarbonate film, a polyester film, a norbornene film, a cellulose ester film, a polymethyl methacrylate film, and a polyacryl film are preferable.
 特にポリエステル、ポリエチレンナフタレート、アクリル、ポリカーボネート、ポリオレフィン、セルロースまたはポリアミドを含む樹脂フィルムが好ましく、これらのフィルムは、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。金属からなる反射層の光入射側から遠い側にこれらの樹脂基材を有する場合には、金属からなる反射層を透過した紫外線による劣化及びそれに伴う正反射率の低下が問題となるが、本発明の構成によればそのような問題を効果的に抑制することが可能である。 In particular, a resin film containing polyester, polyethylene naphthalate, acrylic, polycarbonate, polyolefin, cellulose, or polyamide is preferable. These films are manufactured by solution casting even if they are films manufactured by melt casting. It may be a film made. When these resin base materials are provided on the side far from the light incident side of the reflective layer made of metal, deterioration due to ultraviolet rays transmitted through the reflective layer made of metal and the accompanying decrease in regular reflectance become a problem. According to the configuration of the invention, such a problem can be effectively suppressed.
 樹脂基材の厚さは、樹脂の種類及び目的等に応じて適切な厚さにすることが好ましい。例えば、一般的には10~300μmの範囲内であり、好ましくは20~200μm、さらに好ましくは30~100μmである。 It is preferable that the thickness of the resin base material is an appropriate thickness depending on the type and purpose of the resin. For example, it is generally in the range of 10 to 300 μm, preferably 20 to 200 μm, more preferably 30 to 100 μm.
 (金属からなる反射層)
 金属からなる反射層は、樹脂基材よりも光入射側に設けることが好ましい。
(Reflective layer made of metal)
The reflective layer made of metal is preferably provided on the light incident side of the resin base material.
 金属からなる反射層としては、例えば、銀または銀合金、その他、金、銅、アルミニウム、これらの合金も用いることができる。特に、銀を使用することが好ましい。このような反射層は、光を反射させる反射膜としての役割を果たす。反射層を銀または銀合金からなる膜とすることにより、フィルムミラーの可視光領域での反射率を高め、入射角による反射率の依存性を低減できる。可視光領域とは、400~700nmの波長領域を意味する。入射角とは、膜面に対して垂直な線に対する角度を意味する。 As the reflective layer made of metal, for example, silver or a silver alloy, gold, copper, aluminum, or an alloy thereof can be used. In particular, it is preferable to use silver. Such a reflective layer serves as a reflective film that reflects light. By making the reflective layer a film made of silver or a silver alloy, the reflectance in the visible light region of the film mirror can be increased, and the dependence of the reflectance on the incident angle can be reduced. The visible light region means a wavelength region of 400 to 700 nm. The incident angle means an angle with respect to a line perpendicular to the film surface.
 銀合金としては、反射層の耐久性が向上する点から、銀と、金、パラジウム、スズ、ガリウム、インジウム、銅、チタン及びビスマスからなる群から選ばれる1種以上の他の金属とからなる合金が好ましい。他の金属としては、高温耐湿性、反射率の点から、金が特に好ましい。 The silver alloy is composed of silver and one or more other metals selected from the group consisting of gold, palladium, tin, gallium, indium, copper, titanium and bismuth from the viewpoint of improving the durability of the reflective layer. Alloys are preferred. As the other metal, gold is particularly preferable from the viewpoint of high temperature humidity resistance and reflectance.
 反射層が銀合金からなる膜である場合、銀は、反射層における銀と他の金属との合計(100原子%)中、90~99.8原子%が好ましい。また、他の金属は、耐久性の点から0.2~10原子%が好ましい。 When the reflective layer is a film made of a silver alloy, 90 to 99.8 atomic percent of silver is preferable in the total (100 atomic percent) of silver and other metals in the reflective layer. Further, the other metal is preferably 0.2 to 10 atomic% from the viewpoint of durability.
 また、反射層の膜厚は、60~300nmが好ましく、80~200nmが特に好ましい。反射層の膜厚が60nm未満では、膜厚が薄く、光を透過してしまうため、フィルムミラーの可視光領域での反射率が低下する恐れがある。反射層の膜厚が300nmを超えると、反射層の表面に凹凸が発生しやすくなり、これにより光の散乱が生じてしまい、可視光領域での反射率が低下するおそれがある。 The film thickness of the reflective layer is preferably 60 to 300 nm, particularly preferably 80 to 200 nm. If the thickness of the reflective layer is less than 60 nm, the film thickness is thin and light is transmitted, so that the reflectance in the visible light region of the film mirror may be reduced. When the thickness of the reflective layer exceeds 300 nm, irregularities are likely to occur on the surface of the reflective layer, which causes light scattering, which may reduce the reflectance in the visible light region.
 金属からなる反射層は、湿式めっき、乾式めっき、銀蒸着で形成することが好ましい。 The reflective layer made of metal is preferably formed by wet plating, dry plating, or silver deposition.
 (銀反射層)
 本発明に係る銀反射層の形成法としては、湿式法及び乾式法のどちらも使用することができる。
(Silver reflection layer)
As a method for forming the silver reflective layer according to the present invention, either a wet method or a dry method can be used.
 湿式法とはめっき法の総称であり、溶液から金属を析出させ膜を形成する方法である。具体例を挙げると銀鏡反応等がある。 The wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction.
 一方、乾式法とは真空成膜法の総称であり、具体的に挙げると抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法等がある。とりわけ、本発明には連続的に成膜するロールツーロール方式が可能な蒸着法が好ましく用いられる。すなわち、本発明のフィルムミラーを製造するフィルムミラーの製造方法としては、銀反射層を銀蒸着によって形成することが好ましい。 On the other hand, the dry method is a general term for a vacuum film-forming method. Specifically, a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, a sputtering method, etc. There is. In particular, a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention. That is, as a film mirror manufacturing method for manufacturing the film mirror of the present invention, it is preferable to form the silver reflecting layer by silver vapor deposition.
 銀反射層の厚さは、反射率等の観点から、10~200nmが好ましく、より好ましくは30~150nmである。 The thickness of the silver reflective layer is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of reflectivity and the like.
 本発明において、銀反射層は樹脂基材(支持体)に対して光線入射側にあっても、その反対側にあっても良いが、支持体が樹脂であることから、光線による樹脂劣化を防止する目的から、光線入射側に位置する方が好ましい。 In the present invention, the silver reflective layer may be on the light incident side or on the opposite side with respect to the resin base material (support), but since the support is a resin, resin degradation due to light rays is prevented. For the purpose of preventing, it is preferable to be positioned on the light incident side.
 (紫外線吸収剤層)
 本発明の一つは、銀反射層の上に銀の腐食防止能を有する紫外線吸収剤を含有する紫外線吸収層(2)を有し、さらにその上に太陽熱や紫外線による劣化防止の目的で、紫外線吸収剤を含有する紫外線吸収層(1)を有することが特徴である。
(UV absorber layer)
One of the present invention has an ultraviolet absorbing layer (2) containing an ultraviolet absorber having an ability to prevent silver corrosion on the silver reflecting layer, and further on it for the purpose of preventing deterioration due to solar heat and ultraviolet rays, It is characterized by having an ultraviolet absorbing layer (1) containing an ultraviolet absorber.
 紫外線吸収層(1)に含まれる紫外線吸収剤は大別して、無機紫外線吸収剤と有機紫外線吸収剤に分類される。 UV absorbers contained in the UV absorbing layer (1) are roughly classified into inorganic UV absorbers and organic UV absorbers.
 無機紫外線吸収剤としては、酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄、酸化ジルコニウムが挙げられる。好ましくは酸化チタン、酸化亜鉛、酸化セリウムを用いるのがよく、より好ましくは酸化セリウムを用いるのがよい。 Examples of inorganic ultraviolet absorbers include titanium oxide, zinc oxide, cerium oxide, iron oxide, and zirconium oxide. Titanium oxide, zinc oxide, and cerium oxide are preferably used, and cerium oxide is more preferably used.
 有機紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、トリアジン系等が挙げられる。 Examples of organic ultraviolet absorbers include benzophenone, benzotriazole, phenyl salicylate, and triazine.
 ベンゾフェノン系紫外線吸収剤としては、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-n-オクトキシ-ベンゾフェノン、2-ヒドロキシ-4-ドデシロキシ-ベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシ-ベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシ-ベンゾフェノン、2,2′-ジヒドロキシ-4,4′-ジメトキシ-ベンゾフェノン、2,2′,4,4′-テトラヒドロキシ-ベンゾフェノン等が挙げられる。 Examples of the benzophenone ultraviolet absorber include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone.
 ベンゾトリアゾール系紫外線吸収剤としては、2-(2′-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-t-ブチル-5′-メチルフェニル)ベンゾトリアゾール等が挙げられる。 Examples of the benzotriazole ultraviolet absorber include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2 -(2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole and the like.
 サリチル酸フェニル系紫外線吸収剤としては、フェニルサルチレート、2-4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等が挙げられる。ヒンダードアミン系紫外線吸収剤としては、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート等が挙げられる。 Examples of the phenyl salicylate ultraviolet absorber include phenylsalicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like. Examples of the hindered amine ultraviolet absorber include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
 トリアジン系紫外線吸収剤としては、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン等が挙げられる。 Examples of triazine ultraviolet absorbers include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-). Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-) Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2- Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl)- 1,3,5-triazine and the like.
 紫外線吸収剤としては、上記以外に紫外線の保有するエネルギーを、分子内で振動エネルギーに変換し、その振動エネルギーを、熱エネルギー等として放出する機能を有する化合物が含まれる。上記の紫外線吸収剤を使用する場合は、紫外線吸収剤の光吸収波長が、光重合開始剤の有効波長と重ならないものを選択する必要がある。通常の紫外線防止剤を使用する場合は、可視光でラジカルを発生する光重合開始剤を使用することが有効である。 In addition to the above, the ultraviolet absorber includes a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as thermal energy. When using the above-mentioned ultraviolet absorber, it is necessary to select one in which the light absorption wavelength of the ultraviolet absorber does not overlap with the effective wavelength of the photopolymerization initiator. In the case of using a normal ultraviolet ray inhibitor, it is effective to use a photopolymerization initiator that generates radicals with visible light.
 紫外線吸収剤の使用量は、0.1~20質量%、好ましくは1~15質量%、さらに好ましくは3~10質量%である。20質量%よりも多いと密着性が悪くなり、0.1質量%より少ないと耐候性改良効果が小さい。 The amount of the ultraviolet absorber used is 0.1 to 20% by mass, preferably 1 to 15% by mass, and more preferably 3 to 10% by mass. When the amount is more than 20% by mass, the adhesion is deteriorated.
 (高分子型紫外線吸収剤を含有する紫外線吸収層)
 本発明の一つは、高分子型紫外線吸収剤を含有する紫外線吸収層を有することを特徴とする。
(UV absorbing layer containing polymer UV absorber)
One aspect of the present invention is characterized by having an ultraviolet absorbing layer containing a polymeric ultraviolet absorber.
 〈高分子型紫外線吸収剤〉
 本発明に用いられる高分子型紫外線吸収剤とは、重量平均分子量が500以上の紫外線吸収剤をいう。重量平均分子量はゲル浸透クロマトグラフィー(GPC)装置で測定することができる。
<Polymer type UV absorber>
The polymer type ultraviolet absorber used in the present invention means an ultraviolet absorber having a weight average molecular weight of 500 or more. The weight average molecular weight can be measured with a gel permeation chromatography (GPC) apparatus.
 本発明に用いられる高分子型紫外線吸収剤としては、下記一般式(1)で表される化合物が好ましい。 As the polymer type ultraviolet absorber used in the present invention, a compound represented by the following general formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、Rは水素原子またはメチル基を表し、R及びRは水素原子、アルキル基またはアリール基を表し、Rはベンゾフェノン基またはベンゾトリアゾール基を表す。l、m及びnは1以上の整数を表し、l、m及びnの合計は100である。)
 R及びRで表されるアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基等の直鎖状、分枝鎖状もしくは環状のアルキル基等が挙げられる。
(Wherein R represents a hydrogen atom or a methyl group, R 1 and R 2 represent a hydrogen atom, an alkyl group or an aryl group, R 3 represents a benzophenone group or a benzotriazole group. L, m and n are 1) The above integers are represented, and the sum of l, m, and n is 100.)
Examples of the alkyl group represented by R 1 and R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and 1-methylbutyl. Group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, hexyl group, 1-methylpentyl group 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 1,2-dimethylbutyl group 1,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, heptyl group, octyl group, nonyl , Decyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, straight-chain such cyclodecyl group, an alkyl group, branched chain or cyclic and the like.
 R及びRで表されるアリール基としては、例えばフェニル基、トリル基、キシリル基、エチルフェニル基、ベンジル基、フェネチル基等を挙げることができる。 Examples of the aryl group represented by R 1 and R 2 include a phenyl group, a tolyl group, a xylyl group, an ethylphenyl group, a benzyl group, and a phenethyl group.
 その他の高分子型紫外線吸収剤としては、例えば特開2004-42614号公報に記載の化合物が挙げられる。具体的には[2-ヒドロキシ-4-(メタクリロイルオキシエトキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2-ヒドロキシ-4-(メタクリロイルオキシメトキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2-ヒドロキシ-4-(メタクリロイルオキシオクトキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2-ヒドロキシ-4-(メタクリロイルオキシドデシロキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2-ヒドロキシ-4-(メタクリロイルオキシベンジロキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2,2′-ジヒドロキシ-4-(メタクリロイルオキシエトキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2,2′-ジヒドロキシ-4-(メタクリロイルオキシメトキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2,2′-ジヒドロキシ-4-(メタクリロイルオキシオクトキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2,2′-ジヒドロキシ-4-(メタクリロイルオキシベンジロキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2,2-ジヒドロキシ-4-(メタクリロイルオキシドデシロキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2,2′,4-トリヒドロキシ-4′-(メタクリロイルオキシエトキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2,2′,4-トリヒドロキシ-4′-(メタクリロイルオキシメトキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2,2′,4-トリヒドロキシ-4′-(メタクリロイルオキシオクトキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2,2′,4-トリヒドロキシ-4′-(メタクリロイルオキシドデシロキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2,2′,4-トリヒドロキシ-4′-(メタクリロイルオキシベンジロキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[4-ヒドロキシ-4′-(メタクリロイルオキシエトキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[4-ヒドロキシ-4′-(メタクリロイルオキシメトキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[4-ヒドロキシ-4′-(メタクリロイルオキシオクトキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[4-ヒドロキシ-4′-(メタクリロイルオキシドデシロキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[4-ヒドロキシ-4′-(メタクリロイルオキシベンジロキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2-ヒドロキシ-4′-メチル-4-(メタクリロイルオキシエトキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2-ヒドロキシ-4′-メチル-4-(メタクリロイルオキシメトキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2-ヒドロキシ-4′-メチル-4-(メタクリロイルオキシオクトキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2-ヒドロキシ-4′-メチル-4-(メタクリロイルオキシドデシロキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2-ヒドロキシ-4′-メチル-4-(メタクリロイルオキシベンジロキシ)ベンゾフェノン]-メタクリル酸メチル共重合体、[2-(2′-ヒドロキシ-4′-メタクリロイルオキシエトキシ)ベンゾトリアゾール]-メタクリル酸メチル共重合体、[2-(2′-ヒドロキシ-4′-メタクリロイルオキシエトキシ)-5-クロロベンゾトリアゾール]-メタクリル酸メチル共重合体等が挙げられる。さらには2,2′-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール]等の分子量500以上の高分子型紫外線吸収剤も好適である。 Examples of other polymer type ultraviolet absorbers include compounds described in JP-A-2004-42614. Specifically, [2-hydroxy-4- (methacryloyloxyethoxy) benzophenone] -methyl methacrylate copolymer, [2-hydroxy-4- (methacryloyloxymethoxy) benzophenone] -methyl methacrylate copolymer, [2 -Hydroxy-4- (methacryloyloxyoctoxy) benzophenone] -methyl methacrylate copolymer, [2-hydroxy-4- (methacryloyloxidedecyloxy) benzophenone] -methyl methacrylate copolymer, [2-hydroxy-4 -(Methacryloyloxybenzyloxy) benzophenone] -methyl methacrylate copolymer, [2,2'-dihydroxy-4- (methacryloyloxyethoxy) benzophenone] -methyl methacrylate copolymer, [2,2'-dihydroxy- 4- (Metak Royloxymethoxy) benzophenone] -methyl methacrylate copolymer, [2,2'-dihydroxy-4- (methacryloyloxyoctoxy) benzophenone] -methyl methacrylate copolymer, [2,2'-dihydroxy-4- (Methacryloyloxybenziloxy) benzophenone] -methyl methacrylate copolymer, [2,2-dihydroxy-4- (methacryloyloxidedecyloxy) benzophenone] -methyl methacrylate copolymer, [2,2 ′, 4-tri Hydroxy-4 '-(methacryloyloxyethoxy) benzophenone] -methyl methacrylate copolymer, [2,2', 4-trihydroxy-4 '-(methacryloyloxymethoxy) benzophenone] -methyl methacrylate copolymer, [ 2,2 ', 4-trihydroxy- '-(Methacryloyloxyoctoxy) benzophenone] -methyl methacrylate copolymer, [2,2', 4-trihydroxy-4 '-(methacryloyloxidedecyloxy) benzophenone] -methyl methacrylate copolymer, [2 , 2 ', 4-Trihydroxy-4'-(methacryloyloxybenzyloxy) benzophenone] -methyl methacrylate copolymer, [4-hydroxy-4 '-(methacryloyloxyethoxy) benzophenone] -methyl methacrylate copolymer [4-hydroxy-4 ′-(methacryloyloxymethoxy) benzophenone] -methyl methacrylate copolymer, [4-hydroxy-4 ′-(methacryloyloxyoctoxy) benzophenone] -methyl methacrylate copolymer, [4 -Hydroxy-4 '-(methacryl Royl oxide decyloxy) benzophenone] -methyl methacrylate copolymer, [4-hydroxy-4 '-(methacryloyloxybenzyloxy) benzophenone] -methyl methacrylate copolymer, [2-hydroxy-4'-methyl-4 -(Methacryloyloxyethoxy) benzophenone] -methyl methacrylate copolymer, [2-hydroxy-4'-methyl-4- (methacryloyloxymethoxy) benzophenone] -methyl methacrylate copolymer, [2-hydroxy-4 ' -Methyl-4- (methacryloyloxyoctoxy) benzophenone] -methyl methacrylate copolymer, [2-hydroxy-4'-methyl-4- (methacryloyloxidedecyloxy) benzophenone] -methyl methacrylate copolymer, [ 2-hydroxy-4'-me 4- (methacryloyloxybenzyloxy) benzophenone] -methyl methacrylate copolymer, [2- (2'-hydroxy-4'-methacryloyloxyethoxy) benzotriazole] -methyl methacrylate copolymer, [2- (2′-hydroxy-4′-methacryloyloxyethoxy) -5-chlorobenzotriazole] -methyl methacrylate copolymer and the like. In addition, 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol] and other high molecular weight ultraviolet absorptions of 500 or more Agents are also suitable.
 本発明においては、アクリルポリマーに紫外線吸収ユニットがグラフト重合した化合物も、高分子型紫外線吸収剤として使用することができる。これは、アクリルポリマーのポリマー鎖に紫外線の吸収能を有する紫外線吸収ユニットをグラフト重合により導入した構造の化合物である。 In the present invention, a compound in which an ultraviolet absorption unit is graft-polymerized on an acrylic polymer can also be used as a polymer ultraviolet absorber. This is a compound having a structure in which an ultraviolet absorbing unit having an ultraviolet absorbing ability is introduced into a polymer chain of an acrylic polymer by graft polymerization.
 このアクリルポリマーを構成するアクリルモノマーとしては、アクリル酸、メタアクリル酸、アクリル酸アルキルエステル、メタアクリル酸アルキルエステル、アクリルアミド、メタアクリルアミド、これらのアクリルモノマーと共重合性の二重結合を有するビニル化合物との共重合ポリマー等が挙げられる。 Acrylic monomers constituting this acrylic polymer include acrylic acid, methacrylic acid, acrylic acid alkyl ester, methacrylic acid alkyl ester, acrylamide, methacrylamide, and vinyl compounds having a double bond copolymerizable with these acrylic monomers. And a copolymerized polymer.
 この共重合性ビニル化合物としては、例えばメチルビニルエーテル、エチルビニルエーテル等のアルキルビニルエーテル;酢酸ビニル、エチルビニル、2-エチルヘキシルビニル等のアルキルビニルエステル;スチレン、無水マレイン酸等が挙げられる。これらのアクリルポリマーの数平均分子量は20,000~200,000のものであり、50,000~200,000のものが好ましい。 Examples of the copolymerizable vinyl compound include alkyl vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; alkyl vinyl esters such as vinyl acetate, ethyl vinyl and 2-ethylhexyl vinyl; styrene and maleic anhydride. These acrylic polymers have a number average molecular weight of 20,000 to 200,000, preferably 50,000 to 200,000.
 このアクリルポリマーに導入する紫外線吸収ユニットとしては、紫外線吸収能を有する化合物であればよく、例えば上述したベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、安息香酸エステル化合物等が挙げられる。これらの化合物をグラフト重合によりアクリルポリマーのポリマー鎖に導入する。この場合、アクリルポリマーに導入された紫外線吸収ユニットの割合は、紫外線吸収剤の全質量に対して40~90質量%であり、好ましくは50~80質量%である。 The ultraviolet absorption unit introduced into the acrylic polymer may be a compound having ultraviolet absorption ability, and examples thereof include the above-described benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, benzoate compounds, and the like. These compounds are introduced into the polymer chain of the acrylic polymer by graft polymerization. In this case, the proportion of the ultraviolet absorbing unit introduced into the acrylic polymer is 40 to 90% by mass, preferably 50 to 80% by mass, based on the total mass of the ultraviolet absorber.
 高分子型紫外線吸収剤を含む層としては、これらのアクリルポリマーに紫外線吸収ユニットがグラフト重合した化合物の他、下記に挙げるようなバインダーに高分子型紫外線吸収剤を添加して使用してもよい。 As a layer containing a polymer type ultraviolet absorber, in addition to a compound obtained by graft polymerization of an ultraviolet absorption unit to these acrylic polymers, a polymer type ultraviolet absorber may be added to a binder as described below. .
 〈バインダー〉
 バインダーとしては、例えば、ポリメタクリル酸エステル、ポリメタクリル酸、ポリアクリル酸エステル、ポリアクリル酸、及びこれらの共重合体の少なくともいずれかを含有するものが挙げられ、さらに具体的には、ダイヤナールBR-80(三菱レイヨン株式会社製)等が挙げられる。ここで、ダイヤナールBR-80(三菱レイヨン株式会社製)は、ポリメチルメタクリレートである。
<binder>
Examples of the binder include those containing at least one of polymethacrylic acid ester, polymethacrylic acid, polyacrylic acid ester, polyacrylic acid, and copolymers thereof, and more specifically, dialnal. BR-80 (Mitsubishi Rayon Co., Ltd.) etc. are mentioned. Here, Dialnal BR-80 (manufactured by Mitsubishi Rayon Co., Ltd.) is polymethyl methacrylate.
 また、前記高分子型紫外線吸収剤の質量と前記バインダーの質量との比率(高分子型紫外線吸収剤の質量/前記バインダーの質量)は、0.25~0.60であることが好ましく、0.30~0.60であることがより好ましく、0.40~0.55であることが特に好ましい。前記高分子型紫外線吸収剤の質量と前記バインダーの質量との比率(前記紫外線吸収剤の質量/前記バインダーの質量)が、0.25以上であると、コストが低下し、0.60以下であると紫外線吸収剤がブリードアウトしにくくなる。 The ratio of the mass of the polymeric ultraviolet absorber to the mass of the binder (the mass of the polymeric ultraviolet absorber / the mass of the binder) is preferably 0.25 to 0.60. More preferably, it is 30 to 0.60, and particularly preferably 0.40 to 0.55. When the ratio of the mass of the polymer type ultraviolet absorber to the mass of the binder (the mass of the ultraviolet absorber / the mass of the binder) is 0.25 or more, the cost is reduced and 0.60 or less. When it exists, it will become difficult for a ultraviolet absorber to bleed out.
 〈ポリメタクリル酸エステル〉
 前記ポリメタクリル酸エステルのモノマー成分としては、メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、sec-ブチルメタクリレート、tert-ブチルメタクリレート、アミルメタクリレート、ヘキシルメタクリレート、シクロヘキシルメタクリレート、ベンジルメタクリレート、クロロベンジルメタクリレート、オクチルメタクリレート、ステアリルメタクリレート、スルフォプロピルメタクリレート、N-エチル-N-フェニルアミノエチルメタクリレート、2-(3-フェニルプロピルオキシ)エチルメタクリレート、ジメチルアミノフェノキシエチルメタクリレート、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、フェニルメタクリレート、クレジルメタクリレート、ナフチルメタクリレート、2-ヒドロキシエチルメタクリレート、4-ヒドロキシブチルメタクリレート、トリエチレングリコールモノメタクリレート、ジプロピレングリコールモノメタクリレート、2-メトキシエチルメタクリレート、3-メトキシブチルメタクリレート、2-アセトキシエチルメタクリレート、2-アセトアセトキシエチルメタクリレート、2-エトキシエチルメタクリレート、2-iso-プロポキシエチルメタクリレート、2-ブトキシエチルメタクリレート、2-(2-メトキシエトキシ)エチルメタクリレート、2-(2-エトキシエトキシ)エチルメタクリレート、2-(2-ブトキシエトキシ)エチルメタクリレート、ω-メトキシポリエチレングリコールメタクリレート(付加モル数n=6)、アクリルメタクリレート、メタクリル酸ジメチルアミノエチルメチルクロライド塩等を挙げることができる。
<Polymethacrylate>
As the monomer component of the polymethacrylic acid ester, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate, amyl methacrylate, hexyl methacrylate, cyclohexyl Methacrylate, benzyl methacrylate, chlorobenzyl methacrylate, octyl methacrylate, stearyl methacrylate, sulfopropyl methacrylate, N-ethyl-N-phenylaminoethyl methacrylate, 2- (3-phenylpropyloxy) ethyl methacrylate, dimethylaminophenoxyethyl methacrylate, full Furyl methacrylate, tetrahi Rofurfuryl methacrylate, phenyl methacrylate, cresyl methacrylate, naphthyl methacrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl methacrylate, triethylene glycol monomethacrylate, dipropylene glycol monomethacrylate, 2-methoxyethyl methacrylate, 3-methoxybutyl methacrylate 2-acetoxyethyl methacrylate, 2-acetoacetoxyethyl methacrylate, 2-ethoxyethyl methacrylate, 2-iso-propoxyethyl methacrylate, 2-butoxyethyl methacrylate, 2- (2-methoxyethoxy) ethyl methacrylate, 2- (2- Ethoxyethoxy) ethyl methacrylate, 2- (2-butoxyethoxy) ethyl methacrylate, ω -Methoxypolyethyleneglycol methacrylate (added mole number n = 6), acrylic methacrylate, dimethylaminoethylmethyl chloride methacrylate salt and the like.
 〈ポリアクリル酸エステル〉
 前記ポリアクリル酸エステルのモノマー成分としては、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、sec-ブチルアクリレート、tert-ブチルアクリレート、アミルアクリレート、ヘキシルアクリレート、2-エチルヘキシルアクリレート、オクチルアクリレート、tert-オクチルアクリレート、2-クロロエチルアクリレート、2-ブロモエチルアクリレート、4-クロロブチルアクリレート、シアノエチルアクリレート、2-アセトキシエチルアクリレート、ジメチルアミノエチルアクリレート、ベンジルアクリレート、メトキシベンジルアクリレート、2-クロロシクロヘキシルアクリレート、シクロヘキシルアクリレート、フルフリルアクリレート、テトラヒドロフルフリルアクリレート、フェニルアクリレート、5-ヒドロキシペンチルアクリレート、2-メトキシエチルアクリレート、3-メトキシブチルアクリレート、2-エトキシブチルアクリレート、2-エトキシエチルアクリレート、2-iso-プロポキシアクリレート、2-ブトキシエチルアクリレート、2-(2-メトキシエトキシ)エチルアクリレート、2-(2-メトキシエトキシ)エチルアクリレート、2-(2-ブトキシエトキシ)エチルアクリレート、ω-メトキシポリエチレングリコールアクリレート(付加モル数n=9)、1-ブロモ-2-メトキシエチルアクリレート、1,1-ジクロロ-2-エトキシエチルアクリレート等が挙げられる。
<Polyacrylic acid ester>
Examples of the monomer component of the polyacrylic acid ester include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate, amyl acrylate, and hexyl acrylate. 2-ethylhexyl acrylate, octyl acrylate, tert-octyl acrylate, 2-chloroethyl acrylate, 2-bromoethyl acrylate, 4-chlorobutyl acrylate, cyanoethyl acrylate, 2-acetoxyethyl acrylate, dimethylaminoethyl acrylate, benzyl acrylate, methoxy Benzyl acrylate, 2-chlorocyclohexyl acrylate, cyclohexane Sil acrylate, furfuryl acrylate, tetrahydrofurfuryl acrylate, phenyl acrylate, 5-hydroxypentyl acrylate, 2-methoxyethyl acrylate, 3-methoxybutyl acrylate, 2-ethoxybutyl acrylate, 2-ethoxyethyl acrylate, 2-iso-propoxy Acrylate, 2-butoxyethyl acrylate, 2- (2-methoxyethoxy) ethyl acrylate, 2- (2-methoxyethoxy) ethyl acrylate, 2- (2-butoxyethoxy) ethyl acrylate, ω-methoxypolyethylene glycol acrylate (addition mole) Number n = 9), 1-bromo-2-methoxyethyl acrylate, 1,1-dichloro-2-ethoxyethyl acrylate and the like.
 高分子型紫外線吸収剤を含む層の形成は、エマルジョン状に分散された高分子型紫外線吸収剤液を塗布乾燥して得ることが好ましく、有機溶剤にて溶解させた樹脂液に高分子型紫外線吸収剤を添加して塗布後に溶媒を揮発乾燥させて得ることもできる。 The formation of the layer containing the polymeric ultraviolet absorber is preferably obtained by applying and drying a polymeric ultraviolet absorbent liquid dispersed in an emulsion, and the polymeric ultraviolet absorbent is dissolved in a resin liquid dissolved in an organic solvent. It can also be obtained by adding an absorbent and evaporating and drying the solvent after coating.
 また、高分子型紫外線吸収剤を含む層は、紫外線硬化性モノマー樹脂液に高分子型紫外線吸収剤を添加して塗布後に紫外線硬化することが好ましい。 Also, the layer containing the polymeric UV absorber is preferably cured after being applied by adding the polymeric UV absorber to the UV curable monomer resin solution.
 高分子型紫外線吸収剤を含む層は、膜厚は50μm以下で、光線透過率の平均値が90%以上であることが好ましい。 The layer containing a polymer type ultraviolet absorber preferably has a film thickness of 50 μm or less and an average value of light transmittance of 90% or more.
 (腐食防止剤)
 本発明のフィルムミラーには、金属からなる反射層の腐食防止剤を含有することが好ましい。ここで、「腐食」とは、金属(銀)がそれを取り囲む環境物質によって、化学的または電気化学的に浸食されるかもしくは材質的に劣化する現象をいう(JIS Z0103-2004参照)。
(Corrosion inhibitor)
The film mirror of the present invention preferably contains a corrosion inhibitor for the reflective layer made of metal. Here, the term “corrosion” refers to a phenomenon in which metal (silver) is chemically or electrochemically eroded or deteriorated by the environmental material surrounding it (see JIS Z0103-2004).
 本発明のフィルムミラーは、前記接着層が酸化防止剤を含有し、かつ金属からなる反射層の隣接層が銀に対する吸着性基を有する腐食防止剤を含有していることが好ましい。 In the film mirror of the present invention, the adhesive layer preferably contains an antioxidant, and the adjacent layer of the reflective layer made of metal contains a corrosion inhibitor having an adsorptive group for silver.
 なお、腐食防止剤の含有量は、使用する化合物によって最適量は異なるが、一般的には、0.1~1.0g/mの範囲内であることが好ましい。 The optimum amount of the corrosion inhibitor varies depending on the compound to be used, but generally it is preferably within the range of 0.1 to 1.0 g / m 2 .
 銀反射層の腐食防止剤としては、大別して、銀に対する吸着性基を有する腐食防止剤と酸化防止剤が好ましく用いられる。 As the corrosion inhibitor for the silver reflective layer, broadly speaking, a corrosion inhibitor and an antioxidant having an adsorptive group for silver are preferably used.
 〈銀に対する吸着性基を有する腐食防止剤〉
 銀に対する吸着性基を有する腐食防止剤としては、アミン類及びその誘導体、ピロール環を有する化合物、トリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、銅キレート化合物類、チオ尿素類、メルカプト基を有する化合物、ナフタレン系の少なくとも一種またはこれらの混合物から選ばれることが望ましい。
<Corrosion inhibitor having an adsorptive group for silver>
Corrosion inhibitors having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring, compounds having a pyrazole ring, compounds having a thiazole ring, compounds having an imidazole ring, indazole It is desirable to select from a compound having a ring, a copper chelate compound, a thiourea, a compound having a mercapto group, at least one kind of naphthalene, or a mixture thereof.
 アミン類及びその誘導体としては、エチルアミン、ラウリルアミン、トリ-n-ブチルアミン、O-トルイジン、ジフェニルアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、2N-ジメチルエタノールアミン、2-アミノ-2-メチル-1,3-プロパンジオール、アセトアミド、アクリルアミド、ベンズアミド、p-エトキシクリソイジン、ジシクロヘキシルアンモニウムナイトライト、ジシクロヘキシルアンモニウムサリシレート、モノエタノールアミンベンゾエート、ジシクロヘキシルアンモニウムベンゾエート、ジイソプロピルアンモニウムベンゾエート、ジイソプロピルアンモニウムナイトライト、シクロヘキシルアミンカーバメイト、ニトロナフタレンアンモニウムナイトライト、シクロヘキシルアミンベンゾエート、ジシクロヘキシルアンモニウムシクロヘキサンカルボキシレート、シクロヘキシルアミンシクロヘキサンカルボキシレート、ジシクロヘキシルアンモニウムアクリレート、シクロヘキシルアミンアクリレート等、あるいはこれらの混合物が挙げられる。 Examples of amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, O-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N- Dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysoidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate, diisopropyl Ammonium benzoate, diisopropylammonium nitrite Cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexylammonium cyclohexanecarboxylate, cyclohexylamine cyclohexane carboxylate, dicyclohexylammonium acrylate, cyclohexylamine acrylate, or mixtures thereof.
 ピロール環を有する物としては、N-ブチル-2,5-ジメチルピロール、N-フェニル-2,5-ジメチルピロール、N-フェニル-3-ホルミル-2,5-ジメチルピロール、N-フェニル-3,4-ジホルミル-2,5-ジメチルピロール等、あるいはこれらの混合物が挙げられる。 Examples of compounds having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5-dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, and N-phenyl-3. , 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
 トリアゾール環を有する化合物としては、1,2,3-トリアゾール、1,2,4-トリアゾール、3-メルカプト-1,2,4-トリアゾール、3-ヒドロキシ-1,2,4-トリアゾール、3-メチル-1,2,4-トリアゾール、1-メチル-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、4-メチル-1,2,3-トリアゾール、ベンゾトリアゾール、トリルトリアゾール、1-ヒドロキシベンゾトリアゾール、4,5,6,7-テトラハイドロトリアゾール、3-アミノ-1,2,4-トリアゾール、3-アミノ-5-メチル-1,2,4-トリアゾール、カルボキシベンゾトリアゾール、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-5′-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-4-octoxyphenyl) Examples thereof include benzotriazole and a mixture thereof.
 ピラゾール環を有する化合物としては、ピラゾール、ピラゾリン、ピラゾロン、ピラゾリジン、ピラゾリドン、3,5-ジメチルピラゾール、3-メチル-5-ヒドロキシピラゾール、4-アミノピラゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
 チアゾール環を有する化合物としては、チアゾール、チアゾリン、チアゾロン、チアゾリジン、チアゾリドン、イソチアゾール、ベンゾチアゾール、2-N,N-ジエチルチオベンゾチアゾール、P-ジメチルアミノベンザルロダニン、2-メルカプトベンゾチアゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or a mixture thereof.
 イミダゾール環を有する化合物としては、イミダゾール、ヒスチジン、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、4-フォルミルイミダゾール、2-メチル-4-フォルミルイミダゾール、2-フェニル-4-フォルミルイミダゾール、4-メチル-5-フォルミルイミダゾール、2-エチル-4-メチル-5-フォルミルイミダゾール、2-フェニル-4-メチル-4-フォルミルイミダゾール、2-メルカプトベンゾイミダゾール等、あるいはこれらの混合物が挙げられる。 Compounds having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl. Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4 Formylimidazole, 4-methyl-5-formylimidazole, 2-ethyl-4-methyl-5-formylimidazole, 2-phenyl-4-methyl-4-formylimidazole, 2-mercaptobenzimidazole, etc., or These mixtures are mentioned.
 インダゾール環を有する化合物としては、4-クロロインダゾール、4-ニトロインダゾール、5-ニトロインダゾール、4-クロロ-5-ニトロインダゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
 銅キレート化合物類としては、アセチルアセトン銅、エチレンジアミン銅、フタロシアニン銅、エチレンジアミンテトラアセテート銅、ヒドロキシキノリン銅等、あるいはこれらの混合物が挙げられる。 Examples of copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and the like, or a mixture thereof.
 チオ尿素類としては、チオ尿素、グアニルチオ尿素等、あるいはこれらの混合物が挙げられる。 Examples of thioureas include thiourea, guanylthiourea, and the like, or a mixture thereof.
 メルカプト基を有する化合物としては、すでに上記に記載した材料も加えれば、メルカプト酢酸、チオフェノール、1,2-エタンジオール、3-メルカプト-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール、グリコールジメルカプトアセテート、3-メルカプトプロピルトリメトキシシラン等、あるいはこれらの混合物が挙げられる。 As a compound having a mercapto group, mercaptoacetic acid, thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto can be used by adding the above-described materials. -1,2,4-triazole, 2-mercaptobenzothiazole, 2-mercaptobenzimidazole, glycol dimercaptoacetate, 3-mercaptopropyltrimethoxysilane, etc., or a mixture thereof.
 ナフタレン系としては、チオナリド等が挙げられる。 Examples of naphthalene-based compounds include thionalide.
 〈酸化防止剤〉
 本発明のフィルムミラーに用いられる金属からなる反射層の腐食防止剤としては、酸化防止剤を用いることもできる。
<Antioxidant>
As the corrosion inhibitor for the reflective layer made of a metal used in the film mirror of the present invention, an antioxidant can also be used.
 酸化防止剤としては、フェノール系酸化防止剤、チオール系酸化防止剤及びホスファイト系酸化防止剤を使用することが好ましい。 As the antioxidant, it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, and a phosphite-based antioxidant.
 フェノール系酸化防止剤としては、例えば、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、2,2′-メチレンビス(4-エチル-6-t-ブチルフェノール)、テトラキス-〔メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート〕メタン、2,6-ジ-t-ブチル-p-クレゾール、4,4′-チオビス(3-メチル-6-t-ブチルフェノール)、4,4′-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,3,5-トリス(3′,5′-ジ-t-ブチル-4′-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、トリエチレングリコールビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、3,9-ビス[1,1-ジ-メチル-2-〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕エチル]-2,4,8,10-テトラオキオキサスピロ〔5,5〕ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等が挙げられる。特に、フェノール系酸化防止剤としては、分子量が550以上のものが好ましい。 Examples of phenolic antioxidants include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t- Butylphenol), tetrakis- [methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, stearyl-β- (3,5-di-t-butyl-4-hydroxyphenyl) propi , Triethylene glycol bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis [1,1-dimethyl-2- [β- (3- t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxoxaspiro [5,5] undecane, 1,3,5-trimethyl-2,4 And 6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene. In particular, the phenolic antioxidant preferably has a molecular weight of 550 or more.
 チオール系酸化防止剤としては、例えば、ジステアリル-3,3′-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)等を挙げられる。 Examples of the thiol-based antioxidant include distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis- (β-lauryl-thiopropionate), and the like.
 ホスファイト系酸化防止剤としては、例えば、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ジ(2,6-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス-(2,6-ジ-t-ブチル-4-メチルフェニル)-ペンタエリスリトールジホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4′-ビフェニレン-ジホスホナイト、2,2′-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト等が挙げられる。 Examples of the phosphite antioxidant include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol. Diphosphite, bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4'-biphenylene-diphosphonite 2,2'-methylenebis (4,6-di-t-butylphenyl) octyl phosphite and the like.
 なお、本発明においては、上記酸化防止剤と下記の光安定剤を併用することもできる。 In the present invention, the above antioxidant and the following light stabilizer can be used in combination.
 ヒンダードアミン系の光安定剤としては、例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、1-メチル-8-(1,2,2,6,6-ペンタメチル-4-ピペリジル)-セバケート、1-[2-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル]-4-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタン-テトラカルボキシレート、トリエチレンジアミン、8-アセチル-3-ドデシル-7,7,9,9-テトラメチル-1,3,8-トリアザスピロ[4,5]デカン-2,4-ジオン等が挙げられる。 Examples of the hindered amine light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6 6-Tetrame Lupiperidine, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane-tetracarboxylate, triethylenediamine, 8-acetyl-3-dodecyl-7,7,9 , 9-tetramethyl-1,3,8-triazaspiro [4,5] decane-2,4-dione.
 その他ニッケル系紫外線安定剤として、〔2,2′-チオビス(4-t-オクチルフェノレート)〕-2-エチルヘキシルアミンニッケル(II)、ニッケルコンプレックス-3,5-ジ-t-ブチル-4-ヒドロキシベンジル・リン酸モノエチレート、ニッケル・ジブチル-ジチオカーバメート等も使用することが可能である。 Other nickel-based UV stabilizers include [2,2'-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel (II), nickel complex-3,5-di-t-butyl-4- Hydroxybenzyl phosphate monoethylate, nickel dibutyl dithiocarbamate, etc. can also be used.
 特にヒンダードアミン系の光安定剤としては、3級のアミンのみを含有するヒンダードアミン系の光安定剤が好ましく、具体的には、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、または1,2,2,6,6-ペンタメチル-4-ピペリジノール/トリデシルアルコールと1,2,3,4-ブタンテトラカルボン酸との縮合物が好ましい。 In particular, as the hindered amine light stabilizer, a hindered amine light stabilizer containing only a tertiary amine is preferable. Specifically, bis (1,2,2,6,6-pentamethyl-4-piperidyl) is preferable. Sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl malonate, or A condensate of 1,2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid is preferred.
 また、金属からなる反射層の腐食防止のため、金属からなる反射層と接して、Cuを福層や、チオエーテル系、チオール系、Ni系有機化合物系、ベンゾトリアゾール系、イミダゾール系、オキサゾール系、テトラザインデン系、ピリミジン系またはチアジアゾール系の腐食防止剤層を設けることが好ましい。 In addition, in order to prevent corrosion of the reflective layer made of metal, Cu is in contact with the reflective layer made of metal, Cu is a layer, thioether, thiol, Ni organic compound, benzotriazole, imidazole, oxazole, It is preferable to provide a tetrazaindene-based, pyrimidine-based or thiadiazole-based corrosion inhibitor layer.
 (腐食防止能を有する紫外線吸収剤を含有する紫外線吸収層)
 本発明では、銀反射層の上に腐食防止能を有する紫外線吸収剤を含有する紫外線吸収層を有することが特徴である。
(Ultraviolet absorbing layer containing an ultraviolet absorber with anti-corrosion ability)
The present invention is characterized by having an ultraviolet absorbing layer containing an ultraviolet absorber having corrosion resistance on the silver reflective layer.
 なお、腐食防止能を有する紫外線吸収剤を含有する紫外線吸収層に含まれる紫外線吸収剤の含有量は、使用する化合物によって最適量は異なるが、一般的には、0.1~1.0g/mの範囲内であることが好ましい。 The content of the UV absorber contained in the UV absorber layer containing the UV absorber having corrosion prevention ability varies depending on the compound used, but is generally 0.1 to 1.0 g / preferably in the range of m 2.
 腐食防止能を有する紫外線吸収剤は、銀に対する吸着性基を有し、かつ紫外線吸収能を有することが好ましい。 It is preferable that the ultraviolet absorber having a corrosion preventing ability has an adsorptive group for silver and has an ultraviolet absorbing ability.
 〈銀に対する吸着性基を有し、腐食防止能を有する紫外線吸収剤〉
 銀に対する吸着性基を有し、腐食防止能を有する紫外線吸収剤としては、アミン類及びその誘導体、ピロール環を有する化合物、トリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、メルカプト基を有する化合物、ナフタレン系の少なくとも一種またはこれらの混合物から選ばれることが望ましい。
<Ultraviolet absorber with an adsorptive group for silver and anti-corrosion ability>
As an ultraviolet absorber having an adsorptive group for silver and having a corrosion inhibiting ability, amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring, compounds having a pyrazole ring, compounds having a thiazole ring, Desirably, the compound is selected from a compound having an imidazole ring, a compound having an indazole ring, a compound having a mercapto group, at least one kind of naphthalene, or a mixture thereof.
 アミン類及びその誘導体としては、O-トルイジン、ジフェニルアミン、ベンズアミド、p-エトキシクリソイジン、ジシクロヘキシルアンモニウムナイトライト、ジシクロヘキシルアンモニウムサリシレート、モノエタノールアミンベンゾエート、ジシクロヘキシルアンモニウムベンゾエート、ジイソプロピルアンモニウムベンゾエート、ジイソプロピルアンモニウムナイトライト、シクロヘキシルアミンカーバメイト、ニトロナフタレンアンモニウムナイトライト、シクロヘキシルアミンベンゾエート、ジシクロヘキシルアンモニウムシクロヘキサンカルボキシレート、シクロヘキシルアミンシクロヘキサンカルボキシレート、ジシクロヘキシルアンモニウムアクリレート、シクロヘキシルアミンアクリレート等、あるいはこれらの混合物が挙げられる。 Examples of amines and their derivatives include O-toluidine, diphenylamine, benzamide, p-ethoxychrysidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate, diisopropylammonium benzoate, diisopropylammonium nitrite, cyclohexyl Amine carbamate, nitronaphthalene ammonium nitrate, cyclohexylamine benzoate, dicyclohexylammonium cyclohexanecarboxylate, cyclohexylamine cyclohexanecarboxylate, dicyclohexylammonium acrylate, cyclohexylamine acrylate, etc., or a mixture thereof Thing, and the like.
 ピロール環を有する物としては、N-ブチル-2,5-ジメチルピロール、N-フェニル-2,5-ジメチルピロール、N-フェニル-3-ホルミル-2,5-ジメチルピロール、N-フェニル-3,4-ジホルミル-2,5-ジメチルピロール等、あるいはこれらの混合物が挙げられる。 Examples of compounds having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5-dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, and N-phenyl-3. , 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
 トリアゾール環を有する化合物としては、1,2,3-トリアゾール、1,2,4-トリアゾール、3-メルカプト-1,2,4-トリアゾール、3-ヒドロキシ-1,2,4-トリアゾール、3-メチル-1,2,4-トリアゾール、1-メチル-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、4-メチル-1,2,3-トリアゾール、ベンゾトリアゾール、トリルトリアゾール、1-ヒドロキシベンゾトリアゾール、4,5,6,7-テトラハイドロトリアゾール、3-アミノ-1,2,4-トリアゾール、3-アミノ-5-メチル-1,2,4-トリアゾール、カルボキシベンゾトリアゾール、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-5′-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-4-octoxyphenyl) Examples thereof include benzotriazole and a mixture thereof.
 ピラゾール環を有する化合物としては、ピラゾール、ピラゾリン、ピラゾロン、ピラゾリジン、ピラゾリドン、3,5-ジメチルピラゾール、3-メチル-5-ヒドロキシピラゾール、4-アミノピラゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
 チアゾール環を有する化合物としては、チアゾール、チアゾリン、チアゾロン、チアゾリジン、チアゾリドン、イソチアゾール、ベンゾチアゾール、2-N,N-ジエチルチオベンゾチアゾール、P-ジメチルアミノベンザルロダニン、2-メルカプトベンゾチアゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or a mixture thereof.
 イミダゾール環を有する化合物としては、イミダゾール、ヒスチジン、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、4-フォルミルイミダゾール、2-メチル-4-フォルミルイミダゾール、2-フェニル-4-フォルミルイミダゾール、4-メチル-5-フォルミルイミダゾール、2-エチル-4-メチル-5-フォルミルイミダゾール、2-フェニル-4-メチル-4-フォルミルイミダゾール、2-メルカプトベンゾイミダゾール等、あるいはこれらの混合物が挙げられる。 Compounds having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl. Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4 Formylimidazole, 4-methyl-5-formylimidazole, 2-ethyl-4-methyl-5-formylimidazole, 2-phenyl-4-methyl-4-formylimidazole, 2-mercaptobenzimidazole, etc., or These mixtures are mentioned.
 インダゾール環を有する化合物としては、4-クロロインダゾール、4-ニトロインダゾール、5-ニトロインダゾール、4-クロロ-5-ニトロインダゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
 メルカプト基を有する化合物としては、すでに上記に記載した材料も加えれば、チオフェノール、3-メルカプト-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール等、あるいはこれらの混合物が挙げられる。 As compounds having a mercapto group, thiophenol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, -Mercaptobenzothiazole, 2-mercaptobenzimidazole, etc., or a mixture thereof.
 ナフタレン系としては、チオナリド等が挙げられる。 Examples of naphthalene-based compounds include thionalide.
 (ガスバリア層)
 本発明のフィルムミラーは、ガスバリア層を有することが好ましい。
(Gas barrier layer)
The film mirror of the present invention preferably has a gas barrier layer.
 本発明に係るガスバリア層は、湿度の変動、特に高湿度による樹脂基材及び当該樹脂基材で保護される各種機能素子等の劣化を防止するためのものであるが、特別の機能・用途を持たせたものであってもよく、上記特徴を維持する限りにおいて、種々の態様のガスバリア層を設けることができる。本発明においては、前記金属からなる反射層の上側に、ガスバリア層を設けることが好ましい。 The gas barrier layer according to the present invention is intended to prevent deterioration of the humidity, particularly deterioration of the resin base material and various functional elements protected by the resin base material due to high humidity. As long as the above characteristics are maintained, various types of gas barrier layers can be provided. In the present invention, it is preferable to provide a gas barrier layer above the reflective layer made of the metal.
 当該ガスバリア層の防湿性としては、40℃、90%RHにおける水蒸気透過度が、100g/m・day/μm以下、好ましくは50g/m・day/μm以下、さらに好ましくは20g/m・day/μm以下となるように当該ガスバリア層の防湿性を調整することが好ましい。また。酸素透過度としては、測定温度23℃、湿度90%RHの条件下で、0.6ml/m/day/atm以下であることが好ましい。 As the moisture barrier property of the gas barrier layer, the water vapor permeability at 40 ° C. and 90% RH is 100 g / m 2 · day / μm or less, preferably 50 g / m 2 · day / μm or less, more preferably 20 g / m 2. -It is preferable to adjust the moisture-proof property of the gas barrier layer so as to be not more than day / μm. Also. The oxygen permeability is preferably 0.6 ml / m 2 / day / atm or less under the conditions of a measurement temperature of 23 ° C. and a humidity of 90% RH.
 本発明に係るガスバリア層に関しては、その形成方法において特に制約はないが、無機酸化物膜のセラミック前駆体を塗布した後に、塗布膜を加熱及び/または紫外線照射により、無機酸化物膜を形成する方法が好ましく用いられる。 The gas barrier layer according to the present invention is not particularly limited in its formation method, but after applying the ceramic precursor of the inorganic oxide film, the inorganic oxide film is formed by heating and / or ultraviolet irradiation of the coating film. The method is preferably used.
 〈セラミック前駆体〉
 本発明に係るガスバリア層は、加熱により無機酸化物膜を形成するセラミック前駆体を塗布した後に、一般的な加熱方法が適用して形成することできるが、局所的加熱により形成することが好ましい。セラミック前駆体は、ゾル状の有機金属化合物またはポリシラザンが好ましい。
<Ceramic precursor>
The gas barrier layer according to the present invention can be formed by applying a general heating method after applying a ceramic precursor that forms an inorganic oxide film by heating, but is preferably formed by local heating. The ceramic precursor is preferably a sol-like organometallic compound or polysilazane.
 〈有機金属化合物〉
 本発明に係る有機金属化合物は、ケイ素(Si)、アルミニウム(Al)、リチウム(Li)、ジルコニウム(Zr)、チタン(Ti)、タンタル(Ta)、亜鉛(Zn)、バリウム(Ba)、インジウム(In)、スズ(Sn)、ランタン(La)、イットリウム(Y)、及びニオブ(Nb)のうちの少なくとも一つの元素を含有することが好ましい。特に、当該有機金属化合物が、ケイ素(Si)、アルミニウム(Al)、リチウム(Li)、ジルコニウム(Zr)、チタン(Ti)、亜鉛(Zn)、及びバリウム(Ba)のうちの少なくとも一つの元素を含有することが好ましい。さらに、ケイ素(Si)、アルミニウム(Al)、及びリチウム(Li)のうちの少なくとも一つの元素を含有することが好ましい。
<Organic metal compound>
The organometallic compound according to the present invention includes silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), and indium. It is preferable to contain at least one element of (In), tin (Sn), lanthanum (La), yttrium (Y), and niobium (Nb). In particular, the organometallic compound is at least one element of silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), zinc (Zn), and barium (Ba). It is preferable to contain. Furthermore, it is preferable to contain at least one element of silicon (Si), aluminum (Al), and lithium (Li).
 有機金属化合物としては、加水分解が可能なものであればよく、特に限定されるものではないが、好ましい有機金属化合物としては、金属アルコキシドが挙げられる。 The organometallic compound is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include metal alkoxides.
 前記金属アルコキシドは、下記一般式(I)で表される。 The metal alkoxide is represented by the following general formula (I).
 一般式(I):MR (ORn-m
 一般式(I)において、Mは、酸化数nの金属を表す。R及びRは、各々独立に、アルキル基を表す。mは、0~(n-1)の整数を表す。R及びRは、同一でもよく、異なっていてもよい。R及びRとしては、炭素原子4個以下のアルキル基が好ましく、例えば、メチル基CH(以下、Meで表す。)、エチル基C(以下、Etで表す)、プロピル基C(以下、Prで表す。)、イソプロピル基i-C(以下、i-Prで表す。)、ブチル基C(以下、Buで表す)、イソブチル基i-C(以下、i-Buで表す)等の低級アルキル基がより好ましい。
Formula (I): MR 2 m (OR 1 ) nm
In general formula (I), M represents a metal having an oxidation number n. R 1 and R 2 each independently represents an alkyl group. m represents an integer of 0 to (n−1). R 1 and R 2 may be the same or different. R 1 and R 2 are preferably alkyl groups having 4 or less carbon atoms, for example, a methyl group CH 3 (hereinafter represented by Me), an ethyl group C 2 H 5 (hereinafter represented by Et), a propyl group. C 3 H 7 (hereinafter represented by Pr), isopropyl group i-C 3 H 7 (hereinafter represented by i-Pr), butyl group C 4 H 9 (hereinafter represented by Bu), isobutyl group i- A lower alkyl group such as C 4 H 9 (hereinafter referred to as i-Bu) is more preferred.
 前記一般式(I)で表される金属アルコキシドとしては、例えば、リチウムエトキシドLiOEt、ニオブエトキシドNb(OEt)、マグネシウムイソプロポキシドMg(OPr-i)、アルミニウムイソプロポキシドAl(OPr-i)、亜鉛プロポキシドZn(OPr)、テトラエトキシシランSi(OEt)、チタンイソプロポキシドTi(OPr-i)、バリウムエトキシドBa(OEt)、バリウムイソプロポキシドBa(OPr-i)、トリエトキシボランB(OEt)、ジルコニウムプロポキシドZn(OPr)、ランタンプロポキシドLa(OPr)、イットリウムプロポキシドY(OPr)、鉛イソプロポキシドPb(OPr-i)等が好適に挙げられる。これらの金属アルコキシドは何れも市販品があり、容易に入手することができる。また、金属アルコキシドは、部分的に加水分解して得られる低縮合物も市販されており、これを原料として使用することも可能である。 Examples of the metal alkoxide represented by the general formula (I) include lithium ethoxide LiOEt, niobium ethoxide Nb (OEt) 5 , magnesium isopropoxide Mg (OPr-i) 2 , aluminum isopropoxide Al (OPr -I) 3 , zinc propoxide Zn (OPr) 2 , tetraethoxysilane Si (OEt) 4 , titanium isopropoxide Ti (OPr-i) 4 , barium ethoxide Ba (OEt) 2 , barium isopropoxide Ba ( OPr-i) 2 , triethoxyborane B (OEt) 3 , zirconium propoxide Zn (OPr) 4 , lanthanum propoxide La (OPr) 3 , yttrium propoxide Y (OPr) 3 , lead isopropoxide Pb (OPr- i) 2 etc. are mentioned suitably. All of these metal alkoxides are commercially available and can be easily obtained. Moreover, the metal alkoxide is also commercially available as a low condensate obtained by partial hydrolysis, and it can be used as a raw material.
 〈無機酸化物〉
 本発明に係る無機酸化物は、上記有機金属化合物を原料とするゾルから局所的加熱により形成されたものである。従って、有機金属化合物に含有されているケイ素(Si)、アルミニウム(Al)、ジルコニウム(Zr)、チタン(Ti)、タンタル(Ta)、亜鉛(Zn)、バリウム(Ba)、インジウム(In)、スズ(Sn)、ニオブ(Nb)等の元素の酸化物であることを特徴とする。
<Inorganic oxide>
The inorganic oxide according to the present invention is formed by local heating from a sol using the organometallic compound as a raw material. Therefore, silicon (Si), aluminum (Al), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), indium (In) contained in the organometallic compound, It is an oxide of an element such as tin (Sn) or niobium (Nb).
 例えば、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム等である。これらのうち、好ましくは、酸化ケイ素である。 For example, silicon oxide, aluminum oxide, zirconium oxide and the like. Of these, silicon oxide is preferable.
 本発明において、有機金属化合物から無機酸化物を形成する方法としては、いわゆるゾル-ゲル法及びポリシラザンを塗布する方法を用いることが好ましい。 In the present invention, as a method for forming an inorganic oxide from an organometallic compound, it is preferable to use a so-called sol-gel method and a method of applying polysilazane.
 〈ゾル-ゲル法〉
 ここで、「ゾル-ゲル法」とは、有機金属化合物を加水分解すること等により、水酸化物のゾルを得て、脱水処理してゲルとし、さらにこのゲルを加熱処理することで、ある一定の形状(フィルム状、粒子状、繊維状等)の金属酸化物ガラスを調製する方法をいう。異なる複数のゾル溶液を混合する方法、他の金属イオンを添加する方法等により、多成分系の金属酸化物ガラスを得ることも可能である。
<Sol-gel method>
Here, the “sol-gel method” is to obtain a hydroxide sol by hydrolyzing an organometallic compound, etc., dehydrate it into a gel, and further heat-treat the gel. It refers to a method for preparing a metal oxide glass having a certain shape (film, particle, fiber, etc.). A multi-component metal oxide glass can be obtained by a method of mixing a plurality of different sol solutions, a method of adding other metal ions, or the like.
 具体的には、下記工程を有するゾル-ゲル法で、無機酸化物を製造することが好ましい。 Specifically, it is preferable to produce an inorganic oxide by a sol-gel method having the following steps.
 すなわち、少なくとも水及び有機溶媒を含有する反応液中で、ホウ素イオン存在下にてハロゲンイオンを触媒として、pHを4.5~5.0に調整しながら、有機金属化合物を加水分解及び脱水縮合して反応生成物を得る工程、及び該反応生成物を200℃以下の温度で加熱してガラス化する工程、を有するゾル-ゲル法により製造されてなることが、高温熱処理による微細孔の発生や膜の劣化等が発生しないという観点から、特に好ましい。 That is, in a reaction solution containing at least water and an organic solvent, the organometallic compound is hydrolyzed and dehydrated and condensed while adjusting the pH to 4.5 to 5.0 using a halogen ion as a catalyst in the presence of boron ion. Generation of fine pores due to high-temperature heat treatment is produced by a sol-gel method having a step of obtaining a reaction product by heating and vitrifying the reaction product at a temperature of 200 ° C. or less. And is particularly preferable from the viewpoint that no deterioration of the film occurs.
 前記ゾル-ゲル法において、原料として用いられる有機金属化合物としては、加水分解が可能なものであればよく、特に限定されるものではないが、好ましい有機金属化合物としては、前記金属アルコキシドが挙げられる。 In the sol-gel method, the organometallic compound used as a raw material is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include the metal alkoxides. .
 上記ゾル-ゲル法において、前記有機金属化合物は、そのまま反応に用いてもよいが、反応の制御を容易にするため溶媒で希釈して用いることが好ましい。希釈用溶媒は、前記有機金属化合物を溶解することができ、かつ水と均一に混合することができるものであればよい。そのような希釈用溶媒としては、脂肪族の低級アルコール、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、エチレングリコール、プロピレングリコール、及びそれらの混合物が好適に挙げられる。また、ブタノールとセロソルブとブチルセロソルブの混合溶媒、あるいはキシロールとセロソルブアセテートとメチルイソブチルケトンとシクロヘキサンの混合溶媒等を使用することもできる。 In the sol-gel method, the organometallic compound may be used for the reaction as it is, but it is preferably diluted with a solvent for easy control of the reaction. The solvent for dilution is not particularly limited as long as it can dissolve the organometallic compound and can be uniformly mixed with water. Preferred examples of such a solvent for dilution include aliphatic lower alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, ethylene glycol, propylene glycol, and mixtures thereof. Further, a mixed solvent of butanol, cellosolve, and butyl cellosolve, or a mixed solvent of xylol, cellosolve acetate, methyl isobutyl ketone, and cyclohexane may be used.
 前記有機金属化合物において、金属がCa、Mg、Al等である場合には、反応液中の水と反応して水酸化物を生成したり、炭酸イオンCO 2-が存在すると炭酸塩を生成して沈殿を生ずるため、反応液に隠蔽剤としてトリエタノールアミンのアルコール溶液を添加することが好ましい。溶媒に混合溶解するときの前記有機金属化合物の濃度としては、70質量%以下が好ましく、5~70質量%の範囲に希釈して使用することがより好ましい。 In the organometallic compound, when the metal is Ca, Mg, Al or the like, it reacts with water in the reaction solution to form a hydroxide, or when carbonate ion CO 3 2- is present, a carbonate is formed. Therefore, it is preferable to add an alcohol solution of triethanolamine as a masking agent to the reaction solution. The concentration of the organometallic compound when mixed and dissolved in a solvent is preferably 70% by mass or less, and more preferably diluted to a range of 5 to 70% by mass.
 前記ゾル-ゲル法において用いられる反応液は、少なくとも水及び有機溶媒を含有する。前記有機溶媒としては、水及び酸、アルカリと均一な溶液をつくるものであればよく、通常、前記有機金属化合物の希釈に用いる脂肪族の低級アルコール類と同様のものが好適に挙げられる。前記脂肪族の低級アルコール類の中でも、メタノール、エタノールより、炭素数の多いプロパノール、イソプロパノール、ブタノール、及びイソブタノールが好ましい。これは、生成する金属酸化物ガラスの膜の成長が安定であるためである。前記反応液において、水の割合としては、水の濃度として0.2~50mol/Lの範囲が好ましい。 The reaction solution used in the sol-gel method contains at least water and an organic solvent. The organic solvent is not particularly limited as long as it can form a uniform solution with water, acid, and alkali, and usually the same aliphatic lower alcohols used for diluting the organometallic compound are preferably used. Among the aliphatic lower alcohols, propanol, isopropanol, butanol, and isobutanol having a larger number of carbon atoms are preferable to methanol and ethanol. This is because the growth of the metal oxide glass film to be generated is stable. In the reaction solution, the water ratio is preferably in the range of 0.2 to 50 mol / L as the concentration of water.
 前記ゾル-ゲル法においては、前記反応液中において、ホウ素イオンの存在下にて、ハロゲンイオンを触媒として、有機金属化合物を加水分解する。前記ホウ素イオンB3+を与える化合物としては、トリアルコキシボランB(OR)が好適に挙げられる。その中でも、トリエトキシボランB(OEt)がより好ましい。また、前記反応液中のB3+イオン濃度としては、1.0~10.0mol/Lの範囲が好ましい。 In the sol-gel method, an organometallic compound is hydrolyzed in the reaction solution in the presence of boron ions using a halogen ion as a catalyst. Preferred examples of the compound that gives the boron ion B 3+ include trialkoxyborane B (OR) 3 . Among these, triethoxyborane B (OEt) 3 is more preferable. The B 3+ ion concentration in the reaction solution is preferably in the range of 1.0 to 10.0 mol / L.
 前記ハロゲンイオンとしては、フッ素イオン及び/または塩素イオンが好適に挙げられる。即ち、フッ素イオン単独、塩素イオン単独でもよく、これらの混合物でもよい。用いる化合物としては、上記反応液中でフッ素イオン及び/または塩素イオンを生ずるものであればよく、例えば、フッ素イオン源として、フッ化水素アンモニウムNHHF・HF、フッ化ナトリウムNaF等が好適に挙げられ、塩素イオン源として、塩化アンモニウムNHCl等が好適に挙げられる。 As said halogen ion, a fluorine ion and / or a chlorine ion are mentioned suitably. That is, fluorine ions alone, chlorine ions alone or a mixture thereof may be used. The compound to be used is not particularly limited as long as it generates fluorine ions and / or chlorine ions in the reaction solution. For example, as a fluorine ion source, ammonium hydrogen fluoride NH 4 HF · HF, sodium fluoride NaF or the like is preferable. Preferred examples of the chlorine ion source include ammonium chloride NH 4 Cl.
 前記反応液中の前記ハロゲンイオンの濃度としては、製造しようとする無機マトリックスを有する無機組成物からなるフィルムの膜厚や、その他の条件によって異なるが、一般的には、触媒を含む前記反応液の合計質量に対して、0.001~2mol/kg、特に0.002~0.3mol/kgの範囲が好ましい。ハロゲンイオンの濃度が0.001mol/kgより低いと、有機金属化合物の加水分解が十分に進行し難くなり、膜の形成が困難となる。またハロゲンイオンの濃度が2mol/kgを超えると、生成する無機マトリックス(金属酸化物ガラス)が不均一になり易いため、いずれも好ましくない。 The concentration of the halogen ions in the reaction solution varies depending on the film thickness of an inorganic composition having an inorganic matrix to be produced and other conditions, but generally the reaction solution containing a catalyst. Is preferably in the range of 0.001 to 2 mol / kg, particularly 0.002 to 0.3 mol / kg. If the halogen ion concentration is lower than 0.001 mol / kg, hydrolysis of the organometallic compound does not proceed sufficiently, and film formation becomes difficult. Moreover, since the produced | generated inorganic matrix (metal oxide glass) will become non-uniform easily when the density | concentration of a halogen ion exceeds 2 mol / kg, neither is preferable.
 なお、反応時に使用したホウ素に関しては、得られる無機マトリックスの設計組成中にB成分として含有させる場合は、その含有量に応じた有機ホウ素化合物の計算量を添加したまま生成物とすればよく、またホウ素を除去したいときは、成膜後、溶媒としてのメタノールの存在下、またはメタノールに浸漬して加熱すればホウ素はホウ素メチルエステルとして蒸発させて除去することができる。 With respect to the boron used during the reaction, if to be contained as a B 2 O 3 component in the design the composition of the resulting inorganic matrix, by leaving product was added calculated amount of organic boron compound in accordance with the content of In addition, when it is desired to remove boron, boron can be removed by evaporation as boron methyl ester by heating after film formation in the presence of methanol as a solvent or by immersion in methanol.
 前記有機金属化合物を、加水分解及び脱水縮合して反応生成物を得る工程においては、通常所定量の前記有機金属化合物を所定量の水及び有機溶媒を含有する混合溶媒に混合溶解した主剤溶液、ならびに所定量の前記ハロゲンイオンを含有する所定量の反応液を、所定の比で混合し十分に攪拌して均一な反応溶液とした後、酸またはアルカリで反応溶液のpHを希望の値に調整し、数時間熟成することにより進行させて反応生成物を得る。前記ホウ素化合物は、主剤溶液または反応液に予め所定量を混合溶解しておく。また、アルコキシボランを用いる場合は、他の有機金属化合物と共に主剤溶液に溶解するのが有利である。 In the step of hydrolyzing and dehydrating and condensing the organometallic compound to obtain a reaction product, a main agent solution in which a predetermined amount of the organometallic compound is usually mixed and dissolved in a mixed solvent containing a predetermined amount of water and an organic solvent, In addition, after mixing a predetermined amount of the reaction solution containing a predetermined amount of the above-mentioned halogen ions at a predetermined ratio and stirring sufficiently to obtain a uniform reaction solution, the pH of the reaction solution is adjusted to a desired value with acid or alkali. The reaction product is obtained by aging for several hours. A predetermined amount of the boron compound is mixed and dissolved in advance in the main agent solution or reaction solution. Further, when alkoxyborane is used, it is advantageous to dissolve it in the main agent solution together with other organometallic compounds.
 前記反応溶液のpHは、目的によって選択され、無機マトリックス(金属酸化物ガラス)を有する無機組成物からなる膜(フィルム)の形成を目的とするときは、例えば、塩酸等の酸を用いてpHを4.5~5の範囲に調整して熟成するのが好ましい。この場合は、例えば、指示薬としてメチルレッドとブロモクレゾールグリーンとを混合したもの等を用いると便利である。 The pH of the reaction solution is selected depending on the purpose, and for the purpose of forming a film (film) made of an inorganic composition having an inorganic matrix (metal oxide glass), for example, the pH is adjusted using an acid such as hydrochloric acid. It is preferable to ripen the mixture by adjusting it to the range of 4.5 to 5. In this case, for example, it is convenient to use a mixture of methyl red and bromocresol green as an indicator.
 なお、前記ゾル-ゲル法においては、同一成分の同一濃度の主剤溶液、及び反応液(B3+及びハロゲンイオンを含む。)を所定のpHに調整しながら、逐次同一割合で追加添加することにより簡単に継続して、反応生成物を製造することもできる。なお、前記反応溶液の濃度は±50質量%の範囲で、水(酸またはアルカリを含む。)の濃度は、±30質量%の範囲で、及びハロゲンイオンの濃度は±30質量%の範囲で変化させることができる。 In the sol-gel method, the main component solution having the same concentration of the same component and the reaction solution (including B 3+ and halogen ions) are successively added at the same ratio while being adjusted to a predetermined pH. The reaction product can also be produced simply and continuously. The concentration of the reaction solution is in the range of ± 50% by mass, the concentration of water (including acid or alkali) is in the range of ± 30% by mass, and the concentration of halogen ions is in the range of ± 30% by mass. Can be changed.
 次に、前工程で得られた反応生成物(熟成後の反応溶液)を、200℃以下の温度に加熱して乾燥しガラス化させる。加熱にあたって、特に50~70℃の温度区間を注意して徐々に昇温して、予備乾燥(溶媒揮散)工程を経た後さらに昇温することが好ましい。この乾燥は、膜形成の場合、無孔化膜とするために重要である。予備乾燥工程後、加熱し乾燥する温度としては、70~150℃が好ましく、80~130℃がより好ましい。 Next, the reaction product (reaction solution after aging) obtained in the previous step is heated to a temperature of 200 ° C. or lower, dried and vitrified. In heating, it is preferable that the temperature is raised gradually while paying particular attention to a temperature range of 50 to 70 ° C., followed by a preliminary drying (solvent volatilization) step and further raising the temperature. This drying is important for forming a non-porous film in the case of film formation. The temperature for heating and drying after the preliminary drying step is preferably 70 to 150 ° C, more preferably 80 to 130 ° C.
 〈ポリシラザンを塗布する方法〉
 本発明に係るガスバリア層は、加熱により無機酸化物膜を形成するセラミック前駆体を塗布した後に、塗布膜の局所的加熱により形成された無機酸化物を含有することも好ましい。
<Method of applying polysilazane>
It is also preferable that the gas barrier layer according to the present invention contains an inorganic oxide formed by local heating of a coating film after applying a ceramic precursor that forms an inorganic oxide film by heating.
 当該セラミック前駆体が、ポリシラザンを含有する場合は、下記一般式(II)で表されるポリシラザン及び有機溶剤中に必要に応じて触媒を含む溶液で樹脂基材を被覆し、そして、この溶剤を蒸発させて除去し、それによって樹脂基材上に0.05~3.0μmの層厚を有するポリシラザン層を残し、そして、水蒸気を含む雰囲気中で酸素、活性酸素、場合によっては、及び窒素の存在下に、上記のポリシラザン層を、局所的加熱することによって、当該樹脂基材上にガラス様の透明な被膜を形成する方法を採用することが好ましい。 When the ceramic precursor contains polysilazane, the resin substrate is coated with a solution containing a catalyst in the polysilazane represented by the following general formula (II) and an organic solvent as necessary, and the solvent is added to the ceramic precursor. Evaporate and remove, thereby leaving a polysilazane layer having a layer thickness of 0.05-3.0 μm on the resin substrate, and oxygen, active oxygen, in some cases, and nitrogen in an atmosphere containing water vapor It is preferable to employ a method of forming a glass-like transparent film on the resin substrate by locally heating the polysilazane layer in the presence.
 一般式(II):-(SiR-NR
 一般式(II)において、R、R、及びRは、同一かまたは異なり、互いに独立して、水素、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基、好ましくは水素、メチル、エチル、プロピル、iso-プロピル、ブチル、iso-ブチル、tert-ブチル、フェニル、ビニルまたは3-(トリエトキシシリル)プロピル、3-(トリメトキシシリルプロピル)からなる群から選択される基を表し、この際、nは整数であり、そしてnは、当該ポリシラザンが150~150,000g/モルの数平均分子量を有するように定められる。
Formula (II): — (SiR 1 R 2 —NR 3 ) n
In the general formula (II), R 1 , R 2 , and R 3 are the same or different and are independently of each other hydrogen, or an optionally substituted alkyl group, aryl group, vinyl group or (trialkoxysilyl). ) From an alkyl group, preferably hydrogen, methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, tert-butyl, phenyl, vinyl or 3- (triethoxysilyl) propyl, 3- (trimethoxysilylpropyl) Wherein n is an integer, and n is determined so that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
 触媒としては、好ましくは、塩基性触媒、特にN,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミンまたはN-複素環式化合物が使用される。触媒濃度は、ポリシラザンを基準にして通常0.1~10モル%、好ましくは0.5~7モル%の範囲である。 As catalysts, preferably basic catalysts, in particular N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine or N-heterocyclic compounds are used. . The catalyst concentration is usually in the range of 0.1 to 10 mol%, preferably 0.5 to 7 mol%, based on polysilazane.
 好ましい態様の一つでは、R、R及びRのすべてが水素原子であるパーヒドロポリシラザンを含む溶液が使用される。 In one of the preferred embodiments, a solution containing perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms is used.
 さらに別の好ましい態様の一つでは、本発明によるコーティングは、下記一般式(III)の少なくとも一種のポリシラザンを含む。 In yet another preferred embodiment, the coating according to the present invention comprises at least one polysilazane of the following general formula (III):
 一般式(III):-(SiR-NR-(SiR-NR
 一般式(III)において、R、R、R、R、R及びRは、互いに独立して、水素、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基を表し、この際、n及びpは整数であり、そしてnは、当該ポリシラザンが150~150,000g/モルの数平均分子量を有するように定められる。
Formula (III): — (SiR 1 R 2 —NR 3 ) n — (SiR 4 R 5 —NR 6 ) p
In the general formula (III), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are independently of each other hydrogen, optionally substituted alkyl group, aryl group, vinyl group or ( Represents a trialkoxysilyl) alkyl group, wherein n and p are integers, and n is defined such that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
 特に好ましいものは、R、R及びRが水素を表し、そしてR、R及びRがメチルを表す化合物、R、R及びRが水素を表し、そしてR、Rがメチルを表し、そしてRがビニルを表す化合物、R、R、R及びRが水素を表し、そしてR及びRがメチルを表す化合物である。 Particularly preferred are compounds wherein R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 and R 5 represent methyl, R 1 , R 3 and R 6 represent hydrogen and R 2 , A compound in which R 4 represents methyl and R 5 represents vinyl, R 1 , R 3 , R 4 and R 6 represent hydrogen and R 2 and R 5 represent methyl.
 また、一般式(IV)の少なくとも一種のポリシラザンを含む溶液も同様に好ましい。 Also preferred are solutions containing at least one polysilazane of the general formula (IV).
 一般式(IV):-(SiR-NR-(SiR-NR-(SiR-NR
 一般式(IV)において、R、R、R、R、R、R、R、R及びRは、互いに独立して、水素、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基を表し、この際、n、p及びqは整数であり、そしてnは、当該ポリシラザンが150~150,000g/モルの数平均分子量を有するように定められる。
Formula (IV): — (SiR 1 R 2 —NR 3 ) n — (SiR 4 R 5 —NR 6 ) p — (SiR 7 R 8 —NR 9 ) q
In general formula (IV), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently of one another hydrogen or optionally substituted alkyl. A group, an aryl group, a vinyl group or a (trialkoxysilyl) alkyl group, wherein n, p and q are integers, and n represents a number average molecular weight of 150 to 150,000 g / mol of the polysilazane. It is determined to have.
 特に好ましいものは、R、R及びRが水素を表し、そしてR、R、R及びRがメチルを表し、Rが(トリエトキシシリル)プロピルを表し、そしてRがアルキルまたは水素を表す化合物である。 Particularly preferred are R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 , R 5 and R 8 represent methyl, R 9 represents (triethoxysilyl) propyl and R 7 Is a compound in which represents alkyl or hydrogen.
 溶剤中のポリシラザンの割合は、一般的には、ポリシラザン1~80質量%、好ましくは5~50質量%、特に好ましくは10~40質量%である。 The proportion of polysilazane in the solvent is generally 1 to 80% by mass, preferably 5 to 50% by mass, and particularly preferably 10 to 40% by mass.
 溶剤としては、特に、水及び反応性基(例えばヒドロキシル基またはアミン基)を含まずそしてポリシラザンに対して不活性の有機系で好ましくは非プロトン性の溶剤が好適である。これは、例えば、脂肪族または芳香族炭化水素、ハロゲン炭化水素、エステル、例えば酢酸エチルまたは酢酸ブチル、ケトン、例えばアセトンまたはメチルエチルケトン、エーテル、例えばテトラヒドロフランまたはジブチルエーテル、並びにモノ-及びポリアルキレングリコールジアルキルエーテル(ジグライム類)またはこれらの溶剤からなる混合物である。 As the solvent, an organic system that does not contain water and a reactive group (for example, a hydroxyl group or an amine group) and is inert to polysilazane, preferably an aprotic solvent, is particularly suitable. This includes, for example, aliphatic or aromatic hydrocarbons, halogen hydrocarbons, esters such as ethyl acetate or butyl acetate, ketones such as acetone or methyl ethyl ketone, ethers such as tetrahydrofuran or dibutyl ether, and mono- and polyalkylene glycol dialkyl ethers (Diglymes) or a mixture of these solvents.
 上記ポリシラザン溶液の追加の成分は、塗料の製造に慣用されているもののようなさらに別のバインダーであることができる。これは、例えば、セルロースエーテル及びセルロースエステル、例えばエチルセルロース、ニトロセルロース、セルロースアセテートまたはセルロースアセトブチレート、天然樹脂、例えばゴムもしくはロジン樹脂、または合成樹脂、例えば重合樹脂もしくは縮合樹脂、例えばアミノプラスト、特に尿素樹脂及びメラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、またはポリシロキサンである。 An additional component of the polysilazane solution can be a further binder such as those conventionally used in the manufacture of paints. For example, cellulose ethers and cellulose esters such as ethyl cellulose, nitrocellulose, cellulose acetate or cellulose acetobutyrate, natural resins such as rubber or rosin resins, or synthetic resins such as polymerized resins or condensed resins such as aminoplasts, in particular Urea resins and melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, or polysiloxanes.
 当該ポリシラザン調合物のさらに別の成分は、例えば、調合物の粘度、下地の濡れ、成膜性、潤滑作用または排気性に影響を与える添加剤、あるいは無機ナノ粒子、例えばSiO、TiO、ZnO、ZrOまたはAlであることができる。 Still other components of the polysilazane formulation include, for example, additives that affect the formulation viscosity, substrate wetting, film formability, lubrication or exhaust properties, or inorganic nanoparticles such as SiO 2 , TiO 2 , It can be ZnO, ZrO 2 or Al 2 O 3 .
 本発明の方法を用いることによって、亀裂及び孔がないためにガスに対する高いバリア作用に優れる緻密なガラス様の層を製造することができる。 By using the method of the present invention, it is possible to produce a dense glass-like layer having excellent barrier action against gas because there are no cracks and holes.
 形成される被膜の厚さは、100nm~2μmの範囲内にすることが好ましい。 The thickness of the coating film to be formed is preferably in the range of 100 nm to 2 μm.
 (傷防止層)
 本発明においては、フィルムミラーの最外層として、傷防止層を設けることができる。傷防止層は、傷防止のために設けられる。
(Scratch prevention layer)
In the present invention, a scratch preventing layer can be provided as the outermost layer of the film mirror. The scratch prevention layer is provided for preventing scratches.
 傷防止層は、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、エポキシ系樹脂、有機シリケート化合物、シリコン系樹脂等で構成することができる。特に、硬度と耐久性等の点で、シリコン系樹脂やアクリル系樹脂が好ましい。さらに、硬化性、可撓性及び生産性の点で、活性エネルギー線硬化型のアクリル系樹脂、または熱硬化型のアクリル系樹脂からなるものが好ましい。 The scratch prevention layer can be composed of acrylic resin, urethane resin, melamine resin, epoxy resin, organic silicate compound, silicon resin, and the like. In particular, silicon resins and acrylic resins are preferable in terms of hardness and durability. Further, in terms of curability, flexibility, and productivity, those made of an active energy ray-curable acrylic resin or a thermosetting acrylic resin are preferable.
 活性エネルギー線硬化型のアクリル系樹脂または熱硬化型のアクリル系樹脂とは、重合硬化成分として多官能アクリレート、アクリルオリゴマーあるいは反応性希釈剤を含む組成物である。その他に必要に応じて光開始剤、光増感剤、熱重合開始剤あるいは改質剤等を含有しているものを用いてもよい。 The active energy ray-curable acrylic resin or thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer, or a reactive diluent as a polymerization curing component. In addition, you may use what contains a photoinitiator, a photosensitizer, a thermal-polymerization initiator, a modifier, etc. as needed.
 アクリルオリゴマーとは、アクリル系樹脂骨格に反応性のアクリル基が結合されたものを始めとして、ポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレート等であり、また、メラミンやイソシアヌール酸等の剛直な骨格にアクリル基を結合したもの等も用いられ得る。 Acrylic oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, etc., including those in which a reactive acrylic group is bonded to an acrylic resin skeleton, and rigid materials such as melamine and isocyanuric acid. A structure in which an acrylic group is bonded to a simple skeleton can also be used.
 また、反応性希釈剤とは、塗工剤の媒体として塗工工程での溶剤の機能を担うと共に、それ自体が一官能性あるいは多官能性のアクリルオリゴマーと反応する基を有し、塗膜の共重合成分となるものである。 In addition, the reactive diluent has a function of a solvent in the coating process as a medium of the coating agent, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component.
 市販されている多官能アクリル系硬化塗料としては、三菱レイヨン株式会社;(商品名“ダイヤビーム(登録商標)”シリーズ等)、長瀬産業株式会社;(商品名“デナコール(登録商標)”シリーズ等)、新中村株式会社;(商品名“NKエステル”シリーズ等)、DIC株式会社;(商品名“UNIDIC(登録商標)”シリーズ等)、東亞合成株式会社;(商品名“アロニックス(登録商標)”シリーズ等)、日本油脂株式会社;(商品名“ブレンマー(登録商標)”シリーズ等)、日本化薬株式会社;(商品名“KAYARAD(登録商標)”シリーズ等)、共栄社化学株式会社;(商品名“ライトエステル”シリーズ、“ライトアクリレート”シリーズ等)等の製品を利用することができる。 Commercially available polyfunctional acrylic cured paints include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam (registered trademark)” series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol (registered trademark)” series, etc. ), Shin Nakamura Co., Ltd. (trade name “NK Ester” series, etc.), DIC Corporation; (trade name “UNIDIC (registered trademark)” series, etc.), Toagosei Co., Ltd. (trade name “Aronix (registered trademark)” ("Series etc."), Nippon Oil & Fats Co., Ltd .; (trade name "Blemmer (registered trademark)" series, etc.), Nippon Kayaku Co., Ltd .; (trade name "KAYARAD (registered trademark)" series, etc.), Products such as “light ester” series, “light acrylate” series, etc.) can be used.
 本発明において、傷防止層中には、本発明の効果が損なわれない範囲で、さらに各種の添加剤を必要に応じて配合することができる。例えば、酸化防止剤、光安定剤、紫外線吸収剤等の安定剤、界面活性剤、レベリング剤及び帯電防止剤等を用いることができる。 In the present invention, various additives can be further blended in the scratch-preventing layer as required, as long as the effects of the present invention are not impaired. For example, stabilizers such as antioxidants, light stabilizers, ultraviolet absorbers, surfactants, leveling agents, antistatic agents, and the like can be used.
 レベリング剤は、特に機能層を塗工する際、表面凹凸低減に効果的である。レベリング剤としては、例えば、シリコン系レベリング剤として、ジメチルポリシロキサン-ポリオキシアルキレン共重合体(例えば東レダウコーニング(株)製SH190)が好適である。 ¡Leveling agents are effective in reducing surface irregularities, especially when functional layers are applied. As the leveling agent, for example, a dimethylpolysiloxane-polyoxyalkylene copolymer (for example, SH190 manufactured by Toray Dow Corning Co., Ltd.) is suitable as the silicon leveling agent.
 (接着層)
 本発明に係るフィルムミラーは、接着層を有していてもよい。接着層は金属からなる反射層と樹脂基材(樹脂フィルム)との接着性を高めるために用いられるもの(密着性)や、他の構成層同士の接着性を高めるもの、金属からなる反射層を真空蒸着法等で形成する時の熱にも耐え得る耐熱性、及び金属からなる反射層が本来有する高い反射性能を引き出すための平滑性を有するものであってもよいが、樹脂からなることが好ましい。
(Adhesive layer)
The film mirror according to the present invention may have an adhesive layer. The adhesive layer is used to enhance the adhesion between the reflective layer made of metal and the resin base material (resin film) (adhesiveness), the one that enhances the adhesion between other constituent layers, the reflective layer made of metal It may have heat resistance that can withstand the heat when it is formed by vacuum deposition, etc., and smoothness to bring out the high reflection performance inherent to the reflective layer made of metal, but it must be made of resin Is preferred.
 接着層に使用する樹脂は、上記の密着性、耐熱性及び平滑性の条件を満足するものであれば特に制限はなく、ポリエステル系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独またはこれらの混合樹脂が使用でき、耐候性の点からポリエステル系樹脂とメラミン系樹脂の混合樹脂が好ましく、さらにイソシアネート等の硬化剤を混合した熱硬化型樹脂とすればより好ましい。ポリエステル系樹脂では、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)が好ましい。 The resin used for the adhesive layer is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, and smoothness. Polyester resin, acrylic resin, melamine resin, epoxy resin, polyamide resin Resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin or the like can be used alone or a mixed resin thereof. From the viewpoint of weather resistance, a mixed resin of a polyester resin and a melamine resin is preferable. It is more preferable to use a thermosetting resin mixed with an agent. Among polyester resins, polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are preferable.
 接着層の厚さは、密着性、平滑性、反射材の反射率等の観点から、0.01~3μmが好ましく、より好ましくは0.1~1μmである。 The thickness of the adhesive layer is preferably from 0.01 to 3 μm, more preferably from 0.1 to 1 μm, from the viewpoints of adhesion, smoothness, reflectance of the reflecting material, and the like.
 接着層の形成方法は、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。接着層が金属酸化物である場合、例えば酸化シリコン、酸化アルミニウム、窒化シリコン、窒化アルミニウム、酸化ランタン、窒化ランタン等、各種真空製膜法により製膜することができる。例えば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法等がある。 As a method for forming the adhesive layer, conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used. When the adhesive layer is a metal oxide, it can be formed by various vacuum film forming methods such as silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, and lanthanum nitride. For example, there are a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, a sputtering method, and the like.
 (金属層)
 本発明では、前記腐食防止能を持つ紫外線吸収材層と銀反射層の間に、銅や亜鉛等の銀よりもイオン化傾向の高い金属を含有する金属層が前記銀反射層に隣接していることが好ましい。
(Metal layer)
In the present invention, a metal layer containing a metal having a higher ionization tendency than silver, such as copper or zinc, is adjacent to the silver reflective layer between the ultraviolet absorber layer having corrosion resistance and the silver reflective layer. It is preferable.
 本発明に係る金属層は、銀の犠牲防食機能を有するものであるため、銀に隣接した形態で、銀よりもイオン化傾向が高いものを使用する必要がある。例えば、リチウム、セシウム、ルビジウム、カリウム、バリウム、ストロンチウム、カルシウム、ナトリウム、マグネシウム、アルミニウム、マンガン、タンタル、亜鉛、クロム、鉄、カドミウム、コバルト、ニッケル、スズ、鉛、アンチモン、ビスマス、銅、水銀等を挙げることができる。特にアルミニウム、亜鉛、鉄、スズ、銅であることが好ましい。 Since the metal layer according to the present invention has a sacrificial anticorrosive function for silver, it is necessary to use a layer adjacent to silver and having a higher ionization tendency than silver. For example, lithium, cesium, rubidium, potassium, barium, strontium, calcium, sodium, magnesium, aluminum, manganese, tantalum, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, etc. Can be mentioned. In particular, aluminum, zinc, iron, tin, and copper are preferable.
 金属層の製造方法はめっき法で総称される湿式法で形成してもよく、前述の真空製膜法を用いてもいい。 The manufacturing method of the metal layer may be formed by a wet method collectively referred to as a plating method, or the above-described vacuum film forming method may be used.
 金属層の膜厚は、銀の犠牲防食機能を有することを考慮して、10nm~500nmで範囲内である。好ましくは50~300μm、さらに好ましくは100~200μmである。 The film thickness of the metal layer is in the range of 10 nm to 500 nm in consideration of the sacrificial anticorrosive function of silver. The thickness is preferably 50 to 300 μm, more preferably 100 to 200 μm.
 (フィルムミラー全体の厚さ)
 本発明に係るフィルムミラー全体の厚さは、ミラーがたわみ防止、正反射率、取り扱い性等の観点から、75~250μmが好ましく、さらに好ましくは90~230μm、さらに好ましくは100~220μmである。
(Thickness of the entire film mirror)
The total thickness of the film mirror according to the present invention is preferably 75 to 250 μm, more preferably 90 to 230 μm, and still more preferably 100 to 220 μm, from the viewpoints of prevention of deflection of the mirror, regular reflectance, handling properties, and the like.
 (太陽熱発電用反射装置)
 本発明のフィルムミラーは、太陽熱を集光する目的に好ましく使用できる。フィルムミラー単体で太陽熱集光ミラーとして用いることもできるが、より好ましくは、樹脂基材を挟んで銀反射層を有する側と反対側の樹脂基材面に塗設された粘着層を介して、他基材上に、特に金属基材上に、当該フィルムミラーを貼り付けて太陽熱発電用反射装置として用いることである。
(Reflector for solar thermal power generation)
The film mirror of the present invention can be preferably used for the purpose of collecting solar heat. Although it can also be used as a solar heat collector mirror with a single film mirror, more preferably, through an adhesive layer coated on the resin substrate surface opposite to the side having the silver reflective layer across the resin substrate, The film mirror is affixed on another base material, particularly on a metal base material, and used as a reflection device for solar thermal power generation.
 太陽熱発電用反射装置として用いる場合、反射装置の形状を樋状(半円筒状)として、半円の中心部分に内部に流体を有する筒状部材を設け、筒状部材に太陽熱を集光させることで内部の流体を加熱し、その熱エネルギーを変換して発電する形態が一形態として挙げられる。また、平板状の反射装置を複数個所に設置し、それぞれの反射装置で反射された太陽熱を一枚の反射鏡(中央反射鏡)に集光させて、反射鏡により反射して得られた熱エネルギーを発電部で変換することで発電する形態も一形態として挙げられる。特に後者の形態においては、用いられる反射装置に高い正反射率が求められるため、本発明のフィルムミラーが特に好適に用いられる。 When used as a reflector for solar power generation, the reflector is shaped like a bowl (semi-cylindrical), and a cylindrical member having fluid inside is provided in the center of the semicircle, and the solar heat is condensed on the cylindrical member. The form which heats an internal fluid and converts the heat energy and generates electric power is mentioned as one form. In addition, heat is obtained by installing flat reflectors at multiple locations, concentrating the solar heat reflected by each reflector on a single reflector (central reflector), and reflecting it by the reflector. A form in which power is generated by converting energy in the power generation unit is also an example. In particular, in the latter form, the film mirror of the present invention is particularly preferably used because a high regular reflectance is required for the reflection device used.
 〈粘着層〉
 粘着層としては、特に制限されず、例えばドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等のいずれもが用いられる。
<Adhesive layer>
The adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used.
 例えばポリエステル系樹脂、ウレタン系樹脂、ポリ酢酸ビニル系樹脂、アクリル系樹脂、ニトリルゴム等が用いられる。 For example, polyester resin, urethane resin, polyvinyl acetate resin, acrylic resin, nitrile rubber or the like is used.
 ラミネート方法は特に制限されず、例えばロール式で連続的に行うのが経済性及び生産性の点から好ましい。 The laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
 粘着層の厚さは、粘着効果、乾燥速度等の観点から、通常1~50μm程度の範囲であることが好ましい。 The thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 50 μm from the viewpoint of the pressure-sensitive adhesive effect, the drying speed, and the like.
 本発明に適宜採用される本発明のフィルムミラーと貼り合せられる他基材としては、銀反射層層の保護性を付与できるものであればよく、例えば、アクリルフィルムまたはシート、ポリカーボネートフィルムまたはシート、ポリアリレートフィルムまたはシート、ポリエチレンナフタレートフィルムまたはシート、ポリエチレンテレフタレートフィルムまたはシート、フッ素フィルム等のプラスチックフィルムまたはシート、または酸化チタン、シリカ、アルミニウム粉、銅粉等を練り込んだ樹脂フィルムまたはシート、これらを練り込んだ樹脂をコーティングしたり、金属蒸着等の表面加工を施した樹脂フィルムまたはシートが用いられる。 The other substrate to be bonded to the film mirror of the present invention that is appropriately employed in the present invention may be any substrate that can impart the protective property of the silver reflective layer, for example, an acrylic film or sheet, a polycarbonate film or sheet, Polyarylate film or sheet, polyethylene naphthalate film or sheet, polyethylene terephthalate film or sheet, plastic film or sheet such as fluorine film, or resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, etc. A resin film or sheet that is coated with a resin kneaded with or is subjected to surface processing such as metal deposition is used.
 貼り合わせフィルムまたはシートの厚さは、特に制限はないが通常12~250μmの範囲であることが好ましい。 The thickness of the laminated film or sheet is not particularly limited, but is usually preferably in the range of 12 to 250 μm.
 また、これらの他基材は本発明のフィルムミラーと貼り合わせる前に凹部や凸部を設けてから貼り合せてもよく、貼り合せた後で凹部や凸部を有するように成形してもよく、貼り合わせと凹部や凸部を有するように成形することを同時にしてもよいものである。 In addition, these other base materials may be bonded after providing a concave portion or a convex portion before being bonded to the film mirror of the present invention, or may be formed to have a concave portion or a convex portion after being bonded. In addition, the bonding and the molding so as to have a concave portion or a convex portion may be performed at the same time.
 〈金属基材〉
 本発明に係る太陽熱集光ミラーの金属基材としては、鋼板、銅板、アルミニウム板、アルミニウムめっき鋼板、アルミニウム系合金めっき鋼板、銅めっき鋼板、錫めっき鋼板、クロムめっき鋼板、ステンレス鋼板等熱伝導率の高い金属材料を用いることができる。
<Metal base material>
As the metal substrate of the solar heat collecting mirror according to the present invention, the steel sheet, copper plate, aluminum plate, aluminum plated steel plate, aluminum alloy plated steel plate, copper plated steel plate, tin plated steel plate, chrome plated steel plate, stainless steel plate, etc. High metal material can be used.
 本発明においては、特に耐食性の良好なめっき鋼板、ステンレス鋼板、アルミニウム板等にすることが好ましい。 In the present invention, it is particularly preferable to use a plated steel plate, a stainless steel plate, an aluminum plate or the like having good corrosion resistance.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 実施例1
 〔フィルムミラーの作製〕
 (フィルムミラー1の作製)
 樹脂基材として、2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ100μm)を用いた。このフィルムの片面に、銀反射層として真空蒸着法により厚さ80nmの銀反射層を形成した。銀反射層上に、ポリエステル系樹脂(ポリエスター SP-181、日本合成化学社製)と、TDI系イソシアネート(2,4-トリレンジイソシアネート)を樹脂固形分比率で10:2に混合した樹脂中に、さらに腐食防止剤としてグリコールジメルカプトアセテートを塗布後に0.3g/mとなるよう調整した量を添加し、グラビアコート法によりコーティングして、厚さ0.1μmの銀保護ポリマー層を形成した。さらに、その上に紫外線吸収剤を含む層として、メチルアクリレート:ブチルアクリレート共重合体(比率64:36、紫外線硬化樹脂)にTINUVIN328(紫外線吸収剤、BASFジャパン社製)を10質量%混合したトルエン溶液をグラビアコート法によりコーティングし、105℃で4分間乾燥した。銀反射層のない側の樹脂基材面に、アクリル系の粘着剤エスダイン#7851(積水化学工業製)を5μm厚に塗布して粘着層を形成し、比較例のフィルムミラー1の作製を作製した。
Example 1
[Production of film mirror]
(Preparation of film mirror 1)
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 μm) was used as the resin substrate. On one side of this film, a silver reflective layer having a thickness of 80 nm was formed as a silver reflective layer by vacuum deposition. In a resin in which a polyester resin (Polyester SP-181, manufactured by Nippon Synthetic Chemical Co., Ltd.) and a TDI isocyanate (2,4-tolylene diisocyanate) are mixed at a resin solid content ratio of 10: 2 on the silver reflective layer. Furthermore, after adding glycol dimercaptoacetate as a corrosion inhibitor, an amount adjusted to 0.3 g / m 2 is added and coated by a gravure coating method to form a silver protective polymer layer having a thickness of 0.1 μm. did. Furthermore, toluene containing 10% by mass of TINUVIN 328 (ultraviolet absorber, manufactured by BASF Japan) in a methyl acrylate: butyl acrylate copolymer (ratio 64:36, ultraviolet curable resin) as a layer containing an ultraviolet absorber thereon. The solution was coated by gravure coating and dried at 105 ° C. for 4 minutes. An acrylic adhesive Sdyne # 7851 (manufactured by Sekisui Chemical Co., Ltd.) is applied in a thickness of 5 μm on the surface of the resin base without the silver reflective layer to form an adhesive layer, and a film mirror 1 of a comparative example is produced. did.
 (フィルムミラー2の作製)
 フィルムミラー1の作製において、紫外線吸収剤を含む層のTINUVIN328(紫外線吸収剤、BASFジャパン社製)を紫外線硬化樹脂に対し10質量%を、TINUVIN328(紫外線吸収剤、BASFジャパン社製)を紫外線硬化樹脂に対し5質量%、及びTINUVIN234(紫外線吸収剤、BASFジャパン社製)を紫外線硬化樹脂に対し5質量%に変更した以外は同様にして、比較例のフィルムミラー2を作製した。
(Preparation of film mirror 2)
In the production of the film mirror 1, TINUVIN 328 (ultraviolet absorber, manufactured by BASF Japan) of the layer containing the ultraviolet absorber is 10% by mass with respect to the ultraviolet curable resin, and TINUVIN 328 (ultraviolet absorber, manufactured by BASF Japan) is ultraviolet cured. A film mirror 2 of a comparative example was produced in the same manner except that 5% by mass with respect to the resin and TINUVIN234 (ultraviolet absorber, manufactured by BASF Japan Ltd.) were changed to 5% by mass with respect to the ultraviolet curable resin.
 (フィルムミラー3の作製)
 フィルムミラー1の作製において、メチルアクリレート:ブチルアクリレート共重合体(比率64:36、紫外線硬化樹脂)をイソボニルアクリレート(紫外線硬化樹脂)に代え、TINUVIN328(紫外線吸収剤、BASFジャパン社製)を紫外線硬化樹脂に対し10質量%を、CGL-139(紫外線吸収剤、BASFジャパン社製)を紫外線硬化樹脂に対し16質量%に代えた以外は同様にして、比較例のフィルムミラー3を作製した。
(Preparation of film mirror 3)
In the production of the film mirror 1, methyl acrylate: butyl acrylate copolymer (ratio 64:36, ultraviolet curable resin) is replaced with isobornyl acrylate (ultraviolet curable resin), and TINUVIN 328 (ultraviolet absorber, manufactured by BASF Japan Ltd.) is used as an ultraviolet ray. A film mirror 3 of a comparative example was produced in the same manner except that 10% by mass with respect to the cured resin and CGL-139 (UV absorber, manufactured by BASF Japan Ltd.) was replaced with 16% by mass with respect to the ultraviolet curable resin.
 (フィルムミラー4の作製)
 樹脂基材として、2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ100μm)を用いた。このフィルムの片面に、銀反射層として、真空蒸着法により厚さ80nmの銀反射層を形成した。銀反射層上に、ポリエステル系樹脂(ポリエスター SP-181、日本合成化学社製)と、TDI系イソシアネート(2,4-トリレンジイソシアネート)を樹脂固形分比率で10:2に混合した樹脂中に、さらに腐食防止剤としてグリコールジメルカプトアセテートを塗布後に0.3g/mとなるよう調整した量を添加し、グラビアコート法によりコーティングして、厚さ0.1μmの銀保護ポリマー層を形成した。さらにその上に紫外線吸収剤を含む層として、水分散エマルジョンタイプのベンゾトリアゾール系高分子型紫外線吸収コーティング液UVA-1383MG(BASF社製)をグラビアコート法によりコーティングして、55℃で4分間乾燥した。銀反射層のない側の樹脂基材面に、接着剤としてアクリル系の粘着剤エスダイン#7851(積水化学工業製)を5μm厚に塗布して接着層を形成し、本発明のフィルムミラー4を作製した。
(Preparation of film mirror 4)
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 μm) was used as the resin substrate. On one side of this film, a silver reflective layer having a thickness of 80 nm was formed as a silver reflective layer by vacuum deposition. In a resin in which a polyester resin (Polyester SP-181, manufactured by Nippon Synthetic Chemical Co., Ltd.) and a TDI isocyanate (2,4-tolylene diisocyanate) are mixed at a resin solid content ratio of 10: 2 on the silver reflective layer. Furthermore, after adding glycol dimercaptoacetate as a corrosion inhibitor, an amount adjusted to 0.3 g / m 2 is added and coated by a gravure coating method to form a silver protective polymer layer having a thickness of 0.1 μm. did. Furthermore, as a layer containing an ultraviolet absorber, a water-dispersed emulsion type benzotriazole polymer ultraviolet absorbing coating solution UVA-1383MG (manufactured by BASF) is coated by a gravure coating method and dried at 55 ° C. for 4 minutes. did. An adhesive layer is formed by applying an acrylic adhesive Sdyne # 7851 (manufactured by Sekisui Chemical Co., Ltd.) to a thickness of 5 μm as an adhesive on the surface of the resin base without the silver reflecting layer, and the film mirror 4 of the present invention is formed. Produced.
 (フィルムミラー5の作製)
 フィルムミラー4の作製において、紫外線吸収剤を含む層として、ベンゾフェノン系高分子型紫外線吸収コーティング液UVA-933LP(BASF社製)とメチルアクリレート:ブチルアクリレート共重合体(比率64:36)を6:4となるよう調整したメチルエチルケトン溶液をグラビアコート法によりコーティングして105℃で4分間乾燥した以外は同様にして本発明のフィルムミラー5を作製した。
(Preparation of film mirror 5)
In the production of the film mirror 4, as a layer containing an ultraviolet absorber, a benzophenone polymer type ultraviolet absorbing coating solution UVA-933LP (manufactured by BASF) and a methyl acrylate: butyl acrylate copolymer (ratio 64:36) are 6: A film mirror 5 of the present invention was produced in the same manner except that the methyl ethyl ketone solution adjusted to 4 was coated by gravure coating and dried at 105 ° C. for 4 minutes.
 (フィルムミラー6の作製)
 フィルムミラー4の作製において、紫外線吸収剤を含む層のベンゾフェノン系高分子型紫外線吸収コーティング液UVA-933LP(BASF社製)をベンゾトリアゾール系高分子型紫外線吸収コーティング液UVA-1933LP(BASF社製)に代えた以外は同様にして本発明のフィルムミラー6を作製した。
(Preparation of film mirror 6)
In the production of the film mirror 4, a benzophenone polymer type UV absorbing coating solution UVA-933LP (made by BASF) of a layer containing a UV absorber is changed to a benzotriazole polymer type UV absorbing coating solution UVA-1933LP (made by BASF). A film mirror 6 according to the present invention was produced in the same manner except that was replaced with.
 〔フィルムミラーの評価〕
 〔太陽熱発電用反射装置の作製〕
 実際の太陽熱発電用反射装置は形状として1辺が少なくとも1mを超える長さであり、そのままのサイズでは評価測定装置で評価できないことから、下記のような小サイズの太陽熱発電用反射装置を作製し、これを用いて太陽熱発電用反射装置のフィルムミラーの評価を行った。
[Evaluation of film mirror]
[Preparation of solar power generation reflector]
An actual solar power generation reflector has a length of at least 1 m on a side and cannot be evaluated with an evaluation measurement device with the size as it is. Therefore, a solar power generation reflector with a small size as shown below was produced. Using this, the film mirror of the solar power generation reflecting device was evaluated.
 厚さ1mmで、縦25.4mm×横76.2mmのスライドガラス上に、上記作製したフィルムミラー1~6を、厚さ5μmの粘着層を介して貼り付け、それぞれ太陽熱発電用反射装置1~6を作製した。 The prepared film mirrors 1 to 6 are pasted on a slide glass having a thickness of 1 mm and a length of 25.4 mm × width of 76.2 mm through an adhesive layer having a thickness of 5 μm. 6 was produced.
 〔太陽熱発電用反射装置の評価〕
 上記で得られた太陽熱発電用反射装置について、下記の方法により正反射率、密着性、耐候性及び冷熱衝撃耐性の評価を行った。
[Evaluation of reflector for solar thermal power generation]
About the solar power generation reflective apparatus obtained above, regular reflectance, adhesion, weather resistance, and thermal shock resistance were evaluated by the following methods.
 (正反射率)
 太陽熱発電用反射装置を測定サイズの2.5cm角に切り出し、分光光度計U4000(日立ハイテクノロジーズ製)の反射率測定モードを選択し、反射面の法線に対して、入射光の入射角を5°となるように調整し、入射した光の反射光を積分球に導き正反射率を測定した。可視光領域(400~800nm)の反射率を平均して、正反射平均値を算出し、下記基準で評価した。
○:正反射率平均値が90%以上
△:正反射率平均値が80%以上90%未満
×:正反射率平均値が80%未満
 (密着性)
 JISK5600-5-6の手順に従い、太陽熱発電用反射装置の光入射側からカッターを用いて2mm間隔で切り込みを入れ100個の碁盤の目を作成した。接着テープ(ニチバン製)を膜表面にしっかりと貼り、テープを勢いよくはがして剥離せずに残ったマス目の数を測定し、下記基準で評価した。
5:残ったマス目が90~100個
4:残ったマス目が70~89個
3:残ったマス目が50~69個
2:残ったマス目が30~49個
1:残ったマス目が29個以下
 (耐候性)
 85℃、85%RHの条件で30日間放置後の太陽熱発電用反射装置の反射率を、上記正反射率測定と同様の方法により測定した。強制劣化試験前後のフィルムミラーの正反射率の低下率を算出し、下記基準で評価した。
5:反射率の低下率が5%未満
4:反射率の低下率が5%以上10%未満
3:反射率の低下率が10%以上15%未満
2:反射率の低下率が15%以上20%未満
1:反射率の低下率が20%以上
 (冷熱衝撃耐性)
 -40℃から+80℃の雰囲気を6時間周期で繰り返す冷熱衝撃試験機に10日間投入し、目視にてフィルムミラー表面のブリードアウトを観察し、下記基準で評価した。
○:1cm角の面積内に目視で見える粉が10点以下
△:1cm角の面積内に目視で見える粉が11~20点
×:1cm角の面積内に目視で見える粉が21点以上
 評価の結果を表1に示す。
(Regular reflectance)
Cut out the reflector for solar power generation into 2.5cm square of measurement size, select the reflectance measurement mode of spectrophotometer U4000 (manufactured by Hitachi High-Technologies), and set the incident angle of incident light with respect to the normal of the reflecting surface The angle was adjusted to 5 °, and the reflected light of the incident light was guided to an integrating sphere to measure the regular reflectance. The regular reflection average value was calculated by averaging the reflectance in the visible light region (400 to 800 nm) and evaluated according to the following criteria.
◯: Regular reflectance average value is 90% or more Δ: Regular reflectance average value is 80% or more and less than 90% ×: Regular reflectance average value is less than 80% (Adhesion)
According to the procedure of JISK5600-5-6, 100 grids were made by cutting at intervals of 2 mm using a cutter from the light incident side of the solar power generation reflector. Adhesive tape (manufactured by Nichiban) was firmly attached to the film surface, the tape was peeled off vigorously, and the number of squares remaining without peeling was measured and evaluated according to the following criteria.
5: 90-100 squares left 4: 70-89 left squares 3: 50-69 squares left 2: 30-49 squares left 1: left squares left 29 or less (weather resistance)
The reflectance of the solar power generation reflecting device after being left for 30 days under the conditions of 85 ° C. and 85% RH was measured by the same method as the regular reflectance measurement. The reduction rate of the regular reflectance of the film mirror before and after the forced deterioration test was calculated and evaluated according to the following criteria.
5: Reflectivity decrease rate is less than 5% 4: Reflectance decrease rate is 5% or more and less than 10% 3: Reflectance decrease rate is 10% or more and less than 15% 2: Reflectivity decrease rate is 15% or more Less than 20% 1: Decrease rate of reflectivity is 20% or more (cold thermal shock resistance)
An atmosphere of −40 ° C. to + 80 ° C. was put into a thermal shock tester that repeats in a cycle of 6 hours for 10 days, and the bleed-out on the film mirror surface was visually observed and evaluated according to the following criteria.
○: 10 or less powders visually visible within an area of 1 cm square △ 11 to 20 powders visually visible within an area of 1 cm square x 21 or more powders visually visible within an area of 1 cm square Evaluation The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、本発明の太陽熱発電用反射装置の各種特性は、比較例の太陽熱発電用反射装置の各種特性に対して優れていることが分かる。すなわち、本発明の上記手段により、構成層の劣化に伴う銀反射層の正反射率の低下を防止するとともに、軽量で柔軟性があり、製造コストを抑え、大面積化・大量生産することのできる密着性、耐候性及び冷熱衝撃耐久性に優れ、太陽熱に対して良好な正反射率を有するフィルムミラーを用いた太陽熱発電用反射装置が得られることが分かる。 As is apparent from Table 1, it can be seen that the various characteristics of the solar power generation reflecting device of the present invention are superior to the various characteristics of the solar power generation reflecting device of the comparative example. That is, by the above means of the present invention, it is possible to prevent a decrease in the regular reflectance of the silver reflecting layer due to the deterioration of the constituent layers, and to be lightweight and flexible, to suppress the manufacturing cost, and to increase the area and mass production. It can be seen that a solar power generation reflecting device using a film mirror having excellent adhesion, weather resistance and cold shock durability and having good regular reflectance to solar heat can be obtained.
 実施例2
 〔フィルムミラーの作製〕
 (フィルムミラー1の作製)
 樹脂基材として、2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ100μm)を用いた。上記ポリエチレンテレフタレートフィルムの片面に、酸化ランタンと酸化アルミニウムを8:2で混合した混合物を真空蒸着法により60nmになるように蒸着し、続いて銅層を真空蒸着法により厚さ100nmの銅反射層を形成し、同様に銀反射層を150nmになるように蒸着した。次に銀反射層上に、ポリエステル系樹脂とTDI(トリレンジイソシアネート)系イソシアネートを樹脂固形分比率で10:2に混合した樹脂を、グラビアコート法によりコーティングして、厚さ0.1μmの腐食防止剤層を形成し、比較例のフィルムミラー1を作製した。
Example 2
[Production of film mirror]
(Preparation of film mirror 1)
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 μm) was used as the resin substrate. On one side of the polyethylene terephthalate film, a mixture of lanthanum oxide and aluminum oxide mixed at a ratio of 8: 2 was deposited to a thickness of 60 nm by a vacuum deposition method, and then a copper reflective layer having a thickness of 100 nm was deposited by a vacuum deposition method. In the same manner, a silver reflective layer was deposited to a thickness of 150 nm. Next, a resin in which a polyester resin and a TDI (tolylene diisocyanate) isocyanate are mixed at a resin solid content ratio of 10: 2 is coated on the silver reflective layer by a gravure coating method to have a thickness of 0.1 μm. An inhibitor layer was formed to produce a comparative film mirror 1.
 (フィルムミラー2の作製)
 フィルムミラー1の作製において、腐食防止剤層に腐食防止剤としてジシクロヘキシルアンモニウムシクロヘキサンカルボキシレート(腐食防止剤A、紫外線吸収能のある腐食防止剤)を0.3g/mとなるように含有させたこと以外は同様にして、比較例のフィルムミラー2を作製した。
(Preparation of film mirror 2)
In the production of the film mirror 1, dicyclohexylammonium cyclohexanecarboxylate (corrosion inhibitor A, corrosion inhibitor having ultraviolet absorbing ability) as a corrosion inhibitor was contained in the corrosion inhibitor layer so as to be 0.3 g / m 2 . A film mirror 2 of a comparative example was produced in the same manner except that.
 (フィルムミラー3の作製)
 フィルムミラー1の作製において、腐食防止剤層に腐食防止剤としてグリコールジメルカプトアセテート(腐食防止剤B、紫外線吸収能のない腐食防止剤)を0.3g/mとなるように含有させ、腐食防止剤層上に、酸化セリウムを電子ビーム加熱式真空蒸着法により100nm製膜し紫外線吸収剤層を形成したこと以外は同様にして、比較例のフィルムミラー3を作製した。
(Preparation of film mirror 3)
In the production of the film mirror 1, the corrosion inhibitor layer contains glycol dimercaptoacetate (corrosion inhibitor B, corrosion inhibitor having no UV absorbing ability) as a corrosion inhibitor so as to have a concentration of 0.3 g / m 2. A film mirror 3 of a comparative example was produced in the same manner except that an ultraviolet absorber layer was formed by depositing cerium oxide with a thickness of 100 nm on the inhibitor layer by an electron beam heating vacuum deposition method.
 (フィルムミラー4の作製)
 樹脂基材として、2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ100μm)を用いた。上記ポリエチレンテレフタレートフィルムの片面に、酸化ランタンと酸化アルミニウムを8:2で混合した混合物を真空蒸着法により60nmになるように蒸着し、続いて銅層を真空蒸着法により厚さ100nmの銅反射層を形成し、同様に銀反射層を150nmになるように蒸着した。銀反射層上に、ポリエステル系樹脂とTDI系イソシアネートを樹脂固形分比率で10:2に混合した樹脂中に、さらに腐食防止剤としてジシクロヘキシルアンモニウムシクロヘキサンカルボキシレートを0.3g/mとなるよう調整した量を添加し、グラビアコート法によりコーティングして、厚さ100nmの腐食防止剤層を形成した。その上に、上記腐食防止剤層のバインダーとして用いたポリエステル系樹脂に紫外線吸収剤として、ベンゾトリアゾールを0.3g/mとなるよう調整した量を添加して、グラビアコート法によりコーティングして、厚さ100nmの紫外線吸収剤層を形成し、本発明のフィルムミラー4を作製した。
(Preparation of film mirror 4)
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 μm) was used as the resin substrate. On one side of the polyethylene terephthalate film, a mixture of lanthanum oxide and aluminum oxide mixed at a ratio of 8: 2 was deposited to a thickness of 60 nm by a vacuum deposition method, and then a copper reflective layer having a thickness of 100 nm was deposited by a vacuum deposition method. In the same manner, a silver reflective layer was deposited to a thickness of 150 nm. On a silver reflective layer, in a resin in which polyester resin and TDI isocyanate are mixed at a resin solid content ratio of 10: 2, dicyclohexylammonium cyclohexanecarboxylate is adjusted to 0.3 g / m 2 as a corrosion inhibitor. The obtained amount was added and coated by a gravure coating method to form a corrosion inhibitor layer having a thickness of 100 nm. In addition, an amount of benzotriazole adjusted to 0.3 g / m 2 is added as an ultraviolet absorber to the polyester resin used as the binder for the corrosion inhibitor layer, and coating is performed by a gravure coating method. Then, an ultraviolet absorber layer having a thickness of 100 nm was formed to produce the film mirror 4 of the present invention.
 (フィルムミラー5の作製)
 フィルムミラー4の作製において、紫外線吸収剤層を、酸化セシウムを100nm真空蒸着法により製膜した以外は同様にして、本発明のフィルムミラー5を作製した。
(Preparation of film mirror 5)
In the production of the film mirror 4, the film mirror 5 of the present invention was produced in the same manner except that the ultraviolet absorber layer was formed by cesium oxide by a 100 nm vacuum vapor deposition method.
 (フィルムミラー6の作製)
 フィルムミラー5の紫外線吸収剤層上に、ジブチルエーテル中(クラリアント社製、NL120)の3質量%パーヒドロポリシラザン液を用いて、乾燥後の膜の厚さが100nmとなるようにバーコーティングし、3分間自然乾燥した後、90℃のオーブンで30分間アニールし、ガスバリア層を設け、本発明のフィルムミラー6を作製した。
(Preparation of film mirror 6)
On the ultraviolet absorber layer of the film mirror 5, using a 3% by mass perhydropolysilazane solution in dibutyl ether (Clariant, NL120), bar coating was performed so that the thickness of the dried film was 100 nm. After naturally drying for 3 minutes, the film was annealed in an oven at 90 ° C. for 30 minutes to provide a gas barrier layer to produce the film mirror 6 of the present invention.
 (フィルムミラー7の作製)
 フィルムミラー6のガスバリア層の上に、市販のハードコート剤(JSR社製、オプスター(登録商標)Z7534)をメチルエチルケトンで固形分濃度が50質量%になるように希釈し、さらに平均粒子径が1.5μmのアクリル系微粒子(綜研化学社製、ケミスノー(登録商標)MXシリーズ)を上記ハードコート剤の固形分に対して1質量%添加して、傷防止層用の塗料を調製した。上記の塗料を塗工後、80℃で乾燥、さらに紫外線1.0J/cmを照射して硬化させ、厚さ6μmの傷防止層を設け、本発明のフィルムミラー7を作製した。
(Preparation of film mirror 7)
On the gas barrier layer of the film mirror 6, a commercially available hard coat agent (manufactured by JSR, Opstar (registered trademark) Z7534) is diluted with methyl ethyl ketone so that the solid content concentration becomes 50 mass%, and the average particle size is 1 A coating material for a scratch-preventing layer was prepared by adding 1% by mass of 5 μm acrylic fine particles (manufactured by Soken Chemical Co., Ltd., Chemisnow (registered trademark) MX series) to the solid content of the hard coat agent. After coating the above-mentioned paint, it was dried at 80 ° C. and further irradiated with ultraviolet rays 1.0 J / cm 2 to be cured, and a 6 μm-thick scratch preventing layer was provided to produce the film mirror 7 of the present invention.
 (フィルムミラー8の作製)
 フィルムミラー7の作製において、2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ100μm)を2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ175μm)に替えた以外は同様にして、本発明のフィルムミラー8を作製した。
(Preparation of film mirror 8)
The film mirror of the present invention was similarly prepared except that the biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 μm) was replaced with the biaxially stretched polyester film (polyethylene terephthalate film, thickness 175 μm) in the production of the film mirror 7. 8 was produced.
 〔太陽熱発電用反射装置の作製〕
 厚さ0.1mmで、縦4cm×横5cmのステンレス(SUS304)板上に、上記作製したフィルムミラー1~8を、厚さ3μmの粘着層を介して貼り付け、それぞれ太陽熱発電用反射装置1~8を作製した。
[Preparation of solar power generation reflector]
The produced film mirrors 1 to 8 are attached on a stainless steel (SUS304) plate having a thickness of 0.1 mm and a length of 4 cm and a width of 5 cm through an adhesive layer having a thickness of 3 μm. 8 were produced.
 〔太陽熱発電用反射装置の評価〕
 上記で得られた太陽熱発電用反射装置について、下記の方法により正反射率、耐候性、耐光性、鉛筆硬度及び黄色変化の評価を行った。
[Evaluation of reflector for solar thermal power generation]
About the reflective apparatus for solar thermal power generation obtained above, the regular reflectance, weather resistance, light resistance, pencil hardness, and yellowing change were evaluated by the following method.
 (正反射率)
 島津製作所社製の分光光度計「UV265」に、積分球反射付属装置を取り付けたものを改造し、反射面の法線に対して、入射光の入射角を5°となるように調整し、反射角5°の正反射率を測定した。評価は、350nmから700nmまでの平均反射率として測定した。
(Regular reflectance)
A spectrophotometer “UV265” manufactured by Shimadzu Corporation was modified with an integrating sphere reflection accessory, and the incident angle of incident light was adjusted to 5 ° with respect to the normal of the reflecting surface. The regular reflectance at a reflection angle of 5 ° was measured. Evaluation was measured as an average reflectance from 350 nm to 700 nm.
 (耐候性)
 85℃、85%RHの条件で30日間放置後の正反射率を、上記と同様の方法により測定し、強制劣化前の正反射率と強制劣化後の正反射率の比から、耐候性試験前後における正反射率の低下率を算出した。以下に耐候性試験の評価基準を示す。
5:正反射率の低下率が5%未満
4:正反射率の低下率が5%以上10%未満
3:正反射率の低下率が10%以上15%未満
2:正反射率の低下率が15%以上20%未満
1:正反射率の低下率が20%以上
 (耐光性)
 岩崎電気製アイスーパーUVテスターを用いて、65℃の環境下で7日間紫外線照射を行った後、上記方法により正反射率を測定し、強制劣化前の正反射率と強制劣化後の正反射率の比から、耐光性試験前後における正反射率の低下率を算出した。以下に耐光性試験の評価基準を示す。
5:正反射率の低下率が5%未満
4:正反射率の低下率が5%以上10%未満
3:正反射率の低下率が10%以上15%未満
2:正反射率の低下率が15%以上20%未満
1:正反射率の低下率が20%以上
 (鉛筆硬度)
 JIS-K5400に基づいて、各サンプルの45°傾斜、1kg荷重における鉛筆硬度を測定した。
(Weatherability)
The specular reflectance after standing for 30 days under the conditions of 85 ° C. and 85% RH is measured by the same method as described above, and the weather resistance test is performed from the ratio of the regular reflectance before forced degradation and the regular reflectance after forced degradation. The decrease rate of the regular reflectance before and after was calculated. The evaluation criteria for the weather resistance test are shown below.
5: The rate of decrease in regular reflectance is less than 5% 4: The rate of decrease in regular reflectance is 5% or more and less than 10% 3: The rate of decrease in regular reflectance is 10% or more but less than 15% 2: The rate of decrease in regular reflectance 15% or more and less than 20% 1: Regular reflectance decrease rate is 20% or more (light resistance)
After irradiating with UV light for 7 days in an environment of 65 ° C using an I-superior eye super UV tester, the regular reflectance is measured by the above method, and the regular reflectance before forced degradation and regular reflectance after forced degradation. From the ratio of the ratio, the decrease rate of the regular reflectance before and after the light resistance test was calculated. The evaluation criteria for the light resistance test are shown below.
5: The rate of decrease in regular reflectance is less than 5% 4: The rate of decrease in regular reflectance is 5% or more and less than 10% 3: The rate of decrease in regular reflectance is 10% or more but less than 15% 2: The rate of decrease in regular reflectance 15% or more and less than 20% 1: Decrease rate of regular reflectance is 20% or more (pencil hardness)
Based on JIS-K5400, the pencil hardness of each sample at 45 ° inclination and 1 kg load was measured.
 (黄色変化)
 岩崎電気製アイスーパーUVテスターを用いて、65℃の環境下で7日間紫外線照射を行った後、目視により黄色変化を観察した。以下に黄色変化の評価基準を示す。
○:目視で色味の差が見えない
△:目視で色味の差がわずかに見える
×:目視で色味の差がはっきり見える
 評価の結果を表2に示す。
(Yellow change)
Using an I-superior UV tester manufactured by Iwasaki Electric Co., Ltd., ultraviolet irradiation was performed for 7 days in an environment of 65 ° C., and then yellow change was visually observed. The evaluation criteria for yellowing are shown below.
○: No difference in color is visually observed Δ: A slight difference in color is visually observed x: A difference in color is clearly visible visually Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2から明らかなように、本発明のフィルムミラーを用いた太陽熱発電用反射装置の各種特性は、比較例のフィルムミラーを用いた太陽熱発電用反射装置に対して優れていることが分かる。すなわち、本発明の上記手段により、銀反射層の劣化による正反射率の低下を防止するとともに、軽量で柔軟性があり、製造コストを抑え大面積化・大量生産することのできる耐光性及び耐候性に優れ、太陽熱に対して良好な正反射率を有するフィルムミラーを用いた太陽熱発電用反射装置が得られることが分かる。 As is apparent from Table 2, it can be seen that the various characteristics of the solar power generation reflector using the film mirror of the present invention are superior to the solar power generator reflector using the film mirror of the comparative example. That is, the above-described means of the present invention prevents the decrease in regular reflectance due to the deterioration of the silver reflection layer, and is light and flexible, lightweight and flexible, and can be manufactured with a large area and mass production while suppressing manufacturing costs. It can be seen that a solar power generation reflecting device using a film mirror having excellent specularity and good regular reflectance with respect to solar heat can be obtained.

Claims (24)

  1.  樹脂基材上に、少なくとも金属からなる反射層及び紫外線吸収層を有するフィルムミラーであって、該紫外線吸収層が高分子型紫外線吸収剤を含有する紫外線吸収層からなる、または、該金属からなる反射層が銀反射層であり、該紫外線吸収層が紫外線吸収剤を含有する紫外線吸収層(1)及び銀の腐食防止能を有する紫外線吸収剤を含有する紫外線吸収層(2)からなることを特徴とするフィルムミラー。 A film mirror having at least a reflective layer made of a metal and an ultraviolet absorbing layer on a resin substrate, wherein the ultraviolet absorbing layer is made of an ultraviolet absorbing layer containing a polymeric ultraviolet absorber, or made of the metal The reflection layer is a silver reflection layer, and the ultraviolet absorption layer is composed of an ultraviolet absorption layer (1) containing an ultraviolet absorber and an ultraviolet absorption layer (2) containing an ultraviolet absorber having an anticorrosive ability for silver. Characteristic film mirror.
  2.  樹脂基材上に、少なくとも金属からなる反射層及び紫外線吸収層を有するフィルムミラーであって、該紫外線吸収層が高分子型紫外線吸収剤を含有する紫外線吸収層からなることを特徴とする請求項1に記載のフィルムミラー。 A film mirror having, on a resin substrate, at least a reflective layer made of metal and an ultraviolet absorbing layer, wherein the ultraviolet absorbing layer comprises an ultraviolet absorbing layer containing a polymer type ultraviolet absorber. 1. The film mirror according to 1.
  3.  前記樹脂基材が、ポリエステル、ポリエチレンナフタレート、アクリル、ポリカーボネート、ポリオレフィン、セルロースまたはポリアミドを含む樹脂フィルムであることを特徴とする請求項1または2に記載のフィルムミラー。 The film mirror according to claim 1 or 2, wherein the resin substrate is a resin film containing polyester, polyethylene naphthalate, acrylic, polycarbonate, polyolefin, cellulose, or polyamide.
  4.  前記金属からなる反射層が、金、銀、銅、アルミニウム、またはそれらの合金を含むことを特徴とする請求項2~3のいずれか1項に記載のフィルムミラー。 4. The film mirror according to claim 2, wherein the reflective layer made of metal includes gold, silver, copper, aluminum, or an alloy thereof.
  5.  前記金属からなる反射層が、湿式めっきで作製されたものであることを特徴とする請求項2~4のいずれか1項に記載のフィルムミラー。 The film mirror according to any one of claims 2 to 4, wherein the reflective layer made of metal is produced by wet plating.
  6.  前記金属からなる反射層が、乾式めっきで作製されたものであることを特徴とする請求項2~4のいずれか1項に記載のフィルムミラー。 The film mirror according to any one of claims 2 to 4, wherein the reflective layer made of metal is produced by dry plating.
  7.  前記金属からなる反射層が、樹脂基材よりも光入射側に設けられることを特徴とする請求項2~6のいずれか1項に記載のフィルムミラー。 The film mirror according to any one of claims 2 to 6, wherein the reflective layer made of the metal is provided on the light incident side of the resin base material.
  8.  前記高分子型紫外線吸収剤を含む層が、前記金属からなる反射層よりも光入射側に設けられることを特徴とする請求項2~7のいずれか1項に記載のフィルムミラー。 The film mirror according to any one of claims 2 to 7, wherein the layer containing the polymeric ultraviolet absorber is provided closer to the light incident side than the reflective layer made of the metal.
  9.  前記高分子型紫外線吸収剤を含む層が、エマルジョン状に分散された高分子型紫外線吸収剤液を塗布乾燥させて得られたものであることを特徴とする請求項2~7のいずれか1項に記載のフィルムミラー。 8. The layer containing the polymer type ultraviolet absorber is obtained by applying and drying a polymer type ultraviolet absorber liquid dispersed in an emulsion form. The film mirror according to item.
  10.  前記高分子型紫外線吸収剤を含む層が、有機溶剤にて溶解させた樹脂液に高分子型紫外線吸収剤を添加して塗布後に溶媒を揮発乾燥させて得られたものであることを特徴とする請求項2~8のいずれか1項に記載のフィルムミラー。 The layer containing the polymer type ultraviolet absorber is obtained by adding a polymer type ultraviolet absorber to a resin solution dissolved in an organic solvent and evaporating and drying the solvent after coating. The film mirror according to any one of claims 2 to 8.
  11.  前記高分子型紫外線吸収剤を含む層が、紫外線硬化性モノマー樹脂液に高分子型紫外線吸収剤を添加して塗布後に紫外線硬化させて得られたものであることを特徴とする請求項2~10のいずれか1項に記載のフィルムミラー。 The layer containing the polymer type ultraviolet absorber is obtained by adding a polymer type ultraviolet absorber to an ultraviolet curable monomer resin solution and curing it after application. 10. The film mirror according to any one of 10 above.
  12.  前記高分子型紫外線吸収剤を含む層が、膜厚は50μm以下であり、光線透過率の平均値は90%以上であることを特徴とする請求項2~11のいずれか1項に記載のフィルムミラー。 The layer according to any one of claims 2 to 11, wherein the layer containing the polymeric ultraviolet absorber has a thickness of 50 µm or less and an average value of light transmittance of 90% or more. Film mirror.
  13.  前記金属からなる反射層と接して、Cu層が設けられていることを特徴とする請求項2~12のいずれか1項に記載のフィルムミラー。 The film mirror according to any one of claims 2 to 12, wherein a Cu layer is provided in contact with the reflective layer made of the metal.
  14.  前記金属からなる反射層と接して、チオエーテル系、チオール系、Ni系有機化合物系、ベンゾトリアゾール系、イミダゾール系、オキサゾール系、テトラザインデン系、ピリミジン系またはチアジアゾール系の腐食防止剤層が設けられていることを特徴とする請求項2~13のいずれか1項に記載のフィルムミラー。 A thioether-based, thiol-based, Ni-based organic compound-based, benzotriazole-based, imidazole-based, oxazole-based, tetrazaindene-based, pyrimidine-based, or thiadiazole-based corrosion inhibitor layer is provided in contact with the metal reflective layer. The film mirror according to any one of claims 2 to 13, wherein the film mirror is provided.
  15.  樹脂基材上に、少なくとも金属からなる反射層及び紫外線吸収層を有するフィルムミラーであって、該金属からなる反射層が銀反射層であり、該銀反射層の上に銀の腐食防止能を有する紫外線吸収剤を含有する紫外線吸収層(2)を有し、さらにその上に紫外線吸収剤を含有する紫外線吸収層(1)を有することを特徴とする請求項1に記載のフィルムミラー。 A film mirror having at least a reflective layer made of a metal and an ultraviolet absorbing layer on a resin base material, the reflective layer made of the metal being a silver reflective layer, and having a silver corrosion preventing ability on the silver reflective layer 2. The film mirror according to claim 1, further comprising an ultraviolet absorbing layer (2) containing the ultraviolet absorber and further having an ultraviolet absorbing layer (1) containing the ultraviolet absorber.
  16.  前記紫外線吸収層(2)に含まれる腐食防止能を有する紫外線吸収剤が、銀に対する吸着性基を有し、かつ紫外線吸収能を有することを特徴とする請求項15に記載のフィルムミラー。 16. The film mirror according to claim 15, wherein the ultraviolet absorber having corrosion inhibiting ability contained in the ultraviolet absorbing layer (2) has an adsorptive group for silver and has ultraviolet absorbing ability.
  17.  前記紫外線吸収層(1)に含まれる紫外線吸収剤が、無機紫外線吸収剤であることを特徴とする請求項15または16に記載のフィルムミラー。 The film mirror according to claim 15 or 16, wherein the ultraviolet absorber contained in the ultraviolet absorbing layer (1) is an inorganic ultraviolet absorber.
  18.  前記紫外線吸収層(2)と銀反射層の間に、銀よりもイオン化傾向の高い金属を含有する金属層が前記銀反射層に隣接していることを特徴とする請求項15~17のいずれか1項に記載のフィルムミラー。 A metal layer containing a metal having a higher ionization tendency than silver is adjacent to the silver reflective layer between the ultraviolet absorbing layer (2) and the silver reflective layer. 2. A film mirror according to claim 1.
  19.  前記紫外線吸収層(2)と銀反射層もしくは、紫外線吸収層(2)と金属層の間に接着層を有することを特徴とする請求項15~18のいずれか1項に記載のフィルムミラー。 The film mirror according to any one of claims 15 to 18, wherein an adhesive layer is provided between the ultraviolet absorbing layer (2) and the silver reflecting layer or between the ultraviolet absorbing layer (2) and the metal layer.
  20.  前記銀反射層に隣接する層の上側に、ガスバリア層を有することを特徴とする請求項15~19のいずれか1項に記載のフィルムミラー。 The film mirror according to any one of claims 15 to 19, further comprising a gas barrier layer above a layer adjacent to the silver reflective layer.
  21.  最外層に傷防止層を有することを特徴とする請求項15~20のいずれか1項に記載のフィルムミラー。 The film mirror according to any one of claims 15 to 20, wherein the outermost layer has a scratch-preventing layer.
  22.  前記樹脂基材を含めた層全体の厚さが、75~250μmであることを特徴とする請求項15~21のいずれか1項に記載のフィルムミラー。 The film mirror according to any one of claims 15 to 21, wherein the total thickness of the layer including the resin base material is 75 to 250 µm.
  23.  請求項1~22のいずれか1項に記載のフィルムミラーを製造するフィルムミラーの製造方法であって、前記金属からなる反射層を銀蒸着によって形成することを特徴とするフィルムミラーの製造方法。 A film mirror manufacturing method for manufacturing the film mirror according to any one of claims 1 to 22, wherein the reflective layer made of the metal is formed by silver vapor deposition.
  24.  請求項1~22のいずれか1項に記載のフィルムミラー、または請求項23に記載のフィルムミラーの製造方法により得られたフィルムミラーを用いた太陽熱発電用反射装置であって、前記樹脂基材を挟んで前記金属からなる反射層を有する側とその反対側の樹脂基材面に塗設された粘着層を介して、金属基材上に前記フィルムミラーを貼り付けて形成されたことを特徴とする太陽熱発電用反射装置。 A solar power generation reflecting apparatus using the film mirror according to any one of claims 1 to 22 or the film mirror obtained by the film mirror manufacturing method according to claim 23, wherein the resin base material is used. The film mirror is pasted on a metal substrate through an adhesive layer coated on the side having the reflective layer made of the metal and the opposite side of the resin substrate. Reflector for solar thermal power generation.
PCT/JP2010/072980 2009-12-21 2010-12-21 Film mirror, method for producing same, and reflecting device for solar thermal power generator WO2011078157A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011547558A JP5962014B2 (en) 2009-12-21 2010-12-21 Film mirror and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-288781 2009-12-21
JP2009288781 2009-12-21
JP2009-294199 2009-12-25
JP2009294199 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011078157A1 true WO2011078157A1 (en) 2011-06-30

Family

ID=44195684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072980 WO2011078157A1 (en) 2009-12-21 2010-12-21 Film mirror, method for producing same, and reflecting device for solar thermal power generator

Country Status (2)

Country Link
JP (1) JP5962014B2 (en)
WO (1) WO2011078157A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094577A1 (en) * 2011-12-22 2013-06-27 コニカミノルタ株式会社 Film mirror, method for producing film mirror, and reflection device for solar thermal power generation
JP2013238678A (en) * 2012-05-11 2013-11-28 Asahi Glass Co Ltd Reflector
JP2013238677A (en) * 2012-05-11 2013-11-28 Asahi Glass Co Ltd Reflector
WO2014050589A1 (en) * 2012-09-28 2014-04-03 富士フイルム株式会社 Film mirror
WO2018207701A1 (en) * 2017-05-09 2018-11-15 日東電工株式会社 Composition for optical members, optical member and image display device
JP2018200463A (en) * 2017-05-09 2018-12-20 日東電工株式会社 Composition for optical members, optical member and image display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154942A (en) * 1984-12-24 1986-07-14 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー Corrosion-resistant reflecting mirror
JP2002154179A (en) * 2000-11-21 2002-05-28 Kobe Steel Ltd Aluminum alloy thin plate material, concaved reflecting mirror for heliostat using the same and method for manufacturing the same
JP2004009591A (en) * 2002-06-07 2004-01-15 Mitsui Chemicals Inc Reflector
JP2004286943A (en) * 2003-03-20 2004-10-14 Ricoh Co Ltd Resin reflection mirror and its manufacturing method
JP2006326971A (en) * 2005-05-25 2006-12-07 Toray Ind Inc Weatherable resin film
JP2008194993A (en) * 2007-02-15 2008-08-28 Idemitsu Kosan Co Ltd Resin laminated body and manufacturing method of the same
JP2009038078A (en) * 2007-07-31 2009-02-19 Konica Minolta Holdings Inc Electromagnetic wave shield film, and plasma display panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154942A (en) * 1984-12-24 1986-07-14 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー Corrosion-resistant reflecting mirror
JP2002154179A (en) * 2000-11-21 2002-05-28 Kobe Steel Ltd Aluminum alloy thin plate material, concaved reflecting mirror for heliostat using the same and method for manufacturing the same
JP2004009591A (en) * 2002-06-07 2004-01-15 Mitsui Chemicals Inc Reflector
JP2004286943A (en) * 2003-03-20 2004-10-14 Ricoh Co Ltd Resin reflection mirror and its manufacturing method
JP2006326971A (en) * 2005-05-25 2006-12-07 Toray Ind Inc Weatherable resin film
JP2008194993A (en) * 2007-02-15 2008-08-28 Idemitsu Kosan Co Ltd Resin laminated body and manufacturing method of the same
JP2009038078A (en) * 2007-07-31 2009-02-19 Konica Minolta Holdings Inc Electromagnetic wave shield film, and plasma display panel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094577A1 (en) * 2011-12-22 2013-06-27 コニカミノルタ株式会社 Film mirror, method for producing film mirror, and reflection device for solar thermal power generation
JP2013238678A (en) * 2012-05-11 2013-11-28 Asahi Glass Co Ltd Reflector
JP2013238677A (en) * 2012-05-11 2013-11-28 Asahi Glass Co Ltd Reflector
WO2014050589A1 (en) * 2012-09-28 2014-04-03 富士フイルム株式会社 Film mirror
WO2018207701A1 (en) * 2017-05-09 2018-11-15 日東電工株式会社 Composition for optical members, optical member and image display device
JP2018200463A (en) * 2017-05-09 2018-12-20 日東電工株式会社 Composition for optical members, optical member and image display device
TWI669294B (en) * 2017-05-09 2019-08-21 日商日東電工股份有限公司 Composition for optical member, optical member, and image display device
CN110249242A (en) * 2017-05-09 2019-09-17 日东电工株式会社 Optical component composition, optical component and image display device
CN110249242B (en) * 2017-05-09 2020-07-03 日东电工株式会社 Composition for optical member, and image display device

Also Published As

Publication number Publication date
JP5962014B2 (en) 2016-08-03
JPWO2011078157A1 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
WO2012057004A1 (en) Film mirror, process for manufacturing film mirror, and reflection device for solar power generation purposes
JP5742726B2 (en) Film mirror, method for manufacturing the same, and mirror for reflecting sunlight
JP5962014B2 (en) Film mirror and manufacturing method thereof
WO2011096320A1 (en) Film mirror, film mirror for solar thermal power generation, and reflection device for solar photovoltaic power generation
WO2011078024A1 (en) Film mirror and process for production thereof, and reflection device for generation of solar power
JP5516603B2 (en) FILM MIRROR, METHOD FOR MANUFACTURING THE SAME, AND REFLECTOR FOR SOLAR THERMAL POWER GENERATION
WO2011122241A1 (en) Film mirror for generation of solar power, process for production of film mirror for generation of solar power, and reflecting device for generation of solar power
WO2011078156A1 (en) Film mirror, method for producing same, and reflecting device for solar thermal power generator using said film mirror
JP2015121806A (en) Film mirror, film mirror manufacturing method, and film mirror for sunlight collection
JP2012047861A (en) Film mirror, manufacturing method thereof, and film mirror for condensing solar light
JP5660051B2 (en) FILM MIRROR, MANUFACTURING METHOD THEREOF, AND SOLAR POWER GENERATOR REFLECTOR USING THE SAME
WO2015146655A1 (en) Light reflecting film
WO2011096151A1 (en) Film mirror and process for production thereof, and sunlight collection mirror
JP2011203553A (en) Film mirror, method of producing the same and solar light reflecting mirror
WO2011114861A1 (en) Solar concentrating mirror, and trough solar thermal power generation device and trough solar power generation device using same
WO2011096248A1 (en) Light reflecting film for solar thermal power generation, method for producing same, and reflection device for solar thermal power generation using same
WO2011158665A1 (en) Film mirror and reflective device for solar thermal power generation
JP2012108221A (en) Reflector for solar thermal power generation, method for manufacturing the same and reflector device for solar thermal power generation
WO2013094577A1 (en) Film mirror, method for producing film mirror, and reflection device for solar thermal power generation
JP2015161826A (en) Film mirror and reflection device for solar thermal power generation
WO2013054869A1 (en) Mirror for reflecting sunlight and reflecting device for solar power generation
JP2016009034A (en) Light reflection film
WO2012056953A1 (en) Mirror for reflecting solar light, and reflection device for solar power generation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839387

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547558

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839387

Country of ref document: EP

Kind code of ref document: A1