WO2011077676A1 - Wiring component - Google Patents

Wiring component Download PDF

Info

Publication number
WO2011077676A1
WO2011077676A1 PCT/JP2010/007314 JP2010007314W WO2011077676A1 WO 2011077676 A1 WO2011077676 A1 WO 2011077676A1 JP 2010007314 W JP2010007314 W JP 2010007314W WO 2011077676 A1 WO2011077676 A1 WO 2011077676A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
wiring
layer
external connection
connection terminal
Prior art date
Application number
PCT/JP2010/007314
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 竹村
徳昭 安道
博 鳥屋尾
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2011547284A priority Critical patent/JPWO2011077676A1/en
Publication of WO2011077676A1 publication Critical patent/WO2011077676A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present invention relates to a wiring component exhibiting characteristics as a metamaterial.
  • metamaterials For example, the antenna can be reduced in size and thickness, and a noise filter can be formed by utilizing the band gap characteristic exhibited by the metamaterial.
  • Patent Document 1 As specific metamaterial structures, for example, there are structures described in Patent Document 1, Patent Document 2, and Non-Patent Document 1.
  • the technique described in Patent Document 1 has a problem of providing a ground plane in which surface current is suppressed.
  • thumbtack-like conductor elements composed of polygonal flat plate-like conductor pieces and conductor pillars are periodically arranged on a conductor plane, and each conductor element is connected to the conductor plane.
  • the disclosed structure is disclosed.
  • thumbtack-like conductor elements composed of polygonal flat plate-like conductor pieces and conductor pillars are periodically arranged on a conductor plane, and each conductor element is formed into a conductor plane.
  • a structure in which another conductor plane is laminated on a conductor piece via a dielectric layer via a dielectric layer is disclosed.
  • the metamaterial exhibits characteristics as a band rejection filter, it is conceivable that a structure as a metamaterial is inserted into a wiring component such as a wiring board to provide a noise filtering function.
  • a structure as a metamaterial is inserted into a wiring component such as a wiring board to provide a noise filtering function.
  • electronic devices including wiring components such as wiring boards have been downsized. For this reason, downsizing of wiring parts is strongly desired.
  • the band gap band of the metamaterial can be lowered to a practical frequency range (for example, several GHz band) by increasing the product of the capacity component and the inductor component of the unit cell.
  • the electrode In a miniaturized wiring component, the electrode cannot be made large, so that it is necessary to make the dielectric thin in order to increase the capacitance component.
  • the inductor component of the metamaterial since the inductor component of the metamaterial is provided by a via that penetrates the dielectric, the inductor component of the metamaterial becomes small when the dielectric is thinned. Thus, when introducing a metamaterial structure into a miniaturized wiring component, it is difficult to increase the product of the capacity component and the inductor component of the unit cell.
  • An object of the present invention is to provide a wiring component that can increase the product of the capacity component and the inductor component of a unit cell of a metamaterial and can suppress an increase in size.
  • a first conductor extending in a sheet shape; A plurality of island-shaped second conductors repeatedly disposed in a region facing the first conductor; A sheet-like third conductor located on the opposite side of the first conductor when the plurality of second conductors are used as a reference, and extending in a region facing the plurality of second conductors; A plurality of connecting members connecting each of the plurality of second conductors to the third conductor; With The connecting member is A first wiring that is formed in a layer different from the second conductor and has one end not overlapping the center of the second conductor in plan view; A first via connecting the one end of the first wiring and the second conductor; A wiring component is provided.
  • the present invention it is possible to provide a wiring component capable of increasing the product of the capacity component and the inductor component of the unit cell of the metamaterial and suppressing the increase in size.
  • FIG. 13 is a diagram illustrating an example in which the wiring component illustrated in FIG. 12 is used as a discrete component having a noise filter function.
  • FIG. 1 is a cross-sectional view showing the configuration of the wiring component 50 according to the first embodiment.
  • the wiring component 50 includes a first conductor 100, a plurality of second conductors 200, a third conductor 300, and a plurality of connection members.
  • the first conductor 100 extends in a sheet shape.
  • the second conductor 200 is a small conductor piece, and is repeatedly arranged, for example, periodically in a region facing the first conductor 100.
  • the third conductor 300 is located on the side opposite to the first conductor 100 when the plurality of second conductors 200 are used as a reference, and extends in a region facing the plurality of second conductors 200.
  • the connection member connects each of the plurality of second conductors 200 to the third conductor 300.
  • the connection member includes a first wiring 420 and a first via 512.
  • the first wiring 420 is formed in a layer different from the second conductor 200, and one end thereof does not overlap the center of the second conductor 200 in plan view.
  • the first via 512 connects one end of the first wiring 420 and the second conductor 200.
  • the other end of the first wiring 420 is connected to the third conductor 300 by the second via 602. That is, the second conductor 200 is connected to the third conductor 300 via the first via 512, the first wiring 420, and the second via 602.
  • a dielectric layer 500 is provided between the first conductor 100 and the second conductor 200.
  • the dielectric layer 500 may contain an oxide of at least one element selected from Mg, Al, Si, Ti, Ta, Hf, and Zr, or a metal element such as Sr, Ba, Pb, Bi.
  • a composite oxide may be contained. These oxides or composite oxides constitute the main component of the dielectric layer 500.
  • the main component means 50% or more in terms of the number of atoms.
  • the dielectric layer 500 is made of, for example, strontium titanate.
  • the composite oxide examples include perovskite oxides represented by a chemical formula ABO 3 (A and B are metal elements) such as strontium titanate, barium titanate, and lead titanate, and chemical formulas A 2 B 2 O 7 (A, P is a pyrochlore type oxide represented by (B is a metal element), a Bi layered ferroelectric such as SrBi 2 Ta 2 O 9 , or a complex oxide containing these as constituent components.
  • the first conductor 100 may have a configuration in which an intermediate layer and a high melting point conductor layer are laminated in this order.
  • the intermediate layer is formed, for example, by providing one or more layers made of at least one material selected from Ti, Ta, Cr, Ti nitride, Ta nitride, and Cr nitride.
  • the high melting point conductor layer is formed by providing one or more layers composed of at least one element selected from Pt, Pd, Ru, and Ir.
  • the wiring component 50 has a substrate 10.
  • the substrate 10 is formed of a conductor, a semiconductor, or an insulator, but may have heat resistance necessary for the manufacturing process of the wiring component 50 described later.
  • the substrate 10 is a conductor or a semiconductor
  • the substrate 10 is formed of at least one selected from, for example, Si, GaAs, stainless steel, tungsten, molybdenum, and titanium.
  • the substrate 10 is an insulator, the substrate 10 is formed of at least one material selected from, for example, glass, sapphire, quartz, and alumina.
  • the first conductor 100 is formed on the intermediate layer 20 formed on one surface of the substrate 10.
  • the intermediate layer 20 has at least one layer composed of at least one material selected from the group consisting of, for example, Ti, Ta, Cr, Ti nitride, Ta nitride, and Cr nitride. Yes.
  • the dielectric layer 500, the plurality of second conductors 200, the insulating layer 510, the first wiring 420, the insulating layer 600, the third conductor 300, and the insulating layer 610 are stacked in this order.
  • the first via 512 is embedded in the insulating layer 510
  • the second via 602 is embedded in the insulating layer 600.
  • the intermediate layer 20, the first conductor 100, the dielectric layer 500, the first via 512, the second conductor 200, the insulating layer 510, and the first wiring 420 are multilayer wiring layers formed by a vapor deposition method.
  • the insulating layers 600 and 610 are formed by coating, and the second via 602 and the third conductor 300 are formed by a plating method.
  • the first conductor 100, the second conductor 200, the first via 512, the first wiring 420, the second via 602, and the third conductor 300 form a structure that exhibits characteristics as a metamaterial.
  • the metamaterial has a configuration in which a plurality of unit cells 40 are repeatedly arranged, for example, periodically.
  • the unit cell 40 has a two-dimensional array, for example, but may be a one-dimensional array.
  • the unit cell 40 is a so-called mushroom-type metamaterial unit cell, and the third conductor 300 corresponds to a conductor plane connected to the mushroom.
  • the second via 602, the first wiring 420, and the first via 512 correspond to the inductance portion of the mushroom, and the second conductor 200 that is a conductor piece corresponds to the head portion of the mushroom.
  • the first conductor 100 corresponds to a second conductor plane facing the mushroom.
  • the size of each capacitor of the metamaterial is controlled by the thickness and material of the dielectric layer 500 and the size and arrangement of the second conductor 200 that is a conductor piece, and the first via 512
  • the inductance component of the metamaterial is controlled by the length and thickness of the first wiring 420 and the second via 602. By adjusting these, it is possible to adjust a band gap band when the structure functions as an EBG (Electromagnetic Band Gap).
  • EBG Electromagnetic Band Gap
  • the interval (center distance) between the same vias is the electromagnetic wave assumed as EBG noise. It is preferable to be within half of the wavelength ⁇ .
  • “Repetition” includes a case where a part of the configuration is missing in any unit cell 40. When the unit cell 40 has a two-dimensional array, “repetition” includes a case where the unit cell 40 is partially missing. Further, “periodic” includes a case where some of the constituent elements are deviated in some unit cells 40 and a case where the arrangement of some unit cells 40 themselves is deviated.
  • the conductors and vias shown in FIG. 1 may be formed by laminating a metal layer such as Cu on a barrier metal layer such as TiN, or at least some of the conductors may be Pt, Pd, Ru. , And Ir may be formed as a refractory conductor layer by laminating one or more layers composed of at least one element selected from Ir.
  • the first conductor 100 is electrically connected to a first external connection terminal (not shown) of the wiring component 50
  • the third conductor 300 is electrically connected to a second external connection terminal (not shown) of the wiring component 50.
  • the first external connection terminal and the second external connection terminal are formed in the same layer as the third conductor 300, for example, and are exposed to the outside through an opening provided in the insulating layer 610.
  • FIG. 2A is a plan view showing a pattern of the third conductor 300 included in the wiring component 50 corresponding to two unit cells 40. As shown in FIG. 2A, the third conductor 300 is a sheet-like conductor pattern and does not have an opening or the like.
  • FIG. 2B is a plan view showing a pattern of the first wiring 420 included in the wiring component 50 corresponding to two unit cells 40.
  • a first via 512 is connected to one end of the first wiring 420, and a second via 602 is connected to the other end of the first wiring 420.
  • the first wiring 420 does not connect the first via 512 and the second via 602 with a straight line, and extends so as to have at least one bent portion so as to increase the wiring length.
  • the first wiring 420 extends in a substantially U shape so as to have two bent portions.
  • FIG. 2C is a plan view showing a pattern of the second conductor 200 included in the wiring component 50.
  • the second conductor 200 is a small conductor piece, but its planar shape is, for example, a square or a rectangle.
  • the second conductor 200 completely includes the first wiring 420 shown in FIG. 2B in plan view.
  • the second conductor 200 may be laid out so as to overlap only a part of the first wiring 420 (that is, only the region where the first via 512 is provided and its periphery) in plan view.
  • FIGS. 3 and 5 are cross-sectional views illustrating an example of a method for manufacturing the wiring component 50 illustrated in FIGS. 1 and 2.
  • a substrate 10 is prepared as shown in FIG.
  • a silicon substrate is used as the substrate 10
  • a low resistance substrate having a specific resistance of 0.02 ⁇ ⁇ cm or less is used as the substrate 10, for example.
  • the substrate 10 is a silicon substrate
  • the natural oxide film formed on the surface of the substrate 10 is removed.
  • the intermediate layer 20 is formed on the substrate 10.
  • the intermediate layer 20 includes, for example, a Ti layer having a thickness of 10 nm to 100 nm, a TiN layer having a thickness of 10 nm to 100 nm, a Mo layer having a thickness of 100 nm to 2 ⁇ m, and a Ti layer having a thickness of 10 nm to 100 nm.
  • the intermediate layer 20 has a function as a barrier metal film for strengthening adhesion to the substrate 10 and Si diffusion, and is formed by a vapor deposition method such as a sputtering method.
  • the Mo layer of the intermediate layer 20 is effective in reducing the resistance of the first conductor layer, and is desirably provided when the substrate is an insulator. When the substrate 10 is a low resistance substrate, the Mo layer of the intermediate layer 20 can be omitted.
  • the first conductor 100 is formed on the substrate 10.
  • the first conductor 100 is formed by, for example, a sputtering method.
  • the first conductor 100 is, for example, a high melting point conductor, and is formed by laminating one or more layers composed of at least one element selected from Pt, Pd, Ru, and Ir.
  • the first conductor 100 is formed of, for example, a Pt layer.
  • the film thickness of the first conductor 100 is, for example, not less than 50 nm and not more than 500 nm.
  • the dielectric layer 500 is formed on the first conductor 100 by a sputtering method such as an RF sputtering method.
  • a sputtering method such as an RF sputtering method.
  • the substrate 10 is heated to, for example, 300 ° C. or more and 600 ° C. or less, and a mixed gas of Ar and O 2 , for example, 80% Ar + 20% O 2 is used as the atmosphere.
  • the thickness of the dielectric layer 500 is, for example, not less than 10 nm and not more than 3 ⁇ m.
  • the dielectric layer 500 can be formed by a CVD method, a sol-gel method, an aerosol deposition method, or a spin coating method.
  • a plurality of second conductors 200 as conductor pieces are formed by selectively forming a conductive film on the dielectric layer 500.
  • the second conductor 200 is formed, for example, by forming a conductive film by sputtering or CVD, forming a resist pattern (not shown) on the conductive film, and etching the conductive film using the resist pattern as a mask.
  • the second conductor 200 has a configuration in which, for example, a Cu layer having a thickness of 100 nm to 10 ⁇ m is stacked on a TiN layer having a thickness of 10 nm to 100 nm as a barrier metal film. Thereafter, the resist pattern is removed.
  • an insulating layer 510 is formed on the dielectric layer 500 and the plurality of second conductors 200 by, for example, a CVD method.
  • the insulating layer 510 is a silicon oxide film, for example, and in this case, is formed by a plasma CVD method.
  • the thickness of the insulating layer 510 is, for example, not less than 100 nm and not more than 1 ⁇ m.
  • a resist pattern (not shown) is formed over the insulating layer 510, and the insulating layer 510 is etched using the resist pattern as a mask. As a result, a connection hole 511 for embedding the first via 512 is formed in the insulating layer 510. Thereafter, the resist pattern is removed.
  • a Ti layer as a barrier metal layer and a Cu layer as a plating seed layer are formed on the insulating layer 510 and on the inner wall and bottom surface of the connection hole 511 by sputtering.
  • the thickness of the Ti layer is, for example, 10 nm or more and 100 nm or less, and the thickness of the plating seed layer is, for example, 50 nm or more and 500 nm or less.
  • a resist pattern is formed on the Cu layer as a plating seed layer, and a Cu layer is formed on the plating seed layer by plating using the resist pattern as a mask.
  • the thickness of the plating layer is, for example, 1 ⁇ m or more and 20 ⁇ m or less at a portion located on the insulating layer 510. Thereby, the first via 512 and the first wiring 420 are formed. Thereafter, the resist pattern and the portion of the plating seed layer and the barrier metal layer that are not covered with the plating layer are removed.
  • an insulating layer 600 is formed on the first wiring 420 and the insulating layer 510.
  • the insulating layer 600 is formed, for example, by applying a photosensitive polyimide layer.
  • a connection hole 601 for embedding the second via 602 in the insulating layer 600 is formed.
  • the connection hole 601 is formed by exposing and developing the insulating layer 600.
  • the finally formed insulating layer 600 has a thickness of, for example, 5 ⁇ m or more and 30 ⁇ m or less.
  • a Ti layer as a barrier metal layer and a Cu layer as a plating seed layer are formed on the insulating layer 600 and on the inner wall and bottom surface of the connection hole 601 by sputtering.
  • the thickness of the Ti layer is, for example, 10 nm or more and 100 nm or less, and the thickness of the plating seed layer is, for example, 50 nm or more and 500 nm or less.
  • a Cu layer is formed on the plating seed layer by a plating method.
  • a resist pattern is formed on the Cu layer as a plating seed layer, and a Cu layer is formed on the plating seed layer by plating using the resist pattern as a mask.
  • the thickness of the plating layer is, for example, 1 ⁇ m or more and 20 ⁇ m or less at a portion located on the insulating layer 600.
  • an insulating layer 610 is formed on each of the insulating layer 600, the third conductor 300, the first external connection terminal, and the second external connection terminal.
  • the insulating layer 610 is formed, for example, by applying a photosensitive polyimide layer and curing (heat treatment).
  • openings are formed in the insulating layer 610 to expose the first external connection terminals and the second external connection terminals.
  • the insulating layer 610 is formed of a photosensitive polyimide layer, these openings are formed by exposing and developing the insulating layer 610.
  • the thickness of the finally formed insulating layer 610 is, for example, not less than 5 ⁇ m and not more than 30 ⁇ m.
  • the wiring component 50 since the wiring component 50 has a plurality of unit cells 40, it exhibits characteristics as a metamaterial.
  • the metamaterial is used as the EBG
  • the product of the inductance and the capacitance in the unit cell 40 must be kept constant.
  • the capacitance in the unit cell 40 can be increased by making the dielectric layer 500 thin or using a high dielectric constant material for the dielectric layer 500, but the inductance in the unit cell 40 is required using a high permeability material. It is necessary to shorten the wiring length or increase the wiring density while maintaining a constant wiring length by fine processing of the wiring.
  • the present inventors examined the EBG structure in which the band gap frequency appears at several GHz, when the size of the second conductor 200, which is a conductor piece, is small enough to prevent the inductor from turning, the necessary inductance is reduced. It became clear that it was difficult to maintain. If the unit cell is approximately the same size as the conductor strip, adopting a linear inductor with one end of the inductor in the center of the conductor strip, the diagonal distance from the center of the conductor strip to the corner of the conductor strip ( The length of the inductor cannot be secured more than 1 / ⁇ 2 times the length of the unit cell).
  • FIG. 6 shows the size of a small piece (length of one side) of a mushroom-type EBG structure and the required length of an inductor when the LC resonance frequency, that is, the frequency with the largest attenuation of the band gap is 2.4 GHz.
  • a result example when the conductor piece is square and the minimum wiring width and interval are both 20 ⁇ m is shown. As the conductor piece becomes smaller and the capacitance becomes smaller, the required inductance increases to make the LC product constant, so a longer inductor is required.
  • an area of 140 ⁇ m ⁇ or more is required to turn the inductor.
  • the required inductor length becomes larger than 1 / ⁇ 2 times the size of the conductor piece, so that the first via 512 is formed by the second conductor 200. If it is at the center, the required inductance cannot be secured.
  • the wiring length is secured by using a region other than the region immediately above the second conductor 200, the substantial area of the unit cell 40 is increased as a result, and the occupied area is increased even with the same number of unit cells. Also, shortening the length of the inductor by introducing a high magnetic permeability material is difficult due to the complicated structure and increased process costs.
  • one end of the first wiring 420 and the first via 512 connected to the first wiring 420 do not overlap the center of the second conductor 200 in plan view. Therefore, it is possible to turn the first wiring 420 in a region immediately above the second conductor 200 and to extend the first wiring 420, and to increase the inductance without increasing the area of the unit cell 40.
  • the band gap frequency band can be lowered (for example, a region of several GHz) without increasing the size of the EBG.
  • the dielectric layer 500 is formed by a thin film process, a material having a high relative dielectric constant, good insulation, and a thin film can be used as the dielectric layer 500.
  • a strontium titanate thin film has a dielectric constant of 200, and has a good insulating property with a breakdown voltage of 10 V or more.
  • the capacitance per unit area can be increased 10,000 times or more as compared with the case of using a resin film having a thickness of 50 ⁇ m. If the same capacitance is obtained in order to generate a band gap in the frequency band desired for the EBG structure, the conductor piece can be greatly reduced to 1 / 10,000 or less.
  • the first conductor 100 is preferably formed of the above-described high melting point conductor layer.
  • FIG. 7 is a cross-sectional view showing the configuration of the wiring component 50 according to the second embodiment.
  • the second via 602, the third conductor 300, and the insulating layer 610 are not provided, the conductor 400 is provided in the same layer as the first wiring 420, and the layout of the first wiring 420 is excluded.
  • the configuration is the same as that of the wiring component 50 according to the first embodiment.
  • FIG. 8 is a plan view showing a pattern of the conductor 400.
  • the conductor 400 is a sheet-like conductor pattern, but has a plurality of openings 410.
  • the opening 410 is provided to face each of the plurality of second conductors 200, and the first wiring 420 is provided in the opening 410.
  • the opening 410 is square or rectangular, and the center overlaps the center of the second conductor 200. Further, neither end of the first wiring 420 overlaps the center of the opening 410.
  • the first wiring 420 has one end connected to the first via 512 and the other end connected to the main body of the conductor 400.
  • the conductor 400 has the same function as the third conductor 300 in the first embodiment. That is, the unit cell 40 is configured by the first conductor 100, the second conductor 200, the first via 512, the first wiring 420, and the conductor 400.
  • the unit cell 40 is a so-called mushroom-type metamaterial unit cell.
  • the conductor 400 corresponds to a conductor plane connected to the mushroom
  • the first wiring 420 and the first via 512 correspond to an inductance portion of the mushroom
  • the second conductor 200 that is a conductor piece is the head portion of the mushroom. It corresponds to.
  • the same effect as that of the first embodiment can be obtained. Further, since the number of layers can be reduced as compared with the first embodiment, the wiring component 50 can be made thin.
  • FIG. 9 is a cross-sectional view showing the configuration of the wiring component 50 according to the third embodiment.
  • FIGS. 10A, 10B, and 10C are plan views showing layouts of the third conductor 300, the first wiring 420, and the second conductor 200 in the wiring component 50 shown in FIG. 9, respectively.
  • This embodiment is the same as the first embodiment except for the following points.
  • the third conductor 300 is provided with a plurality of openings 310 and a plurality of second wirings 320.
  • the opening 310 is provided to face each of the plurality of second conductors 200, and the second wiring 320 is provided in the opening 310.
  • the second wiring 320 has one end connected to the second via 602 and the other end connected to the main body of the third conductor 300.
  • the opening 310 is square or rectangular, and the center overlaps the center of the second conductor 200. The other end of the second wiring 320 does not overlap the center of the opening 310.
  • the unit cell 40 is a so-called mushroom-type metamaterial unit cell.
  • the third conductor 300 corresponds to a conductor plane connected to the mushroom, and the second wiring 320, the second via 602, the first wiring 420, and the first via 512 correspond to an inductance portion of the mushroom.
  • the second conductor 200 which is a conductor piece, corresponds to the head portion of the mushroom, and the first conductor 100 corresponds to the second conductor plane facing the mushroom.
  • the same effect as that of the first embodiment can be obtained. Further, since the opening 310 and the second wiring 320 are provided in the third conductor 300, the inductance portion of the mushroom can be lengthened. For this reason, the inductance can be increased without increasing the area of the unit cell 40.
  • FIG. 11 is a cross-sectional view illustrating a configuration of an electronic device according to the fourth embodiment.
  • a semiconductor chip 60 is mounted on a wiring component 50 as an interposer.
  • the semiconductor chip 60 is flip-chip mounted on the wiring component 50, but may be mounted on the wiring component 50 by other methods (for example, wire bonding).
  • the unit cell 40 of the wiring component 50 has the same configuration as that of the third embodiment.
  • the unit cell 40 may have the same configuration as that of the first embodiment or the second embodiment.
  • the wiring component 50 has a first external connection terminal 330 and a second external connection terminal 340.
  • the first external connection terminal 330 is electrically connected to the first conductor 100 and is connected to the power supply pad 61 of the semiconductor chip 60 via the bump 801.
  • the second external connection terminal 340 is electrically connected to the third conductor 300 and is connected to the ground pad 62 of the semiconductor chip 60 via the bump 802.
  • the intermediate layer 20 and the first conductor 100 are provided except for the peripheral portion of the substrate 10.
  • An insulating layer 510 is directly formed on the substrate 10 at the periphery of the substrate 10.
  • the insulating layer 510 in the peripheral portion of the substrate 10 is thicker than the insulating layer 510 in other regions because the intermediate layer 20 and the first conductor 100 are not provided.
  • through vias 31 and 32 are provided in the periphery of the substrate 10.
  • the through vias 31 and 32 penetrate the substrate 10 and the insulating layer 510.
  • the through via 31 is connected to the first external connection terminal 330 via the conductor 430 and the via 603 provided on the insulating layer 510, and the through via 32 is connected to the conductor 440 and the via provided on the insulating layer 510. It is connected to the second external connection terminal 340 via 604.
  • the first external connection terminal 330 and the second external connection terminal 340 are formed in the same layer as the third conductor 300 and are exposed from the opening provided in the insulating layer 610.
  • the conductors 430 and 440 are provided in the same layer as the first wiring 420.
  • the dielectric layer 500 and the second conductor 200 are not formed in the region located next to the through via 31 in the first conductor 100.
  • the first conductor 100 faces the conductor 430 and is connected to each other through the via 101 embedded in the insulating layer 510.
  • the first conductor 100 is connected to the through via 31 that supplies the power supply potential via the via 101 and the conductor 430, and is connected to the first external connection via the via 101, the conductor 430, and the via 603.
  • the terminal 330 is connected.
  • the third conductor 300 is directly connected to the second external connection terminal 340 and is connected to the through via 32 that gives a ground potential via the second external connection terminal 340, the via 604, and the conductor 440.
  • the through via 31 applies a ground potential
  • the first external connection terminal 330 is connected to the ground potential pad 62
  • the through via 32 supplies a power supply potential
  • the second external connection terminal 340 is connected to the power supply pad 61. good.
  • a metamaterial composed of a plurality of unit cells 40 is electrically located between the power supply potential of the semiconductor chip 60 and the ground potential. For this reason, it can suppress that the semiconductor chip 60 becomes a noise source and noise mixes into a power supply potential and a ground potential. Further, noise can be prevented from entering the semiconductor chip 60 through the power supply potential and the ground potential. Further, as described above, since the band gap frequency band can be lowered (for example, a region of several GHz) without increasing the size of the unit cell 40, it is possible to suppress an increase in size of the electronic device.
  • FIG. 12 is a cross-sectional view showing the configuration of the wiring component 50 according to the fifth embodiment.
  • the wiring component 50 is the wiring component shown in any of the first to third embodiments, except that a conductor is used as the substrate 10 and the intermediate layer 20 is not formed. 50. That is, in the present embodiment, the first conductor 100 is directly formed on the substrate 10 that is a conductor. This figure shows the case of the same configuration as the wiring component 50 shown in the second embodiment.
  • FIG. 13 shows an example in which the wiring component 50 shown in FIG. 12 is used as a discrete component having a noise filter function.
  • the wiring component 50 has a rectangular planar shape and is attached to a wiring board 70 (for example, a mother board) externally.
  • the wiring component 50 includes a first external connection terminal 441, a second external connection terminal 442, a third external connection terminal 443, and a fourth external connection terminal 444.
  • the first external connection terminal 441 is electrically connected to the power supply plane 701 in the wiring board 70 via the solder balls 811 and the conductor patterns and vias in the wiring board 70.
  • the second external connection terminal 442 is electrically connected to the power plane 702 in the wiring board 70 through the solder balls 812 and the conductor patterns and vias in the wiring board 70.
  • the power supply planes 701 and 702 are not connected in the wiring board 70 but are electrically connected via the first conductor 100 of the wiring component 50.
  • the third external connection terminal 443 is electrically connected to the ground plane 711 in the wiring board 70 via the solder balls 813 and the conductor patterns and vias in the wiring board 70.
  • the fourth external connection terminal 444 is electrically connected to the ground plane 712 in the wiring board 70 through the solder balls 814 and the conductor patterns and vias in the wiring board 70.
  • the ground planes 711 and 712 are not connected in the wiring board 70 but are electrically connected via the conductor 400 of the wiring component 50.
  • the first external connection terminal 441, the second external connection terminal 442, the third external connection terminal 443, and the fourth external connection terminal 444 are exposed from the opening provided in the insulating layer 600.
  • the first conductor 100 is provided except for the peripheral portion of the substrate 10.
  • An insulating layer 510 is directly formed on the substrate 10 at the periphery of the substrate 10.
  • the insulating layer 510 in the peripheral portion of the substrate 10 is thicker than the insulating layer 510 in other regions because the first conductor 100 is not provided.
  • the dielectric layer 500 and the second conductor 200 are not formed in at least a part of the region of the first conductor 100 facing the vias 111 and 112.
  • the first conductor 100 is connected to the first external connection terminal 441 through the via 111 embedded in the insulating layer 510, and the insulating layer
  • the second external connection terminal 442 is connected via a via 112 embedded in 510.
  • the external connection terminals 443 and 444 are directly connected to the conductor 400.
  • the connection structure between the external connection terminals 441 and 442 and the first conductor 100 is not limited to the example shown in this figure.
  • At least one second conductor 200 that is, the unit cell 40 is located between the first external connection terminal 441 and the second external connection terminal 442, and the third external connection terminal 443 and the fourth external connection are connected. At least one second conductor 200, that is, the unit cell 40 is located between the terminals 444.
  • the first external connection terminal 441 and the third external connection terminal 443 are provided on one side of the wiring component 50
  • the second external connection terminal 442 and the fourth external connection terminal 444 are the wiring component 50. Among these, it is provided on the side opposite to the one side described above.
  • the wiring component 50 as a noise filter is attached to the wiring board 70 externally.
  • the power planes 701 and 702 in the wiring board 70 are electrically connected via the first conductor 100 of the wiring component 50, and the ground planes 711 and 712 are electrically connected via the conductor 400 of the wiring component 50. It is connected. For this reason, it can suppress that noise propagates through the power plane and ground plane of the wiring board 70.
  • the metamaterial functioning as the EBG is provided as an external component rather than in the wiring substrate 70, the band gap frequency band of the EBG can be changed by simply replacing the wiring component 50 without changing the design of the wiring substrate 70. Can do.
  • the first external connection terminal 441 and the second external connection terminal 442 may be connected to the ground planes 711 and 712, and the third external connection terminal 443 and the fourth external connection terminal 444 may be connected to the power supply planes 701 and 702, respectively. Good.
  • the first conductor 100 is directly formed on the conductive substrate 10. For this reason, since the board
  • a form in which discrete components are surface-mounted is illustrated, but a form in which discrete parts created separately from the wiring board 70 are embedded in the wiring board 70 may be used.
  • the area can be reduced as compared with the case where the EBG structure is formed only by wiring of a normal printed wiring board, and a space for mounting other components on the surface of the wiring board is created, which is advantageous for higher density mounting. It becomes.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

A first conductor (100) extends in the form of a sheet. A second conductor (200) is a small conductor strip and is disposed in a repeating fashion, for example periodically, in an area facing the first conductor (100). A third conductor (300) is positioned on the opposite side of the first conductor (100) when using the plurality of second conductors (200) as a reference, and extends over the area facing the plurality of second conductors (200). A connecting member connects each of the plurality of second conductors (200) to the third conductor (300). The connecting member is provided with a first wire (420) and a first via (512). The first wire (420) is formed on a different layer from the second conductor (200), and one end of the first wire does not overlap the center of the second conductor (200) in plan. The first via (512) connects one side of the first wire (420) to the second conductor (200).

Description

配線部品Wiring parts
 本発明は、メタマテリアルとしての特性を示す配線部品に関する。 The present invention relates to a wiring component exhibiting characteristics as a metamaterial.
 近年、特定の構造を有する導体を周期的に配置すること(以下、メタマテリアルと記載)で電磁波の伝播特性を制御できることが明らかになっている。メタマテリアルを使用することで、例えばアンテナの小型化・薄型化を図ることができ、また、メタマテリアルが示すバンドギャップ特性を利用して、ノイズフィルタを形成することができる。 In recent years, it has become clear that the propagation characteristics of electromagnetic waves can be controlled by periodically arranging conductors having a specific structure (hereinafter referred to as metamaterials). By using a metamaterial, for example, the antenna can be reduced in size and thickness, and a noise filter can be formed by utilizing the band gap characteristic exhibited by the metamaterial.
 具体的なメタマテリアルの構造として、例えば特許文献1、特許文献2、及び非特許文献1に記載の構造がある。特許文献1に記載の技術は、表面電流を抑えたグランドプレーンを提供すること等を課題としている。具体的には、特許文献1には、導体プレーン上に、多角形平板状の導体小片と導体柱により構成される画鋲状の導体要素が周期的に配置され、各導体要素が導体プレーンへ接続された構造が開示されている。  As specific metamaterial structures, for example, there are structures described in Patent Document 1, Patent Document 2, and Non-Patent Document 1. The technique described in Patent Document 1 has a problem of providing a ground plane in which surface current is suppressed. Specifically, in Patent Document 1, thumbtack-like conductor elements composed of polygonal flat plate-like conductor pieces and conductor pillars are periodically arranged on a conductor plane, and each conductor element is connected to the conductor plane. The disclosed structure is disclosed.
 また特許文献2及び非特許文献1には、導体プレーン上に、多角形平板状の導体小片と導体柱により構成される画鋲状の導体要素を周期的に配置し、各導体要素を導体プレーンに接続し、さらに誘電体層を介して導体小片の上に別の導体プレーンを積層した構造が開示されている。 In Patent Document 2 and Non-Patent Document 1, thumbtack-like conductor elements composed of polygonal flat plate-like conductor pieces and conductor pillars are periodically arranged on a conductor plane, and each conductor element is formed into a conductor plane. A structure in which another conductor plane is laminated on a conductor piece via a dielectric layer via a dielectric layer is disclosed.
特表2002-510886号公報Japanese translation of PCT publication No. 2002-510886 米国特許出願公開第2005/0029632号明細書US Patent Application Publication No. 2005/0029632
 上記したようにメタマテリアルは帯域阻止フィルタとしての特性を示すため、例えば配線基板などの配線部品にメタマテリアルとしての構造体を入れ込んでノイズのフィルタリング機能を持たせることが考えられる。一方、近年は、配線基板などの配線部品を含む電子装置の小型化が進んでいる。このため、配線部品の小型化が強く望まれている。 As described above, since the metamaterial exhibits characteristics as a band rejection filter, it is conceivable that a structure as a metamaterial is inserted into a wiring component such as a wiring board to provide a noise filtering function. On the other hand, in recent years, electronic devices including wiring components such as wiring boards have been downsized. For this reason, downsizing of wiring parts is strongly desired.
 メタマテリアルのバンドギャップ帯は、単位セルの容量成分及びインダクタ成分の積を大きくすることにより、実用的な周波数域まで低周波化(例えば数GHz帯)することができる。小型化した配線部品においては電極を大きくすることができないため、容量成分を大きくするためには誘電体を薄くする必要が出てくる。一方、メタマテリアルのインダクタ成分は、誘電体を貫通するビアによって与えられているため、誘電体を薄くすると、メタマテリアルのインダクタ成分が小さくなってしまう。このように、小型化した配線部品にメタマテリアルの構造体を導入する場合、単位セルの容量成分及びインダクタ成分の積を大きくすることは難しい。 The band gap band of the metamaterial can be lowered to a practical frequency range (for example, several GHz band) by increasing the product of the capacity component and the inductor component of the unit cell. In a miniaturized wiring component, the electrode cannot be made large, so that it is necessary to make the dielectric thin in order to increase the capacitance component. On the other hand, since the inductor component of the metamaterial is provided by a via that penetrates the dielectric, the inductor component of the metamaterial becomes small when the dielectric is thinned. Thus, when introducing a metamaterial structure into a miniaturized wiring component, it is difficult to increase the product of the capacity component and the inductor component of the unit cell.
 本発明の目的は、メタマテリアルの単位セルの容量成分及びインダクタ成分の積を大きくすることができ、かつ大型化することを抑制できる配線部品を提供することにある。 An object of the present invention is to provide a wiring component that can increase the product of the capacity component and the inductor component of a unit cell of a metamaterial and can suppress an increase in size.
 本発明によれば、シート状に延在する第1導体と、
 前記第1導体に対向する領域に繰り返し配置された複数の島状の第2導体と、
 前記複数の第2導体を基準にしたときに前記第1導体とは反対側に位置し、前記複数の第2導体と対向する領域に延在するシート状の第3導体と、
 前記複数の第2導体それぞれを前記第3導体に接続する複数の接続部材と、
を備え、
 前記接続部材は、
 前記第2導体とは異なる層に形成され、平面視において一端が前記第2導体の中心とは重なっていない第1配線と、
 前記第1配線の前記一端と前記第2導体とを接続する第1ビアと、
を備える配線部品が提供される。
According to the present invention, a first conductor extending in a sheet shape;
A plurality of island-shaped second conductors repeatedly disposed in a region facing the first conductor;
A sheet-like third conductor located on the opposite side of the first conductor when the plurality of second conductors are used as a reference, and extending in a region facing the plurality of second conductors;
A plurality of connecting members connecting each of the plurality of second conductors to the third conductor;
With
The connecting member is
A first wiring that is formed in a layer different from the second conductor and has one end not overlapping the center of the second conductor in plan view;
A first via connecting the one end of the first wiring and the second conductor;
A wiring component is provided.
 本発明によれば、メタマテリアルの単位セルの容量成分及びインダクタ成分の積を大きくすることができ、かつ大型化することを抑制できる配線部品を提供することができる。 According to the present invention, it is possible to provide a wiring component capable of increasing the product of the capacity component and the inductor component of the unit cell of the metamaterial and suppressing the increase in size.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
第1の実施形態に係る配線部品の構成を示す断面図である。It is sectional drawing which shows the structure of the wiring component which concerns on 1st Embodiment. (a)は第3導体のパターンを示す平面図であり、(b)は第1配線のパターンを示す平面図であり、(c)は第2導体のパターンを示す平面図である。(A) is a top view which shows the pattern of a 3rd conductor, (b) is a top view which shows the pattern of 1st wiring, (c) is a top view which shows the pattern of a 2nd conductor. 配線部品の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of wiring components. 配線部品の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of wiring components. 配線部品の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of wiring components. LC共振周波数を2.4GHzとした場合に必要なキャパシタとインダクタの面積の検討結果例を示すグラフである。It is a graph which shows the example of examination result of the area of a capacitor and an inductor required when LC resonance frequency is 2.4 GHz. 第2の実施形態に係る配線部品の構成を示す断面図である。It is sectional drawing which shows the structure of the wiring component which concerns on 2nd Embodiment. 導体のパターンを示す平面図である。It is a top view which shows the pattern of a conductor. 第3の実施形態に係る配線部品の構成を示す断面図である。It is sectional drawing which shows the structure of the wiring component which concerns on 3rd Embodiment. (a)は第3導体のパターンを示す平面図であり、(b)は第1配線のパターンを示す平面図であり、(c)は第2導体のパターンを示す平面図である。(A) is a top view which shows the pattern of a 3rd conductor, (b) is a top view which shows the pattern of 1st wiring, (c) is a top view which shows the pattern of a 2nd conductor. 第4の実施形態に係る電子装置の構成を示す断面図である。It is sectional drawing which shows the structure of the electronic device which concerns on 4th Embodiment. 第5の実施形態に係る配線部品の構成を示す断面図である。It is sectional drawing which shows the structure of the wiring component which concerns on 5th Embodiment. 図12に示した配線部品を、ノイズフィルタ機能を有するディスクリート部品として使用した例を示す図である。FIG. 13 is a diagram illustrating an example in which the wiring component illustrated in FIG. 12 is used as a discrete component having a noise filter function.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(第1の実施形態)
 図1は第1の実施形態に係る配線部品50の構成を示す断面図である。配線部品50は、第1導体100、複数の第2導体200、第3導体300、及び複数の接続部材を有する。第1導体100はシート状に延在している。第2導体200は導体小片であり、第1導体100に対向する領域に繰り返し、例えば周期的に配置されている。第3導体300は、複数の第2導体200を基準にしたときに第1導体100とは反対側に位置し、複数の第2導体200と対向する領域に延在している。接続部材は、複数の第2導体200それぞれを第3導体300に接続する。接続部材は、第1配線420と第1ビア512を備えている。第1配線420は第2導体200とは異なる層に形成され、平面視において一端が第2導体200の中心とは重なっていない。第1ビア512は第1配線420の一端と第2導体200とを接続している。
(First embodiment)
FIG. 1 is a cross-sectional view showing the configuration of the wiring component 50 according to the first embodiment. The wiring component 50 includes a first conductor 100, a plurality of second conductors 200, a third conductor 300, and a plurality of connection members. The first conductor 100 extends in a sheet shape. The second conductor 200 is a small conductor piece, and is repeatedly arranged, for example, periodically in a region facing the first conductor 100. The third conductor 300 is located on the side opposite to the first conductor 100 when the plurality of second conductors 200 are used as a reference, and extends in a region facing the plurality of second conductors 200. The connection member connects each of the plurality of second conductors 200 to the third conductor 300. The connection member includes a first wiring 420 and a first via 512. The first wiring 420 is formed in a layer different from the second conductor 200, and one end thereof does not overlap the center of the second conductor 200 in plan view. The first via 512 connects one end of the first wiring 420 and the second conductor 200.
 第1配線420の他端は、第2ビア602によって第3導体300に接続されている。すなわち第2導体200は、第1ビア512、第1配線420、及び第2ビア602を介して第3導体300に接続している。 The other end of the first wiring 420 is connected to the third conductor 300 by the second via 602. That is, the second conductor 200 is connected to the third conductor 300 via the first via 512, the first wiring 420, and the second via 602.
 第1導体100と第2導体200は互いに対向しているため、これらによって容量が形成されている。本実施形態では、第1導体100と第2導体200の間には誘電体層500が設けられている。誘電体層500は、Mg、Al、Si、Ti、Ta、Hf、及びZrから選ばれた少なくとも1つの元素の酸化物を含有してもよいし、Sr、Ba、Pb、Biなど金属元素の複合酸化物を含有していても良い。これらの酸化物又は複合酸化物は、誘電体層500の主成分を構成している。ここで主成分とは、原子数%で50%以上であることを意味している。誘電体層500は、例えばチタン酸ストロンチウムにより形成される。複合酸化物としては、例えばチタン酸ストロンチウム、チタン酸バリウム、及びチタン酸鉛など化学式ABO(A、Bは金属元素)で表されるペロブスカイト型酸化物、化学式A(A、Bは金属元素)で表されるパイロクロア型酸化物、SrBiTa等のBi層状強誘電体、或いはこれらが構成成分として含まれた複合酸化物がある。 Since the first conductor 100 and the second conductor 200 face each other, a capacitance is formed by these. In the present embodiment, a dielectric layer 500 is provided between the first conductor 100 and the second conductor 200. The dielectric layer 500 may contain an oxide of at least one element selected from Mg, Al, Si, Ti, Ta, Hf, and Zr, or a metal element such as Sr, Ba, Pb, Bi. A composite oxide may be contained. These oxides or composite oxides constitute the main component of the dielectric layer 500. Here, the main component means 50% or more in terms of the number of atoms. The dielectric layer 500 is made of, for example, strontium titanate. Examples of the composite oxide include perovskite oxides represented by a chemical formula ABO 3 (A and B are metal elements) such as strontium titanate, barium titanate, and lead titanate, and chemical formulas A 2 B 2 O 7 (A, P is a pyrochlore type oxide represented by (B is a metal element), a Bi layered ferroelectric such as SrBi 2 Ta 2 O 9 , or a complex oxide containing these as constituent components.
 また第1導体100は、中間層と高融点導体層とをこの順に積層した構成であっても良い。中間層は、例えばTi、Ta、Cr、又はTiの窒化物、Taの窒化物、並びにCrの窒化物から選ばれた少なくとも1つの材料から構成される層を1以上設けることにより形成される。高融点導体層は、Pt、Pd、Ru、及びIrから選ばれた少なくとも1以上の元素から構成される層を1以上設けることにより形成される。 Further, the first conductor 100 may have a configuration in which an intermediate layer and a high melting point conductor layer are laminated in this order. The intermediate layer is formed, for example, by providing one or more layers made of at least one material selected from Ti, Ta, Cr, Ti nitride, Ta nitride, and Cr nitride. The high melting point conductor layer is formed by providing one or more layers composed of at least one element selected from Pt, Pd, Ru, and Ir.
 配線部品50は基板10を有している。基板10は、導体もしくは半導体、又は絶縁体により形成されているが、後述する配線部品50の製造工程に必要な耐熱性を有していれば良い。基板10が導体又は半導体である場合、基板10は例えばSi、GaAs、ステンレス、タングステン、モリブデン、及びチタンから選ばれた少なくとも1つにより形成されている。基板10が絶縁体である場合、基板10は、例えばガラス、サファイア、石英、及びアルミナから選ばれた少なくとも1つの材料から形成されている。 The wiring component 50 has a substrate 10. The substrate 10 is formed of a conductor, a semiconductor, or an insulator, but may have heat resistance necessary for the manufacturing process of the wiring component 50 described later. When the substrate 10 is a conductor or a semiconductor, the substrate 10 is formed of at least one selected from, for example, Si, GaAs, stainless steel, tungsten, molybdenum, and titanium. When the substrate 10 is an insulator, the substrate 10 is formed of at least one material selected from, for example, glass, sapphire, quartz, and alumina.
 第1導体100は、基板10の一面に形成された中間層20上に形成されている。中間層20は、例えばTi、Ta、Cr、Tiの窒化物、Taの窒化物、及びCrの窒化物からなる群から選ばれた少なくともひとつの材料から構成される層を1層以上有している。そして第1導体100上には誘電体層500、複数の第2導体200、絶縁層510、第1配線420、絶縁層600、第3導体300、及び絶縁層610がこの順に積層されている。 The first conductor 100 is formed on the intermediate layer 20 formed on one surface of the substrate 10. The intermediate layer 20 has at least one layer composed of at least one material selected from the group consisting of, for example, Ti, Ta, Cr, Ti nitride, Ta nitride, and Cr nitride. Yes. On the first conductor 100, the dielectric layer 500, the plurality of second conductors 200, the insulating layer 510, the first wiring 420, the insulating layer 600, the third conductor 300, and the insulating layer 610 are stacked in this order.
 第1ビア512は絶縁層510内に埋め込まれており、第2ビア602は絶縁層600に埋め込まれている。中間層20、第1導体100、誘電体層500、第1ビア512、第2導体200、絶縁層510、及び第1配線420は気相成膜法により形成された多層配線層である。絶縁層600,610は塗布により形成され、第2ビア602及び第3導体300はめっき法により形成されている。 The first via 512 is embedded in the insulating layer 510, and the second via 602 is embedded in the insulating layer 600. The intermediate layer 20, the first conductor 100, the dielectric layer 500, the first via 512, the second conductor 200, the insulating layer 510, and the first wiring 420 are multilayer wiring layers formed by a vapor deposition method. The insulating layers 600 and 610 are formed by coating, and the second via 602 and the third conductor 300 are formed by a plating method.
 このような構成において、第1導体100、第2導体200、第1ビア512、第1配線420、第2ビア602、及び第3導体300は、メタマテリアルとしての特性を示す構造体を形成している。この構造体において、メタマテリアルは複数の単位セル40を繰り返し、例えば周期的に配置した構成である。単位セル40は例えば2次元配列を有しているが、1次元配列であってもよい。単位セル40はいわゆるマッシュルーム型のメタマテリアルの単位セルであり、第3導体300がマッシュルームに接続する導体プレーンに相当している。そして第2ビア602、第1配線420、及び第1ビア512がマッシュルームのインダクタンス部分に相当しており、導体小片となっている第2導体200がマッシュルームのヘッド部分に相当している。そして第1導体100がマッシュルームと対向した第2導体プレーンに相当している。このような構成において、誘電体層500の厚さ及び材料、並びに導体小片となっている第2導体200の大きさ及び配列によってメタマテリアルの各容量の大きさが制御され、第1ビア512、第1配線420、及び第2ビア602の長さ及び太さによってメタマテリアルのインダクタンス成分が制御される。これらを調節することにより、構造体をEBG(Electromagnetic Band Gap)として機能させるときのバンドギャップ帯を調節することができる。 In such a configuration, the first conductor 100, the second conductor 200, the first via 512, the first wiring 420, the second via 602, and the third conductor 300 form a structure that exhibits characteristics as a metamaterial. ing. In this structure, the metamaterial has a configuration in which a plurality of unit cells 40 are repeatedly arranged, for example, periodically. The unit cell 40 has a two-dimensional array, for example, but may be a one-dimensional array. The unit cell 40 is a so-called mushroom-type metamaterial unit cell, and the third conductor 300 corresponds to a conductor plane connected to the mushroom. The second via 602, the first wiring 420, and the first via 512 correspond to the inductance portion of the mushroom, and the second conductor 200 that is a conductor piece corresponds to the head portion of the mushroom. The first conductor 100 corresponds to a second conductor plane facing the mushroom. In such a configuration, the size of each capacitor of the metamaterial is controlled by the thickness and material of the dielectric layer 500 and the size and arrangement of the second conductor 200 that is a conductor piece, and the first via 512, The inductance component of the metamaterial is controlled by the length and thickness of the first wiring 420 and the second via 602. By adjusting these, it is possible to adjust a band gap band when the structure functions as an EBG (Electromagnetic Band Gap).
 ここで「繰り返し」単位セル40を配置する場合、互いに隣り合う単位セル40において、同一のビア(例えば第1ビア512)の間隔(中心間距離)が、EBGのノイズとして想定している電磁波の波長λの1/2以内となるようにするのが好ましい。また「繰り返し」には、いずれかの単位セル40において構成の一部が欠落している場合も含まれる。また単位セル40が2次元配列を有している場合には、「繰り返し」には単位セル40が部分的に欠落している場合も含まれる。また「周期的」には、一部の単位セル40において構成要素の一部がずれている場合や、一部の単位セル40そのものの配置がずれている場合も含まれる。すなわち厳密な意味での周期性が崩れた場合においても、単位セル40が繰り返し配置されている場合には、メタマテリアルとしての特性を得ることができるため、「周期性」にはある程度の欠陥が許容される。なおこれらの欠陥が生じる要因としては、単位セル40間に配線やビアを通す場合、既存の配線レイアウトにメタマテリアル構造を追加する場合において既存のビアやパターンによって単位セル40が配置できない場合、製造誤差、及び既存のビアやパターンを単位セル40の一部として用いる場合などが考えられる。 Here, when the “repetitive” unit cells 40 are arranged, in the unit cells 40 adjacent to each other, the interval (center distance) between the same vias (for example, the first via 512) is the electromagnetic wave assumed as EBG noise. It is preferable to be within half of the wavelength λ. “Repetition” includes a case where a part of the configuration is missing in any unit cell 40. When the unit cell 40 has a two-dimensional array, “repetition” includes a case where the unit cell 40 is partially missing. Further, “periodic” includes a case where some of the constituent elements are deviated in some unit cells 40 and a case where the arrangement of some unit cells 40 themselves is deviated. In other words, even when the periodicity in the strict sense collapses, if the unit cell 40 is repeatedly arranged, the characteristics as a metamaterial can be obtained, so that “periodicity” has a certain amount of defects. Permissible. These defects may be caused when wiring or vias are passed between the unit cells 40, when adding a metamaterial structure to an existing wiring layout, and when the unit cells 40 cannot be arranged by existing vias or patterns, A case where an error and an existing via or pattern are used as a part of the unit cell 40 can be considered.
 なお、図1に示した各導体及びビアは、例えばTiNなどのバリアメタル層上にCuなどの金属層を積層することにより形成されてもよいし、少なくとも一部の導体がPt,Pd、Ru、及びIrから選ばれた少なくとも一以上の元素から構成される層を一層以上積層することにより、高融点導体層として形成されても良い。 The conductors and vias shown in FIG. 1 may be formed by laminating a metal layer such as Cu on a barrier metal layer such as TiN, or at least some of the conductors may be Pt, Pd, Ru. , And Ir may be formed as a refractory conductor layer by laminating one or more layers composed of at least one element selected from Ir.
 また第1導体100は配線部品50の第1外部接続端子(図示せず)に電気的に接続しており、第3導体300は配線部品50の第2外部接続端子(図示せず)に電気的に接続している。第1外部接続端子及び第2外部接続端子は、例えば第3導体300と同一層に形成されており、絶縁層610に設けられた開口を介して外部に露出している。 The first conductor 100 is electrically connected to a first external connection terminal (not shown) of the wiring component 50, and the third conductor 300 is electrically connected to a second external connection terminal (not shown) of the wiring component 50. Connected. The first external connection terminal and the second external connection terminal are formed in the same layer as the third conductor 300, for example, and are exposed to the outside through an opening provided in the insulating layer 610.
 図2(a)は、単位セル40の2つ分に相当する、配線部品50が有する第3導体300のパターンを示す平面図である。図2(a)に示すように第3導体300はシート状の導体パターンであり、開口等を有していない。 FIG. 2A is a plan view showing a pattern of the third conductor 300 included in the wiring component 50 corresponding to two unit cells 40. As shown in FIG. 2A, the third conductor 300 is a sheet-like conductor pattern and does not have an opening or the like.
 図2(b)は、単位セル40の2つ分に相当する、配線部品50が有する第1配線420のパターンを示す平面図である。第1配線420の一端には第1ビア512が接続しており、第1配線420の他端には第2ビア602が接続している。第1配線420は第1ビア512と第2ビア602を直線で結んでおらず、配線長が長くなるように、少なくとも1つの折れ曲がり部を有するように延伸している。本図に示す例では、第1配線420は、2つの折れ曲がり部を有するように略U字状に延伸している。 FIG. 2B is a plan view showing a pattern of the first wiring 420 included in the wiring component 50 corresponding to two unit cells 40. A first via 512 is connected to one end of the first wiring 420, and a second via 602 is connected to the other end of the first wiring 420. The first wiring 420 does not connect the first via 512 and the second via 602 with a straight line, and extends so as to have at least one bent portion so as to increase the wiring length. In the example shown in the figure, the first wiring 420 extends in a substantially U shape so as to have two bent portions.
 図2(c)は配線部品50が有する第2導体200のパターンを示す平面図である。上記したように第2導体200は導体小片となっているが、その平面形状は例えば正方形又は長方形である。本図に示す例において第2導体200は、平面視において図2(b)に示した第1配線420を完全に内側に含んでいる。ただし平面視において第2導体200は、第1配線420の一部のみ(すなわち第1ビア512を設ける領域及びその周囲のみ)重なるようにレイアウトされていても良い。 FIG. 2C is a plan view showing a pattern of the second conductor 200 included in the wiring component 50. As described above, the second conductor 200 is a small conductor piece, but its planar shape is, for example, a square or a rectangle. In the example shown in this drawing, the second conductor 200 completely includes the first wiring 420 shown in FIG. 2B in plan view. However, the second conductor 200 may be laid out so as to overlap only a part of the first wiring 420 (that is, only the region where the first via 512 is provided and its periphery) in plan view.
 図3、図4、及び図5の各図は、図1及び図2に示した配線部品50の製造方法の一例を示す断面図である。まず図3(a)に示すように基板10を準備する。基板10としてシリコン基板を用いる場合、基板10は、例えば0.02Ω・cm以下の比抵抗を有する低抵抗基板が用いられる。基板10がシリコン基板である場合、基板10の表面に形成されている自然酸化膜を除去する。次いで基板10上に中間層20を形成する。中間層20は、例えば厚さが10nm以上100nm以下のTi層、厚さが10nm以上100nm以下のTiN層、厚さが100nm以上2μm以下のMo層、及び厚さが10nm以上100nm以下のTi層をこの順に積層した構成である。中間層20は、基板10への密着力強化とSi拡散のバリアメタル膜としての機能を有しており、スパッタリング法などの気相成膜法により形成される。中間層20のMo層は第1導体層の抵抗を下げることに効果があり、基板が絶縁体のときには設けることが望ましい。なお基板10が低抵抗基板のときには、中間層20のMo層を省略することもできる。 3, 4, and 5 are cross-sectional views illustrating an example of a method for manufacturing the wiring component 50 illustrated in FIGS. 1 and 2. First, a substrate 10 is prepared as shown in FIG. When a silicon substrate is used as the substrate 10, a low resistance substrate having a specific resistance of 0.02 Ω · cm or less is used as the substrate 10, for example. When the substrate 10 is a silicon substrate, the natural oxide film formed on the surface of the substrate 10 is removed. Next, the intermediate layer 20 is formed on the substrate 10. The intermediate layer 20 includes, for example, a Ti layer having a thickness of 10 nm to 100 nm, a TiN layer having a thickness of 10 nm to 100 nm, a Mo layer having a thickness of 100 nm to 2 μm, and a Ti layer having a thickness of 10 nm to 100 nm. Are stacked in this order. The intermediate layer 20 has a function as a barrier metal film for strengthening adhesion to the substrate 10 and Si diffusion, and is formed by a vapor deposition method such as a sputtering method. The Mo layer of the intermediate layer 20 is effective in reducing the resistance of the first conductor layer, and is desirably provided when the substrate is an insulator. When the substrate 10 is a low resistance substrate, the Mo layer of the intermediate layer 20 can be omitted.
 次いで基板10上に第1導体100を形成する。第1導体100は、例えばスパッタリング法により形成される。第1導体100は、例えば高融点導体であり、Pt,Pd、Ru、及びIrから選ばれた少なくとも一以上の元素から構成される層を一層以上積層することにより形成される。第1導体100は、例えばPt層により形成される。第1導体100の膜厚は例えば50nm以上500nm以下である。 Next, the first conductor 100 is formed on the substrate 10. The first conductor 100 is formed by, for example, a sputtering method. The first conductor 100 is, for example, a high melting point conductor, and is formed by laminating one or more layers composed of at least one element selected from Pt, Pd, Ru, and Ir. The first conductor 100 is formed of, for example, a Pt layer. The film thickness of the first conductor 100 is, for example, not less than 50 nm and not more than 500 nm.
 次いで、第1導体100上に誘電体層500を、例えばRFスパッタリング法などのスパッタリング法により形成する。誘電体層500をチタン酸ストロンチウムで形成する場合、基板10は例えば300℃以上600℃以下に加熱され、また雰囲気にはArとOの混合ガス、例えば80%Ar+20%Oが用いられる。誘電体層500の厚さは、例えば10nm以上3μm以下である。なお誘電体層500の形成には、CVD法、ゾルゲル法、エアロゾルデポジッション法、又はスピン塗布法を用いることもできる。 Next, the dielectric layer 500 is formed on the first conductor 100 by a sputtering method such as an RF sputtering method. When the dielectric layer 500 is formed of strontium titanate, the substrate 10 is heated to, for example, 300 ° C. or more and 600 ° C. or less, and a mixed gas of Ar and O 2 , for example, 80% Ar + 20% O 2 is used as the atmosphere. The thickness of the dielectric layer 500 is, for example, not less than 10 nm and not more than 3 μm. The dielectric layer 500 can be formed by a CVD method, a sol-gel method, an aerosol deposition method, or a spin coating method.
 次いで、誘電体層500上に導電膜を選択的に形成することにより、導体小片としての第2導体200を複数形成する。第2導体200は、例えば導電膜をスパッタリング法又はCVD法により形成し、この導電膜上にレジストパターン(図示せず)を形成し、レジストパターンをマスクとして導電膜をエッチングすることにより、形成される。第2導体200は、例えばバリアメタル膜としての膜厚が10nm以上100nm以下のTiN層の上に、膜厚が100nm以上10μm以下のCu層を積層した構成である。その後、レジストパターンを除去する。 Next, a plurality of second conductors 200 as conductor pieces are formed by selectively forming a conductive film on the dielectric layer 500. The second conductor 200 is formed, for example, by forming a conductive film by sputtering or CVD, forming a resist pattern (not shown) on the conductive film, and etching the conductive film using the resist pattern as a mask. The The second conductor 200 has a configuration in which, for example, a Cu layer having a thickness of 100 nm to 10 μm is stacked on a TiN layer having a thickness of 10 nm to 100 nm as a barrier metal film. Thereafter, the resist pattern is removed.
 次いで図3(b)に示すように、誘電体層500上及び複数の第2導体200上に絶縁層510を例えばCVD法により形成する。絶縁層510は例えば酸化シリコン膜であるが、この場合プラズマCVD法により形成される。絶縁層510の厚さは、例えば100nm以上1μm以下である。次いで絶縁層510上にレジストパターン(図示せず)を形成し、このレジストパターンをマスクとして絶縁層510をエッチングする。これにより、絶縁層510には第1ビア512を埋め込むための接続孔511が形成される。その後レジストパターンを除去する。 Next, as shown in FIG. 3B, an insulating layer 510 is formed on the dielectric layer 500 and the plurality of second conductors 200 by, for example, a CVD method. The insulating layer 510 is a silicon oxide film, for example, and in this case, is formed by a plasma CVD method. The thickness of the insulating layer 510 is, for example, not less than 100 nm and not more than 1 μm. Next, a resist pattern (not shown) is formed over the insulating layer 510, and the insulating layer 510 is etched using the resist pattern as a mask. As a result, a connection hole 511 for embedding the first via 512 is formed in the insulating layer 510. Thereafter, the resist pattern is removed.
 次いで図4(a)に示すように、絶縁層510上、並びに接続孔511の内壁及び底面に、バリアメタル層としてのTi層及びめっきシード層としてのCu層を、それぞれスパッタリング法により形成する。Ti層の厚さは例えば10nm以上100nm以下であり、めっきシード層の厚さは例えば50nm以上500nm以下である。次いでめっきシード層としてのCu層上にレジストパターンを形成し、このレジストパターンをマスクとしてめっきシード層上にCu層をめっき法により形成する。このめっき層の厚さは、例えば絶縁層510上に位置する部分で1μm以上20μm以下である。これにより、第1ビア512及び第1配線420が形成される。その後、レジストパターン、並びにめっきシード層及びバリアメタル層のうちめっき層に被覆されていない部分を除去する。 Next, as shown in FIG. 4A, a Ti layer as a barrier metal layer and a Cu layer as a plating seed layer are formed on the insulating layer 510 and on the inner wall and bottom surface of the connection hole 511 by sputtering. The thickness of the Ti layer is, for example, 10 nm or more and 100 nm or less, and the thickness of the plating seed layer is, for example, 50 nm or more and 500 nm or less. Next, a resist pattern is formed on the Cu layer as a plating seed layer, and a Cu layer is formed on the plating seed layer by plating using the resist pattern as a mask. The thickness of the plating layer is, for example, 1 μm or more and 20 μm or less at a portion located on the insulating layer 510. Thereby, the first via 512 and the first wiring 420 are formed. Thereafter, the resist pattern and the portion of the plating seed layer and the barrier metal layer that are not covered with the plating layer are removed.
 次いで図4(b)に示すように、第1配線420上及び絶縁層510上に絶縁層600を形成する。絶縁層600は例えば感光性のポリイミド層を塗布することにより形成される。次いで絶縁層600に第2ビア602を埋め込むための接続孔601を形成する。絶縁層600が感光性のポリイミド層により形成されている場合、接続孔601は絶縁層600を露光及び現像することにより形成される。最終的に形成される絶縁層600の厚さは、例えば5μm以上30μm以下である。 Next, as shown in FIG. 4B, an insulating layer 600 is formed on the first wiring 420 and the insulating layer 510. The insulating layer 600 is formed, for example, by applying a photosensitive polyimide layer. Next, a connection hole 601 for embedding the second via 602 in the insulating layer 600 is formed. In the case where the insulating layer 600 is formed of a photosensitive polyimide layer, the connection hole 601 is formed by exposing and developing the insulating layer 600. The finally formed insulating layer 600 has a thickness of, for example, 5 μm or more and 30 μm or less.
 次いで図5に示すように、絶縁層600上、並びに接続孔601の内壁及び底面に、バリアメタル層としてのTi層及びめっきシード層としてのCu層を、それぞれスパッタリング法により形成する。Ti層の厚さは例えば10nm以上100nm以下であり、めっきシード層の厚さは例えば50nm以上500nm以下である。次いでめっきシード層上にCu層をめっき法により形成する。次いでめっきシード層としてのCu層上にレジストパターンを形成し、このレジストパターンをマスクとしてめっきシード層上にCu層をめっき法により形成する。このめっき層の厚さは、例えば絶縁層600上に位置する部分で1μm以上20μm以下である。これにより、第2ビア602、第3導体300、並びに第1外部接続端子(図示せず)及び第2外部接続端子(図示せず)が形成される。 Next, as shown in FIG. 5, a Ti layer as a barrier metal layer and a Cu layer as a plating seed layer are formed on the insulating layer 600 and on the inner wall and bottom surface of the connection hole 601 by sputtering. The thickness of the Ti layer is, for example, 10 nm or more and 100 nm or less, and the thickness of the plating seed layer is, for example, 50 nm or more and 500 nm or less. Next, a Cu layer is formed on the plating seed layer by a plating method. Next, a resist pattern is formed on the Cu layer as a plating seed layer, and a Cu layer is formed on the plating seed layer by plating using the resist pattern as a mask. The thickness of the plating layer is, for example, 1 μm or more and 20 μm or less at a portion located on the insulating layer 600. As a result, the second via 602, the third conductor 300, the first external connection terminal (not shown), and the second external connection terminal (not shown) are formed.
 その後、絶縁層600、第3導体300、第1外部接続端子、及び第2外部接続端子それぞれの上に絶縁層610を形成する。絶縁層610は例えば感光性のポリイミド層を塗布してキュア(熱処理)することにより形成される。次いで絶縁層610に第1外部接続端子及び第2外部接続端子それぞれを露出するための開口を形成する。絶縁層610が感光性のポリイミド層により形成されている場合、これらの開口は絶縁層610を露光及び現像することにより形成される。最終的に形成される絶縁層610の厚さは、例えば5μm以上30μm以下である。 Thereafter, an insulating layer 610 is formed on each of the insulating layer 600, the third conductor 300, the first external connection terminal, and the second external connection terminal. The insulating layer 610 is formed, for example, by applying a photosensitive polyimide layer and curing (heat treatment). Next, openings are formed in the insulating layer 610 to expose the first external connection terminals and the second external connection terminals. In the case where the insulating layer 610 is formed of a photosensitive polyimide layer, these openings are formed by exposing and developing the insulating layer 610. The thickness of the finally formed insulating layer 610 is, for example, not less than 5 μm and not more than 30 μm.
 次に、本実施形態の作用及び効果について説明する。図1に示すように配線部品50は単位セル40を複数繰り返し有しているため、メタマテリアルとしての特性を示す。例えばメタマテリアルをEBGとして使用する場合は、バンドギャップ周波数を一定にして小型化を行うためには、単位セル40におけるインダクタンスと容量の積を一定にして小型化しなければならない。単位セル40における容量は誘電体層500を薄くすることや高誘電率材料を誘電体層500に用いることで大きくすることができるが、単位セル40におけるインダクタンスは高透磁率材料を用いて必要な配線長を短縮するか、配線の微細加工により一定の配線長を維持して配線密度を増加させることが必要となる。 Next, functions and effects of this embodiment will be described. As shown in FIG. 1, since the wiring component 50 has a plurality of unit cells 40, it exhibits characteristics as a metamaterial. For example, when the metamaterial is used as the EBG, in order to reduce the size while keeping the band gap frequency constant, the product of the inductance and the capacitance in the unit cell 40 must be kept constant. The capacitance in the unit cell 40 can be increased by making the dielectric layer 500 thin or using a high dielectric constant material for the dielectric layer 500, but the inductance in the unit cell 40 is required using a high permeability material. It is necessary to shorten the wiring length or increase the wiring density while maintaining a constant wiring length by fine processing of the wiring.
 バンドギャップ周波数が数GHzに発現するようなEBG構造について本発明者等が検討したところ、導体小片である第2導体200の大きさが、インダクタがターンできない程度に小さくなる場合、必要なインダクタンスを維持することが困難になることが明らかになった。単位セルが導体小片とほぼ同じ大きさであれば、インダクタの一方の端部が導体小片の中央にある直線状インダクタを採用すると、導体小片の中央から導体小片の角への対角線方向の距離(単位セルの長さの1/√2倍)以上にインダクタの長さを確保できなくなる。 When the present inventors examined the EBG structure in which the band gap frequency appears at several GHz, when the size of the second conductor 200, which is a conductor piece, is small enough to prevent the inductor from turning, the necessary inductance is reduced. It became clear that it was difficult to maintain. If the unit cell is approximately the same size as the conductor strip, adopting a linear inductor with one end of the inductor in the center of the conductor strip, the diagonal distance from the center of the conductor strip to the corner of the conductor strip ( The length of the inductor cannot be secured more than 1 / √2 times the length of the unit cell).
 図6は、LC共振周波数、即ちバンドギャップの最も減衰が大きい周波数を2.4GHzとした場合のマッシュルーム形EBG構造の導体小片のサイズ(1辺の長さ)と必要なインダクタの長さの検討結果例(導体小片は正方形で、最小配線幅、間隔がともに20μmの場合)を示している。導体小片が小さくなりキャパシタンスが小さくなると、LC積を一定とするために、必要なインダクタンスは大きくなるのでより長いインダクタが必要となる。 FIG. 6 shows the size of a small piece (length of one side) of a mushroom-type EBG structure and the required length of an inductor when the LC resonance frequency, that is, the frequency with the largest attenuation of the band gap is 2.4 GHz. A result example (when the conductor piece is square and the minimum wiring width and interval are both 20 μm) is shown. As the conductor piece becomes smaller and the capacitance becomes smaller, the required inductance increases to make the LC product constant, so a longer inductor is required.
 この検討結果例では、インダクタをターンさせるためには140μm□以上の領域が必要になる。一方、図6に示すように、導体小片のサイズが概ね100μm以下では必要なインダクタの長さは導体小片のサイズの1/√2倍よりも大きくなるため、第1ビア512が第2導体200の中心にある場合には必要なインダクタンスを確保できない。第2導体200の直上の領域以外の領域も利用して配線長を確保する場合、結果として単位セル40の実質的な面積が大きくなることとなり、同じ単位セル数でも占有面積が大きくなる。また高透磁率材料の導入によるインダクタの長さの短縮は、構造が複雑になることやプロセスコストの増加の為に困難である。 In this example of examination results, an area of 140 μm □ or more is required to turn the inductor. On the other hand, as shown in FIG. 6, when the size of the conductor piece is approximately 100 μm or less, the required inductor length becomes larger than 1 / √2 times the size of the conductor piece, so that the first via 512 is formed by the second conductor 200. If it is at the center, the required inductance cannot be secured. When the wiring length is secured by using a region other than the region immediately above the second conductor 200, the substantial area of the unit cell 40 is increased as a result, and the occupied area is increased even with the same number of unit cells. Also, shortening the length of the inductor by introducing a high magnetic permeability material is difficult due to the complicated structure and increased process costs.
 これに対して本実施形態では、平面視において第1配線420一端及びこれに接続する第1ビア512は、第2導体200の中心とは重なっていない。従って、第2導体200の直上の領域において第1配線420をターンさせて長く引き回すことが可能になり、単位セル40の面積を大きくせずにインダクタンスを大きくすることができる。この結果、単位セル40の繰り返し配列によりEBGを形成する場合、EBGを大型化せずにそのバンドギャップ周波数帯を低周波化(例えば数GHzの領域)することができる。 In contrast, in this embodiment, one end of the first wiring 420 and the first via 512 connected to the first wiring 420 do not overlap the center of the second conductor 200 in plan view. Therefore, it is possible to turn the first wiring 420 in a region immediately above the second conductor 200 and to extend the first wiring 420, and to increase the inductance without increasing the area of the unit cell 40. As a result, when the EBG is formed by the repetitive arrangement of the unit cells 40, the band gap frequency band can be lowered (for example, a region of several GHz) without increasing the size of the EBG.
 また本実施形態では、誘電体層500を薄膜プロセスで形成しているため、誘電体層500として、比誘電率が大きく、絶縁性がよく薄膜化可能な材料を用いることができる。例えばチタン酸ストロンチウム薄膜は、比誘電率は200であり、また絶縁破壊耐圧が10V以上という良好な絶縁特性を有している。こうしたチタン酸ストロンチウム薄膜を用いることにより、厚さ50μmの樹脂フィルムを使う場合と比較して、単位面積あたりのキャパシタンスを10000倍以上に増加させることができる。そして、EBG構造に所望される周波数帯域にバンドギャップを生じさせるために 同じキャパシタンスを得る場合であれば、導体小片を1/10000以下に大幅に小型化することが可能となる。誘電体層の材料として、上述のとおり、チタン酸ストロンチウム以外の複合化物を用いても、このような効果を得ることができる。なおこれらの膜は、300℃以上の高温、酸素雰囲気での成膜や熱処理により良質な絶縁膜が得られるため、第1導体100は、上記した高融点導体層により形成されるのが好ましい。 In the present embodiment, since the dielectric layer 500 is formed by a thin film process, a material having a high relative dielectric constant, good insulation, and a thin film can be used as the dielectric layer 500. For example, a strontium titanate thin film has a dielectric constant of 200, and has a good insulating property with a breakdown voltage of 10 V or more. By using such a strontium titanate thin film, the capacitance per unit area can be increased 10,000 times or more as compared with the case of using a resin film having a thickness of 50 μm. If the same capacitance is obtained in order to generate a band gap in the frequency band desired for the EBG structure, the conductor piece can be greatly reduced to 1 / 10,000 or less. As described above, even if a composite material other than strontium titanate is used as the material of the dielectric layer, such an effect can be obtained. Note that these films can be formed of a high-quality insulating film by film formation or heat treatment at a high temperature of 300 ° C. or higher and in an oxygen atmosphere. Therefore, the first conductor 100 is preferably formed of the above-described high melting point conductor layer.
(第2の実施形態)
 図7は第2の実施形態に係る配線部品50の構成を示す断面図である。本実施形態は、第2ビア602、第3導体300、及び絶縁層610を備えない点、第1配線420と同一層に導体400を有している点、及び第1配線420のレイアウトを除いて第1の実施形態に係る配線部品50と同様の構成である。
(Second Embodiment)
FIG. 7 is a cross-sectional view showing the configuration of the wiring component 50 according to the second embodiment. In the present embodiment, the second via 602, the third conductor 300, and the insulating layer 610 are not provided, the conductor 400 is provided in the same layer as the first wiring 420, and the layout of the first wiring 420 is excluded. The configuration is the same as that of the wiring component 50 according to the first embodiment.
 図8は、導体400のパターンを示す平面図である。導体400はシート状の導体パターンであるが、複数の開口410を有している。開口410は複数の第2導体200それぞれに対向して設けられており、開口410内に第1配線420が設けられている。開口410は正方形又は長方形であり、中心が第2導体200の中心と重なっている。そして第1配線420の両端は、いずれも開口410の中心とは重なっていない。そして第1配線420は、一端が第1ビア512に接続しており、他端が導体400の本体に接続している。 FIG. 8 is a plan view showing a pattern of the conductor 400. The conductor 400 is a sheet-like conductor pattern, but has a plurality of openings 410. The opening 410 is provided to face each of the plurality of second conductors 200, and the first wiring 420 is provided in the opening 410. The opening 410 is square or rectangular, and the center overlaps the center of the second conductor 200. Further, neither end of the first wiring 420 overlaps the center of the opening 410. The first wiring 420 has one end connected to the first via 512 and the other end connected to the main body of the conductor 400.
 本実施形態において、等価回路上、導体400が第1の実施形態における第3導体300と同様の機能を持つ。すなわち第1導体100、第2導体200、第1ビア512、第1配線420、及び導体400により単位セル40が構成されている。単位セル40は、所謂マッシュルーム型のメタマテリアルの単位セルである。導体400がマッシュルームに接続する導体プレーンに相当しており、第1配線420及び第1ビア512がマッシュルームのインダクタンス部分に相当しており、導体小片となっている第2導体200がマッシュルームのヘッド部分に相当している。 In this embodiment, on the equivalent circuit, the conductor 400 has the same function as the third conductor 300 in the first embodiment. That is, the unit cell 40 is configured by the first conductor 100, the second conductor 200, the first via 512, the first wiring 420, and the conductor 400. The unit cell 40 is a so-called mushroom-type metamaterial unit cell. The conductor 400 corresponds to a conductor plane connected to the mushroom, the first wiring 420 and the first via 512 correspond to an inductance portion of the mushroom, and the second conductor 200 that is a conductor piece is the head portion of the mushroom. It corresponds to.
 本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また第1の実施形態と比較して層数を少なくすることができるため、配線部品50を薄くすることができる。 Also in this embodiment, the same effect as that of the first embodiment can be obtained. Further, since the number of layers can be reduced as compared with the first embodiment, the wiring component 50 can be made thin.
(第3の実施形態)
 図9は、第3の実施形態に係る配線部品50の構成を示す断面図である。図10(a),(b),(c)は、それぞれ図9に示した配線部品50における第3導体300、第1配線420、及び第2導体200のレイアウトを示す平面図である。本実施形態は、以下の点を除いて第1の実施形態と同様である。
(Third embodiment)
FIG. 9 is a cross-sectional view showing the configuration of the wiring component 50 according to the third embodiment. FIGS. 10A, 10B, and 10C are plan views showing layouts of the third conductor 300, the first wiring 420, and the second conductor 200 in the wiring component 50 shown in FIG. 9, respectively. This embodiment is the same as the first embodiment except for the following points.
 まず、第3導体300には複数の開口310及び複数の第2配線320が設けられている。開口310は複数の第2導体200それぞれに対向して設けられており、開口310内に第2配線320が設けられている。第2配線320は、一端が第2ビア602に接続しており、他端が第3導体300の本体に接続している。開口310は正方形又は長方形であり、中心が第2導体200の中心と重なっている。そして第2配線320の他端は開口310の中心とは重なっていない。 First, the third conductor 300 is provided with a plurality of openings 310 and a plurality of second wirings 320. The opening 310 is provided to face each of the plurality of second conductors 200, and the second wiring 320 is provided in the opening 310. The second wiring 320 has one end connected to the second via 602 and the other end connected to the main body of the third conductor 300. The opening 310 is square or rectangular, and the center overlaps the center of the second conductor 200. The other end of the second wiring 320 does not overlap the center of the opening 310.
 本実施形態においても単位セル40は、所謂マッシュルーム型のメタマテリアルの単位セルである。そして第3導体300がマッシュルームに接続する導体プレーンに相当しており、第2配線320、第2ビア602、第1配線420、及び第1ビア512がマッシュルームのインダクタンス部分に相当している。また導体小片となっている第2導体200がマッシュルームのヘッド部分に相当しており、第1導体100がマッシュルームと対向した第2導体プレーンに相当している。 Also in this embodiment, the unit cell 40 is a so-called mushroom-type metamaterial unit cell. The third conductor 300 corresponds to a conductor plane connected to the mushroom, and the second wiring 320, the second via 602, the first wiring 420, and the first via 512 correspond to an inductance portion of the mushroom. The second conductor 200, which is a conductor piece, corresponds to the head portion of the mushroom, and the first conductor 100 corresponds to the second conductor plane facing the mushroom.
 本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また第3導体300に開口310及び第2配線320を設けたため、マッシュルームのインダクタンス部分を長くすることができる。このため、単位セル40の面積を大きくせずにインダクタンスを大きくすることができる。 Also in this embodiment, the same effect as that of the first embodiment can be obtained. Further, since the opening 310 and the second wiring 320 are provided in the third conductor 300, the inductance portion of the mushroom can be lengthened. For this reason, the inductance can be increased without increasing the area of the unit cell 40.
(第4の実施形態)
 図11は、第4の実施形態に係る電子装置の構成を示す断面図である。この電子装置は、インターポーザとしての配線部品50に半導体チップ60を実装したものである。本図に示す例において、半導体チップ60は配線部品50にフリップチップ実装されているが、他の方式(例えばワイヤボンディング)により配線部品50に実装されても良い。
(Fourth embodiment)
FIG. 11 is a cross-sectional view illustrating a configuration of an electronic device according to the fourth embodiment. In this electronic device, a semiconductor chip 60 is mounted on a wiring component 50 as an interposer. In the example shown in this figure, the semiconductor chip 60 is flip-chip mounted on the wiring component 50, but may be mounted on the wiring component 50 by other methods (for example, wire bonding).
 本図に示す例において配線部品50の単位セル40は、第3の実施形態と同様の構成を有している。ただし単位セル40は、第1の実施形態又は第2の実施形態と同様の構成であっても良い。 In the example shown in the figure, the unit cell 40 of the wiring component 50 has the same configuration as that of the third embodiment. However, the unit cell 40 may have the same configuration as that of the first embodiment or the second embodiment.
 また配線部品50は、第1外部接続端子330及び第2外部接続端子340を有している。第1外部接続端子330は、第1導体100に電気的に接続しており、バンプ801を介して半導体チップ60の電源パッド61に接続している。第2外部接続端子340は、第3導体300に電気的に接続しており、バンプ802を介して半導体チップ60のグラウンドパッド62に接続している。 The wiring component 50 has a first external connection terminal 330 and a second external connection terminal 340. The first external connection terminal 330 is electrically connected to the first conductor 100 and is connected to the power supply pad 61 of the semiconductor chip 60 via the bump 801. The second external connection terminal 340 is electrically connected to the third conductor 300 and is connected to the ground pad 62 of the semiconductor chip 60 via the bump 802.
 詳細には、中間層20及び第1導体100は、基板10の周辺部を除いて設けられている。基板10の周辺部では絶縁層510が基板10上に直接形成されている。基板10の周辺部における絶縁層510は、中間層20及び第1導体100が設けられていない分、他の領域における絶縁層510と比較して厚くなっている。そして基板10の周辺部には、貫通ビア31,32が設けられている。貫通ビア31,32は基板10及び絶縁層510を貫通している。貫通ビア31は、絶縁層510上に設けられた導体430及びビア603を介して第1外部接続端子330に接続しており、貫通ビア32は、絶縁層510上に設けられた導体440及びビア604を介して第2外部接続端子340に接続している。 Specifically, the intermediate layer 20 and the first conductor 100 are provided except for the peripheral portion of the substrate 10. An insulating layer 510 is directly formed on the substrate 10 at the periphery of the substrate 10. The insulating layer 510 in the peripheral portion of the substrate 10 is thicker than the insulating layer 510 in other regions because the intermediate layer 20 and the first conductor 100 are not provided. In the periphery of the substrate 10, through vias 31 and 32 are provided. The through vias 31 and 32 penetrate the substrate 10 and the insulating layer 510. The through via 31 is connected to the first external connection terminal 330 via the conductor 430 and the via 603 provided on the insulating layer 510, and the through via 32 is connected to the conductor 440 and the via provided on the insulating layer 510. It is connected to the second external connection terminal 340 via 604.
 第1外部接続端子330及び第2外部接続端子340は、第3導体300と同一層に形成されており、絶縁層610に設けられた開口から露出している。また導体430,440は、第1配線420と同一層に設けられている。 The first external connection terminal 330 and the second external connection terminal 340 are formed in the same layer as the third conductor 300 and are exposed from the opening provided in the insulating layer 610. The conductors 430 and 440 are provided in the same layer as the first wiring 420.
 また誘電体層500及び第2導体200は、第1導体100のうち貫通ビア31の隣に位置する領域には形成されていない。この領域において、第1導体100は導体430に対向しており、また絶縁層510に埋め込まれたビア101を介して互いに接続している。 Further, the dielectric layer 500 and the second conductor 200 are not formed in the region located next to the through via 31 in the first conductor 100. In this region, the first conductor 100 faces the conductor 430 and is connected to each other through the via 101 embedded in the insulating layer 510.
 このような構成において、第1導体100は、ビア101及び導体430を介して電源電位を与える貫通ビア31に接続しているとともに、ビア101、導体430、及びビア603を介して第1外部接続端子330に接続している。また第3導体300は第2外部接続端子340に直接接続しているとともに、第2外部接続端子340、ビア604、及び導体440を介してグラウンド電位を与える貫通ビア32に接続している。ただし貫通ビア31がグラウンド電位を与え、第1外部接続端子330がグラウンド電位パッド62に接続し、貫通ビア32が電源電位を与え第2外部接続端子340が電源パッド61に接続するようにしても良い。 In such a configuration, the first conductor 100 is connected to the through via 31 that supplies the power supply potential via the via 101 and the conductor 430, and is connected to the first external connection via the via 101, the conductor 430, and the via 603. The terminal 330 is connected. Further, the third conductor 300 is directly connected to the second external connection terminal 340 and is connected to the through via 32 that gives a ground potential via the second external connection terminal 340, the via 604, and the conductor 440. However, the through via 31 applies a ground potential, the first external connection terminal 330 is connected to the ground potential pad 62, and the through via 32 supplies a power supply potential, and the second external connection terminal 340 is connected to the power supply pad 61. good.
 本実施形態において、半導体チップ60の電源電位とグラウンド電位の間には、複数の単位セル40からなるメタマテリアルが電気的に位置している。このため、半導体チップ60がノイズ源となって電源電位及びグラウンド電位にノイズが混入することを抑制できる。また電源電位及びグラウンド電位を介して半導体チップ60にノイズが入ることを抑制できる。また上記したように単位セル40を大型化しなくてもバンドギャップ周波数帯を低周波化(例えば数GHzの領域)することができるため、電子装置が大型化することを抑制できる。 In this embodiment, a metamaterial composed of a plurality of unit cells 40 is electrically located between the power supply potential of the semiconductor chip 60 and the ground potential. For this reason, it can suppress that the semiconductor chip 60 becomes a noise source and noise mixes into a power supply potential and a ground potential. Further, noise can be prevented from entering the semiconductor chip 60 through the power supply potential and the ground potential. Further, as described above, since the band gap frequency band can be lowered (for example, a region of several GHz) without increasing the size of the unit cell 40, it is possible to suppress an increase in size of the electronic device.
(第5の実施形態)
 図12は、第5の実施形態に係る配線部品50の構成を示す断面図である。本実施形態において配線部品50は、基板10として導体が用いられている点、及び中間層20が形成されていない点を除いて、第1~第3の実施形態のいずれかに示した配線部品50と同様の構成である。すなわち本実施形態では、第1導体100は導体である基板10上に直接形成されている。本図は、第2の実施形態に示した配線部品50と同様の構成の場合を示している。
(Fifth embodiment)
FIG. 12 is a cross-sectional view showing the configuration of the wiring component 50 according to the fifth embodiment. In the present embodiment, the wiring component 50 is the wiring component shown in any of the first to third embodiments, except that a conductor is used as the substrate 10 and the intermediate layer 20 is not formed. 50. That is, in the present embodiment, the first conductor 100 is directly formed on the substrate 10 that is a conductor. This figure shows the case of the same configuration as the wiring component 50 shown in the second embodiment.
 図13は、図12に示した配線部品50を、ノイズフィルタ機能を有するディスクリート部品として使用した例を示している。本図に示す例において配線部品50は平面形状が矩形であり、配線基板70(例えばマザーボード)に外付けで取り付けられている。配線部品50は第1外部接続端子441、第2外部接続端子442、第3外部接続端子443、及び第4外部接続端子444を備えている。 FIG. 13 shows an example in which the wiring component 50 shown in FIG. 12 is used as a discrete component having a noise filter function. In the example shown in the figure, the wiring component 50 has a rectangular planar shape and is attached to a wiring board 70 (for example, a mother board) externally. The wiring component 50 includes a first external connection terminal 441, a second external connection terminal 442, a third external connection terminal 443, and a fourth external connection terminal 444.
 第1外部接続端子441は、ハンダボール811、並びに配線基板70内の導体パターン及びビアを介して、配線基板70内の電源プレーン701に電気的に接続している。第2外部接続端子442は、ハンダボール812、並びに配線基板70内の導体パターン及びビアを介して、配線基板70内の電源プレーン702に電気的に接続している。電源プレーン701,702は、配線基板70の中ではつながっておらず、配線部品50の第1導体100を介して電気的に繋がっている。 The first external connection terminal 441 is electrically connected to the power supply plane 701 in the wiring board 70 via the solder balls 811 and the conductor patterns and vias in the wiring board 70. The second external connection terminal 442 is electrically connected to the power plane 702 in the wiring board 70 through the solder balls 812 and the conductor patterns and vias in the wiring board 70. The power supply planes 701 and 702 are not connected in the wiring board 70 but are electrically connected via the first conductor 100 of the wiring component 50.
 また第3外部接続端子443は、ハンダボール813、並びに配線基板70内の導体パターン及びビアを介して、配線基板70内のグラウンドプレーン711に電気的に接続している。第4外部接続端子444は、ハンダボール814、並びに配線基板70内の導体パターン及びビアを介して、配線基板70内のグラウンドプレーン712に電気的に接続している。グラウンドプレーン711,712は、配線基板70の中ではつながっておらず、配線部品50の導体400を介して電気的につながっている。 The third external connection terminal 443 is electrically connected to the ground plane 711 in the wiring board 70 via the solder balls 813 and the conductor patterns and vias in the wiring board 70. The fourth external connection terminal 444 is electrically connected to the ground plane 712 in the wiring board 70 through the solder balls 814 and the conductor patterns and vias in the wiring board 70. The ground planes 711 and 712 are not connected in the wiring board 70 but are electrically connected via the conductor 400 of the wiring component 50.
 第1外部接続端子441、第2外部接続端子442、第3外部接続端子443、及び第4外部接続端子444は絶縁層600に設けられた開口から露出している。また第1導体100は、基板10の周辺部を除いて設けられている。基板10の周辺部では絶縁層510が基板10上に直接形成されている。基板10の周辺部における絶縁層510は、第1導体100が設けられていない分、他の領域における絶縁層510と比較して厚くなっている。 The first external connection terminal 441, the second external connection terminal 442, the third external connection terminal 443, and the fourth external connection terminal 444 are exposed from the opening provided in the insulating layer 600. The first conductor 100 is provided except for the peripheral portion of the substrate 10. An insulating layer 510 is directly formed on the substrate 10 at the periphery of the substrate 10. The insulating layer 510 in the peripheral portion of the substrate 10 is thicker than the insulating layer 510 in other regions because the first conductor 100 is not provided.
 また誘電体層500及び第2導体200は、第1導体100のうちビア111,112に対向する領域の少なくとも一部には形成されていない。この誘電体層500及び第2導体200が形成されていない領域において第1導体100は、絶縁層510に埋め込まれたビア111を介して第1外部接続端子441に接続しており、また絶縁層510に埋め込まれたビア112を介して第2外部接続端子442に接続している。なお外部接続端子443,444は、直接導体400に接続している。なお外部接続端子441,442と第1導体100の接続構造は、本図に示す例に限定されない。 Further, the dielectric layer 500 and the second conductor 200 are not formed in at least a part of the region of the first conductor 100 facing the vias 111 and 112. In the region where the dielectric layer 500 and the second conductor 200 are not formed, the first conductor 100 is connected to the first external connection terminal 441 through the via 111 embedded in the insulating layer 510, and the insulating layer The second external connection terminal 442 is connected via a via 112 embedded in 510. The external connection terminals 443 and 444 are directly connected to the conductor 400. The connection structure between the external connection terminals 441 and 442 and the first conductor 100 is not limited to the example shown in this figure.
 そして平面視において、第1外部接続端子441と第2外部接続端子442の間には少なくとも一つの第2導体200すなわち単位セル40が位置しており、第3外部接続端子443と第4外部接続端子444の間には少なくとも一つの第2導体200すなわち単位セル40が位置している。本図に示す例では、第1外部接続端子441及び第3外部接続端子443は、配線部品50の一辺に設けられており、第2外部接続端子442及び第4外部接続端子444は配線部品50のうち、上記した一辺とは反対側の辺に設けられている。 In plan view, at least one second conductor 200, that is, the unit cell 40 is located between the first external connection terminal 441 and the second external connection terminal 442, and the third external connection terminal 443 and the fourth external connection are connected. At least one second conductor 200, that is, the unit cell 40 is located between the terminals 444. In the example shown in the figure, the first external connection terminal 441 and the third external connection terminal 443 are provided on one side of the wiring component 50, and the second external connection terminal 442 and the fourth external connection terminal 444 are the wiring component 50. Among these, it is provided on the side opposite to the one side described above.
 本実施形態によれば、配線基板70に外付けでノイズフィルタとしての配線部品50を取り付けている。そして配線基板70内の電源プレーン701,702は、配線部品50の第1導体100を介して電気的に繋がっており、グラウンドプレーン711,712は、配線部品50の導体400を介して電気的に繋がっている。このため、配線基板70の電源プレーン及びグラウンドプレーンを介してノイズが伝播することを抑制できる。またEBGとして機能するメタマテリアルを配線基板70内ではなく外付けの部品として設けたため、配線基板70の設計を変えなくても、配線部品50を取り替えるのみでEBGのバンドギャップ周波数帯を変更することができる。なお、第1外部接続端子441、第2外部接続端子442をグラウンドプレーン711および712に、第3外部接続端子443、及び第4外部接続端子444を電源プレーン701および702に、それぞれ接続した構造でもよい。 According to the present embodiment, the wiring component 50 as a noise filter is attached to the wiring board 70 externally. The power planes 701 and 702 in the wiring board 70 are electrically connected via the first conductor 100 of the wiring component 50, and the ground planes 711 and 712 are electrically connected via the conductor 400 of the wiring component 50. It is connected. For this reason, it can suppress that noise propagates through the power plane and ground plane of the wiring board 70. Further, since the metamaterial functioning as the EBG is provided as an external component rather than in the wiring substrate 70, the band gap frequency band of the EBG can be changed by simply replacing the wiring component 50 without changing the design of the wiring substrate 70. Can do. The first external connection terminal 441 and the second external connection terminal 442 may be connected to the ground planes 711 and 712, and the third external connection terminal 443 and the fourth external connection terminal 444 may be connected to the power supply planes 701 and 702, respectively. Good.
 また第1導体100は導電性の基板10上に直接形成されている。このため、基板10も第1導体100の一部として機能するため、第1導体100の抵抗を実質的に低くすることができる。 The first conductor 100 is directly formed on the conductive substrate 10. For this reason, since the board | substrate 10 functions also as a part of 1st conductor 100, the resistance of the 1st conductor 100 can be made low substantially.
 また、本実施形態ではディスクリート部品を表面実装した形態を例示しているが、配線基板70内に、配線基板70とは別に作成されたディスクリート部品を埋め込んだ形態でもよい。この場合、通常のプリント配線基板の配線のみでEBG構造を形成するよりも面積を小さくできることに加えて、配線基板表面部分に他の部品を実装するスペースができ、一層の高密度実装化に有利となる。 Further, in the present embodiment, a form in which discrete components are surface-mounted is illustrated, but a form in which discrete parts created separately from the wiring board 70 are embedded in the wiring board 70 may be used. In this case, the area can be reduced as compared with the case where the EBG structure is formed only by wiring of a normal printed wiring board, and a space for mounting other components on the surface of the wiring board is created, which is advantageous for higher density mounting. It becomes.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
 この出願は、2009年12月24日に出願された日本特許出願特願2009-291817を基礎とする優先権を主張しその開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2009-291817 filed on Dec. 24, 2009, the entire disclosure of which is incorporated herein.

Claims (13)

  1.  シート状に延在する第1導体と、
     前記第1導体に対向する領域に繰り返し配置された複数の島状の第2導体と、
     前記複数の第2導体を基準にしたときに前記第1導体とは反対側に位置し、前記複数の第2導体と対向する領域に延在するシート状の第3導体と、
     前記複数の第2導体それぞれを前記第3導体に接続する複数の接続部材と、
    を備え、
     前記接続部材は、
     前記第2導体とは異なる層に形成され、平面視において一端が前記第2導体の中心とは重なっていない第1配線と、
     前記第1配線の前記一端と前記第2導体とを接続する第1ビアと、
    を備える配線部品。
    A first conductor extending in a sheet shape;
    A plurality of island-shaped second conductors repeatedly disposed in a region facing the first conductor;
    A sheet-like third conductor located on the opposite side of the first conductor when the plurality of second conductors are used as a reference, and extending in a region facing the plurality of second conductors;
    A plurality of connecting members connecting each of the plurality of second conductors to the third conductor;
    With
    The connecting member is
    A first wiring that is formed in a layer different from the second conductor and has one end not overlapping the center of the second conductor in plan view;
    A first via connecting the one end of the first wiring and the second conductor;
    Wiring parts comprising.
  2.  請求項1に記載の配線部品において、
     前記第3導体に形成され、平面視において前記複数の第2導体それぞれと重なる領域に設けられた複数の開口を備え、
     前記第1配線は、前記第3導体と同一層に位置し、前記複数の開口それぞれの中に設けられ、他端が前記第3導体に接続している配線部品。
    The wiring component according to claim 1,
    A plurality of openings formed in the third conductor and provided in regions overlapping with each of the plurality of second conductors in plan view;
    The first wiring is a wiring component that is located in the same layer as the third conductor, is provided in each of the plurality of openings, and has the other end connected to the third conductor.
  3.  請求項1に記載の配線部品において、
     前記第1配線は、前記複数の第2導体と前記第3導体の間に位置する導体層に形成されており、
     さらに、前記第1配線の他端と前記第3導体とを接続する第2ビアを備える配線部品。
    The wiring component according to claim 1,
    The first wiring is formed in a conductor layer located between the plurality of second conductors and the third conductor,
    Furthermore, a wiring component comprising a second via for connecting the other end of the first wiring and the third conductor.
  4.  請求項1に記載の配線部品において、
     前記第1配線は、前記複数の第2導体と前記第3導体の間に位置する導体層に形成されており、
    さらに、
     前記第3導体に形成され、平面視において前記複数の第2導体それぞれと重なる領域に設けられた複数の開口と、
     前記第3導体と同一層に位置し、前記複数の開口それぞれの中に設けられ、一端が前記第3導体に接続している第2配線と、
     前記第1配線の他端と前記第2配線の他端とを接続する第2ビアと、
    を備える配線部品。
    The wiring component according to claim 1,
    The first wiring is formed in a conductor layer located between the plurality of second conductors and the third conductor,
    further,
    A plurality of openings formed in the third conductor and provided in regions overlapping with each of the plurality of second conductors in plan view;
    A second wiring located in the same layer as the third conductor, provided in each of the plurality of openings, and having one end connected to the third conductor;
    A second via connecting the other end of the first wiring and the other end of the second wiring;
    Wiring parts comprising.
  5.  請求項1~4のいずれか一つに記載の配線部品において、
     基板と、
     前記基板の第1面に形成された多層配線層と、
    を備え、
     前記第1導体及び前記複数の第2導体は、前記多層配線層のうち互いに異なる配線層に形成されている配線部品。
    The wiring component according to any one of claims 1 to 4,
    A substrate,
    A multilayer wiring layer formed on the first surface of the substrate;
    With
    The wiring component in which the first conductor and the plurality of second conductors are formed in different wiring layers of the multilayer wiring layer.
  6.  請求項5に記載の配線部品において、
     前記第1導体と前記第2導体の間に位置する誘電体層を備え、
     前記誘電体層は、Mg、Al、Si、Ti、Ta、Hf、及びZrから選ばれた少なくとも1つの元素の酸化物を含有する配線部品。
    In the wiring component according to claim 5,
    A dielectric layer positioned between the first conductor and the second conductor;
    The dielectric layer is a wiring component containing an oxide of at least one element selected from Mg, Al, Si, Ti, Ta, Hf, and Zr.
  7.  請求項5に記載の配線部品において、
     前記第1導体と前記第2導体の間に位置する誘電体層を備え、
     前記誘電体層は、金属元素の複合酸化物を含有する配線部品。
    In the wiring component according to claim 5,
    A dielectric layer positioned between the first conductor and the second conductor;
    The dielectric layer is a wiring component containing a complex oxide of a metal element.
  8.  請求項1~7のいずれか一つに記載の配線部品において、
     前記第1導体が、Ti、Ta、Cr、又はTiの窒化物、Taの窒化物、並びにCrの窒化物から選ばれた少なくとも1つの材料から構成される層を1以上設けた中間層と、該中間層の上に形成され、Pt、Pd、Ru、及びIrから選ばれた少なくとも1以上の元素から構成される層を1以上設けた高融点導体層と、を含有する配線部品。
    The wiring component according to any one of claims 1 to 7,
    An intermediate layer in which the first conductor is provided with at least one layer composed of at least one material selected from Ti, Ta, Cr, or a nitride of Ta, a nitride of Ta, and a nitride of Cr; A wiring component comprising a refractory conductor layer formed on the intermediate layer and provided with one or more layers composed of at least one element selected from Pt, Pd, Ru, and Ir.
  9.  請求項5~8のいずれか一つに記載の配線部品において、
     前記基板が導体又は半導体により形成されている配線部品。
    The wiring component according to any one of claims 5 to 8,
    A wiring component in which the substrate is formed of a conductor or a semiconductor.
  10.  請求項9に記載の配線部品において、
     前記導体又は半導体は、Si、GaAs、ステンレス、タングステン、モリブデン、及びチタンから選ばれた少なくとも1つである配線部品。
    In the wiring component according to claim 9,
    The wiring component, wherein the conductor or semiconductor is at least one selected from Si, GaAs, stainless steel, tungsten, molybdenum, and titanium.
  11.  請求項5~8のいずれか一つに記載の配線部品において、前記基板が、ガラス、サファイア、石英、及びアルミナから選ばれた少なくとも1つの材料から形成される配線部品。 The wiring component according to any one of claims 5 to 8, wherein the substrate is formed of at least one material selected from glass, sapphire, quartz, and alumina.
  12.  請求項1~11のいずれか一つに記載の配線部品において、
     前記配線部品はインターポーザであり、
     前記第1導体及び前記第3導体の一方に電気的に接続しており、半導体チップの電源パッドに接続する第1外部接続端子と、
     前記第1導体及び前記第3導体の他方に電気的に接続しており、前記半導体チップのグラウンドパッドに接続する第2外部接続端子と、
    を備える配線部品。
    The wiring component according to any one of claims 1 to 11,
    The wiring component is an interposer,
    A first external connection terminal electrically connected to one of the first conductor and the third conductor and connected to a power supply pad of the semiconductor chip;
    A second external connection terminal electrically connected to the other of the first conductor and the third conductor and connected to a ground pad of the semiconductor chip;
    Wiring parts comprising.
  13.  請求項1~11のいずれか一つに記載の配線部品において、
     前記配線部品は配線基板に外付けで取り付けられ、
     前記第1導体及び前記第3導体の一方に電気的に接続しており、前記配線基板の電源プレーンに電気的に接続する第1外部接続端子と、
     前記第1外部接続端子とは異なる位置で前記第1導体及び前記第3導体の前記一方に電気的に接続しており、前記配線基板の電源プレーンに電気的に接続する第2外部接続端子と、
     前記第1導体及び前記第3導体の他方に電気的に接続しており、前記配線基板のグラウンドインに電気的に接続する第3外部接続端子と、
     前記第3外部接続端子とは異なる位置で前記第1導体及び前記第3導体の前記他方に電気的に接続しており、前記配線基板のグラウンドプレーンに電気的に接続する第4外部接続端子と、
    を備え、
     平面視において、前記第1外部接続端子と前記第2外部接続端子の間には少なくとも一つの前記第2導体が位置しており、かつ前記第3外部接続端子と前記第4外部接続端子の間には少なくとも一つの前記第2導体が位置している配線部品。
    The wiring component according to any one of claims 1 to 11,
    The wiring component is externally attached to the wiring board,
    A first external connection terminal electrically connected to one of the first conductor and the third conductor and electrically connected to a power plane of the wiring board;
    A second external connection terminal electrically connected to the one of the first conductor and the third conductor at a position different from the first external connection terminal and electrically connected to a power plane of the wiring board; ,
    A third external connection terminal electrically connected to the other of the first conductor and the third conductor and electrically connected to a ground-in of the wiring board;
    A fourth external connection terminal electrically connected to the other of the first conductor and the third conductor at a position different from the third external connection terminal, and electrically connected to a ground plane of the wiring board; ,
    With
    In plan view, at least one second conductor is located between the first external connection terminal and the second external connection terminal, and between the third external connection terminal and the fourth external connection terminal. A wiring component in which at least one second conductor is located.
PCT/JP2010/007314 2009-12-24 2010-12-16 Wiring component WO2011077676A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011547284A JPWO2011077676A1 (en) 2009-12-24 2010-12-16 Wiring parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009291817 2009-12-24
JP2009-291817 2009-12-24

Publications (1)

Publication Number Publication Date
WO2011077676A1 true WO2011077676A1 (en) 2011-06-30

Family

ID=44195230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007314 WO2011077676A1 (en) 2009-12-24 2010-12-16 Wiring component

Country Status (2)

Country Link
JP (1) JPWO2011077676A1 (en)
WO (1) WO2011077676A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024751A (en) * 2015-03-27 2016-10-12 南茂科技股份有限公司 Semiconductor structure
JPWO2015122203A1 (en) * 2014-02-12 2017-03-30 株式会社村田製作所 Printed board
CN112740476A (en) * 2018-09-18 2021-04-30 日本特殊陶业株式会社 Waveguide tube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088468A (en) * 2007-09-28 2009-04-23 Samsung Electro Mech Co Ltd Printed circuit board with embedded chip capacitor and chip capacitor embedment method
WO2009082003A1 (en) * 2007-12-26 2009-07-02 Nec Corporation Electromagnetic band gap element, and antenna and filter using the same
WO2009131140A1 (en) * 2008-04-22 2009-10-29 日本電気株式会社 Electromagnetic bandgap structure and method for manufacture thereof, filter element and filter element-incorporating printed circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088468A (en) * 2007-09-28 2009-04-23 Samsung Electro Mech Co Ltd Printed circuit board with embedded chip capacitor and chip capacitor embedment method
WO2009082003A1 (en) * 2007-12-26 2009-07-02 Nec Corporation Electromagnetic band gap element, and antenna and filter using the same
WO2009131140A1 (en) * 2008-04-22 2009-10-29 日本電気株式会社 Electromagnetic bandgap structure and method for manufacture thereof, filter element and filter element-incorporating printed circuit board

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T.KAMGAING ET AL.: "A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface", IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, vol. 13, no. 1, January 2003 (2003-01-01), pages 21 - 23, XP011427759, DOI: doi:10.1109/LMWC.2002.807713 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015122203A1 (en) * 2014-02-12 2017-03-30 株式会社村田製作所 Printed board
CN106024751A (en) * 2015-03-27 2016-10-12 南茂科技股份有限公司 Semiconductor structure
TWI556386B (en) * 2015-03-27 2016-11-01 南茂科技股份有限公司 Semiconductor structure
CN112740476A (en) * 2018-09-18 2021-04-30 日本特殊陶业株式会社 Waveguide tube
CN112740476B (en) * 2018-09-18 2022-03-29 日本特殊陶业株式会社 Waveguide tube

Also Published As

Publication number Publication date
JPWO2011077676A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
WO2009131140A1 (en) Electromagnetic bandgap structure and method for manufacture thereof, filter element and filter element-incorporating printed circuit board
WO2010038478A1 (en) Electromagnetic band gap structure, element comprising same, substrate, module, semiconductor device and production methods thereof
WO2009082003A1 (en) Electromagnetic band gap element, and antenna and filter using the same
US7403370B2 (en) Capacitor parts
US7326989B2 (en) Thin film capacitor and its manufacture method
TWI463933B (en) Multilayer wiring board
KR100755088B1 (en) Multilayered substrate and manufacturing method thereof
US20090146770A1 (en) Planar-like inductor coupling structure
US7436647B2 (en) Thin-film capacitor including an opening therein
US20050190017A1 (en) Filter circuit device and method of manufacturing the same
JP2007142109A (en) Electronic part
JP4518013B2 (en) Electronic components
JP2013232613A (en) Wiring board and electronic apparatus
US20180321059A1 (en) Capacitance element
WO2011077676A1 (en) Wiring component
JP2008004734A (en) Integrated passive element, and multi-layer wiring substrate incorporating the same
JP5556162B2 (en) Electronic device and noise suppression method
US20170215281A1 (en) Dielectric vias in multi-layer structures
JP4864313B2 (en) Thin film capacitor substrate, manufacturing method thereof, and semiconductor device
JP5589617B2 (en) Thin film capacitor and manufacturing method thereof
WO2010113845A1 (en) Distributed constant circuit
JP2008078184A (en) Multilayer wiring board for mounting high-frequency chip, and high-frequency circuit module
JP2000277657A (en) Multilayer wiring board
JP2005347287A (en) Shielded line in multilayered substrate, semiconductor chip, electronic circuit element, and manufacturing method thereof
JP2006278780A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838916

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547284

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10838916

Country of ref document: EP

Kind code of ref document: A1