WO2011077641A1 - Epitaxial growing apparatus and method for manufacturing epitaxial growing apparatus - Google Patents

Epitaxial growing apparatus and method for manufacturing epitaxial growing apparatus Download PDF

Info

Publication number
WO2011077641A1
WO2011077641A1 PCT/JP2010/006902 JP2010006902W WO2011077641A1 WO 2011077641 A1 WO2011077641 A1 WO 2011077641A1 JP 2010006902 W JP2010006902 W JP 2010006902W WO 2011077641 A1 WO2011077641 A1 WO 2011077641A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
flow path
gas flow
vertical
epitaxial growth
Prior art date
Application number
PCT/JP2010/006902
Other languages
French (fr)
Japanese (ja)
Inventor
香蔵 横田
理 大西
周作 杉山
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2011077641A1 publication Critical patent/WO2011077641A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Definitions

  • the present invention relates to an epitaxial growth apparatus for epitaxially growing a single crystal thin film on a substrate.
  • the semiconductor device manufacturing process includes a process of epitaxially growing a thin film on a semiconductor substrate.
  • a schematic view of such a conventional epitaxial growth apparatus used for epitaxial growth is shown in FIG.
  • the reactive gas 105 from the gas supply source 106 is applied to the substrate W placed on the susceptor 109 by the gas supply means 102 in the chamber 101 in which the outside air is shut off.
  • a gas phase reaction is caused on the substrate W by the supplied source gas 105 to epitaxially grow a thin film, and then the source gas 105 is discharged out of the chamber 101 by the gas discharge means 103.
  • Epitaxial growth using such a device is used to increase the breakdown voltage of a bipolar device in the manufacturing process of a semiconductor device.
  • a soft error or latch-up due to alpha rays is used. It is a necessary technology to prevent this.
  • the thickness distribution of the epitaxial layer of the epitaxial wafer is often formed with unevenness corresponding to the flow of the source gas.
  • FIG. 6 shows a schematic view from the upper surface of the gas supply means 102 having a tree-like gas flow path through which gas flows in the horizontal direction.
  • Patent Document 1 an apparatus having a gas supply means of a laminated body in which a groove that forms a gas flow path is formed on a strip and bonded together by bolts or the like Is disclosed.
  • the present invention has been made in view of the above-mentioned problems, and when epitaxially growing on a substrate, it is possible to effectively suppress gas flow rate unevenness in a substrate surface of a supplied source gas, and a high-quality epitaxial layer It is an object of the present invention to provide an epitaxial growth apparatus and a method for manufacturing the same.
  • the present invention provides at least a chamber in which a susceptor on which a substrate to be epitaxially grown is placed, and a substrate placed on the susceptor in the chamber from a gas supply source.
  • An epitaxial growth apparatus having a gas supply means for supplying a gas and a gas discharge means for discharging the supplied gas to the outside of the chamber, wherein the gas supply means is connected to at least the gas supply source and is vertical.
  • a vertical gas flow path through which gas flows in a direction, and a downstream end of the vertical gas flow path, and the gas from the vertical gas flow path is ejected in a horizontal direction to the substrate placed on the susceptor.
  • a vertical gas flow path is a tree-shaped flow path that branches into a plurality of flow paths toward the downstream side.
  • the gas flowing in the vertical direction hits the connection portion with the horizontal gas flow path, so that the once dispersed gas flow is constant toward the gas outlet. Since the gas is then ejected in the horizontal direction, the gas flow rate unevenness in the substrate surface can be suppressed, and the gas can flow uniformly. Further, by arranging the tree-like gas flow paths vertically to form vertical gas flow paths, the gas flow paths can be branched into a sufficient number without increasing the apparatus width.
  • the vertical gas flow path is one in which gas flows from above to below. With such a vertical gas flow path, the gas flow velocity distribution in the substrate surface to be processed can be made more uniform.
  • an outer corner surface of a connection portion between the horizontal gas flow path and the downstream end of the vertical gas flow path has an R shape. If the outer corner surface has an R shape, the flowing gas is prevented from hitting the outer corner surface and backflowing, and the gas can be ejected in a more uniform flow.
  • the gas supply means has a plurality of the tree-like vertical gas flow paths in parallel. If it is such a gas supply means, it will become an apparatus which can flow two or more kinds of gases efficiently and uniformly.
  • the inner surface of the vertical gas channel and / or the horizontal gas channel is electrolytically polished. If it is such, it will become an apparatus which can prevent the dust generation from a gas flow path and can form a favorable epitaxial layer without a particle.
  • the gas supply means is diffusion bonded. With such a gas supply means, there is no gas leakage, and the apparatus can perform epitaxial growth in which contamination due to air mixing or the like and generation of particles are prevented.
  • the present invention provides at least a chamber in which a susceptor on which a substrate to be epitaxially grown is placed, and a gas supply for supplying gas from a gas supply source to the substrate placed on the susceptor in the chamber.
  • a method of manufacturing an epitaxial growth apparatus having means and gas discharge means for discharging the supplied gas out of the chamber, wherein at least grooves and / or holes serving as gas flow paths are formed in the strip.
  • a step of electropolishing the surface of the band plate in which the groove and / or the hole are formed, and bonding the band plates by performing diffusion bonding by superimposing the electropolished band plate on another band plate Forming a gas flow path, and at least a vertical gas flow path connected to the gas supply source and through which gas flows in a vertical direction, and an end portion downstream of the vertical gas flow path And a horizontal gas flow path for blowing gas from the vertical gas flow path in a horizontal direction and supplying gas to a substrate placed on the susceptor, and the vertical gas flow path is directed downstream.
  • An epitaxial growth apparatus manufacturing method is provided that manufactures the gas supply means that is a tree-shaped flow path that branches into a plurality of flow paths.
  • an epitaxial layer in which a uniform and in-plane gas can be flowed to the substrate to be processed by the tree-like vertical gas flow path and the horizontal gas flow path and the film thickness is uniform and contamination and particles are reduced. It is possible to reliably manufacture an epitaxial growth apparatus that can form the film.
  • gas can be flowed to the substrate to be epitaxially grown with a uniform gas flow velocity distribution, and the film thickness is uniform.
  • an apparatus capable of forming a high-quality epitaxial layer can be provided.
  • FIG. 1 is a schematic view showing an example of an embodiment of an epitaxial growth apparatus of the present invention.
  • FIG. 2 is a schematic sectional view showing an example of the sectional shape of the gas supply means of the epitaxial growth apparatus of the present invention.
  • FIG. 4 is a schematic view showing a gas flow path with a solid line and other portions with a broken line in the gas supply means of the epitaxial growth apparatus of the present invention.
  • the epitaxial growth apparatus 14 of the present invention shown in FIG. 1 has a chamber 11 in which a susceptor 19 on which a substrate W to be epitaxially grown is placed, and a substrate W placed on the susceptor 19 in the chamber 11.
  • Gas supply means 12 for supplying the gas 15 from the supply source 16 and gas discharge means 13 for discharging the supplied gas 15 out of the chamber 11 are provided.
  • the epitaxial growth apparatus 14 of the present invention may appropriately include a susceptor rotation mechanism 23 for rotating the susceptor 19, a lamp heating apparatus (not shown) for heating the substrate W, and the like.
  • the susceptor rotating mechanism 23 is for rotating the substrate W by rotating the susceptor 19 so that epitaxial growth is performed uniformly in the substrate surface.
  • the gas supply means 12 of the present invention is connected to a gas supply source 16 as shown in FIGS. 1, 2, and 4, and a vertical gas flow path 18 through which gas flows in a vertical direction, and a downstream of the vertical gas flow path 18. And a horizontal gas flow path 17 for blowing the gas 15 from the vertical gas flow path 18 in the horizontal direction and supplying the gas 15 to the substrate W placed on the susceptor 19.
  • the flow path 18 is a tree-shaped flow path that branches into a plurality of flow paths toward the downstream as shown in FIG.
  • the gas 15 can be made to flow uniformly within the substrate surface by easy gas flow rate control.
  • the gas 15 flowing in the vertical direction in the vertical gas flow path 18 hits the outer corner surface when flowing into the horizontal gas flow path, so that the gas variation toward the ejection port is suppressed, and the flow is more uniform.
  • the gas 15 is jetted horizontally and uniformly, the gas flow rate unevenness in the surface of the substrate W to be processed can be suppressed, and the film thickness can be epitaxially grown uniformly.
  • the flow direction of the gas in the vertical gas flow path 18 may be a vertical direction, and is not particularly limited from above to below or from below to above, but from above to below as shown in FIGS. It is preferable that the gas flows.
  • an inverted L-shaped flow that flows from the lower side to the upper side is formed.
  • the gas flow velocity distribution in the substrate surface of the gas 15 to be ejected is more uniform.
  • the apparatus can realize a more optimal flow.
  • the gas supply means 12 preferably has a plurality of tree-like vertical gas flow paths 18 in parallel.
  • FIG. 2B shows the case where gas 1 and gas 2 are mixed in the middle of the vertical gas flow path 18 and flow out to the horizontal gas flow path 17.
  • FIG. It flows through the gas flow path 18 and is mixed for the first time in the horizontal gas flow path 17.
  • two or more kinds of gases or gases having different concentrations can be caused to flow through the plurality of vertical gas flow paths 18 to be uniformly mixed, and various mixing is possible.
  • the inner surface of the vertical gas channel 18 and / or the horizontal gas channel 17 is electrolytically polished. As long as it is electrolytically polished, no dust is generated even when the gas 15 flows inside, and generation of particles in the epitaxial layer to be grown can be prevented.
  • the gas supply means 12 is preferably diffusion bonded. In this way, diffusion bonding is suitable for use in producing the gas supply means 12 having a complicatedly shaped gas flow path according to the present invention, since it can be bonded to a temperature change without any gap. is there.
  • the horizontal gas flow path 17 is not particularly limited, and slits or the like that match the positions of the vertical gas flow paths 18 may be formed, as shown in FIG. Further, there may be no slit or the like and the flow path is not divided.
  • FIG. 3 is a flow diagram illustrating an example of an embodiment of a method for manufacturing an epitaxial growth apparatus of the present invention with a schematic front view and a schematic cross-sectional view.
  • grooves and / or holes 20 and 21 serving as gas flow paths are formed in the strip plates 22a and 22b.
  • grooves 20 to be the vertical gas flow paths 18 are formed in a tree shape as shown in the front view, and perpendicular to the band plate 22b shown in FIG. 3B.
  • a groove 20 to be the gas flow path 18 is formed in the same manner as the band plate 22a, and a hole 21 to be the horizontal gas flow path 17 is formed.
  • the grooves and / or holes 20 and 21 can be formed by cutting with an end mill.
  • the grooves and / or the holes 20 and 21 are formed in both of the band plates 22a and 22b, but they may be formed only in one of the band plates.
  • the method of electrolytic polishing is not particularly limited. For example, when a strip that is polished in an electrolytic solution is connected positively to flow electricity, minute projections on the surface are preferentially dissolved to obtain a bright surface. It is done. As described above, according to the manufacturing method of the present invention, the strips 22a and 22b in which the grooves and / or the holes 20 and 21 are formed are electropolished, so that polishing unevenness is less likely to occur than when the tubular flow path is electropolished. In addition, a gas flow path having an inner surface that does not generate dust even when gas is allowed to flow.
  • the strips 22a and 22b are overlapped and diffusion bonding is performed to join the strips 22a and 22b to each other so that the vertical gas flow path 18 and the horizontal gas flow path 17 are joined.
  • the method of diffusion bonding is not particularly limited.
  • the overlapped strips 22a and 22b are joined by atomic movement between the strips 22a and 22b under high pressure and high pressure while being pressed in a vacuum state.
  • By joining the strips 22a and 22b by such diffusion bonding there is no gap, and it is possible to join strong against temperature changes.
  • An apparatus capable of performing epitaxial growth without contamination or generation of particles can be manufactured.
  • FIG. 3 (d) a gas ejection port is formed through the horizontal gas flow path 17, and final surface processing is performed as shown in FIG. 3 (e).
  • a pipe from the supply source 16 is welded to the connection portion to complete the gas supply means 12 of the present invention and attached to the epitaxial growth apparatus 14.
  • FIG. 7 shows a schematic view of the state of being divided at the joint surface of the gas supply means 12 of the epitaxial growth apparatus 14 of the present invention manufactured as described above.
  • FIG. 8 is a schematic view of the epitaxial growth apparatus 14 of the present invention, in which the gas supply means 12 having the two-layer type vertical gas flow path 18 is divided at the joint surface. Of course, if necessary, it may have three or more layers of vertical gas channels made of four or more strips.
  • the gas can be flowed to the substrate to be epitaxially grown with the in-plane uniform gas flow rate distribution, the film thickness is uniform, and the quality is high.
  • the epitaxial layer can be formed.
  • Example 1 Epitaxial growth was performed on a silicon wafer having a diameter of 300 mm using the epitaxial growth apparatus of the present invention shown in FIGS. 1 and 4 manufactured by the manufacturing method of the present invention. An apparatus having 96 ports at the downstream end of the vertical gas channel of the gas supply means was used.
  • the gas supply means is an L-shaped gas flow path as shown in FIGS. 1 and 4 in which the gas flows from the top to the bottom in the vertical gas flow path.
  • the epitaxial growth conditions were a reaction temperature of 1150 ° C., a hydrogen flow rate of 70 slm, a TCS (trichlorosilane) gas flow rate of 10 slm, and an epitaxial layer was grown to a film thickness of 5 ⁇ m.
  • Example 2 The apparatus was the same as in Example 1, except that the gas supply means was an inverted L-shaped gas flow path in which the gas flowed from below to above in the vertical gas flow path.
  • the epitaxial growth conditions were the same as in Example 1.
  • Epitaxial growth was carried out on a silicon wafer having a diameter of 300 mm using an epitaxial growth apparatus having a tree-like horizontal gas flow path gas supply means shown in FIGS.
  • An apparatus having 96 ports at the downstream end of the gas flow path of the gas supply means was used.
  • the gas supply means was formed by forming a groove serving as a gas flow path in the strip, electrolytic polishing, and then joining the strips with bolts and nuts.
  • the epitaxial growth conditions were the same as in Examples 1 and 2, and the epitaxial layer was grown to a thickness of 5 ⁇ m.
  • FIG. 9 shows the result of measuring the number of particles in the epitaxial layer formed in Example 1 and the comparative example
  • FIG. 10 shows the result of measuring the film thickness distribution of the epitaxial layer.
  • Example 2 the number of particles measured in the same manner was about the same as that in Example 1, but the film thickness uniformity was 0.28%, which is an improvement over the comparative example. It was slightly lower than. From this result, it can be seen that the uniformity of the thickness of the formed epitaxial layer is further improved when the gas supply means has an L-shaped gas flow path rather than an inverted L-shaped gas channel.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has the same configuration as the technical idea described in the claims of the present invention. It is included in the technical scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Disclosed is an epitaxial growing apparatus, wherein a gas supply means has: a perpendicular gas channel, which is connected to a gas supply source, and which has a gas flowing in the perpendicular direction; and a horizontal gas channel, which is connected to the downstream end portion of the perpendicular gas channel, and which supplies the gas to a substrate placed on a susceptor by jetting, in the horizontal direction, the gas supplied from the perpendicular gas channel. The perpendicular gas channel is a tree-like channel that is branched into a plurality of channels in the downstream. Thus, at the time of performing epitaxial growing on the substrate, nonuniformity of the flow speed of the raw material gas thus supplied can be effectively suppressed within the substrate surface, and a high quality epitaxial layer can be formed. A method for manufacturing the epitaxial growing apparatus is also disclosed.

Description

エピタキシャル成長装置及びエピタキシャル成長装置の製造方法Epitaxial growth apparatus and manufacturing method of epitaxial growth apparatus
 本発明は、基板に単結晶薄膜をエピタキシャル成長させるエピタキシャル成長装置に関する。
 
The present invention relates to an epitaxial growth apparatus for epitaxially growing a single crystal thin film on a substrate.
 半導体デバイスの製造工程においては、半導体基板上に薄膜をエピタキシャル成長させる工程がある。このような、エピタキシャル成長に用いる従来のエピタキシャル成長装置の概略図を図5に示す。図5に示すエピタキシャル成長装置104を用いたエピタキシャル成長工程では、外気を遮断したチャンバー101内で、ガス供給手段102によりサセプタ109に載置された基板W上にガス供給源106からの反応性ガス105を供給し、供給された原料ガス105により基板W上で気相反応を起こさせて薄膜をエピタキシャル成長させ、その後、原料ガス105はガス排出手段103によりチャンバー101外へ排出される。 The semiconductor device manufacturing process includes a process of epitaxially growing a thin film on a semiconductor substrate. A schematic view of such a conventional epitaxial growth apparatus used for epitaxial growth is shown in FIG. In the epitaxial growth process using the epitaxial growth apparatus 104 shown in FIG. 5, the reactive gas 105 from the gas supply source 106 is applied to the substrate W placed on the susceptor 109 by the gas supply means 102 in the chamber 101 in which the outside air is shut off. A gas phase reaction is caused on the substrate W by the supplied source gas 105 to epitaxially grow a thin film, and then the source gas 105 is discharged out of the chamber 101 by the gas discharge means 103.
 このような装置を用いたエピタキシャル成長は、半導体装置の製造プロセスにおいて、バイポーラ素子の耐圧などを高めるために用いられており、素子においてもメガビットのメモリを製作する場合、α線によるソフトエラーやラッチアップを防ぐために必要な技術になっている。 Epitaxial growth using such a device is used to increase the breakdown voltage of a bipolar device in the manufacturing process of a semiconductor device. When a megabit memory is also manufactured in the device, a soft error or latch-up due to alpha rays is used. It is a necessary technology to prevent this.
 このような、エピタキシャル成長装置を用いて、例えばエピタキシャルウェーハを作製する際に、エピタキシャル層を平滑に堆積させるには、基板表面上での原料ガスの速度ムラを低減することが肝要である。しかしながら、基板の直径は現在300mmまで拡大し、枚葉式で処理されているため、広範囲で速度ムラのない流れを形成することは非常に困難である。その為、エピタキシャルウェーハのエピタキシャル層の厚み分布は、原料ガスの流れに応じた凹凸が形成されることがしばしばである。 For example, when an epitaxial wafer is produced using such an epitaxial growth apparatus, it is important to reduce the velocity unevenness of the source gas on the substrate surface in order to deposit the epitaxial layer smoothly. However, since the diameter of the substrate is currently increased to 300 mm and is processed in a single wafer type, it is very difficult to form a flow having a wide range and no speed unevenness. Therefore, the thickness distribution of the epitaxial layer of the epitaxial wafer is often formed with unevenness corresponding to the flow of the source gas.
 このような問題に対して、図5に示すような装置104において、ガス供給手段102を、水平方向に向かって複数に分岐していくツリー状のガス流路にした装置がある。図6に、水平方向にガスが流れるツリー状のガス流路を有するガス供給手段102の上面からの概略図を示す。このような装置であれば、一つのガス供給源につながった複数のガス噴き出し口から噴き出すガス105の流量が同じであるため、供給するガス105の基板W面内での流速分布を均一にするのが容易で、エピタキシャル層の厚み分布が改善される。 In order to solve such a problem, there is an apparatus in which the gas supply means 102 is made into a tree-like gas flow path that branches into a plurality in the horizontal direction in the apparatus 104 as shown in FIG. FIG. 6 shows a schematic view from the upper surface of the gas supply means 102 having a tree-like gas flow path through which gas flows in the horizontal direction. In such an apparatus, since the flow rates of the gas 105 ejected from a plurality of gas ejection ports connected to one gas supply source are the same, the flow velocity distribution in the substrate W plane of the supplied gas 105 is made uniform. And the thickness distribution of the epitaxial layer is improved.
 このようなガス供給手段を有する装置として、例えば特許文献1に示すように、帯片にガス流路となる溝を形成して重ね合わせ、ボルト等により結合した積層体のガス供給手段を有する装置が開示されている。
 
As an apparatus having such a gas supply means, for example, as shown in Patent Document 1, an apparatus having a gas supply means of a laminated body in which a groove that forms a gas flow path is formed on a strip and bonded together by bolts or the like Is disclosed.
特表2008-516084号公報Special table 2008-516084
 しかし、これらのような、水平方向に分岐しながら流れるツリー状のガス流路を有するガス供給手段でも、基板上でのガス流速のムラを十分には抑制できず、エピタキシャル層の厚み分布の十分な改善はできなかった。
 また、このようなツリー状の複雑なガス流路を作製する際の問題点として、ガス流路の内表面を電解研磨した場合、研磨ムラが生じてしまい、このようなガス流路にガスを流すと研磨が十分でない部分からの発塵によって、成長されるエピタキシャル層表面にパーティクル等が発生してしまうという問題があった。また、特許文献1のような装置では、電解研磨を良好に実施できたとしても、ボルトやクランプによる帯板の接合を行うため、温度変化に弱く、さらにはガス流路に隙間が生じやすく、空気等の混入による汚染や発塵の問題が生じることがあった。
However, even with such gas supply means having a tree-like gas flow path that branches in the horizontal direction, the unevenness of the gas flow rate on the substrate cannot be sufficiently suppressed, and the thickness distribution of the epitaxial layer is sufficient. It was not possible to improve.
Further, as a problem in producing such a tree-like complicated gas flow path, when the inner surface of the gas flow path is electrolytically polished, polishing unevenness occurs, and gas is supplied to such a gas flow path. When flowing, there is a problem that particles or the like are generated on the surface of the epitaxial layer to be grown due to dust generation from a portion where polishing is not sufficient. In addition, even if the electropolishing can be carried out satisfactorily in an apparatus such as Patent Document 1, it is weak against temperature changes, and moreover, a gap is likely to occur in the gas flow path, because the band plate is joined by a bolt or clamp Contamination and dust generation problems may occur due to air contamination.
 本発明は、上記問題点に鑑みてなされたものであって、基板にエピタキシャル成長させる際に、供給される原料ガスの基板面内でのガス流速ムラを効果的に抑制でき、高品質のエピタキシャル層を形成できるエピタキシャル成長装置及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and when epitaxially growing on a substrate, it is possible to effectively suppress gas flow rate unevenness in a substrate surface of a supplied source gas, and a high-quality epitaxial layer It is an object of the present invention to provide an epitaxial growth apparatus and a method for manufacturing the same.
 上記目的を達成するために、本発明は、少なくとも、エピタキシャル成長させる基板を載置するサセプタが内部に設置されるチャンバーと、該チャンバー内の前記サセプタ上に載置された基板にガス供給源からのガスを供給するガス供給手段と、前記供給されたガスを前記チャンバー外に排出するガス排出手段とを有するエピタキシャル成長装置であって、前記ガス供給手段が、少なくとも、前記ガス供給源に接続され、垂直方向にガスが流れる垂直ガス流路と、該垂直ガス流路の下流の端部に接続され、前記垂直ガス流路からのガスを水平方向に噴き出して前記サセプタ上に載置された基板にガスを供給する水平ガス流路とを有し、前記垂直ガス流路が、下流に向かって複数の流路に分岐していくツリー状の流路であることを特徴とするエピタキシャル成長装置を提供する。 In order to achieve the above object, the present invention provides at least a chamber in which a susceptor on which a substrate to be epitaxially grown is placed, and a substrate placed on the susceptor in the chamber from a gas supply source. An epitaxial growth apparatus having a gas supply means for supplying a gas and a gas discharge means for discharging the supplied gas to the outside of the chamber, wherein the gas supply means is connected to at least the gas supply source and is vertical. A vertical gas flow path through which gas flows in a direction, and a downstream end of the vertical gas flow path, and the gas from the vertical gas flow path is ejected in a horizontal direction to the substrate placed on the susceptor. A vertical gas flow path is a tree-shaped flow path that branches into a plurality of flow paths toward the downstream side. To provide an epitaxial growth apparatus.
 このように、ツリー状の垂直ガス流路であれば、ガス供給源からのガスをそれぞれ分岐した流路に均一に流すことが容易である。そして、このようなエピタキシャル成長装置のガス供給手段であれば、垂直方向に流れてきたガスが水平ガス流路との接続部に当たることで、一度分散したガスの流れがガスの噴き出し口に向かって一定に揃えられて、その後水平方向に噴き出されるため、基板面内でのガス流速ムラを抑制でき、均一にガスを流すことができる装置となる。また、ツリー状のガス流路を垂直に配置して、垂直ガス流路とすることで、装置幅を大きくしなくてもガス流路を十分な数に分岐させたものとすることができる。 As described above, in the case of a tree-like vertical gas flow path, it is easy to uniformly flow the gas from the gas supply source to the branched flow paths. In the case of such a gas supply means of the epitaxial growth apparatus, the gas flowing in the vertical direction hits the connection portion with the horizontal gas flow path, so that the once dispersed gas flow is constant toward the gas outlet. Since the gas is then ejected in the horizontal direction, the gas flow rate unevenness in the substrate surface can be suppressed, and the gas can flow uniformly. Further, by arranging the tree-like gas flow paths vertically to form vertical gas flow paths, the gas flow paths can be branched into a sufficient number without increasing the apparatus width.
 このとき、前記垂直ガス流路が、上方から下方へガスが流れるものであることが好ましい。
 このような垂直ガス流路であれば、処理される基板面内でのガス流速分布をより均一にできる。
At this time, it is preferable that the vertical gas flow path is one in which gas flows from above to below.
With such a vertical gas flow path, the gas flow velocity distribution in the substrate surface to be processed can be made more uniform.
 このとき、前記水平ガス流路と前記垂直ガス流路の下流の端部との接続部の外コーナー面が、R形状であることが好ましい。
 このような、外コーナー面がR形状であれば、流れてきたガスが外コーナー面に当たって逆流することが抑制され、ガスをより均一な流れで噴き出すことができる装置となる。
At this time, it is preferable that an outer corner surface of a connection portion between the horizontal gas flow path and the downstream end of the vertical gas flow path has an R shape.
If the outer corner surface has an R shape, the flowing gas is prevented from hitting the outer corner surface and backflowing, and the gas can be ejected in a more uniform flow.
 このとき、前記ガス供給手段が、前記ツリー状の垂直ガス流路を並列に複数有するものであることが好ましい。
 このようなガス供給手段であれば、2種類以上のガスを効率的に均一に流すことができる装置となる。
At this time, it is preferable that the gas supply means has a plurality of the tree-like vertical gas flow paths in parallel.
If it is such a gas supply means, it will become an apparatus which can flow two or more kinds of gases efficiently and uniformly.
 このとき、前記垂直ガス流路及び/又は前記水平ガス流路の内表面が、電解研磨されたものであることが好ましい。
 このようなものであれば、ガス流路からの発塵を防止して、パーティクルの無い良好なエピタキシャル層を形成できる装置となる。
At this time, it is preferable that the inner surface of the vertical gas channel and / or the horizontal gas channel is electrolytically polished.
If it is such, it will become an apparatus which can prevent the dust generation from a gas flow path and can form a favorable epitaxial layer without a particle.
 このとき、前記ガス供給手段は、拡散接合されたものであることが好ましい。
 このようなガス供給手段であれば、ガスの漏れがなく、また、空気の混入等による汚染やパーティクル発生が防止されたエピタキシャル成長を実施できる装置となる。
At this time, it is preferable that the gas supply means is diffusion bonded.
With such a gas supply means, there is no gas leakage, and the apparatus can perform epitaxial growth in which contamination due to air mixing or the like and generation of particles are prevented.
 また、本発明は、少なくとも、エピタキシャル成長させる基板を載置するサセプタが内部に設置されるチャンバーと、該チャンバー内の前記サセプタ上に載置された基板にガス供給源からのガスを供給するガス供給手段と、前記供給されたガスを前記チャンバー外に排出するガス排出手段とを有するエピタキシャル成長装置を製造する方法であって、少なくとも、帯板に、ガス流路となる溝及び/又は穴を形成する工程と、前記溝及び/又は穴を形成した帯板の表面を電解研磨する工程と、前記電解研磨した帯板を他の帯板と重ね合わせて拡散接合を行うことにより前記帯板同士を接合してガス流路を形成する工程とを含み、少なくとも、前記ガス供給源に接続され、垂直方向にガスが流れる垂直ガス流路と、該垂直ガス流路の下流の端部に接続され、前記垂直ガス流路からのガスを水平方向に噴き出して前記サセプタ上に載置された基板にガスを供給する水平ガス流路とを有し、前記垂直ガス流路が、下流に向かって複数の流路に分岐していくツリー状の流路である前記ガス供給手段を製造することを特徴とするエピタキシャル成長装置の製造方法を提供する。 Further, the present invention provides at least a chamber in which a susceptor on which a substrate to be epitaxially grown is placed, and a gas supply for supplying gas from a gas supply source to the substrate placed on the susceptor in the chamber. A method of manufacturing an epitaxial growth apparatus having means and gas discharge means for discharging the supplied gas out of the chamber, wherein at least grooves and / or holes serving as gas flow paths are formed in the strip. A step of electropolishing the surface of the band plate in which the groove and / or the hole are formed, and bonding the band plates by performing diffusion bonding by superimposing the electropolished band plate on another band plate Forming a gas flow path, and at least a vertical gas flow path connected to the gas supply source and through which gas flows in a vertical direction, and an end portion downstream of the vertical gas flow path And a horizontal gas flow path for blowing gas from the vertical gas flow path in a horizontal direction and supplying gas to a substrate placed on the susceptor, and the vertical gas flow path is directed downstream. An epitaxial growth apparatus manufacturing method is provided that manufactures the gas supply means that is a tree-shaped flow path that branches into a plurality of flow paths.
 このような、帯板にガス流路となる溝及び/又は穴を形成して、それを電解研磨することで、研磨ムラの無い良好な研磨を行うことができる。そして、電解研磨した帯板と他の帯板を重ね合わせて拡散接合してガス流路を形成することで、ガス漏れや空気混入等の無いガス流路を作製することができる。このような工程でガス供給手段を製造することで、ツリー状の複雑な形状のガス流路であっても、内表面が良好に電解研磨され、かつ空気混入等の無いガス流路とすることができる。これにより、ツリー状の垂直ガス流路と水平ガス流路により処理する基板に面内均一で、空気混入等の無いガスを流すことができ、膜厚均一で汚染やパーティクルの低減されたエピタキシャル層を形成できるエピタキシャル成長装置を確実に製造することができる。 By forming grooves and / or holes that serve as gas flow paths in the band plate and electrolytically polishing the grooves and / or holes, it is possible to perform good polishing without uneven polishing. Then, a gas flow path free from gas leakage or air mixing can be produced by stacking the electropolished band plate and another band plate and performing diffusion bonding to form a gas flow path. By manufacturing the gas supply means in such a process, even if the gas flow path has a complicated tree shape, the inner surface is satisfactorily electropolished and the gas flow path is free from air contamination. Can do. As a result, an epitaxial layer in which a uniform and in-plane gas can be flowed to the substrate to be processed by the tree-like vertical gas flow path and the horizontal gas flow path and the film thickness is uniform and contamination and particles are reduced. It is possible to reliably manufacture an epitaxial growth apparatus that can form the film.
 以上のように、本発明のエピタキシャル成長装置及び本発明のエピタキシャル成長装置の製造方法により製造された装置によれば、エピタキシャル成長させる基板に面内均一なガス流速分布でガスを流すことができ、膜厚均一で高品質のエピタキシャル層を形成することができる装置を提供できる。
 
As described above, according to the epitaxial growth apparatus of the present invention and the apparatus manufactured by the manufacturing method of the epitaxial growth apparatus of the present invention, gas can be flowed to the substrate to be epitaxially grown with a uniform gas flow velocity distribution, and the film thickness is uniform. Thus, an apparatus capable of forming a high-quality epitaxial layer can be provided.
本発明のエピタキシャル成長装置の実施態様の一例を示す概略図である。It is the schematic which shows an example of the embodiment of the epitaxial growth apparatus of this invention. 本発明のエピタキシャル成長装置のガス供給手段の断面形状の例を示す概略断面図である。It is a schematic sectional drawing which shows the example of the cross-sectional shape of the gas supply means of the epitaxial growth apparatus of this invention. 本発明のエピタキシャル成長装置の製造方法の実施態様の一例を説明するフロー図である。It is a flowchart explaining an example of the embodiment of the manufacturing method of the epitaxial growth apparatus of this invention. 本発明のエピタキシャル成長装置のガス供給手段のガス流路を部分的に示す概略図である。It is the schematic which shows partially the gas flow path of the gas supply means of the epitaxial growth apparatus of this invention. 従来のエピタキシャル成長装置の一例を示す概略図である。It is the schematic which shows an example of the conventional epitaxial growth apparatus. 従来のエピタキシャル成長装置のガス供給手段のガス流路の一例を示す概略上面図である。It is a schematic top view which shows an example of the gas flow path of the gas supply means of the conventional epitaxial growth apparatus. 本発明のエピタキシャル成長装置のガス供給手段の一例を分割して部分的に示す分割図である。It is a division figure which divides and partially shows an example of the gas supply means of the epitaxial growth device of the present invention. 本発明のエピタキシャル成長装置のガス供給手段の他の一例を分割して部分的に示す分割図である。It is a division figure which divides and shows partially another example of the gas supply means of the epitaxial growth device of the present invention. 実施例、比較例において成長させたエピタキシャル層のパーティクル数を示すグラフである。It is a graph which shows the number of particles of the epitaxial layer grown in the Example and the comparative example. 実施例、比較例において成長させたエピタキシャル層の膜厚分布を示すグラフである。It is a graph which shows the film thickness distribution of the epitaxial layer grown in the Example and the comparative example.
 以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
 図1は、本発明のエピタキシャル成長装置の実施態様の一例を示す概略図である。図2は、本発明のエピタキシャル成長装置のガス供給手段の断面形状の例を示す概略断面図である。図4は、本発明のエピタキシャル成長装置のガス供給手段において、ガス流路を実線で、その他の部分を破線で示す概略図である。
Hereinafter, the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.
FIG. 1 is a schematic view showing an example of an embodiment of an epitaxial growth apparatus of the present invention. FIG. 2 is a schematic sectional view showing an example of the sectional shape of the gas supply means of the epitaxial growth apparatus of the present invention. FIG. 4 is a schematic view showing a gas flow path with a solid line and other portions with a broken line in the gas supply means of the epitaxial growth apparatus of the present invention.
 まず、図1に示す本発明のエピタキシャル成長装置14は、エピタキシャル成長させる基板Wを載置するサセプタ19が内部に設置されるチャンバー11と、チャンバー11内のサセプタ19上に載置された基板Wにガス供給源16からのガス15を供給するガス供給手段12と、供給されたガス15をチャンバー11外に排出するガス排出手段13とを有する。 First, the epitaxial growth apparatus 14 of the present invention shown in FIG. 1 has a chamber 11 in which a susceptor 19 on which a substrate W to be epitaxially grown is placed, and a substrate W placed on the susceptor 19 in the chamber 11. Gas supply means 12 for supplying the gas 15 from the supply source 16 and gas discharge means 13 for discharging the supplied gas 15 out of the chamber 11 are provided.
 この他、本発明のエピタキシャル成長装置14は、サセプタ19を回転させるためのサセプタ回転機構23や、基板Wを加熱するためのランプ加熱装置(図示せず)等を適宜具備するものでもよい。
 このサセプタ回転機構23は、サセプタ19を回転させることにより基板Wを回転させ、エピタキシャル成長が基板面内において均一に行われるようにするためのものである。
In addition, the epitaxial growth apparatus 14 of the present invention may appropriately include a susceptor rotation mechanism 23 for rotating the susceptor 19, a lamp heating apparatus (not shown) for heating the substrate W, and the like.
The susceptor rotating mechanism 23 is for rotating the substrate W by rotating the susceptor 19 so that epitaxial growth is performed uniformly in the substrate surface.
 そして、本発明のガス供給手段12は、図1、2、4に示すように、ガス供給源16に接続され、垂直方向にガスが流れる垂直ガス流路18と、垂直ガス流路18の下流の端部に接続され、垂直ガス流路18からのガス15を水平方向に噴き出してサセプタ19上に載置された基板Wにガス15を供給する水平ガス流路17とを有し、垂直ガス流路18は、図4に示すような、下流に向かって複数の流路に分岐していくツリー状の流路である。 The gas supply means 12 of the present invention is connected to a gas supply source 16 as shown in FIGS. 1, 2, and 4, and a vertical gas flow path 18 through which gas flows in a vertical direction, and a downstream of the vertical gas flow path 18. And a horizontal gas flow path 17 for blowing the gas 15 from the vertical gas flow path 18 in the horizontal direction and supplying the gas 15 to the substrate W placed on the susceptor 19. The flow path 18 is a tree-shaped flow path that branches into a plurality of flow paths toward the downstream as shown in FIG.
 このような、垂直ガス流路18がツリー状の流路であれば、容易なガス流量制御により基板面内で均一にガス15を流すことができる。そして、垂直ガス流路18内を垂直方向に流れてきたガス15が水平ガス流路に流れ込む際に外コーナー面に当たることで、噴き出し口に向かってガスのバラツキが抑えられ、より均一な流れとなる。これにより、ガス15が水平に均一に噴き出されるため、処理される基板Wの面内でのガス流速ムラを抑制でき、膜厚を均一にエピタキシャル成長させることができる装置となる。また、ツリー状の流路を垂直方向に流れる垂直ガス流路18とすることで、流路を多数に分岐させても、分岐させるための装置幅を大きくする必要がない。従って、スペース上有利である。 If such a vertical gas flow path 18 is a tree-shaped flow path, the gas 15 can be made to flow uniformly within the substrate surface by easy gas flow rate control. The gas 15 flowing in the vertical direction in the vertical gas flow path 18 hits the outer corner surface when flowing into the horizontal gas flow path, so that the gas variation toward the ejection port is suppressed, and the flow is more uniform. Become. Thereby, since the gas 15 is jetted horizontally and uniformly, the gas flow rate unevenness in the surface of the substrate W to be processed can be suppressed, and the film thickness can be epitaxially grown uniformly. In addition, by using the vertical gas flow path 18 that flows in the vertical direction in the tree-shaped flow path, even if the flow path is branched into a large number, it is not necessary to increase the width of the apparatus for branching. Therefore, it is advantageous in terms of space.
 このとき、垂直ガス流路18のガスが流れる方向としては、垂直方向であればよく、上方から下方あるいは下方から上方いずれでも特に限定されないが、図1、2、4に示すような上方から下方へガスが流れるものであることが好ましい。
 このような、垂直ガス流路18内を上方から下方へ流れ、水平ガス流路17の下面に当たって水平方向に流れるL字型流路とすることで、下方から上方へ流れる逆L字型の流路に比べて、噴き出されるガス15の基板面内でのガス流速分布がより均一な装置となる。
At this time, the flow direction of the gas in the vertical gas flow path 18 may be a vertical direction, and is not particularly limited from above to below or from below to above, but from above to below as shown in FIGS. It is preferable that the gas flows.
By forming such an L-shaped channel that flows in the vertical gas channel 18 from the upper side to the lower side and hits the lower surface of the horizontal gas channel 17 and flows in the horizontal direction, an inverted L-shaped flow that flows from the lower side to the upper side is formed. Compared with the path, the gas flow velocity distribution in the substrate surface of the gas 15 to be ejected is more uniform.
 また、図1、2に示すように、水平ガス流路17と垂直ガス流路18の下流の端部との接続部の外コーナー面がR形状であれば、外コーナー面に当たったガスの逆流巻き込みを防止でき、ガスの流れをスムーズに水平方向に変えることができるため、より最適な流れを実現できる装置となる。 In addition, as shown in FIGS. 1 and 2, if the outer corner surface of the connecting portion between the horizontal gas channel 17 and the downstream end of the vertical gas channel 18 is R-shaped, the gas that hits the outer corner surface Since the backflow can be prevented and the gas flow can be changed smoothly in the horizontal direction, the apparatus can realize a more optimal flow.
 また、図2(b)、(c)に示すように、ガス供給手段12が、ツリー状の垂直ガス流路18を並列に複数有するものであることが好ましい。図2(b)は、垂直ガス流路18の途中でガス1とガス2が混合されて水平ガス流路17に流れ出るもので、図2(c)は、ガス1とガス2が別の垂直ガス流路18内を流れて、水平ガス流路17内で初めて混合されるものである。
 このような装置14であれば、2種類以上のガスや濃度の異なるガスを複数の垂直ガス流路18内にそれぞれ流して均一に混合することができ、様々なミキシングが可能となる。
Further, as shown in FIGS. 2B and 2C, the gas supply means 12 preferably has a plurality of tree-like vertical gas flow paths 18 in parallel. FIG. 2B shows the case where gas 1 and gas 2 are mixed in the middle of the vertical gas flow path 18 and flow out to the horizontal gas flow path 17. FIG. It flows through the gas flow path 18 and is mixed for the first time in the horizontal gas flow path 17.
With such an apparatus 14, two or more kinds of gases or gases having different concentrations can be caused to flow through the plurality of vertical gas flow paths 18 to be uniformly mixed, and various mixing is possible.
 また、垂直ガス流路18及び/又は水平ガス流路17の内表面が、電解研磨されたものであることが好ましい。
 電解研磨されたものであれば、内部をガス15が流れても発塵が無く、成長させるエピタキシャル層へのパーティクルの発生を防止できる。
Moreover, it is preferable that the inner surface of the vertical gas channel 18 and / or the horizontal gas channel 17 is electrolytically polished.
As long as it is electrolytically polished, no dust is generated even when the gas 15 flows inside, and generation of particles in the epitaxial layer to be grown can be prevented.
 また、ガス供給手段12は、拡散接合されたものであることが好ましい。
 このように、拡散接合であれば、隙間なく、温度変化に強い接合が可能であるため、本発明の複雑な形状のガス流路を有するガス供給手段12を作製する際に用いるのに好適である。
The gas supply means 12 is preferably diffusion bonded.
In this way, diffusion bonding is suitable for use in producing the gas supply means 12 having a complicatedly shaped gas flow path according to the present invention, since it can be bonded to a temperature change without any gap. is there.
 この本発明の装置14において、水平ガス流路17は特に限定されず、垂直ガス流路18の各流路の位置に合わせたスリット等が形成されていてもよいし、図4に示すような、スリット等が無く、流路が分かれていないものでもよい。 In the apparatus 14 of the present invention, the horizontal gas flow path 17 is not particularly limited, and slits or the like that match the positions of the vertical gas flow paths 18 may be formed, as shown in FIG. Further, there may be no slit or the like and the flow path is not divided.
 このような本発明のエピタキシャル成長装置を製造する方法として、以下、本発明のエピタキシャル成長装置の製造方法により製造する方法を説明する。
 図3は、本発明のエピタキシャル成長装置の製造方法の実施態様の一例を概略正面図と概略断面図で説明するフロー図である。
As a method for manufacturing such an epitaxial growth apparatus of the present invention, a method of manufacturing the epitaxial growth apparatus according to the present invention will be described below.
FIG. 3 is a flow diagram illustrating an example of an embodiment of a method for manufacturing an epitaxial growth apparatus of the present invention with a schematic front view and a schematic cross-sectional view.
 まず、本発明の製造方法において、図3(a)、(b)に示すように、帯板22a、22bにガス流路となる溝及び/又は穴20、21を形成する。例えば、図3(a)に示す帯板22aには、垂直ガス流路18となる溝20を正面図に示すようなツリー状に形成し、図3(b)に示す帯板22bには垂直ガス流路18となる溝20を帯板22aと同様に形成し、さらに水平ガス流路17となる穴21を形成する。溝及び/又は穴20、21の形成方法としては、例えば、エンドミルによる切削加工を行うことで形成することができる。
 このとき、図3(a)、(b)では、帯板22a、22bの両方に溝及び/又は穴20、21を形成しているが、一方の帯板のみに形成することもできる。
First, in the manufacturing method of the present invention, as shown in FIGS. 3A and 3B, grooves and / or holes 20 and 21 serving as gas flow paths are formed in the strip plates 22a and 22b. For example, in the band plate 22a shown in FIG. 3A, grooves 20 to be the vertical gas flow paths 18 are formed in a tree shape as shown in the front view, and perpendicular to the band plate 22b shown in FIG. 3B. A groove 20 to be the gas flow path 18 is formed in the same manner as the band plate 22a, and a hole 21 to be the horizontal gas flow path 17 is formed. As a method of forming the grooves and / or holes 20 and 21, for example, the grooves and / or holes 20 and 21 can be formed by cutting with an end mill.
At this time, in FIGS. 3A and 3B, the grooves and / or the holes 20 and 21 are formed in both of the band plates 22a and 22b, but they may be formed only in one of the band plates.
 次に、帯板22a、22bの表面を電解研磨する。電解研磨の方法としては、特に限定されず、例えば、電解溶液中で研磨する帯板をプラスに接続して電気を流すことにより、表面の微小凸部が優先的に溶解されて光輝面が得られる。
 このように、本発明の製造方法であれば、溝及び/又は穴20、21を形成した帯板22a、22bを電解研磨するため、管状の流路を電解研磨するよりも研磨ムラが生じにくく、ガスを流しても発塵の無い内表面を有するガス流路とすることができる。
Next, the surfaces of the strips 22a and 22b are electropolished. The method of electrolytic polishing is not particularly limited. For example, when a strip that is polished in an electrolytic solution is connected positively to flow electricity, minute projections on the surface are preferentially dissolved to obtain a bright surface. It is done.
As described above, according to the manufacturing method of the present invention, the strips 22a and 22b in which the grooves and / or the holes 20 and 21 are formed are electropolished, so that polishing unevenness is less likely to occur than when the tubular flow path is electropolished. In addition, a gas flow path having an inner surface that does not generate dust even when gas is allowed to flow.
 次に、図3(c)に示すように、帯板22a、22bを重ね合わせて、拡散接合を行うことにより帯板22a、22b同士を接合して垂直ガス流路18と水平ガス流路17を形成する。
 拡散接合の方法としては、特に限定されず、例えば重ね合わせた帯板22a、22bを真空状態で、プレスしながら高温、高圧下で帯板22a、22b間の原子移動で接合する。このような拡散接合により帯板22a、22bを接合することにより、隙間が無く、温度変化にも強い接合が可能であるため、形成されたガス流路にガスを流しても空気の混入等による汚染やパーティクルの発生の無いエピタキシャル成長を実施可能な装置を製造できる。
Next, as shown in FIG. 3C, the strips 22a and 22b are overlapped and diffusion bonding is performed to join the strips 22a and 22b to each other so that the vertical gas flow path 18 and the horizontal gas flow path 17 are joined. Form.
The method of diffusion bonding is not particularly limited. For example, the overlapped strips 22a and 22b are joined by atomic movement between the strips 22a and 22b under high pressure and high pressure while being pressed in a vacuum state. By joining the strips 22a and 22b by such diffusion bonding, there is no gap, and it is possible to join strong against temperature changes. An apparatus capable of performing epitaxial growth without contamination or generation of particles can be manufactured.
 その後、図3(d)に示すように、水平ガス流路17を貫通させてガスの噴き出し口を形成して、図3(e)に示すように、最終的な面加工を施したり、ガス供給源16からのパイプを接続部に溶接して、本発明のガス供給手段12を完成させて、エピタキシャル成長装置14に取り付ける。
 このように製造された、本発明のエピタキシャル成長装置14のガス供給手段12の接合面で分割した状態の概略図を図7に示す。
Thereafter, as shown in FIG. 3 (d), a gas ejection port is formed through the horizontal gas flow path 17, and final surface processing is performed as shown in FIG. 3 (e). A pipe from the supply source 16 is welded to the connection portion to complete the gas supply means 12 of the present invention and attached to the epitaxial growth apparatus 14.
FIG. 7 shows a schematic view of the state of being divided at the joint surface of the gas supply means 12 of the epitaxial growth apparatus 14 of the present invention manufactured as described above.
 上記では、垂直ガス流路が単層型のガス供給手段の装置の製造方法を説明したが、垂直ガス流路を並列に複数有する複層型の垂直ガス流路を有するガス供給手段の製造に関しては、例えば2層型の場合、3つの帯板に溝等を形成して上記と同様に拡散接合することで、図2(b)、(c)、図8に示すようなガス供給手段12を作製することができる。図8は、本発明のエピタキシャル成長装置14であって、2層型の垂直ガス流路18を有するガス供給手段12を、接合面で分割した状態の概略図である。もちろん、必要とあらば、4つ以上の帯板で作製した3層以上の垂直ガス流路を有するものとしても良い。 In the above description, the method for manufacturing a gas supply means having a single-layer type vertical gas flow path has been described. However, regarding the manufacture of a gas supply means having a multi-layer vertical gas flow path having a plurality of vertical gas flow paths in parallel. For example, in the case of a two-layer type, gas supply means 12 as shown in FIGS. 2B, 2C, and 8 is formed by forming grooves or the like in three strips and performing diffusion bonding in the same manner as described above. Can be produced. FIG. 8 is a schematic view of the epitaxial growth apparatus 14 of the present invention, in which the gas supply means 12 having the two-layer type vertical gas flow path 18 is divided at the joint surface. Of course, if necessary, it may have three or more layers of vertical gas channels made of four or more strips.
 以上のような、本発明の装置及び本発明の製造方法により製造された装置によれば、エピタキシャル成長させる基板に面内均一なガス流速分布でガスを流すことができ、膜厚が均一で高品質のエピタキシャル層を形成することができる。
 
According to the apparatus manufactured by the apparatus of the present invention and the manufacturing method of the present invention as described above, the gas can be flowed to the substrate to be epitaxially grown with the in-plane uniform gas flow rate distribution, the film thickness is uniform, and the quality is high. The epitaxial layer can be formed.
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 上記の本発明の製造方法により製造された図1、4に示す本発明のエピタキシャル成長装置を用いて直径300mmのシリコンウェーハ上にエピタキシャル成長を行った。ガス供給手段の垂直ガス流路の下流端の流路数が96ポートの装置とした。また、このガス供給手段は、図1、4に示すような、垂直ガス流路内をガスが上方から下方へ流れるL字型のガス流路とした。
 エピタキシャル成長条件は、反応温度1150℃、水素流量70slm、TCS(トリクロロシラン)ガス流量10slmでエピタキシャル層を膜厚5μmまで成長させた。
 
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
Example 1
Epitaxial growth was performed on a silicon wafer having a diameter of 300 mm using the epitaxial growth apparatus of the present invention shown in FIGS. 1 and 4 manufactured by the manufacturing method of the present invention. An apparatus having 96 ports at the downstream end of the vertical gas channel of the gas supply means was used. The gas supply means is an L-shaped gas flow path as shown in FIGS. 1 and 4 in which the gas flows from the top to the bottom in the vertical gas flow path.
The epitaxial growth conditions were a reaction temperature of 1150 ° C., a hydrogen flow rate of 70 slm, a TCS (trichlorosilane) gas flow rate of 10 slm, and an epitaxial layer was grown to a film thickness of 5 μm.
(実施例2)
 実施例1と同様の装置とし、ただし、ガス供給手段は、垂直ガス流路内をガスが下方から上方へ流れる逆L字型のガス流路とした。エピタキシャル成長条件も実施例1と同様とした。
 
(Example 2)
The apparatus was the same as in Example 1, except that the gas supply means was an inverted L-shaped gas flow path in which the gas flowed from below to above in the vertical gas flow path. The epitaxial growth conditions were the same as in Example 1.
(比較例)
 図5、6に示す、ツリー状の水平なガス流路のガス供給手段を有するエピタキシャル成長装置を用いて直径300mmのシリコンウェーハ上にエピタキシャル成長を行った。ガス供給手段のガス流路の下流端の流路数が96ポートの装置とした。また、ガス供給手段は、帯板にガス流路となる溝を形成して、電解研磨し、その後ボルトとナットで帯板同士を接合したものとした。
 エピタキシャル成長条件は、実施例1、2と同様とし、エピタキシャル層を膜厚5μmまで成長させた。
(Comparative example)
Epitaxial growth was carried out on a silicon wafer having a diameter of 300 mm using an epitaxial growth apparatus having a tree-like horizontal gas flow path gas supply means shown in FIGS. An apparatus having 96 ports at the downstream end of the gas flow path of the gas supply means was used. Further, the gas supply means was formed by forming a groove serving as a gas flow path in the strip, electrolytic polishing, and then joining the strips with bolts and nuts.
The epitaxial growth conditions were the same as in Examples 1 and 2, and the epitaxial layer was grown to a thickness of 5 μm.
 実施例1、比較例で形成されたエピタキシャル層のパーティクル数を測定した結果を図9に、エピタキシャル層の膜厚分布を測定した結果を図10に示す。
 図10に示すように、実施例1における本発明の装置によれば、膜厚均一性が0.18%と非常に均一な膜厚のエピタキシャル層が形成され、同じポート数のガス流路の比較例(膜厚均一性=1.20%)に比べても膜厚均一性が高いことが分かる。また、図9に示すように、パーティクル数も実施例の本発明の装置の方が少なかった。このパーティクル数の低減効果に関しては、比較例が従来のようにボルトとナットで接合した一方、本発明の装置が拡散接合により帯板同士を接合したためと考えられる。
 また、実施例2は、同様に測定したパーティクル数は実施例1と同程度であったが、膜厚均一性は0.28%であり、比較例よりは改善されているが、実施例1よりはわずかに低かった。この結果より、ガス供給手段が逆L字型よりL字型のガス流路の方が、形成されるエピタキシャル層の膜厚均一性がより改善されることが分かる。
FIG. 9 shows the result of measuring the number of particles in the epitaxial layer formed in Example 1 and the comparative example, and FIG. 10 shows the result of measuring the film thickness distribution of the epitaxial layer.
As shown in FIG. 10, according to the apparatus of the present invention in Example 1, an epitaxial layer having a very uniform film thickness uniformity of 0.18% is formed, and gas channels having the same number of ports are formed. It can be seen that the film thickness uniformity is higher than that of the comparative example (film thickness uniformity = 1.20%). Further, as shown in FIG. 9, the number of particles was smaller in the apparatus according to the embodiment of the present invention. Regarding the effect of reducing the number of particles, it is considered that the comparative example was joined with bolts and nuts as in the prior art, while the apparatus of the present invention joined the strips by diffusion joining.
Further, in Example 2, the number of particles measured in the same manner was about the same as that in Example 1, but the film thickness uniformity was 0.28%, which is an improvement over the comparative example. It was slightly lower than. From this result, it can be seen that the uniformity of the thickness of the formed epitaxial layer is further improved when the gas supply means has an L-shaped gas flow path rather than an inverted L-shaped gas channel.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has the same configuration as the technical idea described in the claims of the present invention. It is included in the technical scope of the invention.

Claims (7)

  1.  少なくとも、エピタキシャル成長させる基板を載置するサセプタが内部に設置されるチャンバーと、該チャンバー内の前記サセプタ上に載置された基板にガス供給源からのガスを供給するガス供給手段と、前記供給されたガスを前記チャンバー外に排出するガス排出手段とを有するエピタキシャル成長装置であって、
     前記ガス供給手段が、少なくとも、前記ガス供給源に接続され、垂直方向にガスが流れる垂直ガス流路と、該垂直ガス流路の下流の端部に接続され、前記垂直ガス流路からのガスを水平方向に噴き出して前記サセプタ上に載置された基板にガスを供給する水平ガス流路とを有し、前記垂直ガス流路が、下流に向かって複数の流路に分岐していくツリー状の流路であることを特徴とするエピタキシャル成長装置。
     
    At least a chamber in which a susceptor on which a substrate to be epitaxially grown is placed is installed, gas supply means for supplying a gas from a gas supply source to the substrate placed on the susceptor in the chamber, and the supply An epitaxial growth apparatus having gas exhaust means for exhausting the gas out of the chamber,
    The gas supply means is connected to at least the gas supply source, and is connected to a vertical gas flow path through which gas flows in the vertical direction and a downstream end of the vertical gas flow path, and gas from the vertical gas flow path A horizontal gas flow path for supplying gas to a substrate placed on the susceptor by blowing out the gas horizontally, and the vertical gas flow path branches into a plurality of flow paths toward the downstream An epitaxial growth apparatus characterized by being a channel.
  2.  前記垂直ガス流路が、上方から下方へガスが流れるものであることを特徴とする請求項1に記載のエピタキシャル成長装置。
     
    The epitaxial growth apparatus according to claim 1, wherein the vertical gas flow path is a gas flow from above to below.
  3.  前記水平ガス流路と前記垂直ガス流路の下流の端部との接続部の外コーナー面が、R形状であることを特徴とする請求項1又は請求項2に記載のエピタキシャル成長装置。
     
    3. The epitaxial growth apparatus according to claim 1, wherein an outer corner surface of a connection portion between the horizontal gas flow path and the downstream end of the vertical gas flow path has an R shape.
  4.  前記ガス供給手段が、前記ツリー状の垂直ガス流路を並列に複数有するものであることを特徴とする請求項1乃至請求項3のいずれか一項に記載のエピタキシャル成長装置。
     
    4. The epitaxial growth apparatus according to claim 1, wherein the gas supply unit includes a plurality of the tree-like vertical gas flow paths in parallel. 5.
  5.  前記垂直ガス流路及び/又は前記水平ガス流路の内表面が、電解研磨されたものであることを特徴とする請求項1乃至請求項4のいずれか一項に記載のエピタキシャル成長装置。
     
    The epitaxial growth apparatus according to any one of claims 1 to 4, wherein an inner surface of the vertical gas flow path and / or the horizontal gas flow path is subjected to electrolytic polishing.
  6.  前記ガス供給手段は、拡散接合されたものであることを特徴とする請求項1乃至請求項5のいずれか一項に記載のエピタキシャル成長装置。
     
    The epitaxial growth apparatus according to any one of claims 1 to 5, wherein the gas supply means is diffusion bonded.
  7.  少なくとも、エピタキシャル成長させる基板を載置するサセプタが内部に設置されるチャンバーと、該チャンバー内の前記サセプタ上に載置された基板にガス供給源からのガスを供給するガス供給手段と、前記供給されたガスを前記チャンバー外に排出するガス排出手段とを有するエピタキシャル成長装置を製造する方法であって、少なくとも、
     帯板に、ガス流路となる溝及び/又は穴を形成する工程と、
     前記溝及び/又は穴を形成した帯板の表面を電解研磨する工程と、
     前記電解研磨した帯板を他の帯板と重ね合わせて拡散接合を行うことにより前記帯板同士を接合してガス流路を形成する工程とを含み、
     少なくとも、前記ガス供給源に接続され、垂直方向にガスが流れる垂直ガス流路と、該垂直ガス流路の下流の端部に接続され、前記垂直ガス流路からのガスを水平方向に噴き出して前記サセプタ上に載置された基板にガスを供給する水平ガス流路とを有し、前記垂直ガス流路が、下流に向かって複数の流路に分岐していくツリー状の流路である前記ガス供給手段を製造することを特徴とするエピタキシャル成長装置の製造方法。
     
    At least a chamber in which a susceptor on which a substrate to be epitaxially grown is placed is installed, gas supply means for supplying a gas from a gas supply source to the substrate placed on the susceptor in the chamber, and the supply A method of manufacturing an epitaxial growth apparatus having a gas discharge means for discharging the gas out of the chamber, comprising:
    Forming a groove and / or hole to be a gas flow path in the band plate;
    Electropolishing the surface of the strip in which the grooves and / or holes are formed;
    Forming a gas flow path by joining the strips together by performing diffusion bonding by superimposing the electropolished strip with other strips,
    At least connected to the gas supply source, connected to a vertical gas flow path through which gas flows in the vertical direction, and a downstream end of the vertical gas flow path, and ejects gas from the vertical gas flow path in the horizontal direction. A horizontal gas flow path for supplying gas to the substrate placed on the susceptor, and the vertical gas flow path is a tree-shaped flow path that branches into a plurality of flow paths toward the downstream. A method for manufacturing an epitaxial growth apparatus, wherein the gas supply means is manufactured.
PCT/JP2010/006902 2009-12-24 2010-11-26 Epitaxial growing apparatus and method for manufacturing epitaxial growing apparatus WO2011077641A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009292571A JP2011134871A (en) 2009-12-24 2009-12-24 Epitaxial growth device, and method of manufacturing the same
JP2009-292571 2009-12-24

Publications (1)

Publication Number Publication Date
WO2011077641A1 true WO2011077641A1 (en) 2011-06-30

Family

ID=44195195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006902 WO2011077641A1 (en) 2009-12-24 2010-11-26 Epitaxial growing apparatus and method for manufacturing epitaxial growing apparatus

Country Status (3)

Country Link
JP (1) JP2011134871A (en)
TW (1) TW201137941A (en)
WO (1) WO2011077641A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10145011B2 (en) 2015-03-30 2018-12-04 Globalwafers Co., Ltd. Substrate processing systems having multiple gas flow controllers
CN109661715A (en) * 2016-09-05 2019-04-19 信越半导体株式会社 The manufacturing method of epitaxially growing equipment and epitaxial wafer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5807505B2 (en) * 2011-10-14 2015-11-10 信越半導体株式会社 Epitaxial wafer manufacturing method
JP5862529B2 (en) * 2012-09-25 2016-02-16 東京エレクトロン株式会社 Substrate processing apparatus and gas supply apparatus
KR101487410B1 (en) * 2013-08-29 2015-01-29 주식회사 엘지실트론 Apparatus for manufacturing epitaxial wafer
CN104975271B (en) * 2014-04-11 2018-01-19 北京北方华创微电子装备有限公司 Inlet duct and semiconductor processing equipment
JP7222374B2 (en) * 2020-03-24 2023-02-15 信越半導体株式会社 PIPE CONNECTION METHOD AND SEMICONDUCTOR WAFER HEAT TREATMENT APPARATUS

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151312A (en) * 1992-10-30 1994-05-31 Sony Corp Low pressure cvd equipment
JPH0729833A (en) * 1993-07-08 1995-01-31 Kokusai Electric Co Ltd Reaction gas supply port
JPH0790572A (en) * 1993-04-22 1995-04-04 Balzers Ag Apparatus and method for introduction of gas
JP2001023973A (en) * 1999-05-27 2001-01-26 Applied Materials Inc Chamber having improved gas energizer and method
JP2002100570A (en) * 2000-09-22 2002-04-05 Komatsu Electronic Metals Co Ltd Single wafer vapor phase epitaxial growth system
JP2004127853A (en) * 2002-10-07 2004-04-22 Sekisui Chem Co Ltd Electrode structure of plasma surface treatment apparatus
JP2007246952A (en) * 2006-03-14 2007-09-27 Uv Craftory Co Ltd Chemical vapor deposition apparatus, and gas flow passage device
JP2009277730A (en) * 2008-05-12 2009-11-26 Shin Etsu Handotai Co Ltd Vapor phase growth method and vapor phase growth apparatus for thin film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465761B2 (en) * 2000-07-24 2002-10-15 Asm America, Inc. Heat lamps for zone heating

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151312A (en) * 1992-10-30 1994-05-31 Sony Corp Low pressure cvd equipment
JPH0790572A (en) * 1993-04-22 1995-04-04 Balzers Ag Apparatus and method for introduction of gas
JPH0729833A (en) * 1993-07-08 1995-01-31 Kokusai Electric Co Ltd Reaction gas supply port
JP2001023973A (en) * 1999-05-27 2001-01-26 Applied Materials Inc Chamber having improved gas energizer and method
JP2002100570A (en) * 2000-09-22 2002-04-05 Komatsu Electronic Metals Co Ltd Single wafer vapor phase epitaxial growth system
JP2004127853A (en) * 2002-10-07 2004-04-22 Sekisui Chem Co Ltd Electrode structure of plasma surface treatment apparatus
JP2007246952A (en) * 2006-03-14 2007-09-27 Uv Craftory Co Ltd Chemical vapor deposition apparatus, and gas flow passage device
JP2009277730A (en) * 2008-05-12 2009-11-26 Shin Etsu Handotai Co Ltd Vapor phase growth method and vapor phase growth apparatus for thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10145011B2 (en) 2015-03-30 2018-12-04 Globalwafers Co., Ltd. Substrate processing systems having multiple gas flow controllers
CN109661715A (en) * 2016-09-05 2019-04-19 信越半导体株式会社 The manufacturing method of epitaxially growing equipment and epitaxial wafer
CN109661715B (en) * 2016-09-05 2023-07-28 信越半导体株式会社 Vapor phase growth apparatus and epitaxial wafer manufacturing method

Also Published As

Publication number Publication date
JP2011134871A (en) 2011-07-07
TW201137941A (en) 2011-11-01

Similar Documents

Publication Publication Date Title
WO2011077641A1 (en) Epitaxial growing apparatus and method for manufacturing epitaxial growing apparatus
TWI583824B (en) Vapor phase growth apparatus and vapor phase growth method
JP4958798B2 (en) Chemical vapor deposition reactor and chemical vapor deposition method
TWI494469B (en) Vapor phase growth device and vapor phase growth method
JP5413305B2 (en) Epitaxial growth equipment
TWI441255B (en) The plasma reactors reflect the side of the gas chamber
JP2011500961A (en) Chemical vapor deposition reactor
JP6386901B2 (en) Vapor growth apparatus and vapor growth method
JP4699545B2 (en) Vapor growth apparatus and vapor growth method
KR20080033275A (en) Double side polishing method for wafer
JP2010062383A (en) Vapor deposition equipment and vapor deposition method
JP2009277730A (en) Vapor phase growth method and vapor phase growth apparatus for thin film
JP2008218734A (en) Vapor phase growth method and apparatus
JP2011018895A (en) Vapor-phase growth apparatus for group-iii nitride semiconductor
JP2004006551A (en) Device and method for treating substrate
JP2023547379A (en) How to season a processing chamber
JP2011155046A (en) Vapor phase growth apparatus for group iii nitride semiconductor
JP4413154B2 (en) Plasma processing equipment
JP2012146697A (en) Manufacturing apparatus and manufacturing method of epitaxial wafer
JP2009010279A (en) Thin film manufacturing device
CN203741412U (en) Atomic layer thin film deposition air inlet device
WO2018042877A1 (en) Vapor-phase growth apparatus, method for production of epitaxial wafer, and attachment for vapor-phase growth apparatus
JP2004296659A (en) Substrate treating apparatus and manufacturing method of semiconductor device
JP2014072477A (en) Wafer support in semiconductor epitaxial manufacturing apparatus, manufacturing method of the same, semiconductor epitaxial manufacturing apparatus and manufacturing method of the same
CN102373439B (en) Chemical deposition reactor and spraying device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10838881

Country of ref document: EP

Kind code of ref document: A1