WO2011077629A1 - フォトセンサー素子、フォトセンサー回路、薄膜トランジスタ基板、表示パネル及びフォトセンサー素子の製造方法 - Google Patents

フォトセンサー素子、フォトセンサー回路、薄膜トランジスタ基板、表示パネル及びフォトセンサー素子の製造方法 Download PDF

Info

Publication number
WO2011077629A1
WO2011077629A1 PCT/JP2010/006633 JP2010006633W WO2011077629A1 WO 2011077629 A1 WO2011077629 A1 WO 2011077629A1 JP 2010006633 W JP2010006633 W JP 2010006633W WO 2011077629 A1 WO2011077629 A1 WO 2011077629A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
amplifier
channel region
gate electrode
electrode
Prior art date
Application number
PCT/JP2010/006633
Other languages
English (en)
French (fr)
Inventor
守口正生
神崎庸輔
井上毅
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/518,564 priority Critical patent/US8614493B2/en
Publication of WO2011077629A1 publication Critical patent/WO2011077629A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14692Thin film technologies, e.g. amorphous, poly, micro- or nanocrystalline silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements

Definitions

  • the present invention relates to a photosensor element, a photosensor circuit, a thin film transistor substrate, a display panel, and a photosensor element manufacturing method, and in particular, a photosensor element, photosensor circuit, thin film transistor substrate, display panel, and photosensor element using an amorphous semiconductor. It is related with the manufacturing method.
  • TFT thin film transistor
  • amorphous silicon a thin film transistor using amorphous silicon
  • photocurrent is generated when light is incident on the semiconductor layer. Therefore, in recent years, a TFT is used not only as a switching element of each pixel but also as a photo diode.
  • a display panel with a touch panel function used as a sensor element has been proposed.
  • Patent Document 1 discloses an optical sensor device in which an amorphous silicon photodiode and an amplifier composed of a thin film transistor are integrally formed on a substrate.
  • FIG. 14 is a cross-sectional view of a conventional photosensor element 106 constituted by TFTs using amorphous silicon.
  • the photosensor element 106 includes a gate electrode 111 provided on the insulating substrate 110, a gate insulating film 112 provided so as to cover the gate electrode 111, and a gate through the gate insulating film 112.
  • a semiconductor layer 115 provided in an island shape so as to overlap with the electrode 111; and a source electrode 116a and a drain electrode 116b provided on the semiconductor layer 115 and disposed so as to overlap the gate electrode 111 and face each other. It has a general TFT configuration.
  • the semiconductor layer 115 includes a lower intrinsic amorphous silicon layer 113 having a channel region and an upper N + amorphous silicon provided so that the channel region of the intrinsic amorphous silicon layer 113 is exposed.
  • the TFT for the photo sensor element can be formed simultaneously with the TFT for the switching element, for example, a display panel with a touch panel function can be manufactured at low cost. Since a switching element TFT and a photosensor element TFT are arranged for each pixel, which is the minimum unit of an image, the aperture ratio of the pixel is lowered. Therefore, in the TFT for the photo sensor element, it is required to improve the sensitivity and downsize the element itself.
  • the present invention has been made in view of such points, and an object thereof is to improve the sensitivity of the photosensor element.
  • the present invention is such that the channel region side of the impurity semiconductor layer constituting the semiconductor layer protrudes from the drain electrode.
  • a photosensor element includes a gate electrode provided on an insulating substrate, a gate insulating film provided so as to cover the gate electrode, and the gate electrode overlying the gate electrode.
  • a photosensor element comprising a semiconductor layer and an impurity semiconductor layer stacked on the intrinsic semiconductor layer so that the channel region is exposed, wherein the channel region side of the impurity semiconductor layer protrudes from the drain electrode. It is characterized by.
  • the channel region side of the impurity semiconductor layer constituting the semiconductor layer protrudes from the drain electrode, the upper surface of the impurity semiconductor layer on the channel region side is exposed from the drain electrode. Therefore, the light to be detected easily enters the impurity semiconductor layer exposed from the drain electrode, that is, the inner end of the impurity semiconductor layer on the drain electrode side, and the intrinsic semiconductor layer portion below the impurity semiconductor layer. The amount of carriers generated will increase. This increases the photocurrent generated in the photosensor element, thereby improving the sensitivity of the photosensor element.
  • FIG. 13 shows the results of experiments conducted by the present inventors to find out the principle of the present invention.
  • FIG. 13 is a graph showing the length of the channel region, that is, the relationship between the channel length and the photocurrent in a general TFT using amorphous silicon.
  • TFTs having channel lengths of 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 12 ⁇ m, and 20 ⁇ m are prepared, and in each TFT, a gate electrode and a source electrode are connected, and a drain is connected.
  • the broken line X represents the photocurrent in the dark state
  • the broken line Y represents the photocurrent in the bright state irradiated with infrared light
  • the broken line Z represents the photocurrent in the bright state irradiated with white light.
  • the source electrode and the drain electrode overlap with the gate electrode, an increase in parasitic resistance between the gate electrode, the source electrode, and the drain electrode is suppressed, and the on-characteristic of the photosensor element is reduced. Reduction is suppressed.
  • a conductive film that transmits light to be detected may be provided between the impurity semiconductor layer and the drain electrode so as to cover an upper surface of the impurity semiconductor layer.
  • the conductive film that transmits light to be detected is provided on the upper surface of the impurity semiconductor layer protruding from the drain electrode, the parasitic resistance between the gate electrode, the source electrode, and the drain electrode is increased. Is further suppressed, and a decrease in on-characteristics in the photosensor element is further suppressed.
  • the conductive film may be a transparent conductive film.
  • the transparent conductive film such as an ITO (Indium Tin Oxide) film is provided on the upper surface of the impurity semiconductor layer protruding from the drain electrode, the photosensor element for detecting visible light In the case, the deterioration of the ON characteristic is specifically suppressed.
  • ITO Indium Tin Oxide
  • the film thickness of the conductive film may be 10 nm or less.
  • the ultrathin conductive film having a thickness of 10 nm or less such as a silicide system
  • the photosensor element for detecting visible light In the case, the deterioration of the ON characteristic is specifically suppressed.
  • the film thickness of the conductive film exceeds 10 nm, the light transmittance of the detection target becomes low, and it becomes difficult to sufficiently improve the sensitivity of the photosensor element.
  • the lower limit of the film thickness of the conductive film is 3 nm or more. When the thickness of the conductive film is less than 3 nm, the effect of suppressing the increase in parasitic resistance between the gate electrode, the source electrode, and the drain electrode is reduced.
  • the intrinsic semiconductor layer may be made of amorphous silicon.
  • the intrinsic semiconductor layer is made of amorphous silicon, the effect of the present invention is effectively exhibited in the photosensor element for detecting visible light.
  • the intrinsic semiconductor layer may be made of crystalline silicon.
  • the intrinsic semiconductor layer is made of crystalline silicon, the effect of the present invention is effectively exhibited in the photosensor element for detecting infrared light.
  • the intrinsic semiconductor layer may be made of microcrystalline silicon.
  • the intrinsic semiconductor layer is made of microcrystalline silicon
  • an intrinsic semiconductor film for forming the intrinsic semiconductor layer can be formed using plasma CVD (Chemical Vapor Deposition).
  • the photo sensor element can be easily formed on the substrate by using a process for forming other circuit elements such as a pixel switching TFT and an amplifier TFT.
  • microcrystalline silicon has a crystal grain size of about several tens to several thousand and is composed of a mixed phase with amorphous silicon.
  • the photosensor circuit according to the present invention is a photosensor circuit comprising a photosensor element and an amplifier element connected to the photosensor element, wherein the photosensor element is a gate provided on an insulating substrate.
  • the semiconductor layer includes an intrinsic semiconductor layer in which a channel region is defined and an intrinsic semiconductor layer that is exposed so that the channel region is exposed.
  • An impurity semiconductor layer, and the channel region side of the impurity semiconductor layer protrudes from the drain electrode.
  • the photosensor element since the channel region side of the impurity semiconductor layer constituting the semiconductor layer protrudes from the drain electrode, the upper surface of the impurity semiconductor layer on the channel region side is exposed from the drain electrode. Therefore, the light to be detected easily enters the impurity semiconductor layer exposed from the drain electrode, that is, the inner end of the impurity semiconductor layer on the drain electrode side, and the intrinsic semiconductor layer portion below the impurity semiconductor layer. The amount of carriers generated will increase. Thereby, since the photocurrent generated in the photosensor element increases, the sensitivity of the photosensor element is improved in the photosensor circuit including the photosensor element and the amplifier element.
  • the amplifier element includes an amplifier gate electrode provided on the insulating substrate, the gate insulating film provided to cover the amplifier gate electrode, and the amplifier gate electrode overlying the gate insulating film.
  • An amplifier semiconductor layer provided on the amplifier semiconductor layer, and an amplifier source electrode and an amplifier drain electrode disposed on the amplifier semiconductor layer so as to overlap with the amplifier gate electrode and to face each other,
  • the amplifier semiconductor layer includes an amplifier intrinsic semiconductor layer in which a channel region is defined, and an amplifier impurity semiconductor layer stacked on the intrinsic semiconductor layer so that the channel region is exposed.
  • the channel region side edges of the amplifier coincide with the channel region side edges of the amplifier source electrode and amplifier drain electrode. It may be.
  • the amplifier element includes an amplifier gate electrode corresponding to the gate electrode of the photosensor element, a gate insulating film common to the photosensor element, an amplifier semiconductor layer corresponding to the semiconductor layer of the photosensor element, and a photo Amplifier source electrode and amplifier drain electrode corresponding to the source electrode and drain electrode of the sensor element respectively, amplifier intrinsic semiconductor layer corresponding to the intrinsic semiconductor layer of the photo sensor element, and amplifier corresponding to the impurity semiconductor layer of the photo sensor element
  • the impurity semiconductor layer of the photosensor element protrudes from the drain electrode, whereas the edge of the amplifier impurity semiconductor layer on the channel region side is the amplifier source electrode and the amplifier drain. It just matches the edge of the electrode on the channel region side. In, by utilizing the process of forming the photosensor elements, it is possible to form an amplifier element.
  • the thin film transistor substrate according to the present invention includes a plurality of pixels provided in a matrix, a plurality of switching elements provided for each pixel, and a plurality of photosensor elements provided for each pixel.
  • Each of the photosensor elements includes a gate electrode provided on the insulating substrate, a gate insulating film provided so as to cover the gate electrode, and the gate on the gate insulating film.
  • the photosensor element since the channel region side of the impurity semiconductor layer constituting the semiconductor layer protrudes from the drain electrode, the upper surface of the impurity semiconductor layer on the channel region side is exposed from the drain electrode. Therefore, the light to be detected easily enters the impurity semiconductor layer exposed from the drain electrode, that is, the inner end of the impurity semiconductor layer on the drain electrode side, and the intrinsic semiconductor layer portion below the impurity semiconductor layer. The amount of carriers generated will increase. As a result, the photocurrent generated in the photosensor element increases, so that the sensitivity of the photosensor element is improved in the thin film transistor substrate provided with the switching element and the photosensor element for each pixel.
  • Each of the switching elements includes a switching gate electrode provided on the insulating substrate, the gate insulating film provided to cover the gate electrode, and the switching gate electrode overlying the gate insulating film.
  • a switching semiconductor layer provided on the switching semiconductor layer, and a switching source electrode and a switching drain electrode disposed on the switching gate electrode so as to overlap and face each other.
  • the switching semiconductor layer includes a switching intrinsic semiconductor layer in which a channel region is defined, and a switching impurity semiconductor layer stacked on the intrinsic semiconductor layer so that the channel region is exposed.
  • the edge on the channel region side is the drain electrode Coincides with the edge of the channel region side, it may have light-shielding layer is provided so as to overlap the respective switching elements.
  • the switching element of each pixel includes a switching gate electrode corresponding to the gate electrode of the photosensor element, a gate insulating film common to the photosensor element, and a switching semiconductor corresponding to the semiconductor layer of the photosensor element Layer, switching source electrode and switching drain electrode corresponding to the source electrode and drain electrode of the photosensor element, switching intrinsic semiconductor layer corresponding to the intrinsic semiconductor layer of the photosensor element, and impurity semiconductor layer of the photosensor element, respectively.
  • each of the amplifier elements includes an amplifier gate electrode provided on the insulating substrate and the gate provided to cover the amplifier gate electrode; An insulating film, an amplifier semiconductor layer provided on the gate insulating film so as to overlap the amplifier gate electrode, and provided on the amplifier semiconductor layer so as to overlap the amplifier gate electrode and to face each other An amplifier source electrode and an amplifier drain electrode disposed on the amplifier semiconductor layer, the amplifier semiconductor layer including an amplifier intrinsic semiconductor layer in which a channel region is defined, and the intrinsic semiconductor layer so that the channel region is exposed.
  • An amplifier impurity semiconductor layer, and an edge of the amplifier impurity semiconductor layer on the channel region side is connected to the amplifier source electrode and the amplifier impurity semiconductor layer. Edge coincides with the channel region side of the drain electrode amplifier may have light-shielding layer is provided so as to overlap to each amplifier element.
  • the amplifier element of each pixel includes an amplifier gate electrode corresponding to the gate electrode of the photosensor element, a gate insulating film common to the photosensor element, and an amplifier semiconductor corresponding to the semiconductor layer of the photosensor element Layer, amplifier source electrode and amplifier drain electrode corresponding to the source electrode and drain electrode of the photo sensor element, amplifier intrinsic semiconductor layer corresponding to the intrinsic semiconductor layer of the photo sensor element, and impurity semiconductor layer of the photo sensor element, respectively.
  • the channel region side of the impurity semiconductor layer of the photosensor element protrudes from the drain electrode, whereas the edge of the channel region side of the amplifier impurity semiconductor layer is the source electrode for amplifier and It matches the edge of the amplifier drain electrode on the channel region side.
  • the photosensor elements Because only utilizes the step of forming the photosensor elements, it becomes possible to form an amplifier element as well switching element. Furthermore, since the light shielding layer is provided so as to overlap the amplifier element of each pixel, the deterioration of the characteristics of the amplifier element is suppressed.
  • a display panel according to the present invention includes a thin film transistor substrate having the above structure, a counter substrate provided so as to face the thin film transistor substrate, and a display medium layer provided between the thin film transistor substrate and the counter substrate. It is characterized by having.
  • the method for manufacturing a photosensor element according to the present invention includes a first step of forming a gate electrode on an insulating substrate, a second step of forming a gate insulating film so as to cover the gate electrode, and the gate insulating film. After forming an intrinsic semiconductor film and an impurity semiconductor film so as to cover, a third step of forming the semiconductor constituent layer by patterning the intrinsic semiconductor film and the impurity semiconductor film so as to overlap the gate electrode, and the semiconductor After forming a metal film so as to cover the constituent layer, the metal film and the semiconductor constituent layer are patterned, and an intrinsic semiconductor layer in which a channel region is defined, and the intrinsic semiconductor layer so that the channel region is exposed A semiconductor layer having an impurity semiconductor layer stacked on the gate electrode, and a drain electrode so that the channel region side of the impurity semiconductor layer protrudes over the gate electrode. And characterized in that it comprises a fourth step of forming a source electrode so as to face to the drain electrode with overlapping the gate electrode.
  • the method after performing a 1st process, a 2nd process, and a 3rd process in order, after forming a metal film on the semiconductor structure layer formed at the 3rd process in the subsequent 4th process And forming an intrinsic semiconductor layer in which the channel region is defined by patterning the metal film and the underlying semiconductor constituent layer, and an impurity semiconductor layer laminated so that the channel region is exposed, and is formed in the first step.
  • the semiconductor layer that overlaps the gate electrode, the channel region side of the impurity semiconductor layer protrudes, and the drain electrode and the drain electrode are opposed to the gate electrode formed in the first step, and are formed in the first step Since the source electrode is formed so as to overlap with the gate electrode, the upper surface of the impurity semiconductor layer on the channel region side is exposed from the drain electrode. Therefore, the light to be detected easily enters the impurity semiconductor layer exposed from the drain electrode, that is, the inner end of the impurity semiconductor layer on the drain electrode side, and the intrinsic semiconductor layer portion below the impurity semiconductor layer. The amount of carriers generated will increase. This increases the photocurrent generated in the photosensor element, thereby improving the sensitivity of the photosensor element.
  • a resist pattern having an opening in the channel region is formed on the metal film, and the metal film and the semiconductor constituent layer are removed by anisotropic etching using the resist pattern.
  • the source electrode and the drain electrode may be formed by removing the metal film by isotropic etching using the resist pattern.
  • the impurity semiconductor layer constituting the semiconductor layer A photo sensor element is manufactured in which the channel region side protrudes from both the drain electrode and the source electrode.
  • a first resist pattern having an opening in the channel region is formed on the metal film, and the metal film and the semiconductor constituent layer are removed by anisotropic etching using the first resist pattern. Then, after forming the intrinsic semiconductor layer and the impurity semiconductor layer, and then removing the first resist pattern, a second resist pattern for forming at least the drain electrode is formed, and the second resist pattern
  • the metal film may be removed using anisotropic etching.
  • the metal film is removed by anisotropic etching using a second resist pattern different from the first resist pattern for forming the intrinsic semiconductor layer and the impurity semiconductor layer.
  • a photo sensor element is manufactured in which the channel region side of the impurity semiconductor layer constituting the semiconductor layer protrudes at least from the drain electrode.
  • the sensitivity of the photosensor element can be improved.
  • FIG. 1 is a cross-sectional view of the photosensor element 6a according to the first embodiment.
  • FIG. 2 is an explanatory view showing the manufacturing process of the photosensor element 6a in cross section.
  • FIG. 3 is a cross-sectional view illustrating a manufacturing process of a photosensor element 6aa according to a modification of the photosensor element 6a.
  • FIG. 4 is a cross-sectional view of a photosensor element 6b which is a modification of the photosensor element 6a.
  • FIG. 5 is a cross-sectional view of a photosensor element 6c which is a modification of the photosensor element 6a.
  • FIG. 6 is a cross-sectional view of the liquid crystal display device 50 according to the second embodiment.
  • FIG. 1 is a cross-sectional view of the photosensor element 6a according to the first embodiment.
  • FIG. 2 is an explanatory view showing the manufacturing process of the photosensor element 6a in cross section.
  • FIG. 3 is a cross-sectional view illustrating a
  • FIG. 7 is a plan view of the TFT substrate 20 constituting the liquid crystal display device 50.
  • FIG. 8 is a cross-sectional view of the TFT substrate 20.
  • FIG. 9 is an equivalent circuit diagram of the photosensor circuit 9 constituting the TFT substrate 20.
  • FIG. 10 is an equivalent circuit diagram of a photosensor circuit 9a according to a modification of the photosensor circuit 9.
  • FIG. 11 is an equivalent circuit diagram of a photosensor circuit 9b according to a modification of the photosensor circuit 9.
  • FIG. 12 is an equivalent circuit diagram of a photosensor circuit 9c according to a modification of the photosensor circuit 9.
  • FIG. 13 is a graph showing the relationship between the channel length and the photocurrent in a general TFT using amorphous silicon.
  • FIG. 14 is a cross-sectional view of a conventional photosensor element 106 composed of TFTs.
  • Embodiment 1 of the Invention 1 to 5 show Embodiment 1 of a photosensor element and a manufacturing method thereof according to the present invention.
  • FIG. 1 is a cross-sectional view of the photosensor element 6a of the present embodiment
  • FIG. 2 is an explanatory view showing the manufacturing process of the photosensor element 6a in cross-section.
  • FIG. 3 is a cross-sectional view illustrating a manufacturing process of a photosensor element 6aa which is a modification of the photosensor element 6a.
  • 4 and 5 are cross-sectional views of the photosensor elements 6b and 6c, respectively, showing modifications of the photosensor element 6a.
  • the photosensor element 6a includes a gate electrode 11da provided on the insulating substrate 10, a gate insulating film 12 provided so as to cover the gate electrode 11da, and a gate electrode on the gate insulating film 12.
  • the semiconductor layer 15db is provided so as to overlap 11da, and the source electrode 16da and the drain electrode 16db are provided on the semiconductor layer 15db so as to overlap the gate electrode 11da and to face each other.
  • a protective film 17 is provided on the upper layer of the photosensor element 6a.
  • the semiconductor layer 15db includes an intrinsic amorphous silicon layer (intrinsic semiconductor layer) 13db in which the channel region C is defined and an N + layered on the intrinsic amorphous silicon layer 13db so that the channel region C is exposed. And an amorphous silicon layer (impurity semiconductor layer) 14db.
  • the channel region C side of the N + amorphous silicon layer 14db protrudes from the source electrode 16da and the drain electrode 16db as shown in FIG.
  • the length from the inner end of the N + amorphous silicon layer 14db to the inner ends of the source electrode 16da and the drain electrode 16db, that is, the protruding length of the N + amorphous silicon layer 14db is about 0.3 ⁇ m to 3 ⁇ m. is there.
  • the protruding length of the N + amorphous silicon layer 14db is less than 0.3 ⁇ m, the sensitivity of the photosensor element 6a is not sufficiently improved, and the protruding length of the N + amorphous silicon layer 14db exceeds 3 ⁇ m. In some cases, the size of the photo sensor element 6a becomes too large.
  • a titanium film (thickness of about 50 nm), an aluminum film (thickness of about 200 nm), a titanium film (thickness of about 150 nm), and the like are sequentially formed on the entire substrate of the insulating substrate 10 such as a glass substrate by sputtering.
  • the metal laminated film is patterned using photolithography to form a gate electrode 11da as shown in FIG. 2A (first step).
  • an inorganic insulating film such as a silicon nitride film or a silicon oxide film is formed on the entire substrate on which the gate electrode 11da is formed by plasma CVD, for example, and the gate insulating film 12 ( 2B) is formed (second step).
  • an intrinsic amorphous silicon film 13 (thickness of about 20 nm to 200 nm) as an intrinsic semiconductor film and an impurity semiconductor are formed on the entire substrate on which the gate insulating film 12 is formed by plasma CVD.
  • an N + amorphous silicon film 14 (thickness of about 50 nm) or the like is sequentially laminated as a film
  • the intrinsic amorphous silicon film 13 and the semiconductor laminated film of the N + amorphous silicon film 14 are patterned by using photolithography, whereby an intrinsic amorphous film is formed.
  • a semiconductor constituent layer 15da composed of the silicon layer 13da and the N + amorphous silicon layer 14da is formed (third step).
  • an amorphous silicon (a-Si) film for detecting visible light is exemplified as the intrinsic semiconductor film.
  • a-SiGe amorphous silicon germanium
  • a-SiC amorphous silicon carbide
  • a titanium film (thickness of about 100 nm) and an aluminum film (thickness of about 200 nm) are sequentially formed on the entire substrate on which the semiconductor constituent layer 15da has been formed.
  • a resist pattern Ra is formed on the metal film 16.
  • the metal film 16 exposed from the resist pattern Ra and the semiconductor constituent layer 15da thereunder are removed by anisotropic etching by dry etching, so that an intrinsic amorphous silicon layer 13db is obtained. Then, a semiconductor layer 15db made of the N + amorphous silicon layer 14db and a metal layer 16d are formed.
  • the metal layer 16d is removed by isotropic etching by wet etching using the resist pattern Ra to form the source electrode 16da and the drain electrode 16db (fourth step). .
  • an inorganic insulating film such as a silicon nitride film or a silicon oxide film is formed by a plasma CVD method so as to cover the source electrode 16da and the drain electrode 16db. Then, the protective film 17 is formed.
  • the photosensor element 6a of the present embodiment can be manufactured.
  • the third step is performed.
  • the resist film Ra is used to pattern the metal film 16 and the underlying semiconductor constituent layer 15da by anisotropic etching so that the channel region C is formed.
  • the photosensor element 6a of this embodiment since the source electrode 16da and the drain electrode 16db overlap the gate electrode 11da, the parasitic resistance between the gate electrode 11da and the source electrode 16da and the drain electrode 16db increases. And the deterioration of the on-characteristics in the photosensor element 6a can be suppressed.
  • the photo sensor element 6a in which the channel region C side of the N + amorphous silicon layer 14db protrudes from both the drain electrode 16db and the source electrode 16da and the method thereof are illustrated, but as shown in FIG.
  • the photosensor element 6aa may be formed in which the channel region C side of the + amorphous silicon layer 14db protrudes only from the drain electrode 16db.
  • the metal film 16 exposed from the resist pattern (first resist pattern) Ra and the underlying semiconductor constituent layer 15da are removed by anisotropic etching by dry etching.
  • a second resist pattern Rb for forming the drain electrode 16db is formed as shown in FIG.
  • the metal layer 16d exposed from the second resist pattern Rb is removed by anisotropic etching by dry etching to form the source electrode 16dc and the drain electrode 16db.
  • the photo sensor element 6a in which the source electrode 16da and the drain electrode 16db are directly formed on the N + amorphous silicon layer 14db is illustrated, but as shown in FIGS. 4 and 5, N + amorphous silicon is used.
  • Conductive films (18a and 18b) that transmit light to be detected may be provided between the layer 14db and the source electrode 16da and the drain electrode 16db so as to cover the upper surface of the N + amorphous silicon layer 14db.
  • a transparent conductive film 18a such as an ITO film, an IZO (Indium Zinc Oxide) film, or a ZnO film is provided.
  • a silicide-based conductive film 18b such as cobalt silicide or copper silicide is provided.
  • the transparent conductive film 18a and the conductive film 18b that transmit light to be detected are formed on the upper surface of the N + amorphous silicon layer 14db protruding from the source electrode 16da and the drain electrode 16db. Since they are respectively provided, an increase in parasitic resistance between the gate electrode 11da and the source electrode 16da and the drain electrode 16db can be further suppressed, and a decrease in ON characteristics in the photosensor elements 6b and 6c can be further suppressed. Can do.
  • Embodiment 2 of the Invention >> 6 to 12 show Embodiment 2 of the photosensor element, photosensor circuit, TFT substrate, display panel, and photosensor element manufacturing method according to the present invention.
  • FIG. 6 is a cross-sectional view of the liquid crystal display device 50 of the present embodiment
  • FIG. 7 is a plan view of the TFT substrate 20 constituting the liquid crystal display device 50.
  • FIG. 8 is a cross-sectional view of the TFT substrate 20
  • FIG. 9 is an equivalent circuit diagram of the photosensor circuit 9 constituting the TFT substrate 20.
  • 10, 11, and 12 are equivalent circuit diagrams of photosensor circuits 9 a, 9 b, and 9 c, respectively, showing modifications of the photosensor circuit 9.
  • the same parts as those in FIGS. 1 to 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the liquid crystal display device 50 includes a liquid crystal display panel 40 for displaying an image, a polarizing plate 41 attached to the back side of the liquid crystal display panel 40, and a front side of the liquid crystal display panel 40.
  • a photo sensor element 6a provided in each pixel P which is provided with a pasted polarizing plate 42 and a backlight 45 provided via a polarizing plate 41 on the back side of the liquid crystal display panel 40, is provided.
  • the touched position is detected based on the light amount difference depending on the presence or absence of the finger F on the surface of the polarizing plate 42.
  • the liquid crystal display panel 40 is provided as a display medium layer between the TFT substrate 20 and the counter substrate 30 provided so as to face each other, and the TFT substrate 20 and the counter substrate 30. And a liquid crystal layer 25 sealed through a sealing material (not shown).
  • the TFT substrate 20 has a plurality of gate lines 11a provided so as to extend in parallel to each other along the horizontal direction in the drawing, and extends in parallel between the gate lines 11a.
  • the capacitor line 11b, the select line 11c, and the initial line 11d provided in the plurality of lines, a plurality of source lines 16a provided so as to extend in parallel with each other along the vertical direction in the figure, and adjacent to each source line 16a,
  • the power supply voltage wiring 16b and the output wiring 16c provided so as to extend in parallel, the switching element 5 provided for each intersection of the gate lines 11a and the source lines 16a, that is, for each pixel P, and each pixel In P, a photosensor circuit 9 provided between each select line 11c and each initial line 11d, each switching element 5 and each photosensor A protective film 17 (see FIG. 9) provided so as to cover the path 9, a plurality of pixel electrodes 19 provided in a matrix on the protective film 17, and an alignment film provided so as to cover each pixel electrode 19 (Not shown).
  • the switching element 5 includes a switching gate electrode 11aa provided on the insulating substrate 10, a gate insulating film 12 provided so as to cover the switching gate electrode 11aa, and gate insulation.
  • a switching semiconductor layer 15a provided in an island shape on the film 12 so as to overlap with the switching gate electrode 11a and a switching semiconductor layer 15a provided on the switching semiconductor layer 15a so as to overlap with the switching gate electrode 11aa and to face each other
  • the switching source electrode 16aa and the switching drain electrode 16ab are provided.
  • the switching gate electrode 11aa is a portion protruding to the side of the gate line 11a
  • the switching source electrode 16aa is a portion protruding to the side of the source line 16a. is there.
  • the switching drain electrode 16ab is connected to the pixel electrode 19 via a contact hole (a broken line in the drawing) formed in the protective film 17 (see FIG. 8).
  • An auxiliary capacitor is formed by overlapping the capacitor line 11b via the gate insulating film 12 (see FIG. 8).
  • the switching semiconductor layer 15a includes a microcrystalline silicon layer (switching intrinsic semiconductor layer) 13a in which the channel region C is defined and a microcrystalline silicon layer so that the channel region C is exposed. And an N + amorphous silicon layer (switching impurity semiconductor layer) 14a stacked on the layer 13a.
  • the photosensor circuit 9 is a photosensor element 6a in which the intrinsic semiconductor layer made of amorphous silicon in the first embodiment is a microcrystalline silicon layer made of microcrystalline silicon. And an amplifier element 7 connected to the photosensor element 6 a and a capacitor element 8 connected to the photosensor element 6 a and the amplifier element 7.
  • the gate electrode 11da is a portion protruding to the side of the initial wiring 11d, and the source electrode 16da is a contact hole formed in the gate insulating film 12 (in the figure).
  • the capacitor element 8 (the lower electrode 11e to be described later) is connected to the initial wiring 11d via a broken line circle), and the drain electrode 16db thereof is connected to a contact hole (broken line circle in the figure) formed in the gate insulating film 12. It is connected to the.
  • the photo sensor element 6a is illustrated, but the photo sensor elements 6aa, 6b, and 6b shown as modified examples in the first embodiment may be used.
  • the amplifier element 7 includes an amplifier gate electrode 11e provided on the insulating substrate 10, and a gate insulating film 12 provided so as to cover the amplifier gate electrode 11e.
  • the amplifier semiconductor layer 15e provided in an island shape on the gate insulating film 12 so as to overlap with the amplifier gate electrode 11e, and the amplifier semiconductor layer 15e provided on the amplifier semiconductor layer 15e and overlapping with the amplifier gate electrode 11e and facing each other
  • the amplifier source electrode 16ba and the amplifier drain electrode 16ca are arranged as described above.
  • the amplifier source electrode 16ba is a branched portion of the power supply voltage wiring 16b. Further, as shown in FIG.
  • the amplifier drain electrode 16ca is a portion protruding to the side of the output wiring 16c.
  • the amplifier semiconductor layer 15e includes a microcrystalline silicon layer (amplifier intrinsic semiconductor layer) 13e in which the channel region C is defined, and a microcrystalline silicon layer so that the channel region C is exposed. And an N + amorphous silicon layer (amplifier semiconductor layer for amplifier) 14e stacked on the layer 13e.
  • the capacitor element 8 includes a lower electrode (11e) connected to the amplifier gate electrode 11e, a gate insulating film 12 provided so as to cover the lower electrode (11e), a gate, An upper electrode 16e is provided on the insulating film 12 so as to overlap the lower electrode (11e).
  • a light shielding layer 21 is provided so as to overlap the switching element 5 and the amplifier element 7.
  • the light shielding layer 21 is omitted, and in the TFT substrate 20 of FIG. 8, the pixel electrode 19 is omitted.
  • the counter substrate 30 includes a black matrix (not shown) provided in a grid pattern on an insulating substrate (not shown), and a plurality of red layers, green layers, blue layers, and the like provided between the grids of the black matrix.
  • a colored layer (not shown), a common electrode (not shown) provided so as to cover the black matrix and each colored layer, a photo spacer (not shown) provided in a column shape on the common electrode, and a common electrode are covered.
  • An alignment film (not shown) is provided.
  • the configuration in which the light shielding layer 21 that shields the switching element 5 and the amplifier element 7 is provided on the TFT substrate 20 side is exemplified.
  • a light shielding layer 29 (see a two-dot chain line in FIG. 6) may be provided on the substrate 30 side.
  • the liquid crystal layer 25 is made of a nematic liquid crystal material having electro-optical characteristics.
  • the scanning signal is sent to the switching gate electrode 11aa of the switching element 5 via the gate line 11a, and the switching element 5 is turned on. Then, a display signal is sent to the switching source electrode 16aa via the source line 16a, and a predetermined charge is written to the pixel electrode 19 via the switching semiconductor layer 15a and the switching drain electrode 16ab. .
  • a potential difference is generated between each pixel electrode 19 of the TFT substrate 20 and the common electrode of the counter substrate 30, and a predetermined voltage is applied to the liquid crystal layer 25.
  • an image is displayed by adjusting the light transmittance of the liquid crystal layer 25 by changing the alignment state of the liquid crystal layer 25 according to the magnitude of the voltage applied to the liquid crystal layer 25.
  • the potential of the intersection A of the photosensor element 6a, the amplifier element 7 and the capacitor element 8 is reset by holding the initial wiring 11d at a high potential, and the intersection A Is held at a high potential, and then the initial wiring 11d is held at a low potential, thereby turning off the photosensor element 6a.
  • the liquid crystal display device 50 when light hits the photosensor element 6 a in each pixel P, a voltage drop due to photocurrent increases, so that when the surface of the polarizing plate 42 is touched with a finger F, the light is A potential difference is generated between the intersection A of the pixel P that hits (strong light hits) and the intersection A of the pixel P that doesn't hit light (hits weak light).
  • the select wiring 11c and the power supply voltage wiring 16b by holding the select wiring 11c and the power supply voltage wiring 16b at a high potential, a detection signal corresponding to the potential difference at the intersection A is output via the output wiring 16c, and the output detection signal is output.
  • the output signal corresponding to the voltage / current is read by a control LSI (Large Scale Integration) and, for example, light is applied based on an algorithm such as potential difference, current difference, voltage absolute value, or current absolute value of the output signal.
  • the position touched by the finger F on the surface of the polarizing plate 42 is detected by determining the pixel P and the pixel P not exposed to light and recognizing touch / non-touch.
  • a titanium film (thickness of about 50 nm), an aluminum film (thickness of about 200 nm), a titanium film (thickness of about 150 nm), and the like are sequentially formed on the entire substrate of the insulating substrate 10 such as a glass substrate by sputtering.
  • the metal laminated film is patterned using photolithography, so that a gate line 11a, a capacitor line 11b, a select line 11c, an initial line 11d, and a switching line are formed as shown in FIGS.
  • a gate electrode 11aa, a gate electrode 11da (for a photo sensor element), and an amplifier gate electrode 11e are formed (first step).
  • the entire substrate on which the gate line 11a, the capacitor line 11b, the select line 11c, the initial line 11d, the switching gate electrode 11aa, the gate electrode 11da, and the amplifier gate electrode 11e are formed is nitrided, for example, by plasma CVD.
  • An inorganic insulating film (thickness of about 400 nm) such as a silicon film or a silicon oxide film is formed, and the inorganic insulating film is patterned using photolithography, whereby the gate insulating film 12 having a contact hole (see FIG. b) and FIG. 8) are formed (second step).
  • a microcrystalline silicon film 13 (thickness of about 20 nm to 200 nm) as an intrinsic semiconductor film and impurities are formed on the entire substrate on which the gate insulating film 12 is formed by plasma CVD.
  • the semiconductor laminated film of the microcrystalline silicon film 13 and the N + amorphous silicon film 14 is patterned using photolithography.
  • a semiconductor constituent layer 15da composed of the microcrystalline silicon layer 13da and the N + amorphous silicon layer 14da, and other semiconductor constituent layers (for switching elements and amplifier elements) (not shown) are formed (third step).
  • an aluminum film (thickness of about 200 nm) and a titanium film (thickness) are formed on the entire substrate on which the semiconductor constituent layer 15da and other semiconductor constituent layers are formed by sputtering.
  • a resist pattern Ra is formed on the metal film 16.
  • the metal film 16 exposed from the resist pattern Ra, the underlying semiconductor constituent layer 15 da and other semiconductor constituent layers are anisotropically etched by dry etching.
  • the metal layer 16d is removed by isotropic etching by wet etching using the resist pattern Ra to form the source electrode 16da and the drain electrode 16db for the photosensor element. (4th process).
  • the semiconductor layer 15db (for the photo sensor element 6a), the switching semiconductor layer 15a, the amplifier semiconductor layer 15e, the source line 16a, the power supply voltage wiring 16b, the output wiring 16c, and the switching source
  • the electrode 16aa, the switching drain electrode 16ab, the amplifier source electrode 16ba, the amplifier drain electrode 16ca, and the source electrode 16da and the drain electrode 16db (for the photosensor element 6a) are covered by a plasma CVD method, for example, by nitriding
  • a protective film having a contact hole as shown in FIG. 8 is formed by depositing an inorganic insulating film (thickness of about 400 nm) such as a silicon film or a silicon oxide film and patterning the inorganic insulating film using photolithography.
  • the light shielding layer 21 is formed.
  • the light shielding layer 21 made of a black photosensitive resin film is exemplified, but the light shielding layer 21 may be made of a chromium film or the like.
  • the transparent conductive film such as, for example, an ITO film (thickness of about 100 nm) on the entire substrate on which the light shielding layer 21 is formed by sputtering
  • the transparent conductive film is patterned using photolithography. Thereby, as shown in FIG. 8, the pixel electrode 19 is formed.
  • the TFT substrate 20 of this embodiment can be manufactured.
  • the photosensor element 6a As described above, according to the method of manufacturing the photosensor element 6a, the photosensor circuit 9, the TFT substrate 20, the liquid crystal display panel 40, and the TFT substrate 20 of the present embodiment, the photosensor element as in the first embodiment. 6a, the light to be detected is easily incident on the inner end of the N + amorphous silicon layer 14db on the drain electrode 16db side and the microcrystalline silicon layer 13db below the N + amorphous silicon layer 14db. This increases the amount of carriers generated in the photosensor and the photocurrent generated in the photosensor element 6a, so that the sensitivity of the photosensor element 6a can be improved.
  • the intrinsic semiconductor layer is made of microcrystalline silicon
  • an intrinsic semiconductor film for forming the intrinsic semiconductor layer is formed using plasma CVD.
  • the photosensor element 6a can be easily formed on the insulating substrate 10 by using a process of forming other circuit elements such as a TFT for a switching element and a TFT for an amplifier element of the pixel P. be able to.
  • the channel region C side of the N + amorphous silicon layer 14db protrudes from the drain electrode 16db, whereas in the switching element 5, N + amorphous
  • the edge on the channel region C side of the silicon layer 14a coincides with the edge on the channel region C side of the switching source electrode 16aa and the switching drain electrode 16ab, and in the amplifier element 7, the N + amorphous silicon layer 14e Since the edge on the channel region C side only coincides with the edge on the channel region C side of the amplifier source electrode 16ba and the amplifier drain electrode 16ca, only the switching element 5 is formed by using the photo sensor element forming step. Not only the amplifier element 7 can be formed. That.
  • the light shielding layer 21 is provided so as to overlap the switching element 5 and the amplifier element 7 of each pixel P, it is possible to suppress the deterioration of the off characteristics of the switching element 5 and the deterioration of the characteristics of the amplifier element 7. Can be suppressed.
  • the photosensor circuit 9 having the configuration shown in FIG. 9 is illustrated, but the photosensor circuits 9a, 9b, and 9c shown in FIGS. 10, 11, and 12 may be used.
  • the photosensor circuit 9a, 9b, and 9c of FIG. 10, FIG.11 and FIG.12 since the photosensor element 6a, 6aa, 6b or 6c of the said Embodiment 1 is applicable, it is common photosensor element 6. It is said.
  • the photosensor circuit 9a as shown in FIG.
  • the reset wiring 11f is provided adjacent to the initial wiring 11d, the gate electrode of the photosensor element 6 is connected to the reset wiring 11f, and Since the source electrode of the photosensor element 6 is connected to the initial wiring 11d, voltages can be individually set to the initial wiring 11d and the reset wiring 11f, and the photosensor circuit 9 can be operated more stably.
  • the source side of the amplifier element 7 is connected to the intersection A between the photosensor element 6 and the capacitor element 8, so that the photosensor element 6 If the sensitivity is sufficiently high, accurate control can be performed.
  • an example of a configuration in which the touched position is detected using the difference in the amount of reflected light due to the presence or absence of the finger F with respect to the light from the backlight 45 on the surface of the polarizing plate 42 of the liquid crystal display device 50 is illustrated.
  • the shadow of the finger against the light from the front surface may be detected, or a light emitting part such as a touch pen that emits light from the pen tip may be detected.
  • the TFT substrate 20 in which the electrode of the switching element 5 connected to the pixel electrode 19 is used as the drain electrode is illustrated, but in the present invention, the electrode of the switching element connected to the pixel electrode is used as the source electrode. It can also be applied to a TFT substrate called.
  • a TFT is exemplified as the photosensor element, but the present invention can also be applied to a TFD (Thin Film Film Diode) or the like.
  • TFD Thin Film Film Diode
  • the present invention can improve the sensitivity of a photosensor element and reduce the size of the element itself. Therefore, the present invention is useful for a TFT substrate with a built-in photosensor element and a display device using the TFT substrate. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

 絶縁基板(10)に設けられたゲート電極(11da)と、ゲート電極(11da)を覆うように設けられたゲート絶縁膜(12)と、ゲート絶縁膜(12)上にゲート電極(11da)に重なるように設けられた半導体層(15db)と、半導体層(15db)上に設けられ、ゲート電極(11da)に重なると共に互いに対峙するように配置されたソース電極(16da)及びドレイン電極(16db)とを備え、半導体層(15db)は、チャネル領域(C)が規定された真性半導体層(13db)と、チャネル領域(C)が露出するように真性半導体層(13db)に積層された不純物半導体層(14db)とを備えたフォトセンサー素子(6a)であって、不純物半導体層(14db)のチャネル領域(C)側は、ドレイン電極(16db)から突出している。

Description

フォトセンサー素子、フォトセンサー回路、薄膜トランジスタ基板、表示パネル及びフォトセンサー素子の製造方法
 本発明は、フォトセンサー素子、フォトセンサー回路、薄膜トランジスタ基板、表示パネル及びフォトセンサー素子の製造方法に関し、特に、アモルファス半導体を用いたフォトセンサー素子、フォトセンサー回路、薄膜トランジスタ基板、表示パネル及びフォトセンサー素子の製造方法に関するものである。
 アモルファスシリコンを用いた薄膜トランジスタ(Thin Film Transistor、以下、「TFT」とも称する)では、その半導体層に光が入射すると光電流が発生するので、近年、TFTを各画素のスイッチング素子としてだけでなくフォトセンサー素子としても用いたタッチパネル機能付きの表示パネルが提案されている。
 例えば、特許文献1には、基板上にアモルファスシリコンフォトダイオードと薄膜トランジスタで構成した増幅器とを一体形成した光センサー装置が開示されている。
特開2005-129909号公報
 図14は、アモルファスシリコンを用いたTFTにより構成された従来のフォトセンサー素子106の断面図である。
 フォトセンサー素子106は、図14に示すように、絶縁基板110上に設けられたゲート電極111と、ゲート電極111を覆うように設けられたゲート絶縁膜112と、ゲート絶縁膜112を介してゲート電極111に重なるように島状に設けられた半導体層115と、半導体層115上に設けられ、ゲート電極111に重なると共に互いに対峙するように配置されたソース電極116a及びドレイン電極116bとを備え、一般的なTFTの構成になっている。ここで、半導体層115は、図14に示すように、チャネル領域を有する下層の真性アモルファスシリコン層113と、真性アモルファスシリコン層113のチャネル領域が露出するように設けられた上層のNアモルファスシリコン層114とを備えている。そして、フォトセンサー素子106では、図14に示すように、半導体層115に上方から光Lが入射すると、ドレイン電極116bの内側端部の下側に配置する真性アモルファスシリコン層113でキャリアが発生して、光電流が発生するようになっている。
 ところで、上記のようなTFT基板では、フォトセンサー素子用のTFTをスイッチング素子用のTFTと同時に形成することができるので、例えば、タッチパネル機能付きの表示パネルを低コストで製造することができるものの、画像の最小単位である各画素毎に、スイッチング素子用のTFTとフォトセンサー素子用のTFTとを配置することになるので、画素の開口率が低下してしまう。そのため、フォトセンサー素子用のTFTでは、感度を向上させて、素子自体を小型化することが求められている。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、フォトセンサー素子の感度を向上させることにある。
 上記目的を達成するために、本発明は、半導体層を構成する不純物半導体層のチャネル領域側がドレイン電極から突出するようにしたものである。
 具体的に本発明に係るフォトセンサー素子は、絶縁基板に設けられたゲート電極と、上記ゲート電極を覆うように設けられたゲート絶縁膜と、上記ゲート絶縁膜上に上記ゲート電極に重なるように設けられた半導体層と、上記半導体層上に設けられ、上記ゲート電極に重なると共に互いに対峙するように配置されたソース電極及びドレイン電極とを備え、上記半導体層は、チャネル領域が規定された真性半導体層と、該チャネル領域が露出するように該真性半導体層に積層された不純物半導体層とを備えたフォトセンサー素子であって、上記不純物半導体層の上記チャネル領域側は、上記ドレイン電極から突出していることを特徴とする。
 上記の構成によれば、半導体層を構成する不純物半導体層のチャネル領域側がドレイン電極から突出しているので、不純物半導体層のチャネル領域側の上面がドレイン電極から露出している。そのため、ドレイン電極から露出する不純物半導体層、すなわち、ドレイン電極側の不純物半導体層の内側端部、及びその下層の真性半導体層の部分に検出対象の光が入射し易くなるので、真性半導体層で発生するキャリアの量が増加することになる。これにより、フォトセンサー素子で発生する光電流が増加するので、フォトセンサー素子の感度が向上する。
 ここで、図13は、本発明者らが本発明の原理を見出すために検討した実験の結果である。具体的に図13は、アモルファスシリコンを用いた一般的なTFTにおいて、チャネル領域の長さ、いわゆる、チャネル長と光電流との関係を示したグラフである。この実験では、チャネル長が4μm、5μm、6μm、12μm及び20μmであるTFT(図14中のフォトセンサー素子106参照)を準備して、各TFTにおいて、ゲート電極及びソース電極を接続し、且つドレイン電極にバイアス電圧10Vを印加した状態で、白色光及び赤外光(850nm)を照射し、その際の光電流の値を測定した。なお、図13では、折れ線Xが暗状態における光電流を示し、折れ線Yが赤外光を照射した明状態における光電流を示し、折れ線Zが白色光を照射した明状態における光電流を示している。そして、この実験では、図13に示すように、明状態における光電流(明電流)がチャネル長に依存しなかったので、ドレイン電極側の半導体層の内側端部で発生したキャリアの量が光電流の大きさを決める、という知見を得た。すなわち、従来のTFTの構造では、不純物半導体層の上面を覆うようにドレイン電極が設けられているので、光の利用効率が低かった、と言える。
 また、上記の構成によれば、ソース電極及びドレイン電極がゲート電極に重なっているので、ゲート電極とソース電極及びドレイン電極との間の寄生抵抗の増加が抑制され、フォトセンサー素子におけるオン特性の低下が抑制される。
 上記不純物半導体層と上記ドレイン電極との間には、該不純物半導体層の上面を覆うように検出対象の光を透過する導電膜が設けられていてもよい。
 上記の構成によれば、ドレイン電極から突出する不純物半導体層の上面に検出対象の光を透過する導電膜が設けられているので、ゲート電極とソース電極及びドレイン電極との間の寄生抵抗の増加がいっそう抑制され、フォトセンサー素子におけるオン特性の低下がいっそう抑制される。
 上記導電膜は、透明導電膜であってもよい。
 上記の構成によれば、ドレイン電極から突出する不純物半導体層の上面に、例えば、ITO(Indium Tin Oxide)膜などの透明導電膜が設けられているので、可視光を検出するためのフォトセンサー素子において、オン特性の低下が具体的に抑制される。
 上記導電膜の膜厚は、10nm以下であってもよい。
 上記の構成によれば、ドレイン電極から突出する不純物半導体層の上面に、例えば、シリサイド系などの10nm以下の極薄の導電膜が設けられているので、可視光を検出するためのフォトセンサー素子において、オン特性の低下が具体的に抑制される。ここで、導電膜の膜厚が10nmを超えると、検出対象の光の透過率が低くなり、フォトセンサー素子の感度を十分に向上させることが困難になる。また、導電膜の膜厚の下限値は、3nm以上である。そして、導電膜の膜厚の3nm未満になると、ゲート電極とソース電極及びドレイン電極との間の寄生抵抗の増加における抑制効果が小さくなってしまう。
 上記真性半導体層は、アモルファスシリコンにより構成されていてもよい。
 上記の構成によれば、真性半導体層がアモルファスシリコンにより構成されているので、可視光を検出するためのフォトセンサー素子において、本発明の作用効果が有効に奏される。
 上記真性半導体層は、結晶性シリコンにより構成されていてもよい。
 上記の構成によれば、真性半導体層が結晶性シリコンにより構成されているので、赤外光を検出するためのフォトセンサー素子において、本発明の作用効果が有効に奏される。
 上記真性半導体層は、微結晶性シリコンにより構成されていてもよい。
 上記の構成によれば、真性半導体層が微結晶性シリコンにより構成されているので、プラズマCVD(Chemical Vapor Deposition)を用いて、真性半導体層を形成するための真性半導体膜を成膜することが可能になり、例えば、画素のスイッチング用のTFTやアンプ用のTFTなどの他の回路素子の形成工程を利用して、フォトセンサー素子を基板上に形成することが容易になる。ここで、微結晶性シリコンは、結晶粒径が数10Å~数1000Å程度であり、アモルファスシリコンとの混合相により構成されている。
 また、本発明に係るフォトセンサー回路は、フォトセンサー素子と、上記フォトセンサー素子に接続されたアンプ素子とを備えたフォトセンサー回路であって、上記フォトセンサー素子は、絶縁基板に設けられたゲート電極と、上記ゲート電極を覆うように設けられたゲート絶縁膜と、上記ゲート絶縁膜上に上記ゲート電極に重なるように設けられた半導体層と、上記半導体層上に設けられ、上記ゲート電極に重なると共に互いに対峙するように配置されたソース電極及びドレイン電極とを備え、上記半導体層は、チャネル領域が規定された真性半導体層と、該チャネル領域が露出するように該真性半導体層に積層された不純物半導体層とを備え、上記不純物半導体層の上記チャネル領域側は、上記ドレイン電極から突出していることを特徴とする。
 上記の構成によれば、フォトセンサー素子において、半導体層を構成する不純物半導体層のチャネル領域側がドレイン電極から突出しているので、不純物半導体層のチャネル領域側の上面がドレイン電極から露出している。そのため、ドレイン電極から露出する不純物半導体層、すなわち、ドレイン電極側の不純物半導体層の内側端部、及びその下層の真性半導体層の部分に検出対象の光が入射し易くなるので、真性半導体層で発生するキャリアの量が増加することになる。これにより、フォトセンサー素子で発生する光電流が増加するので、フォトセンサー素子及びアンプ素子を備えたフォトセンサー回路において、フォトセンサー素子の感度が向上する。
 上記アンプ素子は、上記絶縁基板に設けられたアンプ用ゲート電極と、上記アンプ用ゲート電極を覆うように設けられた上記ゲート絶縁膜と、上記ゲート絶縁膜上に上記アンプ用ゲート電極に重なるように設けられたアンプ用半導体層と、上記アンプ用半導体層上に設けられ、上記アンプ用ゲート電極に重なると共に互いに対峙するように配置されたアンプ用ソース電極及びアンプ用ドレイン電極とを備え、上記アンプ用半導体層は、チャネル領域が規定されたアンプ用真性半導体層と、該チャネル領域が露出するように該真性半導体層に積層されたアンプ用不純物半導体層とを備え、上記アンプ用不純物半導体層の上記チャネル領域側の端縁は、上記アンプ用ソース電極及びアンプ用ドレイン電極の上記チャネル領域側の端縁と一致していてもよい。
 上記の構成によれば、アンプ素子が、フォトセンサー素子のゲート電極に対応するアンプ用ゲート電極、フォトセンサー素子と共通のゲート絶縁膜、フォトセンサー素子の半導体層に対応するアンプ用半導体層、フォトセンサー素子のソース電極及びドレイン電極にそれぞれ対応するアンプ用ソース電極及びアンプ用ドレイン電極、フォトセンサー素子の真性半導体層に対応するアンプ用真性半導体層、並びにフォトセンサー素子の不純物半導体層に対応するアンプ用不純物半導体層を備え、フォトセンサー素子の不純物半導体層のチャネル領域側がドレイン電極から突出しているのに対して、アンプ用不純物半導体層のチャネル領域側の端縁がアンプ用ソース電極及びアンプ用ドレイン電極のチャネル領域側の端縁と一致しているだけなので、フォトセンサー素子の形成工程を利用して、アンプ素子を形成することが可能になる。
 また、本発明に係る薄膜トランジスタ基板は、マトリクス状に設けられた複数の画素と、上記各画素毎にそれぞれ設けられた複数のスイッチング素子と、上記各画素毎にそれぞれ設けられた複数のフォトセンサー素子とを備えた薄膜トランジスタ基板であって、上記各フォトセンサー素子は、絶縁基板に設けられたゲート電極と、上記ゲート電極を覆うように設けられたゲート絶縁膜と、上記ゲート絶縁膜上に上記ゲート電極に重なるように設けられた半導体層と、上記半導体層上に設けられ、上記ゲート電極に重なると共に互いに対峙するように配置されたソース電極及びドレイン電極とを備え、上記半導体層は、チャネル領域が規定された真性半導体層と、該チャネル領域が露出するように該真性半導体層に積層された不純物半導体層とを備え、上記不純物半導体層の上記チャネル領域側は、上記ドレイン電極から突出していることを特徴とする。
 上記の構成によれば、フォトセンサー素子において、半導体層を構成する不純物半導体層のチャネル領域側がドレイン電極から突出しているので、不純物半導体層のチャネル領域側の上面がドレイン電極から露出している。そのため、ドレイン電極から露出する不純物半導体層、すなわち、ドレイン電極側の不純物半導体層の内側端部、及びその下層の真性半導体層の部分に検出対象の光が入射し易くなるので、真性半導体層で発生するキャリアの量が増加することになる。これにより、フォトセンサー素子で発生する光電流が増加するので、各画素毎にスイッチング素子及びフォトセンサー素子をそれぞれ備えた薄膜トランジスタ基板において、フォトセンサー素子の感度が向上する。
 上記各スイッチング素子は、上記絶縁基板に設けられたスイッチング用ゲート電極と、上記ゲート電極を覆うように設けられた上記ゲート絶縁膜と、上記ゲート絶縁膜上に上記スイッチング用ゲート電極に重なるように設けられたスイッチング用半導体層と、上記スイッチング用半導体層上に設けられ、上記スイッチング用ゲート電極に重なると共に互いに対峙するように配置されたスイッチング用ソース電極及びスイッチング用ドレイン電極とを備え、上記スイッチング用半導体層は、チャネル領域が規定されたスイッチング用真性半導体層と、該チャネル領域が露出するように該真性半導体層に積層されたスイッチング用不純物半導体層とを備え、上記スイッチング用不純物半導体層の上記チャネル領域側の端縁は、上記ドレイン電極の上記チャネル領域側の端縁と一致しており、上記各スイッチング素子に重なるように遮光層が設けられていてもよい。
 上記の構成によれば、各画素のスイッチング素子が、フォトセンサー素子のゲート電極に対応するスイッチング用ゲート電極、フォトセンサー素子と共通のゲート絶縁膜、フォトセンサー素子の半導体層に対応するスイッチング用半導体層、フォトセンサー素子のソース電極及びドレイン電極にそれぞれ対応するスイッチング用ソース電極及びスイッチング用ドレイン電極、フォトセンサー素子の真性半導体層に対応するスイッチング用真性半導体層、並びにフォトセンサー素子の不純物半導体層に対応するスイッチング用不純物半導体層を備え、フォトセンサー素子の不純物半導体層のチャネル領域側がドレイン電極から突出しているのに対して、スイッチング用不純物半導体層のチャネル領域側の端縁がスイッチング用ソース電極及びスイッチング用ドレイン電極のチャネル領域側の端縁と一致しているだけなので、フォトセンサー素子の形成工程を利用して、スイッチング素子を形成することが可能になる。さらに、各画素のスイッチング素子に重なるように遮光層が設けられているので、スイッチング素子のオフ特性の低下が抑制される。
 上記各画素毎にそれぞれ設けられた複数のアンプ素子を有し、上記各アンプ素子は、上記絶縁基板に設けられたアンプ用ゲート電極と、上記アンプ用ゲート電極を覆うように設けられた上記ゲート絶縁膜と、上記ゲート絶縁膜上に上記アンプ用ゲート電極に重なるように設けられたアンプ用半導体層と、上記アンプ用半導体層上に設けられ、上記アンプ用ゲート電極に重なると共に互いに対峙するように配置されたアンプ用ソース電極及びアンプ用ドレイン電極とを備え、上記アンプ用半導体層は、チャネル領域が規定されたアンプ用真性半導体層と、該チャネル領域が露出するように該真性半導体層に積層されたアンプ用不純物半導体層とを備え、上記アンプ用不純物半導体層の上記チャネル領域側の端縁は、上記アンプ用ソース電極及びアンプ用ドレイン電極の上記チャネル領域側の端縁と一致しており、上記各アンプ素子に重なるように遮光層が設けられていてもよい。
 上記の構成によれば、各画素のアンプ素子が、フォトセンサー素子のゲート電極に対応するアンプ用ゲート電極、フォトセンサー素子と共通のゲート絶縁膜、フォトセンサー素子の半導体層に対応するアンプ用半導体層、フォトセンサー素子のソース電極及びドレイン電極にそれぞれ対応するアンプ用ソース電極及びアンプ用ドレイン電極、フォトセンサー素子の真性半導体層に対応するアンプ用真性半導体層、並びにフォトセンサー素子の不純物半導体層に対応するアンプ用不純物半導体層を備え、フォトセンサー素子の不純物半導体層のチャネル領域側がドレイン電極から突出しているのに対して、アンプ用不純物半導体層のチャネル領域側の端縁がアンプ用ソース電極及びアンプ用ドレイン電極のチャネル領域側の端縁と一致しているだけなので、フォトセンサー素子の形成工程を利用して、スイッチング素子だけでなくアンプ素子も形成することが可能になる。さらに、各画素のアンプ素子に重なるように遮光層が設けられているので、アンプ素子の特性の低下が抑制される。
 また、本発明に係る表示パネルは、上記の構成の薄膜トランジスタ基板と、上記薄膜トランジスタ基板に対向するように設けられた対向基板と、上記薄膜トランジスタ基板及び対向基板の間に設けられた表示媒体層とを備えていることを特徴とする。
 上記の構成によれば、薄膜トランジスタ基板の各画素に設けられたフォトセンサー素子の感度が向上しているので、高感度のタッチパネル機能付きの表示パネルが実現する。
 また、本発明に係るフォトセンサー素子の製造方法は、絶縁基板にゲート電極を形成する第1工程と、上記ゲート電極を覆うようにゲート絶縁膜を形成する第2工程と、上記ゲート絶縁膜を覆うように真性半導体膜及び不純物半導体膜を順に成膜した後に、該真性半導体膜及び不純物半導体膜を上記ゲート電極に重なるようにパターニングして、半導体構成層を形成する第3工程と、上記半導体構成層を覆うように金属膜を成膜した後に、該金属膜及び上記半導体構成層をパターニングして、チャネル領域が規定された真性半導体層、及び該チャネル領域が露出するように該真性半導体層に積層された不純物半導体層を有する半導体層、上記ゲート電極に重なると共に上記不純物半導体層の上記チャネル領域側が突出するようにドレイン電極、並びに上記ゲート電極に重なると共に該ドレイン電極に対峙するようにソース電極を形成する第4工程とを備えることを特徴とする。
 上記の方法によれば、第1工程、第2工程及び第3工程を順に行った後に、それに続く第4工程において、第3工程で形成された半導体構成層上に金属膜を成膜した後に、その金属膜及びその下層の半導体構成層をパターニングして、チャネル領域が規定された真性半導体層、及びチャネル領域が露出するように積層された不純物半導体層を有し、第1工程で形成されたゲート電極に重なる半導体層、その不純物半導体層のチャネル領域側が突出すると共に第1工程で形成されたゲート電極に重なるようにドレイン電極、並びにそのドレイン電極に対峙すると共に第1工程で形成されたゲート電極に重なるようにソース電極を形成するので、不純物半導体層のチャネル領域側の上面がドレイン電極から露出している。そのため、ドレイン電極から露出する不純物半導体層、すなわち、ドレイン電極側の不純物半導体層の内側端部、及びその下層の真性半導体層の部分に検出対象の光が入射し易くなるので、真性半導体層で発生するキャリアの量が増加することになる。これにより、フォトセンサー素子で発生する光電流が増加するので、フォトセンサー素子の感度が向上する。
 上記第4工程では、上記金属膜上に上記チャネル領域となる部分が開口したレジストパターンを形成し、該レジストパターンを用いて上記金属膜及び半導体構成層を異方性エッチングにより除去して、上記真性半導体層及び不純物半導体層を形成した後に、上記レジストパターンを用いて上記金属膜を等方性エッチングにより除去して、上記ソース電極及びドレイン電極を形成してもよい。
 上記の方法によれば、第4工程において、真性半導体層及び不純物半導体層を形成するためのレジストパターンを用いて、金属膜を等方性エッチングにより除去するので、半導体層を構成する不純物半導体層のチャネル領域側がドレイン電極及びソース電極の双方から突出したフォトセンサー素子が製造される。
 上記第4工程では、上記金属膜上に上記チャネル領域となる部分が開口した第1レジストパターンを形成し、該第1レジストパターンを用いて上記金属膜及び半導体構成層を異方性エッチングにより除去して、上記真性半導体層及び不純物半導体層を形成し、続いて、上記第1レジストパターンを除去した後に、少なくとも上記ドレイン電極を形成するための第2レジストパターンを形成し、該第2レジストパターンを用いて上記金属膜を異方性エッチングにより除去してもよい。
 上記の方法によれば、第4工程において、真性半導体層及び不純物半導体層を形成するための第1レジストパターンと異なる第2レジストパターンを用いて、金属膜を異方性エッチングにより除去するので、半導体層を構成する不純物半導体層のチャネル領域側が少なくともドレイン電極から突出したフォトセンサー素子が製造される。
 本発明によれば、半導体層を構成する不純物半導体層のチャネル領域側がドレイン電極から突出しているので、フォトセンサー素子の感度を向上させることができる。
図1は、実施形態1に係るフォトセンサー素子6aの断面図である。 図2は、フォトセンサー素子6aの製造工程を断面で示す説明図である。 図3は、フォトセンサー素子6aの変形例のフォトセンサー素子6aaの製造工程を断面で示す説明図である。 図4は、フォトセンサー素子6aの変形例のフォトセンサー素子6bの断面図である。 図5は、フォトセンサー素子6aの変形例のフォトセンサー素子6cの断面図である。 図6は、実施形態2に係る液晶表示装置50の断面図である。 図7は、液晶表示装置50を構成するTFT基板20の平面図である。 図8は、TFT基板20の断面図である。 図9は、TFT基板20を構成するフォトセンサー回路9の等価回路図である。 図10は、フォトセンサー回路9の変形例のフォトセンサー回路9aの等価回路図である。 図11は、フォトセンサー回路9の変形例のフォトセンサー回路9bの等価回路図である。 図12は、フォトセンサー回路9の変形例のフォトセンサー回路9cの等価回路図である。 図13は、アモルファスシリコンを用いた一般的なTFTにおけるチャネル長と光電流との関係を示したグラフである。 図14は、TFTにより構成された従来のフォトセンサー素子106の断面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。
 《発明の実施形態1》
 図1~図5は、本発明に係るフォトセンサー素子及びその製造方法の実施形態1を示している。具体的に、図1は、本実施形態のフォトセンサー素子6aの断面図であり、図2は、フォトセンサー素子6aの製造工程を断面で示す説明図である。また、図3は、フォトセンサー素子6aの変形例であるフォトセンサー素子6aaの製造工程を断面で示す説明図である。さらに、図4及び図5は、フォトセンサー素子6aの変形例をそれぞれ示すフォトセンサー素子6b及び6cの断面図である。
 フォトセンサー素子6aは、図1に示すように、絶縁基板10上に設けられたゲート電極11daと、ゲート電極11daを覆うように設けられたゲート絶縁膜12と、ゲート絶縁膜12上にゲート電極11daに重なるように設けられた半導体層15dbと、半導体層15db上に設けられ、ゲート電極11daに重なると共に互いに対峙するように配置されたソース電極16da及びドレイン電極16dbとを備えている。なお、フォトセンサー素子6aの上層には、図1に示すように、保護膜17が設けられている。
 半導体層15dbは、図1に示すように、チャネル領域Cが規定された真性アモルファスシリコン層(真性半導体層)13dbと、チャネル領域Cが露出するように真性アモルファスシリコン層13dbに積層されたNアモルファスシリコン層(不純物半導体層)14dbとを備えている。
 Nアモルファスシリコン層14dbのチャネル領域C側は、図1に示すように、ソース電極16da及びドレイン電極16dbから突出している。ここで、Nアモルファスシリコン層14dbの内側端からソース電極16da及びドレイン電極16dbの各内側端までの長さ、すなわち、Nアモルファスシリコン層14dbの突出長さは、0.3μm~3μm程度である。そして、Nアモルファスシリコン層14dbの突出長さが0.3μm未満の場合には、フォトセンサー素子6aの感度を十分に向上せず、Nアモルファスシリコン層14dbの突出長さが3μmを超える場合には、フォトセンサー素子6aのサイズが大きくなり過ぎてしまう。
 次に、本実施形態のフォトセンサー素子6aの製造方法について、図2を用いて説明する。
 まず、ガラス基板などの絶縁基板10の基板全体に、スパッタリング法により、例えば、チタン膜(厚さ50nm程度)、アルミニウム膜(厚さ200nm程度)及びチタン膜(厚さ150nm程度)などを順に成膜した後に、その金属積層膜をフォトリソグラフィーを用いてパターニングすることにより、図2(a)に示すように、ゲート電極11daを形成する(第1工程)。
 続いて、ゲート電極11daが形成された基板全体に、プラズマCVD法により、例えば、窒化シリコン膜や酸化シリコン膜などの無機絶縁膜(厚さ400nm程度)を成膜して、ゲート絶縁膜12(図2(b)参照)を形成する(第2工程)。
 さらに、ゲート絶縁膜12が形成された基板全体に、図2(b)に示すように、プラズマCVD法により、真性半導体膜として真性アモルファスシリコン膜13(厚さ20nm~200nm程度)、及び不純物半導体膜としてNアモルファスシリコン膜14(厚さ50nm程度)などを順に積層した後に、真性アモルファスシリコン膜13及びNアモルファスシリコン膜14の半導体積層膜をフォトリソグラフィーを用いてパターニングすることにより、真性アモルファスシリコン層13da及びNアモルファスシリコン層14daからなる半導体構成層15daを形成する(第3工程)。ここで、本実施形態では、真性半導体膜として、可視光を検出するためのアモルファスシリコン(a-Si)膜を例示したが、赤外光を検出する場合には、アモルファスシリコンゲルマニウム(a-SiGe)膜でもよく、紫外光を検出する場合には、アモルファスシリコンカーバイド(a-SiC)膜でもよい。このように、アモルファス半導体を用いることにより、光吸収を大きくすることができ、検出感度を向上させることができる。なお、真性アモルファスシリコン膜13の膜厚が20nm未満の場合には、十分な検出感度を確保することができなくなる。
 そして、半導体構成層15daが形成された基板全体に、図2(c)に示すように、スパッタリング法により、例えば、チタン膜(厚さ100nm程度)及びアルミニウム膜(厚さ200nm程度)などを順に成膜して、金属膜16を形成した後に、金属膜16上にレジストパターンRaを形成する。
 続いて、図2(d)に示すように、レジストパターンRaから露出する金属膜16、及びその下層の半導体構成層15daを、ドライエッチングによる異方性エッチングにより除去して、真性アモルファスシリコン層13db及びNアモルファスシリコン層14dbからなる半導体層15db、並びに金属層16dを形成する。
 さらに、図2(e)に示すように、レジストパターンRaを用いて、金属層16dをウエットエッチングによる等方性エッチングにより除去して、ソース電極16da及びドレイン電極16dbを形成する(第4工程)。
 最後に、レジストパターンRaを除去した後に、ソース電極16da及びドレイン電極16dbを覆うように、プラズマCVD法により、例えば、窒化シリコン膜や酸化シリコン膜などの無機絶縁膜(厚さ400nm程度)を成膜して、保護膜17を形成する。
 以上のようにして、本実施形態のフォトセンサー素子6aを製造することができる。
 以上説明したように、本実施形態のフォトセンサー素子6a及びその製造方法によれば、第1工程、第2工程及び第3工程を順に行った後に、それに続く第4工程において、第3工程で形成された半導体構成層15da上に金属膜16を成膜した後に、レジストパターンRaを用いて、金属膜16及びその下層の半導体構成層15daを異方性エッチングによりパターニングして、チャネル領域Cが規定された真性アモルファスシリコン層13db、及びチャネル領域Cが露出するように積層されたNアモルファスシリコン層14dbを有し、第1工程で形成されたゲート電極11daに重なる半導体層15dbを形成し、さらに、レジストパターンRaを用いて、金属層16dを等方性エッチングによりパターニングして、Nアモルファスシリコン層14dbのチャネル領域C側がそれぞれ突出した状態で第1工程で形成されたゲート電極11daに重なると共に互いに対峙するようにソース電極16da及びドレイン電極16dbを形成するので、Nアモルファスシリコン層14dbのチャネル領域C側の上面がソース電極16da及びドレイン電極16dbから露出している。そのため、ドレイン電極16dbから露出するNアモルファスシリコン層14db、すなわち、ドレイン電極16db側のNアモルファスシリコン層14dbの内側端部、及びその下層の真性アモルファスシリコン層13dbの部分に検出対象の可視光が入射し易くなるので、真性アモルファスシリコン層13dbで発生するキャリアの量を増加させることができる。これにより、フォトセンサー素子6aで発生する光電流が増加するので、フォトセンサー素子6aの感度を向上させることができる。
 また、本実施形態のフォトセンサー素子6aによれば、ソース電極16da及びドレイン電極16dbがゲート電極11daに重なっているので、ゲート電極11daとソース電極16da及びドレイン電極16dbとの間の寄生抵抗の増加を抑制することができ、フォトセンサー素子6aにおけるオン特性の低下を抑制することができる。
 また、本実施形態では、Nアモルファスシリコン層14dbのチャネル領域C側がドレイン電極16db及びソース電極16daの双方から突出したフォトセンサー素子6a及びその方法を例示したが、図3に示すように、Nアモルファスシリコン層14dbのチャネル領域C側がドレイン電極16dbだけから突出したフォトセンサー素子6aaであってもよい。この場合には、図2(d)に示すように、レジストパターン(第1レジストパターン)Raから露出する金属膜16、及びその下層の半導体構成層15daを、ドライエッチングによる異方性エッチングにより除去して、半導体層15db及び金属層16dを形成し、続いて、第1レジストパターンRaを除去した後に、図3に示すように、ドレイン電極16dbを形成するための第2レジストパターンRbを形成し、第2レジストパターンRbから露出する金属層16dをドライエッチングによる異方性エッチングにより除去して、ソース電極16dc及びドレイン電極16dbを形成することになる。
 また、本実施形態では、Nアモルファスシリコン層14db上にソース電極16da及びドレイン電極16dbが直接形成されたフォトセンサー素子6aを例示したが、図4及び図5に示すように、Nアモルファスシリコン層14dbとソース電極16da及びドレイン電極16dbとの間に、Nアモルファスシリコン層14dbの上面を覆うように検出対象の光を透過する導電膜(18a及び18b)がそれぞれ設けられていてもよい。具体的に図4のフォトセンサー素子6bでは、Nアモルファスシリコン層14dbの上面を覆うように、検出対象の波長領域で吸収が少ない(透過率80%以上)の導電膜、例えば、可視光を検出するのであれば、ITO膜、IZO(Indium Zinc Oxide)膜、ZnO膜などの透明導電膜18aが設けられている。また、図5のフォトセンサー素子6cでは、Nアモルファスシリコン層14dbの上面を覆うように、極薄(10nm)以下の導電膜、例えば、可視光を検出するのであれば、チタンシリサイド、ニッケルシリサイド、コバルトシリサイド、銅シリサイドなどのシリサイド系の導電膜18bが設けられている。このような構成のフォトセンサー素子6b及び6cによれば、ソース電極16da及びドレイン電極16dbから突出するNアモルファスシリコン層14dbの上面に検出対象の光を透過する透明導電膜18a及び導電膜18bがそれぞれ設けられているので、ゲート電極11daとソース電極16da及びドレイン電極16dbとの間の寄生抵抗の増加をいっそう抑制することができ、フォトセンサー素子6b及び6cにおけるオン特性の低下をいっそう抑制することができる。
 《発明の実施形態2》
 図6~図12は、本発明に係るフォトセンサー素子、フォトセンサー回路、TFT基板、表示パネル及びフォトセンサー素子の製造方法の実施形態2を示している。具体的に図6は、本実施形態の液晶表示装置50の断面図であり、図7は、液晶表示装置50を構成するTFT基板20の平面図である。また、図8は、TFT基板20の断面図であり、図9は、TFT基板20を構成するフォトセンサー回路9の等価回路図である。さらに、図10、図11及び図12は、フォトセンサー回路9の変形例をそれぞれ示すフォトセンサー回路9a、9b及び9cの等価回路図である。なお、以下の実施形態において、図1~図5と同じ部分については同じ符号を付して、その詳細な説明を省略する。
 液晶表示装置50は、図6に示すように、画像の表示するための液晶表示パネル40と、液晶表示パネル40の背面側に貼り付けられた偏光板41と、液晶表示パネル40の前面側に貼り付けられた偏光板42と、液晶表示パネル40の背面側に偏光板41を介して設けられたバックライト45とを備え、画像の最小単位である各画素Pに設けられたフォトセンサー素子6aなどにより、偏光板42の表面における指Fの有無による光量差に基づいて、タッチされた位置を検出するように構成されている。
 液晶表示パネル40は、図6に示すように、互いに対向するように設けられたTFT基板20及び対向基板30と、TFT基板20及び対向基板30の間に表示媒体層として設けられ、枠状のシール材(不図示)を介して封入された液晶層25とを備えている。
 TFT基板20は、図7及び図9に示すように、図中横方向に沿って互いに平行に延びるように設けられた複数のゲート線11aと、各ゲート線11aの間に互いに平行に延びるように設けられた容量線11b、セレクト配線11c及びイニシアル配線11dと、図中縦方向に沿って互いに平行に延びるように設けられた複数のソース線16aと、各ソース線16aに隣り合って、互いに平行に延びるように設けられた電源電圧配線16b及び出力配線16cと、各ゲート線11a及び各ソース線16aの交差部分毎に、すなわち、各画素P毎に設けられたスイッチング素子5と、各画素Pにおいて各セレクト配線11c及び各イニシアル配線11dの間に設けられたフォトセンサー回路9と、各スイッチング素子5及び各フォトセンサー回路9を覆うように設けられた保護膜17(図9参照)と、保護膜17上にマトリクス状に設けられた複数の画素電極19と、各画素電極19を覆うように設けられた配向膜(不図示)とを備えている。
 スイッチング素子5は、図7及び図8に示すように、絶縁基板10上に設けられたスイッチング用ゲート電極11aaと、スイッチング用ゲート電極11aaを覆うように設けられたゲート絶縁膜12と、ゲート絶縁膜12上にスイッチング用ゲート電極11aに重なるように島状に設けられたスイッチング用半導体層15aと、スイッチング用半導体層15a上に設けられ、スイッチング用ゲート電極11aaに重なると共に互いに対峙するように配置されたスイッチング用ソース電極16aa及びスイッチング用ドレイン電極16abとを備えている。ここで、図7に示すように、スイッチング用ゲート電極11aaは、ゲート線11aの側方への突出した部分であり、スイッチング用ソース電極16aaは、ソース線16aの側方への突出した部分である。また、スイッチング用ドレイン電極16abは、図7に示すように、保護膜17(図8参照)に形成されたコンタクトホール(図中破線丸部)を介して画素電極19に接続されていると共に、ゲート絶縁膜12(図8参照)を介して容量線11bと重なることにより補助容量を構成している。さらに、スイッチング用半導体層15aは、図8に示すように、チャネル領域Cが規定された微結晶性シリコン層(スイッチング用真性半導体層)13aと、チャネル領域Cが露出するように微結晶性シリコン層13aに積層されたNアモルファスシリコン層(スイッチング用不純物半導体層)14aとを備えている。
 フォトセンサー回路9は、図7及び図9に示すように、上記実施形態1のアモルファスシリコンにより構成された真性半導体層を微結晶性シリコンにより構成された微結晶性シリコン層としたフォトセンサー素子6aと、フォトセンサー素子6aに接続されたアンプ素子7と、フォトセンサー素子6a及びアンプ素子7に接続されたコンデンサー素子8とを備えている。
 フォトセンサー素子6aでは、図7に示すように、そのゲート電極11daがイニシアル配線11dの側方への突出した部分であり、そのソース電極16daがゲート絶縁膜12に形成されたコンタクトホール(図中破線丸部)を介してイニシアル配線11dに接続され、そのドレイン電極16dbがゲート絶縁膜12に形成されたコンタクトホール(図中破線丸部)を介してコンデンサー素子8(の後述する下部電極11e)に接続されている。なお、本実施形態では、フォトセンサー素子6aを例示したが、上記実施形態1で変形例として示したフォトセンサー素子6aa、6b及び6bなどであってもよい。
 アンプ素子7は、図7、図8及び図9に示すように、絶縁基板10上に設けられたアンプ用ゲート電極11eと、アンプ用ゲート電極11eを覆うように設けられたゲート絶縁膜12と、ゲート絶縁膜12上にアンプ用ゲート電極11eに重なるように島状に設けられたアンプ用半導体層15eと、アンプ用半導体層15e上に設けられ、アンプ用ゲート電極11eに重なるとと共に互いに対峙するように配置されたアンプ用ソース電極16ba及びアンプ用ドレイン電極16caとを備えている。ここで、図7に示すように、アンプ用ソース電極16baは、電源電圧配線16bの枝分かれした部分である。また、アンプ用ドレイン電極16caは、図7に示すように、出力配線16cの側方への突出した部分である。さらに、アンプ用半導体層15eは、図8に示すように、チャネル領域Cが規定された微結晶性シリコン層(アンプ用真性半導体層)13eと、チャネル領域Cが露出するように微結晶性シリコン層13eに積層されたNアモルファスシリコン層(アンプ用不純物半導体層)14eとを備えている。
 コンデンサー素子8は、図7及び図9に示すように、アンプ用ゲート電極11eに接続された下部電極(11e)と、下部電極(11e)を覆うように設けられたゲート絶縁膜12と、ゲート絶縁膜12上に下部電極(11e)に重なるように設けられた上部電極16eとを備えている。
 TFT基板20では、図6及び図8に示すように、スイッチング素子5及びアンプ素子7に重なるように、遮光層21が設けられている。なお、図7のTFT基板20では、遮光層21が省略され、図8のTFT基板20では、画素電極19が省略されている。
 対向基板30は、絶縁基板(不図示)上に格子状に設けられたブラックマトリクス(不図示)と、ブラックマトリクスの各格子間にそれぞれ設けられた赤色層、緑色層及び青色層などの複数の着色層(不図示)と、ブラックマトリクス及び各着色層を覆うように設けられた共通電極(不図示)と、共通電極上に柱状に設けられたフォトスペーサー(不図示)と、共通電極を覆うように設けられた配向膜(不図示)とを備えている。なお、本実施形態では、スイッチング素子5及びアンプ素子7を遮光する遮光層21がTFT基板20側に設けられた構成を例示したが、例えば、対向基板30上のブラックマトリクスを利用して、対向基板30側に遮光層29(図6の2点鎖線参照)を設けてもよい。
 液晶層25は、電気光学特性を有するネマチックの液晶材料などにより構成されている。
 上記構成の液晶表示装置50では、画像を表示する際に、各画素Pにおいて、走査信号がゲート線11aを介してスイッチング素子5のスイッチング用ゲート電極11aaに送られて、スイッチング素子5がオン状態になったときに、表示信号がソース線16aを介してスイッチング用ソース電極16aaに送られて、スイッチング用半導体層15a及びスイッチング用ドレイン電極16abを介して、画素電極19に所定の電荷が書き込まれる。このとき、液晶表示装置50では、TFT基板20の各画素電極19と対向基板30の共通電極との間において電位差が生じ、液晶層25に所定の電圧が印加される。そして、液晶表示装置50では、各画素Pにおいて、液晶層25に印加する電圧の大きさによって液晶層25の配向状態を変えることにより、液晶層25の光透過率を調整して画像が表示される。
 上記構成の液晶表示装置50では、各画素Pにおいて、イニシアル配線11dを高電位に保持することにより、フォトセンサー素子6a、アンプ素子7及びコンデンサー素子8の交点Aの電位をリセットして、交点Aを高電位に保持した後に、イニシアル配線11dを低電位に保持することにより、フォトセンサー素子6aをオフにする。ここで、液晶表示装置50では、各画素Pにおいて、フォトセンサー素子6aに光が当たると、光電流による電圧降下が大きくなるので、偏光板42の表面が指Fでタッチされると、光が当たる(強い光が当たる)画素Pの交点Aと光が当たらない(弱い光が当たる)画素Pの交点Aとの間に電位差が発生する。そして、液晶表示装置50では、セレクト配線11c及び電源電圧配線16bを高電位に保持することにより、交点Aの電位差に応じた検出信号が出力配線16cを介して出力され、その出力された検出信号の電圧/電流に応じた出力信号をコントロールLSI(Large Scale Integration)で読み取ると共に、例えば、出力信号の電位差、電流差、電圧絶対値又は電流絶対値などのアルゴリズムに基づいて、光が当たっている画素Pと光が当たっていない画素Pとを判断して、タッチ/非タッチを認識することにより、偏光板42の表面の指Fによってタッチされた位置が検出される。
 次に、本実施形態の液晶表示装置50を構成し、フォトセンサー素子6aを有するTFT基板20の製造方法について図2及び図8を用いて説明する。
 まず、ガラス基板などの絶縁基板10の基板全体に、スパッタリング法により、例えば、チタン膜(厚さ50nm程度)、アルミニウム膜(厚さ200nm程度)及びチタン膜(厚さ150nm程度)などを順に成膜した後に、その金属積層膜をフォトリソグラフィーを用いてパターニングすることにより、図2(a)及び図8に示すように、ゲート線11a、容量線11b、セレクト配線11c、イニシアル配線11d、スイッチング用ゲート電極11aa、(フォトセンサー素子用の)ゲート電極11da、及びアンプ用ゲート電極11eを形成する(第1工程)。
 続いて、ゲート線11a、容量線11b、セレクト配線11c、イニシアル配線11d、スイッチング用ゲート電極11aa、ゲート電極11da及びアンプ用ゲート電極11eが形成された基板全体に、プラズマCVD法により、例えば、窒化シリコン膜や酸化シリコン膜などの無機絶縁膜(厚さ400nm程度)を成膜して、その無機絶縁膜をフォトリソグラフィーを用いてパターニングすることにより、コンタクトホールを有するゲート絶縁膜12(図2(b)及び図8参照)を形成する(第2工程)。
 さらに、ゲート絶縁膜12が形成された基板全体に、図2(b)に示すように、プラズマCVD法により、真性半導体膜として微結晶性シリコン膜13(厚さ20nm~200nm程度)、及び不純物半導体膜としてNアモルファスシリコン膜14(厚さ50nm程度)などを順に積層した後に、微結晶性シリコン膜13及びNアモルファスシリコン膜14の半導体積層膜をフォトリソグラフィーを用いてパターニングすることにより、微結晶性シリコン層13da及びNアモルファスシリコン層14daからなる半導体構成層15da、並びにその他の(スイッチング素子用及びアンプ素子用の)半導体構成層(不図示)を形成する(第3工程)。
 そして、半導体構成層15da、並びにその他の半導体構成層が形成された基板全体に、図2(c)に示すように、スパッタリング法により、例えば、アルミニウム膜(厚さ200nm程度)及びチタン膜(厚さ100nm程度)などを順に成膜して、金属膜16を形成した後に、金属膜16上にレジストパターンRaを形成する。
 続いて、図2(d)及び図8に示すように、レジストパターンRaから露出する金属膜16、並びにその下層の半導体構成層15da及びその他の半導体構成層を、ドライエッチングによる異方性エッチングにより除去して、微結晶性シリコン層13db及びNアモルファスシリコン層14dbからなるフォトセンサー素子用の半導体層15db、微結晶性シリコン層13a及びNアモルファスシリコン層14aからなるスイッチング用半導体層15a、微結晶性シリコン層13e及びNアモルファスシリコン層14eからなるアンプ用半導体層15e、ソース線16a、電源電圧配線16b、出力配線16c、スイッチング用ソース電極16aa、スイッチング用ドレイン電極16ab、アンプ用ソース電極16ba、アンプ用ドレイン電極16ca、並びに金属層16dを形成する。
 さらに、図2(e)に示すように、レジストパターンRaを用いて、金属層16dをウエットエッチングによる等方性エッチングにより除去して、フォトセンサー素子用のソース電極16da及びドレイン電極16dbを形成する(第4工程)。
 そして、レジストパターンRaを除去した後に、(フォトセンサー素子6a用)の半導体層15db、スイッチング用半導体層15a、アンプ用半導体層15e、ソース線16a、電源電圧配線16b、出力配線16c、スイッチング用ソース電極16aa、スイッチング用ドレイン電極16ab、アンプ用ソース電極16ba、アンプ用ドレイン電極16ca、並びに(フォトセンサー素子6a用)のソース電極16da及びドレイン電極16dbを覆うように、プラズマCVD法により、例えば、窒化シリコン膜や酸化シリコン膜などの無機絶縁膜(厚さ400nm程度)を成膜して、その無機絶縁膜をフォトリソグラフィーを用いてパターニングすることにより、図8に示すように、コンタクトホールを有する保護膜17を形成する。
 さらに、保護膜17が形成された基板全体に、例えば、スピンコート法により、カーボン微粒子を含む黒色の感光性樹脂膜などを成膜した後に、その感光性樹脂膜を露光及び現像することにより、図8に示すように、遮光層21を形成する。なお、本実施形態では、黒色の感光性樹脂膜により構成された遮光層21を例示したが、遮光層21は、クロム膜などにより構成されていてもよい。
 最後に、遮光層21が形成された基板全体に、スパッタリング法により、例えば、ITO膜(厚さ100nm程度)などの透明導電膜を堆積した後に、その透明導電膜をフォトリソグラフィーを用いてパターニングすることにより、図8に示すように、画素電極19を形成する。
 以上のようにして、本実施形態のTFT基板20を製造することができる。
 以上説明したように、本実施形態のフォトセンサー素子6a、フォトセンサー回路9、TFT基板20、液晶表示パネル40及びTFT基板20の製造方法によれば、上記実施形態1と同様に、フォトセンサー素子6aにおいて、ドレイン電極16db側のNアモルファスシリコン層14dbの内側端部、及びその下層の微結晶性シリコン層13dbの部分に検出対象の光が入射し易くなっており、微結晶性シリコン層13dbで発生するキャリアの量、及びフォトセンサー素子6aで発生する光電流が増加するので、フォトセンサー素子6aの感度を向上させることができる。
 また、本実施形態のTFT基板20の製造方法によれば、真性半導体層が微結晶性シリコンにより構成されているので、プラズマCVDを用いて、真性半導体層を形成するための真性半導体膜を成膜することが可能になり、画素Pのスイッチング素子用のTFTやアンプ素子用のTFTなどの他の回路素子の形成工程を利用して、フォトセンサー素子6aを絶縁基板10上に容易に形成することができる。
 また、本実施形態のTFT基板20によれば、フォトセンサー素子6aにおいて、Nアモルファスシリコン層14dbのチャネル領域C側がドレイン電極16dbから突出しているのに対して、スイッチング素子5において、Nアモルファスシリコン層14aのチャネル領域C側の端縁がスイッチング用ソース電極16aa及びスイッチング用ドレイン電極16abのチャネル領域C側の端縁と一致していると共に、アンプ素子7において、Nアモルファスシリコン層14eのチャネル領域C側の端縁がアンプ用ソース電極16ba及びアンプ用ドレイン電極16caのチャネル領域C側の端縁と一致しているだけなので、フォトセンサー素子の形成工程を利用して、スイッチング素子5だけでなくアンプ素子7も形成することができる。また、各画素Pのスイッチング素子5及びアンプ素子7に重なるように遮光層21が設けられているので、スイッチング素子5のオフ特性の低下を抑制することができると共に、アンプ素子7の特性の低下を抑制することができる。
 また、本実施形態では、図9の構成のフォトセンサー回路9を例示したが、図10、図11及び図12にそれぞれ示すフォトセンサー回路9a、9b及び9cであってもよい。なお、図10、図11及び図12の各フォトセンサー回路9a、9b及び9cでは、上記実施形態1のフォトセンサー素子6a、6aa、6b又は6cが適用可能であるので、共通のフォトセンサー素子6としている。具体的に、フォトセンサー回路9aでは、図10に示すように、イニシアル配線11dに隣り合うようにリセット配線11fが設けられ、フォトセンサー素子6のゲート電極がリセット配線11fに接続されていると共に、フォトセンサー素子6のソース電極がイニシアル配線11dに接続されているので、イニシアル配線11d及びリセット配線11fに電圧を個別に設定でき、フォトセンサー回路9よりも安定して動作させることができる。また、フォトセンサー回路9b及び9cでは、図11及び図12に示すように、フォトセンサー素子6とコンデンサー素子8との交点Aにアンプ素子7のソース側を接続しているので、フォトセンサー素子6の感度が十分にある場合には、正確な制御を行うことができる。
 また、本実施形態では、液晶表示装置50の偏光板42の表面におけるバックライト45からの光に対する指Fの有無による反射光の光量差を利用して、タッチされた位置を検出する構成を例示したが、前面からの光に対する指の影を検出してもよく、ペン先が発光するタッチペンなどの発光部分を検出してもよい。
 また、本実施形態では、画素電極19に接続されたスイッチング素子5の電極をドレイン電極としたTFT基板20を例示したが、本発明は、画素電極に接続されたスイッチング素子の電極をソース電極と呼ぶTFT基板にも適用することができる。
 上記各実施形態では、フォトセンサー素子として、TFTを例示したが、本発明は、TFD(Thin Film Diode)などにも適用することができる。
 以上説明したように、本発明は、フォトセンサー素子の感度を向上させて、素子自体を小型化することができるので、フォトセンサー素子が内蔵されたTFT基板及びそれを用いた表示装置について有用である。
C     チャネル領域
P     画素
Ra    レジストパターン、第1レジストパターン
Rb    第2レジストパターン
5     スイッチング素子
6,6a,6aa,6b,6c  フォトセンサー素子
7     アンプ素子
9,9a,9b,9c  フォトセンサー回路
10    絶縁基板
11aa  スイッチング用ゲート電極
11da  ゲート電極
11e   アンプ用ゲート電極
12    ゲート絶縁膜
13    真性アモルファスシリコン膜、微結晶性シリコン膜(真性半導体膜)
13a   微結晶性シリコン層(スイッチング用真性半導体層)
13db  真性アモルファスシリコン層、微結晶性シリコン層(真性半導体層)
13e   微結晶性シリコン層(アンプ用真性半導体層)
14    Nアモルファスシリコン膜(不純物半導体膜)
14a   Nアモルファスシリコン層(スイッチング用不純物半導体層)
14db  Nアモルファスシリコン層(不純物半導体層)
14e   Nアモルファスシリコン層(アンプ用不純物半導体層)
15a   スイッチング用半導体層
15da  半導体構成層
15db  半導体層
15e   アンプ用半導体層
16    金属膜
16aa  スイッチング用ソース電極
16da,16dc   ソース電極
16ab  スイッチング用ドレイン電極
16db  ドレイン電極
16ba  アンプ用ソース電極
16ca  アンプ用ドレイン電極
18a,18b  導電膜
20    TFT基板
21,29    遮光層
25    液晶層(表示媒体層)
30    対向基板
40    液晶表示パネル

Claims (16)

  1.  絶縁基板に設けられたゲート電極と、
     上記ゲート電極を覆うように設けられたゲート絶縁膜と、
     上記ゲート絶縁膜上に上記ゲート電極に重なるように設けられた半導体層と、
     上記半導体層上に設けられ、上記ゲート電極に重なると共に互いに対峙するように配置されたソース電極及びドレイン電極とを備え、
     上記半導体層は、チャネル領域が規定された真性半導体層と、該チャネル領域が露出するように該真性半導体層に積層された不純物半導体層とを備えたフォトセンサー素子であって、
     上記不純物半導体層の上記チャネル領域側は、上記ドレイン電極から突出していることを特徴とするフォトセンサー素子。
  2.  請求項1に記載されたフォトセンサー素子において、
     上記不純物半導体層と上記ドレイン電極との間には、該不純物半導体層の上面を覆うように検出対象の光を透過する導電膜が設けられていることを特徴とするフォトセンサー素子。
  3.  請求項2に記載されたフォトセンサー素子において、
     上記導電膜は、透明導電膜であることを特徴とするフォトセンサー素子。
  4.  請求項2に記載されたフォトセンサー素子において、
     上記導電膜の膜厚は、10nm以下であることを特徴とするフォトセンサー素子。
  5.  請求項1乃至4の何れか1つに記載されたフォトセンサー素子において、
     上記真性半導体層は、アモルファスシリコンにより構成されていることを特徴とするフォトセンサー素子。
  6.  請求項1乃至4の何れか1つに記載されたフォトセンサー素子において、
     上記真性半導体層は、結晶性シリコンにより構成されていることを特徴とするフォトセンサー素子。
  7.  請求項6に記載されたフォトセンサー素子において、
     上記真性半導体層は、微結晶性シリコンにより構成されていることを特徴とするフォトセンサー素子。
  8.  フォトセンサー素子と、
     上記フォトセンサー素子に接続されたアンプ素子とを備えたフォトセンサー回路であって、
     上記フォトセンサー素子は、
     絶縁基板に設けられたゲート電極と、
     上記ゲート電極を覆うように設けられたゲート絶縁膜と、
     上記ゲート絶縁膜上に上記ゲート電極に重なるように設けられた半導体層と、
     上記半導体層上に設けられ、上記ゲート電極に重なると共に互いに対峙するように配置されたソース電極及びドレイン電極とを備え、
     上記半導体層は、チャネル領域が規定された真性半導体層と、該チャネル領域が露出するように該真性半導体層に積層された不純物半導体層とを備え、
     上記不純物半導体層の上記チャネル領域側は、上記ドレイン電極から突出していることを特徴とするフォトセンサー回路。
  9.  請求項8に記載されたフォトセンサー回路において、
     上記アンプ素子は、
     上記絶縁基板に設けられたアンプ用ゲート電極と、
     上記アンプ用ゲート電極を覆うように設けられた上記ゲート絶縁膜と、
     上記ゲート絶縁膜上に上記アンプ用ゲート電極に重なるように設けられたアンプ用半導体層と、
     上記アンプ用半導体層上に設けられ、上記アンプ用ゲート電極に重なると共に互いに対峙するように配置されたアンプ用ソース電極及びアンプ用ドレイン電極とを備え、
     上記アンプ用半導体層は、チャネル領域が規定されたアンプ用真性半導体層と、該チャネル領域が露出するように該真性半導体層に積層されたアンプ用不純物半導体層とを備え、
     上記アンプ用不純物半導体層の上記チャネル領域側の端縁は、上記アンプ用ソース電極及びアンプ用ドレイン電極の上記チャネル領域側の端縁と一致していることを特徴とするフォトセンサー回路。
  10.  マトリクス状に設けられた複数の画素と、
     上記各画素毎にそれぞれ設けられた複数のスイッチング素子と、
     上記各画素毎にそれぞれ設けられた複数のフォトセンサー素子とを備えた薄膜トランジスタ基板であって、
     上記各フォトセンサー素子は、
     絶縁基板に設けられたゲート電極と、
     上記ゲート電極を覆うように設けられたゲート絶縁膜と、
     上記ゲート絶縁膜上に上記ゲート電極に重なるように設けられた半導体層と、
     上記半導体層上に設けられ、上記ゲート電極に重なると共に互いに対峙するように配置されたソース電極及びドレイン電極とを備え、
     上記半導体層は、チャネル領域が規定された真性半導体層と、該チャネル領域が露出するように該真性半導体層に積層された不純物半導体層とを備え、
     上記不純物半導体層の上記チャネル領域側は、上記ドレイン電極から突出していることを特徴とする薄膜トランジスタ基板。
  11.  請求項10に記載された薄膜トランジスタ基板において、
     上記各スイッチング素子は、
     上記絶縁基板に設けられたスイッチング用ゲート電極と、
     上記ゲート電極を覆うように設けられた上記ゲート絶縁膜と、
     上記ゲート絶縁膜上に上記スイッチング用ゲート電極に重なるように設けられたスイッチング用半導体層と、
     上記スイッチング用半導体層上に設けられ、上記スイッチング用ゲート電極に重なると共に互いに対峙するように配置されたスイッチング用ソース電極及びスイッチング用ドレイン電極とを備え、
     上記スイッチング用半導体層は、チャネル領域が規定されたスイッチング用真性半導体層と、該チャネル領域が露出するように該真性半導体層に積層されたスイッチング用不純物半導体層とを備え、
     上記スイッチング用不純物半導体層の上記チャネル領域側の端縁は、上記ドレイン電極の上記チャネル領域側の端縁と一致しており、
     上記各スイッチング素子に重なるように遮光層が設けられていることを特徴とする薄膜トランジスタ基板。
  12.  請求項11に記載された薄膜トランジスタ基板において、
     上記各画素毎にそれぞれ設けられた複数のアンプ素子を有し、
     上記各アンプ素子は、
     上記絶縁基板に設けられたアンプ用ゲート電極と、
     上記アンプ用ゲート電極を覆うように設けられた上記ゲート絶縁膜と、
     上記ゲート絶縁膜上に上記アンプ用ゲート電極に重なるように設けられたアンプ用半導体層と、
     上記アンプ用半導体層上に設けられ、上記アンプ用ゲート電極に重なると共に互いに対峙するように配置されたアンプ用ソース電極及びアンプ用ドレイン電極とを備え、
     上記アンプ用半導体層は、チャネル領域が規定されたアンプ用真性半導体層と、該チャネル領域が露出するように該真性半導体層に積層されたアンプ用不純物半導体層とを備え、
     上記アンプ用不純物半導体層の上記チャネル領域側の端縁は、上記アンプ用ソース電極及びアンプ用ドレイン電極の上記チャネル領域側の端縁と一致しており、
     上記各アンプ素子に重なるように遮光層が設けられていることを特徴とする薄膜トランジスタ基板。
  13.  請求項10乃至12の何れか1つに記載された薄膜トランジスタ基板と、
     上記薄膜トランジスタ基板に対向するように設けられた対向基板と、
     上記薄膜トランジスタ基板及び対向基板の間に設けられた表示媒体層とを備えていることを特徴とする表示パネル。
  14.  絶縁基板にゲート電極を形成する第1工程と、
     上記ゲート電極を覆うようにゲート絶縁膜を形成する第2工程と、
     上記ゲート絶縁膜を覆うように真性半導体膜及び不純物半導体膜を順に成膜した後に、該真性半導体膜及び不純物半導体膜を上記ゲート電極に重なるようにパターニングして、半導体構成層を形成する第3工程と、
     上記半導体構成層を覆うように金属膜を成膜した後に、該金属膜及び上記半導体構成層をパターニングして、チャネル領域が規定された真性半導体層、及び該チャネル領域が露出するように該真性半導体層に積層された不純物半導体層を有する半導体層、上記ゲート電極に重なると共に上記不純物半導体層の上記チャネル領域側が突出するようにドレイン電極、並びに上記ゲート電極に重なると共に該ドレイン電極に対峙するようにソース電極を形成する第4工程とを備えることを特徴とするフォトセンサー素子の製造方法。
  15.  請求項14に記載されたフォトセンサー素子の製造方法において、
     上記第4工程では、上記金属膜上に上記チャネル領域となる部分が開口したレジストパターンを形成し、該レジストパターンを用いて上記金属膜及び半導体構成層を異方性エッチングにより除去して、上記真性半導体層及び不純物半導体層を形成した後に、上記レジストパターンを用いて上記金属膜を等方性エッチングにより除去して、上記ソース電極及びドレイン電極を形成することを特徴とするフォトセンサー素子の製造方法。
  16.  請求項14に記載されたフォトセンサー素子の製造方法において、
     上記第4工程では、上記金属膜上に上記チャネル領域となる部分が開口した第1レジストパターンを形成し、該第1レジストパターンを用いて上記金属膜及び半導体構成層を異方性エッチングにより除去して、上記真性半導体層及び不純物半導体層を形成し、続いて、上記第1レジストパターンを除去した後に、少なくとも上記ドレイン電極を形成するための第2レジストパターンを形成し、該第2レジストパターンを用いて上記金属膜を異方性エッチングにより除去することを特徴とするフォトセンサー素子の製造方法。
PCT/JP2010/006633 2009-12-25 2010-11-11 フォトセンサー素子、フォトセンサー回路、薄膜トランジスタ基板、表示パネル及びフォトセンサー素子の製造方法 WO2011077629A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/518,564 US8614493B2 (en) 2009-12-25 2010-11-11 Photosensor element, photosensor circuit, thin film transistor substrate, display panel, and method for manufacturing photosensor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-295809 2009-12-25
JP2009295809 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011077629A1 true WO2011077629A1 (ja) 2011-06-30

Family

ID=44195183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006633 WO2011077629A1 (ja) 2009-12-25 2010-11-11 フォトセンサー素子、フォトセンサー回路、薄膜トランジスタ基板、表示パネル及びフォトセンサー素子の製造方法

Country Status (2)

Country Link
US (1) US8614493B2 (ja)
WO (1) WO2011077629A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102487015A (zh) * 2010-12-03 2012-06-06 中国科学院微电子研究所 一种半导体结构及其制造方法
US9331667B2 (en) * 2014-07-21 2016-05-03 Triquint Semiconductor, Inc. Methods, systems, and apparatuses for temperature compensated surface acoustic wave device
CN113764533A (zh) * 2017-08-24 2021-12-07 上海耕岩智能科技有限公司 红外光敏晶体管、红外光侦测器件、显示装置、制备方法
KR102595916B1 (ko) * 2018-03-09 2023-10-31 삼성디스플레이 주식회사 표시장치
CN113299674B (zh) * 2021-05-08 2022-09-09 武汉华星光电技术有限公司 阵列基板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897877A (ja) * 1981-11-26 1983-06-10 シ−メンス・アクチエンゲゼルシヤフト 薄膜mosフオト・トランジスタおよびその製造方法ならびに駆動方法
JPH06133224A (ja) * 1992-10-16 1994-05-13 Casio Comput Co Ltd フォトセンサシステム及びフォトセンサシステムに使用されるフォトセンサ
JP2009302192A (ja) * 2008-06-11 2009-12-24 Casio Comput Co Ltd 光電変換装置及びそれを備えた表示パネル

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847210A (en) * 1988-08-05 1989-07-11 Motorola Inc. Integrated pin photo-detector method
US5461419A (en) 1992-10-16 1995-10-24 Casio Computer Co., Ltd. Photoelectric conversion system
US5435608A (en) * 1994-06-17 1995-07-25 General Electric Company Radiation imager with common passivation dielectric for gate electrode and photosensor
TW331667B (en) * 1995-09-05 1998-05-11 Canon Kk Photoelectric converter
US5976978A (en) * 1997-12-22 1999-11-02 General Electric Company Process for repairing data transmission lines of imagers
JP2005129909A (ja) 2003-09-19 2005-05-19 Semiconductor Energy Lab Co Ltd 光センサー装置および電子機器
JP5297629B2 (ja) * 2007-11-01 2013-09-25 株式会社半導体エネルギー研究所 半導体装置の作製方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897877A (ja) * 1981-11-26 1983-06-10 シ−メンス・アクチエンゲゼルシヤフト 薄膜mosフオト・トランジスタおよびその製造方法ならびに駆動方法
JPH06133224A (ja) * 1992-10-16 1994-05-13 Casio Comput Co Ltd フォトセンサシステム及びフォトセンサシステムに使用されるフォトセンサ
JP2009302192A (ja) * 2008-06-11 2009-12-24 Casio Comput Co Ltd 光電変換装置及びそれを備えた表示パネル

Also Published As

Publication number Publication date
US8614493B2 (en) 2013-12-24
US20120273785A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
US8368068B2 (en) Display with photo sensor and manufacturing method thereof
US10276593B2 (en) Active matrix substrate and method for manufacturing same, display device using active matrix substrate
US9471182B2 (en) Semiconductor device having sensor circuits with amplifier circuits and light-receiving elements
JP4925929B2 (ja) 表示装置
JP5512800B2 (ja) 半導体装置
US9293594B2 (en) Circuit board and display device
US20130092927A1 (en) Circuit board, display device, and method for manufacturing circuit board
TWI464808B (zh) 薄膜電晶體陣列基板及其製作方法
JP2008096523A (ja) 表示装置
TWI424558B (zh) 顯示器
KR101790161B1 (ko) 광 센서, 광 센서의 제조 방법, 및 광 센서를 포함하는 액정 표시 장치
US8450740B2 (en) Visible sensing transistor, display panel and manufacturing method thereof
WO2014153864A1 (zh) 阵列基板及其制造方法和显示装置
US8610226B2 (en) Photosensor element, photosensor circuit, thin-film transistor substrate, and display panel
WO2011077629A1 (ja) フォトセンサー素子、フォトセンサー回路、薄膜トランジスタ基板、表示パネル及びフォトセンサー素子の製造方法
US20060258080A1 (en) Vertical diode, matrix position sensitive apparatus and manufacturing method of the same
TWI413829B (zh) 反射式觸控顯示面板及其製造方法
US20120319978A1 (en) Display device
WO2010146736A1 (ja) 表示パネル用基板および表示装置
WO2010146737A1 (ja) 表示パネル用基板および表示装置
JP4251622B2 (ja) 液晶表示装置
WO2010122619A1 (ja) 表示装置、電子機器
JP2872233B2 (ja) 光ペン入力機能付き液晶表示装置
JP2004140338A (ja) 光センサ素子、これを用いた平面表示装置、光センサ素子の製造方法、平面表示装置の製造方法
TWI440935B (zh) 一種應用於顯示器之長時間照光電流衰退現象的校正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13518564

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10838869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP