WO2011077604A1 - Wall panel - Google Patents

Wall panel Download PDF

Info

Publication number
WO2011077604A1
WO2011077604A1 PCT/JP2010/004150 JP2010004150W WO2011077604A1 WO 2011077604 A1 WO2011077604 A1 WO 2011077604A1 JP 2010004150 W JP2010004150 W JP 2010004150W WO 2011077604 A1 WO2011077604 A1 WO 2011077604A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
wall panel
folded plate
face material
bearing
Prior art date
Application number
PCT/JP2010/004150
Other languages
French (fr)
Japanese (ja)
Inventor
田中浩史
河合良道
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to CN201080058126.4A priority Critical patent/CN102959161B/en
Publication of WO2011077604A1 publication Critical patent/WO2011077604A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/38Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels
    • E04C2/384Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels with a metal frame
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/08Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of metal, e.g. sheet metal

Definitions

  • the present invention relates to a wall panel used in a building such as a thin plate lightweight steel structure.
  • the folded plate and the frame member are rigidly joined such that the folded plate is welded to the frame member or fixed to the frame member through a reinforcing member.
  • the frame material itself also forms a rigid frame and is fixed to a building frame such as a beam.
  • Such a load-bearing wall is configured such that when a horizontal force such as an earthquake acts on a building, the folded plate bears a shearing force to ensure the horizontal strength of the building. Therefore, the retained horizontal strength of the building is determined based on the shear strength of the folded plate.
  • Patent Document 3 proposes that a folded plate is screwed to a vertical frame and the folded plate is also used as a reinforcing material for the vertical frame. Furthermore, in Patent Document 3, a folded plate is effective as a steel plate face material for preventing deformation of a frame material made of a thin lightweight steel, and further, by arranging joints in an orthogonal direction with respect to the frame material, It is described that the bearing wall is excellent in yield strength and deformation performance.
  • Patent Document 4 avoids the overall buckling and local buckling of the face material so as to cause the bearing material to deform under pressure at the screw joint. It has a folded plate shape.
  • the screw head is enlarged so that the screw does not come out of the long hole formed by the bearing deformation of the screw hole, and so that local deformation (flaw) around the screw hole does not occur. It has been proposed that the screw shaft diameter should not be too large.
  • the present invention aims to solve the above-mentioned problems and to provide a wall panel that can stably secure a supporting pressure deformation of a screw joint portion in a folded plate and has excellent deformation performance.
  • the present invention employs the following means in order to solve the above problems and achieve the object. That is, (1)
  • the wall panel of the present invention has a pair of frame members arranged opposite to each other with a space between them; fixed to these frame members, and crests and troughs are alternately formed from one to the other.
  • a surface material that is a folded plate of a thin steel plate; and a screw that fixes a valley portion of the surface material to each frame material; and when the in-plane shear force acts on each frame material,
  • a wall panel for a load bearing wall in which the surrounding portion of the screw is resisted by bearing deformation, and the ratio of the screw withdrawal resistance to the bearing load resistance of the face material is the The shaft portion is set to a predetermined value that is inclined.
  • the predetermined value may be 0.7 or more.
  • the predetermined value may be 1.6 or less.
  • the wall panel of the present invention described in (1) or (2) further includes a washer into which a screw is inserted, and a ratio obtained by dividing the outer diameter of the washer by the shaft diameter of the shaft portion of the screw. However, it may be 3.0 or more.
  • the predetermined value may be 4.0 or less.
  • the frame member is arranged in a direction orthogonal to the first frame member arranged in the extending direction of the valley part and the extending direction of the valley part.
  • a square frame is formed by the first frame member and the second frame member, and a washer is inserted only in a screw that fixes the first frame member to the valley portion of the face member. May be.
  • a gap may be formed between the hole of the washer and the shaft portion of the screw.
  • the ratio obtained by dividing the difference obtained by subtracting the shaft diameter of the screw shaft from the inner diameter of the washer by the thickness of the washer is 0.1 to It may be 0.6.
  • the breaking elongation of the face material may be 1% or more and less than 16%.
  • the pitch of the screw threads may be equal to or less than the thickness of each frame member.
  • the yield ratio of the face material may be 77% to 96%.
  • At least one side of the face material along the extending direction of the valley portion is centered on the screw hole through which the shaft portion of the screw is inserted. Ribs that are orthogonal to the extending direction may be further provided.
  • the wall panel of the present invention described in the above (1), since the ratio of the screw proof stress to the bearing proof strength of the face material is set to a predetermined value, the rapid proof strength due to screw detachment is set. The decrease can be suppressed. Thereby, the screw periphery of a face material can be stably plastically deformed, and the energy generated in the composition surface can be absorbed. Further, it is possible to prevent a sudden decrease in the proof stress of the load bearing wall as compared with the conventional load bearing wall after improving the deformation performance of the face material. As a result, the wall panel is excellent in deformation performance. Further, by utilizing the inclination of the shaft portion of the screw, the plasticized face material gathered in the vicinity of the screw gathers at the tip portion of the screw hole and is easily crushed and eliminated.
  • the tip of the screw is a frame material before the screw is inclined. Can be prevented from coming off.
  • the screw since the ratio of the screw pull-out proof strength to the bearing proof strength of the face material is 1.6 or less, the screw (particularly, the head of the screw) is the face material. The screw can be tilted without going underneath.
  • the screw (especially the head of the screw) is placed under the face material by arranging the washer so as to overlap the range in which the stress around the screw is largely applied.
  • the screw can be tilted without being submerged.
  • the screw head does not sink under the face material. Even if the deformation progresses, the face material can exhibit a stable bearing strength.
  • the wall panel of the present invention described in (5) above by using a washer, the upper limit of the ratio of the unscrewing strength of the screw to the bearing strength of the face material can be relaxed.
  • the screw when the predetermined value is 4.0 or less, the screw can maintain the yield strength, and the screw can be inclined without being submerged under the face material. Further, when a square frame is formed by the first frame member and the second frame member, the square frame is fixed to the first frame member as compared with the bearing deformation of the face member fixed to the second frame member. The bearing deformation of the face material is greater. Therefore, according to the wall panel of the present invention described in the above (6), since the washer is inserted only into the screw that fixes the face material to the first frame member, the screw (particularly, the head of the screw). ) Can be suppressed from entering under the face material, and the assembly process and the number of parts can be reduced. That is, the overall production cost can be suppressed while stably securing the supporting pressure deformation around the screw in the face material.
  • the screw is inclined using this gap.
  • the screw is inclined at an appropriate inclination angle by defining the inner diameter dimension of the washer, the axial diameter dimension of the shaft portion of the screw, and the thickness dimension of the washer. be able to.
  • the breaking elongation of the face material is 1% or more and less than 16%.
  • the plasticized portion of the face material around the screw supported by the screw is easily crushed and eliminated.
  • the face material can be stably plastically deformed. Furthermore, stable proof stress and deformation performance can be exhibited.
  • high YR steel having a yield ratio of 77% to 96% is used as the face material, not low YR (yield ratio) steel.
  • the plasticizing region in the case where the periphery of the screw hole of the face material is plastically deformed by the bearing pressure of the screw shaft portion can be narrowed. Therefore, since the hole width of the screw hole into which the screw is inserted is not extremely widened, the screw (particularly, the head of the screw) can be prevented from entering the face material, and the load bearing wall is greatly deformed by shear deformation. Even so, the proof stress of the load bearing wall can be stabilized.
  • the rib can prevent local buckling in the direction orthogonal to the direction in which the folded plate is plasticized, and the predetermined direction of the bearing wall
  • the face material can be plasticized.
  • the wall panel of the present invention described in (13) above, when the screw periphery of the folded plate is plasticized with screws, the thin plate portion is plasticized.
  • wrinkles can be prevented from occurring in the face material by limiting the plasticizing range to a specific place.
  • a wrinkle indicates, for example, local out-of-plane buckling.
  • the strength-decreasing portion is plasticized.
  • the proof stress of the load bearing wall can be stabilized even when the face material is greatly deformed.
  • FIG. 1st Embodiment of this invention It is a front view which shows the wall panel applied to the load-bearing wall of 1st Embodiment of this invention. It is a side view of the same wall panel of FIG. It is the sectional view on the AA line of the same wall panel of FIG. It is a schematic perspective view of the same wall panel shown in FIG. It is a partial expansion perspective view of the edge part of the same wall panel shown in FIG. It is explanatory drawing which shows the destruction mode in the screw junction part of the same wall panel. It is explanatory drawing which shows the destruction mode in the screw junction part of the same wall panel. It is explanatory drawing which shows the destruction mode in the screw junction part of the same wall panel. It is explanatory drawing which shows the destruction mode in the screw junction part of the same wall panel. It is explanatory drawing which shows the destruction mode in the screw junction part of the same wall panel. It is explanatory drawing which shows the destruction mode in the screw junction part of the same wall panel.
  • FIG. 7B is a diagram comparing envelopes of a load-displacement relationship obtained by an element test of the screw joint portion of the folded plate shown in FIG. 7A.
  • FIG. 7B is a diagram comparing envelopes of a load-displacement relationship obtained by an element test of the screw joint portion of the folded plate shown in FIG. 7A.
  • FIG. 10B It is a fragmentary sectional view in case a screw inclines with respect to a folded plate with small breaking elongation. It is a perspective view of the plasticizing part of the folded plate in FIG. 10D. It is sectional drawing of the screw joint part which has joined the frame material and the face material in the state in which the screw inclined.
  • FIG. 11B is a cross-sectional view showing the relationship between the screw diameter and the thickness dimension of the outermost edge of the face material in the BB cross section of FIG. 11A.
  • FIG. 16 is a graph comparing envelopes of load-displacement relationships obtained in the element test shown in FIGS. 15A to 15D.
  • FIG. FIG. 16 is a graph comparing envelopes of load-displacement relationships obtained in the element test shown in FIGS. 15A to 15D.
  • FIG. 16 is a graph comparing the load-displacement envelopes obtained in the same element test shown in FIGS. 15A to 15D.
  • FIG. It is a front view which shows the dimension shape of the test body used by the proof stress test of a wall panel. It is a graph which shows the load-deformation angle relationship obtained by the proof stress test using the test body shown in FIG. It is sectional drawing for demonstrating the relationship between the screw thread pitch of a screw, and the detachment
  • FIG. 24B is a front view showing a state where the face material is plastically deformed in a state where the frame material and the face material are deviated from the state of FIG.
  • FIG. 24A is a figure corresponding to Drawing 24A, and is a front view showing the state where support pressure is acting on a face material of high YR, and a part is sectioned.
  • FIG. 26B is a partial cross-sectional view of the wall panel as viewed from the CC line in FIG. 26A.
  • FIG. 1 is a front view showing a wall panel 1 according to an embodiment of the present invention.
  • FIG. 2 is a side view of the wall panel 1.
  • 3 is a cross-sectional view of the wall panel 1 taken along line AA of FIG.
  • FIG. 4 is a perspective view of the wall panel 1.
  • FIG. 5 is an enlarged perspective view showing a part of the wall panel 1.
  • the wall panel 1 is used as a load-bearing wall in a framed wall construction building. For example, after the wall panel 1 is installed on a foundation, the lower end portion of the wall panel 1 is connected to an anchor bolt, while the upper end portion of the wall panel 1 is connected to a building beam or a floor panel. Alternatively, the upper and lower ends of the wall panel 1 are connected to the upper and lower beams and the floor panel.
  • the wall panel 1 is composed of a combination of a frame member 2 and a folded plate 3.
  • the folded plate 3 is a surface material made of a thin steel plate, and as shown in FIG. 2, is a surface material in which a plurality of peak portions 6 and a plurality of valley portions 7 are alternately formed from one side to the other.
  • the frame member 2 is made of a thin lightweight steel (grooved steel), and as shown in FIG. 1, a pair of vertical frame members (first frame members) arranged in the extending direction of the valley portion 7 of the folded plate 3. ) 2A and a pair of horizontal frame members (second frame members) 2B arranged along the direction orthogonal to the extending direction of the valley 7 of the folded plate 3 form, for example, a rectangular square frame Yes. Further, a frame member 2C is provided between the vertical frame members 2A. Further, the folded plate 3 is joined to one surface of a quadrilateral frame constituted by the frame member 2A and the frame member 2B. As the frame wall construction method, for example, a relatively small building of about 2 to 4 floors is suitable. In addition to the wall panel 1, pillars, beams, floor panels, roofs, exterior materials, interiors It is composed of materials.
  • the frame member 2 of the wall panel 1 includes a web 4 and a pair of flanges 5 that are continuous with both ends of the web 4, and has a substantially C-shaped cross section.
  • the vertical frame material 2A provided in a both-ends edge consists of two channel steels mutually joined by the webs 4 mutually.
  • the screw 8 is a tapping screw or the like, and the screw 8 penetrating the valley portion 7 of the folded plate 3 from the opposite side of the frame member 2 is screwed into the frame member 2, whereby the folded plate 3 is attached to the frame member 2.
  • the trough 7 is fixed.
  • ⁇ 1 is a coefficient representing a condition for preventing the head portion 8A of the screw 8 from coming out of the screw hole 9 generated in the folded plate 3 due to the support pressure of the shaft portion 8B.
  • ⁇ 1 is desirably 7.0 or more. According to such a configuration, even if the screw 8 is repeatedly subjected to a load and the periphery of the shaft portion 8B of the folded plate 3 is deformed by supporting pressure, the screw hole 9 of the screw 8 becomes large. The head 8 ⁇ / b> A is caught on the folded plate 3. Thereby, it can prevent that the screw 8 falls off from the folded plate 3, and can ensure a deformation
  • ⁇ 2 is a coefficient representing a condition for preventing the growth of the screw hole 9 from being hindered by local buckling generated in the folded plate 3 by the shaft portion 8B of the screw 8.
  • ⁇ 2 is desirably 13 or more. According to such a configuration, a long hole starting from the screw hole 9 is formed in the folded plate 3 by the support pressure of the shaft portion 8B of the screw 8, so that the support pressure caused by wrinkles around the shaft portion 8B is formed. Compared with deformation, higher deformation performance can be ensured.
  • the above-described conditions of the screw joint portion 8C which is a joint portion between the frame member 2 and the folded plate 3 and the screw 8 in the wall panel 1, are set.
  • the following formula (3) is used. .
  • R as R as3-1 ⁇ min ( ⁇ 3 ⁇ R as2 , ⁇ 4 ⁇ R as3 -2 , ⁇ 5 ⁇ R as4 ) (3)
  • R as2 is the pull-out resistance (kN) of the screw 8 shown in FIG. 6A and is calculated by the following equation (4).
  • R as3-1 is the bearing strength (kN) around the screw of the folded plate 3 shown in FIG. 6B, and is calculated by the following equation (5).
  • R as3-2 is the bearing strength (kN) around the screw of the frame member 2 shown in FIG. 6C, and is calculated by the following equation (6).
  • R as4 is the axial shear strength (kN) of the screw 8 shown in FIG. 6D and is calculated by the following equation (7).
  • t 1 is the design plate thickness (mm) of the folded plate 3
  • t 2 is the design plate thickness (mm) of the frame member 2
  • F u1 is
  • F u2 is the tensile strength (N / mm 2 ) of the frame member 2
  • d 1 is the shaft diameter of the shaft portion 8 B of the screw 8.
  • Ad is the axial cross-sectional area (mm 2 ) of the screw 8
  • D is the head diameter (mm) of the screw 8.
  • the pull-out resistance R as2 (kN) of the screw 8 can be obtained by the following equation (4).
  • R as2 Cs ⁇ Ce ⁇ d 1 ⁇ t 2 ⁇ F u2 (4)
  • Cs 1.3-0.3 ⁇ (d 1/ 5)
  • Ce 0.28 ⁇ 3.95 ⁇ ⁇ 0.5 ⁇ (t 2 / d 1 ) 0.5
  • is an influence coefficient and is calculated by the following equation.
  • 3.1-5.6 (t 1 / t 2 ) +3.5 (t 1 / t 2 ) 2
  • Cs is a coefficient considering the screw diameter.
  • Ce is a coefficient that takes into consideration the screw diameter and the frame material plate thickness.
  • the bearing strength R as3-1 (kN) around the screw of the folded plate can be obtained by the following equation (5).
  • R as3-1 Cs ⁇ Ce ⁇ d 1 ⁇ t 1 ⁇ F u1 (5)
  • Ce 1 is a coefficient considering the screw diameter and the folded plate thickness.
  • Ce 2 is a constant based on the experimental results.
  • the screw bearing strength R as3-2 (kN) of the frame member 2 can be obtained by the following equation (6).
  • R as3-2 Cs ⁇ Ce ⁇ d 1 ⁇ t 2 ⁇ F u2 (6)
  • Ce 1 is a coefficient considering the screw diameter and the frame material plate thickness.
  • Ce 2 is a constant based on the experimental results.
  • the axial shear strength R as4 (kN) of the screw 8 can be obtained by the following equation (7).
  • R as4 fs ⁇ A d ⁇ 120 ⁇ A d (7)
  • fs is the reference strength (N / mm 2 ) of the drill screw.
  • the fracture mode at this joint portion is the bearing resistance strength R as3-1 of the folded plate 3 around the screw. Determined by.
  • the folded plate 3 in a portion penetrated by the screw 8 is deformed by pressure, so that the screw 8 is pulled out (screwing out resistance R of the screw 8). as2 ), deformation around the screw of the frame member 2 (bearing resistance strength Rs3-2 around the screw of the frame member 2), fracture of the shaft of the screw 8 (shaft shear strength R as4 of the screw 8), etc. do not occur.
  • ⁇ 3 to ⁇ 5 do not need to be 1.0 because they may be expressed after other modes are expressed.
  • ⁇ 4 to ⁇ 5 have no upper limit, and the lower limit is preferably 0.5 or more.
  • ⁇ 3 is preferably in the range of 0.7 to 4.0 because if it is too small, the screw is likely to come out, and if it is too large, the screw may not tilt.
  • the shear strength Q U in the entire wall panel 1 is set so as to satisfy the following equation (8).
  • Q b in the formula (8) is a shear strength (kN) based on the allowable shear strength R as of the joint portion shown in the following formula (9), and Q y is the shear of the folded plate 3 shown in the formula (10).
  • Equation (9) R as is the long-term allowable shear strength of the screw joint, and the maximum strength is about three times that. However, since it is difficult for all the screws 8 to bear the load equally, ⁇ 9 is set to 3.0 to 2.0. As shown in FIG. 4, h is the width (mm) of the wall panel 1, and p is the screw pitch (mm) of the screw 8.
  • h is the width (mm) of the wall panel 1 shown in FIG. 4
  • t 1 is the thickness (mm) of the folded plate 3 shown in FIG. 5
  • F 1 is the F of the folded plate 3. Value (N / mm 2 ).
  • I x is a moment of inertia of the cross section per unit length with respect to the neutral axis in the direction orthogonal to the direction of the folding line of the folded plate 3, and is calculated by the equation (11a).
  • t 1 is the thickness (mm) of the folded plate 3
  • is the ratio (L / L1) of the actual dimension (projected length) L of the peak part to the length dimension L1 when the peak part in the direction orthogonal to the folding line direction shown in FIG. This is the rate of decrease in the length of the crests of the folded plate 3.
  • I y is a secondary moment of the cross section per unit length with respect to the neutral axis in the direction parallel to the folding line direction of the folded plate 3, and is calculated by the equation (11b).
  • the overall buckling strength of the folded plate 3 determined by such an equation (11) is a failure mode in which the entire folded plate 3 buckles across a plurality of peaks 6 and valleys 7. It is the strength when it occurs.
  • the big factor which determines the whole buckling strength is the height d of the peak part of the peak part 6, and the whole buckling strength can be ensured by setting the height d of this peak part to a predetermined value or more.
  • the local buckling strength of the valley portion 7 of the folded plate 3 determined by such an expression (12) is the strength when a fracture mode in which each valley portion 7 buckles occurs. .
  • a major factor that determines the local buckling strength is the width-thickness ratio ⁇ of the valley portion 7. That is, the local buckling strength can be ensured by setting the valley width a of the valley portion 7 to a predetermined value or less.
  • the folded plate 3 is more likely to yield shear.
  • the periphery of the screw of the folded plate 3 is deformed under pressure, and the screw 8 is inclined.
  • part of the burden load applied to the wall panel 1 is changed to a force for inclining the screw 8.
  • the folded plate 3 will hold the burden load, and the shear yield of the folded plate 3 can be prevented. Therefore, brittle shear yield can be prevented, and toughness can be secured by supporting pressure deformation around the screw of the folded plate 3, and the energy absorption performance of the wall panel 1 can be enhanced.
  • the shear yield strength determined by the overall buckling of the folded plate 3 is greatly affected by the height of the crest of the folded plate 3, and by setting the crest height to a predetermined value or larger, The shear strength determined by the bearing strength of can be exceeded.
  • the valley width dimension of the folded plate 3 is set by suppressing the valley width dimension to a predetermined value or less.
  • the shear strength determined by the bearing strength around the screw can be exceeded.
  • the joint strength at the joint between the folded plate 3, the frame member 2 and the screw 8 is determined by the bearing strength around the screw of the folded plate 3, and it is folded when an external force is applied.
  • the periphery of the screw of the plate 3 is configured to deform under pressure.
  • a burden load can be hold
  • the structural characteristic coefficient can be set small. Thereby, the number of bearing walls (wall length) can be reduced, and the frame material plate thickness and the strength of the joint hardware can be suppressed, thereby increasing the degree of freedom in economic and architectural planning. That is, by joining the frame member 2 and the folded plate 3 by screwing, the joining structure is simplified, and the labor and cost of manufacturing and construction can be reduced.
  • the ratio of the proof resistance of the screw 9 to the bearing strength of the folded plate 3 (R as2 / R as3-1 ) is the shaft portion of the screw 8 when the folded plate 3 is deformed by bearing pressure.
  • 8A is set to the predetermined value which inclines. Thereby, it is possible to prevent the screw 8 from slipping out of the frame member 2 and the screw 8 (particularly, the head 8A) from entering the folded plate 3.
  • the ratio of the pullout yield strength of the screw 9 to the bearing strength of the folded plate 3 is 0.7 or more. Thereby, it can prevent that the front-end
  • the ratio of the pull-out resistance of the screw 9 to the bearing strength of the folded plate 3 is preferably 1.6 or less. As a result, the screw 8 can be inclined without the screw 8 entering the folded plate 3.
  • the ratio of the proof stress of the screw 8 to the bearing strength of the folded plate 3 may be in the range of 0.7 to 4.0.
  • FIG. 7A shows the state of the element test of the screw joint portion.
  • the element loading test apparatus 14 includes a first force applying jig 16 having a bifurcated mounting arm 15 on one side and a thick plate connecting steel plate on the other side. And a second force applying jig 17 having.
  • the both ends of the folded plate piece 3a which is a part of the folded plate 3, are arranged so that the fold line is directed along the bifurcated direction of the arm 15.
  • the face material 3 of the trough 7 in the direction of the folding line is fixed by fixing bolts 19 through three washers 18 respectively.
  • the web 4 on one end side of the frame member piece 2a which is a part of the frame member 2 is joined to the lower surface of the central portion of the folded plate piece 3a by a screw 8 such as a screw.
  • the other end portion of the frame member piece 2 a is superposed on one end portion of the thick plate connecting steel plate 20 and fixed by three bolts 19. Further, the other end of the thick plate connecting steel plate 20 is superposed on the second pressure jig 17 and fixed by a washer and three bolts 19.
  • the conditions for the folded plate piece 3a, the frame member piece 2a, and the screw 8 in the test are as follows.
  • the cross-sectional shape of the folded plate piece 3a is the shape shown in FIG.
  • the frame piece 2a is SGC400 and has a plate thickness of 1.6 mm, the web width dimension is 89 mm, and the flange width is 44.5 mm.
  • the screw 8 that joins the folded plate 3 and the frame member 2a in one place is a hexagonal head screw having a nominal diameter of 4.8 mm, and extends over the folded plate 3 and the frame member 2a. And it screwed in and joined to the trough part 7 of the folded plate 3 until the hexagon head contacted.
  • Each specimen of the folded plate piece 3a is a specimen using four types of steel materials as shown in Table 1.
  • the load-displacement relationship obtained in this test is shown in FIGS. 9A and 9B.
  • the specimen of the steel material B has a ratio of the proof stress of the screw 8 to the bearing strength of the face material 3 of 0.68, and exhibits sufficient deformation performance. As a result, the lower limit of the ratio of the yield strength of the screw 8 to the bearing strength of the face material 3 was set to 0.7.
  • the steel material B2 test body has the same surface material 3 and screw diameter as the steel material B test body, but the frame material 2 is overlapped to increase the pull-out resistance of the screw 8, and the screw 8 is less inclined. ing.
  • the specimen of the steel material B2 has a deformation ratio of 1.66, which is a ratio of the yield strength of the screw 8 to the bearing strength of the face material 3, which is 1.66.
  • the specimen of the steel material A has a ratio of the pull-out resistance of the screw 8 to the bearing capacity of the face material 3 of 1.44, and exhibits sufficient deformation performance. Accordingly, the upper limit of the ratio of the yield strength of the screw 8 to the bearing strength of the face material 3 was set to 1.6. This upper limit is a numerical value when a commercially available screw is used, and the upper limit becomes higher when a large-diameter washer described later is used.
  • the specimen D of the steel material D was poor in deformation performance even though the ratio of the yield strength of the screw 8 to the bearing capacity of the face material 3 was higher than that of the steel B specimen. This is because the steel material B is a special low fracture elongation steel and the fracture mechanism is different. When considering only the general steel material D, it is considered that the lower limit of the ratio of the yield strength of the screw 8 to the bearing strength of the face material 3 is increased.
  • the face material 3 may be subjected to bearing deformation even when the screw pull-out resistance is smaller than the face material bearing fracture resistance.
  • shaft diameter d 1 of the screw 8 is small, the thickness t 1 of the steel sheet by increasing, it is possible to raise the upper limit of the elongation at break.
  • d 1 is 4.2 mm or more and t 1 is 0.8 mm or less, so the upper limit of elongation at break is obtained by the following equation (13a).
  • (4.2 / 2 + 0.8) / (4.2 / 2 + 0.8 / 2) -1 0.16> El (13a)
  • the breaking elongation of the folded plate 3 is less than 16%.
  • the shaft portion 8B of the screw 8 is inclined. When it rises along, it is crushed and easily removed.
  • the elongation at break of the face material 3 is less than 1%, cracks are likely to occur during folding plate processing, which is not desirable. If the elongation at break of the face material 3 exceeds 16%, it becomes difficult to grind, which is not desirable.
  • the breaking elongation of the steel material constituting the folded plate 3 is less than 16%
  • the steel plate of the folded plate 3 around the screw hole 9 is plasticized by the shaft portion 8B of the screw 8 and gathers at the tip of the screw 8.
  • the steel material of the folded plate 3 is crushed and does not cling to the shaft 8B of the screw 8.
  • resistance to the formation of the screw hole 9 elongated in the bearing direction by the shaft portion 8B of the screw 8 can be eliminated, and deformation performance can be ensured while stabilizing the yield strength of the folded plate 3 and the wall panel 1.
  • FIG. 12 shows the stress distribution around the bolt hole
  • FIG. 13 shows the stress value depending on the distance from the bolt core.
  • the stress change gradient is large. Therefore, by using a washer in this range, it is possible to suppress the screw head from entering the face material.
  • FIG. 13 it can be seen that the higher the yield ratio YR of the steel sheet (indicated by ⁇ in FIG. 13), the greater the stress change gradient and the narrower the plasticization region.
  • FIGS. 12 shows the yield ratio YR of the steel sheet (indicated by ⁇ in FIG. 13), the greater the stress change gradient and the narrower the plasticization region.
  • the ratio of the outer diameter Dw of the washer 33 divided by the shaft diameter d 1 of the shaft portion 8B of the screw 8 (outer diameter Dw / shaft diameter d 1 of the shaft portion 8B of the screw 8).
  • the value is 3.0 or more, and it is considered that a sufficient effect can be obtained.
  • the shaft diameter d 1 of the shaft 8B Whereas screw 8 of 4.2 mm, using an outer diameter 21mm washer 33 is five times the shaft diameter d 1 of the shaft portion 8B of the screw 8, in FIG. 7A
  • the element test of the screw joint part by the apparatus shown and the wall panel loading test by the apparatus of FIG. As a result, when the washer 33 was not inserted, as shown in FIG.
  • the head portion 8A of the screw 8 entered under the face material 3 and could not hold the proof stress, and the load bearing wall 1 was severely deteriorated.
  • each screw 8 retained the yield strength, and the yield strength could be retained even when the entire bearing wall 1 was greatly deformed.
  • the bearing deformation of the face member 3 fixed to the vertical frame member 2A disposed on both ends is larger than that of the horizontal frame member 2B. Therefore, the washer 33 may be inserted only into the screw 8 that fixes the vertical frame member 2 ⁇ / b> A shown in FIG. 1 to the valley portion 7 of the face member 3. Thereby, the overall manufacturing cost can be suppressed while stably securing the bearing deformation around the screw 8 in the face material 3.
  • the clearance was smaller, wrinkles of the folded plate 3 occurred from the outer peripheral edge of the washer 33, and local buckling of the valley portion 7 of the folded plate 3 was suppressed.
  • wrinkles of the folded plate 3 were generated from the screw holes, and local buckling of the valley portions 7 of the folded plate 3 occurred early.
  • FIG. 15A shows the state of the element test of the screw joint.
  • the apparatus shown in FIG. 7 replaces the positions of screws and fixing bolts with respect to the apparatus shown in FIG. 7A.
  • folded plate piece 3a As the folded plate piece 3a, five types of folded plate element pieces having different shapes and thicknesses were manufactured and tested.
  • the cross section of the folding plate piece 3a is a surface material shape, a shape shown in FIG. 16, SGC400 of 0.55 mm (yield point 373N / mm 2, a tensile strength of 505N / mm 2, elongation at break 32%) and did.
  • SGC400 As the frame member 2a, SGC400 having a plate thickness of 1.6 mm was used. The web width dimension was 89 mm, and the flange width was 44.5 mm.
  • the specimen of the steel material E1 exhibits a sufficient deformation performance because the ratio of the proof stress of the screw 8 to the bearing strength of the folded plate piece 3a which is a face material is 1.32. .
  • the steel E2 test body in which two frame material pieces 2a are stacked has a ratio of the proof stress of the screw 8 to the bearing strength of the folded plate piece 3a, which is a face material, as high as 3.16. Was scarce.
  • the test body of steel E3 having a washer outer diameter of 21 mm and a clearance between the washer inner diameter and the screw shaft diameter of 0.3 mm exhibited sufficient deformation performance.
  • FIG. 18 shows a wall strength test body as a basis for setting an upper limit value of the ratio obtained by subtracting the shaft diameter of the screw shaft from the inner diameter of the washer by the thickness of the washer.
  • FIG. 19 shows the load-deformation angle relationship obtained using the load test apparatus of FIG. As shown in FIG. 18, screws with washers were used only on the left and right ends of the outer periphery, and screws without washers were used for the other bearing walls. That is, as described above, the washer 33 is inserted only into the screw 8 that fixes the vertical frame member 2A to the face member 3 having a large bearing deformation.
  • the thread pitch P of the screw 8 such as a drilling tapping screw is the plate thickness of the flange 5 in the frame member 2. If it exceeds the dimension, the screw thread will not catch on the frame material at 360 degrees all around. As a result, as shown in FIG. 20, when the screw 8 is inclined, the resistance force cannot be exerted, and the risk of the screw 8 coming out increases.
  • the pitch of the screw threads of the screw 8 in the screw joint portion 8C is equal to or less than the plate thickness dimension of the frame member 2, the screw thread in the frame member 2 even when the screw 8 is inclined in the screw joint portion 8C. It can be caught at 360 degrees around the entire circumference, preventing the screw 8 from coming off from the frame member 2, and exhibiting a stable proof stress.
  • Drilling tapping screws with nominal diameters of 4.8 mm, 6.0 mm, and 8.0 mm are known, but the thread pitch is 1.6 mm when the nominal diameter is 4.8 mm, and the nominal diameter is The nominal diameter and pitch are not proportional to 6.0 mm and 1.8 mm, and the nominal diameter is 8.0 mm and 1.0 mm. Therefore, it is preferable to use a screw 8 having a smaller thread pitch than the thickness of the flange 5 of the frame member 2.
  • a comparative test by a load test for pushing and pulling was performed on a wall panel using a folded plate made of three kinds of steel, for the bearing deformation of the folded plate 3 by a screw at the screw joint.
  • Each wall panel 1 was joined to a lower side applying jig 27 via a hole down hardware 26 joined to both sides of the lower side.
  • the upper part of the wall panel 1 was joined to a loading beam 29 attached to a loading jig 28 on the upper side, and loaded by pushing and pulling a loading jack 30 joined to the loading beam.
  • the shape of the test body and the shape of the folded plate are the same as in FIG. 18, but all the screws in which the folded plate is joined to the frame member are screws without washer.
  • the load-deformation angle relationship obtained from loading is shown in FIG.
  • the deformation angle in FIG. 23 is the inclination of the wall panel 1 calculated from the two displacement meters 32 in FIG.
  • the ultimate deformation angle Ru of the wall panel 1 using the steel materials A and B was 1.3 times or more larger than the ultimate deformation angle Ru of the wall panel 1 using the steel material C.
  • FIG. 24A when a force is applied in the direction of shifting in the frame surface between the frame member 2 and the face member 3 when a supporting pressure is applied to the face member 3 of the low YR from the shaft portion 8B of the screw 8.
  • the state of the action of the force and the state of deformation are shown.
  • the crack propagation direction is a direction spreading around the screw 8.
  • the breaking line 12 is entirely spread in the direction opposite to the crack propagation direction, and the long hole 10 is formed. Further, the face material 3 is plastically deformed, and wrinkles 13 are generated in the crack propagation direction.
  • the crack propagation direction goes straight as shown in FIG. 24C.
  • the frame material 2 and the face material 3 are deviated from this state, as shown in FIG. 24D, the fracture line 11 spreads straightly in the direction opposite to the crack propagation direction.
  • the long hole 10 to be formed is smaller when the high YR face material 3 is used than when the low YR face material 3 is used. That is, from the test results of the face material of the high yield ratio steel (high YR steel) as described above and the face material of the low yield ratio steel (low YR steel), as shown in FIG. 24C and FIG.
  • the higher steel folded plate may suppress the spread of the plasticized region of the steel material around the screw hole and ensure stable bearing deformation.
  • the screw shaft portion rotates around the screw shaft.
  • the yield ratio YR of the steel material of the folded plate 3 for example, by setting the yield ratio YR to 77% or more (the yield ratio of the steel material is at least 77%), the screw shaft portion rotates around the screw shaft.
  • the face material is plasticized, the plasticized region around the screw hole can be suppressed. Thereby, even if the screw head does not come out and the periphery of the screw hole becomes plastic, a narrow screw hole can be formed, and the yield strength can be stabilized.
  • the width B of the yield region may be set to be equal to or less than the diameter of the screw, so that the following expressions (14c) to (14g) must be satisfied.
  • d 1> B d 1/ 2 ⁇ ⁇ ⁇ F u1 / F 1 ... (14d) ⁇ / 2 ⁇ F 1 / F u1 (14e)
  • 90 °
  • ⁇ / 4 ⁇ F 1 / F u1 14f
  • the yield ratio (F 1 / F u1 ) of the folded plate is 79% or more.
  • the wall panel was deformable. This is because it is assumed that the face material in the portion in contact with the screw 8 bears stress uniformly, and that the angle ⁇ in the range where the face material can bear the proof stress is assumed to be 90 °, etc. It is thought to be due to. Therefore, it is understood that the yield ratio should be 77% or more based on the experimental values.
  • the plasticization region is widened and the hole width is widened, so that the screw (particularly, the head portion of the screw) can easily enter the face material. Therefore, it can be seen that the yield ratio of the folded plate 3 should be 77% or more. Moreover, although there is no upper limit in particular, since it is confirmed up to 96% by the experimental value, about 96% is desirable.
  • the folded plate 3 for example, the yield ratio is 77% to 96%) 3 as a face material having a high yield ratio is used, the steel plate in the valley portion of the folded plate 3 supported by the screw 8 in the screw joint 8C is obtained.
  • the plasticized region becomes about the screw hole diameter. That is, since the hole width of the screw hole does not widen, the proof stress can be stabilized even when deformed, and the wall panel can be stable even if deformed.
  • the extending direction of the valley portion 7 (folded plate 3 around the screw 8 is centered on the screw hole of the folded plate 3 through which the shaft portion 8B of the screw 8 is inserted.
  • Ribs 24 extending in a direction perpendicular to the extending direction of the valley portion 7 are provided on both sides of the screw joint portion 8 ⁇ / b> C along the crease line direction).
  • the face material can be plasticized in a predetermined direction in the bearing wall.
  • the rib 24 may be formed at the same time when the folded plate 3 is press-molded. After the folded plate 3 is rolled, only the rib 24 portion is formed by pressing. May be.
  • the processing length of the rib 24 may be greater than the diameter of the screw hole and close to the vicinity of the peak portion 6.
  • the ribs 24 are provided on one side or both sides where wrinkles are expected to occur during plasticization.
  • valleys are formed on both sides of the folded plate 3 around the screw hole 31 through which the shaft portion 8B of the screw 8 is inserted and along the direction perpendicular to the extending direction of the valley portion 7.
  • a thin plate portion (thin wall portion) 25 having a plate thickness dimension smaller than the plate thickness of the portion 7 is formed. Thereby, the intensity
  • the means for forming the thin plate portion 25 so as to connect to the screw hole 31 may be formed simultaneously with the press forming of the folded plate 3.
  • the processing method it is considered that press processing or cutting processing is suitable.
  • the processing width of the thin plate portion 25 is about the diameter of the screw hole 31, and the length may be formed up to the vicinity of the peak portion 6.
  • the thin plate portion 25 may be formed by providing a concave portion by cutting or the like on the surface side of the valley portion 7. Moreover, you may make it form by providing a recessed part in the back surface side of the trough part 7 by cutting. Furthermore, you may make it form by providing a recessed part in the front and back both surfaces of the trough part 7 by cutting.
  • the thin plate portion 25 is a concave portion formed on the surface side of the valley portion 7, the concave portion can be used for positioning when the screw 8 is screwed in when the screw is screwed.
  • the portion to be plastically deformed by supporting the shaft 8B of the screw 8 may be used as the thin plate portion 25 to reduce the strength.
  • the material strength may be reduced by heat treatment or chemical treatment without changing the plate thickness. Alternatively, a low strength portion may be formed.
  • the position of the screw hole 31 is preferably provided in the thin plate portion 25 as shown in FIGS. 27C and 27D.
  • the above-mentioned steel house is usually defined as a steel panel structure building that is constructed by combining a frame material made of a thin lightweight steel with a thickness of 0.4 mm or more and less than 2.3 mm and a structural face material. .
  • high yield point (high YP) steel is used as the folded plate 3 or the frame member 2
  • the weight can be reduced.
  • high YP high yield point
  • high YR high yield ratio
  • the folded plate 3 is made of a steel material having a low elongation at break (low El), a long and narrow screw hole is formed without causing a sudden decrease in the proof stress, so that the deformation performance of the wall panel 1 can be easily secured.
  • the present invention can be applied to a wall panel for building a thin plate lightweight section steel that constitutes a building such as a thin plate lightweight section steel building.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Load-Bearing And Curtain Walls (AREA)
  • Panels For Use In Building Construction (AREA)

Abstract

Disclosed is wall panel provided with a pair of frame members (2) which are disposed at an interval in such a way as to face each other; a face plate (3) which is a thin bent steel plate, is fixed to these frame members (2), and is configured in such a way that crests (6) and troughs (7) are alternately formed from one end to the other end; and screws (8) which fix the troughs (7) of this face plate (3) to the frame members (2). The aforementioned wall panel (1) serves as a load-bearing wall and is such that when structural in-plane shear force acts on the frame members (2), those portions of the face plate (3) which are around the screws (8) undergo bearing deformation, thereby making resistance. The ratio of the coming-off strength of the screws (8) to the bearing strength of the face plate (3) is set to a predetermined value at which the shanks (8B) of the screws (8) incline when the face plate (3) undergoes bearing deformation.

Description

壁パネルWall panels
 本発明は、薄板軽量形鋼造建築物等の建築物に用いられる壁パネルに関する。
 本願は、2009年12月22日に、日本に出願された特願2009-291205号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a wall panel used in a building such as a thin plate lightweight steel structure.
This application claims priority based on Japanese Patent Application No. 2009-291205 filed in Japan on December 22, 2009, the contents of which are incorporated herein by reference.
 従来、薄板軽量形鋼造用の耐力壁における壁パネルとして、枠材の片面または両面に面材としての折板を接合した壁パネルが用いられている(例えば、特許文献1~3参照)。 Conventionally, a wall panel in which a folded plate as a face material is joined to one side or both sides of a frame material has been used as a wall panel in a load-bearing wall for thin plate lightweight steel construction (see, for example, Patent Documents 1 to 3).
 特許文献1、2に記載された耐力壁では、折板が、枠材に溶接されたり、補強部材を介して枠材に固定されたりなど、折板と枠材とが剛に接合される。枠材自体も剛なフレームをなし、梁などの建物躯体に固定されている。このような耐力壁は、地震等の水平力が建物に作用した際に、折板がせん断力を負担することで建物の水平耐力を確保するように構成されている。したがって、折板のせん断耐力に基づいて建物の保有水平耐力が決定される。 In the load-bearing walls described in Patent Documents 1 and 2, the folded plate and the frame member are rigidly joined such that the folded plate is welded to the frame member or fixed to the frame member through a reinforcing member. The frame material itself also forms a rigid frame and is fixed to a building frame such as a beam. Such a load-bearing wall is configured such that when a horizontal force such as an earthquake acts on a building, the folded plate bears a shearing force to ensure the horizontal strength of the building. Therefore, the retained horizontal strength of the building is determined based on the shear strength of the folded plate.
 特許文献3には、縦枠に折板をねじ止めし、折板を縦枠の補強材と兼用することが提案されている。さらに、特許文献3には、薄板軽量形鋼からなる枠材を変形させないための鋼板面材として折板が有効であり、さらには、枠材に対して目地を直交方向に配置させることにより、耐力壁が耐力と変形性能に優れると記載されている。 Patent Document 3 proposes that a folded plate is screwed to a vertical frame and the folded plate is also used as a reinforcing material for the vertical frame. Furthermore, in Patent Document 3, a folded plate is effective as a steel plate face material for preventing deformation of a frame material made of a thin lightweight steel, and further, by arranging joints in an orthogonal direction with respect to the frame material, It is described that the bearing wall is excellent in yield strength and deformation performance.
 本出願人により、特許文献4では、折板耐力壁の変形性能を更に高めるため、ねじ接合部における面材の支圧変形を起こさせるように、面材の全体座屈および局部座屈を回避する折板形状となっている。また、ねじ接合部において生じるねじの抜け出しと、枠材の支圧破壊と、ねじの破断等を回避する折板と、枠材と、ねじとを組み合わせることが提案されている。さらに、特許文献4には、ねじ孔の支圧変形により形成された長孔からねじが抜け出さないよう、ねじ頭を大きくし、かつ、ねじ孔周辺の局所変形(皺)が起きないように、ねじ軸径はあまり大きくしないことが提案されている。 In order to further improve the deformation performance of the folded plate bearing wall by the applicant, Patent Document 4 avoids the overall buckling and local buckling of the face material so as to cause the bearing material to deform under pressure at the screw joint. It has a folded plate shape. In addition, it has been proposed to combine a screw plate, a frame member, and a screw that avoid screw break-out, frame bearing failure, screw breakage, and the like that occur at the screw joint. Furthermore, in Patent Document 4, the screw head is enlarged so that the screw does not come out of the long hole formed by the bearing deformation of the screw hole, and so that local deformation (flaw) around the screw hole does not occur. It has been proposed that the screw shaft diameter should not be too large.
実開平2-49449号公報Japanese Utility Model Publication No. 2-49449 特開平9-228520号公報Japanese Patent Laid-Open No. 9-228520 特開2007-303269号公報JP 2007-303269 A 特開2009-209582号公報JP 2009-209582 A
 前記従来の耐力壁では、折板のせん断耐力に基づいて建物が設計されているため、折板と枠材との接合部分や耐力壁と建物躯体との接合部分が剛接合とされている。すなわち、これらの接合強度が、折板のせん断耐力以上となるように設定されている。このため、接合構造が大掛かりになり、製造や現場施工の手間やコストが増大してしまうという問題がある。
 また、特許文献4に記載の壁パネルでは、折板の機械的特性(降伏比あるいは破断伸び等)について明確に示唆されていない。これにより、折板におけるねじ接合部の支圧変形を安定的に確保できず、最大耐力発揮後の耐力低下が大きい場合が生じる可能性もあるという問題がある。
In the conventional load-bearing wall, since the building is designed based on the shear strength of the folded plate, the joint portion between the folded plate and the frame member and the joint portion between the load-bearing wall and the building frame are rigidly joined. That is, these bonding strengths are set to be equal to or greater than the shear strength of the folded plate. For this reason, there exists a problem that a joining structure becomes large-scale and the effort and cost of manufacture and field construction will increase.
Moreover, in the wall panel described in Patent Document 4, the mechanical properties (yield ratio or elongation at break) of the folded plate are not clearly suggested. As a result, there is a problem that the bearing deformation of the screw joint portion in the folded plate cannot be stably ensured, and there is a possibility that the proof stress reduction after the maximum proof stress is large may occur.
 本発明は、前記の課題を解決し、折板におけるねじ接合部の支圧変形を安定的に確保可能で変形性能に優れた壁パネルの提供を目的とする。 The present invention aims to solve the above-mentioned problems and to provide a wall panel that can stably secure a supporting pressure deformation of a screw joint portion in a folded plate and has excellent deformation performance.
 本発明は、上記課題を解決して係る目的を達成するために以下の手段を採用した。
 すなわち、
(1)本発明の壁パネルは、互いに間隔をおいて対向配置された一対の枠材と;これら枠材に固定され、の一方から他方に向かって山部及び谷部が交互に形成された薄鋼板の折板である面材と;この面材の谷部を各枠材に対して固定するねじと;を備え、各枠材に対して構面内せん断力が作用した場合に、面材の、ねじの周囲部分が支圧変形して抵抗する耐力壁用の壁パネルであって、面材の支圧耐力に対するねじの抜け出し耐力の比が、面材の支圧変形時に、ねじの軸部が傾斜する所定値に設定されていることを特徴とする。
The present invention employs the following means in order to solve the above problems and achieve the object.
That is,
(1) The wall panel of the present invention has a pair of frame members arranged opposite to each other with a space between them; fixed to these frame members, and crests and troughs are alternately formed from one to the other. A surface material that is a folded plate of a thin steel plate; and a screw that fixes a valley portion of the surface material to each frame material; and when the in-plane shear force acts on each frame material, A wall panel for a load bearing wall in which the surrounding portion of the screw is resisted by bearing deformation, and the ratio of the screw withdrawal resistance to the bearing load resistance of the face material is the The shaft portion is set to a predetermined value that is inclined.
 (2)上記(1)に記載の本発明の壁パネルでは、所定値が0.7以上であってもよい。 (2) In the wall panel of the present invention described in (1) above, the predetermined value may be 0.7 or more.
 (3)上記(1)または(2)に記載の本発明の壁パネルでは、所定値が1.6以下であってもよい。 (3) In the wall panel of the present invention described in (1) or (2) above, the predetermined value may be 1.6 or less.
 (4)上記(1)または(2)に記載の本発明の壁パネルでは、ねじが挿入されるワッシャをさらに備え、このワッシャの外径寸法をねじの軸部の軸径寸法で除算した比が、3.0以上であってもよい。
 (5)上記(4)に記載の本発明の壁パネルでは、所定値が4.0以下であってもよい。
(4) The wall panel of the present invention described in (1) or (2) further includes a washer into which a screw is inserted, and a ratio obtained by dividing the outer diameter of the washer by the shaft diameter of the shaft portion of the screw. However, it may be 3.0 or more.
(5) In the wall panel of the present invention described in (4) above, the predetermined value may be 4.0 or less.
 (6)上記(4)に記載の本発明の壁パネルでは、枠材が、谷部の延在方向に配置された第1の枠材と、谷部の延在方向に直交する方向に配置された第2の枠材とを備え、第1の枠材と第2の枠材とにより四角枠を形成し、面材の谷部に第1の枠材を固定するねじにのみワッシャが挿入されていてもよい。
 (7)上記(4)に記載の本発明の壁パネルでは、ワッシャの孔とねじの軸部との間に隙間が形成されていてもよい。
 (8)上記(4)に記載の本発明の壁パネルでは、ワッシャの内径寸法からねじの軸部の軸径寸法を差し引いた差をワッシャの厚さ寸法で除算した比が、0.1~0.6であってもよい。
(6) In the wall panel of the present invention described in (4) above, the frame member is arranged in a direction orthogonal to the first frame member arranged in the extending direction of the valley part and the extending direction of the valley part. A square frame is formed by the first frame member and the second frame member, and a washer is inserted only in a screw that fixes the first frame member to the valley portion of the face member. May be.
(7) In the wall panel of the present invention described in (4) above, a gap may be formed between the hole of the washer and the shaft portion of the screw.
(8) In the wall panel of the present invention described in (4) above, the ratio obtained by dividing the difference obtained by subtracting the shaft diameter of the screw shaft from the inner diameter of the washer by the thickness of the washer is 0.1 to It may be 0.6.
 (9)上記(1)に記載の本発明の壁パネルでは、面材の破断伸びが1%以上かつ16%未満であってもよい。 (9) In the wall panel of the present invention described in (1) above, the breaking elongation of the face material may be 1% or more and less than 16%.
 (10)上記(1)に記載の本発明の壁パネルでは、ねじのねじ山のピッチが、各枠材の板厚寸法以下であってもよい。 (10) In the wall panel of the present invention described in (1) above, the pitch of the screw threads may be equal to or less than the thickness of each frame member.
 (11)上記(1)に記載の本発明の壁パネルでは、面材の降伏比が77%~96%であってもよい。 (11) In the wall panel of the present invention described in (1) above, the yield ratio of the face material may be 77% to 96%.
 (12)上記(1)に記載の本発明の壁パネルでは、面材の、ねじの軸部が挿通されるねじ孔を中心として、谷部の延在方向に沿った少なくとも片側に、谷部の延在方向に直交するリブがさらに設けられていてもよい。 (12) In the wall panel of the present invention described in (1) above, at least one side of the face material along the extending direction of the valley portion is centered on the screw hole through which the shaft portion of the screw is inserted. Ribs that are orthogonal to the extending direction may be further provided.
 (13)上記(1)に記載の本発明の壁パネルでは、面材の、ねじの軸部が挿通されるねじ孔を中心として、谷部の延在方向に直交する方向に沿った両側に、部分的に板厚が薄い薄肉部が形成されていてもよい。 (13) In the wall panel of the present invention described in (1) above, on both sides along the direction orthogonal to the extending direction of the valley portion, centering on the screw hole through which the shaft portion of the screw is inserted. In addition, a thin portion having a thin plate thickness may be formed partially.
 (14)上記(1)に記載の本発明の壁パネルでは、面材の、ねじの軸部が挿通されるねじ孔を中心として、谷部の延在方向に直交する方向に沿った両側に、部分的に機械的強度が周囲よりも低い低強度部が形成されていてもよい。 (14) In the wall panel of the present invention described in (1) above, on both sides along the direction orthogonal to the extending direction of the valley portion, centering on the screw hole through which the shaft portion of the screw is inserted. In addition, a low-strength portion whose mechanical strength is partially lower than the surroundings may be formed.
 耐力壁に構面内せん断力が作用した場合、面材の周囲部分が支圧変形する。このとき、上記(1)に記載の本発明の壁パネルによれば、面材の支圧耐力に対するねじの抜け出し耐力の比が、所定値に設定されているため、ねじの抜け出しによる急激な耐力低下を抑制することができる。これにより、面材のねじ周りを安定的に塑性変形させて、構面内に発生したエネルギーを吸収することができる。また、面材の変形性能を高めた上で、従来の耐力壁に比べて、耐力壁の急激な耐力低下を防止することができる。その結果、変形性能に優れた壁パネルとなる。また、ねじの軸部の傾斜を利用して、ねじ付近に集まる塑性化された面材が、ねじ孔の先端部に集まり、粉砕されて排除され易くなる。 When the in-plane shear force is applied to the bearing wall, the surrounding part of the face material is deformed under pressure. At this time, according to the wall panel of the present invention described in the above (1), since the ratio of the screw proof stress to the bearing proof strength of the face material is set to a predetermined value, the rapid proof strength due to screw detachment is set. The decrease can be suppressed. Thereby, the screw periphery of a face material can be stably plastically deformed, and the energy generated in the composition surface can be absorbed. Further, it is possible to prevent a sudden decrease in the proof stress of the load bearing wall as compared with the conventional load bearing wall after improving the deformation performance of the face material. As a result, the wall panel is excellent in deformation performance. Further, by utilizing the inclination of the shaft portion of the screw, the plasticized face material gathered in the vicinity of the screw gathers at the tip portion of the screw hole and is easily crushed and eliminated.
 上記(2)に記載の本発明の壁パネルによれば、面材の支圧耐力に対するねじの抜け出し耐力の比が0.7以上であるため、ねじが傾斜する前にねじの先端が枠材から抜けてしまうのを防ぐことができる。 According to the wall panel of the present invention described in the above (2), since the ratio of the unscrewing strength of the screw to the bearing strength of the face material is 0.7 or more, the tip of the screw is a frame material before the screw is inclined. Can be prevented from coming off.
 上記(3)に記載の本発明の壁パネルによれば、面材の支圧耐力に対するねじの抜け出し耐力の比が1.6以下であるため、ねじ(特に、ねじの頭部)が面材の下に潜り込むことなく、ねじを傾斜させることができる。 According to the wall panel of the present invention described in (3) above, since the ratio of the screw pull-out proof strength to the bearing proof strength of the face material is 1.6 or less, the screw (particularly, the head of the screw) is the face material. The screw can be tilted without going underneath.
 上記(4)に記載の本発明の壁パネルによれば、ねじ周りの応力が大きく作用する範囲と重なるようにワッシャを配置することにより、ねじ(特に、ねじの頭部)が面材の下に潜り込むことなく、ねじを傾斜させることができる。さらには、ワッシャの外径寸法をねじの軸部の軸径寸法で除算した比が、3.0以上となるワッシャ及びねじを用いることにより、ねじ頭部が面材の下に潜り込まないため、変形が進んでも面材が安定した支圧耐力を発揮することができる。
 上記(5)に記載の本発明の壁パネルによれば、ワッシャを用いることにより、面材の支圧耐力に対するねじの抜け出し耐力の比の上限を緩和することができる。すなわち、上記所定値が4.0以下で、ねじが耐力を保持することができ、ねじが面材の下に潜り込むことなく、ねじを傾斜させることができる。
 また、第1の枠材と第2の枠材とにより四角枠が形成される場合、第2の枠材に固定された面材の支圧変形に比べて、第1の枠材に固定された面材の支圧変形の方が大きい。そこで、上記(6)に記載の本発明の壁パネルによれば、第1の枠材に対して面材を固定するねじにのみワッシャが挿入されているため、ねじ(特に、ねじの頭部)が面材の下に潜り込むのを抑制しながら、組立工程及び部品点数を削減することができる。すなわち、面材におけるねじ周囲の支圧変形を安定的に確保しつつ、全体的な生産コストを抑えることができる。
According to the wall panel of the present invention described in (4) above, the screw (especially the head of the screw) is placed under the face material by arranging the washer so as to overlap the range in which the stress around the screw is largely applied. The screw can be tilted without being submerged. Furthermore, by using a washer and screw with a ratio obtained by dividing the outer diameter of the washer by the shaft diameter of the shaft portion of the screw of 3.0 or more, the screw head does not sink under the face material. Even if the deformation progresses, the face material can exhibit a stable bearing strength.
According to the wall panel of the present invention described in (5) above, by using a washer, the upper limit of the ratio of the unscrewing strength of the screw to the bearing strength of the face material can be relaxed. That is, when the predetermined value is 4.0 or less, the screw can maintain the yield strength, and the screw can be inclined without being submerged under the face material.
Further, when a square frame is formed by the first frame member and the second frame member, the square frame is fixed to the first frame member as compared with the bearing deformation of the face member fixed to the second frame member. The bearing deformation of the face material is greater. Therefore, according to the wall panel of the present invention described in the above (6), since the washer is inserted only into the screw that fixes the face material to the first frame member, the screw (particularly, the head of the screw). ) Can be suppressed from entering under the face material, and the assembly process and the number of parts can be reduced. That is, the overall production cost can be suppressed while stably securing the supporting pressure deformation around the screw in the face material.
 上記(7)に記載の本発明の壁パネルによれば、ワッシャの孔とねじの軸部との間に隙間が形成されているため、この隙間を利用してねじが傾斜する。これにより、面材のねじ周囲が支圧変形したときに、ねじの傾斜範囲が制限されるので、ねじの抜けだしによる急激な耐力低下を抑制させることができる。
 上記(8)に記載の本発明の壁パネルによれば、ワッシャの内径寸法、ねじの軸部の軸径寸法及びワッシャの厚さ寸法を規定することにより、適正な傾斜角度でねじを傾斜させることができる。
According to the wall panel of the present invention described in (7) above, since the gap is formed between the hole of the washer and the shaft portion of the screw, the screw is inclined using this gap. Thereby, when the periphery of the screw of the face material is subjected to bearing deformation, the inclination range of the screw is limited, so that it is possible to suppress a sudden decrease in yield strength due to unscrewing of the screw.
According to the wall panel of the present invention described in (8) above, the screw is inclined at an appropriate inclination angle by defining the inner diameter dimension of the washer, the axial diameter dimension of the shaft portion of the screw, and the thickness dimension of the washer. be able to.
 また、破断伸びが大きい面材の場合には、塑性化されたねじ孔近傍の面材が、ねじ軸部にまとわり付くため、ねじの軸部の負担が増えて、耐力壁の耐力上昇あるいは、ねじのねじ孔からの抜け出しを生じる恐れがある。しかしながら、破断伸びが小さい(脆い)面材と壁パネルとを組み合わせると、ねじ孔近傍の塑性化された面材は、容易に切り屑となって排除される。これにより、ねじ軸部の負担が極端に高まることがないため、耐力壁の耐力が安定し、優れた変形性能を発揮することができる。
 そこで、上記(9)に記載の本発明の壁パネルによれば、面材の破断伸びが1%以上かつ16%未満である。このように、破断伸びが小さい面材を用いることにより、ねじによって支圧されるねじ周りの面材の塑性化部が、粉砕されて排除され易くなる。これにより、ねじ周りに集まった塑性化された面材が、ねじに抵抗することがないので、面材を安定して塑性変形させることができる。さらには、安定した耐力と変形性能とを発揮させることができる。
In addition, in the case of a face material with a large elongation at break, the plastic material near the screw hole clings to the screw shaft, increasing the load on the screw shaft and increasing the yield strength of the bearing wall. Alternatively, there is a risk that the screw may come out of the screw hole. However, when a face material having a small elongation at break (brittle) is combined with a wall panel, the plasticized face material near the screw hole is easily removed as chips. Thereby, since the burden of a screw shaft part does not increase extremely, the proof stress of a load bearing wall is stabilized and the outstanding deformation | transformation performance can be exhibited.
Therefore, according to the wall panel of the present invention described in (9) above, the breaking elongation of the face material is 1% or more and less than 16%. Thus, by using a face material having a small breaking elongation, the plasticized portion of the face material around the screw supported by the screw is easily crushed and eliminated. Thereby, since the plasticized face material gathered around the screw does not resist the screw, the face material can be stably plastically deformed. Furthermore, stable proof stress and deformation performance can be exhibited.
 上記(10)に記載の本発明の壁パネルによれば、ねじが傾斜した状態でも、ねじ山が枠材に全周360度引っ掛かるため、枠材からのねじの抜け出しをより確実に防止して、安定した耐力を発揮させることができる。 According to the wall panel of the present invention described in (10) above, even when the screw is inclined, the screw thread is hooked to the frame member 360 degrees all around, so that the screw can be more reliably prevented from coming out of the frame member. , Can exhibit a stable proof stress.
 上記(11)に記載の本発明の壁パネルによれば、面材として、低YR(降伏比)鋼ではなく、降伏比が77%~96%である高YR鋼を使用する。この結果、ねじ軸部の支圧により、面材のねじ孔周りが塑性変形する場合の塑性化領域を狭くすることができる。したがって、ねじが挿入されているねじ孔の孔幅が極端に広がることがないので、ねじ(特に、ねじの頭部)が面材に潜り込むのを抑制させることができ、耐力壁が大きくせん断変形しても、耐力壁の耐力を安定させることができる。 According to the wall panel of the present invention described in (11) above, high YR steel having a yield ratio of 77% to 96% is used as the face material, not low YR (yield ratio) steel. As a result, the plasticizing region in the case where the periphery of the screw hole of the face material is plastically deformed by the bearing pressure of the screw shaft portion can be narrowed. Therefore, since the hole width of the screw hole into which the screw is inserted is not extremely widened, the screw (particularly, the head of the screw) can be prevented from entering the face material, and the load bearing wall is greatly deformed by shear deformation. Even so, the proof stress of the load bearing wall can be stabilized.
 上記(12)に記載の本発明の壁パネルによれば、リブにより、折板が塑性化する方向に対して直交する方向に局部座屈するのを防止することができ、耐力壁の所定の方向に面材を塑性化させることができる。 According to the wall panel of the present invention described in (12) above, the rib can prevent local buckling in the direction orthogonal to the direction in which the folded plate is plasticized, and the predetermined direction of the bearing wall The face material can be plasticized.
 上記(13)に記載の本発明の壁パネルによれば、ねじにより折板のねじ周囲を塑性化させる場合に、薄板部分が塑性化する。このように、塑性化させる範囲を特定の場所に限定することにより、面材にしわが発生するのを抑えることができる。しわとは、例えば、局所的な面外座屈を示す。 According to the wall panel of the present invention described in (13) above, when the screw periphery of the folded plate is plasticized with screws, the thin plate portion is plasticized. Thus, wrinkles can be prevented from occurring in the face material by limiting the plasticizing range to a specific place. A wrinkle indicates, for example, local out-of-plane buckling.
 上記(14)に記載の本発明の壁パネルによれば、ねじにより折板のねじ周囲を塑性化させる場合に、強度低下部が塑性化する。このように、塑性化させる範囲を特定の場所に限定することにより、面材が大きく変形した時も耐力壁の耐力を安定させることができる。 According to the wall panel of the present invention described in the above (14), when the screw periphery of the folded plate is plasticized with a screw, the strength-decreasing portion is plasticized. Thus, by limiting the plasticizing range to a specific place, the proof stress of the load bearing wall can be stabilized even when the face material is greatly deformed.
本発明の第1実施形態の耐力壁に適用される壁パネルを示す正面図である。It is a front view which shows the wall panel applied to the load-bearing wall of 1st Embodiment of this invention. 図1の同壁パネルの側面図である。It is a side view of the same wall panel of FIG. 図1の同壁パネルのA-A線断面図である。It is the sectional view on the AA line of the same wall panel of FIG. 図1に示す同壁パネルの概略斜視図である。It is a schematic perspective view of the same wall panel shown in FIG. 図1に示す同壁パネルの端部の部分拡大斜視図である。It is a partial expansion perspective view of the edge part of the same wall panel shown in FIG. 同壁パネルのねじ接合部における破壊モードを示す説明図である。It is explanatory drawing which shows the destruction mode in the screw junction part of the same wall panel. 同壁パネルのねじ接合部における破壊モードを示す説明図である。It is explanatory drawing which shows the destruction mode in the screw junction part of the same wall panel. 同壁パネルのねじ接合部における破壊モードを示す説明図である。It is explanatory drawing which shows the destruction mode in the screw junction part of the same wall panel. 同壁パネルのねじ接合部における破壊モードを示す説明図である。It is explanatory drawing which shows the destruction mode in the screw junction part of the same wall panel. 折板のねじ接合部の要素試験の説明図である。It is explanatory drawing of the element test of the screw junction part of a folded plate. 同要素試験で用いられる折板の正面図である。It is a front view of the folded plate used by the same element test. 同要素試験で用いられる同折板の側面図である。It is a side view of the same folding plate used in the same element test. 同要素試験で用いられる枠材片の側面図である。It is a side view of the frame material piece used by the same element test. 同折板の部分的な寸法形状を示す断面図である。It is sectional drawing which shows the partial dimension shape of the same folding plate. 図7Aに示した折板のねじ接合部の要素試験によって得られた荷重-変位関係の包絡線を比較した図である。FIG. 7B is a diagram comparing envelopes of a load-displacement relationship obtained by an element test of the screw joint portion of the folded plate shown in FIG. 7A. 図7Aに示した折板のねじ接合部の要素試験によって得られた荷重-変位関係の包絡線を比較した図である。FIG. 7B is a diagram comparing envelopes of a load-displacement relationship obtained by an element test of the screw joint portion of the folded plate shown in FIG. 7A. ねじが面材に潜り込んだ状態を示す断面図である。It is sectional drawing which shows the state in which the screw sunk into the face material. 破断伸びが大きな折板に対してねじが傾斜した場合の部分断面図である。It is a fragmentary sectional view in case a screw inclines with respect to a folded plate with big fracture | rupture elongation. 図10Bにおける折板の塑性化部の斜視図である。It is a perspective view of the plasticizing part of the folded plate in FIG. 10B. 破断伸びが小さな折板に対してねじが傾斜した場合の部分断面図である。It is a fragmentary sectional view in case a screw inclines with respect to a folded plate with small breaking elongation. 図10Dにおける折板の塑性化部の斜視図である。It is a perspective view of the plasticizing part of the folded plate in FIG. 10D. ねじが傾いた状態における、枠材と面材とを接合しているねじ接合部の断面図である。It is sectional drawing of the screw joint part which has joined the frame material and the face material in the state in which the screw inclined. 図11AのB-B断面における、ねじ径と面材最外縁の厚み寸法との関係を示す断面図である。FIG. 11B is a cross-sectional view showing the relationship between the screw diameter and the thickness dimension of the outermost edge of the face material in the BB cross section of FIG. 11A. 日本鋼構造協会編「鋼構造接合資料集成」の図-II.5.12に掲載の、ボルト孔周辺の応力分布を示す説明図である。Fig. II of “Steel Structure Joint Data Collection” edited by Japan Steel Structure Association. It is explanatory drawing which shows stress distribution around a bolt hole published in 5.12. 日本鋼構造協会編「鋼構造接合資料集成」の図-II.5.12に掲載の、ボルト心からの距離による応力分布を示すグラフである。Fig. II of “Steel Structure Joint Data Collection” edited by Japan Steel Structure Association. It is a graph which shows the stress distribution by the distance from a bolt center published in 5.12. クリアランスが小さい場合における、ワッシャ内径とねじ軸部との間のクリアランスと、ねじ及びワッシャの傾きとの関係を説明する断面図である。It is sectional drawing explaining the relationship between the clearance between a washer internal diameter and a screw shaft part, and the inclination of a screw and a washer in case a clearance is small. クリアランスが大きい場合における、ワッシャ内径とねじ軸部との間のクリアランスと、ねじ及びワッシャの傾きとの関係を説明する断面図である。It is sectional drawing explaining the relationship between the clearance between a washer internal diameter and a screw shaft part, and the inclination of a screw and a washer in case a clearance is large. ねじ接合部の位置が異なる折板の要素試験を示す説明図である。It is explanatory drawing which shows the element test of the folded plate from which the position of a screw junction part differs. 同要素試験で用いられる折板の正面図である。It is a front view of the folded plate used by the same element test. 同要素試験で用いられる折板の側面図である。It is a side view of the folded plate used in the same element test. 同要素試験で用いられる枠材片の側面図である。It is a side view of the frame material piece used by the same element test. 折板の部分的な寸法形状を示す断面図である。It is sectional drawing which shows the partial dimension shape of a folded plate. 図15A~図15Dに示した要素試験で得られた荷重-変位関係の包絡線を比較したグラフである。FIG. 16 is a graph comparing envelopes of load-displacement relationships obtained in the element test shown in FIGS. 15A to 15D. FIG. 図15A~図15Dに示した同要素試験で得られた荷重-変位関係の包絡線を比較したグラフである。FIG. 16 is a graph comparing the load-displacement envelopes obtained in the same element test shown in FIGS. 15A to 15D. FIG. 壁パネルの耐力試験で用いる試験体の寸法形状を示す正面図である。It is a front view which shows the dimension shape of the test body used by the proof stress test of a wall panel. 図18に示した試験体を用いた耐力試験によって得られた荷重-変形角関係を示すグラフである。It is a graph which shows the load-deformation angle relationship obtained by the proof stress test using the test body shown in FIG. ねじが傾斜したときの、ねじのねじ山ピッチとねじの抜け出しとの関係を説明するための断面図である。It is sectional drawing for demonstrating the relationship between the screw thread pitch of a screw, and the detachment | leave of a screw when a screw inclines. 先端が先鋭なねじを枠材に取り付けた場合を示す断面図である。It is sectional drawing which shows the case where the front-end | tip sharp screw is attached to a frame material. 壁パネルを載荷試験装置にセットして載荷試験をしている状況を示す正面図である。It is a front view which shows the condition which sets a wall panel to a loading test apparatus and is performing the loading test. 同載荷試験によって得られた荷重-変形角関係の包絡線を比較したグラフである。It is the graph which compared the envelope of the load-deformation angle relationship obtained by the same loading test. ねじ軸部から低YRの面材に支圧力が作用している状態を示す正面図であって、一部が断面視されている。It is a front view which shows the state which the supporting pressure is acting on the face material of low YR from a screw shaft part, Comprising: One part is seen in cross section. 図24Aの状態から枠材と面材とがずれた状態で面材が塑性変形している状態を示す正面図であって、一部が断面視されている。FIG. 24B is a front view showing a state where the face material is plastically deformed in a state where the frame material and the face material are deviated from the state of FIG. 図24Aに対応した図であり、高YRの面材に支圧力が作用している状態を示す正面図であって、一部が断面視されている。It is a figure corresponding to Drawing 24A, and is a front view showing the state where support pressure is acting on a face material of high YR, and a part is sectioned. 図24Cの状態から枠材と面材とがずれた状態で面材が塑性変形している状態を示す正面図であって、一部が断面視されている。It is a front view which shows the state which the face material has deformed plastically in the state which the frame material and the face material shifted | deviated from the state of FIG. 24C, Comprising: One part is seen in cross section. ねじが傾く前の状態における、枠材と面材とを接合しているねじ接合部の断面図である。It is sectional drawing of the screw junction part which joins the frame material and a face material in the state before a screw inclines. 面材の降伏比YRと面材の塑性化領域との関係について示した説明図である。It is explanatory drawing shown about the relationship between the yield ratio YR of a face material, and the plasticization area | region of a face material. 本発明の他の実施形態の壁パネルを示す部分正面図である。It is a partial front view which shows the wall panel of other embodiment of this invention. 図26AのC-C線より見た場合における、同壁パネルの部分断面図である。FIG. 26B is a partial cross-sectional view of the wall panel as viewed from the CC line in FIG. 26A. 同壁パネルを図26AのD-D線より見た場合の部分側面図である。It is a partial side view at the time of seeing the same wall panel from the DD line of FIG. 26A. 本発明のさらに他の実施形態の壁パネルを示す部分正面図である。It is a partial front view which shows the wall panel of further another embodiment of this invention. 同壁パネルを図27AのE-E線より見た場合の部分図27Aの側面図である。It is the side view of the partial figure 27A at the time of seeing the same wall panel from the EE line of Figure 27A. 図27Aに対応する図であって、ねじが取り付けられていない状態を示す壁パネルの部分正面図である。It is a figure corresponding to Drawing 27A, and is a partial front view of a wall panel in the state where a screw is not attached. 同壁パネルの折板における薄板部分を拡大して示す図であって、図27CのF-F線より見た場合の部分断面図である。It is a figure which expands and shows the thin-plate part in the folding plate of the same wall panel, Comprising: It is a fragmentary sectional view at the time of seeing from the FF line | wire of FIG. 27C.
 以下、本発明の各実施の形態を、図を参照して説明する。なお、以下の説明及びこの説明で用いられる図面において、実質的に同一の機能構成を有する要素については、同一の符号を付することによりそれらの重複説明を省略する。 Hereinafter, each embodiment of the present invention will be described with reference to the drawings. In the following description and the drawings used in this description, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description thereof is omitted.
 図1は、本発明の一実施形態に係る壁パネル1を示す正面図である。図2は、壁パネル1の側面図である。図3は、壁パネル1の、図1のA-A線で見た断面図である。図4は、壁パネル1の斜視図である。図5は、壁パネル1の一部を拡大して示す斜視図である。 FIG. 1 is a front view showing a wall panel 1 according to an embodiment of the present invention. FIG. 2 is a side view of the wall panel 1. 3 is a cross-sectional view of the wall panel 1 taken along line AA of FIG. FIG. 4 is a perspective view of the wall panel 1. FIG. 5 is an enlarged perspective view showing a part of the wall panel 1.
 壁パネル1は、枠組壁工法建築物に耐力壁として用いられる。例えば、壁パネル1は、基礎上に設置された後、この壁パネル1の下端部がアンカーボルトと連結される一方、壁パネル1の上端部が建物の梁や床パネルと連結される。あるいは、壁パネル1の上下の端部が、上下の梁や床パネルに連結されて設置される。壁パネル1は、図1に示すように、枠材2と、折板3との組合せで構成されている。折板3は、薄板鋼板からなる面材であり、図2に示すように、一方から他方に向かって複数の山部6と複数の谷部7とが交互に形成された面材である。
 枠材2は、薄板軽量形鋼(溝形鋼)からなり、図1に示すように、折板3の谷部7の延在方向に配置された一対の縦枠材(第1の枠材)2Aと、折板3の谷部7の延在方向に直交する方向に沿って配置された一対の横枠材(第2の枠材)2Bとにより、例えば長方形の四角枠を形成している。さらに、縦枠材2Aの間には、枠材2Cが設けられている。また、折板3は、枠材2A及び枠材2Bにより構成された四周枠組みの一方の面に接合されている。
 枠組壁工法建築物としては、例えば、2階建て~4階建て程度の比較的小規模な建物が好適であり、壁パネル1の他に、柱、梁、床パネル、屋根、外装材、内装材等を有して構成されている。
The wall panel 1 is used as a load-bearing wall in a framed wall construction building. For example, after the wall panel 1 is installed on a foundation, the lower end portion of the wall panel 1 is connected to an anchor bolt, while the upper end portion of the wall panel 1 is connected to a building beam or a floor panel. Alternatively, the upper and lower ends of the wall panel 1 are connected to the upper and lower beams and the floor panel. As shown in FIG. 1, the wall panel 1 is composed of a combination of a frame member 2 and a folded plate 3. The folded plate 3 is a surface material made of a thin steel plate, and as shown in FIG. 2, is a surface material in which a plurality of peak portions 6 and a plurality of valley portions 7 are alternately formed from one side to the other.
The frame member 2 is made of a thin lightweight steel (grooved steel), and as shown in FIG. 1, a pair of vertical frame members (first frame members) arranged in the extending direction of the valley portion 7 of the folded plate 3. ) 2A and a pair of horizontal frame members (second frame members) 2B arranged along the direction orthogonal to the extending direction of the valley 7 of the folded plate 3 form, for example, a rectangular square frame Yes. Further, a frame member 2C is provided between the vertical frame members 2A. Further, the folded plate 3 is joined to one surface of a quadrilateral frame constituted by the frame member 2A and the frame member 2B.
As the frame wall construction method, for example, a relatively small building of about 2 to 4 floors is suitable. In addition to the wall panel 1, pillars, beams, floor panels, roofs, exterior materials, interiors It is composed of materials.
 壁パネル1の枠材2は、図3に示すように、ウェブ4と、このウェブ4の両端部に連続する一対のフランジ5とを有し、断面略C字形に形成されている。そして、両側端縁に設けられる縦枠材2Aは、ウェブ4同士で互いに接合された2つの溝形鋼からなる。
 ねじ8は、タッピングビスなどであり、枠材2の反対側から折板3の谷部7を貫通したねじ8が、枠材2に螺合することで、枠材2に対して折板3の谷部7を固定する。
As shown in FIG. 3, the frame member 2 of the wall panel 1 includes a web 4 and a pair of flanges 5 that are continuous with both ends of the web 4, and has a substantially C-shaped cross section. And the vertical frame material 2A provided in a both-ends edge consists of two channel steels mutually joined by the webs 4 mutually.
The screw 8 is a tapping screw or the like, and the screw 8 penetrating the valley portion 7 of the folded plate 3 from the opposite side of the frame member 2 is screwed into the frame member 2, whereby the folded plate 3 is attached to the frame member 2. The trough 7 is fixed.
 図2の拡大部分に示す、壁パネル1のねじ8の頭部8Aの外径Dと軸部8Bの軸径dと折板3の板厚tとの関係は、以下の式(1)で設定されている。
(D-d)>α・t …(1)
Shown in the enlarged portion of FIG. 2, the relationship between the thickness t 1 of the shaft diameter d 1 and folded plate 3 of an outer diameter D and the shaft 8B of the head 8A of the screw 8 of the wall panel 1, the following equation (1 ) Is set.
(Dd 1 )> α 1 · t 1 (1)
 ここで、αは、軸部8Bの支圧により折板3に生じたねじ孔9からねじ8の頭部8Aが抜け出さないための条件を表す係数である。αは、7.0以上であることが望ましい。このような構成によれば、ねじ8が、繰り返して荷重を受けて、折板3の軸部8B周りが支圧変形し、ねじ8のねじ孔9が大きくなった場合でも、ねじ8のねじ頭部8Aが折板3に引っ掛かる。これにより、折板3からねじ8が脱落することが防止でき、変形性能を確保することができる。 Here, α 1 is a coefficient representing a condition for preventing the head portion 8A of the screw 8 from coming out of the screw hole 9 generated in the folded plate 3 due to the support pressure of the shaft portion 8B. α 1 is desirably 7.0 or more. According to such a configuration, even if the screw 8 is repeatedly subjected to a load and the periphery of the shaft portion 8B of the folded plate 3 is deformed by supporting pressure, the screw hole 9 of the screw 8 becomes large. The head 8 </ b> A is caught on the folded plate 3. Thereby, it can prevent that the screw 8 falls off from the folded plate 3, and can ensure a deformation | transformation performance.
 また、壁パネル1のねじ8の軸部8Bの軸径dと折板3の板厚tとの関係は、以下の式(2)で設定されている。
<α・t …(2)
The relationship between the shaft diameter d 1 of the shaft portion 8B of the screw 8 of the wall panel 1 and the plate thickness t 1 of the folded plate 3 is set by the following equation (2).
d 12 · t 1 (2)
 ここで、αは、ねじ8の軸部8Bにより折板3に生じた局所座屈により、ねじ孔9の成長が阻害されないための条件を表す係数である。αは、13以上であることが望ましい。このような構成によれば、ねじ8の軸部8Bの支圧により、折板3には、ねじ孔9を起点とする長孔が形成されるので、軸部8B周りに皺がよる支圧変形に比べて、より高い変形性能を確保できる。 Here, α 2 is a coefficient representing a condition for preventing the growth of the screw hole 9 from being hindered by local buckling generated in the folded plate 3 by the shaft portion 8B of the screw 8. α 2 is desirably 13 or more. According to such a configuration, a long hole starting from the screw hole 9 is formed in the folded plate 3 by the support pressure of the shaft portion 8B of the screw 8, so that the support pressure caused by wrinkles around the shaft portion 8B is formed. Compared with deformation, higher deformation performance can be ensured.
 上記の変形(破壊モード)を実現するには、他の破壊モードを起こさない条件を設定することが必要となる。すなわち、折板2のねじ8の周囲部分(ねじ接合部8C)において、図6Aに示すように、ねじ8が抜け出たり、図6Bに示すように、面材3にしわ13が発生したり、図6Cに示すように、枠材2が切断されたり、図6Dに示すように、ねじ8が切断されたりする破壊モードを起こさない条件を設定する必要がある。また、しわ13とは、局所的な面外座屈を指す。さらには、壁パネル1全体でも、全体座屈や局部座屈を起こさない条件を設定する必要がある。 To realize the above deformation (destructive mode), it is necessary to set conditions that do not cause other destructive modes. That is, in the peripheral portion of the screw 8 of the folded plate 2 (screw joint portion 8C), the screw 8 is pulled out as shown in FIG. 6A, or the wrinkles 13 are generated in the face material 3 as shown in FIG. 6B. As shown in FIG. 6C, it is necessary to set a condition that does not cause a fracture mode in which the frame member 2 is cut or the screw 8 is cut as shown in FIG. 6D. The wrinkle 13 refers to local out-of-plane buckling. Furthermore, it is necessary to set conditions for causing no overall buckling or local buckling even in the entire wall panel 1.
 まず、壁パネル1における枠材2と折板3とのねじ8との接合部である、ねじ接合部8Cの上記条件を設定する。ここでは、例えば、社団法人日本鉄鋼連盟著「ドリルねじ接合 設計施工指針」に記載の、ねじ接合部の許容せん断耐力(Ras)の算定式を利用し、次式(3)のように設定する。
as=Ras3-1<min(α・Ras2,α・Ras3-2,α・Ras4) …(3)
First, the above-described conditions of the screw joint portion 8C, which is a joint portion between the frame member 2 and the folded plate 3 and the screw 8 in the wall panel 1, are set. Here, for example, using the calculation formula for the allowable shear strength (Ras) of the threaded joint described in “Drill Screw Joint Design and Construction Guidelines” by the Japan Iron and Steel Federation, the following formula (3) is used. .
R as = R as3-1 <min (α 3 · R as2 , α 4 · R as3 -2 , α 5 · R as4 ) (3)
 式(3)において、Ras2は、図6Aに示すねじ8の抜け出し耐力(kN)であり、以下の式(4)で算出される。Ras3-1は、図6Bに示す折板3のねじ周り支圧耐力(kN)であり、下式(5)で算出される。Ras3-2は、図6Cに示す枠材2のねじ周り支圧耐力(kN)であり、下式(6)で算出される。Ras4は、図6Dに示すねじ8の軸部せん断耐力(kN)であり、下式(7)で算出される。各式(4)~(7)において、tは、折板3の設計用板厚(mm)であり、tは、枠材2の設計用板厚(mm)であり、Fu1は、折板3の引張強さ(N/mm)であり、Fu2は、枠材2の引張強さ(N/mm)であり、dは、ねじ8の軸部8Bの軸径(mm)であり、Aは、ねじ8の軸部断面積(mm)であり、Dは、ねじ8の頭部径(mm)である。 In equation (3), R as2 is the pull-out resistance (kN) of the screw 8 shown in FIG. 6A and is calculated by the following equation (4). R as3-1 is the bearing strength (kN) around the screw of the folded plate 3 shown in FIG. 6B, and is calculated by the following equation (5). R as3-2 is the bearing strength (kN) around the screw of the frame member 2 shown in FIG. 6C, and is calculated by the following equation (6). R as4 is the axial shear strength (kN) of the screw 8 shown in FIG. 6D and is calculated by the following equation (7). In each of the formulas (4) to (7), t 1 is the design plate thickness (mm) of the folded plate 3, t 2 is the design plate thickness (mm) of the frame member 2, and F u1 is , The tensile strength (N / mm 2 ) of the folded plate 3, F u2 is the tensile strength (N / mm 2 ) of the frame member 2, and d 1 is the shaft diameter of the shaft portion 8 B of the screw 8. (Mm), Ad is the axial cross-sectional area (mm 2 ) of the screw 8, and D is the head diameter (mm) of the screw 8.
 ねじ8の抜け出し耐力Ras2(kN)は、次式(4)により求めることができる。
as2=Cs×Ce×d×t×Fu2 …(4)
Cs=1.3-0.3×(d/5)
Ce=0.28×3.95×ξ0.5×(t/d0.5
ここで、ξは影響係数であり、次式で算出される。
ξ=3.1-5.6(t/t)+3.5(t/t
Csは、ねじ径を考慮する係数である。また、Ceは、ねじ径と枠材板厚を考慮する係数である。
The pull-out resistance R as2 (kN) of the screw 8 can be obtained by the following equation (4).
R as2 = Cs × Ce × d 1 × t 2 × F u2 (4)
Cs = 1.3-0.3 × (d 1/ 5)
Ce = 0.28 × 3.95 × ξ 0.5 × (t 2 / d 1 ) 0.5
Here, ξ is an influence coefficient and is calculated by the following equation.
ξ = 3.1-5.6 (t 1 / t 2 ) +3.5 (t 1 / t 2 ) 2
Cs is a coefficient considering the screw diameter. Further, Ce is a coefficient that takes into consideration the screw diameter and the frame material plate thickness.
 折板のねじ周り支圧耐力Ras3-1(kN)は、次式(5)により求めることができる。
as3-1=Cs×Ce×d×t×Fu1 …(5)
Ce=min(Ce,Ce
Ce=0.28×{0.471+9.42×t/d
Ce=0.959
 ここで、Ceは、ねじ径と折板板厚を考慮する係数である。また、Ceは、実験結果に基づく定数である。
The bearing strength R as3-1 (kN) around the screw of the folded plate can be obtained by the following equation (5).
R as3-1 = Cs × Ce × d 1 × t 1 × F u1 (5)
Ce = min (Ce 1 , Ce 2 )
Ce 1 = 0.28 × {0.471 + 9.42 × t 2 / d 1 }
Ce 2 = 0.959
Here, Ce 1 is a coefficient considering the screw diameter and the folded plate thickness. Ce 2 is a constant based on the experimental results.
 枠材2のねじ周り支圧耐力Ras3-2(kN)は、次式(6)により求めることができる。
as3-2=Cs×Ce×d×t×Fu2 …(6)
Ce=min(Ce,Ce
Ce=0.28×{1.18+5.26×t/d
Ce=0.677
 ここで、Ceは、ねじ径と枠材板厚を考慮する係数である。また、Ceは、実験結果に基づく定数である。
The screw bearing strength R as3-2 (kN) of the frame member 2 can be obtained by the following equation (6).
R as3-2 = Cs × Ce × d 1 × t 2 × F u2 (6)
Ce = min (Ce 1 , Ce 2 )
Ce 1 = 0.28 × {1.18 + 5.26 × t 1 / d 1 }
Ce 2 = 0.677
Here, Ce 1 is a coefficient considering the screw diameter and the frame material plate thickness. Ce 2 is a constant based on the experimental results.
 ねじ8の軸部せん断耐力Ras4(kN)は、次式(7)により求めることができる。
as4=fs×A≒120×A …(7)
 ここで、fsはドリルねじの基準強度(N/mm)である。
The axial shear strength R as4 (kN) of the screw 8 can be obtained by the following equation (7).
R as4 = fs × A d ≈120 × A d (7)
Here, fs is the reference strength (N / mm 2 ) of the drill screw.
 以上のように、枠材2と折板3との接合部分のせん断耐力Rasが設定されていることで、この接合部分における破断モードは、折板3のねじ周り支圧耐力Ras3-1により決定される。これにより、壁パネル1にせん断力が作用した際には、図示を省略するが、ねじ8で貫通された部分の折板3が支圧変形し、ねじ8の抜け出し(ねじ8の抜け出し耐力Ras2)、枠材2のねじ周り支圧変形(枠材2のねじ周り支圧耐力Ras3-2)及びねじ8の軸部破断(ねじ8の軸部せん断耐力Ras4)等は発生しない。なお、式(3)の根拠となった式は最初に発現する破壊モードで耐力を定める式であったが、本実施形態においては初めから折板3のねじ周り支圧モードが発現しなくともよい。他のモードが発現した後で発現してもよいため、α~αは1.0である必要はない。α~αに上限はなく、下限は0.5以上が望ましい。αは、小さすぎるとねじが抜け出しやすく、大きすぎるとねじが傾かない可能性があるので、0.7~4.0の範囲が望ましい。 As described above, since the shear strength R as of the joint portion between the frame member 2 and the folded plate 3 is set, the fracture mode at this joint portion is the bearing resistance strength R as3-1 of the folded plate 3 around the screw. Determined by. As a result, when a shearing force is applied to the wall panel 1, although not shown in the figure, the folded plate 3 in a portion penetrated by the screw 8 is deformed by pressure, so that the screw 8 is pulled out (screwing out resistance R of the screw 8). as2 ), deformation around the screw of the frame member 2 (bearing resistance strength Rs3-2 around the screw of the frame member 2), fracture of the shaft of the screw 8 (shaft shear strength R as4 of the screw 8), etc. do not occur. In addition, although the formula which became the basis of Formula (3) was a formula which determines proof stress in the fracture mode which appears first, in this embodiment, even if the screw circumference support mode of the folded plate 3 does not develop from the beginning. Good. Α 3 to α 5 do not need to be 1.0 because they may be expressed after other modes are expressed. α 4 to α 5 have no upper limit, and the lower limit is preferably 0.5 or more. α 3 is preferably in the range of 0.7 to 4.0 because if it is too small, the screw is likely to come out, and if it is too large, the screw may not tilt.
 次に、壁パネル1の上記条件を設定する。壁パネル1全体におけるせん断耐力Qは、次の式(8)を満足するように設定する。式(8)のQは、下式(9)に示す前記接合部分の許容せん断耐力Rasに基づくせん断耐力(kN)であり、Qは、式(10)に示す折板3のせん断降伏耐力(kN)であり、Qは、下式(11)に示す折板3の全体座屈強度τ cr,Gに基づくせん断降伏耐力(kN)であり、Qは、下式(12)に示す折板3の谷部7の局部座屈強度τ cr,Lに基づくせん断降伏耐力(kN)である。なお、式(11)と式(12)とについては、例えば、波形鋼ウェブ合成構造研究会著「波形鋼板ウェブPC橋計画マニュアル、1998年12月発行」にある式を利用している。 Next, the above conditions for the wall panel 1 are set. The shear strength Q U in the entire wall panel 1 is set so as to satisfy the following equation (8). Q b in the formula (8) is a shear strength (kN) based on the allowable shear strength R as of the joint portion shown in the following formula (9), and Q y is the shear of the folded plate 3 shown in the formula (10). It is the yield strength (kN), Q G is the shear yield strength (kN) based on the overall buckling strength τ e cr, G of the folded plate 3 shown in the following formula (11), and Q L is the following formula ( 12) The shear yield strength (kN) based on the local buckling strength τ e cr, L of the valley 7 of the folded plate 3 shown in 12). In addition, about Formula (11) and Formula (12), the formula in the corrugated steel web synthetic | combination structure research group "corrugated steel sheet web PC bridge plan manual, December, 1998 issue" is used, for example.
 Q=Q<min(α・Q,α・Q,α・Q) …(8) Q u = Q b <min (α 6 · Q y , α 7 · Q G , α 8 · Q L ) (8)
 Q=α・Ras・h/p …(9) Q b = α 9 · R as · h / p (9)
 式(9)において、Rasは、ねじ接合部の長期許容せん断耐力で、最大耐力はその約3倍である。しかしながら、ねじ8が全て均等に荷重を負担することは困難なので、αは3.0~2.0とする。なお、図4に示すように、hは壁パネル1の幅(mm)であり、pはねじ8のねじピッチ(mm)である。 In Equation (9), R as is the long-term allowable shear strength of the screw joint, and the maximum strength is about three times that. However, since it is difficult for all the screws 8 to bear the load equally, α 9 is set to 3.0 to 2.0. As shown in FIG. 4, h is the width (mm) of the wall panel 1, and p is the screw pitch (mm) of the screw 8.
 Q=F/√3・h・t …(10) Q y = F 1 / √3 · h · t 1 (10)
 式(10)において、hは図4に示す壁パネル1の幅(mm)であり、tは図5に示す折板3の厚さ(mm)であり、Fは折板3のF値(N/mm)ある。 In Expression (10), h is the width (mm) of the wall panel 1 shown in FIG. 4, t 1 is the thickness (mm) of the folded plate 3 shown in FIG. 5, and F 1 is the F of the folded plate 3. Value (N / mm 2 ).
 Q=τ cr,G・h・t=36β{(EI1/4×(EI3/4}h/hd   …(11)
 I=t (δ十1)/(6η) …(11a)
 I=t /{12(1-μ)} …(11b)
Q G = τ e cr, G · h · t 1 = 36β {(EI y ) 1/4 × (EI X ) 3/4 } h / h d 2 (11)
I x = t 1 3 (δ 2 tens 1) / (6η) ... ( 11a)
I y = t 1 3 / {12 (1-μ 2 )} (11b)
 式(11)において、βは、面材3の端部の固定度を示す係数で、ここではピンの場合のβ=1.0である。Eは、折板3のヤング係数(E=205(kN/mm))である。Iは、折板3の折り筋方向に対して直交する方向の中立軸に関する単位長さ当たりの断面2次モーメントであり、式(11a)で算出される。この式(11a)において、tは、折板3の厚さ(mm)であり、δは、山高板厚比であり、図5に示すように、折板3の山部6の山高部分の高さをdとした場合に、δ=d/tとなる。また、ηは、図5に示す折り筋方向に直交する方向の山部の展開したときの長さ寸法L1に対する、山部の実寸法(投影長さ)Lの比(L/L1)、すなわち、折板3の山部の長さの減少率である。hdは折板3の幅方向の支点間距離で、中桟が1本の場合はhd=h/2である。また、式(11)において、Iは、折板3の折り筋方向に対して並行する方向の中立軸に関する単位長さ当たりの断面2次モーメントであり、式(11b)で算出される。この式(11b)において、μは、折板3のポアソン比(μ=0.3)である。 In Expression (11), β is a coefficient indicating the degree of fixation of the end portion of the face material 3, and here, β = 1.0 in the case of a pin. E is the Young's modulus (E = 205 (kN / mm 2 )) of the folded plate 3. I x is a moment of inertia of the cross section per unit length with respect to the neutral axis in the direction orthogonal to the direction of the folding line of the folded plate 3, and is calculated by the equation (11a). In this formula (11a), t 1 is the thickness (mm) of the folded plate 3, δ is the plate height ratio, and as shown in FIG. Δ = d / t 1 where d is the height of. Further, η is the ratio (L / L1) of the actual dimension (projected length) L of the peak part to the length dimension L1 when the peak part in the direction orthogonal to the folding line direction shown in FIG. This is the rate of decrease in the length of the crests of the folded plate 3. h d is the distance between the fulcrums in the width direction of the folded plate 3, and h d = h / 2 when there is one middle rail. In the equation (11), I y is a secondary moment of the cross section per unit length with respect to the neutral axis in the direction parallel to the folding line direction of the folded plate 3, and is calculated by the equation (11b). In this formula (11b), μ is the Poisson's ratio (μ = 0.3) of the folded plate 3.
 図示を省略するが、このような式(11)で決定される折板3の全体座屈強度とは、折板3全体が複数の山部6および谷部7を跨いで座屈する破壊モードが発生したときの強度である。そして、全体座屈強度を決定する大きな要因が山部6の山高部分の高さdであり、この山高部分の高さdを所定値以上に設定することで、全体座屈強度が確保できる。 Although not shown in the figure, the overall buckling strength of the folded plate 3 determined by such an equation (11) is a failure mode in which the entire folded plate 3 buckles across a plurality of peaks 6 and valleys 7. It is the strength when it occurs. And the big factor which determines the whole buckling strength is the height d of the peak part of the peak part 6, and the whole buckling strength can be ensured by setting the height d of this peak part to a predetermined value or more.
 Q=τ cr,L・h・t=k(πE)/{12(1一μ)}・γ・h・t…(12) Q L = τ e cr, L · h · t 1 = k (π 2 E) / {12 (1 μ 2 )} · γ 2 · h · t 1 (12)
 式(12)において、kは、せん断座屈係数(k=4.00+5.34/α)である。ここで、αは、縦横比(α=a/h)であり、図4に示すように、aは、折板3の谷幅(mm)であり、hは、壁パネルの幅(mm)である。また、式(12)において、πは、円周率であり、γは、折板3の幅厚比(γ=t/h)である。図示を省略するが、このような式(12)で決定される折板3の谷部7の局部座屈強度とは、個々の谷部7が座屈する破壊モードが発生したときの強度である。局部座屈強度を決定する大きな要因が、谷部7の幅厚比γである。すなわち、谷部7の谷幅aを所定値以下に設定することで、局部座屈強度が確保できる。 In Expression (12), k is a shear buckling coefficient (k = 4.00 + 5.34 / α 2 ). Here, α is the aspect ratio (α = a / h), and as shown in FIG. 4, a is the valley width (mm) of the folded plate 3, and h is the width (mm) of the wall panel. It is. Further, in the equation (12), [pi is pi, gamma is the width-thickness ratio of the folded plate 3 (γ = t 1 / h ). Although illustration is omitted, the local buckling strength of the valley portion 7 of the folded plate 3 determined by such an expression (12) is the strength when a fracture mode in which each valley portion 7 buckles occurs. . A major factor that determines the local buckling strength is the width-thickness ratio γ of the valley portion 7. That is, the local buckling strength can be ensured by setting the valley width a of the valley portion 7 to a predetermined value or less.
 なお、式(8)については、ねじ接合部の破壊モードが、他のモードが発現した後で発現してもよいため、α~αは1.0である必要はなく、0.5以上であることが望ましい。 In Formula (8), since the failure mode of the screw joint portion may be manifested after other modes are manifested, α 6 to α 8 need not be 1.0, and 0.5 The above is desirable.
 このような構成によれば、折板3のねじ周りの支圧耐力で決定されるせん断耐力が、折板3のせん断降伏耐力よりも小さく設定されているので、折板3がせん断降伏するよりも前に折板3のねじ周りが支圧変形し、ねじ8が傾斜する。このとき、壁パネル1に加えられた負担荷重の一部が、ねじ8を傾斜させる力に変えられる。そして、折板3がその負担荷重を保持することとなり、折板3のせん断降伏が防止できる。従って、脆性的なせん断降伏を防止するとともに、折板3のねじ周りの支圧変形によって靭性が確保でき、壁パネル1のエネルギー吸収性能を高めることができる。すなわち、折板3の全体座屈や局部座屈などの座屈が発生すると、せん断応力が保持できずに、急激に耐力が低下して変形が増大するような脆性破壊に至ってしまう。そこで、このような座屈を防止することで、壁パネル1の変形性能を向上させることができる。この際、折板3の全体座屈により決定されるせん断降伏耐力としては、折板3の山高寸法の影響が大きく、山高寸法を所定値以上に大きく設定することで、折板3のねじ周りの支圧耐力で決定されるせん断耐力を上回ることができる。また、折板3の局部座屈により決定されるせん断降伏耐力としては、折板3の谷幅寸法の影響が大きく、谷幅寸法を所値以下に抑えて設定することで、折板3のねじ周りの支圧耐力で決定されるせん断耐力を上回ることができる。 According to such a configuration, since the shear strength determined by the bearing strength around the screw of the folded plate 3 is set to be smaller than the shear yield strength of the folded plate 3, the folded plate 3 is more likely to yield shear. Before that, the periphery of the screw of the folded plate 3 is deformed under pressure, and the screw 8 is inclined. At this time, part of the burden load applied to the wall panel 1 is changed to a force for inclining the screw 8. And the folded plate 3 will hold the burden load, and the shear yield of the folded plate 3 can be prevented. Therefore, brittle shear yield can be prevented, and toughness can be secured by supporting pressure deformation around the screw of the folded plate 3, and the energy absorption performance of the wall panel 1 can be enhanced. That is, when buckling such as overall buckling or local buckling of the folded plate 3 occurs, the shear stress cannot be maintained, and brittle fracture is caused in which the yield strength is rapidly reduced and deformation is increased. Therefore, the deformation performance of the wall panel 1 can be improved by preventing such buckling. At this time, the shear yield strength determined by the overall buckling of the folded plate 3 is greatly affected by the height of the crest of the folded plate 3, and by setting the crest height to a predetermined value or larger, The shear strength determined by the bearing strength of can be exceeded. Moreover, as the shear yield strength determined by the local buckling of the folded plate 3, the influence of the valley width dimension of the folded plate 3 is large, and the valley width dimension of the folded plate 3 is set by suppressing the valley width dimension to a predetermined value or less. The shear strength determined by the bearing strength around the screw can be exceeded.
 以上説明の壁パネル1によれば、折板3と枠材2とねじ8とによる接合部における接合耐力が、折板3のねじ周りの支圧耐力により決定され、外力が作用した際に折板3のねじ周りが支圧変形するように構成されている。これにより、折板3の全体座屈、局部座屈、枠材2の変形などにより急激に耐力低下することなく、負担荷重を保持することができる。従って、比較的大きな変形角(例えば、層間変形角で1/30rad程度)まで、壁パネル1の耐力が低下せずに荷重を保持できる。つまり、折板3の変形性能を高めることができるので、構造特性係数を小さく設定することが可能になる。これにより、耐力壁の枚数(壁長)を少なくし、枠材板厚や接合金物の耐力を抑えることにより、経済的かつ建築計画上の自由度を高めることができる。つまり、ねじ止めによって枠材2と折板3とを接合することで、接合構造が簡単になり、製造および施工の手間やコストを低減させることができる。 According to the wall panel 1 described above, the joint strength at the joint between the folded plate 3, the frame member 2 and the screw 8 is determined by the bearing strength around the screw of the folded plate 3, and it is folded when an external force is applied. The periphery of the screw of the plate 3 is configured to deform under pressure. Thereby, a burden load can be hold | maintained, without carrying out the yield strength fall rapidly by the whole buckling of the folded plate 3, a local buckling, the deformation | transformation of the frame material 2, etc. Therefore, the load can be held up to a relatively large deformation angle (for example, about 1/30 rad in the interlayer deformation angle) without reducing the proof stress of the wall panel 1. That is, since the deformation performance of the folded plate 3 can be enhanced, the structural characteristic coefficient can be set small. Thereby, the number of bearing walls (wall length) can be reduced, and the frame material plate thickness and the strength of the joint hardware can be suppressed, thereby increasing the degree of freedom in economic and architectural planning. That is, by joining the frame member 2 and the folded plate 3 by screwing, the joining structure is simplified, and the labor and cost of manufacturing and construction can be reduced.
 そして、ねじ接合部におけるねじ8による折板3の支圧変形を確実に安定して起こさせることを探求するために、折板3の機械的な性質と、ねじ接合部付近の塑性化について、試験および検討した。 And in order to search for surely and stably causing the support pressure deformation of the folded plate 3 by the screw 8 in the screw joint portion, the mechanical properties of the folded plate 3 and the plasticization in the vicinity of the screw joint portion, Tested and examined.
 試験および検討の条件として、押し引きによる支圧力をねじ接合部に作用させ、ねじ接合部を支圧変形させた場合のねじ接合部の破壊モードとして下記(i)~(iv)のパターンが考えられるが、(i)、(ii)のパターンであることを前提とした。
(i)折板3におけるねじ接合部付近の支圧変形時に、ねじ8のねじ先が抜けることにより接合部が破壊される場合。
(ii)ねじ接合部付近の支圧変形時に、折板3(面材)が支圧変形して、接合部が破壊される場合。
(iii)ねじ接合部付近の支圧変形時に、枠材2が支圧変形して、接合部が破壊される場合。
(iv)ねじ接合部付近の支圧変形時に、ねじ8の軸部8Bが破断して、接合部が破壊される場合。
As the test and examination conditions, the following patterns (i) to (iv) are considered as failure modes of the screw joint when a support pressure by pushing and pulling is applied to the screw joint and the screw joint is subjected to bearing deformation. However, it was assumed that the patterns were (i) and (ii).
(I) When the joint of the folded plate 3 is deformed by supporting deformation in the vicinity of the screw joint, and the screw tip of the screw 8 comes off.
(Ii) When the folded plate 3 (face material) is subjected to bearing deformation when the bearing is deformed near the screw joint, and the joint is destroyed.
(Iii) A case where the frame member 2 is subjected to bearing deformation when the bearing is deformed near the screw joint, and the joint is destroyed.
(Iv) When the bearing 8 is deformed in the vicinity of the screw joint, the shaft 8B of the screw 8 is broken and the joint is destroyed.
 先ず、折板3のねじ周り支圧耐力Ras3-1に対するねじ8の抜け出し耐力Ras2(Ras2/Ras3-1)に関しては、Ras2/Ras3-1が1.0を下回ると、ねじ8の抜け出し耐力Ras2が小さすぎてねじ8の先端が枠材2から抜け出しやすくなる。また、逆にRas2/Ras3-1の値が大きすぎると、ねじ8が動かず、ねじ8の頭部8Aが折板3に潜り込んでしまう。これらの場合、いずれも、ねじ8の軸部8Bの傾斜を確保できず、ねじ接合部8Cの折板3を安定的に塑性変形させてエネルギー吸収し、耐力壁の急激な耐力低下を防止することができなくなる。したがって、本発明の壁パネル1では、折板3の支圧耐力に対するねじ9の抜け出し耐力の比(Ras2/Ras3-1)が、折板3の支圧変形時に、ねじ8の軸部8Aが傾斜する所定値に設定されている。これにより、ねじ8が枠材2から抜け出したり、ねじ8(特に、頭部8A)が折板3に潜り込んだりするのを防止できる。また、折板3の支圧耐力に対するねじ9の抜け出し耐力の比は、0.7以上であることが好ましい。これにより、ねじ8が傾斜する前に、ねじ8の先端が枠材2から抜けてしまうのを防ぐことができる。また。折板3の支圧耐力に対するねじ9の抜け出し耐力の比は、1.6以下であることが好ましい。これにより、ねじ8が折板3に潜り込むことなく、ねじ8を傾斜させることができる。
 ただし、後述のワッシャを用いた場合には、折板3の支圧耐力に対するねじ8の抜け出し耐力の比は、0.7~4.0の範囲であればよい。
First, with regard to the unwinding resistance R as2 (R as2 / R as3-1 ) of the screw 8 with respect to the bearing support resistance R as3-1 of the folded plate 3, when R as2 / R as3-1 is less than 1.0, The pull-out resistance R as2 of the screw 8 is too small, and the tip of the screw 8 is easily pulled out of the frame member 2. On the other hand, if the value of R as2 / R as3-1 is too large, the screw 8 does not move, and the head portion 8 A of the screw 8 enters the folded plate 3. In any of these cases, the inclination of the shaft portion 8B of the screw 8 cannot be ensured, and the folded plate 3 of the screw joint portion 8C is stably plastically deformed to absorb energy, thereby preventing a sudden decrease in the proof stress of the bearing wall. I can't do that. Therefore, in the wall panel 1 of the present invention, the ratio of the proof resistance of the screw 9 to the bearing strength of the folded plate 3 (R as2 / R as3-1 ) is the shaft portion of the screw 8 when the folded plate 3 is deformed by bearing pressure. 8A is set to the predetermined value which inclines. Thereby, it is possible to prevent the screw 8 from slipping out of the frame member 2 and the screw 8 (particularly, the head 8A) from entering the folded plate 3. Moreover, it is preferable that the ratio of the pullout yield strength of the screw 9 to the bearing strength of the folded plate 3 is 0.7 or more. Thereby, it can prevent that the front-end | tip of the screw 8 comes off from the frame material 2 before the screw 8 inclines. Also. The ratio of the pull-out resistance of the screw 9 to the bearing strength of the folded plate 3 is preferably 1.6 or less. As a result, the screw 8 can be inclined without the screw 8 entering the folded plate 3.
However, when a washer described later is used, the ratio of the proof stress of the screw 8 to the bearing strength of the folded plate 3 may be in the range of 0.7 to 4.0.
 壁パネル1としての耐力および変形性能を推定するために、ねじ接合部についての要素試験を行った。 In order to estimate the yield strength and deformation performance of the wall panel 1, an element test was performed on the screw joint.
 図7Aには、ねじ接合部の要素試験の状況が示され、要素の載荷試験装置14は、一方に二股状の取り付けアーム15を有する第1加力治具16と、他方に厚板連結鋼板を有する第2加力治具17とを備えている。 FIG. 7A shows the state of the element test of the screw joint portion. The element loading test apparatus 14 includes a first force applying jig 16 having a bifurcated mounting arm 15 on one side and a thick plate connecting steel plate on the other side. And a second force applying jig 17 having.
 前記アーム15の二股間方向に沿って折り筋が向くように、折板3の一部である折板片3aの両端部を配置する。その折り筋方向の谷部7の面材3を、それぞれ3つの座金18を介して固定ボルト19により固定する。折板片3aの中央部下面に、枠材2の一部である枠材片2aの一端側のウェブ4を、ビスなどのねじ8により接合する。枠材片2aの他端部を厚板連結鋼板20の一端部に重合させて3本のボルト19により固定する。さらに、厚板連結鋼板20の他端部を、前記第2加圧治具17に重合させて座金および3本のボルト19により固定している。 The both ends of the folded plate piece 3a, which is a part of the folded plate 3, are arranged so that the fold line is directed along the bifurcated direction of the arm 15. The face material 3 of the trough 7 in the direction of the folding line is fixed by fixing bolts 19 through three washers 18 respectively. The web 4 on one end side of the frame member piece 2a which is a part of the frame member 2 is joined to the lower surface of the central portion of the folded plate piece 3a by a screw 8 such as a screw. The other end portion of the frame member piece 2 a is superposed on one end portion of the thick plate connecting steel plate 20 and fixed by three bolts 19. Further, the other end of the thick plate connecting steel plate 20 is superposed on the second pressure jig 17 and fixed by a washer and three bolts 19.
 折板片3aの試験体の形状および板厚が異なる4種類の折板の要素片を製作して試験を行った。折板片3aに対する載荷は、図7Aに矢印で示すように、図示省略の油圧ジャッキ等により正負漸増繰り返し荷重を負荷した。 Four types of folded plate element pieces having different shapes and thicknesses of the test piece of the folded plate piece 3a were manufactured and tested. As shown in FIG. 7A by arrows, the loading on the folded plate piece 3a was applied with a positive and negative incremental increase load by a hydraulic jack or the like (not shown).
 試験にあたっての、折板片3aと、枠材片2aと、ねじ8とに対する条件は、下記の通りである。
(i)折板片3aの断面形状は図8に示す形状とした。
(ii)枠材片2aは、SGC400でかつ板厚が1.6mmのものを使用し、ウェブ幅寸法が89mmで、フランジ幅が44.5mmとした。
(iii)折板3と枠材片2aとを1箇所で接合するねじ8は、六角頭ねじでかつ呼び径が4.8mmのものを使用し、折板3と枠材片2aとに渡って、折板3の谷部7に六角頭が接触するまでねじ込んで接合した。
The conditions for the folded plate piece 3a, the frame member piece 2a, and the screw 8 in the test are as follows.
(I) The cross-sectional shape of the folded plate piece 3a is the shape shown in FIG.
(Ii) The frame piece 2a is SGC400 and has a plate thickness of 1.6 mm, the web width dimension is 89 mm, and the flange width is 44.5 mm.
(Iii) The screw 8 that joins the folded plate 3 and the frame member 2a in one place is a hexagonal head screw having a nominal diameter of 4.8 mm, and extends over the folded plate 3 and the frame member 2a. And it screwed in and joined to the trough part 7 of the folded plate 3 until the hexagon head contacted.
 折板片3aの各試験体は、表1に示すような4種の鋼材を用いた試験体である。この試験で得られた荷重-変位関係を図9A及び図9Bに示す。 Each specimen of the folded plate piece 3a is a specimen using four types of steel materials as shown in Table 1. The load-displacement relationship obtained in this test is shown in FIGS. 9A and 9B.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 鋼材Bの試験体は、面材3の支圧耐力に対するねじ8の抜け出し耐力の比が0.68であり、十分な変形性能を発揮している。これにより、面材3の支圧耐力に対するねじ8の抜け出し耐力の比の下限を0.7とした。また、鋼材B2の試験体は、鋼材Bの試験体と面材3およびねじ径は同一であるが、枠材2を2枚重ねしてねじ8の抜け出し耐力を高め、ねじ8を傾きにくくしている。鋼材B2の試験体は、面材3の支圧耐力に対するねじ8の抜け出し耐力の比が1.66であり、変形性能に乏しい。鋼材Aの試験体は、面材3の支圧耐力に対するねじ8の抜け出し耐力の比が1.44であり、十分な変形性能を発揮している。これにより、面材3の支圧耐力に対するねじ8の抜け出し耐力の比の上限を1.6とした。この上限は、市販のねじを用いた場合の数値であり、後述の、大径ワッシャを用いた場合は上限が高くなる。 The specimen of the steel material B has a ratio of the proof stress of the screw 8 to the bearing strength of the face material 3 of 0.68, and exhibits sufficient deformation performance. As a result, the lower limit of the ratio of the yield strength of the screw 8 to the bearing strength of the face material 3 was set to 0.7. In addition, the steel material B2 test body has the same surface material 3 and screw diameter as the steel material B test body, but the frame material 2 is overlapped to increase the pull-out resistance of the screw 8, and the screw 8 is less inclined. ing. The specimen of the steel material B2 has a deformation ratio of 1.66, which is a ratio of the yield strength of the screw 8 to the bearing strength of the face material 3, which is 1.66. The specimen of the steel material A has a ratio of the pull-out resistance of the screw 8 to the bearing capacity of the face material 3 of 1.44, and exhibits sufficient deformation performance. Accordingly, the upper limit of the ratio of the yield strength of the screw 8 to the bearing strength of the face material 3 was set to 1.6. This upper limit is a numerical value when a commercially available screw is used, and the upper limit becomes higher when a large-diameter washer described later is used.
 鋼材Dの試験体は、面材3の支圧耐力に対するねじ8の抜け出し耐力の比が鋼材Bの試験体よりも高いにもかかわらず、変形性能が乏しかった。これは、鋼材Bは特殊な低破断伸び鋼で、破壊メカニズムが違うためである。一般的な鋼材Dのみを考えた場合は、面材3の支圧耐力に対するねじ8の抜け出し耐力の比の下限は高くなると考えられる。 The specimen D of the steel material D was poor in deformation performance even though the ratio of the yield strength of the screw 8 to the bearing capacity of the face material 3 was higher than that of the steel B specimen. This is because the steel material B is a special low fracture elongation steel and the fracture mechanism is different. When considering only the general steel material D, it is considered that the lower limit of the ratio of the yield strength of the screw 8 to the bearing strength of the face material 3 is increased.
 一般的には、たとえば、Ras3-1<<Ras2であってねじ接合部でねじ8が傾かない場合、図10Aに示すように、ねじ接合部におけるねじ8による支圧により、ねじ孔9の周辺の折板3における鋼板部分が、押しのけられる。すなわち、この鋼板部分が、前面側あるいは側面側に屈曲部22を形成するようにして小さく集まるようになり、この屈曲部22が抵抗になって耐力が上昇する。そして、鋼板は面外方向に浮き上がり(ねじ8の頭部8Aが面材3に潜り込み)、その結果、折板3の耐力及び壁パネル1の耐力が安定しないようになる。 In general, for example, when R as3-1 << R as2 and the screw 8 does not tilt at the screw joint portion, as shown in FIG. The steel plate portion in the folded plate 3 around is removed. That is, the steel plate portion is gathered in a small manner so as to form the bent portion 22 on the front side or the side surface, and the bent portion 22 becomes a resistance and the proof stress is increased. Then, the steel plate floats in the out-of-plane direction (the head 8A of the screw 8 sinks into the face material 3), and as a result, the strength of the folded plate 3 and the strength of the wall panel 1 become unstable.
 前述したように、ねじ抜け出し耐力が、面材支圧破壊耐力よりも小さい場合でも、面材3が支圧変形する場合があることがわかった。 As described above, it was found that the face material 3 may be subjected to bearing deformation even when the screw pull-out resistance is smaller than the face material bearing fracture resistance.
 そして、図10B及び図10Cに示すように、載荷されて、ねじ8により面材(折板3)におけるねじ孔9の周囲の面材3が支圧変形している場合に、ねじ8が傾くようになると、ねじ8の軸部8Bに接触しているねじ孔側の支圧されている面材3は、ねじ8の軸部8Bの傾斜に沿ってめくれ上がる。高破断伸びの面材(折板3)では、めくれ上がった部分の頂部に亀裂23が入り、ねじ8が抜け出すようになる。また、低破断伸びでは、めくれ上がった部分の裾に亀裂23が入り、図10Dに示すように、切り屑26となって除去されることがわかった。 10B and 10C, when the face material 3 around the screw hole 9 in the face material (folded plate 3) is loaded and deformed by the screw 8, the screw 8 is inclined. As a result, the face material 3 supported by the screw hole in contact with the shaft portion 8B of the screw 8 is turned up along the inclination of the shaft portion 8B of the screw 8. In the face material with high elongation at break (folded plate 3), a crack 23 enters the top of the turned up part, and the screw 8 comes out. Further, it was found that, at low breaking elongation, cracks 23 were formed at the skirt of the turned up part and removed as chips 26 as shown in FIG. 10D.
 また、前記のように、ねじ8が傾斜している場合に、折板3が、高破断伸びの材料であると、図10Bに示すように、ねじ8の軸部8Bにより支圧変形すると、塑性化されている部分21が軸部8Bにまとわり付く。これにより、ねじ8の8B軸部の負担が増えるようになり、面材3の耐力が上昇し、壁パネル1の耐力が上昇するが、ねじ8が枠材5から抜け出すようになる。反対に、折板3が、低破断伸びの材料である場合には、脆いため、図10D及び図10Eに示すように、ねじ8の軸部8Bに支圧変形されている部分(特に、ねじ8の先端側の折板3)は、粉砕されて切り屑26となる。その結果、ねじ8に作用している支圧力(負荷)は、不変で安定化するようになり、壁パネル1の耐力が安定するようになる。 Further, as described above, when the screw 8 is inclined and the folded plate 3 is made of a material having a high breaking elongation, as shown in FIG. 10B, when the support plate is deformed by the shaft portion 8B of the screw 8, The plasticized portion 21 clings to the shaft portion 8B. As a result, the load on the 8B shaft portion of the screw 8 is increased, the proof stress of the face member 3 is increased, and the proof stress of the wall panel 1 is increased, but the screw 8 comes out of the frame member 5. On the other hand, when the folded plate 3 is made of a material having low elongation at break, it is brittle and, as shown in FIGS. 10D and 10E, a portion (particularly, a screw) that is supported and deformed by the shaft portion 8B of the screw 8. The folded plate 3 on the front end side of 8 is crushed into chips 26. As a result, the supporting pressure (load) acting on the screw 8 is unchanged and stabilized, and the proof stress of the wall panel 1 is stabilized.
 具体的には、前記の表1における鋼材Bのように、破断伸びが15.9%より小さい場合には、図10Dに示すように、ねじ接合部8Cにおいて、支圧されるねじ孔9周りの面材3の塑性化部21が、ねじ8に接触するねじ孔9の先端部に集まることはない。すなわち、集まった鋼板の面材3が粉砕されて排除され易くなるため、ねじ孔9の周りに集まった、塑性化された面材3が、ねじ8に抵抗することがない。これにより、面材3を安定して塑性変形させることができ、安定した耐力を発揮させることができる。 Specifically, when the elongation at break is smaller than 15.9% as in the steel material B in Table 1 above, as shown in FIG. The plasticized portion 21 of the face material 3 is not collected at the tip of the screw hole 9 that contacts the screw 8. That is, since the collected face material 3 of the steel plate is easily crushed and eliminated, the plasticized face material 3 gathered around the screw hole 9 does not resist the screw 8. Thereby, the face material 3 can be stably plastically deformed, and stable proof stress can be exhibited.
 折板3として鋼板を用いた場合の破断伸びの影響について、図11A及び11Bに示すモデルに基づいて検討する。 The effect of elongation at break when a steel plate is used as the folded plate 3 will be examined based on the models shown in FIGS. 11A and 11B.
 図11Aに示すように、ねじ8の軸部8Bに乗りあげた鋼板が砕けて切り屑になるためには、鋼板の板厚中心に対して外周面の伸びが材料の破断伸びEl以上となればいいので、下式(13)を満たす必要がある。
(d/2+t)/(d/2+t/2)-1>El …(13)
As shown in FIG. 11A, in order for the steel sheet riding on the shaft 8B of the screw 8 to be crushed into chips, the elongation of the outer peripheral surface with respect to the thickness center of the steel sheet must be equal to or greater than the breaking elongation El of the material. Therefore, it is necessary to satisfy the following expression (13).
(D 1/2 + t 1 ) / (d 1/2 + t 1/2) -1> El ... (13)
 例えば、上記実験から、ねじ8の軸部8Bの軸径dを4.8mmとし、鋼板の板厚tを0.6mmとした場合、Elは11%以下にする必要があることがわかる。 For example, from the above experiment, it is understood that when the shaft diameter d 1 of the shaft portion 8B of the screw 8 is 4.8 mm and the plate thickness t 1 of the steel plate is 0.6 mm, El needs to be 11% or less. .
 式(13)によれば、ねじ8の軸径dは小さく、鋼板の板厚tは厚くすることで、破断伸びの上限を上げることができる。3階建て以下程度のスチールハウスであれば、dは4.2mm以上、tは0.8mm以下となるので、破断伸びの上限は下式(13a)で求められる。
(4.2/2+0.8)/(4.2/2+0.8/2)-1=0.16>El …(13a)
According to equation (13), shaft diameter d 1 of the screw 8 is small, the thickness t 1 of the steel sheet by increasing, it is possible to raise the upper limit of the elongation at break. In the case of a steel house of about 3 stories or less, d 1 is 4.2 mm or more and t 1 is 0.8 mm or less, so the upper limit of elongation at break is obtained by the following equation (13a).
(4.2 / 2 + 0.8) / (4.2 / 2 + 0.8 / 2) -1 = 0.16> El (13a)
 式(13)により数値計算解析した結果、折板3の破断伸びは、16%未満であることが望ましい。破断伸びが小さい折板3を用いることにより、ねじ8の軸部8Bにより支圧されるねじ8の軸部8B周りの面材3が塑性化した場合に、ねじ8の軸部8Bの傾斜に沿って上昇する場合に粉砕されて除去され易くなる。一方、面材3の破断伸びが1%を下回ると、折板加工時に割れが発生しやすくなるため、望ましくない。面材3の破断伸びが16%を上回ると粉砕しにくくなるため、望ましくない。 As a result of numerical calculation analysis by the formula (13), it is desirable that the breaking elongation of the folded plate 3 is less than 16%. By using the folded plate 3 having a small breaking elongation, when the face material 3 around the shaft portion 8B of the screw 8 supported by the shaft portion 8B of the screw 8 is plasticized, the shaft portion 8B of the screw 8 is inclined. When it rises along, it is crushed and easily removed. On the other hand, if the elongation at break of the face material 3 is less than 1%, cracks are likely to occur during folding plate processing, which is not desirable. If the elongation at break of the face material 3 exceeds 16%, it becomes difficult to grind, which is not desirable.
 したがって、折板3を構成する鋼材の破断伸びが16%未満であると、ねじ8の軸部8Bによりねじ孔9周りの折板3の鋼板が塑性化される時に、ねじ8の先端に集まる折板3の鋼材が粉砕され、ねじ8の軸部8Bにまとわりつかない。これにより、ねじ8の軸部8Bによる支圧方向に細長いねじ孔9の形成に対する抵抗を排除し、折板3および壁パネル1の耐力を安定させながら変形性能を確保することができる。 Therefore, when the breaking elongation of the steel material constituting the folded plate 3 is less than 16%, the steel plate of the folded plate 3 around the screw hole 9 is plasticized by the shaft portion 8B of the screw 8 and gathers at the tip of the screw 8. The steel material of the folded plate 3 is crushed and does not cling to the shaft 8B of the screw 8. As a result, resistance to the formation of the screw hole 9 elongated in the bearing direction by the shaft portion 8B of the screw 8 can be eliminated, and deformation performance can be ensured while stabilizing the yield strength of the folded plate 3 and the wall panel 1.
 次に、ねじにワッシャを用いた場合の効果について文献調査し、日本鋼構造協会編「鋼構造接合資料集成」の図-II.5.12から有効な情報を得た。図12にボルト孔周辺の応力分布、図13にボルト心からの距離による応力値を示す。図13に示すように、ボルト心からの距離がボルト半径の3倍以内の範囲では、応力の変化勾配が大きい。そこで、この範囲にワッシャを用いることにより、ねじ頭部が面材に潜り込むのを抑制できる。また、図13に示すように、鋼板の降伏比YR(図13中にはβで表記)が高いほど応力の変化勾配が大きく、塑性化領域が狭いことが分かる。
 図14A及び図14Bに示すように、ワッシャ33の外径Dwをねじ8の軸部8Bの軸径dで除算した比(外径Dw/ねじ8の軸部8Bの軸径d)の値は3.0以上となり、十分な効果が得られると考えられる。実際に、軸部8Bの軸径dが4.2mmのねじ8に対し、ねじ8の軸部8Bの軸径dの5倍である外径21mmのワッシャ33を用いて、図7Aに示す装置によるねじ接合部の要素試験と、後述する図22の装置による壁パネル載荷試験とを行った。その結果、ワッシャ33を挿入しない場合、図10Aに示すように、ねじ8の頭部8Aが面材3の下に潜り込んで耐力が保持できず、耐力壁1の劣化が激しかった。これに対し、ワッシャ33を挿入した場合には、各々のねじ8が耐力を保持し、耐力壁1全体が大きく変形した時にも耐力を保持することができた。
 また、横枠材2Bに比べて、両端側に配置された縦枠材2Aに固定された面材3の支圧変形の方が大きい。そこで、ワッシャ33は、図1に示す縦枠材2Aを面材3の谷部7に固定するねじ8にのみ挿入されていても良い。これにより、面材3におけるねじ8周囲の支圧変形を安定的に確保しつつ、全体的な製造コストを抑えることができる。
Next, a literature survey was conducted on the effects of using washers for screws. Figure II. Effective information was obtained from 5.12. FIG. 12 shows the stress distribution around the bolt hole, and FIG. 13 shows the stress value depending on the distance from the bolt core. As shown in FIG. 13, when the distance from the bolt center is within three times the bolt radius, the stress change gradient is large. Therefore, by using a washer in this range, it is possible to suppress the screw head from entering the face material. Further, as shown in FIG. 13, it can be seen that the higher the yield ratio YR of the steel sheet (indicated by β in FIG. 13), the greater the stress change gradient and the narrower the plasticization region.
As shown in FIGS. 14A and 14B, the ratio of the outer diameter Dw of the washer 33 divided by the shaft diameter d 1 of the shaft portion 8B of the screw 8 (outer diameter Dw / shaft diameter d 1 of the shaft portion 8B of the screw 8). The value is 3.0 or more, and it is considered that a sufficient effect can be obtained. Indeed, the shaft diameter d 1 of the shaft 8B Whereas screw 8 of 4.2 mm, using an outer diameter 21mm washer 33 is five times the shaft diameter d 1 of the shaft portion 8B of the screw 8, in FIG. 7A The element test of the screw joint part by the apparatus shown and the wall panel loading test by the apparatus of FIG. As a result, when the washer 33 was not inserted, as shown in FIG. 10A, the head portion 8A of the screw 8 entered under the face material 3 and could not hold the proof stress, and the load bearing wall 1 was severely deteriorated. On the other hand, when the washer 33 was inserted, each screw 8 retained the yield strength, and the yield strength could be retained even when the entire bearing wall 1 was greatly deformed.
In addition, the bearing deformation of the face member 3 fixed to the vertical frame member 2A disposed on both ends is larger than that of the horizontal frame member 2B. Therefore, the washer 33 may be inserted only into the screw 8 that fixes the vertical frame member 2 </ b> A shown in FIG. 1 to the valley portion 7 of the face member 3. Thereby, the overall manufacturing cost can be suppressed while stably securing the bearing deformation around the screw 8 in the face material 3.
 さらに、ワッシャ33の孔33aとねじ8の軸部8Bとの隙間(クリアランス)によるねじ8の傾きについて説明する。すなわち、図14Aに示すように、ワッシャ33の孔33aとねじ8の軸部8Bとの間に隙間が形成されていることが好ましい。この構成によれば、この隙間を利用してねじ8が傾斜するため、面材3のねじ8周囲が支圧変形したときに、ねじ8の傾斜角度範囲が制限される。これにより、ねじ8が枠材2から抜け出すことを抑制することができる。
 また、図14Aに示すように、前記クリアランスが小さいと、面材3が僅かに変形しただけで、ねじ8とワッシャ33が一体化し、ワッシャ33の浮き上がりが抑えられる。これにより、折板3の谷部7の局部座屈の折れ曲がり線が、図14Aの黒点で示すように、ワッシャ33の外縁から発生する。これに対し、図14Bに示すように、クリアランスが大きいと、ねじ8とワッシャ33は、折板3が大きく変形するまで、それぞれ独立して傾き、ワッシャ33の浮き上がりが抑制されない。これにより、折板3の谷部7の局部座屈の折れ曲がり線が、図14Bの黒点で示すように、ねじ8の中心から発生する。つまり、折板3の谷部7の端(斜面の麓)までの距離を座屈長さとすると、クリアランスが大きい場合には、折板3の谷部7の局部座屈が早期に起こりやすくなる。したがって、ワッシャ33の厚さtwに対するクリアランス(ワッシャ33の内径dwとねじ8の軸部8Bの軸径dとの差)、すなわち、ワッシャ33の内径寸法からねじ8の軸部8Bの軸径寸法を差し引いた差をワッシャ33の厚さ寸法で除算した比である(dw-d)/twの値は、0.1~0.6であることが望ましい。実際に、(dw-d)/twの値が0.13のワッシャ33(Dw=18mm,dw=5.5mm,tw=2.0mm)と0.65のワッシャ33(Dw=21mm,dw=4.5mm,tw=2.3mm)とを用いて、図15Aに示す装置によるねじ接合部8Cの要素試験と、後述する図22に示す装置による壁パネル載荷試験とを行った。その結果、クリアランスが小さい方は、ワッシャ33の外周縁から折板3のしわが発生し、折板3の谷部7の局部座屈が抑制された。これに対し、クリアランスが大きい方は、ねじ孔から折板3のしわが発生し、折板3の谷部7の局部座屈が早期に発生した。
Further, the inclination of the screw 8 due to the gap (clearance) between the hole 33a of the washer 33 and the shaft portion 8B of the screw 8 will be described. That is, as shown in FIG. 14A, it is preferable that a gap is formed between the hole 33a of the washer 33 and the shaft portion 8B of the screw 8. According to this configuration, since the screw 8 is tilted using this gap, the tilt angle range of the screw 8 is limited when the periphery of the screw 8 of the face material 3 is subjected to bearing deformation. Thereby, it can suppress that the screw | thread 8 slips out from the frame material 2. FIG.
Further, as shown in FIG. 14A, if the clearance is small, the screw 8 and the washer 33 are integrated only by slightly deforming the face material 3, and the lifting of the washer 33 is suppressed. Accordingly, a local buckling bent line of the valley portion 7 of the folded plate 3 is generated from the outer edge of the washer 33 as indicated by a black dot in FIG. 14A. On the other hand, as shown in FIG. 14B, when the clearance is large, the screw 8 and the washer 33 are inclined independently until the folded plate 3 is largely deformed, and the lifting of the washer 33 is not suppressed. Accordingly, a local buckling bent line of the valley portion 7 of the folded plate 3 is generated from the center of the screw 8 as indicated by a black dot in FIG. 14B. That is, if the distance to the end of the valley 7 of the folded plate 3 is the buckling length, if the clearance is large, local buckling of the valley 7 of the folded plate 3 is likely to occur early. . Therefore, (the difference between the shaft diameter d 1 of the shaft portion 8B inside diameter dw and the screw 8 of the washer 33) clearance with respect to the thickness tw of the washer 33, i.e., shaft diameter from the inner diameter of the washer 33 of the shaft 8B of the screw 8 The value of (dw−d 1 ) / tw, which is a ratio obtained by dividing the difference obtained by subtracting the dimension by the thickness dimension of the washer 33, is preferably 0.1 to 0.6. Actually, a washer 33 (Dw = 18 mm, dw = 5.5 mm, tw = 2.0 mm) with a value of (dw−d 1 ) / tw of 0.13 and a washer 33 (Dw = 21 mm, dw) of 0.65 = 4.5 mm, tw = 2.3 mm), an element test of the screw joint 8C by the apparatus shown in FIG. 15A and a wall panel loading test by the apparatus shown in FIG. As a result, when the clearance was smaller, wrinkles of the folded plate 3 occurred from the outer peripheral edge of the washer 33, and local buckling of the valley portion 7 of the folded plate 3 was suppressed. On the other hand, when the clearance was larger, wrinkles of the folded plate 3 were generated from the screw holes, and local buckling of the valley portions 7 of the folded plate 3 occurred early.
 図15Aは、ねじ接合部の要素試験の状況を示す。同図に示す装置は、図7Aで示した装置に対し、ねじと固定ボルトの位置を交換している。 FIG. 15A shows the state of the element test of the screw joint. The apparatus shown in FIG. 7 replaces the positions of screws and fixing bolts with respect to the apparatus shown in FIG. 7A.
 折板片3aとして、形状および板厚が異なる5種類の折板の要素片を製作して、試験を行った。 As the folded plate piece 3a, five types of folded plate element pieces having different shapes and thicknesses were manufactured and tested.
 試験にあたって、折板片3aと、枠材片2aと、ねじ8の条件は、下記の通りである。
(i)面材である折板片3aの断面形状は、図16に示す形状とし、0.55mmのSGC400(降伏点373N/mm、引張強さ505N/mm、破断伸び32%)とした。
(ii)枠材片2aは、SGC400でかつ板厚が1.6mmのものを使用した。ウェブ幅寸法は89mmとし、フランジ幅は44.5mmとした。
(iii)折板3と枠材片2aとを1箇所で接合するねじ8としては、六角頭ねじでかつ呼び径が4.2mmのものを使用した。そして、このねじ8を、折板3と枠材片2aとに渡って、折板3の谷部7に六角頭が接触するまでねじ込んで接合した。
In the test, the conditions of the folded plate piece 3a, the frame material piece 2a, and the screw 8 are as follows.
(I) the cross section of the folding plate piece 3a is a surface material shape, a shape shown in FIG. 16, SGC400 of 0.55 mm (yield point 373N / mm 2, a tensile strength of 505N / mm 2, elongation at break 32%) and did.
(Ii) As the frame member 2a, SGC400 having a plate thickness of 1.6 mm was used. The web width dimension was 89 mm, and the flange width was 44.5 mm.
(Iii) As the screw 8 for joining the folded plate 3 and the frame piece 2a at one place, a hexagon head screw having a nominal diameter of 4.2 mm was used. And this screw 8 was screwed and joined to the trough part 7 of the folded plate 3 until the hexagon head contacted across the folded plate 3 and the frame material piece 2a.
 折板片3aの各試験体は、表2に示すような5種の鋼材を用いた。この試験で得られた荷重-変形関係を、図17A及び図17Bに示す。 For each test piece of the folded plate piece 3a, five types of steel materials as shown in Table 2 were used. The load-deformation relationship obtained in this test is shown in FIGS. 17A and 17B.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図17Aに示すように、鋼材E1の試験体は、面材である折板片3aの支圧耐力に対するねじ8の抜け出し耐力の比が1.32であり、十分な変形性能を発揮している。これに対し、枠材片2aを2枚重ねた鋼材E2の試験体は、面材である折板片3aの支圧耐力に対するねじ8の抜け出し耐力の比が3.16と高くなり、変形性能が乏しかった。一方、鋼材E2の試験体に対し、ワッシャ外径21mm、ワッシャ内径とねじ軸径とのクリアランスが0.3mmの鋼材E3の試験体は、十分な変形性能を発揮した。この結果から、適切なワッシャを用いることにより、面材である折板片3aの支圧耐力に対するねじ8の抜け出し耐力の比の上限は緩和できることがわかった。
 図17Bに示すように、ワッシャ内径とねじ軸径とのクリアランスが無い(ワッシャには小さな先孔しかあけず、ワッシャ自体をねじでねじ切りしてねじと一体化した)鋼材E5の試験体については、クリアランスが0.3mmの鋼材E4の試験体に較べて小さな変形でねじの軸部が破断し、変形性能が乏しかった。この結果より、変形性能を確保するには適度なクリアランスが必要で、実験ではワッシャ厚さに対するクリアランスは0.15(=0.3/2.0)であったことから、ワッシャの内径寸法からねじの軸部の軸径寸法を差し引いた差をワッシャの厚さ寸法で除算した比の下限値を、0.1とした。
As shown in FIG. 17A, the specimen of the steel material E1 exhibits a sufficient deformation performance because the ratio of the proof stress of the screw 8 to the bearing strength of the folded plate piece 3a which is a face material is 1.32. . On the other hand, the steel E2 test body in which two frame material pieces 2a are stacked has a ratio of the proof stress of the screw 8 to the bearing strength of the folded plate piece 3a, which is a face material, as high as 3.16. Was scarce. On the other hand, with respect to the test body of steel E2, the test body of steel E3 having a washer outer diameter of 21 mm and a clearance between the washer inner diameter and the screw shaft diameter of 0.3 mm exhibited sufficient deformation performance. From this result, it was found that by using an appropriate washer, the upper limit of the ratio of the pull-out strength of the screw 8 to the bearing strength of the folded plate piece 3a that is a face material can be relaxed.
As shown in FIG. 17B, there is no clearance between the washer inner diameter and the screw shaft diameter (the washer has only a small tip hole, and the washer itself is threaded with a screw and integrated with the screw). The shaft portion of the screw was broken with a small deformation as compared with the specimen E4 having a clearance of 0.3 mm, and the deformation performance was poor. From this result, an appropriate clearance is required to secure the deformation performance, and in the experiment, the clearance with respect to the washer thickness was 0.15 (= 0.3 / 2.0). The lower limit value of the ratio obtained by dividing the difference obtained by subtracting the shaft diameter of the screw shaft by the thickness of the washer was 0.1.
 図18は、ワッシャの内径寸法からねじの軸部の軸径寸法を差し引いた差をワッシャの厚さ寸法で除算した比の上限値を設定した根拠となる壁耐力試験体を示す。図19は、図22の載荷試験装置を用いて得られた荷重-変形角関係を示す。なお、図18に示すように、耐力壁には、外周の左右両端辺のみにワッシャ付きねじを用いて、それ以外はワッシャ無しのねじを用いた。すなわち、上述したように、支圧変形が大きい面材3に縦枠材2Aを固定するねじ8にのみワッシャ33を挿入した。鋼材E6の試験体と鋼材E7の試験体の面材は同一であり、0.55mmのSGC400(降伏点373N/mm、引張強さ505N/mm、破断伸び32%)、ワッシャの外径は18mm、ワッシャの厚みは2.0mmで、クリアランスのみを実験変数としており、鋼材E6のクリアランスは0.3mm、E7のクリアランスは1.3mmとした。載荷の結果、2体とも耐力はほぼ同一だが、クリアランスの大きな鋼材E7の方の剛性が低く、変形角1/100radの前で折板谷部のねじ周りに局所座屈(皺)が発生し、耐力を失った。この実験から、鋼材E7のワッシャ厚さに対するクリアランスは0.65(=1.3/2.0)であったことから、ワッシャの内径寸法からねじの軸部の軸径寸法を差し引いた差をワッシャの厚さ寸法で除算した比の上限値を0.6とした。 FIG. 18 shows a wall strength test body as a basis for setting an upper limit value of the ratio obtained by subtracting the shaft diameter of the screw shaft from the inner diameter of the washer by the thickness of the washer. FIG. 19 shows the load-deformation angle relationship obtained using the load test apparatus of FIG. As shown in FIG. 18, screws with washers were used only on the left and right ends of the outer periphery, and screws without washers were used for the other bearing walls. That is, as described above, the washer 33 is inserted only into the screw 8 that fixes the vertical frame member 2A to the face member 3 having a large bearing deformation. Surface material of the specimen of the specimen and steel E7 steel E6 are identical, SGC400 of 0.55 mm (yield point 373N / mm 2, a tensile strength of 505N / mm 2, elongation at break 32%), the outer diameter of the washer Is 18 mm, the washer thickness is 2.0 mm, and only the clearance is an experimental variable. The clearance of the steel E6 is 0.3 mm, and the clearance of E7 is 1.3 mm. As a result of the loading, the two bodies have almost the same proof stress, but the steel material E7 having a larger clearance has lower rigidity, and local buckling (crease) occurs around the screw in the folded plate valley before the deformation angle of 1/100 rad, Lost proof. From this experiment, since the clearance with respect to the washer thickness of the steel material E7 was 0.65 (= 1.3 / 2.0), the difference obtained by subtracting the shaft diameter of the screw shaft from the inner diameter of the washer was calculated. The upper limit of the ratio divided by the thickness dimension of the washer was 0.6.
 ドリリングタッピングねじなどのねじ8により、折板3をその裏面側にある枠材2に固定する場合に、ドリリングタッピングねじなどのねじ8のねじ山ピッチPが、枠材2におけるフランジ5の板厚寸法よりも超えていると、ねじ山が枠材に全周360度において引っ掛からない。これにより、図20に示すように、ねじ8が傾斜した場合に抵抗力を発揮できず、ねじ8が抜け出す恐れが高くなる。 When the folded plate 3 is fixed to the frame member 2 on the back surface side thereof by using a screw 8 such as a drilling tapping screw, the thread pitch P of the screw 8 such as a drilling tapping screw is the plate thickness of the flange 5 in the frame member 2. If it exceeds the dimension, the screw thread will not catch on the frame material at 360 degrees all around. As a result, as shown in FIG. 20, when the screw 8 is inclined, the resistance force cannot be exerted, and the risk of the screw 8 coming out increases.
 したがって、ねじ接合部8Cにおけるねじ8のねじ山のピッチが枠材2の板厚寸法以下であると、ねじ接合部8Cにおいて、ねじ8が傾斜するような場合でも、ねじ山が枠材2に全周360度において引っ掛かり、枠材2からのねじ8の抜け出しを防止し、安定した耐力を発揮させることができる。 Therefore, if the pitch of the screw threads of the screw 8 in the screw joint portion 8C is equal to or less than the plate thickness dimension of the frame member 2, the screw thread in the frame member 2 even when the screw 8 is inclined in the screw joint portion 8C. It can be caught at 360 degrees around the entire circumference, preventing the screw 8 from coming off from the frame member 2, and exhibiting a stable proof stress.
 ドリリングタッピングねじで、呼び径が4.8mm、6.0mm、8.0mmのものが知られているが、そのねじ山ピッチは、呼び径が4.8mmのもので1.6mm、呼び径が6.0mmのもので1.8mm、呼び径が8.0mmのもので1.0mm、と呼び径とピッチは比例していない。そのため、枠材2のフランジ5の板厚の寸法よりも、小さいねじ山ピッチのねじ8を用いるようにするとよい。 Drilling tapping screws with nominal diameters of 4.8 mm, 6.0 mm, and 8.0 mm are known, but the thread pitch is 1.6 mm when the nominal diameter is 4.8 mm, and the nominal diameter is The nominal diameter and pitch are not proportional to 6.0 mm and 1.8 mm, and the nominal diameter is 8.0 mm and 1.0 mm. Therefore, it is preferable to use a screw 8 having a smaller thread pitch than the thickness of the flange 5 of the frame member 2.
 図21に示すように、先端8Dが先鋭に形成されたねじ8を用いた場合、ねじ8の先端8Dにより円筒状に押し出し成形(バーリング)された部分の枠材2が、折れ曲がってねじ軸部8Bに沿う。これにより、ねじ軸部8Bに対する枠材2の掛り部が大きくなる(ねじ山の掛かり数が増える)。したがって、ねじ山のピッチが枠材2の板厚よりも大きくても、ねじ8の抜け出しを防止できるので、特に、枠材2の板厚が薄い場合には、先端8Dが先鋭に形成されたねじを用いると有効である。 As shown in FIG. 21, when a screw 8 having a sharp tip 8D is used, the frame material 2 in a portion extruded (burring) into a cylindrical shape by the tip 8D of the screw 8 is bent and screw shaft portions are formed. Along 8B. Thereby, the hooking part of the frame material 2 with respect to the screw shaft part 8B becomes large (the number of threading hooks increases). Therefore, even if the pitch of the screw thread is larger than the plate thickness of the frame member 2, it is possible to prevent the screw 8 from coming out, so that the tip 8D is sharply formed especially when the plate thickness of the frame member 2 is thin. Use of screws is effective.
 ねじ接合部におけるねじによる折板3の支圧変形について、3種類の鋼材からなる折板を用いた壁パネルについて、図22に示すように、押し引き用の載荷試験による比較試験をおこなった。 As shown in FIG. 22, a comparative test by a load test for pushing and pulling was performed on a wall panel using a folded plate made of three kinds of steel, for the bearing deformation of the folded plate 3 by a screw at the screw joint.
 各壁パネル1は、その下部両側にそれぞれ接合したホールダウン金物26を介して下部側の加力治具27に接合した。壁パネル1の上部は、上部側の加力治具28に取り付けた載荷梁29に接合し、載荷梁に接合した加力ジャッキ30の押し引きにより載荷した。試験体の形状および折板の形状は図18と同様であるが、折板を枠材に接合したねじは、すべてワッシャ無しのねじである。載荷より得られた荷重-変形角関係を図23に示す。なお、図23の変形角は、図22中にある2つの変位計32より算出した壁パネル1の傾きである。 Each wall panel 1 was joined to a lower side applying jig 27 via a hole down hardware 26 joined to both sides of the lower side. The upper part of the wall panel 1 was joined to a loading beam 29 attached to a loading jig 28 on the upper side, and loaded by pushing and pulling a loading jack 30 joined to the loading beam. The shape of the test body and the shape of the folded plate are the same as in FIG. 18, but all the screws in which the folded plate is joined to the frame member are screws without washer. The load-deformation angle relationship obtained from loading is shown in FIG. The deformation angle in FIG. 23 is the inclination of the wall panel 1 calculated from the two displacement meters 32 in FIG.
 鋼材強度および降伏比YRの大小により、耐力壁としての壁パネル1の影響について、試験を行った結果、下記表3の結果を得た。なお、下記表3における鋼材A、Bは、前記の表1に示した鋼材と同じである。また、表3中の終局変形角Ruは最大耐力の80%まで低下した耐力時の変形角である。 As a result of testing the influence of the wall panel 1 as the bearing wall, depending on the strength of the steel material and the yield ratio YR, the results shown in Table 3 below were obtained. In addition, steel materials A and B in Table 3 below are the same as the steel materials shown in Table 1 above. Further, the ultimate deformation angle Ru in Table 3 is the deformation angle at the proof stress reduced to 80% of the maximum proof stress.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 鋼材A、Bを用いた壁パネル1の終局変形角Ruは、鋼材Cを用いた壁パネル1の終局変形角Ruの1.3倍以上と大きかった。 The ultimate deformation angle Ru of the wall panel 1 using the steel materials A and B was 1.3 times or more larger than the ultimate deformation angle Ru of the wall panel 1 using the steel material C.
 図24Aに、ねじ8の軸部8Bから低YRの面材3に支圧力が作用しているときの、枠材2と面材3との構面内においてずらす方向の力が働いている場合の力の作用および変形の状態を示す。亀裂進展方向は、ねじ8を中心として広がる方向となる。この状態から枠材2と面材3とがずれると、図24Bに示すように、亀裂進展方向と反対の方向に破断線12が全体的に広がり、長孔10が形成される。また、面材3が塑性変形し、亀裂進展方向にしわ13が発生する。
 一方、高YRの面材3に支圧力が作用した場合、図24Cに示すように、亀裂進展方向は直進する。この状態から枠材2と面材3とがずれると、図24Dに示すように、亀裂進展方向と反対の方向に破断線11が直進的に広がる。このとき、低YRの面材3を用いた場合に比べて、高YRの面材3を用いた方が、形成される長孔10が小さい。
 すなわち、前記のような高降伏比鋼(高YR鋼)の面材と、低降伏比鋼(低YR鋼)の面材との試験結果から、図24C及び図24Dに示すように、降伏比の高い鋼材の折板のほうが、ねじ孔周辺の鋼材の塑性化領域の広がりを抑え、安定した支圧変形を確保できる可能性がある。
In FIG. 24A, when a force is applied in the direction of shifting in the frame surface between the frame member 2 and the face member 3 when a supporting pressure is applied to the face member 3 of the low YR from the shaft portion 8B of the screw 8. The state of the action of the force and the state of deformation are shown. The crack propagation direction is a direction spreading around the screw 8. When the frame member 2 and the face member 3 are deviated from this state, as shown in FIG. 24B, the breaking line 12 is entirely spread in the direction opposite to the crack propagation direction, and the long hole 10 is formed. Further, the face material 3 is plastically deformed, and wrinkles 13 are generated in the crack propagation direction.
On the other hand, when the supporting pressure is applied to the high YR face material 3, the crack propagation direction goes straight as shown in FIG. 24C. When the frame material 2 and the face material 3 are deviated from this state, as shown in FIG. 24D, the fracture line 11 spreads straightly in the direction opposite to the crack propagation direction. At this time, the long hole 10 to be formed is smaller when the high YR face material 3 is used than when the low YR face material 3 is used.
That is, from the test results of the face material of the high yield ratio steel (high YR steel) as described above and the face material of the low yield ratio steel (low YR steel), as shown in FIG. 24C and FIG. The higher steel folded plate may suppress the spread of the plasticized region of the steel material around the screw hole and ensure stable bearing deformation.
 この結果より、面材として折板3の鋼材の降伏比YRを高め、例えば、降伏比YRを77%以上(鋼材の降伏比を少なくとも77%)にすることで、ねじ軸部によりねじ軸周りの面材が塑性化する場合に、ねじ孔周りの塑性化領域を抑えることができる。これにより、ねじの頭部が抜けないで、ねじ孔周辺が塑性化しても、幅の狭いねじ孔を形成することができ、耐力を安定させることができる。 From this result, by increasing the yield ratio YR of the steel material of the folded plate 3 as the face material, for example, by setting the yield ratio YR to 77% or more (the yield ratio of the steel material is at least 77%), the screw shaft portion rotates around the screw shaft. When the face material is plasticized, the plasticized region around the screw hole can be suppressed. Thereby, even if the screw head does not come out and the periphery of the screw hole becomes plastic, a narrow screw hole can be formed, and the yield strength can be stabilized.
 前記面材としての折板3として、鋼板を用いた場合の降伏比の影響について、図25Aに示すモデルより検討する。 The influence of the yield ratio when a steel plate is used as the folded plate 3 as the face material will be examined from the model shown in FIG. 25A.
 図25Bより、ねじの軸部に接した部分の面材(折板3の谷部7)が耐力を負担できる範囲を角度θとし、最大耐力時に形成される降伏領域の幅をBと仮定すると、下式(14a)、(14b)が成り立つ。
/2・θ・Fu1=B・F …(14a)
B=d/2・θ・Fu1/F …(14b)
From FIG. 25B, it is assumed that the angle θ is a range in which the face material (the valley portion 7 of the folded plate 3) in contact with the shaft portion of the screw can bear the proof stress, and B is the width of the yield region formed at the maximum proof stress. The following expressions (14a) and (14b) hold.
d 1/2 · θ · F u1 = B · F 1 ... (14a)
B = d 1/2 · θ · F u1 / F 1 ... (14b)
 ねじ8の軸部8Bがねじ孔9から抜け出さないようにするには、降伏領域の幅Bをねじの直径以下とすればよいので、下式(14c)~(14g)を満たす必要がある。
>B …(14c)
>B=d/2・θ・Fu1/F …(14d)
θ/2<F/Fu1 …(14e)
 ここで、θ=90゜とすると
π/4<F/Fu1 …(14f)
0.785<F/Fu1 …(14g)
In order to prevent the shaft portion 8B of the screw 8 from coming out of the screw hole 9, the width B of the yield region may be set to be equal to or less than the diameter of the screw, so that the following expressions (14c) to (14g) must be satisfied.
d 1 > B (14c)
d 1> B = d 1/ 2 · θ · F u1 / F 1 ... (14d)
θ / 2 <F 1 / F u1 (14e)
Here, if θ = 90 °, π / 4 <F 1 / F u1 (14f)
0.785 <F 1 / F u1 ... (14g)
 式(14e)により数値計算解析した結果、折板の降伏比(F/Fu1)は79%以上であることが望ましい。ただし、実験では77%未満の鋼材Aでも壁パネルの変形性能はあった。これは、ねじ8に接した部分の面材が均一に応力を負担していると仮定していること、および面材が耐力を負担できる範囲の角度θを90゜と仮定していること等によるものと考えられる。よって、実験値を踏まえ、降伏比は77%以上とするとよいことが分かる。77%未満の降伏比の折板3では、塑性化領域が広くなり孔幅が広がるため、ねじ(特に、ねじの頭部)が面材に潜り込み易くなる。したがって、折板3の降伏比は77%以上とするとよいことが分かる。また、上限は特にないが、実験値で確認しているのは96%までなので、96%程度が望ましい。 As a result of numerical calculation analysis by the equation (14e), it is desirable that the yield ratio (F 1 / F u1 ) of the folded plate is 79% or more. However, in the experiment, even with less than 77% of steel A, the wall panel was deformable. This is because it is assumed that the face material in the portion in contact with the screw 8 bears stress uniformly, and that the angle θ in the range where the face material can bear the proof stress is assumed to be 90 °, etc. It is thought to be due to. Therefore, it is understood that the yield ratio should be 77% or more based on the experimental values. In the folded plate 3 having a yield ratio of less than 77%, the plasticization region is widened and the hole width is widened, so that the screw (particularly, the head portion of the screw) can easily enter the face material. Therefore, it can be seen that the yield ratio of the folded plate 3 should be 77% or more. Moreover, although there is no upper limit in particular, since it is confirmed up to 96% by the experimental value, about 96% is desirable.
 したがって、降伏比が高い面材としての折板(例えば、降伏比が77%~96%)3を用いると、ねじ接合部8Cにおけるねじ8により支圧される折板3の谷部の鋼板が塑性化されて変形する時に、塑性化領域がねじ孔径程度になる。すなわち、ねじ孔の孔幅が広がらないため、変形しても耐力が安定化し、変形しても耐力が安定した壁パネルとすることができる。 Therefore, when the folded plate 3 (for example, the yield ratio is 77% to 96%) 3 as a face material having a high yield ratio is used, the steel plate in the valley portion of the folded plate 3 supported by the screw 8 in the screw joint 8C is obtained. When plasticized and deformed, the plasticized region becomes about the screw hole diameter. That is, since the hole width of the screw hole does not widen, the proof stress can be stabilized even when deformed, and the wall panel can be stable even if deformed.
 また、前記のような試験から、ねじ接合部8Cでのねじ8の軸部8Bによる折板3の支圧変形(塑性化)、換言すると、ねじ孔の長孔化を安定的に形成できることを確保するためには、塑性化させる部分以外でその近傍部分の剛性を高めて、塑性化させる部分を限定させ、かつ、ねじ8の周囲に図24Bに示すしわ13の発生を防止する方法が有効であると考えられる。この形態について、図26A~図26C及び図27A~図27Dを参照して説明する。 Further, from the test as described above, it is possible to stably form the support plate deformation (plasticization) of the folded plate 3 by the shaft portion 8B of the screw 8 at the screw joint portion 8C, in other words, the elongated screw hole. In order to ensure, a method of increasing the rigidity of the portion other than the portion to be plasticized, limiting the portion to be plasticized, and preventing the generation of wrinkles 13 shown in FIG. 24B around the screw 8 is effective. It is thought that. This configuration will be described with reference to FIGS. 26A to 26C and FIGS. 27A to 27D.
 まず、図26A~図26Cに示す形態では、ねじ8の周囲で、折板3の、ねじ8の軸部8Bが挿通されるねじ孔を中心として、谷部7の延在方向(折板3の折り筋方向に)に沿ったねじ接合部8Cの両側に、谷部7の延在方向に直交する方向に延びるリブ24を設ける。これにより、折板3が塑性化する方向に対して直交する方向の面材に、しわ13が発生するなどの局部座屈を防止することができる。また、耐力壁における所定の方向に面材を塑性化させることができるようになる。 First, in the form shown in FIGS. 26A to 26C, the extending direction of the valley portion 7 (folded plate 3 around the screw 8 is centered on the screw hole of the folded plate 3 through which the shaft portion 8B of the screw 8 is inserted. Ribs 24 extending in a direction perpendicular to the extending direction of the valley portion 7 are provided on both sides of the screw joint portion 8 </ b> C along the crease line direction). Thereby, local buckling which the wrinkles 13 generate | occur | produce in the surface material of the direction orthogonal to the direction in which the folded plate 3 plasticizes can be prevented. Further, the face material can be plasticized in a predetermined direction in the bearing wall.
 また、前記のリブ24を形成する手段としては、折板3のプレス成形時に同時に形成するようにしてもよく、折板3をロール加工した後、リブ24部分のみをプレス加工により形成するようにしてもよい。リブ24の加工長さとして、ねじ孔の直径以上で、山部6近傍付近まで形成してもよい。リブ24は、塑性化時に、しわが発生すると想定される片側あるいは両側に設ける。 The rib 24 may be formed at the same time when the folded plate 3 is press-molded. After the folded plate 3 is rolled, only the rib 24 portion is formed by pressing. May be. The processing length of the rib 24 may be greater than the diameter of the screw hole and close to the vicinity of the peak portion 6. The ribs 24 are provided on one side or both sides where wrinkles are expected to occur during plasticization.
 図27A~図27Dに示す形態では、折板3の、ねじ8の軸部8Bが挿通されるねじ孔31を中心とし、谷部7の延在方向に直交する方向に沿った両側に、谷部7の板厚よりも板厚寸法を小さくした薄板部分(薄肉部)25を形成する。これにより、薄板部分25の強度が低下し、低強度部となる。その結果、ねじ8により折板3のねじ8周囲を塑性化させる場合に、薄板部分25が塑性化する。このように、塑性化させる範囲を特定の場所に限定することにより、折板3にしわが発生するのを抑えることができ、耐力壁1の耐力が安定化させる効果が得られる。図示の形態では、ねじ孔31に接続するように薄板部分25を形成する手段としては、折板3のプレス成形と同時に形成するようにしてもよい。例えば、折板3をロール加工した後、薄板部分25のみを加工して形成するようにしてもよい。加工方法としてはプレス加工や切削加工等が適していると考えられる。薄板部分25の加工幅は、ねじ孔31の直径の程度で、長さは山部6近傍付近まで形成してもよい。 In the form shown in FIGS. 27A to 27D, valleys are formed on both sides of the folded plate 3 around the screw hole 31 through which the shaft portion 8B of the screw 8 is inserted and along the direction perpendicular to the extending direction of the valley portion 7. A thin plate portion (thin wall portion) 25 having a plate thickness dimension smaller than the plate thickness of the portion 7 is formed. Thereby, the intensity | strength of the thin-plate part 25 falls and it becomes a low intensity | strength part. As a result, when the periphery of the screw 8 of the folded plate 3 is plasticized by the screw 8, the thin plate portion 25 is plasticized. In this way, by limiting the plasticizing range to a specific place, it is possible to suppress the generation of wrinkles in the folded plate 3, and the effect of stabilizing the proof stress of the bearing wall 1 can be obtained. In the illustrated form, the means for forming the thin plate portion 25 so as to connect to the screw hole 31 may be formed simultaneously with the press forming of the folded plate 3. For example, after the folded plate 3 is rolled, only the thin plate portion 25 may be processed and formed. As the processing method, it is considered that press processing or cutting processing is suitable. The processing width of the thin plate portion 25 is about the diameter of the screw hole 31, and the length may be formed up to the vicinity of the peak portion 6.
 薄板部分25は、谷部7の表面側に切削等により凹部を設けることにより形成するようにしてもよい。また、谷部7の裏面側に切削等により凹部を設けることにより形成するようにしてもよい。さらに、谷部7の表裏両面に凹部を切削等により設けることにより形成するようにしてもよい。薄板部分25が谷部7の表面側に形成された凹部であると、ねじのねじ込み時に凹部を、ねじ8のねじ込み時の位置決め用に利用することができる。 The thin plate portion 25 may be formed by providing a concave portion by cutting or the like on the surface side of the valley portion 7. Moreover, you may make it form by providing a recessed part in the back surface side of the trough part 7 by cutting. Furthermore, you may make it form by providing a recessed part in the front and back both surfaces of the trough part 7 by cutting. When the thin plate portion 25 is a concave portion formed on the surface side of the valley portion 7, the concave portion can be used for positioning when the screw 8 is screwed in when the screw is screwed.
 ねじ8の軸部8Bにより支圧変形させて塑性化させる部分を薄板部分25として、強度を低下させるようにしてもよく、板厚を変えずに、熱処理あるいは薬品処理により材質強度を低下させて、低強度部を形成するようにしてもよい。 The portion to be plastically deformed by supporting the shaft 8B of the screw 8 may be used as the thin plate portion 25 to reduce the strength. The material strength may be reduced by heat treatment or chemical treatment without changing the plate thickness. Alternatively, a low strength portion may be formed.
 すなわち、折板3の、ねじ8の軸部8Bが挿通されるねじ孔31を中心とし(折板3の谷部7のねじ孔31付近)、谷部7の延在方向に直交する方向に沿った両側に、谷部7の強度よりも強度を低下させた強度低下部を設けても良い。この構成によれば、ねじ8により折板3のねじ8周囲を塑性化させる場合に、強度低下部が塑性化する。このように、塑性化させる範囲を特定の場所に限定することにより、折板3が大きく変形したときも、壁パネル1の耐力を安定させることができる。また、ねじ孔31の位置は、図27C及び図27Dに示すように、薄板部分25に設けておくことが好ましい。 That is, in the direction orthogonal to the extending direction of the trough 7 centering on the screw hole 31 of the folded plate 3 through which the shaft portion 8B of the screw 8 is inserted (near the screw hole 31 of the trough 7 of the folded plate 3). You may provide the intensity | strength reduced part which reduced the intensity | strength rather than the intensity | strength of the trough part 7 on the both sides along. According to this configuration, when the periphery of the screw 8 of the folded plate 3 is plasticized by the screw 8, the strength-decreasing portion is plasticized. Thus, by limiting the plasticizing range to a specific place, the proof stress of the wall panel 1 can be stabilized even when the folded plate 3 is greatly deformed. Further, the position of the screw hole 31 is preferably provided in the thin plate portion 25 as shown in FIGS. 27C and 27D.
 上述した前記のスチールハウスは、普通、板厚0.4mm以上、2.3mm未満の薄板軽量形鋼による枠材に構造用面材を組み合わせて構成される鉄鋼系パネル構造の建物と定義される。 The above-mentioned steel house is usually defined as a steel panel structure building that is constructed by combining a frame material made of a thin lightweight steel with a thickness of 0.4 mm or more and less than 2.3 mm and a structural face material. .
 なお、折板3または枠材2として、高降伏点(高YP)鋼を使用すると、軽量化を図ることができる。前記のように、高降伏比(高YR)の鋼材を折板3に使用すると、ねじ接合部8Cにおける支圧変形時に、載荷される荷重に対して耐力が安定し、急激な耐力低下あるいは急激な耐力上昇が起こらない。その結果、耐力壁としての壁パネル1は、ねじ接合部で安定した耐力を発揮することができる。また、低破断伸び(低El)である鋼材による折板3であると、急激な耐力低下を伴うことなく細長いねじ孔が形成されるので、壁パネル1の変形性能を確保しやすくなる。 In addition, if high yield point (high YP) steel is used as the folded plate 3 or the frame member 2, the weight can be reduced. As described above, when a steel material having a high yield ratio (high YR) is used for the folded plate 3, the proof stress is stabilized with respect to the loaded load at the time of bearing deformation at the screw joint portion 8C, and the proof stress is suddenly lowered or rapidly increased. No increase in proof stress occurs. As a result, the wall panel 1 as the load bearing wall can exhibit stable strength at the screw joint. Further, when the folded plate 3 is made of a steel material having a low elongation at break (low El), a long and narrow screw hole is formed without causing a sudden decrease in the proof stress, so that the deformation performance of the wall panel 1 can be easily secured.
 本発明は、例えば薄板軽量形鋼造建築物等の建築物を構成する薄板軽量形鋼造用の壁パネルに適用できる。 The present invention can be applied to a wall panel for building a thin plate lightweight section steel that constitutes a building such as a thin plate lightweight section steel building.
1  壁パネル
2  枠材
2a 枠材片
3  折板(面材)
3a 折板片
4  ウェブ
5  フランジ
6  山部
7  谷部
8  ねじ
8A 頭部
8B ねじ軸部
8C ねじ接合部
8D 先端
9  ねじ孔
10 長孔
11 破断線
12 破断線
13 しわ
14 載荷試験装置
15 アーム
16 第1加力治具
17 第2加力治具
18 座金
19 ボルト
20 厚板連結鋼板
21 塑性化部
22 屈曲部
23 亀裂
24 リブ
25 薄板部分
26 ホールダウン金物
27 下部側の加力治具
28 上部側の加力治具
29 載荷梁
30 加力ジャッキ
31 ねじ孔
32 変位計
33 ワッシャ
33a 孔
1 Wall Panel 2 Frame Material 2a Frame Material Piece 3 Folded Plate (Face Material)
3a Folded plate piece 4 Web 5 Flange 6 Mountain portion 7 Valley portion 8 Screw 8A Head portion 8B Screw shaft portion 8C Screw joint portion 8D Tip 9 Screw hole 10 Long hole 11 Break line 12 Break line 13 Wrinkle 14 Loading test device 15 Arm 16 First loading jig 17 Second loading jig 18 Washer 19 Bolt 20 Thick plate connecting steel plate 21 Plasticizing portion 22 Bending portion 23 Crack 24 Rib 25 Thin plate portion 26 Hole down hardware 27 Lower side loading jig 28 Upper portion Side loading jig 29 Loading beam 30 Loading jack 31 Screw hole 32 Displacement meter 33 Washer 33a Hole

Claims (14)

  1.  互いに間隔をおいて対向配置された一対の枠材と;
     これら枠材に固定され、一方から他方に向かって山部及び谷部が交互に形成された薄鋼板の折板である面材と;
     この面材の前記谷部を前記各枠材に対して固定するねじと;
    を備え、前記各枠材に対して構面内せん断力が作用した場合に、前記面材の、前記ねじの周囲部分が支圧変形して抵抗する耐力壁用の壁パネルであって、
     前記面材の支圧耐力に対する前記ねじの抜け出し耐力の比が、前記面材の支圧変形時に、前記ねじの軸部が傾斜する所定値に設定されている
    ことを特徴とする壁パネル。
    A pair of frame members arranged opposite to each other at intervals;
    A face material which is a folded plate of thin steel plates fixed to these frame members and having crests and troughs alternately formed from one to the other;
    A screw for fixing the valley portion of the face material to each frame member;
    When the in-plane shear force is applied to each frame member, a wall panel for a load bearing wall in which the peripheral portion of the screw of the face member is subjected to bearing deformation and resists,
    The wall panel according to claim 1, wherein a ratio of the unscrewing yield strength of the screw to the bearing strength of the face material is set to a predetermined value at which the shaft portion of the screw is inclined when the bearing material is deformed by bearing pressure.
  2.  前記所定値が0.7以上であることを特徴とする請求項1に記載の壁パネル。 The wall panel according to claim 1, wherein the predetermined value is 0.7 or more.
  3.  前記所定値が1.6以下であることを特徴とする請求項1または2に記載の壁パネル。 The wall panel according to claim 1 or 2, wherein the predetermined value is 1.6 or less.
  4.  前記ねじが挿入されるワッシャをさらに備え、
     このワッシャの外径寸法を前記ねじの前記軸部の軸径寸法で除算した比が、3.0以上であることを特徴とする請求項1または2に記載の壁パネル。
    A washer into which the screw is inserted;
    The wall panel according to claim 1 or 2, wherein a ratio obtained by dividing the outer diameter of the washer by the shaft diameter of the shaft portion of the screw is 3.0 or more.
  5.  前記所定値が4.0以下であることを特徴とする請求項4に記載の壁パネル。 The wall panel according to claim 4, wherein the predetermined value is 4.0 or less.
  6.  前記枠材が、前記谷部の延在方向に配置された第1の枠材と、前記谷部の延在方向に直交する方向に配置された第2の枠材とを備え、
     前記第1の枠材と前記第2の枠材とにより四角枠を形成し、
     前記面材の前記谷部に前記第1の枠材を固定する前記ねじにのみ前記ワッシャが挿入されていることを特徴とする請求項4に記載の壁パネル。
    The frame member includes a first frame member arranged in the extending direction of the valley part, and a second frame member arranged in a direction orthogonal to the extending direction of the valley part,
    A square frame is formed by the first frame material and the second frame material,
    The wall panel according to claim 4, wherein the washer is inserted only into the screw that fixes the first frame member to the valley portion of the face material.
  7.  前記ワッシャの孔と前記ねじの前記軸部との間に隙間が形成されていることを特徴とする請求項4に記載の壁パネル。 The wall panel according to claim 4, wherein a gap is formed between the hole of the washer and the shaft portion of the screw.
  8.  前記ワッシャの内径寸法から前記ねじの前記軸部の軸径寸法を差し引いた差を前記ワッシャの厚さ寸法で除算した比が、0.1~0.6であることを特徴とする請求項4に記載の壁パネル。 The ratio obtained by subtracting the shaft diameter of the shaft portion of the screw from the inner diameter of the washer divided by the thickness of the washer is 0.1 to 0.6. Wall panels as described in.
  9.  前記面材の破断伸びが1%以上かつ16%未満であることを特徴とする請求項1に記載の壁パネル。 The wall panel according to claim 1, wherein the elongation at break of the face material is 1% or more and less than 16%.
  10.  前記ねじのねじ山のピッチが、前記各枠材の板厚寸法以下であることを特徴とする請求項1に記載の壁パネル。 The wall panel according to claim 1, wherein a pitch of a thread of the screw is equal to or less than a plate thickness dimension of each frame member.
  11.  前記面材の降伏比が77%~96%であることを特徴とする請求項1に記載の壁パネル。 2. The wall panel according to claim 1, wherein the yield ratio of the face material is 77% to 96%.
  12.  前記面材の、前記ねじの前記軸部が挿通されるねじ孔を中心として、前記谷部の延在方向に沿った少なくとも片側に、前記谷部の前記延在方向に直交するリブがさらに設けられていることを特徴とする請求項1に記載の壁パネル。 A rib perpendicular to the extending direction of the valley portion is further provided on at least one side along the extending direction of the valley portion with the screw hole through which the shaft portion of the screw is inserted as a center. The wall panel according to claim 1, wherein the wall panel is formed.
  13.  前記面材の、前記ねじの前記軸部が挿通されるねじ孔を中心として、前記谷部の延在方向に直交する方向に沿った両側に、部分的に板厚が薄い薄肉部が形成されていることを特徴とする請求項1に記載の壁パネル。 Thin portions with a small plate thickness are formed on both sides of the face material along the direction orthogonal to the direction in which the valley extends, with the screw hole through which the shaft portion of the screw is inserted as the center. The wall panel according to claim 1, wherein the wall panel is provided.
  14.  前記面材の、前記ねじの前記軸部が挿通されるねじ孔を中心として、前記谷部の延在方向に直交する方向に沿った両側に、部分的に機械的強度が周囲よりも低い低強度部が形成されていることを特徴とする請求項1に記載の壁パネル。
     
     
    Low in mechanical strength partially lower than the surroundings on both sides of the face material along the direction perpendicular to the direction in which the trough extends, centering on the screw hole through which the shaft portion of the screw is inserted. The wall panel according to claim 1, wherein a strength portion is formed.

PCT/JP2010/004150 2009-12-22 2010-06-22 Wall panel WO2011077604A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080058126.4A CN102959161B (en) 2009-12-22 2010-06-22 Wall panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009291205A JP4580458B2 (en) 2008-12-22 2009-12-22 Wall panels for thin lightweight steel construction
JP2009-291205 2009-12-22

Publications (1)

Publication Number Publication Date
WO2011077604A1 true WO2011077604A1 (en) 2011-06-30

Family

ID=42701277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004150 WO2011077604A1 (en) 2009-12-22 2010-06-22 Wall panel

Country Status (4)

Country Link
JP (1) JP4580458B2 (en)
CN (1) CN102959161B (en)
TW (1) TWI465626B (en)
WO (1) WO2011077604A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7063564B2 (en) * 2017-09-28 2022-05-09 大和ハウス工業株式会社 Floor panel structure, dry floor structure and method for manufacturing dry floor structure
KR102205045B1 (en) * 2020-09-14 2021-01-19 김완수 Hole forming device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209582A (en) * 2008-03-04 2009-09-17 Nippon Steel Corp Panel, building, and building constructed of thin and lightweight shape steel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176503A (en) * 1977-08-29 1979-12-04 H. H. Robertson Company Controlled release wall structure
JPH0249449U (en) * 1988-09-30 1990-04-05
JPH09228520A (en) * 1996-02-28 1997-09-02 Nippon Kokan Light Steel Kk Anti-seismic wall structure of undulate plate wall material
US7282642B2 (en) * 2002-06-06 2007-10-16 Leviton Manufacturing Co., Inc. Shaped wall plate for wiring device
JP5098052B2 (en) * 2006-04-11 2012-12-12 新日鐵住金株式会社 Wall panels
CN101245616A (en) * 2008-03-13 2008-08-20 同济大学 High-rise vertical shearing energy-consuming steel plate wall structure system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209582A (en) * 2008-03-04 2009-09-17 Nippon Steel Corp Panel, building, and building constructed of thin and lightweight shape steel

Also Published As

Publication number Publication date
TW201122190A (en) 2011-07-01
TWI465626B (en) 2014-12-21
JP2010168892A (en) 2010-08-05
CN102959161A (en) 2013-03-06
CN102959161B (en) 2014-12-17
JP4580458B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
Niari et al. Seismic behavior of steel sheathed cold-formed steel shear wall: experimental investigation and numerical modeling
Sabouri-Ghomi et al. Experimental and theoretical studies of steel shear walls with and without stiffeners
Qin et al. Experimental seismic behavior of through-diaphragm connections to concrete-filled rectangular steel tubular columns
JP2007303269A (en) Wall panel
Zhang et al. Different slit configuration in corrugated sheathing of cold-formed steel shear wall
Wang et al. Performance of CFTST column to steel beam joints with blind bolts under cyclic loading
JP2011001792A (en) Beam-column joint part structure of rigid frame skeleton and rolled h-steel
Wang et al. Cyclic behavior of panel zone in beam-column subassemblies subjected to bidirectional loading
Shi et al. Innovative inner sleeve composite bolted connections for modular steel constructions: Experimental and numerical studies
JP4585595B2 (en) Seismic reinforcement structure for wooden houses and seismic reinforcement method for wooden houses
Tsavdaridis et al. Experimental behaviour of non-seismical RWS connections with perforated beams under cyclic actions
Essa et al. Behavior of roof deck diaphragms under quasistatic cyclic loading
WO2011077604A1 (en) Wall panel
JP2010090650A (en) Folding plate panel structure and building structure
JP4829384B1 (en) Four corner reinforcement structure of rectangular metal flat plate
JP4987758B2 (en) Panels, buildings and thin lightweight steel structures
JP7116400B2 (en) truss girder
JP6128058B2 (en) Beam end joint structure
JP4618805B2 (en) Reinforcement structure of multi-layer metal flat plate
JP4411444B2 (en) Shear panel type damper mounting structure to structure
JP5176905B2 (en) Folded panel structure and building structure
JP5756659B2 (en) Anchor bolt advance yield type attracting metal and method for seismic reinforcement of large-scale wooden buildings using the attracted metal
JP7351271B2 (en) Steel beams, column-beam joint structures, and structures containing them
JP7335540B1 (en) junction structure
WO2023163213A1 (en) Joint structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058126.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201003002

Country of ref document: TH

122 Ep: pct application non-entry in european phase

Ref document number: 10838845

Country of ref document: EP

Kind code of ref document: A1