JP5176905B2 - Folded panel structure and building structure - Google Patents

Folded panel structure and building structure Download PDF

Info

Publication number
JP5176905B2
JP5176905B2 JP2008301918A JP2008301918A JP5176905B2 JP 5176905 B2 JP5176905 B2 JP 5176905B2 JP 2008301918 A JP2008301918 A JP 2008301918A JP 2008301918 A JP2008301918 A JP 2008301918A JP 5176905 B2 JP5176905 B2 JP 5176905B2
Authority
JP
Japan
Prior art keywords
folded plate
shear
folded
strength
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008301918A
Other languages
Japanese (ja)
Other versions
JP2010126964A (en
Inventor
信孝 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008301918A priority Critical patent/JP5176905B2/en
Publication of JP2010126964A publication Critical patent/JP2010126964A/en
Application granted granted Critical
Publication of JP5176905B2 publication Critical patent/JP5176905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、断面凹凸状に屈曲形成された折板に枠材を接合した、建築構造用の壁、屋根、床等を構成する折板パネル構造、ならびにこれを用いた建築構造物に関する。   The present invention relates to a folded plate panel structure that constitutes a wall, roof, floor, and the like for a building structure, in which a frame material is joined to a folded plate that is bent and formed in a concavo-convex section, and a building structure using the same.

従来から、デッキプレートやサイディングをはじめとする鋼板等からなる波板や折板は、柱・梁・母屋・胴縁などの枠材に接合され、自重や積雪や積載物等による鉛直荷重、風圧力など、板面に対して直交するような面外荷重に抵抗する構造材として利用されている。   Conventionally, corrugated plates and folded plates made of steel plates such as deck plates and sidings are joined to frame materials such as columns, beams, purlins, trunk edges, etc., and vertical loads and winds due to their own weight, snow accumulation, loads, etc. It is used as a structural material that resists out-of-plane loads such as pressure perpendicular to the plate surface.

一方、近年では、特許文献1、2、非特許文献1にみられるように、波板や折板を枠材に接合したパネル構造を、面内せん断力に抵抗させ、鋼板耐震壁のような構造材として利用する技術も提案されている。平板の場合は、面外曲げ剛性が低く座屈しやすいため格子型等の補強リブが必要となるが、波板や折板を用いることで、このような補強を省略できるといった特徴がある。
特開2006−037586号公報 特開2006−037628号公報 財団法人 日本建築総合試験所 「建築技術性能証明評価概要報告書」 GBRC性能証明第06−20号、2007年
On the other hand, in recent years, as seen in Patent Documents 1 and 2 and Non-Patent Document 1, a panel structure in which corrugated plates and folded plates are joined to a frame material is made to resist in-plane shearing force, Techniques used as structural materials have also been proposed. In the case of a flat plate, since the out-of-plane bending rigidity is low and it is easy to buckle, reinforcing ribs such as a lattice type are necessary. However, such a reinforcement can be omitted by using corrugated plates or folded plates.
JP 2006-037566 A JP 2006-037628 A Japan Architectural Comprehensive Testing Laboratory “Summary Report on Building Technology Performance Certification Evaluation” GBRC Performance Certification No. 06-20, 2007

しかしながら、これら特許文献1、2ならびに非特許文献1の開示技術では、折板パネルを面内せん断力に対するエネルギー吸収構造として利用する上で、パネルを構成する板要素のせん断降伏でエネルギー吸収しているため、せん断降伏した後に板要素の剛性(接線係数)が低下することでパネルの全体座屈が誘起され、比較的小さな変形域で急激に耐力低下し、十分な変形性能を確保し難いという問題点があった。   However, in these disclosed technologies of Patent Documents 1 and 2 and Non-Patent Document 1, when the folded plate panel is used as an energy absorbing structure for in-plane shear force, energy is absorbed by the shear yield of the plate elements constituting the panel. Therefore, after the shear yielding, the stiffness (tangential coefficient) of the plate element is reduced, so that the overall buckling of the panel is induced, and the yield strength is abruptly reduced in a relatively small deformation region, making it difficult to ensure sufficient deformation performance. There was a problem.

そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、急激な耐力低下や耐力上昇のない安定したエネルギー吸収性能を示す折板パネル構造ならびにこれを壁、屋根、床等に用いた建築構造物を提供することにある。   Therefore, the present invention has been devised in view of the above-mentioned problems, and its object is to provide a folded plate panel structure that exhibits stable energy absorption performance without a sudden decrease in yield strength or increase in yield strength, and this. The object is to provide building structures used for walls, roofs, floors, etc.

本発明者は、上述した課題を解決するために、折板パネルをせん断座屈させた後に発生する張力場作用により、面内せん断力に対するエネルギー吸収を可能とすることを見出した。   In order to solve the above-described problems, the present inventor has found that energy absorption with respect to in-plane shear force can be achieved by the action of a tension field generated after the folded plate panel is subjected to shear buckling.

請求項1に記載の折板パネル構造は、山部と谷部とが連続方向へ所定間隔で屈曲形成された折板に枠材を接合し、上記枠材に対して面内せん断力が負荷された場合に、上記折板をせん断座屈させた後に発生する張力場作用により、面内せん断力に対するエネルギー吸収を行なう折板パネル構造であって、上記せん断座屈におけるせん断座屈耐力P cr に対する上記張力場作用における張力場耐力P t の耐力比P t /P cr が0.7〜1.8であることを特徴とする。
請求項2に記載の折板パネル構造は、請求項1記載の折板パネル構造において、上記せん断座屈耐力P cr ならびに上記張力場耐力P t は、下記(1)、(2)式により表されることを特徴とする。
P cr =36βD x 1/4 D y 3/4 /b・・・・・・・・・・・(1)
P t =bts/d・σ y ・sin(ηφ)・cos(ηφ)・・・・・・・・(2)
ここで、
b:上記折板における延長方向xにおける幅寸法(mm)
t:上記折板における板厚(mm)
d:上記折板の山部ならびに谷部における上記連続方向yへのピッチ(mm)
s:上記折板における1ピッチあたりの上記連続方向yへの展開長(mm)
I y :上記折板の1ピッチあたりy軸まわりの断面二次モーメント(mm 4
E:上記折板を構成する材料のヤング係数(N/mm 2
σ y :上記折板を構成する材料の降伏強度(N/mm 2
φ:φ=tan -1 (D x /11/D y ) 1/4
D x : D x =Et 3 d/12/s
D y : D y =EI y /d
η:角度重み付け係数(η=1.5)
β:上記折板の上記枠材に対する支持条件により定まる係数(β=1.0〜1.9)
請求項3に記載の建築構造物は、請求項1又は2記載の折板パネル構造を壁パネルに用いたことを特徴とする。
請求項4に記載の建築構造物は、請求項1又は2記載の折板パネル構造を屋根パネルに用いたことを特徴とする。
請求項5に記載の建築構造物は、請求項1又は2記載の折板パネル構造を床パネルに用いたことを特徴とする。
The folded plate panel structure according to claim 1, wherein a frame member is joined to a folded plate in which peaks and valleys are bent at a predetermined interval in a continuous direction, and an in-plane shear force is applied to the frame member. If it is, the tension fields action occurs after the folded plate was buckled shear seat, a row of Uoriban panel structure of energy absorption for plane shear forces, shear buckling strength in bending the shear seat strength ratio P t / P cr of tension fields strength P t in the tension fields effect on P cr is characterized in that it is a 0.7 to 1.8.
The folded panel structure according to claim 2 is the folded panel structure according to claim 1, wherein the shear buckling strength P cr and the tensile field strength P t are expressed by the following equations (1) and (2). It is characterized by being.
P cr = 36βD x 1/4 D y 3/4 / b (1)
P t = bts / d · σ y · sin (ηφ) · cos (ηφ) (2)
here,
b: Width dimension (mm) in the extension direction x of the folded plate
t: Thickness of the folded plate (mm)
d: Pitch in the continuous direction y in the crest and trough of the folded plate (mm)
s: Development length (mm) in the continuous direction y per pitch in the folded plate
I y : Second moment of inertia around the y axis per pitch of the above folded plate (mm 4 )
E: Young's modulus (N / mm 2 ) of the material constituting the folded plate
σ y : Yield strength of the material composing the folded plate (N / mm 2 )
φ: φ = tan -1 (D x / 11 / D y ) 1/4
D x : D x = Et 3 d / 12 / s
D y : D y = EI y / d
η: Angle weighting coefficient (η = 1.5)
β: Coefficient determined by the support conditions for the frame of the folded plate (β = 1.0 to 1.9)
The building structure according to claim 3 is characterized in that the folded plate panel structure according to claim 1 or 2 is used for a wall panel.
The building structure according to claim 4 is characterized in that the folded panel structure according to claim 1 or 2 is used for a roof panel.
The building structure according to claim 5 is characterized in that the folded plate panel structure according to claim 1 or 2 is used for a floor panel.

上述した構成からなる本発明によれば、せん断座屈させた後に発生する張力場作用によりエネルギー吸収を行なうことで、急激な耐力低下や耐力上昇を抑制した安定したエネルギー吸収性能を示す折板パネル構造とすることができる。急激な耐力低下を抑止することで構造の信頼性を確保でき、また、耐力上昇を抑止することでパネル周囲の構造の損傷を回避することができる。   According to the present invention having the above-described configuration, a folded plate panel that exhibits stable energy absorption performance that suppresses a sudden decrease in proof stress and an increase in proof stress by absorbing energy by the action of a tension field generated after shear buckling. It can be a structure. By suppressing a sudden decrease in yield strength, the reliability of the structure can be ensured, and by preventing an increase in yield strength, damage to the structure around the panel can be avoided.

以下、本発明を実施するための最良の形態として、山部と谷部とが屈曲形成された折板に枠材を接合した折板パネル構造について、図面を参照しながら詳細に説明をする。
本発明を適用した折板パネル構造は、建築構造物の壁、屋根、床等に適用される。この折板パネル構造1は、例えば、図1(a)に示すように、壁、屋根、床等の一部を構成する枠材2と、この枠材2に接合された折板3とを備えている。
Hereinafter, as a best mode for carrying out the present invention, a folded plate panel structure in which a frame member is joined to a folded plate in which peaks and valleys are bent will be described in detail with reference to the drawings.
The folded plate panel structure to which the present invention is applied is applied to walls, roofs, floors and the like of building structures. As shown in FIG. 1A, for example, the folded plate panel structure 1 includes a frame member 2 that constitutes a part of a wall, a roof, a floor, and the like, and a folded plate 3 joined to the frame member 2. I have.

枠材2は、形鋼や鋼板で構成されている。この枠材2は、平面図としてみたときに略矩形状となるように図示されているが、H形、C形、円形など、他の断面形状でもよい。   The frame member 2 is composed of a shape steel or a steel plate. Although the frame member 2 is illustrated as having a substantially rectangular shape when viewed as a plan view, it may have another cross-sectional shape such as an H shape, a C shape, or a circle.

図1(b)は、この図1(a)におけるA−A´断面を示している。折板3は、山部31と谷部32とが連続方向yへ所定間隔で屈曲形成されている。また、折板3は、山部31と谷部32が延長方向xに向けて延長されている。ちなみに、この延長方向xと連続方向yとは、互いに直交する関係にある。   FIG. 1B shows an AA ′ cross section in FIG. In the folded plate 3, a crest 31 and a trough 32 are bent at a predetermined interval in the continuous direction y. Further, the folded plate 3 has a crest 31 and a trough 32 extended in the extending direction x. Incidentally, the extending direction x and the continuous direction y are orthogonal to each other.

即ち、この折板パネル構造1は、水平な上フランジおよび下フランジと、この上フランジおよび下フランジの間に形成されているウェブとが形成されるように折板を折り曲げることにより、上述した山部31と谷部32とが形成される。この山部31を形成する上フランジの幅をufとし、谷部32を形成する下フランジの幅をlfとする。ちなみに、この折板3は、鋼板をロール成形やプレス成形などにより折り曲げ加工することにより作製される。   That is, the folded plate panel structure 1 is formed by bending the folded plate so that a horizontal upper flange and a lower flange and a web formed between the upper flange and the lower flange are formed. A portion 31 and a valley portion 32 are formed. The width of the upper flange that forms the peak 31 is uf, and the width of the lower flange that forms the valley 32 is lf. Incidentally, the folded plate 3 is produced by bending a steel plate by roll forming or press forming.

図1では、折板3の谷部32が枠材2に設けられた雌ネジに接合金物36を介してボルト37で接合された状況を示しているが、折板3と枠材2の接合はこれらの手段以外に、ボルトとナットによる接合、溶接、接着、ビス、鋲等を利用してもよく、山部31および山部31と谷部32の両方を枠材2に接合しても良い。また、折板3の断面形状は、略長方形状で構成されているが、これ以外に正方形状や台形状、三角形状等で構成されていてもよい。   In FIG. 1, a state in which the valley portion 32 of the folded plate 3 is joined to the female screw provided on the frame member 2 with the bolt 37 through the joint metal piece 36 is shown, but the folded plate 3 and the frame member 2 are joined. In addition to these means, joining by bolts and nuts, welding, adhesion, screws, scissors, etc. may be used, and the peak portion 31 and both the peak portion 31 and the valley portion 32 may be joined to the frame member 2. good. Moreover, although the cross-sectional shape of the folded plate 3 is comprised by substantially rectangular shape, you may be comprised by square shape, trapezoid shape, triangle shape, etc. besides this.

図2は、本発明を適用した折板パネル構造の他の実施形態を示しており、図2(a)は、その平面図を、また図2(b)はその側断面図を示している。即ち、この図2の構成によれば、立設された柱17間において梁18が架設されてなる建築構造物5に折板3を設ける構成を示している。柱17にはプレート20が、また梁18にはプレート19が取り付けられている。プレート19、20は、それぞれ鋼板等が適用される。折板3は、その周囲が山部31および谷部32においてプレート19、20に接合されている。柱17、梁18は、鉄骨造、鉄筋コンクリート造、鉄骨鉄筋コンクリート、等の構造からなり、構造種別に応じて、プレート19、20は、それぞれ柱17、梁18に対して、溶接又はボルト、スタッド等を介して取り付けられる。   2 shows another embodiment of a folded panel structure to which the present invention is applied. FIG. 2 (a) shows a plan view thereof, and FIG. 2 (b) shows a side sectional view thereof. . That is, according to the configuration of FIG. 2, a configuration is shown in which the folded plate 3 is provided on the building structure 5 in which the beams 18 are installed between the standing columns 17. A plate 20 is attached to the column 17, and a plate 19 is attached to the beam 18. Steel plates or the like are applied to the plates 19 and 20, respectively. The periphery of the folded plate 3 is joined to the plates 19 and 20 at the peak portion 31 and the valley portion 32. The columns 17 and 18 are made of steel, reinforced concrete, steel reinforced concrete, or the like. Depending on the type of structure, the plates 19 and 20 are welded or bolts or studs to the columns 17 and 18 respectively. It is attached via.

図3は、立設された柱17間において梁18が架設されてなる建築構造物5に折板3を設ける他の例を示しており、図3(a)は、その正面図を、また図3(b)はその平面図を、更に図3(c)はその側断面図を示している。   FIG. 3 shows another example in which the folded plate 3 is provided on the building structure 5 in which the beams 18 are erected between the upright columns 17, and FIG. FIG. 3 (b) shows a plan view thereof, and FIG. 3 (c) shows a side sectional view thereof.

梁18間には形鋼61が架け渡されている。また、この梁18に沿って形鋼62が取り
付けられてなり、形鋼62の両端は、形鋼61に狭持されるように接合されている。折板3は、その山部31、谷部32が形鋼61、62に接合されている。形鋼61、62は、それぞれ梁18に対して、溶接又はボルト、スタッド等を介して取り付けられている。なお、形鋼61、62としては、H形鋼以外に、T形鋼、溝形鋼、I形鋼、その他断面矩形状の形鋼であってもよい。
A section steel 61 is bridged between the beams 18. Further, a shape steel 62 is attached along the beam 18, and both ends of the shape steel 62 are joined so as to be sandwiched between the shape steels 61. As for the folded plate 3, the peak part 31 and the trough part 32 are joined to the shape steels 61 and 62. As shown in FIG. The section steels 61 and 62 are attached to the beam 18 through welding or bolts, studs, or the like. In addition to the H-shaped steel, the shaped steels 61 and 62 may be T-shaped steel, groove-shaped steel, I-shaped steel, or other shaped steel having a rectangular cross section.

次に、これら折板パネル構造に適用される折板3の詳細な構成について説明をする。   Next, the detailed structure of the folded plate 3 applied to these folded plate panel structures will be described.

枠材2に対して面内せん断力が負荷された場合に、折板3をせん断座屈させた後に発生する張力場作用により、面内せん断力に対するエネルギー吸収を可能としている。   When an in-plane shear force is applied to the frame member 2, energy absorption with respect to the in-plane shear force is enabled by a tension field effect generated after the folded plate 3 is subjected to shear buckling.

平板のせん断座屈挙動とせん断座屈耐力の評価、張力場作用と張力場耐力の評価は一般的に知られており、下記の非特許文献2などにまとめられている(非特許文献2:”Theory of Elastic Stability”, Stephen P. Timoshenko, 1961)。また、折板のせん断座屈耐力についても、非特許文献3などにより明らかにされている(非特許文献3:”Buckling Formulas for Corrugated Metal Shear Diaphramgs”,
J.T.Easlay, Proc.A.S.C.E., J.Struc.Div., pp.1403-1417, 1975.7)。
Evaluation of shear buckling behavior and shear buckling strength of a flat plate, tension field action and tension field strength are generally known, and are summarized in Non-Patent Document 2 below (Non-Patent Document 2: “Theory of Elastic Stability”, Stephen P. Timoshenko, 1961). Further, the shear buckling strength of the folded plate is also clarified by Non-Patent Document 3, etc. (Non-Patent Document 3: “Buckling Formulas for Corrugated Metal Shear Diaphramgs”,
JTEaslay, Proc. ASCE, J. Struc. Div., Pp. 1403-1417, 1975.7).

本発明における折板での張力場作用は、平板の時と同様に、せん断座屈が生じた後に、図4に示すような、座屈によって生じる波形の斜め方向のしわに沿って引張力が主に作用する応力場が形成される現象である。板の曲げ剛性に異方性のない平板の場合は、斜め方向のしわの角度は概ね45°(φ≒0.79rad)方向となる。一方、剛性に異方性がある折板においては、曲げ剛性が大きく強軸方向となる延長方向xにしわの角度は傾き、せん断座屈の発生時においてしわの角度は5〜10°程度(φ≒0.08〜0.18rad)となる。また、張力場作用の進展により、しわの角度は10〜20°程度(φ≒0.18〜0.35rad)まで変化していく。   As in the case of a flat plate, the tensile field effect in the folded plate according to the present invention is that the tensile force is applied along the wrinkles in the diagonal direction of the waveform generated by buckling after shear buckling occurs as shown in FIG. This is a phenomenon in which a stress field that acts mainly is formed. In the case of a flat plate having no anisotropy in the bending rigidity of the plate, the wrinkle angle in the oblique direction is approximately 45 ° (φ≈0.79 rad). On the other hand, in a folded plate having anisotropy in rigidity, the wrinkle angle is inclined in the extending direction x having a large bending rigidity and a strong axis direction, and the wrinkle angle is about 5 to 10 ° when shear buckling occurs ( φ ≒ 0.08 ~ 0.18rad). Further, the wrinkle angle changes to about 10 to 20 ° (φ≈0.18 to 0.35 rad) due to the progress of the tension field action.

本発明では、せん断座屈に対するせん断座屈耐力をPcrとし、張力場作用に対する張力場耐力をPtとしたとき、せん断座屈耐力Pcrに対する張力場耐力Ptの耐力比P t /P cr が0.7〜1.8としている。張力場耐力Ptの耐力比P t /P cr が0.7未満ではせん断座屈後の耐力低下が著しくなり、また、張力場耐力Ptの耐力比P t /P cr が1.8を超えてしまうとせん断座屈後の耐力上昇が顕著になってしまうため、安定したエネルギー吸収性能を発揮できなくなる。すわなち、耐力比P t /P cr を0.7〜1.8の間に設定することにより、せん断座屈後の急激な耐力低下や耐力上昇を抑えることができ、安定したエネルギー吸収性能を発揮させることが可能となる。 In the present invention, the shear buckling strength against shear buckling and P cr, when the tension fields resistance to tension fields act was P t, yield strength ratio P t / P of tension fields strength P t for the shear buckling force P cr cr is 0.7 to 1.8. When the yield ratio P t / P cr of the tensile field yield strength P t is less than 0.7, the yield strength decreases significantly after shear buckling, and the yield strength ratio P t / P cr of the tension field yield strength P t becomes 1.8. If exceeded, the increase in yield strength after shear buckling becomes significant, so that stable energy absorption performance cannot be exhibited. In other words, by setting the yield strength ratio P t / P cr between 0.7 and 1.8, it is possible to suppress a sudden decline in yield strength or increase in yield strength after shear buckling, and stable energy absorption performance. Can be exhibited.

本発明者は、実際に折板3について、表1に一覧を示す試験体No.1〜9を作製し、図1に示すような折板せん断パネル構造を構成し、せん断力Pを加えた場合のせん断変形δを測定する載荷試験により、上述した耐力比P t /P cr の限定の意味を検証した。なお、載荷試験では、表1に諸量(形状、物性 等)を示す折板パネル3を、ピン間距離800mmとした枠材2(90mm×60mmの断面の鋼材で構成)にボルト締結している。なお、枠材2は相互に自己潤滑式のピン金物で接合されており、枠材2そのものは耐力を発揮しない仕様としている。表1に、試験板No.1〜9の形状と物性とあわせ、これらの諸量に基づき算出した計算耐力、ならびに載荷試験結果に基づく実験耐力を記す。 The inventor actually prepared specimens Nos. 1 to 9 listed in Table 1 for the folded plate 3, constructed a folded plate shear panel structure as shown in FIG. The meaning of the limitation of the proof stress ratio P t / P cr was verified by a loading test in which the shear deformation δ was measured. In the loading test, the folded plate panel 3 having various amounts (shape, physical properties, etc.) shown in Table 1 is bolted to the frame material 2 (consisting of a steel material having a 90 mm × 60 mm cross section) with a distance between pins of 800 mm. Yes. Note that the frame members 2 are joined to each other with self-lubricating pin hardware, and the frame members 2 themselves have specifications that do not exhibit proof stress. Table 1 shows the calculated proof stress calculated based on these quantities together with the shape and physical properties of test plates No. 1 to 9, and the experimental proof strength based on the loading test results.

図5〜7は、表1に示す各試験体のせん断力P―せん断変形δ関係であり、図中の黒四角の記号(■)は実験耐力を表す。せん断座屈耐力実験値ePcrはせん断力P―せん断変形δが線形性を喪失した近傍の荷重値、張力場耐力実験値ePtはせん断座屈した後の耐力低下から再び耐力上昇に転じる荷重値、として定義した。 5 to 7 show the relationship between the shear force P and the shear deformation δ of each specimen shown in Table 1, and the black square symbol (■) in the figure represents the experimental strength. The experimental value e P cr of shear buckling strength is the load value in the vicinity where the shear force P-shear deformation δ lost linearity, and the experimental value e P t of tensile field strength is increased again from the decrease in the yield strength after shear buckling. Defined as a rolling load value.

また、図5〜7において、図中の白丸の記号(○)はせん断座屈耐力計算値値cPcr、黒実線(―)は張力場耐力計算値cPtを表している。せん断座屈耐力cPcrおよび張力場耐力cPtは、下記(1)式および(2)式による。
cPcr=36βDx 1/4Dy 3/4/b・・・・・・・・・・・(1)
cPt=bts/d・σy・sin(ηφ)・cos(ηφ)・・・・・・・・(2)
ここで、
b:上記折板における延長方向xにおける幅寸法(mm)
t:上記折板における板厚(mm)
d:上記折板の山部ならびに谷部における上記連続方向yへのピッチ(mm)
s:上記折板における1ピッチあたりの上記連続方向yへの展開長(mm)
Iy:上記折板の1ピッチあたりy軸まわりの断面二次モーメント(mm4
E:上記折板を構成する材料のヤング係数(N/mm2
σy:上記折板を構成する材料の降伏強度(N/mm2
φ:φ=tan-1(Dx/11/Dy)1/4
Dx: Dx=Et3d/12/s
Dy: Dy=EIy/d
η:角度重み付け係数(η=1.5)
β:上記折板の上記枠材に対する支持条件により定まる係数(β=1.0〜1.9)
In FIGS. 5 to 7, white circle symbols (◯) in the drawings represent the shear buckling strength calculated value c P cr , and the black solid line (−) represents the tensile field strength calculated value c P t . The shear buckling strength c P cr and the tensile field strength c P t are according to the following formulas (1) and (2).
c P cr = 36βD x 1/4 D y 3/4 / b (1)
c P t = bts / d · σ y · sin (ηφ) · cos (ηφ) (2)
here,
b: Width dimension (mm) in the extension direction x of the folded plate
t: Thickness of the folded plate (mm)
d: Pitch in the continuous direction y in the crest and trough of the folded plate (mm)
s: Development length (mm) in the continuous direction y per pitch in the folded plate
I y : Second moment of inertia around the y axis per pitch of the above folded plate (mm 4 )
E: Young's modulus (N / mm 2 ) of the material constituting the folded plate
σ y : Yield strength of the material composing the folded plate (N / mm 2 )
φ: φ = tan -1 (D x / 11 / D y ) 1/4
D x : D x = Et 3 d / 12 / s
D y : D y = EI y / d
η: Angle weighting coefficient (η = 1.5)
β: Coefficient determined by the support conditions for the frame of the folded plate (β = 1.0 to 1.9)

(1)式は非特許文献3に基づくものである。支持条件により定まる係数βについては、周辺支持部の回転が拘束され固定支持とみなせる場合はβ=1.9、回転拘束がなくピン支持とみなせる場合はβ=1.0となるが、βの値は周辺支持部のディテールに応じて適宜判断すればよい。なお、図1のように折板の谷部全幅をボルトで抑えつけたような場合は周辺支持部の回転が拘束されるので、表1に示す計算ではβ=1.9としている。折板の谷部および山部の両方を枠に溶接したような場合においても、周辺支持部の回転が拘束されるので固定支持とみなせる。一方、谷部のみを枠に線的に溶接した場合や、谷部の一部のみをビスやボルトで枠に接合した場合などについては、周辺支持部の回転拘束は小さいため、ピン支持すなわちβ=1.0とすればよい。   Equation (1) is based on Non-Patent Document 3. The coefficient β determined by the support conditions is β = 1.9 when the rotation of the peripheral support portion is restricted and can be regarded as fixed support, and β = 1.0 when the rotation can be regarded as pin support without rotation constraint. What is necessary is just to judge a value suitably according to the detail of a peripheral support part. In addition, in the case where the full width of the valley portion of the folded plate is suppressed with a bolt as shown in FIG. 1, the rotation of the peripheral support portion is constrained. Therefore, in the calculation shown in Table 1, β = 1.9. Even in the case where both the valley portion and the mountain portion of the folded plate are welded to the frame, the rotation of the peripheral support portion is constrained and can be regarded as fixed support. On the other hand, when only the valley is linearly welded to the frame, or when only a part of the valley is joined to the frame with screws or bolts, the rotation support of the peripheral support is small, so pin support, that is, β = 1.0

(2)式は、非特許文献2に示される平板の張力場耐力式を基本としながら、折板に対し適用可能なように新たに提案したものであり、ここでは、波形となることによる断面積の割増(s/d)、折板における張力場形成の角度(ηφ)を考慮している。なお、張力場形成の角度は、せん断座屈発生から張力場挙動に移行し変形が進展していく過程で、表1中のφを基準として1.0〜2.0倍(1.0φ〜2.0φ)程度まで角度が推移していくが、角度重み付け係数η=1.5を与えることで、実験結果に対して(2)式が良好な評価精度を確保することができる。これは、表1に示すように、図5〜7に基づき定義した実験耐力(No.3〜4試験体については、座屈後の耐力低下からの耐力上昇点が明確でないため張力場耐力実験値は定義できていない)と(1)〜(2)式に基づく計算耐力の比が、せん断座屈および張力場それぞれについて平均で1.1および0.9と良好に対応していることからも分かる。   The formula (2) is newly proposed so that it can be applied to the folded plate based on the tension field strength formula of the flat plate shown in Non-Patent Document 2, and here, the break due to the waveform It takes into account the area increase (s / d) and the angle of formation of the tension field in the folded plate (ηφ). In addition, the angle of the tension field formation is 1.0 to 2.0 times (1.0 φ ~) with reference to φ in Table 1 in the process of transition from the occurrence of shear buckling to the tensile field behavior and the progress of deformation. The angle changes to about 2.0φ), but by giving the angle weighting coefficient η = 1.5, the expression (2) can ensure good evaluation accuracy with respect to the experimental result. This is because, as shown in Table 1, the test yield strength defined based on FIGS. 5-7 (the No. 3-4 test specimens were subjected to a tensile field strength test because the point of increase in yield strength from the decrease in yield strength after buckling was not clear. The ratio of the calculated yield strength based on the formulas (1) and (2) corresponds well with 1.1 and 0.9 on average for the shear buckling and tension fields, respectively. I understand.

なお、(1)式および(2)式におけるcPcrおよびcPtは、図1における延長方向xにおける幅寸法bの辺に対するせん断力P(=P1)として与えられているが、連続方向yにおける幅寸法aの辺に対するせん断力P(=P2)として与えることもできる。その場
合、幅寸法bと幅寸法aの比率を考慮し、P2=P1×a/bとして求めればよい。また、幅寸法bと幅寸法aが異なる場合に、延長方向xと連続方向yは、折板パネル構造において、壁の場合は上下や左右、屋根や床の場合は左右や前後、いずれの方向となってもよい。
Note that c P cr and c P t in the equations (1) and (2) are given as the shearing force P (= P1) on the side of the width dimension b in the extension direction x in FIG. It can also be given as the shearing force P (= P2) for the side of the width dimension a at y. In that case, the ratio of the width dimension b and the width dimension a may be taken into consideration and P2 = P1 × a / b. Also, when the width dimension b and the width dimension a are different, the extension direction x and the continuous direction y are either the up / down or left / right direction in the case of a wall, the left / right or front / rear direction in the case of a roof or floor. It may be.

表1に示すように、実験値および計算値について、せん断座屈耐力PcrcPcrまたはePcr)に対する張力場作用における張力場耐力PtcPtまたはePt)の耐力比Pt/PcrcPtcPcrまたはePtePcr)が0.7〜1.8であれば、図5(a),(b)、図6(c)〜7(c)に示すように、せん断座屈後の急激な耐力低下や耐力上昇を抑えることができ、安定したエネルギー吸収性能を発揮させることができる。一方、図5(c)〜6(b)に示すように、耐力比P t /P cr が0.7未満ではせん断座屈後の耐力低下が著しくなり、耐力比P t /P cr が1.8を超えてしまうとせん断座屈後の耐力上昇が顕著になってしまう。 As shown in Table 1, with regard to the experimental value and the calculated value, the proof strength of the tensile field strength P t ( c P t or e P t ) in the tensile field action against the shear buckling strength P cr ( c P cr or e P cr ) If the ratio P t / P cr ( c P t / c P cr or e P t / e P cr ) is 0.7 to 1.8, FIG. 5 (a), (b), FIG. 6 (c) As shown in .about.7 (c), it is possible to suppress a sudden decrease in yield strength and increase in yield strength after shear buckling, and to exhibit stable energy absorption performance. On the other hand, as shown in FIGS. 5 (c) to 6 (b), when the yield ratio P t / P cr is less than 0.7, the yield strength decreases significantly after shear buckling, and the yield ratio P t / P cr is 1. If it exceeds .8, the increase in yield strength after shear buckling becomes significant.

ここで、図5〜7に基づき、各試験体No.1〜No.9について、それぞれの挙動と耐力比P t /P cr の関係について説明する。 Here, based on FIGS. 5-7, for each specimen Nanba1~nanba9, a description will be given of the relationship of each behavior and strength ratio P t / P cr.

試験体No.1では、計算値および実験値ともに耐力比P t /P cr が0.7である。図5(a)のグラフから、最大耐力到達後に若干の耐力低下はみられるが、せん断座屈後の急激な耐力低下や耐力上昇が抑えられていることがわかる。 In specimen No. 1, the proof stress ratio P t / P cr is 0.7 for both the calculated value and the experimental value. From the graph of FIG. 5 (a), it can be seen that a slight decrease in yield strength is observed after reaching the maximum yield strength, but a sudden decrease in yield strength and an increase in yield strength after shear buckling are suppressed.

試験体No.2では、耐力比P t /P cr が計算値で1.2、実験値で1.1である。図5(b)のグラフにおいて、せん断座屈耐力Pcrと張力場耐力Ptはほぼ一致しており、せん断座屈後に一定の荷重を維持したまま変形が進展する非常に安定的したエネルギー吸収性能を発揮していることが分かる。 In specimen No. 2, the proof stress ratio P t / P cr is 1.2 as the calculated value and 1.1 as the experimental value. In the graph of FIG. 5 (b), the shear buckling strength P cr and the tensile field strength P t are almost the same, and very stable energy absorption in which the deformation progresses while maintaining a constant load after shear buckling. It turns out that the performance is demonstrated.

試験体No.3および試験体No.4では、それぞれ耐力比P t /P cr が計算値として2.3および6.0である。図5(c)および図6(a)のグラフから、せん断座屈後に顕著な荷重上昇がみられることが分かる。 In specimen No. 3 and specimen No. 4, the yield strength ratio P t / P cr is 2.3 and 6.0 as calculated values, respectively. From the graphs of FIG. 5C and FIG. 6A, it can be seen that a significant load increase is observed after shear buckling.

試験体No.5では、耐力比P t /P cr が計算値で0.5、実験値で0.6である。図6(b)のグラフから、最大耐力到達後に比較的急な耐力低下が見られることが分かる。 In specimen No. 5, the yield strength ratio P t / P cr is 0.5 as the calculated value and 0.6 as the experimental value. From the graph of FIG. 6 (b), it can be seen that a relatively rapid decrease in yield strength is observed after the maximum yield strength is reached.

試験体No.6では、耐力比P t /P cr が計算値で1.0、実験値で0.9である。図6(c)のグラフから、せん断座屈耐力Pcrと張力場耐力Ptとはほぼ一致しており、せん断座屈後に一定の荷重を維持したまま変形が進展する非常に安定的したエネルギー吸収性能を発揮していることが分かる。 In specimen No. 6, the yield strength ratio P t / P cr is 1.0 as the calculated value and 0.9 as the experimental value. From the graph in Fig. 6 (c), the shear buckling strength P cr and the tension field strength P t are almost the same, and the energy is very stable and the deformation progresses while maintaining a constant load after the shear buckling. It turns out that the absorption performance is demonstrated.

試験体No.7では、計算値に対する実験値の比率が、せん断座屈耐力については大きく、張力場耐力については小さくなっていることに起因し、計算値の耐力比P t /P cr が若干大きな値を与える傾向にあるが、耐力比P t /P cr が計算値で1.8、実験値で1.2である。図7(a)のグラフから、せん断座屈後に若干の荷重上昇はみられるが、急激な耐力低下や耐力上昇が抑えられていることがわかる。 In specimen No.7, the ratio of the experimental values for the calculated value is greater for the shear buckling force, due to the fact that smaller for tension fields strength, proof stress ratio calculations P t / P cr slightly Although it tends to give a large value, the proof stress ratio P t / P cr is 1.8 as the calculated value and 1.2 as the experimental value. From the graph of FIG. 7 (a), it can be seen that a slight increase in load is observed after shear buckling, but a sudden decrease in yield strength or increase in yield strength is suppressed.

試験体No8では、耐力比P t /P cr が計算値で1.0、実験値で0.9である。図7(b)のグラフから、せん断座屈後の急激な耐力低下や耐力上昇が抑えられていることがわかる。 In specimen No. 8, the yield strength ratio P t / P cr is 1.0 as the calculated value and 0.9 as the experimental value. From the graph of FIG. 7 (b), it can be seen that rapid decrease in yield strength and increase in yield strength after shear buckling are suppressed.

試験体No9では、耐力比P t /P cr が計算値で0.9、実験値で0.8である。図7(c)のグラフから、せん断座屈後の急激な耐力低下や耐力上昇が抑えられていることがわかる In specimen No. 9, the yield strength ratio P t / P cr is 0.9 as the calculated value and 0.8 as the experimental value. From the graph in Fig. 7 (c), it can be seen that sudden decrease in yield strength and increase in yield strength after shear buckling are suppressed.

上述した検証により、本発明所期の効果を奏するのは、試験体No.1〜No.2、試験体No.6〜No.9であることが分かる。耐力比P t /P cr を0.7〜1.8とすることにより、せん断座屈後において急激な耐力低下や耐力上昇を起すことなく、折板3をせん断座屈させた後に発生する張力場作用により、面内せん断力に対するエネルギー吸収を行なうことが可能となる。 From the verification described above, it is understood that the specimens No. 1 to No. 2 and the specimens No. 6 to No. 9 have the effects of the present invention. By setting the proof stress ratio P t / P cr to 0.7 to 1.8, the tension generated after the folded plate 3 is shear buckled without causing a sudden decrease in proof stress or increase in proof stress after shear buckling. The field action makes it possible to absorb energy against the in-plane shear force.

なお、本発明の実施例では、建築構造物の壁を対象に例示したが、屋根、床等に適用する場合も、本発明に含まれる。   In the embodiment of the present invention, the wall of the building structure has been exemplified. However, the present invention includes the case where it is applied to a roof, a floor and the like.

その他、本発明を実施するための構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。   In addition, although the structure, method, etc. for implementing this invention are disclosed by the above description, this invention is not limited to this. That is, the invention has been illustrated and described with particular reference to certain specific embodiments, but without departing from the spirit and scope of the invention, Various modifications can be made by those skilled in the art in terms of material, quantity, and other detailed configurations.

従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。   Therefore, the description limiting the shape, material, etc. disclosed above is an example for easy understanding of the present invention, and does not limit the present invention. The description by the name of the member which remove | excluded the limitation of one part or all of such is included in this invention.

本発明を適用した折板パネル構造の構成を示す図である。It is a figure which shows the structure of the folded-panel structure to which this invention is applied. 本発明を適用した折板パネル構造の他の実施形態を示す図である。It is a figure which shows other embodiment of the folded-plate panel structure to which this invention is applied. 立設された柱間において梁が架設されてなる建築構造物に折板を設ける他の例を示す図である。It is a figure which shows the other example which provides a folded board in the building structure by which a beam is constructed between the standing pillars. 折板がせん断座屈を発生した後、張力場挙動に移行した状態を示す図である。It is a figure which shows the state which changed to the tension field behavior, after a folding plate generate | occur | produces shear buckling. (a)は、試験体No.1の、(b)は、試験体No.2の、(c)は、試験体No.3のせん断力P―せん断変形δ関係を示す図である。(a) is the figure of test body No. 1, (b) is the test body No. 2, and (c) is a diagram showing the shear force P-shear deformation δ relationship of test body No. 3. (a)は、試験体No.4の、(b)は、試験体No.5の、(c)は、試験体No.6のせん断力P―せん断変形δ関係を示す図である。(a) is the figure of test body No. 4, (b) is a figure of test body No. 5, (c) is a figure which shows the shear force P-shear deformation (delta) relationship of test body No. 6. FIG. (a)は、試験体No.7の、(b)は、試験体No.8の、(c)は、試験体No.9のせん断力P―せん断変形δ関係を示す図である。(a) is the figure of test body No. 7, (b) is the figure of test body No. 8, (c) is a figure which shows the shear force P-shear deformation (delta) relationship of test body No. 9. FIG.

符号の説明Explanation of symbols

1 折板パネル構造
2 枠材
3 折板
5 建築構造物
17 柱
18 梁
19、20 プレート
31 山部
32 谷部
36 接合金物
37 ボルト
61、62 形鋼
DESCRIPTION OF SYMBOLS 1 Folded plate panel structure 2 Frame material 3 Folded plate 5 Building structure 17 Column 18 Beams 19 and 20 Plate 31 Mountain part 32 Valley part 36 Joint metal fitting 37 Bolt 61, 62 Shape steel

Claims (5)

山部と谷部とが連続方向へ所定間隔で屈曲形成された折板に枠材を接合し、
上記枠材に対して面内せん断力が負荷された場合に、上記折板をせん断座屈させた後に発生する張力場作用により、面内せん断力に対するエネルギー吸収を行なう折板パネル構造であって、
上記せん断座屈におけるせん断座屈耐力P cr に対する上記張力場作用における張力場耐力P t の耐力比P t /P cr が0.7〜1.8であること
を特徴とする折板パネル構造。
Joining the frame material to the folded plate in which the crest and trough are bent at predetermined intervals in the continuous direction,
When the plane shear force to the frame member is loaded, the tension fields action occurs after the folded plate was buckled shear seat, the energy absorption to plane shear force lines of Uoriban panel structure There,
A folded plate panel structure, wherein a proof stress ratio P t / P cr of a tensile field strength P t in the tension field action to a shear buckling strength P cr in the shear buckling is 0.7 to 1.8 .
上記せん断座屈耐力Pcrならびに上記張力場耐力Ptは、下記(1)、(2)式により表されること
を特徴とする請求項記載の折板パネル構造。
Pcr=36βDx 1/4Dy 3/4/b・・・・・・・・・・・(1)
Pt=bts/d・σy・sin(ηφ)・cos(ηφ)・・・・・・・・(2)
ここで、
b:上記折板における延長方向xにおける幅寸法(mm)
t:上記折板における板厚(mm)
d:上記折板の山部ならびに谷部における上記連続方向yへのピッチ(mm)
s:上記折板における1ピッチあたりの上記連続方向yへの展開長(mm)
Iy:上記折板の1ピッチあたりy軸まわりの断面二次モーメント(mm4
E:上記折板を構成する材料のヤング係数(N/mm2
σy:上記折板を構成する材料の降伏強度(N/mm2
φ:φ=tan-1(Dx/11/Dy)1/4
Dx: Dx=Et3d/12/s
Dy: Dy=EIy/d
η:角度重み付け係数(η=1.5)
β:上記折板の上記枠材に対する支持条件により定まる係数(β=1.0〜1.9)
The shear buckling force P cr and the tension fields strength P t is the following (1), (2) folding plate panel structure according to claim 1, characterized by being represented by the formula.
P cr = 36βD x 1/4 D y 3/4 / b (1)
P t = bts / d · σ y · sin (ηφ) · cos (ηφ) (2)
here,
b: Width dimension (mm) in the extension direction x of the folded plate
t: Thickness of the folded plate (mm)
d: Pitch in the continuous direction y in the crest and trough of the folded plate (mm)
s: Development length (mm) in the continuous direction y per pitch in the folded plate
I y : Second moment of inertia around the y axis per pitch of the above folded plate (mm 4 )
E: Young's modulus (N / mm 2 ) of the material constituting the folded plate
σ y : Yield strength of the material composing the folded plate (N / mm 2 )
φ: φ = tan -1 (D x / 11 / D y ) 1/4
D x : D x = Et 3 d / 12 / s
D y : D y = EI y / d
η: Angle weighting coefficient (η = 1.5)
β: Coefficient determined by the support conditions for the frame of the folded plate (β = 1.0 to 1.9)
請求項1又は2記載の折板パネル構造を壁パネルに用いたことを特徴とする建築構造物。 A building structure using the folded panel structure according to claim 1 or 2 for a wall panel. 請求項1又は2記載の折板パネル構造を屋根パネルに用いたことを特徴とする建築構造物。 3. A building structure using the folded panel structure according to claim 1 or 2 for a roof panel. 請求項1又は2記載の折板パネル構造を床パネルに用いたことを特徴とする建築構造物。 A building structure using the folded panel structure according to claim 1 or 2 for a floor panel.
JP2008301918A 2008-11-27 2008-11-27 Folded panel structure and building structure Active JP5176905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008301918A JP5176905B2 (en) 2008-11-27 2008-11-27 Folded panel structure and building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008301918A JP5176905B2 (en) 2008-11-27 2008-11-27 Folded panel structure and building structure

Publications (2)

Publication Number Publication Date
JP2010126964A JP2010126964A (en) 2010-06-10
JP5176905B2 true JP5176905B2 (en) 2013-04-03

Family

ID=42327542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008301918A Active JP5176905B2 (en) 2008-11-27 2008-11-27 Folded panel structure and building structure

Country Status (1)

Country Link
JP (1) JP5176905B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5781707B2 (en) * 2013-02-01 2015-09-24 大和ハウス工業株式会社 Bearing wall using corrugated steel
CN106401062A (en) * 2016-11-16 2017-02-15 苏州亨达尔工业材料有限公司 Bathroom panel with buckle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4975384B2 (en) * 2006-06-27 2012-07-11 新日本製鐵株式会社 Folded plate material for building structure

Also Published As

Publication number Publication date
JP2010126964A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
TWI396790B (en) Metal joint and architecture comprising the same
JP4861067B2 (en) Steel frame
US20140352252A1 (en) Wall stud brace
US10415230B1 (en) Strengthening system for beam-column connection in steel frame buildings to resist progressive collapse
JPH03500792A (en) Small roof and its beams
Biegus Trapezoidal sheet as a bracing preventing flat trusses from out-of-plane buckling
JP5176855B2 (en) Folded panel structure and building structure
CN107268820B (en) Buckling-free wave-shaped structure energy consumption component and design method thereof
JP5176905B2 (en) Folded panel structure and building structure
Chung et al. Structural performance of shear resisting connections between cold-formed steel sections using web cleats of cold-formed steel strip
US20120027985A1 (en) Anisotropic reinforcing metal plate
KR101406485B1 (en) Coupling structure and method for beam to column connection
US20120186191A1 (en) Rolled h-section steel
JP4829384B1 (en) Four corner reinforcement structure of rectangular metal flat plate
JP5422891B2 (en) Folded panel structure
US8615969B2 (en) Reinforcement structure of rectangular flat metal plate
CN110331799A (en) The trapezoidal corrugated plating shear wall of Low Yield Point Steel
JP4987758B2 (en) Panels, buildings and thin lightweight steel structures
JP4975384B2 (en) Folded plate material for building structure
CN108532754B (en) Twin beams is bent shearing-type accentric support dissipative links, eccentrically braces structure
JP2013112962A (en) Vehicle drop guard fence
JP4279846B2 (en) Reinforcement structure of wooden frame building
CN107090943B (en) Light steel roof system with angle brace as purline fulcrum
JP6891053B2 (en) Beam-column joint structure
JP3638142B2 (en) Column and beam joining device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R151 Written notification of patent or utility model registration

Ref document number: 5176905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350