WO2011077041A2 - Procede d'optimisation de la reception stereo pour radio analogique et recepteur de radio analogique associe - Google Patents

Procede d'optimisation de la reception stereo pour radio analogique et recepteur de radio analogique associe Download PDF

Info

Publication number
WO2011077041A2
WO2011077041A2 PCT/FR2010/052865 FR2010052865W WO2011077041A2 WO 2011077041 A2 WO2011077041 A2 WO 2011077041A2 FR 2010052865 W FR2010052865 W FR 2010052865W WO 2011077041 A2 WO2011077041 A2 WO 2011077041A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
block
decorrelation
gain
optimized
Prior art date
Application number
PCT/FR2010/052865
Other languages
English (en)
Other versions
WO2011077041A3 (fr
Inventor
Thomas Esnault
Frédéric AMADU
Original Assignee
Arkamys
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkamys filed Critical Arkamys
Priority to ES10808913.7T priority Critical patent/ES2644441T3/es
Priority to KR1020127019501A priority patent/KR101785747B1/ko
Priority to US13/519,036 priority patent/US8934635B2/en
Priority to EP10808913.7A priority patent/EP2517387B1/fr
Publication of WO2011077041A2 publication Critical patent/WO2011077041A2/fr
Publication of WO2011077041A3 publication Critical patent/WO2011077041A3/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • H04H40/45Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving
    • H04H40/54Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving generating subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • H04H40/45Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving
    • H04H40/63Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving for separation improvements or adjustments
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/005Correction of errors induced by the transmission channel, if related to the coding algorithm
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • H04H40/45Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • H04H40/45Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving
    • H04H40/81Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving for stereo-monaural switching
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing

Definitions

  • the invention relates to a method of optimizing the stereo reception for analogue radio as well as the associated analog radio receiver.
  • the invention finds a particularly advantageous application in the field of analog radio but could also be used in any other type of application where it could be useful to transform two strongly correlated audio signals into a stereo type signal.
  • an analog radio comprises a tuner adapted to select a channel from a set of frequency channels and to demodulate a first and a second signal contained in the channel.
  • the first signal G + D (called the mono component) corresponds to the sum of the signal of its left and the signal of its right of the stereo
  • the second signal GD (called the stereo component) corresponds to the subtraction of the signal of his right to the signal from his left.
  • the first and the second signal corresponds to obtain the stereo signal composed by the signal of his right and the signal of his left to broadcast.
  • the invention aims to allow a stereo broadcast of the received signal despite poor reception of the radio.
  • a decorrelation module will decorrelate the signals of its right and left received according to a coefficient "alpha" of reception quality. radio receiver.
  • the decorrelation rate of the decorrelation module is modified as a function of the "alpha" coefficient of radio reception quality, in order to restore the stereo effect of the received signal.
  • the invention therefore relates to a method for optimizing the audio reproduction in an analog radio, characterized in that it comprises the following steps:
  • one selects a given radio channel from among a set of frequency channels
  • the signals of this channel are demodulated to obtain a signal of its right and a signal of its left demodulated
  • the signal of its right and the signal of its demodulated left are decorrelated with the aid of a decorrelation module, so as to obtain signals decorrelated with respect to each other corresponding to the signal of its optimized right and at the signal of its optimized left, this decorrelation module having a variable decorrelation rate,
  • the decorrelation rate of the decorrelation module is modified as a function of this "alpha" coefficient, so that the "alpha" reception quality coefficient is smaller, more the decorrelation rate applied by the decorrelation module is important, and the higher the reception quality rate "alpha", the lower the decorrelation rate applied by the decorrelation module is important.
  • the decorrelation module is formed by two elementary blocks at the input of which the signal of its right and the signal of its demodulated left are applied, the output signal of these blocks corresponding respectively to the electrical signal of its optimized right and to the electrical signal of his left optimized, the output signal of each block being the combination of the input signal of the block weighted by a first gain, and the combination of the output signal of the weighted block by a second gain and input signals of the delayed block by a delay line.
  • the gain and delay parameters of the elementary blocks are modified.
  • the decorrelation rate of the decorrelation module is modified by selecting the parameters corresponding to the reception quality coefficient "alpha".
  • g 2 being respectively the values of the first gain and the second gain of the first block
  • D1 being the value of the number of delay samples introduced by the delay line
  • s 2 (n) e 2 (n). g3 + s 2 (n-D2) .g 4 + e 2 (n-D2),
  • g 3 , g 4 being respectively the values of the first gain and the second gain of the second block, - D2 being the value of the number of delay samples introduced by the delay line.
  • the first gain and the second gain have opposite values with respect to each other.
  • the gains of the first block and the gains of the second block have opposite values from each other, the value of the first gain of the first block being opposite to the value of the first gain of the second block; while the value of the second gain of the first block is opposite to the value of the second gain of the second block.
  • the first gain of the first block and the second gain of the second block have a value g; while the second gain of the first block and the first gain of the second block have a value -g.
  • the delays introduced by the delay line of the first elementary block and the delay line of the second elementary block are equal.
  • the demodulated right and left signals are first filtered using high pass filters and only the high frequency portion of these signals is input to the decorrelation module.
  • the low frequency part thus filtered is delayed by a third delay
  • the output signals of each elementary block are filtered (in gain and phase) by means of parametric filtering cells to modify the sound perception of these output signals.
  • the output signals of each elementary block are filtered (in gain and phase) by means of parametric filtering cells to modify the sound perception of these output signals.
  • the higher frequency part of the optimized sound signal is isolated by means of a first band-pass filter
  • a nonlinear processor is applied to the insulated part which creates the high frequency harmonics of the isolated signal to obtain a duplicated signal
  • a second bandpass filter is applied to the duplicated signal to form a high frequency component
  • the high frequency component thus created is combined with the optimized sound signal previously delayed by a delay cell
  • an enhanced optimized signal comprising a low frequency component and a recreated high frequency component.
  • the upper and lower terminals of the band-pass filter are a function of the "alpha" quality coefficient of reception
  • the invention furthermore relates to an optimized analog radio receiver, characterized in that it comprises:
  • a tuner able to select a given radio channel from among a set of frequency channels, and to demodulate the signals of this channel to obtain a signal of its right and a signal of its left demodulated
  • a decorrelation module capable of generating, from the demodulated signals of its right and of the demodulated left signal, signals decorrelated with respect to each other corresponding to the signals of its optimized right and left, this module of decorrelation having a variable decorrelation rate
  • the decorrelation module being able to adapt its decorrelation rate as a function of the measured "alpha” coefficient, so that the smaller the "alpha” reception quality coefficient, the lower the decorrelation rate applied by the decorrelation module; Importantly, and the higher the "alpha” reception quality coefficient, the lower the decorrelation rate applied by the decorrelation module.
  • an acute generation module comprising:
  • a first band-pass type filter for isolating the part of the highest frequency of the optimized sound signal
  • a nonlinear processor which creates the high frequency harmonics applied to the isolated part of the signal to obtain a duplicated signal
  • FIG. 1 a schematic representation of a radio according to the invention equipped with a module according to the invention for optimizing the reception of the radio
  • FIG. 2 is a schematic representation of an improved embodiment of the invention in which the low frequency part of the right and left signals is not applied at the input of the decorrelation module according to the invention
  • Figure 3 a schematic representation of a high frequency component generation module for broadcast stereo sound signals
  • FIGS. 4a-4e very schematic representations of the signals observable during use of the high frequency component generation module of FIG. 3.
  • Figure 1 shows a radio 1 according to the invention equipped with a standard analog radio receiver 2 comprising a tuner 3 in connection with a decorrelation module 5.
  • the tuner 3 is adapted to select a channel Ci from a set of radio frequency channels Ci-C n and to demodulate a first and a second signal contained in the channel.
  • the first signal S G + S D corresponds to the sum of the signal of its left SG and the signal of its right S D ; while the second signal corresponds to the signal SQ-S Di, that is to say to the subtraction of the signal from its right S D to the signal of its left S G.
  • the first and second signals are then combined in a manner known per se to obtain the stereo signal formed by the signal of its right S D and the signal of its left demodulated SG.
  • the tuner 3 comprises a calculation cell 6 making it possible to obtain the alpha quality coefficient of reception.
  • variable decorrelation rate of the module 5 is adapted according to the reception quality coefficient "alpha" to restore the stereo effect.
  • the more the signals S G and S D are correlated (more "alpha” is small) the higher the degree of decorrelation of the module 5 is important; while the more the signals S G and S D are close to the transmitted signals (more "alpha” is large), the lower the decorrelation rate of the decorrelation module is important.
  • the decorrelation rate applied by the decorrelation module 5 is zero.
  • the decorrelation module 5 is formed of two elementary blocks 9.1, 9.2 whose input is respectively applied the signal of its right S D and its left S G , the output if, s 2 of these blocks 9.1, 9.2 respectively corresponding to the signal of its optimized right SDO and to the signal of its left optimized S G o- the output signal if, s 2 of each block 9.1, 9.2 is a function of the input signal e- ⁇ , e 2 of the first gain-weighted block g 1 , g 3 and of the combination of the input signals e 2 and the output signal if, s 2 of block weighted by a second gain g 2 , g 4 delayed by a delay line 10.1, 10.2.
  • the input signal e- ⁇ , e 2 of block 9.1, 9.2 is connected to an input of a first summer 1 1 .1, 1 1 .2 and applied to an input of a second summator 12.1, 12.2 after being multiplied by the first gain gi, g 3 .
  • the output signal if, s 2 of the block is applied to another input of the first adder .1, 1 1.2 after having been multiplied by the second gain g 2 , g 4 , the output signal of the first adder 1 1.1, 1 1.2 being applied as input to the delay line 10.1, 10.2.
  • the delay line output signal 10.1, 10.2 is applied to another input of the second summer 1 1 .1, 1 1.2, the output signal of this second summer 1 .1, 1 1.2 corresponding to the output signal s 2 of elementary block 9.1, 9.2 (and thus to the signal of its right and left optimized S D o, SGO in Figure 1).
  • s 1 (n) e 1 (n) .g + s 1 (n-D1) .g 2 + e 1 (n-D1)
  • gi, g 2 being respectively the values of the first gain and the second gain of the first block 9.1
  • D1 being the value of the number of delay samples introduced by the delay line 10.1.
  • g 3 , g 4 being respectively the values of the first gain and the second gain of the second block 9.2, D2 being the value of the number of delay samples introduced by the delay line 10.2.
  • the first gain gi (respectively g 3 ) and the second gain g 2 (respectively g 4 ) have opposite values. one with respect to the other.
  • Each block 9.1, 9.2 then behaves as an all-pass type filter which does not modify the gain of the input signal ei, e 2 but only its phase.
  • the gains gi, g 2 of the first block 9.1 and the gains g 3 , g 4 of the second block 9.2 preferably have opposite values of each other.
  • the value of the first gain gi of the first block 9.1 is opposite to the value of the first gain g 3 of the second block 9.2; while the value of the second gain g 2 of the first block 9.1 is opposite to the value of the second gain g 4 of the second block 9.2.
  • the first 9.1 1 5 and the second 9.2 blocks which have an identical absolute value g.
  • the first gain gi of the first block 9.1 and the second gain g 4 of the second block 9.2 have a value g; while the second gain g 2 of the first block 9.1 and the first g 3 gain of the second block 9.2 has a value -g.
  • the delays D1, D2 introduced by the delay line 10.1 of the first elementary block 9.1 and the delay line 10.2 of the second elementary block 9.2 are equal and are equal to 76. However, it would be possible to choose delays D1, D2 having different durations.
  • the parameters g1, g2, g3, g4, D1, D2 of the elementary blocks 9.1, 9.3 are varied.
  • a table 15 stored in memory establishes the correspondence between the parameters of each block 9.1, 9.2 (first gain gi, g 3 and second gain g 2 , g 4 and delay D1, D2 of line 10.1, 10.2) and the "alpha" quality factor of reception, the parameters of each block 0 9.1, 9.2 being selected according to the coefficient "alpha" of reception quality provided by the radio.
  • stage 17 composed of high pass filters 18 and low pass filters 19 for separating the low frequency signals of the high frequency signals in the right signals S D and left SG.
  • a stage 17 composed of high pass filters 18 and low pass filters 19 for separating the low frequency signals of the high frequency signals in the right signals S D and left SG.
  • only the high frequency part of the right signals S D and left SG is applied to the input of the decorrelation module 5.
  • the low frequency part of the right signals S D and left SG is applied at the input of a third delay line 23 and the low frequency parts of the right signals S D and left S G thus delayed are summed respectively with the signals obtained at the outputs of the blocks 9.1, 9.2, so as to obtain the optimized right and left signals SDO and SGO-
  • the delay D3 of the third line 23 is 176 (with a sampling frequency of 44.1 kHz).
  • the equalizing cells 25.1, 25.2 each comprise a filter whose gain and phase can be adjusted according to different frequency bands of the signals si, s 2 and a gain which acts on the set the spectrum of the signals si, s 2 .
  • These gain and phase parameters are adapted by sound engineers in particular according to the intended application.
  • the invention makes it possible to recreate a high frequency component of the signals of its right S D o or left SGO which has been suppressed in case of poor reception.
  • This aspect of the invention is independent of the technical principle of the creation of the stereo in case of poor reception and could be implemented independently of this principle.
  • the signals of its left S G o and right S D o which are formed essentially of a lower frequency component SBF lower than the cutoff frequency fc (see Figure 4a), are each inputted.
  • This module 35 comprises a first filter 36 into which the bandpass signal to its left S o G (resp. right S DR) is applied .
  • This first filter 36 makes it possible to isolate the part of the highest frequency of the input signal S G o (resp S D o) between a lower bound and an upper bound.
  • the upper bound is equal to the cut-off frequency fc
  • the lower bound is equal to fc / N, N being preferably 2 or 4.
  • the isolated portion Si of the signal obtained at the output of the band-pass filter 36 is shown in Figure 4b.
  • the isolated part Si is then applied at the input of a non-linear type processor 38 which makes it possible to duplicate the isolated signal Frequency Si by creating the high frequency harmonics at,, f 2 f f n of this signal S, , which makes it possible to fill the frequency spectrum in the high frequency zone.
  • the duplicated signal S D 'thus obtained at the output of the nonlinear processor 38 is shown in FIG. 4c.
  • the harmonics of the signal S D ' have an amplitude which decreases with the increase of the frequency.
  • the high frequency part of the duplicated signal S D '(without the isolated part Si from which it has been obtained) is then isolated in order to obtain a high frequency component S H F sound signal shown in Figure 4d.
  • a bandpass filter 39 having a lower bound and an upper bound is used.
  • the lower bound is fc while the upper bound is M.fc, M being for example 2 or 4.
  • the signal from its left SGO (resp., Right S D o) restored is filtered using a low-pass filter 41 having a cut-off frequency substantially equal to fc to keep only the low frequency component S BF of the restored signal SGR, S D R.
  • the low frequency part S BF is then delayed by a delay D4 by means of a delay cell 42.
  • This delay I o D4 is of the order of a few samples.
  • the low frequency component S B F is summed with the high frequency component S H F using an adder 44, in order to obtain an optimized left augmented sound signal SQOA (respectively SDOA right). formed of the initial low frequency component S B F of the optimized sound signal and the high frequency component S H F thus created by the method according to the invention.
  • a post processing unit 45 modifies the shape of the spectral response of the high frequency component SHF, and gains gs and gg are applied to the high frequency components S H F and low frequency S BF before summation 0 by summator 44.
  • the parameters of the filters 36, 39, 41 depend on the coefficient "alpha" of reception quality. Indeed, the filters 36, 39, 41 have terminals that depend on the cutoff frequency fc. Since this cut-off frequency fc depends on the "alpha" coefficient, the terminals 5 also depend on the "alpha” coefficient. There therefore exist a table 47 establishing the correspondence between the reception quality coefficient "alpha" and the associated filter parameters making it possible to generate the high frequency component of the left and right signals.
  • the parameters of the post processing cell 45, the nonlinear processor 38, the delay cell 42, and the gains g 8 and gg also preferably depend on the reception quality coefficient "alpha".
  • the parameters of the high-frequency generation modules 35 which process the signal of its left S G R and the signal of its right S D R are preferably symmetrical, that is to say that the module 35 which processes the signal of its left S G R presents parameters of the same value as the module 35 which processes the signal of its right S DR .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Stereophonic System (AREA)
  • Stereo-Broadcasting Methods (AREA)
  • Mathematical Physics (AREA)

Abstract

L'invention concerne essentiellement un procédé d'optimisation de la réception stéréo pour une radio analogique, caractérisé en ce qu'il comporte les étapes suivantes : on applique le signal de son droit (SD) et le signal de son gauche (SG) démodulés en entrée d'un module (5) de décorrélation ayant un taux de décorrélation variable, on modifie le taux de décorrélation du module (5) de décorrélation en fonction du coefficient de qualité de réception « alpha » fourni par la radio, de sorte que plus le coefficient de qualité de réception « alpha » est petit, plus le taux de décorrélation appliqué par le module (5) de décorrélation est important, et plus le coefficient de qualité de réception « alpha » est grand, moins le taux de décorrélation appliqué par le module (5) de décorrélation est important. L'invention propose en outre un module de génération des aiguës qui permet de recréer la composante haute fréquence (SHF) des signaux de son droit ou gauche qui a été supprimée en cas de mauvaise réception.

Description

PROCEDE D'OPTIMISATION DE LA RECEPTION STEREO POUR RADIO ANALOGIQUE ET RECEPTEUR DE RADIO ANALOGIQUE ASSOCIE
[01] L'invention concerne un procédé d'optimisation de la réception stéréo pour radio analogique ainsi que le récepteur de radio analogique associé.
[02] L'invention trouve une application particulièrement avantageuse dans le domaine de la radio analogique mais pourrait également être utilisée dans tout autre type d'application où il pourrait être utile de transformer deux signaux audio fortement corrélés en un signal de type stéréo.
[03] De manière connue, une radio analogique comporte un tuner apte à sélectionner un canal parmi un ensemble de canaux fréquentiels et à démoduler un premier et un deuxième signal contenus dans le canal. Il est connu que le premier signal G+D (appelé composante mono) correspond à la somme du signal de son gauche et du signal de son droit de la stéréo, tandis que le deuxième signal G-D (appelé composante stéréo) correspond à la soustraction du signal de son droit au signal de son gauche. En fonctionnement normal du tuner, il est facile de combiner de manière connue le premier et le deuxième signal pour obtenir le signal stéréo composé par le signal de son droit et le signal de son gauche à diffuser.
[04] Toutefois, lorsque la captation du signal par la radio est mauvaise, l'énergie du signal G-D a tendance à diminuer, et le signal stéréo a alors tendance à se transformer en un signal mono. Autrement dit, en cas de mauvaise réception, les signaux de son droit et gauche obtenus ont tendance à être fortement corrélés, ce qui diminue l'effet de stéréo.
[05] L'invention a pour but de permettre une diffusion en stéréo du signal reçu malgré une mauvaise réception de la radio.
[06] A cet effet, dans le procédé d'optimisation de la réception selon l'invention, un module de décorrélation va décorréler les signaux de son droit et de son gauche reçus en fonction d'un coefficient « alpha » de qualité de réception du récepteur radio. [07] Selon l'invention, on modifie le taux de décorrélation du module de décorrélation en fonction du coefficient « alpha » de qualité de réception radio, afin de rétablir l'effet de stéréo du signal reçu. Ainsi, plus la qualité de réception est mauvaise (plus « alpha » est petit, et plus les signaux sont corrélés), plus le module de décorrélation assurera une décorrélation des signaux droit et gauche ; tandis que plus la qualité de réception est bonne (plus « alpha » est grand), moins le module de décorrélation assurera une décorrélation des signaux droit et gauche.
[08] L'invention concerne donc un procédé d'optimisation de la restitution audiophonique dans une radio analogique, caractérisé en ce qu'il comporte les étapes suivantes :
- on sélectionne un canal radio donné parmi un ensemble de canaux fréquentiels,
- on démodule les signaux de ce canal pour obtenir un signal de son droit et un signal de son gauche démodulés,
- on décorrèle le signal de son droit et le signal de son gauche démodulés, à l'aide d'un module de décorrélation, de manière à obtenir des signaux décorrélés l'un par rapport à l'autre correspondant au signal de son droit optimisé et au signal de son gauche optimisé, ce module de décorrélation ayant un taux de décorrélation variable,
- la radio fournissant un coefficient « alpha » de qualité de réception, on modifie le taux de décorrélation du module de décorrélation en fonction de ce coefficient « alpha », de sorte que plus le coefficient de qualité de réception « alpha » est petit, plus le taux de décorrélation appliqué par le module de décorrélation est important, et plus le taux de qualité de réception « alpha » est grand, moins le taux de décorrélation appliqué par le module de décorrélation est important.
[09] Selon une mise en oeuvre :
- le module de décorrélation est formé par deux blocs élémentaires en entrée desquels on applique le signal de son droit et le signal de son gauche démodulés, le signal de sortie de ces blocs correspondant respectivement au signal électrique de son droit optimisé et au signal électrique de son gauche optimisé, - le signal de sortie de chaque bloc étant la combinaison du signal d'entrée du bloc pondéré par un premier gain, et de la combinaison du signal de sortie du bloc pondéré par un deuxième gain et des signaux d'entrée du bloc retardée par une ligne à retard. [010] Selon une mise en œuvre, pour modifier le taux de décorrélation du module de décorrélation, on modifie les paramètres de gain et de retard des blocs élémentaires.
[01 1] Selon une mise en oeuvre :
- on stocke au préalable en mémoire un tableau établissant la correspondance entre les paramètres de chaque blocs et le coefficient
« alpha » de qualité de réception, et
- on modifie le taux de décorrélation du module de décorrélation en sélectionnant les paramètres correspondant au coefficient de qualité de réception « alpha ».
[012] Selon une mise en œuvre :
- pour le premier bloc élémentaire, on a :
Figure imgf000005_0001
e-i étant le signal d'entrée du premier bloc correspondant au signal de son droit démodulé,
si étant le signal de sortie du premier bloc correspondant au signal de son droit optimisé,
g-! , g2 étant respectivement les valeurs du premier gain et du deuxième gain du premier bloc,
D1 étant la valeur du nombre d'échantillons de retard introduit par la ligne à retard, et
- pour le deuxième bloc élémentaire, on a :
s2(n)=e2(n). g3+s2(n-D2).g4+e2(n-D2),
e2 étant le signal d'entrée du deuxième bloc correspondant au signal de son gauche démodulé,
s2 étant le signal de sortie du deuxième bloc correspondant au signal de son gauche optimisé,
g3, g4 étant respectivement les valeurs du premier gain et du deuxième gain du deuxième bloc,- D2 étant la valeur du nombre d'échantillons de retard introduit par la ligne à retard.
[013] Selon une mise en uvre, à l'intérieur d'un même bloc, le premier gain et le deuxième gain présentent des valeurs opposées l'une par rapport à l'autre.
[014] Selon une mise en œuvre, les gains du premier bloc et les gains du deuxième bloc présentent des valeurs opposées les unes des autres, la valeur du premier gain du premier bloc étant opposée à la valeur du premier gain du deuxième bloc ; tandis que la valeur du deuxième gain du premier bloc est opposée à la valeur du deuxième gain du deuxième bloc.
[015] Selon une mise en œuvre, le premier gain du premier bloc et le deuxième gain du deuxième bloc présentent une valeur g ; tandis que le deuxième gain du premier bloc et le premier gain du deuxième bloc présentent une valeur -g. [016] Selon une mise en œuvre, les retards introduits par la ligne à retard du premier bloc élémentaire et la ligne à retard du deuxième bloc élémentaire sont égaux.
[017] Selon une mise en œuvre, on filtre au préalable les signaux droit et gauche démodulés à l'aide de filtres passe haut et on applique uniquement la partie haute fréquence de ces signaux en entrée du module de décorrélation.
[018] Selon une mise en œuvre,
- on filtre la partie basse fréquence des signaux droit et gauche démodulés,
- on retarde la partie basse fréquence ainsi filtrée d'un troisième retard, et
- pour obtenir le signal de son droit optimisé et le signal de son gauche optimisé, on somme les parties basses fréquences ainsi retardées du signal de son droit et du signal de son gauche respectivement avec le signal de son droit et le signal de son gauche obtenus en sortie du module de décorrélation à partir des parties hautes fréquence des signaux gauche et droit démodulés.
[019] Selon une mise en œuvre, on filtre (en gain et phase) les signaux de sortie de chaque bloc élémentaire au moyen de cellules de filtrage paramétriques pour modifier la perception sonore de ces signaux de sortie. [020] Selon une mise en oeuvre, pour chaque signal de son droit et gauche optimisé formé essentiellement d'une composante basse fréquence inférieure à une fréquence de coupure,
- on isole la partie de plus haute fréquence du signal de son optimisé à l'aide d'un premier filtre de type passe-bande,
- on applique à la partie isolée un processeur non linéaire qui crée les harmoniques haute fréquence du signal isolé pour obtenir un signal dupliqué,
- on applique un deuxième filtre passe-bande au signal dupliqué pour former une composante haute fréquence,
- on combine la composante haute fréquence ainsi créée avec le signal de son optimisé préalablement retardé par une cellule à retard, et
- on obtient un signal optimisé augmenté comportant une composante basse fréquence et une composante haute fréquence recrée.
[021] Selon une mise en œuvre, les bornes supérieures et inférieures du filtre passe-bande sont fonction du coefficient « alpha » de qualité de réception,
[022] L'invention concerne en outre un récepteur de radio analogique optimisé, caractérisé en ce qu'il comporte :
- un tuner apte à sélectionner un canal radio donné parmi un ensemble de canaux fréquentiels, et à démoduler les signaux de ce canal pour obtenir un signal de son droit et un signal de son gauche démodulés,
- un module de décorrélation apte à générer, à partir des signaux de son droit et du signal de son gauche démodulés, des signaux décorrélés l'un par rapport à l'autre correspondant aux signaux de son droit et de son gauche optimisés, ce module de décorrélation ayant un taux de décorrélation variable,
- une cellule de calcul apte à fournir un coefficient « alpha » de qualité de réception,
- le module de décorrélation étant apte à adapter son taux de décorrélation en fonction du coefficient « alpha » mesuré, de sorte que plus le coefficient de qualité de réception « alpha » est petit, plus le taux de décorrélation appliqué par le module de décorrélation est important, et plus le coefficient de qualité de réception « alpha » est grand, moins le taux de décorrélation appliqué par le module de décorrélation est important. [023] Selon une réalisation, il comporte en outre un module de génération des aiguës comprenant :
- un premier filtre de type passe-bande pour isoler la partie de plus haute fréquence du signal de son optimisé,
5 - un processeur non linéaire qui crée les harmoniques haute fréquence appliqué à la partie isolée du signal pour obtenir un signal dupliqué,
- un deuxième filtre passe-bande appliqué au signal dupliqué pour former une composante haute fréquence,
- des moyens pour combiner la composante haute fréquence ainsi créée î o avec le signal de son optimisé préalablement retardé par une cellule à retard, de manière à obtenir un signal optimisé augmenté comportant une composante basse fréquence et une composante haute fréquence recrée.
[024] L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont 15 données qu'à titre illustratif mais nullement limitatif de l'invention. Elles montrent :
[025] Figure 1 : une représentation schématique d'une radio selon l'invention équipée d'un module selon l'invention permettant d'optimiser la réception de la radio ; 0 [026] Figure 2 : une représentation schématique d'un mode de réalisation perfectionné de l'invention dans lequel la partie basse fréquence des signaux droit et gauche n'est pas appliquée en entrée du module de décorrélation selon l'invention ;
[027] Figure 3 : une représentation schématique d'un module de 25 génération de composante haute fréquence pour les signaux de son stéréo à diffuser ;
[028] Figures 4a-4e : des représentations très schématiques des signaux observables lors de l'utilisation du module de génération de composante haute fréquence de la Figure 3.
30 [029] Les éléments identiques conservent la même référence d'une figure à l'autre. [030] La Figure 1 montre une radio 1 selon l'invention équipée d'un récepteur 2 radio standard analogique comprenant un tuner 3 en relation avec un module 5 de décorrélation.
[031] De manière connue en soi, le tuner 3 est apte à sélectionner un canal Ci parmi un ensemble de canaux radio-fréquentiels Ci-Cn et à démoduler un premier et un deuxième signal contenus dans le canal. Il est connu que le premier signal SG+SD correspond à la somme du signal de son gauche SG et du signal de son droit SD ; tandis que le deuxième signal correspond au signal SQ-SDi c'est-à-dire à la soustraction du signal de son droit SD au signal de son gauche SG. Le premier et le deuxième signal sont alors combinés de manière connue en soi pour obtenir le signal stéréo formé par le signal de son droit SD et le signal de son gauche SG démodulé.
[032] Ces signaux de son droit SD et gauche SG sont appliqués en entrée du module 5 de décorrélation qui va les décorréler l'un par rapport à l'autre en fonction d'un coefficient de qualité de réception « alpha » fourni par le tuner 3. A cet effet, le tuner 3 comporte une cellule 6 de calcul permettant d'obtenir le coefficient alpha de qualité de réception. Plus « alpha » est grand, plus les signaux SG et SD sont proches des signaux émis ; tandis que plus « alpha » est petit, plus les signaux SG et SD sont corrélés (et donc plus la radio tend à fonctionner en mode monophonique).
[033] On adapte le taux de décorrélation variable du module 5 en fonction du coefficient de qualité de réception « alpha » pour rétablir l'effet de stéréo. Ainsi plus les signaux SG et SD sont corrélés (plus « alpha » est petit), plus le taux de décorrélation du module 5 est important ; tandis que plus les signaux SG et SD sont proches des signaux émis (plus « alpha » est grand), moins le taux de décorrélation du module de décorrélation est important. Ainsi, dans le cas d'une bonne réception, il est possible que le taux de décorrélation appliqué par le module 5 de décorrélation soit nul.
[034] A cet effet, le module 5 de décorrélation est formé de deux blocs 9.1 , 9.2 élémentaires en entrée desquels on applique respectivement le signal de son droit SD et de son gauche SG, la sortie s-i , s2 de ces blocs 9.1 , 9.2 correspondant respectivement au signal de son droit optimisé SDO et au signal de son gauche optimisé SGo- Le signal de sortie si , s2 de chaque bloc 9.1 , 9.2 est fonction du signal d'entrée e-ι, e2 du bloc pondéré par un premier gain gi , g3 et de la combinaison des signaux d'entrée e^ e2 et du signal de sortie si , s2 du bloc pondéré par un deuxième gain g2, g4 retardés par une ligne à retard 10.1 , 10.2. [035] Selon une réalisation, le signal d'entrée e-ι , e2 du bloc 9.1 , 9.2 est relié à une entrée d'un premier sommateur 1 1 .1 , 1 1 .2 et appliqué sur une entrée d'un deuxième sommateur 12.1 , 12.2 après avoir été multiplié par le premier gain gi, g3. Le signal de sortie si, s2 du bloc est appliqué sur une autre entrée du premier sommateur .1 , 1 1.2 après avoir été multiplié par le deuxième gain g2, g4, le signal de sortie du premier sommateur 1 1.1 , 1 1.2 étant appliqué en entrée de la ligne à retard 10.1 , 10.2. Le signal de sortie de ligne à retard 10.1 , 10.2 est appliqué sur une autre entrée du deuxième sommateur 1 1 .1 , 1 1.2, le signal de sortie de ce deuxième sommateur 1 .1 , 1 1.2 correspondant au signal de sortie s2 du bloc élémentaire 9.1 , 9.2 (et donc au signal de son droit et gauche optimisé SDo, SGO dans la Figure 1).
[036] Ainsi pour le premier bloc élémentaire 9.1 , on a :
s1(n)=e1(n).gi+s1(n-D1 ).g2+e1(n-D1 )
ei étant le signal d'entrée du premier bloc 9.1 correspondant au signal de son droit démodulé SD,
si étant le signal de sortie du premier bloc 9.1 correspondant au signal de son droit optimisé SDo,
gi , g2 étant respectivement les valeurs du premier gain et du deuxième gain du premier bloc 9.1 ,
D1 étant la valeur du nombre d'échantillons de retard introduit par la ligne à retard 10.1.
[037] Pour le deuxième bloc élémentaire 9.2, on a :
S2(n)=e2(n).g3+s2(n-D2).g4+e2(n-D2)
e2 étant le signal d'entrée du deuxième bloc 9.2 correspondant au signal de son gauche démodulé SG,
s2 étant le signal de sortie du deuxième bloc 9.2 correspondant au signal de son gauche optimisé SGo,
g3, g4 étant respectivement les valeurs du premier gain et du deuxième gain du deuxième bloc 9.2, D2 étant la valeur du nombre d'échantillons de retard introduit par la ligne à retard 10.2.
[038] De préférence, à l'intérieur d'un même bloc 9.1 (resp. 9.2), le premier gain gi (resp. g3) et le deuxième gain g2 (resp. g4) présentent des 5 valeurs opposées l'une par rapport à l'autre. Chaque bloc 9.1 , 9.2 se comporte alors comme un filtre de type passe-tout qui ne modifie pas le gain du signal d'entrée ei , e2 mais uniquement sa phase.
[039] En outre, les gains g-i , g2 du premier bloc 9.1 et les gains g3, g4 du deuxième bloc 9.2 présentent de préférence des valeurs opposées les unes î o des autres. Ainsi, la valeur du premier gain gi du premier bloc 9.1 est opposée à la valeur du premier gain g3 du deuxième bloc 9.2 ; tandis que la valeur du deuxième gain g2 du premier bloc 9.1 est opposée à la valeur du deuxième gain g4 du deuxième bloc 9.2.
[040] On choisira également de préférence des gains pour le premier 9.1 1 5 et le deuxième 9.2 blocs qui ont une valeur absolue identique g. Ainsi de préférence, le premier gain g-i du premier bloc 9.1 et le deuxième gain g4 du deuxième bloc 9.2 présentent une valeur g ; tandis que le deuxième gain g2 du premier bloc 9.1 et le premier g3 gain du deuxième bloc 9.2 présente une valeur -g. 0 [041] De préférence, les retards D1 , D2 introduits par la ligne à retard 10.1 du premier bloc élémentaire 9.1 et la ligne à retard 10.2 du deuxième bloc 9.2 élémentaire sont égaux et valent 76. Toutefois, il serait possible de choisir des retards D1 , D2 ayant des durées différentes.
[042] Pour faire varier le taux de décorrélation du module 5 de 5 décorrélation, on fait varier les paramètres g1 , g2, g3, g4, D1 , D2 des blocs élémentaires 9.1 , 9.3. A cet effet, un tableau 15 stocké en mémoire établit la correspondance entre les paramètres de chaque bloc 9.1 , 9.2 (premier gain gi , g3 et deuxième gain g2, g4 et retard D1 , D2 de la ligne 10.1 , 10.2) et le coefficient « alpha » de qualité de réception, les paramètres de chaque bloc 0 9.1 , 9.2 étant sélectionnés en fonction du coefficient « alpha » de qualité de réception fourni par la radio. [043] Dans un perfectionnement de l'invention montré sur la Figure 2, on utilise en outre un étage 17 composé de filtres passe haut 18 et de filtres passe bas 19 permettant de séparer les signaux basses fréquences des signaux hautes fréquences dans les signaux droit SD et gauche SG. Dans ce 5 cas, seule la partie haute fréquence des signaux droit SD et gauche SG est appliquée en entrée du module 5 de décorrélation.
[044] La partie basse fréquence des signaux droit SD et gauche SG est appliquée en entrée d'une troisième ligne à retard 23 et les parties basses fréquences des signaux droit SD et gauche SG ainsi retardées sont sommées î o respectivement avec les signaux obtenus en sorties des blocs 9.1 , 9.2, de manière à obtenir les signaux de son droit et gauche optimisés SDO et SGO-
[045] Cela permet d'améliorer le rendu sonore final car on s'aperçoit que statistiquement les signaux basse fréquence sont très corrélés, il n'y a donc pas lieu de les décorréler à l'aide du module de décorrélation car sinon la 15 perception audiophonique de l'ensemble ne serait pas agréable à l'oreille.
[046] Dans un exemple, le retard D3 de la troisième ligne 23 vaut 176 (avec une fréquence d'échantillonnage de 44, 1 kHz).
[047] En outre, il est possible d'utiliser des cellules d'égalisation paramétriques 25.1 , 25.2 connectées en sortie de chaque bloc élémentaire 0 9.1 , 9.2 avant sommation avec la partie basse fréquence retardée. Ces cellules d'égalisation ont pour effet de modifier la perception des signaux de sortie si , s2 de ces blocs 9.1 , 9.2, car même si les signaux s-i , s2 présentent des niveaux sensiblement identiques, il existe des différences dans leur perception en raison de la décorrélation qu'ils présentent l'un par rapport à 5 l'autre. En conséquence, il peut être utile de modifier perceptivement ces signaux pour que l'impression auditive d'ensemble soit la meilleure possible.
[048] A cet effet, les cellules 25.1 , 25.2 d'égalisation comportent chacun un filtre dont le gain et la phase peuvent être réglés en fonction de différentes bandes de fréquence des signaux s-i, s2 et un gain qui agit sur l'ensemble du 0 spectre des signaux s-i, s2. Ces paramètres de gain et de phase sont adaptés par des ingénieurs du son notamment en fonction de l'application envisagée. [049] On note que plus la qualité de réception est mauvaise, plus on a tendance à supprimer la partie haute fréquence des signaux reçus car les parasites se situent le plus souvent dans les bandes de fréquences hautes. En revanche, plus la qualité de réception est bonne plus on a tendance à conserver la composante haute fréquence des signaux reçus.
[050] L'invention permet de recréer une composante haute fréquence des signaux de son droit SDo ou gauche SGO qui a été supprimée en cas de mauvaise réception. Cet aspect de l'invention est indépendant du principe technique de la création de la stéréo en cas de mauvaise réception et pourrait être donc être mise en oeuvre indépendamment de ce principe.
[051] A cet effet, les signaux de son gauche SGo et droit SDo, qui sont formés essentiellement d'une composante basse fréquence SBF inférieure à la fréquence de coupure fc (voir Figure 4a), sont appliqués chacun en entrée d'un module 35 de génération des aigus montré en détails sur la Figure 3 [052] Ce module 35 comporte un premier filtre 36 passe-bande en entrée duquel le signal de son gauche SGo (resp. droit SDR) est appliqué. Ce premier filtre 36 permet d'isoler la partie de plus haute fréquence du signal d'entrée SGo (resp SDo) comprise entre une borne inférieure et une borne supérieure. Dans un exemple, la borne supérieure est égale à la fréquence de coupure fc, et la borne inférieure est égale à fc/N, N valant de préférence 2 ou 4. La partie isolée Si du signal obtenue en sortie du filtre passe-bande 36 est montrée sur la Figure 4b.
[053] La partie isolée Si est ensuite appliquée en entrée d'un processeur 38 de type non linéaire qui permet de dupliquer fréquentiellement le signal isolé Si en créant les harmoniques hautes fréquences à fi , f2.. fn de ce signal S,, ce qui permet de remplir le spectre de fréquences dans la zone des hautes fréquences. Le signal dupliqué SD' ainsi obtenu en sortie du processeur 38 non linéaire est montré sur la Figure 4c. De préférence, comme représenté, les harmoniques du signal SD' présentent une amplitude qui décroît de avec l'augmentation de la fréquence.
[054] On isole ensuite la partie haute fréquence du signal dupliqué SD' (sans la partie isolée Si à partir duquel il a été obtenu) afin d'obtenir une composante haute fréquence SHF de signal de son montrée sur la Figure 4d. A cette fin, on utilise un filtre passe-bande 39 présentant une borne inférieure et une borne supérieure. Dans un exemple, la borne inférieure vaut fc tandis que la borne supérieure vaut M.fc, M valant par exemple 2 ou 4.
5 [055] Par ailleurs, le signal de son gauche SGO (resp. droit SDo) restitué est filtré à l'aide d'un filtre passe-bas 41 ayant une fréquence de coupure sensiblement égale à fc pour ne conserver que la composante basse fréquence SBF du signal restitué SGR, SDR. La partie basse fréquence SBF est ensuite retardée d'un retard D4 à l'aide d'une cellule 42 à retard. Ce retard î o D4 est de l'ordre de quelques échantillons.
[056] Ensuite, la composante basse fréquence SBF est sommée avec la composante haute fréquence SHF à l'aide d'un sommateur 44, afin d'obtenir un signal de son optimisé augmenté gauche SQOA (resp. droit SDOA) formé de la composante initiale basse fréquence SBF du signal de son optimisé et de la 15 composante haute fréquence SHF ainsi créée par le procédé selon l'invention.
[057] De préférence, mais cela n'est pas obligatoire, une cellule de posttraitement 45 modifie la forme de la réponse spectrale de la composante haute fréquence SHF, et des gains gs et gg sont appliqués sur les composantes haute fréquence SHF et basse fréquence SBF avant sommation 0 par le sommateur 44.
[058] Les paramètres des filtres 36, 39, 41 dépendent du coefficient « alpha » de qualité de réception. En effet, les filtres 36, 39, 41 présentent des bornes qui dépendent de la fréquence de coupure fc. Comme cette fréquence de coupure fc dépend du coefficient « alpha », les bornes 5 dépendent également du coefficient « alpha ». Il existent donc une table 47 établissant la correspondance entre le coefficient « alpha » de qualité de réception et les paramètres de filtres associés permettant de générer la composante haute fréquence des signaux de son gauche et droit.
[059] Les paramètres de la cellule 45 de post-traitement, du processeur 30 38 non linéaire, de la cellule 42 à retard, et de gains g8 et gg dépendent également de préférence du coefficient « alpha » de qualité de réception. [060] Les paramètres des modules de génération des aigus 35 qui traitent le signal de son gauche SGR et le signal de son droit SDR sont de préférence symétriques, c'est-à-dire que le module 35 qui traite le signal de son gauche SGR présente des paramètres de même valeur que le module 35 qui traite le signal de son droit SDR.

Claims

REVENDICATIONS
1. Procédé d'optimisation de la réception stéréo dans une radio analogique, caractérisé en ce qu'il comporte les étapes suivantes :
- on sélectionne un canal radio (q) donné parmi un ensemble de canaux fréquentiels (ci , cn),
- on démodule les signaux de ce canal (Cj) pour obtenir un signal de son droit (SD) et un signal de son gauche (SG) démodulés,
- on décorrèle le signal de son droit (SD) et le signal de son gauche (SG) démodulés, à l'aide d'un module (5) de décorrélation, de manière à obtenir des signaux décorrélés l'un par rapport à l'autre appelés respectivement signal de son droit (SD0) optimisé et signal de son gauche (SGO) optimisé, ce module (5) de décorrélation ayant un taux de décorrélation variable,
- la radio fournissant un coefficient « alpha » de qualité de réception, on modifie le taux de décorrélation du module (5) de décorrélation en fonction de ce coefficient « alpha », de sorte que plus le coefficient de qualité de réception « alpha » est petit, plus le taux de décorrélation appliqué par le module (5) de décorrélation est important, et plus le taux de qualité de réception « alpha » est grand, moins le taux de décorrélation appliqué par le module (5) de décorrélation est important.
2. Procédé selon la revendication 1 , caractérisé en ce que :
- le module (5) de décorrélation est formé par deux blocs (9.1 , 9.2) élémentaires en entrée desquels on applique le signal de son droit (SD) et le signal de son gauche (SG) démodulés, le signal de sortie de ces blocs (9.1 , 9.2) correspondant respectivement au signal électrique de son droit optimisé (SDO) et au signal électrique de son gauche optimisé (SGO) ,
- le signal de sortie de chaque bloc (9.1 , 9.2) étant la combinaison du signal d'entrée (e^ e2) du bloc pondéré par un premier gain (g-i , g3), et de la combinaison du signal de sortie (si , s2) du bloc pondéré par un deuxième gain (g2, g4) et des signaux d'entrée (e-i , e2) du bloc retardée par une ligne à retard (10.1 , 10.2).
3. Procédé selon la revendication 2, caractérisé en ce que pour modifier le taux de décorrélation du module (5) de décorrélation, on modifie les paramètres de gain (g-i-g4) et de retard (D1 , D2) des blocs élémentaires.
4. Procédé selon la revendication 2 ou 3, caractérisé en ce que :
- on stocke au préalable en mémoire un tableau (15) établissant la correspondance entre les paramètres de chaque blocs (gi-g4, D1 , D2) et le coefficient « alpha » de qualité de réception, et
- on modifie le taux de décorrélation du module (5) de décorrélation en sélectionnant les paramètres (grg4, D1 , D2) correspondant au coefficient de qualité de réception « alpha ».
5. Procédé selon l'une des revendications 2 à 4, caractérisé en ce que
- pour le premier bloc élémentaire (9.1 ), on a :
si(n)=e1(n).g +s (n-D1 ).g2+e1(n-D1 )
ei étant le signal d'entrée du premier bloc (9.1) correspondant au signal de son droit démodulé (SD),
si étant le signal de sortie du premier bloc correspondant au signal de son droit optimisé (SDo),
g-i, g2 étant respectivement les valeurs du premier gain et du deuxième gain du premier bloc (9.1),
D1 étant la valeur du nombre d'échantillons de retard introduit par la ligne à retard (10.1), et
- pour le deuxième bloc élémentaire (9.2), on a :
s2(n)=e2(n).g3+s2(n-D2).g4+e2(n-D2)
e2 étant le signal d'entrée du deuxième bloc correspondant au signal de son gauche démodulé (SG),
s2 étant le signal de sortie du deuxième bloc correspondant au signal de son gauche optimisé (SGo),
g4, g3 étant respectivement les valeurs du premier gain et du deuxième gain du deuxième bloc (9.2),
D2 étant la valeur du nombre d'échantillons de retard introduit par la ligne à retard (10.2).
6. Procédé selon l'une des revendications 2 à 5, caractérisé en ce que à l'intérieur d'un même bloc (9.1 , 9.2), le premier gain (g-ι, g3) et le deuxième gain (g2, g4) présentent des valeurs opposées l'une par rapport à l'autre.
5 7. Procédé selon l'une des revendications 2 à 6, caractérisé en ce que les gains (gi , g2) du premier bloc (9.1 ) et les gains (g3, g ) du deuxième bloc (9.2) présentent des valeurs opposées les unes des autres, la valeur du premier gain (g-i) du premier bloc (9.1) étant opposée à la valeur du premier gain (g3) du deuxième bloc (9.2) ; tandis que la valeur du deuxième gain (g2) î o du premier bloc (9.1 ) est opposée à la valeur du deuxième gain (g4) du deuxième bloc (9.2).
8. Procédé selon l'une des revendications 2 à 7, caractérisé en ce que le premier gain (gi) du premier bloc (9.1 ) et le deuxième gain (g4) du
15 deuxième bloc (9.2) présentent une valeur g ; tandis que le deuxième gain (g2) du premier bloc (9.1 ) et le premier (g3) gain du deuxième bloc (9.2) présentent une valeur -g.
9. Procédé selon l'une des revendications 2 à 8, caractérisé en ce que0 les retards (D1 , D2) introduits par la ligne à retard (10.1 ) du premier bloc élémentaire (9.1 ) et la ligne à retard (10.2) du deuxième bloc (9.2) élémentaire sont égaux.
10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce 5 que on filtre au préalable les signaux droit (SD) et gauche (SG) démodulés à l'aide de filtres (18) passe haut et on applique uniquement la partie haute fréquence de ces signaux (SD, SG) en entrée du module (5) de décorrélation.
1 1. Procédé selon la revendication 10, caractérisé en ce que :
0 - on filtre la partie basse fréquence des signaux droit (SD) et gauche
(SG) démodulés,
- on retarde la partie basse fréquence ainsi filtrée d'un troisième retard (D3), et
- pour obtenir le signal de son droit optimisé (SDO) et le signal de son 5 gauche optimisé (SGo), on somme les parties basses fréquences ainsi retardées du signal de son droit (SD) et du signal de son gauche (SG) respectivement avec le signal de son droit (s-i ) et le signal de son gauche (s2) obtenus en sortie du module (5) de décorrélation à partir des parties hautes fréquence des signaux gauche et droit démodulés.
12. Procédé selon l'une des revendications 2 à 11 , caractérisé en ce que on filtre (en gain et phase) les signaux de sortie de chaque bloc élémentaire (9.1 , 9.2) au moyen de cellules de filtrage paramétriques pour modifier la perception sonore de ces signaux de sortie.
13. Procédé selon l'une des revendications 1 à 12, caractérisé en ce que pour chaque signal de son droit (SDO) et gauche (SGO) optimisé formé essentiellement d'une composante basse fréquence (SBF) inférieure à une fréquence de coupure (fc),
- on isole la partie de plus haute fréquence du signal de son optimisé
(SDO, SGO) à l'aide d'un premier filtre (36) de type passe-bande,
- on applique à la partie isolée (Si) un processeur non linéaire (38) qui crée les harmoniques haute fréquence du signal isolé pour obtenir un signal dupliqué (SD-),
- on applique un deuxième filtre passe-bande au signal dupliqué (SD-) pour former une composante haute fréquence (SHF),
- on combine (44) la composante haute fréquence (SHF) ainsi créée avec le signal de son optimisé (SDO, SGO) préalablement retardé par une cellule (42) à retard, et
- on obtient un signal optimisé augmenté (SDOA, SGOA) comportant une composante basse fréquence (SBF) et une composante haute fréquence (SHF) recrée.
14. Procédé selon la revendication 13, caractérisé en ce que les bornes supérieures et inférieures du filtre passe-bande (36) sont fonction du coefficient « alpha » de qualité de réception.
15. Récepteur de radio analogique optimisé, caractérisé en ce qu'il comporte : - un tuner apte à sélectionner un canal radio (q) donné parmi un ensemble de canaux fréquentiels (c-i , cn), et à démoduler les signaux de ce canal (q) pour obtenir un signal de son droit (SD) et un signal de son gauche (SG) démodulés,
- un module (5) de décorrélation apte à générer, à partir des signaux de son droit (SD) et du signal de son gauche (SG) démodulés, des signaux décorrélés l'un par rapport à l'autre appelés respectivement signal de son droit (SQO) et signal de son gauche (SGO) optimisés, ce module (5) de décorrélation ayant un taux de décorrélation variable,
- une cellule de calcul (6) apte à fournir un coefficient « alpha » de qualité de réception,
- le module (5) de décorrélation étant apte à adapter son taux de décorrélation en fonction du coefficient « alpha » mesuré, de sorte que plus le coefficient de qualité de réception « alpha » est petit, plus le taux de décorrélation appliqué par le module (5) de décorrélation est important, et plus le coefficient de qualité de réception « alpha » est grand, moins le taux de décorrélation appliqué par le module (5) de décorrélation est important.
16. Récepteur de radio selon la revendication 15, caractérisé en ce qu'il comporte en outre un module (35) de génération des aiguës comprenant :
- un premier filtre (36) de type passe-bande pour isoler la partie de plus haute fréquence du signal de son optimisé (SDO, SGO),
- un processeur non linéaire (38) qui crée les harmoniques haute fréquence appliqué à la partie isolée (Si) du signal pour obtenir un signal dupliqué (SD'),
- un deuxième filtre passe-bande appliqué au signal dupliqué (SD') pour former une composante haute fréquence (SHF),
- des moyens pour combiner (44) la composante haute fréquence (SHF) ainsi créée avec le signal de son optimisé (SDO, SGO) préalablement retardé par une cellule (42) à retard, de manière à obtenir un signal optimisé augmenté (SDOA, SGOA) comportant une composante basse fréquence (SBF) et une composante haute fréquence (SHF) recrée.
PCT/FR2010/052865 2009-12-23 2010-12-21 Procede d'optimisation de la reception stereo pour radio analogique et recepteur de radio analogique associe WO2011077041A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES10808913.7T ES2644441T3 (es) 2009-12-23 2010-12-21 Procedimiento de optimización de la recepción estéreo para radio analógica y receptor de radio analógica asociado
KR1020127019501A KR101785747B1 (ko) 2009-12-23 2010-12-21 아날로그 라디오를 위한 스테레오 수신을 최적화하는 방법 및 연관된 아날로그 라디오 수신기
US13/519,036 US8934635B2 (en) 2009-12-23 2010-12-21 Method for optimizing the stereo reception for an analog radio set and associated analog radio receiver
EP10808913.7A EP2517387B1 (fr) 2009-12-23 2010-12-21 Procédé d'optimisation de la réception stéréo pour radio analogique et récepteur de radio analogique associé

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0959552A FR2954640B1 (fr) 2009-12-23 2009-12-23 Procede d'optimisation de la reception stereo pour radio analogique et recepteur de radio analogique associe
FR0959552 2009-12-23

Publications (2)

Publication Number Publication Date
WO2011077041A2 true WO2011077041A2 (fr) 2011-06-30
WO2011077041A3 WO2011077041A3 (fr) 2011-08-25

Family

ID=42244936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052865 WO2011077041A2 (fr) 2009-12-23 2010-12-21 Procede d'optimisation de la reception stereo pour radio analogique et recepteur de radio analogique associe

Country Status (6)

Country Link
US (1) US8934635B2 (fr)
EP (1) EP2517387B1 (fr)
KR (1) KR101785747B1 (fr)
ES (1) ES2644441T3 (fr)
FR (1) FR2954640B1 (fr)
WO (1) WO2011077041A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9508335B2 (en) 2014-12-05 2016-11-29 Stages Pcs, Llc Active noise control and customized audio system
US9654868B2 (en) 2014-12-05 2017-05-16 Stages Llc Multi-channel multi-domain source identification and tracking
US9747367B2 (en) 2014-12-05 2017-08-29 Stages Llc Communication system for establishing and providing preferred audio
US10609475B2 (en) 2014-12-05 2020-03-31 Stages Llc Active noise control and customized audio system
US9980042B1 (en) 2016-11-18 2018-05-22 Stages Llc Beamformer direction of arrival and orientation analysis system
US9980075B1 (en) 2016-11-18 2018-05-22 Stages Llc Audio source spatialization relative to orientation sensor and output
US10945080B2 (en) 2016-11-18 2021-03-09 Stages Llc Audio analysis and processing system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037057A (en) * 1974-08-01 1977-07-19 Nippon Gakki Seizo Kabushiki Kaisha Noise-cancelling apparatus for FM stereo receiver
JP2693893B2 (ja) * 1992-03-30 1997-12-24 松下電器産業株式会社 ステレオ音声符号化方法
US7254239B2 (en) * 2001-02-09 2007-08-07 Thx Ltd. Sound system and method of sound reproduction
US20030195745A1 (en) 2001-04-02 2003-10-16 Zinser, Richard L. LPC-to-MELP transcoder
JP3992521B2 (ja) * 2001-09-26 2007-10-17 三洋電機株式会社 隣接妨害検出装置および方法、ならびにその方法を利用可能な放送受信装置
DE10228723B4 (de) * 2002-06-27 2007-04-26 Harman Becker Automotive Systems Gmbh Verfahren zur Bewertung der Empfangsqualität eines Stereorundfunkempfängers und Stereorundfunkempfänger
RU2331933C2 (ru) 2002-10-11 2008-08-20 Нокиа Корпорейшн Способы и устройства управляемого источником широкополосного кодирования речи с переменной скоростью в битах
US7394903B2 (en) * 2004-01-20 2008-07-01 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Apparatus and method for constructing a multi-channel output signal or for generating a downmix signal
CA2992125C (fr) * 2004-03-01 2018-09-25 Dolby Laboratories Licensing Corporation Reconstruction de signaux audio au moyen de techniques de decorrelation multiple et de parametres codes de maniere differentielle
KR101183859B1 (ko) * 2004-11-04 2012-09-19 코닌클리케 필립스 일렉트로닉스 엔.브이. 다중채널 오디오 신호들의 인코딩 및 디코딩
JP4512016B2 (ja) * 2005-09-16 2010-07-28 日本電信電話株式会社 ステレオ信号符号化装置、ステレオ信号符号化方法、プログラム及び記録媒体
US8064624B2 (en) * 2007-07-19 2011-11-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method and apparatus for generating a stereo signal with enhanced perceptual quality
JP4916974B2 (ja) * 2007-08-03 2012-04-18 オンセミコンダクター・トレーディング・リミテッド Fmチューナ
JP5202090B2 (ja) * 2008-05-07 2013-06-05 アルパイン株式会社 サラウンド生成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
FR2954640B1 (fr) 2012-01-20
WO2011077041A3 (fr) 2011-08-25
ES2644441T3 (es) 2017-11-29
FR2954640A1 (fr) 2011-06-24
EP2517387B1 (fr) 2017-07-26
KR101785747B1 (ko) 2017-10-16
US20120288098A1 (en) 2012-11-15
EP2517387A2 (fr) 2012-10-31
KR20120123369A (ko) 2012-11-08
US8934635B2 (en) 2015-01-13

Similar Documents

Publication Publication Date Title
EP2517387B1 (fr) Procédé d'optimisation de la réception stéréo pour radio analogique et récepteur de radio analogique associé
EP1886535B1 (fr) Procede pour produire une pluralite de signaux temporels
EP2517199A2 (fr) Procede de codage/decodage d'un flux numerique stereo ameliore et dispositif de codage/decodage associe
EP2518724B1 (fr) Combiné audio micro/casque comprenant des moyens de débruitage d'un signal de parole proche, notamment pour un système de téléphonie "mains libres"
EP0070948B1 (fr) Procédé de codage de la voix et dispositif de mise en oeuvre dudit procédé
AU2019202161B2 (en) Subband spatial and crosstalk cancellation for audio reproduction
EP2005420A1 (fr) Dispositif et procede de codage par analyse en composante principale d'un signal audio multi-canal
WO2007110520A1 (fr) Procede de synthese binaurale prenant en compte un effet de salle
EP2489206A1 (fr) Traitement de donnees sonores encodees dans un domaine de sous-bandes
US20130108096A1 (en) Enhanced dynamics processing of streaming audio by source separation and remixing
FR2930672A1 (fr) Procede et systeme de reconstitution de basses frequences dans un signal audio
EP2709380A1 (fr) Enceinte acoustique active monobloc configurable pour être utilisée isolément ou par paire, avec renforcement de l'image stéréo
EP0069673B1 (fr) Analyseur spectral à filtres communs à deux voies, notamment pour la reconnaissance vocale
FR3065137A1 (fr) Procede de spatialisation sonore
EP0052544A1 (fr) Circuit de commande de tonalité
EP2517485B1 (fr) Procede de generation de signaux de son surround gauche et droit a partir d'un signal de son stereo
EP2126905B1 (fr) Procédés et dispositifs d'encodage et décodage de signaux audio, signal audio encodé
FR2566658A1 (fr) Prothese auditive multivoie
FR2564660A1 (fr) Filtre numerique resonant
CA3163814A1 (fr) Procede et dispositif associe pour transformer des caracteristiques d'un signal audio
WO2019020437A1 (fr) Procédé et système de traitement d'un signal audio incluant un encodage au format ambisonique
FR2996043A1 (fr) Procede et dispositif pour separer des signaux par filtrage spatial a variance minimum sous contrainte lineaire
FR2990580A1 (fr) Procedes et dispositifs de transmission et de reception d'un signal large bande, programme d'ordinateur correspondant.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13519036

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010808913

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010808913

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127019501

Country of ref document: KR

Kind code of ref document: A