WO2011075981A1 - 油电混合动力汽车电力供应系统 - Google Patents

油电混合动力汽车电力供应系统 Download PDF

Info

Publication number
WO2011075981A1
WO2011075981A1 PCT/CN2010/073923 CN2010073923W WO2011075981A1 WO 2011075981 A1 WO2011075981 A1 WO 2011075981A1 CN 2010073923 W CN2010073923 W CN 2010073923W WO 2011075981 A1 WO2011075981 A1 WO 2011075981A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
resistor
power supply
sampling
Prior art date
Application number
PCT/CN2010/073923
Other languages
English (en)
French (fr)
Inventor
方建华
陈冠豪
Original Assignee
上海樟树电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海樟树电子有限公司 filed Critical 上海樟树电子有限公司
Priority to US13/111,691 priority Critical patent/US8890356B2/en
Publication of WO2011075981A1 publication Critical patent/WO2011075981A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/16DC brushless machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the present invention relates to a power supply system, and more particularly to a power supply system for a hybrid electric vehicle.
  • BACKGROUND OF THE INVENTION When driving in a city, due to red light and traffic congestion, the stop-and-go condition causes about 30% of the energy of the internal combustion engine locomotive to be converted into heat during braking, and the energy cost is gradually reduced. Growth, on the other hand, the call for environmental protection is rising, so it is imperative to store the wasted energy.
  • the hybrid electric vehicle officially uses the method of increasing the energy storage system to recover the braking energy, while climbing or accelerating. When the auxiliary engine is driven.
  • Hybrid cars drive wheels with engines and electric motors.
  • the car is equipped with a drive battery that drives the power of the motor.
  • the drive battery is charged by a generator, which is driven by the engine or, as a brake regeneration, is driven by the inertia of the vehicle when it brakes.
  • the advantage of the hybrid car is that when the vehicle starts to stop, it is only driven by the generator. If the engine does not reach a certain speed, the engine will not work. Therefore, the engine can be kept in the best working condition, the power is good, and the emission is very low. And the source of electrical energy is the engine. Just add fuel.
  • the main object of the present invention is to provide a power supply system for a hybrid electric vehicle, which can reduce the number of batteries by using the inverter principle while ensuring the power supply effect. Cost, reduce charging time during loss of power, operation in the process of recycling, and improve production quality.
  • a power supply system for a hybrid electric vehicle of the present invention comprises: a battery pack for generating a DC voltage; an inverter power module, an input terminal connected to the battery pack, and an output terminal connected to the oil
  • a DC motor of an electric hybrid vehicle for converting the DC voltage to a desired DC high voltage, the required DC high voltage driving at least the DC motor.
  • the inverter power module at least includes: a voltage stabilizing module connected to the anode of the battery pack for regulating the DC voltage to provide a stable DC low voltage; and a high frequency oscillation circuit having one end connected to the voltage regulator module
  • the DC low voltage power supply is used for outputting a high frequency small signal, and the other end is connected to a high frequency power amplifying circuit; the high frequency power amplifying circuit receives the high frequency small signal for amplification, and generates a high power high frequency signal; a frequency transformer, receiving the high-power high-frequency signal and boosting it into a high voltage; a rectifier circuit connected across the secondary of the high-frequency transformer, the output end of which is connected to the hybrid electric power
  • the DC motor of the automobile the rectifier circuit rectifies the high voltage and outputs the required DC high voltage to drive the DC motor.
  • the rectifier circuit is a bridge rectifier circuit composed of four rectifier diodes.
  • the inverter power module at least further includes: a reference generating circuit, one end of which is connected to the voltage stabilizing module, and the other end is connected to a negative pole of the battery pack for providing a reference point reference voltage of the decision point building;
  • the sampling decision circuit includes the first a sampling circuit, a second sampling circuit and a decision circuit group, the first sampling circuit is connected between the positive and negative electrodes of the battery pack, and is used for sampling the output voltage of the battery pack to obtain a first sampling value, and the The first sampling value is sent to the decision circuit group;
  • the second sampling circuit is connected to the output end of the rectifier circuit for sampling the required DC high voltage output by the rectifier circuit, and sending the sampled voltage obtained by the sampling To the decision circuit group;
  • the oscillation control circuit is connected to the decision circuit group and the high frequency oscillation circuit, receives the output generated by the decision circuit group, and controls the operation of the high frequency oscillation circuit.
  • the reference generating circuit comprises an overvoltage protection circuit, an undervoltage protection circuit, a short circuit protection circuit, an overcurrent protection circuit and an overtemperature protection circuit which are connected in parallel with each other, and the overvoltage protection circuit is composed of a second resistor and a third resistor connected in series.
  • the undervoltage protection circuit is composed of a fourth resistor and a fifth resistor connected in series for generating an undervoltage protection reference voltage;
  • the short circuit protection circuit is connected by the sixth resistor and the seventh resistor in series The component is configured to generate a short circuit protection reference voltage;
  • the overcurrent protection circuit is composed of an eighth resistor and a ninth resistor connected in series, and is configured to generate an overcurrent protection reference voltage;
  • the overtemperature protection circuit is connected to the tenth resistor in series
  • the eleventh resistor is configured to generate an overtemperature protection reference voltage.
  • the first sampling circuit is connected in series between the positive and negative electrodes of the battery pack by the heat-sensitive device and the first resistor, and the first sampled value obtained by sampling the voltage-divided network formed by the first resistor is associated with the heat
  • the second sampling circuit comprises a voltage dividing network composed of a twelfth resistor and a thirteenth resistor connected in series, and the voltage dividing network performs sampling of the required DC high voltage to obtain a second sampling value.
  • the second sampling circuit further includes a fourteenth resistor connected in series to the ground of the DC motor, and the DC motor generates a third sample value on the fourteenth resistor when the DC motor is in operation.
  • the voltage regulator module further includes a voltage stabilization circuit, a filter circuit, and a surge absorbing circuit.
  • the battery pack contains no more than 32 batteries.
  • the battery components are two groups, and the two groups are connected by a circuit breaker for preventing the battery from being short-circuited and then calculating the battery.
  • the battery pack includes 32 batteries, each group is 16 batteries, and each battery is used between The copper tabs are connected, and the required DC high voltage is a DC high voltage of 320V.
  • the electric power supply system of the hybrid electric vehicle of the present invention reduces the direct current low voltage of the battery pack to the high DC voltage required for the somewhat powered automobile by using the inverter power supply module, and reduces the lithium iron phosphate.
  • the number of batteries so as to have the effect of power supply, because the number of batteries used in the present invention is reduced, the cost and the weight of the product are reduced, and the connection between the batteries is reduced and the unreliable factors are reduced, so that the connection is more reliable.
  • the process operation is also relatively simple; in addition, due to the reduction of the number of batteries, the charging time at the time of depletion can be reduced, and it is found through experiments that the temperature of the present invention in the full load operation is only 40 degrees, the conversion efficiency is as high as 95% or more, and the present invention
  • the present invention By adopting the reference generation circuit oscillation control circuit and the sampling decision circuit, the present invention has the technical effects of overvoltage protection, undervoltage protection, overtemperature protection, overload protection, and short circuit protection.
  • DRAWINGS 1 is a detailed structural view of a power supply system for a hybrid electric vehicle of the present invention.
  • FIG. 2 is a detailed circuit diagram of a power supply system for a hybrid electric vehicle according to the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to specific embodiments and the accompanying drawings. Other advantages and effects of the present invention will be readily apparent to those skilled in the art from this disclosure. The present invention may be embodied or applied in various other specific embodiments, and various modifications and changes may be made without departing from the spirit and scope of the invention.
  • 1 is a single-frame view of a power supply system for a hybrid electric vehicle of the present invention. As shown in FIG.
  • a power supply system for a hybrid electric vehicle of the present invention includes a battery pack 10 and an inverter power module 11 , wherein the battery pack 10 includes a plurality of large-capacity batteries, specifically, a phosphoric acid having a voltage of 1.5V.
  • the iron-lithium battery, the number of batteries is preferably not more than 32 knots, mainly used for storing electric energy, and supplies power to the electric motor of the hybrid electric vehicle when needed; the inverter power module 11 is connected with the battery pack 10, and its output terminal is connected.
  • the motor of the hybrid electric vehicle ie, the DC motor M in FIG.
  • the inverter power module 11 is mainly used to convert the DC voltage generated by the battery pack 10 into a DC high voltage output, that is, the battery pack 10, the inverter power module 11 is powered, and the DC low voltage generated by the battery pack 10 is converted into a 320V DC high voltage to drive the motor of the hybrid electric vehicle.
  • 2 is a detailed circuit diagram of a power supply system for a hybrid electric vehicle of the present invention.
  • the inverter power module 11 of the present invention includes at least a voltage stabilizing module 110, a high frequency oscillating circuit 111, a high frequency power amplifying circuit 112, a high frequency transformer 113, and a rectifying circuit 114.
  • the voltage stabilizing module 1 1 0 is connected.
  • the positive pole of the battery pack 10 is mainly used to regulate the DC voltage Vba t generated by the battery pack 10 to provide a stable DC low voltage to each component, and to filter out strong interference generated by the generator, the motor, and the like as much as possible.
  • the voltage regulator module 1 1 0 can be composed of a voltage stabilizing circuit, a filter circuit and a surge absorbing circuit, and its output is VL, and the typical value is 1 5 V.
  • the high frequency oscillating circuit 1 1 1 is used for generating the high frequency small signal of 20 ⁇ -1 ⁇ required by the inverter power supply module of the present invention, which is connected with the voltage stabilizing module 1 10 0, and is outputted by the voltage stabilizing module 1 10 0 DC low voltage VL ,
  • the output of the high-frequency oscillating circuit 111 is sent to the high-frequency power amplifying circuit 112 to generate a high-power high-frequency signal, and the high-frequency transformer 113 is pushed to perform a boosting operation, and the high-frequency power signal boosted by the high-frequency transformer 113 is sent.
  • the rectifier circuit 114 is a bridge rectifier circuit composed of four rectifier diodes, which is connected across the high frequency transformer 113, specifically, the common node of the rectifier diode D1 anode and the rectifier diode D4 cathode are connected in series. Connected to one end of the secondary of the high-frequency transformer 113, a common node of the rectifier diode D2 anode and the rectifier diode D3 is connected in series to the other end of the high-frequency transformer 113, and the boosted high-frequency high-power signal is rectified.
  • the rectified circuit 116 outputs the DC high voltage required for the hybrid electric vehicle.
  • the required DC high voltage is 320 V DC high voltage
  • the 320 V DC high voltage is sent to the DC motor M, DC motor. M rotation, driving the hybrid electric vehicle through the mechanical transmission assembly, will not be described in detail here.
  • the present invention relates to a hybrid electric power plant.
  • the inverter power supply module 11 of the automotive power supply system further includes a reference generation circuit 115 oscillation control circuit 116 and a sampling decision circuit.
  • the reference generation circuit 115 is operative to generate a reference reference voltage for the decision circuit group.
  • the reference generating circuit 115 includes an overvoltage protection circuit 1150, an undervoltage protection circuit 1151, a short circuit protection circuit 1152, an overcurrent protection circuit 1153, and an over temperature protection circuit 1154 connected in parallel with each other, and is connected to the output terminal of the voltage regulator module 110 and the battery. Between the negative electrodes of group 10.
  • the overvoltage protection circuit 1150 is composed of a second resistor R2 and a third resistor R3 connected in series for generating an overvoltage protection reference voltage REFOT, and the overvoltage protection reference voltage REFov is sent to the fifth decision circuit U5 of the decision circuit group;
  • the undervoltage protection circuit 1151 is composed of a fourth resistor R4 and a fifth resistor R5 connected in series for generating an undervoltage protection reference voltage REFLV, and the undervoltage protection reference voltage REFLV is sent to the fourth decision circuit U4 of the decision circuit group;
  • the protection circuit 1152 is composed of a sixth resistor R6 and a seventh resistor R7 connected in series for generating a short circuit protection reference voltage REFs, which is sent to the third decision circuit U3 of the decision circuit group; the overcurrent protection circuit 1153
  • the eighth resistor R8 and the ninth resistor R9 are connected in series for generating an overcurrent protection reference voltage REFi, and the overcurrent protection reference voltage REFi is sent to the second decision circuit U
  • a sampling decision circuit is used to sample the battery and output conditions and compare to the reference voltage.
  • the sampling judging circuit includes a first sampling circuit, a second sampling circuit, and a decision circuit group, wherein the first sampling circuit composed of the thermal device RT and the first resistor R1 in series is connected between the positive and negative electrodes of the battery pack 10, and the heat is The sensitive device RT and the first resistor R1 are used to detect the temperature of the battery pack 10, and the battery temperature rises to increase the RT resistance value, and the first sampling value Vt of the sampling voltage of the voltage dividing network composed of the RT and the first resistor R1 changes accordingly.
  • the first sampled value Vt is sent to the first decision circuit U1 of the decision circuit group, which is compared with the over-temperature protection reference voltage REFt, and it is noted that the heat-sensitive device RT needs to be sufficiently close to the battery pack of the hybrid electric-powered vehicle, and Cannot be heated by a heating component such as a petroleum engine; the twelfth resistor R12 and the thirteenth resistor R13 connected in series are connected to the 320V DC high voltage output terminal of the inverter power module 11, and the divided voltage network thereof completes the high voltage output of the 320V DC Sampling, obtaining a second sample value Vv, which is sent to the fourth decision circuit U4 and the fifth decision circuit U5 of the decision circuit group, the second sample value Vv and the overvoltage respectively
  • the protection reference voltage REFov and the undervoltage protection reference voltage REFLV are compared; a small resistance fourteenth resistor R14 is connected in series to the ground terminal of the DC motor M, and the DC motor M operates to generate a third sample
  • the small voltage VI is filtered and sent to the second decision circuit U2 and the third decision circuit U3 of the decision circuit group for comparison with the overcurrent protection reference voltage REFi and the short circuit protection reference voltage REFs.
  • the oscillating control circuit 116 receives the output generated by the decision circuit group, and controls the operation of the oscillating circuit according to the information received by the oscillating circuit, such as illuminating the relevant indicator light "3 ⁇ 4" or directly closing the DC inverter circuit to protect the hybrid electric power of the present invention.
  • the automobile power supply system works normally.
  • the high-frequency oscillating circuit 113 is also connected to the oscillating control circuit 112, which is powered by the output voltage VL of the voltage stabilizing module 110, and is oscillated.
  • the direct or delayed control of the control circuit 116 The output high frequency small signal of the high frequency oscillation circuit 111 controlled by the oscillation control circuit 116 is sent to the high frequency power amplification circuit 114 to generate a high power high frequency signal to drive the high frequency.
  • the transformer 115 performs boosting operation, and the boosted high-frequency high-power signal is sent to the rectifier circuit 116, and after rectification by the rectifier circuit 116, the output is 320V DC high voltage, and the 320V DC high voltage is sent to the DC motor M, the DC motor M Rotating, driving the hybrid electric vehicle by mechanical transmission.
  • the battery pack 10 includes 32 sections and 1.5v. Iron phosphate lithium battery, which is Divided into two groups, each group has 16 large-capacity batteries, the total voltage of the battery pack 10 is 48V, the two groups are connected by circuit breaker F1, the total voltage of the battery pack is 48V, the circuit breaker F1 can be used to prevent the battery from being short-circuited.
  • the batteries of the battery pack 10 of the preferred embodiment of the present invention are connected by copper tabs, and the battery pack 10 and the inverter power module 11 are connected by wires.
  • the power supply system for the hybrid electric vehicle of the present invention reduces the lithium iron phosphate by using the inverter power module to increase the DC low voltage of the battery pack to the DC high voltage required by the automobile, while ensuring that the power supply has an effect.
  • the number of batteries because the number of batteries used in the battery pack of the present invention is significantly reduced, for example, the battery is reduced from the original 100 knots to 32 knots or 16 knots, reducing the cost by more than 60%; the reduction in the number of batteries also reduces the connection between the batteries At the same time, it also reduces the unreliable Yisu, making the connection more reliable; the operation of the operation has been reduced from the original more than 100 steps to 20 steps, and the operation cylinder is a lot; the experiment found that the temperature of the invention in the full load is only 40 Degree, the conversion efficiency is up to 95% or more, and the invention also adopts a reference generation circuit, an oscillation control circuit and a sampling decision circuit, so that the invention has the technologies of overvoltage protection, undervoltage protection, overtemperature protection, overload protection and short circuit protection. efficacy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

油电混合动力汽车电力供应系统 技术领域 本发明关于一种电力供应系统, 特别是关于一种用于油电混合动力汽车 的电力供应系统。 背景技术 城市行车时, 由于红灯和交通拥挤, 走走停停的工况使内燃机的机车大 约有 30 %的能量在制动的时候转换为热量消失在环境中, 而一方面能源成本 曰渐增长, 另一方面环境保护的呼声节节高涨, 故把浪费的能量存储起来势 在必行, 油电混合动力汽车正式利用增加能量存储系统的方式回收制动能量, 同时能在爬坡或加速的时候辅助内燃机驱动。
HEV ( Hybird-Electric Vchicel ) 一混合动力装置。 混合动力型汽车以引擎 和电动机驱动车轮行驶。 汽车内装有驱动电动机的电源的驱动电池。 此驱动 电池由发电机进行充电, 发电机则由引擎驱动, 或者作为制动再生作用, 由 汽车刹车时的惯性来驱动。 混合动力型汽车优点在于车辆启动停止时, 只靠 发电机带动, 不达到一定速度, 发动机就不工作, 因此, 便能使发动机一直 保持在最佳工况状态, 动力性好, 排放量很低, 而且电能的来源都是发动机。 只需加油即可, 对于油电混合动力型汽车所需的电源装置, 目前市场上有的类似产品是 将磷酸铁锂电池串联而成, 以达到油电混合动力型汽车要求的电压, 但目前 却普遍存在以下三个问题: 一、 磷酸铁锂电池的成本高且 4艮重, 例如, 现在 的 320V系统需要电池多达 100节; 二、 由于所需磷酸铁锂电池太多, 亏电时 充电时间长; 三、 组装时过于繁瑣, 连接的数量多, 存在的不安全因素多, 可靠性存在隐患, 生产过程品质难以控制。 综上所述, 遏制先前技术采用磷酸铁锂电池的优点混合动力汽车电力供 应系统由于所需电池过多, 存在亏电时充电时间长, 组装繁瑣, 成本高且重 以及由于连接数量多容易造成安全隐患等问题, 因此实有必要提出改进的技 术手段, 来解决此一问题。 发明内容 为克服上述现有技术的种种缺点, 本发明的主要目的在于提供一种油电 混合动力汽车电力供应系统, 以利用逆变原理在保证供电效果的情况下减少 电池的数量, 从而达到降低成本、 减少亏电时充电时间、 筒化工序操作、 提 高生产品质的目的。 为达上述及其它目的, 本发明一种油电混合动力汽车电力供应系统, 包 含: 电池组, 用于产生一直流电压; 逆变电源模块, 输入端连接与该电池组, 输出端连接该油电混合动力汽 车的直流电机, 用于将该直流电压转换为所需的直流高压, 该所需的直流高 压至少能驱动该直流电机。 该逆变电源模块至少包括: 稳压模块, 连接与该电池组的正极, 用于对该直流电压进行稳压以提供 一稳定的直流低压; 高频振荡电路, 其一端连接于该稳压模块, 由该直流低压供电, 用于输 出高频小信号, 另一端连接于高频功率放大电路; 高频功率放大电路, 接收该高频小信号进行放大, 并产生高功率的高频 信号; 高频变压器, 接收该高功率的高频信号并对其进行升压成一高压; 整流电路, 跨接于该高频变压器的次级, 其输出端连接该油电混合动力 汽车的直流电机, 该整流电路对该高压进行整流后输出该所需的直流高压以 驱动该直流电机。 该整流电路为由四整流二极管组成的桥式整流电路。 该逆变电源模块至少还包括: 基准产生电路, 其一端连接于该稳压模块, 另一端连接于该电池组的负 极, 用以提供判决点楼组参考基准电压; 取样判决电路, 包括第一取样电路, 第二取样电路以及判决电路组, 该 第一取样电路连接于该电池组的正负极之间, 用于对该电池组的输出电压进 行采样, 获得第一采样值, 并将该第一采样值送至该判决电路组; 该第二取 样电路与该整流电路的输出端连接, 用以对该整流电路输出的该所需的直流 高压进行采样, 并将采样获得的采样电压送至该判决电路组; 振荡控制电路, 与该判决电路组及该高频振荡电路连接, 接收判决电路 组产生的输出, 并控制该高频振荡电路的工作情况。 该基准产生电路包含相互并联的过压保护电路、 欠压保护电路、 短路保 护电路、 过流保护电路以及过温保护电路, 该过压保护电路由串联的第二电 阻及第三电阻组成, 用于产生一过压保护基准电压; 该欠压保护电路由串联 的第四电阻及第五电阻组成, 用于产生一欠压保护基准电压; 该短路保护电 路由串联的第六电阻及第七电阻组成, 用于产生一短路保护基准电压; 该过 流保护电路由串联的第八电阻及第九电阻组成, 用于产生一过流保护基准电 压; 该过温保护电路由串联的第十电阻及第十一电阻组成, 用于产生一过温 保护基准电压。 该第一取样电路由热敏器件与第一电阻串联于该电池组的正负极之间, 该热敏器件于该第一电阻组成的分压网络采样获得的该第一采样值随该热敏 器件的变化而变化; 该第二取样电路包含串联的第十二电阻与第十三电阻构 成的分压网络, 该分压网络完成对该所需的直流高压采样, 获得第二采样值。 该第二取样电路还包括将一第十四电阻串联在该直流电机的接地端, 该 直流电机工作时在该第十四电阻上产生一第三采样值。 该过压保护基准电压与该第二采样值被送至该判决电路组的第五判决电 路进行比较; 该欠压保护基准电压与该第二采样值被送至该判决电路组的第 四判决电路进行比较; 该短路保护基准电压与该第三采样值被送至该判决电 路组的第三判决电路进行比较; 该过流保护基准电压与该第三采样值被送至 该判决电路组的第二判决电路进行比较; 该过温保护基准电压与该第一采样 值被送至该判决电路组的第一判决电路进行比较。 该稳压模块还包括稳压电路、 滤波电路以及浪涌吸收电路。 该电池组包含的电池数量之多不超过 32节。 该电池组分为两组, 该两组之间用断路器连接, 用于防止电池被短路后 算坏电池 该电池组公包括 32节电池, 每组为 16节电池, 每节电池之间用铜连接 片连接, 该所需的直流高压为 320V的直流高压。 与现有技术相比, 本发明一种油电混合动力汽车电力供应系统通过采用 逆变电源模块将电池组的直流电低电压升高到有点动力汽车所需的直流高电 压, 减少了磷酸铁锂电池的数量, 从而起到供电应有的效果, 由于本发明电 池组采用的数量减少, 降低了成本与产品的重量, 同时减少了电池之间连接 并减少了不可靠因素, 使得连接更可靠, 工序操作也相对筒单; 另外, 由于 电池数量的减少, 可以使得亏电时充电的时间减少, 通过试验发现本发明在 满载工作中的温度只有 40度, 转换效率高达 95 %以上, 并且本发明通过采用 基准产生电路振荡控制电路以及取样判决电路, 使得本发明具有过压保护、 欠压保护、 过温保护、 过载保护以及短路保护的技术功效。 附图说明 图 1为本发明油电混合动力汽车电力供应系统的筒单构架图 图 2为本发明油电混合动力汽车电力供应系统的细部电路图 具体实施方式 以下通过特定的具体实例并结合附图说明本发明的实施方式, 本领域技 术人员可由本说明书所揭示的内容轻易地了解本发明的其它优点与功效。 本 发明亦可通过其它不同的具体实例加以施行或应用, 本说明书中的各项细节 亦可基于不同观点与应用, 在不背离本发明的精神下进行各种修饰与变更。 图 1为本发明一种油电混合动力汽车电力供应系统的筒单构架图。如图 1 所示, 本发明一种油电混合动力汽车电力供应系统包括电池组 10以及逆变电 源模块 11 , 其中, 电池组 10包含若干节大容量电池, 具体可以为电压为 1.5V 的磷酸铁锂电池, 电池数量最好不超过 32节, 主要用于储存电能, 并在需要 时给油电混合动力汽车的电动机供电; 逆变电源模组 11 , 与电池组 10连接, 其输出端接于该油电混合动力汽车的马达(即图 1中的直流电机 M ), 该逆变 电源模组 11主要用于将该电池组 10产生的直流电压转换为直流高压输出, 即由该电池组 10给该逆变电源模组 11供电, 讲该电池组 10产生的直流低压 转换成 320V直流高电压以驱动该油电混合动力汽车的马达。 图 2 为本发明一种油电混合动力汽车电力供应系统的细部电路图。 请参 照图 2,本发明的逆变电源模块 11至少包含稳压模块 110、高频振荡电路 111、 高频功率放大电路 112、 高频变压器 113、 以及整流电路 114. 稳压模块 1 1 0连接与电池组 1 0的正极, 主要用于将电池组 1 0产生的直 流电压 Vba t进行稳压, 以给各个组成部分提供稳定的直流低压, 并尽量滤除 发电机、 电动机等产生的强干扰, 稳压模块 1 1 0可由稳压电路、滤波电路以及 浪涌吸收电路组成, 其输出为 VL, 典型值为 1 5 V。 高频振荡电路 1 1 1用于产生本发明逆变电源模块所需的 20ΚΗζ-1ΜΗζ的高 频小信号, 其与稳压模块 1 1 0连接, 由稳压模块 1 1 0输出直流低压 VL供电, 高频振荡电路 111的输出被送至高频功率放大电路 112,产生高功率的高频信 号, 推动高频变压器 113进行升压工作, 经高频变压器 113升压后的高频功 率信号被送至由整流电路 114,整流电路 114为一由四整流二极管组成的桥式 整流电路, 其跨接于该高频变压器 113, 具体来说, 整流二极管 D1阳极与整 流二极管 D4阴极串接的公共节点连接与该高频变压器 113次级的一端, 整流 二极管 D2阳极与整流二极管 D3阴极串接的公共节点连接于该高频变压器 113 次级的另一端, 升压后的高频高功率信号经整流电路 116 的整流后输出该油 电混合动力型汽车所需的直流高压, 本发明较佳实施例中该所需的直流高压 为 320V直流高压, 该 320V直流高压被送至直流电机 M, 直流电机 M转动, 通 过机械传动组建驱使油电混合动力型汽车进行动作, 在此不予详述。 较佳的, 为使本发明一种油电混合动力汽车电力供应系统具有过压保护 欠压保护过温保护过载保护以及短路保护等功能, 请继续参照图 2, 本发明一 种油电混合动力汽车电力供应系统的逆变电源模块 11 还包括基准产生电路 115振荡控制电路 116以及取样判决电路。 基准产生电路 115用于产生判决电路组的参考基准电压。 基准产生电路 115包括相互并联的过压保护电路 1150、 欠压保护电路 1151、 短路保护电路 1152、过流保护电路 1153、 以及过温保护电路 1154,并连接于该稳压模块 110 输出端与电池组 10的负极之间。 其中过压保护电路 1150由串联的第二电阻 R2及第三电阻 R3组成,用于产生过压保护基准电压 REFOT,该过压保护基准电 压 REFov被送至判决电路组的第五判决电路 U5; 欠压保护电路 1151由串联的 第四电阻 R4及第五电阻 R5组成,用于产生欠压保护基准电压 REFLV,该欠压保 护基准电压 REFLV被送至判决电路组的第四判决电路 U4; 短路保护电路 1152 由串联的第六电阻 R6及第七电阻 R7组成,用于产生短路保护基准电压 REFs, 该短路保护基准电压 REFs被送至判决电路组的第三判决电路 U3; 过流保护电 路 1153由串联的第八电阻 R8及第九电阻 R9组成, 用于产生过流保护基准电 压 REFi,该过流保护基准电压 REFi被送至判决电路组的第二判决电路 U2; 过 温保护电路 1154串联的第十电阻 R10及第十一电阻 R11组成, 用于产生过温 保护基准电压 REFt,该过流保护基准电压 REFt被送至判决电路组的第一判决 电路 U1. 取样判决电路用于对电池和输出状况进行采样, 并和基准电压进行比较。 取样判断电路包含第一取样电路、 第二取样电路以及判决电路组, 其中由热 敏器件 RT与第一电阻 R 1串联组成的第一取样电路连接于电池组 10的正负极 之间, 热敏器件 RT与第一电阻 R1用于检测电池组 10的温度, 电池温度升高 使得 RT电阻值上升, RT与第一电阻 R1组成的分压网络的采样电压第一采样 值 Vt随之变化, 第一采样值 Vt被送至判决电路组的第一判决电路 U1, 其与 过温保护基准电压 REFt进行比较,注意热敏器件 RT安装时需要充分接近油电 混合的动力汽车的电池组, 且不能被石油发动机等发热部件加热; 由串联的 第十二电阻 R12与第十三电阻 R13连接于逆变电源模块 11的 320V直流高压 输出端, 其组成的分压网络完成对该 320V直流高压输出的采样, 获得第二采 样值 Vv,该第二采样值 Vv被送至判决电路组的第四判决电路 U4以及第五判决 电路 U5,该第二采样值 Vv分别与过压保护基准电压 REFov以及欠压保护基准电 压 REFLV进行比较; 一小电阻第十四电阻 R14串联在直流电机 M的接地端, 直 流电机 M工作时在第十四电阻 R14上产生一个作为第三采样值的小电压 VI, 该小电压经过滤后被送至判决电路组的第二判决电路 U2以及第三判决电路 U3 , 与过流保护基准电压 REFi以及短路保护基准电压 REFs进行比较。 振荡控制电路 116接收判决电路组产生的输出, 根据其收到的信息控制 振荡电路的工作情况, 如点亮相关指示灯 "¾警或直接关闭直流逆变电路, 以 保护本发明油电混合动力汽车电力供应系统正常工作。 当然, 为保证不同情况下高频振荡电路均可靠工作, 该高频振荡电路 113 还与振荡控制电路 112连接, 其由稳压模块 110输出电压 VL供电, 并受振荡 控制电路 116的直接或延时控制。 经震荡控制电路 116控制后的高频振荡电 路 111的输出高频小信号被送至高频功率放大电路 114,产生高功率的高频信 号, 推动高频变压器 115 进行升压工作, 升压后的高频高功率信号被送至由 整流电路 116, 经过整流电路 116的整流后输出 320V直流高压, 该 320V直流 高压被送至直流电机 M, 直流电机 M转动, 通过机械传动组建驱使油电混合汽 车动作。 本发明较佳实例中, 电池组 10公包括 32节 1.5v的磷酸铁锂电池, 其被 分为两组, 每组有 16节大容量电池, 电池组 10总电压为 48V , 两组之间用断 路器 F1连接, 电池组总电压为 48V , 该断路器 F1可以用于防止电池被短路后 算坏电池。 本发明较佳实例的电池组 10的电池之间用铜连接片连接, 电池组 10与逆变电源模块 11之间用导线连接。 本发明的油电混合动力汽车电力供应系统通过采用逆变电源模块将电池 组的直流低电压身高到汽车所需要的直流高电压, 在保证起到供电应有效果 的情况下减少了磷酸铁锂电池的数量, 由于本发明电池组采用的电池数量明 显减少,如, 电池由原来的 1 00节减少到 32节或 16节,减少成本 60 %以上; 电池数量的减少还减少了电池之间连接, 同时也减少了不可靠伊苏, 使得连 接更可靠; 工序操作由原来的 1 00多个步骤减少到了 20个步骤, 操作筒单了 很多;通过试验发现本发明在满载工作中的温度只有 40度,转换效率高达 95 % 以上,而且本发明还采用了基准产生电路、振荡控制电路以及取样判决电路, 使得本发明具有过压保护、 欠压保护、 过温保护、 过载保护以及短路保护的 技术功效。
上述实例仅例示说明本发明的原理及其功效, 而非用于限制发明。 任何 本领域技术人员均可在不违背本发明的精神及范畴下, 对上述实施例进行修 饰与改变。 因此, 本发明的权利保护范围, 应如权利要求书所列。

Claims

权 利 要求 书
1、 一种油电混合动力汽车电力供应系统, 至少包含: 电池组, 用于产生一直流电压; 逆变电源模块, 输入端连接于该电池组, 输出端连接该油电混合动力汽车 的直流电机, 用于将该直流电压转换为该油电混合动力汽车所需的直流高压, 该所需的直流高压至少能驱动该直流电机。
2、 如权利要求 1 所述的油电混合动力汽车电力供应系统, 其特征在于, 该逆变电源模块至少包括: 稳压模块, 连接与该电池组的正极, 用于对该直流电压进行稳压以提供一 稳定的直流低压; 高频振荡电路, 其一端连接于该稳压模块, 由该直流低压供电, 用于输出 高频小信号, 另一端连接于高频功率放大电路; 高频功率放大电路, 接收该高频小信号进行放大, 并产生高功率的高频信 号; 高频变压器, 接收该高功率的高频信号并对其进行升压成一高压; 整流电路, 跨接于该高频变压器的次级, 其输出端连接该油电混合动力汽 车的直流电机, 该整流电路对该高压进行整流后输出该所需的直流高压以驱 动该直流电机。
3、 如权利要求 2所述的油电混合动力汽车电力供应系统, 其特征在于, 该整流电路为由四整流二极管组成的桥式整流电路。
4、 如权利要求 3 所属的油电混合动力汽车电力供应系统, 其特征在于, 该逆变电源模块至少还包括: 基准产生电路,其一端连接与该稳压模块,另一端连接于该电池组的负极, 用以提供判决电路组参考基准电压: 取样判决电路, 包括第一取样电路, 第二取样电路以及判决电路组, 该第 一取样电路连接与该电池组的正负极之间, 用于对该电池组的输出电压进行 采样, 获得第一采样值, 并将该第一采样值送至该判决电路组; 该第二取样 电路与该整流电路的输出端连接, 用以对该整流电路输出的该所需的直流高 压进行采样, 并将采样获得的采样电压送至该判决电路组; 振荡控制电路, 于该判决电路组及高频振荡电路连接, 接收判决电路组产 生的输出, 并控制该高频振荡电路的工作情况
5、 如权力要求 4所述的油电混合动力汽车电力供应系统, 其特征在于, 该基准产生电路包含相互并联的过压保护电路、 欠压保护电路、 短路保护电 路、 过流保护电路及过温保护电路, 该过压保护电路由串联的第二电阻及第 三电阻组成, 用于产生一过压保护基准电压; 该欠压保护电路由串联的第四 电阻及第五电阻组成, 用于产生一欠压保护基准电压; 该短路保护电路由串 联的第六电阻及第七电阻组成, 用于产生一短路保护基准电压; 该过流保护 电路由串联的第八电阻及第九电阻组成, 用于产生一过流保护基准电压; 该 过温保护电路由串联的第十电阻及第十一电阻组成, 用于产生一过温保护基 准电压。
6、 如权利要求 5 所述的油电混合动力汽车电力供应系统, 其特征在于, 该第一取样电路由热敏器件与第一电阻串联于该电池组的正负极之间, 该热 敏器件于该第一电阻组成的分压网络采样获得的该第一采样值随该热敏器件 的变化而变化; 该第二取样电路包含串联的第十二电阻与第十三电阻构成的 分压网络, 该分压网络完成对该所需的直流高压采样, 获得第二采样值。
7、 如权利要求 6所述的油电混合动力汽车电力供应系统, 其特征在于, 该第二取样电路还包括将一第十四电阻串联在该直流电机的接地端, 该直流 电机工作时在该第十四电阻上产生一第三采样值。
8、 如权利要求 7所述的油电混合动力汽车电力供应系统, 其特征在于, 该过压保护基准电压与该第二采样值被送至该判决电路组的第五判决电路进 行比较; 该欠压保护基准电压与该第二采样值被送至该判决电路组的第四判 决电路进行比较; 该短路保护基准电压与该第三采样值被送至该判决电路组 的第三判决电路进行比较; 该过流保护基准电压与该第三采样值被送至该判 决电路组的第二判决电路进行比较; 该过温保护基准电压与该第一采样值被 送至该判决电路组的第一判决电路进行比较。
9、 如权利要求 8所述的油电混合动力汽车电力供应系统, 其特征在于, 该稳压模块还包括稳压电路、 滤波电路以及浪涌吸收电路。
10、 如权利要求 9所述的油电混合动力汽车电力供应系统, 其特征在于, 该电池组包含的电池数量之多不超过 32节。
11、 如权利要求 10所述的油电混合动力汽车电力供应系统, 其特征在于, 该电池组分为两组, 该两组之间用断路器连接, 用于防止电池被短路后算坏 电池。
12、 如权利要求 11所述的油电混合动力汽车电力供应系统, 其特征在于, 该电池组公包括 32节电池, 每组为 16节电池, 每节电池之间用铜连接片连 接, 该所需的直流高压为 320V的直流高压。
PCT/CN2010/073923 2009-12-24 2010-06-13 油电混合动力汽车电力供应系统 WO2011075981A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/111,691 US8890356B2 (en) 2009-12-24 2011-05-19 Power conversion installment kit for plug-in hybrid electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910215673.8 2009-12-24
CN2009102156738A CN102025171A (zh) 2009-12-24 2009-12-24 油电混合动力汽车电力供应系统

Publications (1)

Publication Number Publication Date
WO2011075981A1 true WO2011075981A1 (zh) 2011-06-30

Family

ID=43866162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073923 WO2011075981A1 (zh) 2009-12-24 2010-06-13 油电混合动力汽车电力供应系统

Country Status (3)

Country Link
US (1) US8890356B2 (zh)
CN (1) CN102025171A (zh)
WO (1) WO2011075981A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248099B (zh) * 2013-05-27 2016-01-06 浙江南峰电气有限公司 一种智能充电控制电路
CN103332190B (zh) * 2013-06-04 2018-01-23 韩群山 电混汽车燃油发电控制装置及控制方法
CN103683206B (zh) * 2013-12-18 2017-08-22 深圳市共进电子股份有限公司 带高压启动的输入过压欠压保护电路及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2102859U (zh) * 1991-10-09 1992-04-29 侯建国 高速电动车
CN2170383Y (zh) * 1993-08-03 1994-06-29 王峻 汽油内燃机电子强力启动器
JP2001268900A (ja) * 2000-03-22 2001-09-28 Masayuki Hattori 双方向型昇降圧チョッパ回路
JP2005137142A (ja) * 2003-10-31 2005-05-26 Sumitomo Electric Ind Ltd 昇圧コンバータ及びそれを含むモータ駆動回路
CN1707938A (zh) * 2004-06-05 2005-12-14 山东理工大学 混合动力汽车用整流稳压器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4092811B2 (ja) * 1999-04-19 2008-05-28 トヨタ自動車株式会社 モータ制御装置および制御方法
JP3566252B2 (ja) * 2001-12-12 2004-09-15 本田技研工業株式会社 ハイブリット車両及びその制御方法
CN101257273B (zh) * 2008-03-07 2010-11-24 张志贤 一种由二次锂电池组供电的直流电机驱动装置
CN201266914Y (zh) * 2008-08-22 2009-07-01 比亚迪股份有限公司 一种igbt驱动电路
CN101447737B (zh) * 2008-12-25 2012-04-18 杭州电子科技大学 恒功率输出直流变换电路
US7973424B2 (en) * 2009-04-03 2011-07-05 General Electric Company Method and apparatus for producing tractive effort with interface to other apparatus
CN201601606U (zh) * 2009-12-24 2010-10-06 上海樟村电子有限公司 油电混合动力汽车电力供应系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2102859U (zh) * 1991-10-09 1992-04-29 侯建国 高速电动车
CN2170383Y (zh) * 1993-08-03 1994-06-29 王峻 汽油内燃机电子强力启动器
JP2001268900A (ja) * 2000-03-22 2001-09-28 Masayuki Hattori 双方向型昇降圧チョッパ回路
JP2005137142A (ja) * 2003-10-31 2005-05-26 Sumitomo Electric Ind Ltd 昇圧コンバータ及びそれを含むモータ駆動回路
CN1707938A (zh) * 2004-06-05 2005-12-14 山东理工大学 混合动力汽车用整流稳压器

Also Published As

Publication number Publication date
CN102025171A (zh) 2011-04-20
US8890356B2 (en) 2014-11-18
US20110304203A1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
US11639116B2 (en) Battery configuration for an electric vehicle
JP6228586B2 (ja) 電気車両
JP3977841B2 (ja) バッテリ用電力回路
JP4479488B2 (ja) 排気発電装置
WO2018133511A1 (zh) 混合动力无人机
US8148949B2 (en) Use of high frequency transformer to charge HEV batteries
US8674637B2 (en) Vehicle
RU2014108201A (ru) Аккумуляторный электрический гибридный привод для уборочного комбайна
WO2009067887A1 (fr) Procédé de commande cc-cc pour véhicules électriques hybrides
WO2020057279A1 (zh) 一种干线混合动力机车组控制系统及方法
JPWO2018061400A1 (ja) 複合蓄電システム
CN107733055B (zh) 一种用于油--电混合动力机车车载动力电池的充电系统
CN105059129A (zh) 复合电源、使用该复合电源的供能系统及电动汽车
WO2011075981A1 (zh) 油电混合动力汽车电力供应系统
CN109017326B (zh) 电动车制动能量回收系统
CN101662253B (zh) 一种汽车用双电压输出交流发电机控制器
KR102063921B1 (ko) 차량용 전력 제어 장치
CN107561981B (zh) 一种双电源供电的远程通信电动汽车控制器
CN110614922A (zh) 电动汽车车载用基于双能量源的制动能量回馈装置及控制方法
CN105599578A (zh) 一种双动力电动汽车的控制系统
WO2019104505A1 (zh) 一种用于油--电混合动力机车车载动力电池的充电系统
CN213305000U (zh) 用于捕获回馈电流的电路装置及高空作业车
CN104935143A (zh) 一种起动发电装置
CN202906823U (zh) 一种用于控制发电机输出电压的控制装置
CN201601606U (zh) 油电混合动力汽车电力供应系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10838547

Country of ref document: EP

Kind code of ref document: A1