WO2011074606A1 - Metal nanoparticles and method for producing metal nanoparticles - Google Patents

Metal nanoparticles and method for producing metal nanoparticles Download PDF

Info

Publication number
WO2011074606A1
WO2011074606A1 PCT/JP2010/072562 JP2010072562W WO2011074606A1 WO 2011074606 A1 WO2011074606 A1 WO 2011074606A1 JP 2010072562 W JP2010072562 W JP 2010072562W WO 2011074606 A1 WO2011074606 A1 WO 2011074606A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal nanoparticles
metal
polyaniline
nanoparticles
gold
Prior art date
Application number
PCT/JP2010/072562
Other languages
French (fr)
Japanese (ja)
Inventor
弘 椎木
勉 長岡
Original Assignee
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪府立大学 filed Critical 公立大学法人大阪府立大学
Priority to JP2011546148A priority Critical patent/JPWO2011074606A1/en
Publication of WO2011074606A1 publication Critical patent/WO2011074606A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention provides metal nanoparticles and a method for producing metal nanoparticles.
  • Metal nanoparticles are expected to be used differently from bulk metals as materials exhibiting unique electrical and optical properties and catalytic activity.
  • gold nanoparticles are known to be used as various catalysts, dyes, biosensors, biomolecule labeling substances, and the like.
  • a composite in which metal nanoparticles are dispersed in a conductive polymer such as polypyrrole, polyaniline, and polythiophene is used as a catalyst, a quantum dot, an electrode, or the like of a fuel cell.
  • a conductive polymer such as polypyrrole, polyaniline, and polythiophene
  • metal nanoparticles dispersed in a conductive polymer can be used as a fuel cell catalyst (see Japanese Patent Application Laid-Open No. 2004-359724 (Patent Document 1)).
  • Non-patent Documents 1 and 2 In the production of metal nanoparticles, particularly gold nanoparticles, the present inventors reduced chloroauric acid using aniline as a reducing agent to oxidize aniline itself to form polyaniline, in which gold nanoparticles are contained. It has been found that aggregates of retained gold nanoparticles can be obtained (Non-patent Documents 1 and 2).
  • the present inventors can extract metal nanoparticles because polyaniline is peroxidized and decomposed by electrolyzing the aggregate of metal nanoparticles produced using aniline or an aniline derivative as a reducing agent. And the present invention was completed.
  • the present invention provides metal nanoparticles having a zeta potential of 0 to 5 mV, an average particle size of 0.5 to 10 nm, and a particle size distribution with a CV value of 0 to 25%.
  • the present invention also provides metal nanoparticle aggregates covered with polyaniline or polyaniline derivatives by reducing metal ions using aniline or aniline derivatives as a reducing agent, and obtained metal nanoparticle aggregates.
  • a method for producing metal nanoparticles is provided, which includes a step of obtaining metal nanoparticles not covered with polyaniline or a polyaniline derivative by electrolysis.
  • the “metal nanoparticles” have an average particle diameter of about 0.5 nm to 10 nm, more preferably 0.5 nm to 7.5 nm.
  • metal particles are called “metal nanoparticles”, and particles smaller than about 100 nm are referred to as “metal clusters”.
  • metal nanoparticles is intended to include particles in the range of both “metal nanoparticles” and “metal clusters” that are commonly used.
  • gold nanoparticles particles larger than about 1.4 nm (number of atoms or magic number 55) are usually called “gold nanoparticles”, and particles with a particle size of about 1.4 nm or less (magic number 55 or less) are called.
  • gold nanoparticles and gold clusters are collectively referred to as “gold nanoparticles” for convenience.
  • the metal nanoparticle production method of the present invention makes it possible to obtain metal nanoparticles having a relatively uniform particle size and a small size.
  • the obtained metal nanoparticles are not covered with polyaniline, they are not covered with other organic substances, so that they have high catalytic activity and high reactivity with biomolecules such as proteins and nucleic acids. It is done. Therefore, there is a high possibility that biomolecules can be labeled more easily using a metal nanoparticle obtained by the method of the present invention, and a fuel cell with high reaction efficiency can be manufactured.
  • FIG. 1 It is a schematic diagram of the polyaniline formed with the aggregate of a metal nanoparticle (for example, gold nanoparticle). It is a transmission electron micrograph of the aggregate of the gold nanoparticles obtained by reducing (A) for 5 minutes and (B) for 10 minutes (Example 1). It is a transmission electron micrograph of the aggregate of the gold nanoparticle obtained by reducing for 20 minutes (Example 2). It is a photograph which shows an example of the electrolyzer which can be used in the method of this invention. (A) Transmission electron micrograph of gold nanoparticles obtained by electrolysis for 3 hours, (B) 4 hours, (C) 6 hours, (D) 8 hours and (E) 9 hours (implementation) Example 3).
  • A Transmission electron micrograph of gold nanoparticles obtained by electrolysis for 3 hours, (B) 4 hours, (C) 6 hours, (D) 8 hours and (E) 9 hours (implementation) Example 3).
  • Example 11 The result of the particle size distribution measurement of the gold nanoparticle obtained by the method of this invention and (B) the gold cluster obtained by the known method is shown (Example 11). It is a schematic cross section of the electrochemical cell used in this invention. It is a figure which shows the measurement result of the cyclic voltammetry obtained in Example 12. 4 is a transmission electron micrograph of gold nanoparticles prepared in Example 13. FIG. It is a figure which shows the result of the particle size distribution measurement of the gold nanoparticle created in Example 13. (A) It is a figure which shows the measurement result of the IR spectrum of the gold cluster obtained by the known method, and (b) the gold nanoparticle obtained by the method of this invention.
  • the method for producing metal nanoparticles of the present invention comprises reducing metal ions using aniline or an aniline derivative as a reducing agent, and separating the metal nanoparticles from an aggregate of metal nanoparticles retained in the obtained polyaniline. It can be taken out as When metal ions are reduced using aniline or an aniline derivative, the amino group of aniline or aniline derivative is oxidized to become an electrophilic group and polymerized with another aniline or aniline derivative molecule to form polyaniline or polyaniline derivative (Fig. 1). The presence of this as a matrix between the reduced metal nanoparticles forms aggregates of metal nanoparticles in polyaniline or polyaniline derivatives.
  • aniline derivative means a derivative of aniline having one or more substituents at the ortho, meta, and / or para positions with respect to the amino group of aniline.
  • the plurality of substituents may be the same or different.
  • the above substituents may be any substituents that do not impair the basicity of the amino group of aniline, that is, the electric discharge property.
  • substituents include C 1 -C 5 alkyl groups such as methyl, ethyl, isopropyl, tert-butyl groups, amino groups, carboxy groups, hydroxy groups, and the like. These substituents are preferably in the ortho position and / or the meta position with respect to the amino group of aniline.
  • substituents may be one or more, and preferably one or two.
  • aniline derivatives include o-aminotoluene, o-ethylaniline, m-ethylaniline, o-aminophenol, o-aminobenzoic acid, m-aminobenzoic acid, 2,4-dimethylaniline, 2, Examples include 6-dimethylaniline and 4-tert-butylaniline.
  • polyaniline or polyaniline derivative is a molecule formed by polymerizing the above aniline or aniline derivative.
  • the “aggregate of metal nanoparticles” refers to a state in which a plurality of metal nanoparticles are held in polyaniline or polyaniline derivative using polyaniline or polyaniline derivative as a matrix.
  • metal nanoparticles alone and “metal nanoparticles not covered with polyaniline or polyaniline derivatives” are dispersed metal nanoparticles that are not covered by a matrix of polyaniline or polyaniline derivatives. It is. It can be confirmed that the metal nanoparticles are not covered with the matrix of polyaniline or polyaniline derivative and are dispersed by observation with an electron microscope or measurement of the zeta potential of the metal particles by Nicomp 380ZLS or Particle Sizing Systems.
  • metal ions are reduced using aniline or an aniline derivative as a reducing agent.
  • metal ions include noble metal ions such as gold, platinum, palladium, rhodium, ruthenium and silver, and non-noble metal ions such as copper. Among these, noble metal ions are preferable, and gold and platinum ions are more preferable.
  • Said reduction process can be performed by mixing aniline or an aniline derivative with a metal ion containing compound.
  • Metal ion-containing compounds include chloroauric acid (HAuCl 4 ), chloroplatinic acid (H 2 PtCl 6 ), hexaamine platinum chloride (Pt (NH 3 ) 6 Cl 4 ), dinitrodiamine platinum (Pt (NO 2 ) 2 ( NH 3 ) 2 ), palladium chloride (PdCl 2 , H 2 PdCl 4 ), tetraamine palladium chloride (Pd (NH 3 ) 4 Cl 2 ), rhodium chloride (RhCl 3 ), ruthenium chloride (RuCl 3 ), silver nitrate ( Including noble metal ion-containing compounds such as AgNO 3 ) and non-noble metal ion-containing compounds such as copper sulfate (CuSO 4 ).
  • chloroauric acid H 2 PtCl 6
  • aniline and any of aniline derivatives such as aminotoluene, ethylaniline, aminophenol, and aminobenzoic acid as a reducing agent.
  • the concentration of the metal ion is preferably 10 ⁇ 6 to 10 ⁇ 3 (M), more preferably 7 ⁇ 10 ⁇ 5 to 6 ⁇ 10 ⁇ 4 Can be used.
  • the aniline or aniline derivative and the metal ion-containing compound are preferably mixed in such an amount that the molar ratio of the aniline or aniline derivative and the metal ion is preferably 10 to 100: 1, more preferably 20 to 50: 1. .
  • the above reduction is preferably performed at a temperature of room temperature (25 ° C.) to 80 ° C., more preferably 60 ° C. to 80 ° C., preferably 1 minute to 60 minutes, more preferably 1 minute to 30 minutes, even more preferably 2 Can be performed for 30 minutes.
  • the particle diameter of the metal nanoparticles produced in the polyaniline or polyaniline derivative can be reduced, that is, a so-called metal cluster can be obtained.
  • the above reduction can be performed in an appropriate solvent capable of dissolving the metal ion-containing compound and aniline or aniline derivative.
  • a solvent water or a mixed solution of water and an organic solvent is preferable, and toluene, benzene, hexane, or the like can be used as the organic solvent.
  • the mixing ratio of water and the organic solvent is preferably 1: 1 to 10 (volume ratio), more preferably 1: 1 to 5 (volume ratio).
  • toluene is preferable as the organic solvent because a desired aggregate can be easily obtained.
  • these solvents may appropriately contain other substances such as an electrolyte, a dispersant such as polyvinyl alcohol, and a pH adjuster such as sodium hydroxide as long as the metal nanoparticles of the present invention can be obtained. Good.
  • the reduction is performed by bringing an aqueous solution containing metal ions into contact with an organic solution containing aniline or an aniline derivative.
  • the electrolysis is not particularly limited as long as the electrolysis is performed by flowing a current through a pair of electrodes arranged in the electrolyte solution.
  • the electrolyte solution is not particularly limited as long as it is an electrolyte solution that can decompose polyaniline or a polyaniline derivative without affecting the electrolysis of the above-mentioned aggregate of metal nanoparticles.
  • As the solvent of the electrolyte solution water is preferable because metal nanoparticle aggregates can be dispersed.
  • an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, or the like can be used.
  • the electrolyte solution preferably has a pH of 12.0 to 14.0.
  • electrolysis is preferably performed at a temperature of about room temperature, and 10 to 50 mg of the aggregate is preferably dispersed in a solvent of about 10 to 100 ml.
  • Electrolysis can be performed by applying a potential in the range of preferably 1.5 to 2.2 V, more preferably 1.5 to 2.0 V, more preferably 1.8 to 2.0 V to the working electrode.
  • the potential in this range is preferably kept constant during electrolysis.
  • the electrolysis is preferably performed for 1 to 20 hours, more preferably 1 to 15 hours, more preferably 3 to 10 hours, and even more preferably 4 to 9 hours.
  • the polyaniline or polyaniline derivative can be sufficiently peroxidized and decomposed, and appropriately dispersed metal nanoparticles can be obtained.
  • Electrolysis can also be applied by applying a pulse-shaped potential that gives a constant high potential for a fixed period of 0.001 to 10 seconds and then repeatedly applies a constant low potential to the working electrode for a fixed period of 0.001 to 10 seconds. It can be carried out.
  • the low potential side is preferably in the range of ⁇ 2.0 to 0 V
  • the high potential side is preferably in the range of 1.5 to 2.2 V, more preferably in the range of 1.8 to 2.0 V. Both the low potential side and the high potential side have one potential.
  • To give a pulse-shaped potential. thereby, when a high potential is applied, an electrode contaminated by adsorption of a decomposition reaction product of polyaniline or a polyaniline derivative can be electrolyzed while being cleaned by reducing at a low potential.
  • the electrode used for electrolysis is not particularly limited as long as it is used for normal electrolysis.
  • metals such as carbon (glassy carbon or conductive diamond), tungsten, molybdenum, tantalum, niobium, titanium, cobalt, and the like can be used.
  • a reference electrode may be used for the electrolysis, and an electrode such as silver / silver chloride or mercury / mercury chloride can be used as the reference electrode.
  • the metal nanoparticles produced by the method of the present invention have a zeta potential on the surface of 0 to 5 mV, more preferably 0.1 mV to 3 mV.
  • the surface of conventional metal nanoparticles is covered with an organic substance, but the metal nanoparticles obtained by the method of the present invention have a very low zeta potential, so that the surface is almost covered with other substances. It is considered that the metal is not exposed. Since such metals are likely to interact with sulfur (S), nitrogen (N) atoms, etc., the metal nanoparticles obtained by the method of the present invention have very high binding properties with biomolecules such as proteins and nucleic acids. It is considered to be suitable as a labeling substance for these biomolecules.
  • the obtained metal nanoparticles have a high zeta potential, and a protective layer of a protective agent is present on the surface thereof.
  • the metal nanoparticles of the present invention since the metal nanoparticles are produced using the production method described above, the metal nanoparticles of the present invention have a very low zeta potential. Moreover, as the electrolysis of the present invention proceeds, the zeta potential of the metal nanoparticles decreases. This indicates that the metal nanoparticles covered with polyaniline or polyaniline derivative are changed to metal nanoparticles not covered with them.
  • the metal nanoparticles of the present invention cannot substantially confirm a peak derived from the protective layer. That is, the metal nanoparticles of the present invention substantially have no peak derived from the organic compound in the IR chart obtained by measuring the metal nanoparticles.
  • the “peak derived from an organic compound” means a peak derived from a substituent and a skeleton structure of an organic compound containing atoms such as general carbon, hydrogen, oxygen, nitrogen, and sulfur.
  • Substituents of organic compounds are —OH, —NH 2 , —SH, —COH, —COOH, —CH 3, etc.
  • skeleton structures are C—C, C ⁇ C, C—H, C—N, C ⁇ N, C—O, C ⁇ O, C—H and the like.
  • aniline and aniline derivatives are usually soluble in water or an organic solvent, they are not substantially present on the surface of the nanometal particles of the present invention.
  • the transmittance (% T ) Is preferably 20% or less, more preferably 30% or less.
  • the metal nanoparticles produced by the method of the present invention have an average particle size of 0.5 nm to 10 nm, preferably 0.5 nm to 7.5 nm.
  • the average particle diameter of the metal nanoparticles is a value measured using a transmission electron microscope. Since the above metal nanoparticles have such a small particle diameter, the surface area per weight can be increased, and it is considered that the metal nanoparticles have high catalytic activity. Moreover, by having such a small particle diameter, the melting point of the metal nanoparticles is significantly lower than that of the metal in the bulk state. Therefore, the metal nanoparticles can be melted at a lower temperature.
  • the particle diameter of the metal nanoparticles of the present invention is preferably in the range of 0.3 to 50 nm, more preferably 0.5 to 10 nm as a whole. When included in the above range, it may have higher catalytic activity as well.
  • the metal nanoparticles of the present invention have a very narrow particle size distribution.
  • the metal nanoparticles of the present invention have a CV value particle size distribution of 0 to 25%, preferably 0 to 15%, more preferably 0 to 10%.
  • the metal nanoparticles of the present invention can have a larger surface area per weight, and as a result, may have higher catalytic activity.
  • metal nanoparticles having an extremely narrow particle size distribution can be easily produced in large quantities.
  • polyaniline or polyaniline derivative is substantially removed from the surface by electrolyzing the aggregate of metal nanoparticles covered with polyaniline or polyaniline derivative. Can be obtained more easily. For this reason, the metal nanoparticles of the present invention are extremely fine and have a narrow particle size distribution, that is, nanoparticles excellent in monodispersity.
  • metal nanoparticles obtained by the method for producing metal nanoparticles of the present invention have the above-described characteristics, they can be suitably used for catalysts, fuel cells, biomolecular labeling substances, metal plating, and the like.
  • the metal nanoparticles of the present invention may have a high catalytic activity.
  • the metal nanoparticles of the present invention do not substantially have a protective layer on the surface thereof, when used as a catalyst, firing for removing them is not required. For this reason, a catalyst having high activity can be easily produced by easily supporting metal nanoparticles on a catalyst carrier containing carbon or silicon oxide.
  • the metal nanoparticles of the present invention can be suitably used as an electrode catalyst or the like in electrochemical or fuel cells.
  • the metal nanoparticles of the present invention can be used as a biomolecule labeling substance by utilizing the binding property with an antibody or the like.
  • the metal nanoparticles of the present invention and an antibody having a thiol group (—SH) or amino group (—NH 2 ) that can be directly bonded to the surface of the metal nanoparticles can be easily bonded in one step. .
  • the antibody can be easily labeled by immunochromatography. That is, the metal nanoparticles of the present invention can be used as a simple test kit for influenza or a pregnancy test kit.
  • the metal nanoparticles of the present invention are extremely fine and have a narrow particle size distribution, they can be suitably used as metal plating.
  • the metal nanoparticles of the present invention can be applied to a fine material and can be easily adhered to a plastic material. Specifically, it can also be used as a material for anisotropic conductive film (ACF), conductive beads for ACF, nanoparticle plating and the like.
  • ACF anisotropic conductive film
  • the metal nanoparticles of the present invention have substantially no protective layer on the surface, they are excellent in water dispersibility. For this reason, these can be used conveniently also in the use using an aqueous solvent etc.
  • the zeta potential is calculated by electrophoresis using a zeta potential measuring device (product name: Nicomp 380ZLS, Zeta Potential Analyzer, manufactured by Particle Sizing Systems). More specifically, the zeta potential is calculated by measuring the moving speed (electrophoretic speed) with laser light and determining the moving speed per unit electric field (electrophoretic mobility).
  • a zeta potential measuring device product name: Nicomp 380ZLS, Zeta Potential Analyzer, manufactured by Particle Sizing Systems. More specifically, the zeta potential is calculated by measuring the moving speed (electrophoretic speed) with laser light and determining the moving speed per unit electric field (electrophoretic mobility).
  • ⁇ IR measurement method Place the pellet for measurement, KBr plate (mini KBr plate, manufactured by Jusco Engineering Co., Ltd.) on the pressure holder part of a dedicated press machine (mini press, manufactured by Jusco Co., Ltd.), add 0.001 g of metal nanoparticles, Further, it is made by sandwiching between KBr plates and pressing. Next, the surface of the metal nanoparticles is observed by a transmission method using an infrared spectrometer (FT / IR-4200, manufactured by Jusco).
  • FT / IR-4200 infrared spectrometer
  • Example 1 30 ml of a 1% by weight chloroauric acid tetrahydrate (manufactured by Wako Pure Chemical Industries) aqueous solution as a metal ion-containing compound and 9 ml of toluene containing 0.01 M aniline (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed (39 ml in total), Gold ions were reduced by leaving them in a constant temperature bath at 60 ° C. for 5 minutes or 10 minutes. Then, it centrifuged at 8500 rpm and 5 degreeC for 30 minutes, and rinsed with the ultrapure water. This washing operation was repeated three times.
  • FIG. 2 The result of observing the aggregate of the gold nanoparticles in the obtained polyaniline with a transmission electron microscope (JEM-2000FXII, manufactured by JEOL Ltd.) is shown in FIG.
  • FIG. 2 shows the aggregate obtained by reducing for 5 minutes
  • (B) shows the aggregate obtained by reducing for 10 minutes.
  • the particle size of the gold nanoparticles in the obtained agglomerate was measured with an electron microscope and measured with a particle size distribution measuring device. After 5 minutes of reduction, the average particle size was about 0.92 nm (CV value 5%) (cluster) ) After 10 minutes of reduction, the average particle size was about 2.70 nm (CV value 13%) (nanoparticles).
  • Example 2 Ultrapure water was added to 76 ⁇ l of an aqueous solution of 1 wt% chloroauric acid tetrahydrate (manufactured by Wako Pure Chemical Industries) as a metal ion-containing compound and 500 ⁇ l of 0.1 M aniline (manufactured by Wako Pure Chemical Industries, Ltd.) to a total volume of 25 ml, 60 The mixture was stirred for 20 minutes while maintaining the temperature to reduce gold ions. Then, it centrifuged at 8500 rpm and 5 degreeC for 30 minutes, and rinsed with the ultrapure water. This washing operation was repeated three times.
  • 1 wt% chloroauric acid tetrahydrate manufactured by Wako Pure Chemical Industries
  • aniline manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 3 The aggregate of gold nanoparticles in the polyaniline obtained in Example 2 was electrolyzed using the electrolysis apparatus shown in FIG.
  • the apparatus shown in FIG. 3 is an H-shaped type using Ag / AgCl as a reference electrode, a tantalum wire (manufactured by Niraco) as a counter electrode, and a carbon cloth (GF-20-S9, manufactured by Shin Nippon Carbon Co., Ltd.) 0.29 g as a working electrode.
  • Cell. A 0.1 M aqueous sodium hydroxide solution (pH 13) was used as the electrolyte solution.
  • the electrolysis conditions were a constant potential of 1.85 V, 3, 4, 6, 8 or 9 hours.
  • Example 2 10 to 50 mg of the aggregate obtained in Example 2 was added to 40 ml of 0.1 M sodium hydroxide aqueous solution containing 0.01% polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.), and uniformly dispersed using ultrasonic waves for 10 minutes. Then, electrolysis was performed at room temperature (25 ° C.). The result of observing the gold nanoparticles obtained by electrolysis with a transmission electron microscope in the same manner as in Example 1 is shown in FIG. FIG. 5 shows electron micrographs of gold nanoparticles electrolyzed (A) 3 hours, (B) 4 hours, (C) 6 hours, (D) 8 hours and (E) 9 hours.
  • Table 1 shows the results of measuring the zeta potential of the gold nanoparticles electrolyzed in this example using Nicomp ⁇ ⁇ 380ZLS and Zeta Potential Analyzer. Table 1 also shows the particle diameter (average particle diameter) of the gold nanoparticles measured by observation with an electron microscope.
  • the CV value of the gold nanoparticles after the electrolysis time of 0, 3, 4, 6, 8 and 9 hours was measured by a particle size distribution measuring device, respectively 15%, 15%, 17%, 20%, 18% and 20%.
  • Example 4 76 ⁇ l of the 1 wt% chloroauric acid tetrahydrate aqueous solution of Example 2 was changed to 760 ⁇ l of a 1 wt% aqueous solution of chloroplatinic acid tetrahydrate (manufactured by Wako Pure Chemical Industries, Ltd.), and 5 ml of 0.1M aniline was used at 80 ° C.
  • a platinum nanoparticle aggregate in polyaniline was obtained in the same procedure as in Example 2 except that the reduction was carried out for 30 minutes.
  • the obtained platinum nanoparticle aggregate was electrolyzed in the same manner for 9 hours using the same electrolysis apparatus as used in Example 3.
  • the results obtained by observing the obtained platinum nanoparticle aggregates and platinum nanoparticles with a transmission electron microscope in the same manner as in Example 1 are shown in FIGS. 6 (A) and 6 (B), respectively.
  • Table 2 shows the results of measuring the particle size (average particle size) and zeta potential of platinum nanoparticles electrolyzed for 9 hours.
  • the CV values of the gold nanoparticles after the lapse of 0 and 9 hours of electrolysis were 14% and 14%, respectively, as measured by a particle size distribution measuring device.
  • a 0.1M sodium hydroxide aqueous solution (pH 13) containing the gold nanoparticle aggregate obtained in Example 2 was circulated at 5 ml / min using a peristaltic pump (SJ-1211H, manufactured by Ato), and a constant potential of 1.85 V. For 56 hours.
  • a photograph of the electrolyzer used is shown in FIG.
  • the results obtained by observing the obtained substance with a transmission electron microscope in the same manner as in Example 1 are shown in FIG.
  • Table 3 shows the results of measuring the zeta potential and average particle diameter of the obtained substance.
  • the CV values of the gold nanoparticles after the electrolysis time of 0 and 56 hours were 15% and 30%, respectively, as measured with a particle size distribution measuring device.
  • Examples 5-7 0.1M o-aminotoluene (manufactured by Wako Pure Chemical Industries, Ltd.) in 25 ml of an aqueous solution containing 76 ⁇ l of 1 wt% chloroauric acid tetrahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) as a metal ion-containing compound Toluene containing 5 ml was added to make a total volume of 30 ml, and the mixture was stirred for 20 minutes while maintaining at 60 ° C. to reduce gold ions. Subsequently, it was centrifuged at 8500 rpm and 5 ° C. for 30 minutes and rinsed with ultrapure water. This washing was performed 3 times (Example 5).
  • FIG. 9 is a photograph of the gold nanoparticle aggregate prepared in (A) Example 5, (B) Example 6 and (C) Example 7.
  • the particle diameters of the gold nanoparticles in the aggregates obtained in Examples 5, 6 and 7 were measured with an electron microscope and measured with a particle size distribution measuring device, and the average particle diameter was 7.22 nm (CV value 22%), respectively. , 7.42 nm (CV value 20%), and 7.14 nm (CV value 17%).
  • Examples 8-10 Add ultrapure water to 76 ⁇ l of 1 wt% chloroauric acid tetrahydrate (manufactured by Wako Pure Chemical Industries) as a metal ion-containing compound and 500 ⁇ l of 0.1 M o-aminophenol (manufactured by Wako Pure Chemical Industries, Ltd.) The mixture was stirred for 20 minutes while maintaining the temperature at 60 ° C. to reduce gold ions. Subsequently, it was centrifuged at 8500 rpm and 5 ° C. for 30 minutes and rinsed with ultrapure water. This washing was performed 3 times (Example 8).
  • FIG. 10 is a photograph of the gold nanoparticle aggregate prepared in (A) Example 8, (B) Example 9 and (C) Example 10.
  • the particle diameters of the gold nanoparticles in the aggregates obtained in Examples 8, 9 and 10 were measured with an electron microscope and measured with a particle size distribution measuring device, respectively, and the average particle diameter was 5.52 nm (CV value 16%). 3.79 nm (CV value 16%) and 4.85 nm (CV value 21%).
  • metal nanoparticles can be produced using an aniline derivative as a reducing agent.
  • Example 11 Using the same electrolysis apparatus as used in Example 3, the aggregate of gold nanoparticles (average particle size: 0.92 nm, CV value: 5%) in polyaniline obtained in Example 1 was similarly used as an electrolyte solution. Was electrolyzed at a constant potential of 1.85 V for 18 hours using a 0.1 M aqueous sodium hydroxide solution (pH 13). The zeta potential of this particle was 0.20 mV.
  • FIG. 11A shows the result of measuring the particle size distribution of the obtained gold nanoparticles using ELSZ, Zetapotential & Particle size Analyzer manufactured by Otsuka Electronics.
  • FIG. 11B shows the result of measuring the particle size distribution of the obtained particles using ELSZ, Zetapotential & Particle size Analyzer manufactured by Otsuka Electronics.
  • the average particle size of the gold nanoparticles prepared by the method of the present invention is 1.3 nm (CV value 23%), and the average particle size of the gold clusters prepared by the known method is 1.6 nm. (CV value 31%). It was found that gold nanoparticles having a narrow particle size distribution can be produced according to the method of the present invention as compared with gold clusters produced by a known method. That is, according to the method of the present invention, metal nanoparticles having a desired particle diameter can be efficiently produced.
  • Example 12 ⁇ Use of gold nanoparticles as catalyst> Using the same electrolysis apparatus as used in Example 3, the aggregate of gold nanoparticles (average particle size 5.52 nm, CV value 15%) in polyaniline obtained in Example 2 was used in the same manner as the electrolyte solution.
  • Gold nanoparticles (average particle size 6.31 nm, CV value 20%) obtained by electrolysis at a constant potential of 1.85 V for 9 hours using 0.1 M sodium hydroxide aqueous solution (pH 13) as 8500 rpm at 5 ° C The mixture was centrifuged for 30 minutes and rinsed with ultrapure water. This washing was performed 3 times. The precipitate thus obtained was again dispersed in 0.5 ml of ultrapure water. 10 ⁇ l of this dispersion was dropped onto an electrode (diameter 1 mm, GCE glassy carbon electrode, manufactured by BAS) and vacuum dried for 30 minutes. Thus obtained glassy carbon electrode fixed with gold nanoparticles was obtained (a).
  • Cyclic voltammetry was performed using an electrochemical apparatus (potentiogalvanostat HZ3000, manufactured by Hokuto Denko) at an insertion range of -0.2 to 0.8 V and an insertion speed of 10 mV / s. The result is shown in FIG.
  • Example 13 In the same manner as in Example 1, 30 ml of a 1 wt% chloroauric acid tetrahydrate (manufactured by Wako Pure Chemical Industries) aqueous solution as a metal ion-containing compound and 9 ml of toluene containing 0.01 M aniline (manufactured by Wako Pure Chemical Industries, Ltd.) The mixture was mixed (39 ml in total) and left in a constant temperature bath at 60 ° C. for 10 minutes to reduce gold ions. Then, it centrifuged at 8500 rpm and 5 degreeC for 30 minutes, and rinsed with the ultrapure water. This washing operation was repeated three times.
  • the particle size of the gold nanoparticles in the obtained aggregate was approximately 1.10 nm (CV value 9.1%) after 10 minutes of reduction, as measured with an electron microscope and measured with a particle size distribution analyzer. It was. 40 ml of 0.1M sodium hydroxide aqueous solution (manufactured by Wako Pure Chemical Industries) containing polyvinyl alcohol (manufactured by Wako Pure Chemical Industries) was added to the precipitate of the aggregates of the obtained gold nanoparticles and mixed, and the mixture was allowed to stand for 12 hours.
  • Electrolysis was carried out using an electrolysis apparatus of a syringe type flow cell.
  • a 0.1 M aqueous sodium hydroxide solution (pH 13) containing gold nanoparticle aggregates was electrolyzed at a constant potential of 1.85 V for 18 hours while circulating at 5 ml / min using a peristaltic pump (SJ-1211H, manufactured by Ato). Then, it centrifuged at 15000 rpm and 5 degreeC for 30 minutes, and rinsed with the ultrapure water. This washing operation was repeated three times. The precipitate thus obtained was again dispersed in 1.0 ml of ultrapure water.
  • the result obtained by observing the obtained substance with a transmission electron microscope in the same manner as in Example 1 is shown in FIG. 14c.
  • Gold nanoparticles having an average particle diameter of 1.13 nm were obtained by observation with an electron microscope and measurement with a particle size distribution measuring apparatus.
  • Table 4 shows the results of measuring the zeta potential and particle size of the obtained substance.
  • FIG. 15 shows the result of measuring the particle size distribution of the obtained particles using ELSZ, Zetapotential & Particle Analyzer manufactured by Otsuka Electronics Co., Ltd.
  • Electrolysis of polyaniline occurs at the working electrode during electrolysis, but using an electrochemical cell with a structure like a syringe type flow cell improves the contact efficiency of the aggregate to the working electrode and electrolysis of polyaniline. Therefore, it is possible to suppress an increase in average particle size and CV value due to an increase in electrolysis time.
  • Example 14 Aggregates of gold nanoparticles (average particle size 5.52 nm, CV value 15%) in polyaniline obtained in Example 2 were prepared as an electrolyte solution using the same electrolysis apparatus as used in Example 3. Similarly, gold nanoparticles (average particle size 6.31 nm, CV value 20%) obtained by electrolysis at a constant potential of 1.85 V for 9 hours using M sodium hydroxide aqueous solution (pH 13), 8500 rpm, 5 ° C And then rinsed with ultrapure water. This washing was performed 3 times. The precipitate thus obtained was vacuum-dried at 60 ° C. for 3 days.
  • the surface of the gold nanoparticles was observed by a transmission method using an infrared spectrometer (FT / IR-4200, manufactured by Jusco).
  • FT / IR-4200 infrared spectrometer
  • For the pellets for measurement place a KBr plate (mini KBr plate, manufactured by Jusco Engineering) on a special press machine (mini press, manufactured by Jusco), add 0.001 g of gold nanoparticle powder, It was produced by sandwiching and pressing. The result is shown in FIG.
  • a peak based on glutathione forming a protective layer was observed, but in the gold nanoparticles according to the present invention, only a peak of adsorbed water was obtained, and a peak indicating the presence of an organic compound due to aniline was obtained. I could't.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

Disclosed are metal nanoparticles which have a zeta potential of 0-5 mV, an average particle diameter of 0.5-10 nm, and a particle size distribution with a CV value of 0-25%.

Description

金属ナノ粒子及び金属ナノ粒子の製造方法Metal nanoparticles and method for producing metal nanoparticles
 本発明は、金属ナノ粒子及び金属ナノ粒子を製造する方法を提供する。 The present invention provides metal nanoparticles and a method for producing metal nanoparticles.
 金属ナノ粒子は、独特の電気的及び光学的な特性や触媒活性を示す物質として、バルクの金属とは異なる利用が期待されている。
 例えば、金ナノ粒子は、様々な触媒、色素、バイオセンサー、生体分子の標識物質などとして用いられることが知られている。
Metal nanoparticles are expected to be used differently from bulk metals as materials exhibiting unique electrical and optical properties and catalytic activity.
For example, gold nanoparticles are known to be used as various catalysts, dyes, biosensors, biomolecule labeling substances, and the like.
 また、金属ナノ粒子をポリピロール、ポリアニリン、ポリチオフェンなどの導電性高分子中に分散させた複合体(ポリマーナノコンポジット)は、燃料電池の触媒、量子ドット、電極などとして用いられている。
 具体的には、例えば、金属ナノ粒子を導電性高分子中に分散させたものを燃料電池の触媒として用い得ることが知られている(特開2004-359724号公報(特許文献1)参照)。
In addition, a composite (polymer nanocomposite) in which metal nanoparticles are dispersed in a conductive polymer such as polypyrrole, polyaniline, and polythiophene is used as a catalyst, a quantum dot, an electrode, or the like of a fuel cell.
Specifically, for example, it is known that metal nanoparticles dispersed in a conductive polymer can be used as a fuel cell catalyst (see Japanese Patent Application Laid-Open No. 2004-359724 (Patent Document 1)). .
 本発明者らは、金属ナノ粒子、特に金ナノ粒子の製造において、還元剤としてアニリンを用いて塩化金酸を還元すると、アニリン自体が酸化されてポリアニリンを形成し、その中に金ナノ粒子が保持された金ナノ粒子の凝集体が得られることを見出している(非特許文献1及び2)。 In the production of metal nanoparticles, particularly gold nanoparticles, the present inventors reduced chloroauric acid using aniline as a reducing agent to oxidize aniline itself to form polyaniline, in which gold nanoparticles are contained. It has been found that aggregates of retained gold nanoparticles can be obtained (Non-patent Documents 1 and 2).
特開2004-359724号公報JP 2004-359724 A
 本発明者らは、アニリン又はアニリン誘導体を還元剤として用いて製造した金属ナノ粒子の凝集体を、電気分解することにより、ポリアニリンが過酸化されて分解するので、金属ナノ粒子を取り出すことができることを見出して、本発明を完成した。 The present inventors can extract metal nanoparticles because polyaniline is peroxidized and decomposed by electrolyzing the aggregate of metal nanoparticles produced using aniline or an aniline derivative as a reducing agent. And the present invention was completed.
 よって、本発明は、0~5mVのゼータ電位、0.5~10nmの平均粒径及びCV値が0~25%の粒度分布を有する金属ナノ粒子を提供する。 Therefore, the present invention provides metal nanoparticles having a zeta potential of 0 to 5 mV, an average particle size of 0.5 to 10 nm, and a particle size distribution with a CV value of 0 to 25%.
 また、本発明は、アニリン又はアニリン誘導体を還元剤として用いて金属イオンを還元して、ポリアニリン又はポリアニリン誘導体で覆われた金属ナノ粒子の凝集体を得て、得られた金属ナノ粒子の凝集体を電気分解することにより、ポリアニリン又はポリアニリン誘導体で覆われていない金属ナノ粒子を得る工程を含む金属ナノ粒子の製造方法を提供する。 The present invention also provides metal nanoparticle aggregates covered with polyaniline or polyaniline derivatives by reducing metal ions using aniline or aniline derivatives as a reducing agent, and obtained metal nanoparticle aggregates. A method for producing metal nanoparticles is provided, which includes a step of obtaining metal nanoparticles not covered with polyaniline or a polyaniline derivative by electrolysis.
 なお、本明細書において、「金属ナノ粒子」とは、その平均粒径が0.5nm~10nm程度であり、より好ましくは0.5nm~7.5nmである。通常、金属粒子は、金属の種類に応じて規定される所定の粒径より大きく、100nm程度より小さい粒子を「金属ナノ粒子」、この所定の粒径以下の粒子を「金属クラスター」と呼ぶが、本明細書において「金属ナノ粒子」とは、通常用いられる「金属ナノ粒子」及び「金属クラスター」の両方の範囲の粒子を含むことを意図する。例えば、金の場合、通常、粒径1.4nm程度より大きい(原子数又は魔法数55より大きい)粒子を「金ナノ粒子」と呼び、粒径1.4nm程度以下(魔法数55以下)の粒子を「金クラスター」と呼ぶが、本明細書では、これらのいわゆる金ナノ粒子及び金クラスターをまとめて「金ナノ粒子」と便宜的に呼ぶ。 In the present specification, the “metal nanoparticles” have an average particle diameter of about 0.5 nm to 10 nm, more preferably 0.5 nm to 7.5 nm. In general, metal particles are called “metal nanoparticles”, and particles smaller than about 100 nm are referred to as “metal clusters”. As used herein, the term “metal nanoparticles” is intended to include particles in the range of both “metal nanoparticles” and “metal clusters” that are commonly used. For example, in the case of gold, particles larger than about 1.4 nm (number of atoms or magic number 55) are usually called “gold nanoparticles”, and particles with a particle size of about 1.4 nm or less (magic number 55 or less) are called. In the present specification, these so-called gold nanoparticles and gold clusters are collectively referred to as “gold nanoparticles” for convenience.
 本発明の金属ナノ粒子の製造方法により、粒子径が比較的均一でかつ小さい金属ナノ粒子を得ることが可能になる。また、得られる金属ナノ粒子は、ポリアニリンで覆われていないだけでなく、その他の有機物質でも被覆されていないので、触媒活性が高く、タンパク質、核酸などの生体分子との反応性も高いと考えられる。よって、本発明の方法により得られる金属ナノ粒子を用いて、生体分子の標識をより容易に行うことや、反応効率が高い燃料電池などを製造できる可能性が高い。 The metal nanoparticle production method of the present invention makes it possible to obtain metal nanoparticles having a relatively uniform particle size and a small size. In addition, since the obtained metal nanoparticles are not covered with polyaniline, they are not covered with other organic substances, so that they have high catalytic activity and high reactivity with biomolecules such as proteins and nucleic acids. It is done. Therefore, there is a high possibility that biomolecules can be labeled more easily using a metal nanoparticle obtained by the method of the present invention, and a fuel cell with high reaction efficiency can be manufactured.
金属ナノ粒子(例えば金ナノ粒子)の凝集体で形成されるポリアニリンの模式図である。It is a schematic diagram of the polyaniline formed with the aggregate of a metal nanoparticle (for example, gold nanoparticle). (A)5分間及び(B)10分間還元して得られた金ナノ粒子の凝集体の透過型電子顕微鏡写真である(実施例1)。It is a transmission electron micrograph of the aggregate of the gold nanoparticles obtained by reducing (A) for 5 minutes and (B) for 10 minutes (Example 1). 20分間還元して得られた金ナノ粒子の凝集体の透過型電子顕微鏡写真である(実施例2)。It is a transmission electron micrograph of the aggregate of the gold nanoparticle obtained by reducing for 20 minutes (Example 2). 本発明の方法において用い得る電気分解装置の一例を示す写真である。It is a photograph which shows an example of the electrolyzer which can be used in the method of this invention. (A)3時間、(B)4時間、(C)6時間、(D)8時間及び(E)9時間電気分解することにより得られた金ナノ粒子の透過型電子顕微鏡写真である(実施例3)。(A) Transmission electron micrograph of gold nanoparticles obtained by electrolysis for 3 hours, (B) 4 hours, (C) 6 hours, (D) 8 hours and (E) 9 hours (implementation) Example 3). (A)0時間及び(B)9時間電気分解することにより得られた白金ナノ粒子の凝集体及び白金ナノ粒子の透過型電子顕微鏡写真である(実施例4)。(A) Aggregates of platinum nanoparticles obtained by electrolysis for 0 hour and (B) 9 hours and transmission electron micrographs of platinum nanoparticles (Example 4). 本発明の方法において用い得る電気分解装置の一例を示す写真及び電気化学セルの模式断面図である。It is the photograph which shows an example of the electrolyzer which can be used in the method of this invention, and a schematic cross section of an electrochemical cell. 56時間電気分解することにより得られた金ナノ粒子の透過型電子顕微鏡写真である。It is a transmission electron micrograph of gold nanoparticles obtained by electrolysis for 56 hours. (A)実施例5、(B)実施例6及び(C)実施例7で作成した金ナノ粒子凝集体の透過型電子顕微鏡写真である。It is a transmission electron micrograph of the gold nanoparticle aggregate produced in (A) Example 5, (B) Example 6 and (C) Example 7. (A)実施例8、(B)実施例9及び(C)実施例10で作成した金ナノ粒子凝集体の透過型電子顕微鏡写真である。It is a transmission electron micrograph of the gold nanoparticle aggregate produced in (A) Example 8, (B) Example 9 and (C) Example 10. (A)本発明の方法により得られた金ナノ粒子及び(B)既知の手法により得られた金クラスターの粒径分布測定の結果を示す(実施例11)。(A) The result of the particle size distribution measurement of the gold nanoparticle obtained by the method of this invention and (B) the gold cluster obtained by the known method is shown (Example 11). 本発明において使用する電気化学セルの模式断面図である。It is a schematic cross section of the electrochemical cell used in this invention. 実施例12において得られたサイクリックボルタンメトリーの測定結果を示す図である。It is a figure which shows the measurement result of the cyclic voltammetry obtained in Example 12. 実施例13で作成した金ナノ粒子の透過型電子顕微鏡写真である。4 is a transmission electron micrograph of gold nanoparticles prepared in Example 13. FIG. 実施例13で作成した金ナノ粒子の粒径分布測定の結果を示す図である。It is a figure which shows the result of the particle size distribution measurement of the gold nanoparticle created in Example 13. (a)既知の手法により得られた金クラスター及び(b)本発明の方法により得られた金ナノ粒子のIRスペクトルの測定結果を示す図である。(A) It is a figure which shows the measurement result of the IR spectrum of the gold cluster obtained by the known method, and (b) the gold nanoparticle obtained by the method of this invention.
 本発明の金属ナノ粒子の製造方法は、アニリン又はアニリン誘導体を還元剤として用いて金属イオンを還元し、得られたポリアニリン中に保持されている金属ナノ粒子の凝集体から、金属ナノ粒子を単体として取り出すことができる方法である。
 アニリン又はアニリン誘導体を用いて金属イオンを還元すると、アニリン又はアニリン誘導体のアミノ基が酸化されて求電子基となり、別のアニリン又はアニリン誘導体分子と重合して、ポリアニリン又はポリアニリン誘導体を形成する(図1を参照)。これが、還元された金属ナノ粒子の間にマトリクスとして存在することにより、ポリアニリン又はポリアニリン誘導体中の金属ナノ粒子の凝集体が形成される。
The method for producing metal nanoparticles of the present invention comprises reducing metal ions using aniline or an aniline derivative as a reducing agent, and separating the metal nanoparticles from an aggregate of metal nanoparticles retained in the obtained polyaniline. It can be taken out as
When metal ions are reduced using aniline or an aniline derivative, the amino group of aniline or aniline derivative is oxidized to become an electrophilic group and polymerized with another aniline or aniline derivative molecule to form polyaniline or polyaniline derivative (Fig. 1). The presence of this as a matrix between the reduced metal nanoparticles forms aggregates of metal nanoparticles in polyaniline or polyaniline derivatives.
 本明細書において、「アニリン誘導体」とは、アニリンのアミノ基に対してオルト、メタ及び/又はパラ位に1つ又は複数の置換基を有するアニリンの誘導体を意味する。複数の置換基は、同じであってもよく、異なっていてもよい。上記の置換基は、アニリンのアミノ基の塩基性、すなわち電気放出性を損なわない置換基であればよい。そのような置換基としては、メチル、エチル、イソプロピル、tert-ブチル基などのC1~C5アルキル基、アミノ基、カルボキシ基、ヒドロキシ基などが挙げられる。これらの置換基は、アニリンのアミノ基に対して、オルト位及び/又はメタ位にあることが好ましい。また、これらの置換基は、1つ又は複数であり得、好ましくは1つ又は2つである。
 上記のアニリン誘導体としては、例えば、o-アミノトルエン、o-エチルアニリン、m-エチルアニリン、o-アミノフェノール、o-アミノ安息香酸、m-アミノ安息香酸、2,4-ジメチルアニリン、2,6-ジメチルアニリン、4-tert-ブチルアニリンなどが挙げられる。
As used herein, “aniline derivative” means a derivative of aniline having one or more substituents at the ortho, meta, and / or para positions with respect to the amino group of aniline. The plurality of substituents may be the same or different. The above substituents may be any substituents that do not impair the basicity of the amino group of aniline, that is, the electric discharge property. Such substituents include C 1 -C 5 alkyl groups such as methyl, ethyl, isopropyl, tert-butyl groups, amino groups, carboxy groups, hydroxy groups, and the like. These substituents are preferably in the ortho position and / or the meta position with respect to the amino group of aniline. Moreover, these substituents may be one or more, and preferably one or two.
Examples of the aniline derivatives include o-aminotoluene, o-ethylaniline, m-ethylaniline, o-aminophenol, o-aminobenzoic acid, m-aminobenzoic acid, 2,4-dimethylaniline, 2, Examples include 6-dimethylaniline and 4-tert-butylaniline.
 本明細書において、「ポリアニリン又はポリアニリン誘導体」とは、上記のアニリン又はアニリン誘導体が重合して形成される分子である。 In the present specification, “polyaniline or polyaniline derivative” is a molecule formed by polymerizing the above aniline or aniline derivative.
 本明細書において、「金属ナノ粒子の凝集体」とは、金属ナノ粒子の複数がポリアニリン又はポリアニリン誘導体をマトリクスとしてポリアニリン又はポリアニリン誘導体中に保持されている状態を指す。 In this specification, the “aggregate of metal nanoparticles” refers to a state in which a plurality of metal nanoparticles are held in polyaniline or polyaniline derivative using polyaniline or polyaniline derivative as a matrix.
 本明細書において、「金属ナノ粒子の単体」及び「ポリアニリン又はポリアニリン誘導体で覆われていない金属ナノ粒子」とは、ポリアニリン又はポリアニリン誘導体のマトリクスによって覆われていない、分散された金属ナノ粒子のことである。金属ナノ粒子がポリアニリン又はポリアニリン誘導体のマトリクスで覆われておらず、分散されていることは、電子顕微鏡による観察、又は金属粒子のゼータ電位のNicomp 380ZLS, Particle Sizing Systemsによる測定により確認できる。 In this specification, “metal nanoparticles alone” and “metal nanoparticles not covered with polyaniline or polyaniline derivatives” are dispersed metal nanoparticles that are not covered by a matrix of polyaniline or polyaniline derivatives. It is. It can be confirmed that the metal nanoparticles are not covered with the matrix of polyaniline or polyaniline derivative and are dispersed by observation with an electron microscope or measurement of the zeta potential of the metal particles by Nicomp 380ZLS or Particle Sizing Systems.
 本発明の方法では、アニリン又はアニリン誘導体を還元剤として用いて金属イオンを還元する。
 金属イオンとしては、金、白金、パラジウム、ロジウム、ルテニウム、銀などの貴金属イオン、銅などの非貴金属イオンが挙げられるが、なかでも貴金属イオンが好ましく、金及び白金イオンがより好ましい。
 上記の還元工程は、アニリン又はアニリン誘導体を、金属イオン含有化合物と混合することにより行うことができる。金属イオン含有化合物は、塩化金酸(HAuCl4)、塩化白金酸(H2PtCl6)、ヘキサアミン白金塩化物(Pt(NH3)6Cl4)、ジニトロジアミン白金(Pt(NO2)2(NH3)2)、塩化パラジウム(PdCl2、H2PdCl4)、テトラアミンパラジウム塩化物(Pd(NH3)4Cl2)、塩化ロジウム(RhCl3)、塩化ルテニウム(RuCl3)、硝酸銀(AgNO3)などの貴金属イオン含有化合物、硫酸銅(CuSO4)などの非貴金属イオン含有化合物などを含む。
In the method of the present invention, metal ions are reduced using aniline or an aniline derivative as a reducing agent.
Examples of metal ions include noble metal ions such as gold, platinum, palladium, rhodium, ruthenium and silver, and non-noble metal ions such as copper. Among these, noble metal ions are preferable, and gold and platinum ions are more preferable.
Said reduction process can be performed by mixing aniline or an aniline derivative with a metal ion containing compound. Metal ion-containing compounds include chloroauric acid (HAuCl 4 ), chloroplatinic acid (H 2 PtCl 6 ), hexaamine platinum chloride (Pt (NH 3 ) 6 Cl 4 ), dinitrodiamine platinum (Pt (NO 2 ) 2 ( NH 3 ) 2 ), palladium chloride (PdCl 2 , H 2 PdCl 4 ), tetraamine palladium chloride (Pd (NH 3 ) 4 Cl 2 ), rhodium chloride (RhCl 3 ), ruthenium chloride (RuCl 3 ), silver nitrate ( Including noble metal ion-containing compounds such as AgNO 3 ) and non-noble metal ion-containing compounds such as copper sulfate (CuSO 4 ).
 本発明においてはよりゼータ電位のより低い金属ナノ粒子を容易に得ることができるため、金属イオン含有化合物として塩化金酸(HAuCl4)及び塩化白金酸(H2PtCl6)のいずれかを使用することが好ましい。また同様の観点から還元剤としてアニリン及びアミノトルエン、エチルアニリン、アミノフェノール、アミノ安息香酸等のアニリン誘導体のいずれかを使用することが好ましい。 In the present invention, since metal nanoparticles having a lower zeta potential can be easily obtained, either chloroauric acid (HAuCl 4 ) or chloroplatinic acid (H 2 PtCl 6 ) is used as the metal ion-containing compound. It is preferable. From the same viewpoint, it is preferable to use aniline and any of aniline derivatives such as aminotoluene, ethylaniline, aminophenol, and aminobenzoic acid as a reducing agent.
 金属イオン含有化合物は、アニリン又はアニリン誘導体と混合したときに、金属イオンが好ましくは10-6~10-3濃度(M)、より好ましくは7×10-5~6×10-4となる濃度で用いることができる。 When the metal ion-containing compound is mixed with aniline or an aniline derivative, the concentration of the metal ion is preferably 10 −6 to 10 −3 (M), more preferably 7 × 10 −5 to 6 × 10 −4 Can be used.
 アニリン又はアニリン誘導体と金属イオン含有化合物とは、アニリン又はアニリン誘導体と金属イオンとのモル比が、好ましくは10~100:1、より好ましくは20~50:1となる量で混合することが好ましい。 The aniline or aniline derivative and the metal ion-containing compound are preferably mixed in such an amount that the molar ratio of the aniline or aniline derivative and the metal ion is preferably 10 to 100: 1, more preferably 20 to 50: 1. .
 上記の還元は、好ましくは室温(25℃)~80℃、より好ましくは60℃~80℃の温度で、好ましくは1分~60分間、より好ましくは1分~30分間、さらにより好ましくは2分~30分間行うことができる。反応時間を短くすることにより、ポリアニリン又はポリアニリン誘導体中に生成される金属ナノ粒子の粒子径を小さくでき、すなわちいわゆる金属クラスターとすることができる。 The above reduction is preferably performed at a temperature of room temperature (25 ° C.) to 80 ° C., more preferably 60 ° C. to 80 ° C., preferably 1 minute to 60 minutes, more preferably 1 minute to 30 minutes, even more preferably 2 Can be performed for 30 minutes. By shortening the reaction time, the particle diameter of the metal nanoparticles produced in the polyaniline or polyaniline derivative can be reduced, that is, a so-called metal cluster can be obtained.
 上記の還元は、金属イオン含有化合物及びアニリン又はアニリン誘導体を溶解できる適切な溶媒中で行うことができる。そのような溶媒としては、水、又は水と有機溶媒の混液が好ましく、有機溶媒としては、トルエン、ベンゼン及びヘキサンなどを用いることができる。水と有機溶媒とを混合する場合、水と有機溶媒との混合比は、好ましくは1:1~10(容量比)、より好ましくは1:1~5(容量比)である。 The above reduction can be performed in an appropriate solvent capable of dissolving the metal ion-containing compound and aniline or aniline derivative. As such a solvent, water or a mixed solution of water and an organic solvent is preferable, and toluene, benzene, hexane, or the like can be used as the organic solvent. When water and an organic solvent are mixed, the mixing ratio of water and the organic solvent is preferably 1: 1 to 10 (volume ratio), more preferably 1: 1 to 5 (volume ratio).
 また、所望の凝集物を容易に得ることができるため、有機溶媒としてトルエンが好ましい。他方、これらの溶媒は、本発明の金属ナノ粒子を得ることができる限り、電解質、ポリビニルアルコールのような分散剤、水酸化ナトリウムのようなpH調整剤等のその他の物質を適宜含んでいてもよい。 In addition, toluene is preferable as the organic solvent because a desired aggregate can be easily obtained. On the other hand, these solvents may appropriately contain other substances such as an electrolyte, a dispersant such as polyvinyl alcohol, and a pH adjuster such as sodium hydroxide as long as the metal nanoparticles of the present invention can be obtained. Good.
 反応溶液として混液を用いる場合、還元は金属イオンを含む水溶液と、アニリン又はアニリン誘導体を含む有機溶液とを接触させることによって行われる。 When a mixed solution is used as the reaction solution, the reduction is performed by bringing an aqueous solution containing metal ions into contact with an organic solution containing aniline or an aniline derivative.
 次に、上記の還元により得られる金属ナノ粒子の凝集体を、電気分解する。
 電気分解は、電解質溶液中に配置された1対の電極に電流を流すことにより行われるものであれば、特に限定されない。
 電解質溶液としては、上記の金属ナノ粒子の凝集体の電気分解に影響を与えず、ポリアニリン又はポリアニリン誘導体を分解できる電解質溶液であれば特に限定されない。電解質溶液の溶媒としては、金属ナノ粒子凝集体が分散できるので、水が好ましい。電解質溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液などを用いることができる。電解質溶液は、そのpHが12.0~14.0であることが好ましい。
Next, the aggregate of metal nanoparticles obtained by the above reduction is electrolyzed.
The electrolysis is not particularly limited as long as the electrolysis is performed by flowing a current through a pair of electrodes arranged in the electrolyte solution.
The electrolyte solution is not particularly limited as long as it is an electrolyte solution that can decompose polyaniline or a polyaniline derivative without affecting the electrolysis of the above-mentioned aggregate of metal nanoparticles. As the solvent of the electrolyte solution, water is preferable because metal nanoparticle aggregates can be dispersed. As the electrolyte solution, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, or the like can be used. The electrolyte solution preferably has a pH of 12.0 to 14.0.
 本発明においては、所望の電気分解を行うことができ、本発明の金属ナノ粒子を得ることができる限り、その他の物質を含んでいてもよい。 In the present invention, other substances may be included as long as desired electrolysis can be performed and the metal nanoparticles of the present invention can be obtained.
 また、所望の金属ナノ粒子を容易に得ることができるため、電気分解は室温程度の温度で行うことが好ましく、また、凝集体10~50mgを10~100ml程度の溶媒に分散させることが好ましい。 In addition, since desired metal nanoparticles can be easily obtained, electrolysis is preferably performed at a temperature of about room temperature, and 10 to 50 mg of the aggregate is preferably dispersed in a solvent of about 10 to 100 ml.
 電気分解は、好ましくは1.5~2.2V、さらに好ましくは1.5~2.0V、より好ましくは1.8~2.0Vの範囲の電位を作用極に印加することで行うことができる。この範囲の電位は、電気分解の間、一定に保つことが好ましい。電気分解は、好ましくは1~20時間、さらに好ましくは1~15時間、より好ましくは3~10時間、さらにより好ましくは4~9時間行うことができる。このような条件で電気分解を行うことにより、ポリアニリン又はポリアニリン誘導体を充分に過酸化して分解でき、また、適切に分散された金属ナノ粒子を得ることができる。 Electrolysis can be performed by applying a potential in the range of preferably 1.5 to 2.2 V, more preferably 1.5 to 2.0 V, more preferably 1.8 to 2.0 V to the working electrode. The potential in this range is preferably kept constant during electrolysis. The electrolysis is preferably performed for 1 to 20 hours, more preferably 1 to 15 hours, more preferably 3 to 10 hours, and even more preferably 4 to 9 hours. By performing electrolysis under such conditions, the polyaniline or polyaniline derivative can be sufficiently peroxidized and decomposed, and appropriately dispersed metal nanoparticles can be obtained.
 電気分解は、0.001秒から10秒の一定期間一定の高電位を与え、その後、0.001秒から10秒の一定期間一定の低電位を作用極に繰り返し与えるような、パルス形状の電位を与えることでも行うことができる。低電位側は好ましくは-2.0~0V範囲であって、高電位側が好ましくは1.5~2.2V、より好ましくは1.8~2.0Vの範囲の電位で、低電位側と高電位側いずれも一つの電位に固定してパルス形状の電位を与える。これにより、高電位を印加した際にポリアニリン又はポリアニリン誘導体の分解反応生成物の吸着などにより汚染された電極を、低電位で還元することでクリーニングを行いながら電気分解することが可能である。 Electrolysis can also be applied by applying a pulse-shaped potential that gives a constant high potential for a fixed period of 0.001 to 10 seconds and then repeatedly applies a constant low potential to the working electrode for a fixed period of 0.001 to 10 seconds. It can be carried out. The low potential side is preferably in the range of −2.0 to 0 V, and the high potential side is preferably in the range of 1.5 to 2.2 V, more preferably in the range of 1.8 to 2.0 V. Both the low potential side and the high potential side have one potential. To give a pulse-shaped potential. Thereby, when a high potential is applied, an electrode contaminated by adsorption of a decomposition reaction product of polyaniline or a polyaniline derivative can be electrolyzed while being cleaned by reducing at a low potential.
 電気分解に用いられる電極は、通常の電気分解に用いられるものであれば、特に限定されない。対極及び作用極の材料としては、炭素(グラッシーカーボンや導電性ダイヤモンド)、タングステン、モリブデン、タンタル、ニオブ、チタン、コバルトなどの金属を用いることができる。電気分解には、参照電極を用いてよく、参照電極としては、銀/塩化銀、水銀/塩化水銀などの電極を用いることができる。 The electrode used for electrolysis is not particularly limited as long as it is used for normal electrolysis. As a material for the counter electrode and the working electrode, metals such as carbon (glassy carbon or conductive diamond), tungsten, molybdenum, tantalum, niobium, titanium, cobalt, and the like can be used. A reference electrode may be used for the electrolysis, and an electrode such as silver / silver chloride or mercury / mercury chloride can be used as the reference electrode.
 本発明の方法により製造される金属ナノ粒子は、その表面のゼータ電位が、0~5mV、より好ましくは0.1mV~3mVである。
 従来の金属ナノ粒子は、有機物質によりその表面が覆われているが、本発明の方法により得られる金属ナノ粒子は、非常に低いゼータ電位を有するので、その表面がほとんど他の物質で覆われていない、金属が露出した状態であると考えられる。このような金属は、硫黄(S)、窒素(N)原子などと相互作用しやすいので、本発明の方法により得られる金属ナノ粒子は、タンパク質、核酸などの生体分子との結合性が非常に高く、これらの生体分子の標識物質として適すると考えられる。
The metal nanoparticles produced by the method of the present invention have a zeta potential on the surface of 0 to 5 mV, more preferably 0.1 mV to 3 mV.
The surface of conventional metal nanoparticles is covered with an organic substance, but the metal nanoparticles obtained by the method of the present invention have a very low zeta potential, so that the surface is almost covered with other substances. It is considered that the metal is not exposed. Since such metals are likely to interact with sulfur (S), nitrogen (N) atoms, etc., the metal nanoparticles obtained by the method of the present invention have very high binding properties with biomolecules such as proteins and nucleic acids. It is considered to be suitable as a labeling substance for these biomolecules.
 具体的には、従来のPVP(ポリビニルピロリドン)、PVA(ポリビニルアルコール)、グルタチオン等の保護剤の存在下、MeOH(メタノール)、水等の溶媒中、クエン酸、アスコルビン酸、NaBH4等の還元剤を用いるナノ金属粒子の製造方法においては、得られた金属ナノ粒子のゼータ電位が高く、その表面に保護剤による保護層が存在する。 Specifically, reduction of citric acid, ascorbic acid, NaBH 4 and the like in the presence of a protective agent such as conventional PVP (polyvinyl pyrrolidone), PVA (polyvinyl alcohol), and glutathione in a solvent such as MeOH (methanol) and water. In the method for producing nanometal particles using an agent, the obtained metal nanoparticles have a high zeta potential, and a protective layer of a protective agent is present on the surface thereof.
 これに対し、本発明においては、前記の製造方法を用いて金属ナノ粒子が製造されるため、本発明の金属ナノ粒子は非常に低いゼータ電位を有する。また、本発明の電気分解が進行するにつれて、金属ナノ粒子のゼータ電位が低下する。このことは、ポリアニリン又はポリアニリン誘導体で覆われた金属ナノ粒子がこれらによって覆われていない金属ナノ粒子に変化していることを示している。 On the other hand, in the present invention, since the metal nanoparticles are produced using the production method described above, the metal nanoparticles of the present invention have a very low zeta potential. Moreover, as the electrolysis of the present invention proceeds, the zeta potential of the metal nanoparticles decreases. This indicates that the metal nanoparticles covered with polyaniline or polyaniline derivative are changed to metal nanoparticles not covered with them.
 また、金属ナノ粒子がポリアニリン又はポリアニリン誘導体で覆われていないことは、金属ナノ粒子のIRスペクトルを測定することによって確認することもできる。具体的には、保護層を有する金属ナノ粒子のIRスペクトルを測定した場合、保護層に由来する様々なピークが確認される。他方、本発明の金属ナノ粒子は実質的に保護層に由来するピークが実質的に確認することはできない。即ち、本発明の金属ナノ粒子は、金属ナノ粒子を測定したIRチャートにおいて、有機化合物に由来するピークを実質的に有さない。 It can also be confirmed by measuring the IR spectrum of the metal nanoparticles that the metal nanoparticles are not covered with polyaniline or polyaniline derivatives. Specifically, when the IR spectrum of metal nanoparticles having a protective layer is measured, various peaks derived from the protective layer are confirmed. On the other hand, the metal nanoparticle of the present invention cannot substantially confirm a peak derived from the protective layer. That is, the metal nanoparticles of the present invention substantially have no peak derived from the organic compound in the IR chart obtained by measuring the metal nanoparticles.
 本発明において「有機化合物に由来するピーク」とは、一般的な炭素、水素、酸素、窒素、硫黄等の原子を含む有機化合物の置換基及び骨格構造に由来するピークを意味する。有機化合物の置換基とは、-OH、-NH2、-SH、-COH、-COOH、-CH3等、骨格構造としてはC-C、C=C、C-H、C-N、C=N、C-O、C=O、C-H等を挙げることができる。他方、アニリンおよびアニリン誘導体は、通常、水または有機溶媒に対して溶解性を示すため、これらは本発明のナノ金属粒子表面には実質的には存在しない。 In the present invention, the “peak derived from an organic compound” means a peak derived from a substituent and a skeleton structure of an organic compound containing atoms such as general carbon, hydrogen, oxygen, nitrogen, and sulfur. Substituents of organic compounds are —OH, —NH 2 , —SH, —COH, —COOH, —CH 3, etc., and skeleton structures are C—C, C═C, C—H, C—N, C ═N, C—O, C═O, C—H and the like. On the other hand, since aniline and aniline derivatives are usually soluble in water or an organic solvent, they are not substantially present on the surface of the nanometal particles of the present invention.
 また、「有機化合物に由来するピークを実質的に有さない」とは、4000cm-1~700cm-1において金属ナノ粒子のIR測定をした場合、得られたIRチャートにおいて、透過率(%T)が好ましくは20%以下、より好ましくは30%以下のピークを確認することができないことを意味する。なお、本発明のIRの測定方法については、実施例において詳説する。 Also, a "substantially no peak derived from the organic compound", when the IR measurement of the metal nanoparticles in the 4000 cm -1 ~ 700 cm -1, in the resulting IR chart, the transmittance (% T ) Is preferably 20% or less, more preferably 30% or less. The IR measurement method of the present invention will be described in detail in Examples.
 本発明の方法により製造される金属ナノ粒子は、その平均粒径が0.5nm~10nmであり、好ましくは0.5nm~7.5nmである。本明細書において、金属ナノ粒子の平均粒径は、透過型電子顕微鏡を用いて測定される値である。
 上記の金属ナノ粒子は、このように小さい粒子径を有するので、重量当たりの表面積を大きくすることができ、高い触媒活性を有すると考えられる。
 また、このような小さい粒子径を有することにより、上記の金属ナノ粒子は、バルク状態の金属よりも融点が大幅に低下する。よって、より低温で金属ナノ粒子を融解させることができる。
The metal nanoparticles produced by the method of the present invention have an average particle size of 0.5 nm to 10 nm, preferably 0.5 nm to 7.5 nm. In this specification, the average particle diameter of the metal nanoparticles is a value measured using a transmission electron microscope.
Since the above metal nanoparticles have such a small particle diameter, the surface area per weight can be increased, and it is considered that the metal nanoparticles have high catalytic activity.
Moreover, by having such a small particle diameter, the melting point of the metal nanoparticles is significantly lower than that of the metal in the bulk state. Therefore, the metal nanoparticles can be melted at a lower temperature.
 他方、本発明の金属ナノ粒子の粒子径は、その全体として好ましくは0.3~50nm、より好ましくは0.5~10nmに含まれる。前記範囲に含まれる場合、同様により高い触媒活性を有することもある。 On the other hand, the particle diameter of the metal nanoparticles of the present invention is preferably in the range of 0.3 to 50 nm, more preferably 0.5 to 10 nm as a whole. When included in the above range, it may have higher catalytic activity as well.
 また本発明の金属ナノ粒子は極めて狭い粒度分布を有する。具体的には、本発明の金属ナノ粒子は、0~25%、好ましくは0~15%、より好ましくは0~10%のCV値の粒度分布を有する。このため、同様に、本発明の金属ナノ粒子は、重量当たりの表面積をより大きくすることができ、その結果、より高い触媒活性を有することがある。また本発明によれば、極めて狭い粒度分布を有する金属ナノ粒子を容易、かつ、大量に製造することもできる。 Also, the metal nanoparticles of the present invention have a very narrow particle size distribution. Specifically, the metal nanoparticles of the present invention have a CV value particle size distribution of 0 to 25%, preferably 0 to 15%, more preferably 0 to 10%. For this reason, similarly, the metal nanoparticles of the present invention can have a larger surface area per weight, and as a result, may have higher catalytic activity. Moreover, according to the present invention, metal nanoparticles having an extremely narrow particle size distribution can be easily produced in large quantities.
 本発明においては、ポリアニリン又はポリアニリン誘導体で覆われた金属ナノ粒子の凝集体を電気分解することによりポリアニリン又はポリアニリン誘導体を実質的にその表面より除去しているため、金属ナノ粒子を均一かつ安定に、さらに容易に得ることができる。このため、本発明の金属ナノ粒子は極めて微小であり、かつ、粒度分布が狭い、即ち、単分散性に優れたナノ粒子である。 In the present invention, polyaniline or polyaniline derivative is substantially removed from the surface by electrolyzing the aggregate of metal nanoparticles covered with polyaniline or polyaniline derivative. Can be obtained more easily. For this reason, the metal nanoparticles of the present invention are extremely fine and have a narrow particle size distribution, that is, nanoparticles excellent in monodispersity.
 本発明の金属ナノ粒子の製造方法により得られる金属ナノ粒子は、上記のような特徴を有するので、触媒、燃料電池、生体分子の標識物質、金属めっきなどに好適に用いることができる。 Since the metal nanoparticles obtained by the method for producing metal nanoparticles of the present invention have the above-described characteristics, they can be suitably used for catalysts, fuel cells, biomolecular labeling substances, metal plating, and the like.
 特に本発明の金属ナノ粒子は高い触媒活性を有する場合がある。具体的には、本発明の金属ナノ粒子はその表面に実質的に保護層を有さないため、触媒として使用する場合、それらを除去するための焼成を必要としない。このため、金属ナノ粒子をカーボンや酸化ケイ素を含む触媒担体に容易に担持させることにより、高い活性を有する触媒を容易に製造することができる。特に、前記の特性を利用することにより、電気化学や燃料電池における電極触媒等として、本発明の金属ナノ粒子を好適に使用することができる。 In particular, the metal nanoparticles of the present invention may have a high catalytic activity. Specifically, since the metal nanoparticles of the present invention do not substantially have a protective layer on the surface thereof, when used as a catalyst, firing for removing them is not required. For this reason, a catalyst having high activity can be easily produced by easily supporting metal nanoparticles on a catalyst carrier containing carbon or silicon oxide. In particular, by utilizing the above properties, the metal nanoparticles of the present invention can be suitably used as an electrode catalyst or the like in electrochemical or fuel cells.
 また同様に、本発明の金属ナノ粒子は抗体等との結合性を利用して生体分子の標識物質として使用することもできる。例えば、本発明の金属ナノ粒子と、金属ナノ粒子表面と直接結合することができるチオール基(-SH)やアミノ基(-NH2)を有する抗体とを一工程で容易に結合させることができる。このため、イムノクロマト法により抗体を容易に標識化させることもできる。即ち、本発明の金属ナノ粒子をインフルエンザ用簡易検査キットや妊娠検査キットとして使用することができる。 Similarly, the metal nanoparticles of the present invention can be used as a biomolecule labeling substance by utilizing the binding property with an antibody or the like. For example, the metal nanoparticles of the present invention and an antibody having a thiol group (—SH) or amino group (—NH 2 ) that can be directly bonded to the surface of the metal nanoparticles can be easily bonded in one step. . For this reason, the antibody can be easily labeled by immunochromatography. That is, the metal nanoparticles of the present invention can be used as a simple test kit for influenza or a pregnancy test kit.
 さらに、本発明の金属ナノ粒子は極めて微小であり、かつ、粒度分布が狭い金属ナノ粒子であるため、金属めっきとしても好適に使用することができる。例えば、前記の特性によって、本発明の金属ナノ粒子は微小材料へ適用することができ、プラスチック材料と容易に密着させることもできる。具体的には、異方性導電フィルム(ACF)、ACF用導電性ビーズ、ナノ粒子めっき等の材料として使用することもできる。 Furthermore, since the metal nanoparticles of the present invention are extremely fine and have a narrow particle size distribution, they can be suitably used as metal plating. For example, due to the above characteristics, the metal nanoparticles of the present invention can be applied to a fine material and can be easily adhered to a plastic material. Specifically, it can also be used as a material for anisotropic conductive film (ACF), conductive beads for ACF, nanoparticle plating and the like.
 導電性ビーズやナノ粒子めっき等の材料として、
"Green Electroless Plating Method Using Gold Nanoparticles for Conducting Microbeads: Application to Anisotropic Conductive Films", S. Tokonami, Y. Yamamoto, Y. Mizutani, I. Ota, H. Shiigi, T. Nagaoka, J. Electrochem. Soc., 156(12), D558-D563 (2009)や"A Novel Electroless Plating Method for Conducting Microbeads by Using Gold Nanoparticle",Y. Yamamoto, S. Takeda, H. Shiigi, T. Nagaoka, J. Electrochem. Soc., 154(9), D462-D466 (2007)、"Characterization of Au Nanoparticle Film Electrodes Prepared on Polystyrene", Y. Yamamoto, H. Shiigi, T. Nagaoka, Electroanalysis, 17(24), 2224-2230 (2005)に記載される金属ナノ粒子として使用可能である。
As materials such as conductive beads and nanoparticle plating,
"Green Electroless Plating Method Using Gold Nanoparticles for Conducting Microbeads: Application to Anisotropic Conductive Films", S. Tokonami, Y. Yamamoto, Y. Mizutani, I. Ota, H. Shiigi, T. Nagaoka, J. Electrochem. Soc., 156 (12), D558-D563 (2009) and "A Novel Electroless Plating Method for Conducting Microbeads by Using Gold Nanoparticle", Y. Yamamoto, S. Takeda, H. Shiigi, T. Nagaoka, J. Electrochem. Soc., 154 (9), D462-D466 (2007), "Characterization of Au Nanoparticle Film Electrodes Prepared on Polystyrene", Y. Yamamoto, H. Shiigi, T. Nagaoka, Electroanalysis, 17 (24), 2224-2230 (2005) It can be used as the metal nanoparticles described.
 他方、本発明の金属ナノ粒子は実質的にその表面に保護層を有さないため、水への分散性にも優れる。このため、水系溶媒等を用いる用途においてもこれらを好適に使用することができる。 On the other hand, since the metal nanoparticles of the present invention have substantially no protective layer on the surface, they are excellent in water dispersibility. For this reason, these can be used conveniently also in the use using an aqueous solvent etc.
 以下にいくつかの実施態様を挙げて本発明を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described with some embodiments, but the present invention is not limited thereto.
<平均粒径の測定方法>
 透過型電子顕微鏡(日本電子社製、製品名JEM-2000FXII)を用い、150,000倍以上に拡大して金属ナノ粒子を撮影する。得られた画像から任意に100個の金属ナノ粒子の粒径を測定し、その平均値を金属ナノ粒子の平均粒径とする。
<Measuring method of average particle diameter>
Using a transmission electron microscope (manufactured by JEOL Ltd., product name JEM-2000FXII), the metal nanoparticles are photographed at a magnification of 150,000 times or more. The particle size of 100 metal nanoparticles is measured arbitrarily from the obtained image, and the average value is taken as the average particle size of the metal nanoparticles.
<CV値の測定方法>
 粒度分布測定装置(大塚電子社製、製品名:ELSZ, Zetapotential&Particle size Analyzer)を用い、下記式により変動係数に相当するCV値を算出する。
   変動係数CV(%)=(標準偏差/平均粒径)×100
<Measurement method of CV value>
Using a particle size distribution measuring device (manufactured by Otsuka Electronics Co., Ltd., product name: ELSZ, Zetapotential & Particle size Analyzer), the CV value corresponding to the coefficient of variation is calculated by the following formula.
Coefficient of variation CV (%) = (standard deviation / average particle size) x 100
<ゼータ電位の測定方法>
 ゼータ電位測定装置(Particle Sizing Systems社製、製品名:Nicomp 380ZLS,Zeta Potential Analyzer)を用い、電気泳動法によりゼータ電位を算出する。
 具体的には、移動速度(泳動速度)をレーザー光で測定し、単位電場当たりの移動速度(電気泳動移動度)を求めることによりゼータ電位を算出する。
<Method for measuring zeta potential>
The zeta potential is calculated by electrophoresis using a zeta potential measuring device (product name: Nicomp 380ZLS, Zeta Potential Analyzer, manufactured by Particle Sizing Systems).
More specifically, the zeta potential is calculated by measuring the moving speed (electrophoretic speed) with laser light and determining the moving speed per unit electric field (electrophoretic mobility).
<IRの測定方法>
 測定用のペレットを、KBrプレート(mini KBrプレート、ジャスコエンジニアリング社製)を専用のプレス機(mini press、ジャスコ社製)の加圧ホルダー部に配置し、0.001gの金属ナノ粒子を添加し、さらにKBrプレートで挟み、プレスすることで作製する。次いで、赤外分光計(FT/IR-4200、ジャスコ社製)を用い、透過法により金属ナノ粒子の表面を観察する。
<IR measurement method>
Place the pellet for measurement, KBr plate (mini KBr plate, manufactured by Jusco Engineering Co., Ltd.) on the pressure holder part of a dedicated press machine (mini press, manufactured by Jusco Co., Ltd.), add 0.001 g of metal nanoparticles, Further, it is made by sandwiching between KBr plates and pressing. Next, the surface of the metal nanoparticles is observed by a transmission method using an infrared spectrometer (FT / IR-4200, manufactured by Jusco).
実施例1
 金属イオン含有化合物としての1重量%塩化金酸四水和物(和光純薬社製)水溶液30mlと、0.01Mアニリン(和光純薬社製)を含むトルエン9mlとを混合し(合計39ml)、60℃の恒温槽に5分又は10分間放置して、金イオンを還元した。その後、8500rpm、5℃にて30分間遠心分離して、超純水でリンスした。この洗浄操作を3回繰り返した。
 得られたポリアニリン中の金ナノ粒子の凝集体を、透過型電子顕微鏡(JEM-2000FXII、日本電子社製)で観察した結果を、図2に示す。図2において、(A)は5分間、(B)は10分間還元を行って得られた凝集体を示す。
 得られた凝集体中の金ナノ粒子の粒径は、電子顕微鏡での観察及び粒度分布測定装置により測定して、5分間の還元の後に平均粒径0.92nm(CV値5%)程度(クラスター)、10分間の還元の後に平均粒径2.70nm(CV値13%)程度(ナノ粒子)であった。
Example 1
30 ml of a 1% by weight chloroauric acid tetrahydrate (manufactured by Wako Pure Chemical Industries) aqueous solution as a metal ion-containing compound and 9 ml of toluene containing 0.01 M aniline (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed (39 ml in total), Gold ions were reduced by leaving them in a constant temperature bath at 60 ° C. for 5 minutes or 10 minutes. Then, it centrifuged at 8500 rpm and 5 degreeC for 30 minutes, and rinsed with the ultrapure water. This washing operation was repeated three times.
The result of observing the aggregate of the gold nanoparticles in the obtained polyaniline with a transmission electron microscope (JEM-2000FXII, manufactured by JEOL Ltd.) is shown in FIG. In FIG. 2, (A) shows the aggregate obtained by reducing for 5 minutes, and (B) shows the aggregate obtained by reducing for 10 minutes.
The particle size of the gold nanoparticles in the obtained agglomerate was measured with an electron microscope and measured with a particle size distribution measuring device. After 5 minutes of reduction, the average particle size was about 0.92 nm (CV value 5%) (cluster) ) After 10 minutes of reduction, the average particle size was about 2.70 nm (CV value 13%) (nanoparticles).
実施例2
 金属イオン含有化合物としての1重量%塩化金酸四水和物(和光純薬社製)水溶液76μl及び0.1Mアニリン(和光純薬社製)500μlに超純水を加えて全量を25mlとし、60℃に保ちながら20分間撹拌して、金イオンを還元した。その後、8500rpm、5℃にて30分間遠心分離して、超純水でリンスした。この洗浄操作を3回繰り返した。得られた金ナノ粒子の凝集体の沈殿にポリビニルアルコール(和光純薬社製)を含む0.1M水酸化ナトリウム水溶液(和光純薬社製)40mlを加えて混合し、12時間放置した。
 得られた凝集体を、実施例1と同様にして透過型電子顕微鏡で観察した結果を、図3に示す。
 得られた凝集体中の金ナノ粒子の粒径は、電子顕微鏡での観察及び粒度分布測定装置により測定して、平均粒径5.52nm(CV値15%)程度であった。
Example 2
Ultrapure water was added to 76 μl of an aqueous solution of 1 wt% chloroauric acid tetrahydrate (manufactured by Wako Pure Chemical Industries) as a metal ion-containing compound and 500 μl of 0.1 M aniline (manufactured by Wako Pure Chemical Industries, Ltd.) to a total volume of 25 ml, 60 The mixture was stirred for 20 minutes while maintaining the temperature to reduce gold ions. Then, it centrifuged at 8500 rpm and 5 degreeC for 30 minutes, and rinsed with the ultrapure water. This washing operation was repeated three times. 40 ml of a 0.1 M aqueous sodium hydroxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) containing polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the precipitate of aggregates of the obtained gold nanoparticles and mixed, and the mixture was allowed to stand for 12 hours.
The result of having observed the obtained aggregate with the transmission electron microscope similarly to Example 1 is shown in FIG.
The particle size of the gold nanoparticles in the obtained aggregate was about 5.52 nm (CV value 15%) as measured with an electron microscope and measured with a particle size distribution measuring device.
実施例3
 図4に示す電気分解装置を用いて、実施例2で得られたポリアニリン中の金ナノ粒子の凝集体を電気分解した。図3に示す装置は、参照電極としてAg/AgCl、対極にタンタル線(ニラコ社製)、作用極としてカーボンクロス(GF-20-S9、新日本カーボン社製) 0.29gを用いたH字型セルである。電解質溶液として0.1M水酸化ナトリウム水溶液(pH13)を用いた。
 電気分解の条件は、定電位1.85Vで、3、4、6、8又は9時間であった。
 また、実施例2で得られた凝集体10~50mgを、0.01%ポリビニルアルコール(和光純薬社製)を含む40mlの0.1M水酸化ナトリウム水溶液に加え、10分間超音波を用いて均一に分散させ、次いで室温(25℃)で電気分解を行った。
 電気分解して得られた金ナノ粒子を、実施例1と同様にして透過型電子顕微鏡で観察した結果を、図5に示す。図5は、(A)3時間、(B)4時間、(C)6時間、(D)8時間及び(E)9時間電気分解した金ナノ粒子の電子顕微鏡写真を示す。
Example 3
The aggregate of gold nanoparticles in the polyaniline obtained in Example 2 was electrolyzed using the electrolysis apparatus shown in FIG. The apparatus shown in FIG. 3 is an H-shaped type using Ag / AgCl as a reference electrode, a tantalum wire (manufactured by Niraco) as a counter electrode, and a carbon cloth (GF-20-S9, manufactured by Shin Nippon Carbon Co., Ltd.) 0.29 g as a working electrode. Cell. A 0.1 M aqueous sodium hydroxide solution (pH 13) was used as the electrolyte solution.
The electrolysis conditions were a constant potential of 1.85 V, 3, 4, 6, 8 or 9 hours.
Further, 10 to 50 mg of the aggregate obtained in Example 2 was added to 40 ml of 0.1 M sodium hydroxide aqueous solution containing 0.01% polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.), and uniformly dispersed using ultrasonic waves for 10 minutes. Then, electrolysis was performed at room temperature (25 ° C.).
The result of observing the gold nanoparticles obtained by electrolysis with a transmission electron microscope in the same manner as in Example 1 is shown in FIG. FIG. 5 shows electron micrographs of gold nanoparticles electrolyzed (A) 3 hours, (B) 4 hours, (C) 6 hours, (D) 8 hours and (E) 9 hours.
 また、本実施例で電気分解した金ナノ粒子のゼータ電位を、Nicomp 380ZLS, Zeta Potential Analyzerを用いて測定した結果を、表1に示す。表1には、電子顕微鏡での観察により測定した金ナノ粒子の粒径(平均粒径)も併せて示す。 Table 1 shows the results of measuring the zeta potential of the gold nanoparticles electrolyzed in this example using Nicomp 実 施 380ZLS and Zeta Potential Analyzer. Table 1 also shows the particle diameter (average particle diameter) of the gold nanoparticles measured by observation with an electron microscope.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、電気分解の時間が長くなるにつれて、金ナノ粒子のゼータ電位が低下することがわかる。電気分解を行っていない金ナノ粒子の集合体は、ポリアニリンで覆われているので、表面が正電荷を有する。しかし、電気分解を行うことにより、金ナノ粒子の表面の金が露出し、ゼータ電位が低下することがわかる。 From the results of Table 1, it can be seen that the zeta potential of the gold nanoparticles decreases as the electrolysis time increases. Since the aggregate of gold nanoparticles that has not been electrolyzed is covered with polyaniline, the surface has a positive charge. However, it can be seen that by performing electrolysis, gold on the surface of the gold nanoparticles is exposed and the zeta potential is lowered.
 また、0、3、4、6、8及び9時間の電解時間経過後の金ナノ粒子のCV値は、粒度分布測定装置により測定して、それぞれ15%、15%、17%、20%、18%及び20%であった。 In addition, the CV value of the gold nanoparticles after the electrolysis time of 0, 3, 4, 6, 8 and 9 hours was measured by a particle size distribution measuring device, respectively 15%, 15%, 17%, 20%, 18% and 20%.
実施例4
 実施例2の1重量%塩化金酸四水和物水溶液76μlを、1重量%の塩化白金酸四水和物(和光純薬社製)水溶液760μlに変え、0.1Mアニリンを5ml用い、80℃にて30分間還元を行った以外は、実施例2と同様の手順で、ポリアニリン中の白金ナノ粒子凝集体を得た。
 得られた白金ナノ粒子凝集体を、実施例3で用いたのと同じ電気分解装置を用いて、同様に9時間電気分解した。
 得られた白金ナノ粒子凝集体、及び白金ナノ粒子を、実施例1と同様にして透過型電子顕微鏡で観察した結果を、図6の(A)及び(B)にそれぞれ示す。
Example 4
76 μl of the 1 wt% chloroauric acid tetrahydrate aqueous solution of Example 2 was changed to 760 μl of a 1 wt% aqueous solution of chloroplatinic acid tetrahydrate (manufactured by Wako Pure Chemical Industries, Ltd.), and 5 ml of 0.1M aniline was used at 80 ° C. A platinum nanoparticle aggregate in polyaniline was obtained in the same procedure as in Example 2 except that the reduction was carried out for 30 minutes.
The obtained platinum nanoparticle aggregate was electrolyzed in the same manner for 9 hours using the same electrolysis apparatus as used in Example 3.
The results obtained by observing the obtained platinum nanoparticle aggregates and platinum nanoparticles with a transmission electron microscope in the same manner as in Example 1 are shown in FIGS. 6 (A) and 6 (B), respectively.
 また、9時間電気分解した白金ナノ粒子の粒径(平均粒径)及びゼータ電位を測定した結果を、表2に示す。 Table 2 shows the results of measuring the particle size (average particle size) and zeta potential of platinum nanoparticles electrolyzed for 9 hours.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、9時間の電気分解により、ポリアニリンが分解されて、白金ナノ粒子が得られたことがわかる。 From the results in Table 2, it can be seen that polyaniline was decomposed by electrolysis for 9 hours to obtain platinum nanoparticles.
 また、0及び9時間の電解時間経過後の金ナノ粒子のCV値は、粒度分布測定装置により測定して、それぞれ14%及び14%であった。 The CV values of the gold nanoparticles after the lapse of 0 and 9 hours of electrolysis were 14% and 14%, respectively, as measured by a particle size distribution measuring device.
参考例
 参照電極としてAg/AgCl、対極としてタンタル線(ニラコ社製)、作用極としてカーボンクロス(GF-20-S9、新日本カーボン社製)0.068gを用い、多孔質バイコールガラス(コーニング社製)を用いて"Enantioselective uptake of amino acids using an electromodulated column packed with carbon fibres modified with overoxidised polypyrrole", B. Deore, H. Yakabe, H. Shiigi, T. Nagaoka, Analyst, 127, 935~939 (2002)に記載される既知の方法により、シリンジ型フローセルの電気分解装置を作製した。実施例2で得られた金ナノ粒子凝集体を含む0.1M水酸化ナトリウム水溶液(pH13)を、ペリスタポンプ(SJ-1211H、アトー社製)を用いて5ml/分で循環させながら、定電位1.85Vで56時間電気分解した。用いた電気分解装置の写真を、図7に示す。
 得られた物質を、実施例1と同様にして透過型電子顕微鏡で観察した結果を、図8に示す。
 また、得られた物質のゼータ電位及び平均粒径を測定した結果を、表3に示す。
Reference example Ag / AgCl as the reference electrode, tantalum wire (manufactured by Niraco) as the counter electrode, 0.068 g of carbon cloth (GF-20-S9, Shin Nippon Carbon) as the working electrode, porous Vycor glass (manufactured by Corning) ) "Enantioselective uptake of amino acids using an electromodulated column packed with carbon fibers modified with overoxidised polypyrrole", B. Deore, H. Yakabe, H. Shiigi, T. Nagaoka, Analyst, 127, 935-939 (2002) A syringe type flow cell electrolysis apparatus was prepared by a known method described in 1). A 0.1M sodium hydroxide aqueous solution (pH 13) containing the gold nanoparticle aggregate obtained in Example 2 was circulated at 5 ml / min using a peristaltic pump (SJ-1211H, manufactured by Ato), and a constant potential of 1.85 V. For 56 hours. A photograph of the electrolyzer used is shown in FIG.
The results obtained by observing the obtained substance with a transmission electron microscope in the same manner as in Example 1 are shown in FIG.
In addition, Table 3 shows the results of measuring the zeta potential and average particle diameter of the obtained substance.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図8及び表3の結果から、電気分解の時間が長すぎると、ポリアニリンは充分に分解されてゼータ電位が低下するが、金粒子同士が融着して、粒径が大きくなることがわかる。 8 and Table 3 show that if the electrolysis time is too long, the polyaniline is sufficiently decomposed to lower the zeta potential, but the gold particles are fused to increase the particle size.
 また、0及び56時間の電解時間経過後の金ナノ粒子のCV値は、粒度分布測定装置により測定して、それぞれ15%及び30%であった。 The CV values of the gold nanoparticles after the electrolysis time of 0 and 56 hours were 15% and 30%, respectively, as measured with a particle size distribution measuring device.
実施例5~7
 金属イオン含有化合物としての1重量%塩化金酸四水和物(和光純薬社製)水溶液76μlに超純水を加えた水溶液25mlに、0.1Mのo-アミノトルエン(和光純薬社製)を含むトルエン5mlを加えて全量を30mlとし、60℃に保ちながら20分間撹拌して、金イオンを還元した。次いで、8500 rpm、5℃にて30分間遠心分離して、超純水でリンスした。この洗浄を3回行った(実施例5)。
 また、o-アミノトルエンに代えてo-エチルアニリン(実施例6)及びm-エチルアニリン(実施例7)を用いて、上記と同様の手法で金ナノ粒子凝集体を作製した。
 得られた凝集体を、実施例1と同様にして透過型電子顕微鏡で観察した結果を、図9に示す。図9は、(A)実施例5、(B)実施例6及び(C)実施例7で作成した金ナノ粒子凝集体の写真である。
 実施例5、6及び7で得られた凝集体中の金ナノ粒子の粒径は、電子顕微鏡での観察及び粒度分布測定装置により測定して、それぞれ平均粒径7.22nm(CV値22%)、7.42nm(CV値20%)、及び7.14nm(CV値17%)程度であった。
Examples 5-7
0.1M o-aminotoluene (manufactured by Wako Pure Chemical Industries, Ltd.) in 25 ml of an aqueous solution containing 76 μl of 1 wt% chloroauric acid tetrahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) as a metal ion-containing compound Toluene containing 5 ml was added to make a total volume of 30 ml, and the mixture was stirred for 20 minutes while maintaining at 60 ° C. to reduce gold ions. Subsequently, it was centrifuged at 8500 rpm and 5 ° C. for 30 minutes and rinsed with ultrapure water. This washing was performed 3 times (Example 5).
Also, gold nanoparticle aggregates were prepared in the same manner as described above using o-ethylaniline (Example 6) and m-ethylaniline (Example 7) instead of o-aminotoluene.
The results of observing the obtained aggregates with a transmission electron microscope in the same manner as in Example 1 are shown in FIG. FIG. 9 is a photograph of the gold nanoparticle aggregate prepared in (A) Example 5, (B) Example 6 and (C) Example 7.
The particle diameters of the gold nanoparticles in the aggregates obtained in Examples 5, 6 and 7 were measured with an electron microscope and measured with a particle size distribution measuring device, and the average particle diameter was 7.22 nm (CV value 22%), respectively. , 7.42 nm (CV value 20%), and 7.14 nm (CV value 17%).
実施例8~10
 金属イオン含有化合物としての1重量%塩化金酸四水和物(和光純薬社製)水溶液76μl及び0.1Mのo-アミノフェノール(和光純薬社製)500μlに超純水を加えて全量を25mlとし、60℃に保ちながら20分間撹拌して、金イオンを還元した。次いで、8500rpm、5℃にて30分間遠心分離して超純水でリンスした。この洗浄を3回行った(実施例8)。
 また、o-アミノフェノールに代えてo-アミノ安息香酸(実施例9)及びm-アミノ安息香酸(実施例10)を用いて、上記と同様の手法で金ナノ粒子凝集体を作製した。
 得られた凝集体を、実施例1と同様にして透過型電子顕微鏡で観察した結果を、図10に示す。図10は、(A)実施例8、(B)実施例9及び(C)実施例10で作成した金ナノ粒子凝集体の写真である。
 実施例8、9及び10で得られた凝集体中の金ナノ粒子の粒径は、電子顕微鏡での観察及び粒度分布測定装置により測定して、それぞれ平均粒径5.52nm(CV値16%)、3.79nm(CV値16%)、及び4.85nm(CV値21%)程度であった。
Examples 8-10
Add ultrapure water to 76 μl of 1 wt% chloroauric acid tetrahydrate (manufactured by Wako Pure Chemical Industries) as a metal ion-containing compound and 500 μl of 0.1 M o-aminophenol (manufactured by Wako Pure Chemical Industries, Ltd.) The mixture was stirred for 20 minutes while maintaining the temperature at 60 ° C. to reduce gold ions. Subsequently, it was centrifuged at 8500 rpm and 5 ° C. for 30 minutes and rinsed with ultrapure water. This washing was performed 3 times (Example 8).
Also, gold nanoparticle aggregates were prepared in the same manner as described above using o-aminobenzoic acid (Example 9) and m-aminobenzoic acid (Example 10) instead of o-aminophenol.
The results of observation of the obtained aggregates with a transmission electron microscope in the same manner as in Example 1 are shown in FIG. FIG. 10 is a photograph of the gold nanoparticle aggregate prepared in (A) Example 8, (B) Example 9 and (C) Example 10.
The particle diameters of the gold nanoparticles in the aggregates obtained in Examples 8, 9 and 10 were measured with an electron microscope and measured with a particle size distribution measuring device, respectively, and the average particle diameter was 5.52 nm (CV value 16%). 3.79 nm (CV value 16%) and 4.85 nm (CV value 21%).
 実施例5~10の結果から、アニリン誘導体を還元剤として用いて金属ナノ粒子を製造できることがわかる。 From the results of Examples 5 to 10, it can be seen that metal nanoparticles can be produced using an aniline derivative as a reducing agent.
実施例11
 実施例1で得られたポリアニリン中の金ナノ粒子(平均粒径0.92nm、CV値5%)の凝集体を、実施例3で用いたのと同じ電気分解装置を用いて、同様に電解質溶液として0.1M水酸化ナトリウム水溶液(pH13)を使用して、定電位1.85Vで18時間電気分解した。この粒子のゼータ電位は、0.20mVであった。
得られた金ナノ粒子の粒径分布を、大塚電子社製 ELSZ, Zetapotential&Particle size Analyzer用いて測定した結果を図11(A)に示す。
Example 11
Using the same electrolysis apparatus as used in Example 3, the aggregate of gold nanoparticles (average particle size: 0.92 nm, CV value: 5%) in polyaniline obtained in Example 1 was similarly used as an electrolyte solution. Was electrolyzed at a constant potential of 1.85 V for 18 hours using a 0.1 M aqueous sodium hydroxide solution (pH 13). The zeta potential of this particle was 0.20 mV.
FIG. 11A shows the result of measuring the particle size distribution of the obtained gold nanoparticles using ELSZ, Zetapotential & Particle size Analyzer manufactured by Otsuka Electronics.
 比較として、"Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold(I)-Thiolate Complexes and Thiolate-Protected Gold Nanocrystals", Y. Negishi, K. Nobusada, T. Tsukuda, J. Am. Chem. Soc., 127, 5261~5270 (2005)に記載される既知の方法により、金ナノ粒子を作製した。
 具体的には、金属イオン含有化合物としての5mMの塩化金酸50ml(溶媒;メタノール)に保護剤として1mmolのグルタチオン(0.306g)を加えて30分間冷却撹拌(0~4℃)し、次いで還元剤として0.2MのNaBH412.5mlを加えて冷却したままさらに1時間撹拌して、金イオンを還元して金の粒子を得た。次いで、この溶液を8500rpm、5℃にて30分間遠心分離して、メタノールでリンスした。この洗浄を3回行った。こうして得られた沈殿を60℃で乾燥させた。次いで、超純水20mlに加え、超音波処理により分散させた。この粒子のゼータ電位は、-37.76mVであった。
 得られた粒子の粒径分布を、大塚電子社製 ELSZ, Zetapotential&Particle size Analyzer用いて測定した結果を図11(B)に示す。
For comparison, "Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold (I) -Thiolate Complexes and Thiolate-Protected Gold Nanocrystals", Y. Negishi, K. Nobusada, T. Tsukuda, J. Am. Chem. Soc. , 127, 5261-5270 (2005), gold nanoparticles were prepared by a known method.
Specifically, 1 mmol of glutathione (0.306 g) as a protective agent was added to 50 ml of 5 mM chloroauric acid (solvent; methanol) as a metal ion-containing compound, and the mixture was cooled and stirred (0 to 4 ° C.) for 30 minutes, and then reduced. As an agent, 12.5 ml of 0.2M NaBH 4 was added and stirred for an additional hour while cooling to reduce gold ions to obtain gold particles. The solution was then centrifuged at 8500 rpm at 5 ° C. for 30 minutes and rinsed with methanol. This washing was performed 3 times. The precipitate thus obtained was dried at 60 ° C. Subsequently, it was added to 20 ml of ultrapure water and dispersed by ultrasonic treatment. The zeta potential of this particle was −37.76 mV.
FIG. 11B shows the result of measuring the particle size distribution of the obtained particles using ELSZ, Zetapotential & Particle size Analyzer manufactured by Otsuka Electronics.
 図11の結果から、本発明の方法により作製した金ナノ粒子の粒径は平均粒径1.3nm(CV値23%)であり、既知手法により作製した金クラスターの粒径は平均粒径1.6nm(CV値31%)であることがわかった。既知の手法により作製した金クラスターに比べて、本発明の方法によれば、粒径分布の狭い金ナノ粒子が作製できることがわかった。つまり、本発明の方法によると、所望の粒径の金属ナノ粒子を、効率よく作製できる。 From the results of FIG. 11, the average particle size of the gold nanoparticles prepared by the method of the present invention is 1.3 nm (CV value 23%), and the average particle size of the gold clusters prepared by the known method is 1.6 nm. (CV value 31%). It was found that gold nanoparticles having a narrow particle size distribution can be produced according to the method of the present invention as compared with gold clusters produced by a known method. That is, according to the method of the present invention, metal nanoparticles having a desired particle diameter can be efficiently produced.
実施例12
<金ナノ粒子の触媒としての使用>
 実施例2で得られたポリアニリン中の金ナノ粒子(平均粒径5.52nm、CV値15%)の凝集体を、実施例3で用いたのと同じ電気分解装置を用いて、同様に電解質溶液として0.1M水酸化ナトリウム水溶液(pH13)を使用し、定電位1.85Vで9時間電気分解して得られた金ナノ粒子(平均粒径6.31nm、CV値20%)を、8500rpm、5℃にて30分間遠心分離して超純水でリンスした。この洗浄を3回行った。このようにして得られた沈殿を再度超純水0.5mlに分散させた。この分散溶液10μlを電極(直径1mm、GCEグラッシーカーボン電極、BAS社製)に滴下し、30分間真空乾燥した。このようにして得られた金ナノ粒子固定化したグラッシーカーボン電極を得た(a)。
Example 12
<Use of gold nanoparticles as catalyst>
Using the same electrolysis apparatus as used in Example 3, the aggregate of gold nanoparticles (average particle size 5.52 nm, CV value 15%) in polyaniline obtained in Example 2 was used in the same manner as the electrolyte solution. Gold nanoparticles (average particle size 6.31 nm, CV value 20%) obtained by electrolysis at a constant potential of 1.85 V for 9 hours using 0.1 M sodium hydroxide aqueous solution (pH 13) as 8500 rpm at 5 ° C The mixture was centrifuged for 30 minutes and rinsed with ultrapure water. This washing was performed 3 times. The precipitate thus obtained was again dispersed in 0.5 ml of ultrapure water. 10 μl of this dispersion was dropped onto an electrode (diameter 1 mm, GCE glassy carbon electrode, manufactured by BAS) and vacuum dried for 30 minutes. Thus obtained glassy carbon electrode fixed with gold nanoparticles was obtained (a).
 比較として、"Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold(I)-Thiolate Complexes and Thiolate-Protected Gold Nanocrystals", Y. Negishi, K. Nobusada, T. Tsukuda, J. Am. Chem. Soc., 127, 5261~5270 (2005)に記載される既知の方法により、金ナノ粒子を作製した。 For comparison, "Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold (I) -Thiolate Complexes and Thiolate-Protected Gold Nanocrystals '', Y. Negishi, K. Nobusada, T. Tsukum,. , 127, 5261-5270) (2005), gold nanoparticles were prepared by a known method.
 具体的には、金属イオン含有化合物としての5mMの塩化金酸50ml(溶媒;メタノール)に保護剤として1mmolのグルタチオン(0.306g)を加えて30分間冷却撹拌(0~4℃)し、次いで還元剤として0.2MのNaBH412.5mlを加えて冷却したままさらに1時間撹拌して、金イオンを還元して金の粒子を得た。この溶液を8500rpm、5℃にて30分間遠心分離して、メタノールでリンスした。この洗浄を3回行った。こうして得られた沈殿を60℃で乾燥させた。次いで、超純水20mlに加え、超音波処理により分散させた。この分散溶液10μlを電極(直径1mm、GCEグラッシーカーボン電極、BAS社製)に滴下し、30分間真空乾燥した。 Specifically, 1 mmol of glutathione (0.306 g) as a protective agent was added to 50 ml of 5 mM chloroauric acid (solvent; methanol) as a metal ion-containing compound, and the mixture was cooled and stirred (0 to 4 ° C.) for 30 minutes, and then reduced. As an agent, 12.5 ml of 0.2M NaBH 4 was added and stirred for an additional hour while cooling to reduce gold ions to obtain gold particles. This solution was centrifuged at 8500 rpm and 5 ° C. for 30 minutes and rinsed with methanol. This washing was performed 3 times. The precipitate thus obtained was dried at 60 ° C. Subsequently, it was added to 20 ml of ultrapure water and dispersed by ultrasonic treatment. 10 μl of this dispersion was dropped onto an electrode (diameter 1 mm, GCE glassy carbon electrode, manufactured by BAS) and vacuum dried for 30 minutes.
 "The humidity dependence of the electrical conductivity of a solublepolyaniline-poly(vinyl alcohol ) composite film", K. Ogura, T. Saino, M. Nakayama, H. Shiigi, J. Mater. Chem., 7, 2363~2366 (1997)に記載される既知の方法により、ポリアニリン粉末を作製した。 "The humidity dependence of the electrical conductivity of a solublepolyaniline-poly (vinyl alcohol) composite film", K. Ogura, T. Saino, M. Nakayama, H. Shiigi, J. Mater. Chem., 7, 2363 ~ 2363 ~ 2363 ~ 1997) to prepare a polyaniline powder.
 具体的には、0.15Mアニリンを含む0.1Mパラトルエンスルホン酸水溶液100mlに0.15M過硫酸アンモニウムを含む0.1Mパラトルエンスルホン酸水溶液100mlをゆっくりと加え、室温(25℃)で8時間攪拌した。得られた沈殿を減圧濾過し、0.1Mパラトルエンスルホン酸水溶液で溶液の色が無色になるまで充分に洗浄した。次いで、ろ紙に残った粉末を真空乾燥した。
 この粉末0.01gを超純水20mlに加え、30分間超音波処理を行い分散させた。この分散溶液を、前記金ナノ粒子固定化したグラッシーカーボン電極にマイクロシリンジを用いて10μl滴下して3時間真空乾燥した(b)。
 これらのポリアニリン被覆したグラッシーカーボン電極を作用電極として、図12に示す電気化学セルを用いて、参照電極としてAg/AgCl、対極にタンタル線(ニラコ社製)を用いて、電気化学測定を行った。電解質溶液として0.05M硫酸水溶液(pH1.2)を用いた。電気化学装置(ポテンショガルバノスタットHZ3000、北斗電工社製)を用いて、挿引範囲-0.2~0.8V、挿引速度10mV/sで、サイクリックボルタンメトリーを行った。この結果を図13に示す。
Specifically, 100 ml of a 0.1 M paratoluenesulfonic acid aqueous solution containing 0.15 M ammonium persulfate was slowly added to 100 ml of a 0.1 M paratoluenesulfonic acid aqueous solution containing 0.15 M aniline, followed by stirring at room temperature (25 ° C.) for 8 hours. The resulting precipitate was filtered under reduced pressure and washed thoroughly with a 0.1 M paratoluenesulfonic acid aqueous solution until the color of the solution became colorless. Next, the powder remaining on the filter paper was vacuum-dried.
0.01 g of this powder was added to 20 ml of ultrapure water and subjected to ultrasonic treatment for 30 minutes for dispersion. 10 μl of this dispersion solution was dropped on the glassy carbon electrode fixed with gold nanoparticles using a microsyringe and vacuum-dried for 3 hours (b).
These polyaniline-coated glassy carbon electrodes were used as working electrodes, electrochemical measurements were performed using the electrochemical cell shown in FIG. 12, Ag / AgCl as the reference electrode, and tantalum wire (manufactured by Niraco) as the counter electrode. . A 0.05 M sulfuric acid aqueous solution (pH 1.2) was used as the electrolyte solution. Cyclic voltammetry was performed using an electrochemical apparatus (potentiogalvanostat HZ3000, manufactured by Hokuto Denko) at an insertion range of -0.2 to 0.8 V and an insertion speed of 10 mV / s. The result is shown in FIG.
実施例13
 実施例1と同様に、金属イオン含有化合物としての1重量%塩化金酸四水和物(和光純薬社製)水溶液30mlと、0.01Mアニリン(和光純薬社製)を含むトルエン9mlとを混合し(合計39ml)、60℃の恒温槽に10分間放置して、金イオンを還元した。その後、8500rpm、5℃にて30分間遠心分離して、超純水でリンスした。この洗浄操作を3回繰り返した。
 得られたポリアニリン中の金ナノ粒子の凝集体を、透過型電子顕微鏡(JEM-2000FXII、日本電子社製)で観察した結果を、図14a、bに示す。
 得られた凝集体中の金ナノ粒子の粒径は、電子顕微鏡での観察及び粒度分布測定装置により測定して、10分間の還元の後に平均粒径1.10nm(CV値9.1%)程度であった。
 得られた金ナノ粒子の凝集体の沈殿にポリビニルアルコール(和光純薬社製)を含む0.1M水酸化ナトリウム水溶液(和光純薬社製)40mlを加えて混合し、12時間放置し、参考例のシリンジ型フローセルの電気分解装置により電気分解を行った。
 金ナノ粒子凝集体を含む0.1M水酸化ナトリウム水溶液(pH13)を、ペリスタポンプ(SJ-1211H、アトー社製)を用いて5ml/分で循環させながら、定電位1.85Vで18時間電気分解した。その後、15000rpm、5℃にて30分間遠心分離して、超純水でリンスした。この洗浄操作を3回繰り返した。このようにして得られた沈殿を再度超純水1.0mlに分散させた。
 得られた物質を、実施例1と同様にして透過型電子顕微鏡で観察した結果を、図14cに示す。電子顕微鏡での観察及び粒度分布測定装置により測定して、平均粒径1.13nm(CV値10%)の金ナノ粒子が得られた。
 また、得られた物質のゼータ電位及び粒径を測定した結果を、表4に示す。
Example 13
In the same manner as in Example 1, 30 ml of a 1 wt% chloroauric acid tetrahydrate (manufactured by Wako Pure Chemical Industries) aqueous solution as a metal ion-containing compound and 9 ml of toluene containing 0.01 M aniline (manufactured by Wako Pure Chemical Industries, Ltd.) The mixture was mixed (39 ml in total) and left in a constant temperature bath at 60 ° C. for 10 minutes to reduce gold ions. Then, it centrifuged at 8500 rpm and 5 degreeC for 30 minutes, and rinsed with the ultrapure water. This washing operation was repeated three times.
FIGS. 14a and 14b show the results of observation of the aggregates of gold nanoparticles in the obtained polyaniline with a transmission electron microscope (JEM-2000FXII, manufactured by JEOL Ltd.).
The particle size of the gold nanoparticles in the obtained aggregate was approximately 1.10 nm (CV value 9.1%) after 10 minutes of reduction, as measured with an electron microscope and measured with a particle size distribution analyzer. It was.
40 ml of 0.1M sodium hydroxide aqueous solution (manufactured by Wako Pure Chemical Industries) containing polyvinyl alcohol (manufactured by Wako Pure Chemical Industries) was added to the precipitate of the aggregates of the obtained gold nanoparticles and mixed, and the mixture was allowed to stand for 12 hours. Electrolysis was carried out using an electrolysis apparatus of a syringe type flow cell.
A 0.1 M aqueous sodium hydroxide solution (pH 13) containing gold nanoparticle aggregates was electrolyzed at a constant potential of 1.85 V for 18 hours while circulating at 5 ml / min using a peristaltic pump (SJ-1211H, manufactured by Ato). Then, it centrifuged at 15000 rpm and 5 degreeC for 30 minutes, and rinsed with the ultrapure water. This washing operation was repeated three times. The precipitate thus obtained was again dispersed in 1.0 ml of ultrapure water.
The result obtained by observing the obtained substance with a transmission electron microscope in the same manner as in Example 1 is shown in FIG. 14c. Gold nanoparticles having an average particle diameter of 1.13 nm (CV value of 10%) were obtained by observation with an electron microscope and measurement with a particle size distribution measuring apparatus.
In addition, Table 4 shows the results of measuring the zeta potential and particle size of the obtained substance.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
得られた粒子の粒径分布を、大塚電子社製 ELSZ, Zetapotential&Particle size Analyzer用いて測定した結果を図15に示す。 FIG. 15 shows the result of measuring the particle size distribution of the obtained particles using ELSZ, Zetapotential & Particle Analyzer manufactured by Otsuka Electronics Co., Ltd.
 電気分解の際、作用電極においてポリアニリンの電気分解が起こるが、シリンジ型フローセルのような構造を持つ電気化学セルを用いることで、凝集体の作用電極への接触効率が向上し、ポリアニリンの電気分解が均一に引き起こされるため、電解時間の増大による平均粒径やCV値の増大を抑制することが可能である。 Electrolysis of polyaniline occurs at the working electrode during electrolysis, but using an electrochemical cell with a structure like a syringe type flow cell improves the contact efficiency of the aggregate to the working electrode and electrolysis of polyaniline. Therefore, it is possible to suppress an increase in average particle size and CV value due to an increase in electrolysis time.
実施例14
 実施例2で得られたポリアニリン中の金ナノ粒子(平均粒径5.52nm、CV値15%)の凝集体を、実施例3で用いたのと同じ電気分解装置を用いて、電解質溶液として0.1M水酸化ナトリウム水溶液(pH13)を使用して、同様に定電位1.85Vで9時間電気分解して得られた金ナノ粒子(平均粒径6.31nm、CV値20%)を、8500rpm、5℃にて30分間遠心分離して超純水でリンスした。この洗浄を3回行った。このようにして得られた沈殿を60℃で3日間真空乾燥した。
 比較として、"Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold(I)-Thiolate Complexes and Thiolate-Protected Gold Nanocrystals", Y. Negishi, K. Nobusada, T. Tsukuda, J. Am. Chem. Soc., 127, 5261~5270 (2005)に記載される既知の方法により、金ナノ粒子を作製した。
 具体的には、金属イオン含有化合物としての5mMの塩化金酸50ml(溶媒;メタノール)に保護剤として1mmolのグルタチオン(0.306g)を加えて30分間冷却撹拌(0~4℃)し、次いで還元剤として0.2MのNaBH412.5mlを加えて冷却したままさらに1時間撹拌して、金イオンを還元して金の粒子を得た。この溶液を8500rpm、5℃にて30分間遠心分離して、メタノールでリンスした。この洗浄を3回行った。こうして得られた沈殿を60℃で3日間真空乾燥した。
 赤外分光計(FT/IR-4200、ジャスコ社製)を用い、透過法により金ナノ粒子の表面を観察した。測定用のペレットは、KBrプレート(mini KBrプレート、ジャスコエンジニアリング社製)を専用のプレス機(mini press、ジャスコ社製)に配置し、0.001gの金ナノ粒子粉末を添加し、さらにKBrプレートで挟み、プレスすることで作製した。この結果を図16に示す。比較の金ナノ粒子では保護層を形成するグルタチオンに基づくピークが観察されたが、本発明による金ナノ粒子では吸着水のピークのみが得られ、アニリンに起因する有機化合物の存在を示すピークは得られなかった。
Example 14
Aggregates of gold nanoparticles (average particle size 5.52 nm, CV value 15%) in polyaniline obtained in Example 2 were prepared as an electrolyte solution using the same electrolysis apparatus as used in Example 3. Similarly, gold nanoparticles (average particle size 6.31 nm, CV value 20%) obtained by electrolysis at a constant potential of 1.85 V for 9 hours using M sodium hydroxide aqueous solution (pH 13), 8500 rpm, 5 ° C And then rinsed with ultrapure water. This washing was performed 3 times. The precipitate thus obtained was vacuum-dried at 60 ° C. for 3 days.
For comparison, "Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold (I) -Thiolate Complexes and Thiolate-Protected Gold Nanocrystals", Y. Negishi, K. Nobusada, T. Tsukuda, J. Am. Chem. Soc. , 127, 5261-5270 (2005), gold nanoparticles were prepared by a known method.
Specifically, 1 mmol of glutathione (0.306 g) as a protective agent was added to 50 ml of 5 mM chloroauric acid (solvent; methanol) as a metal ion-containing compound, and the mixture was cooled and stirred (0 to 4 ° C.) for 30 minutes, and then reduced. As an agent, 12.5 ml of 0.2M NaBH 4 was added and stirred for another 1 hour while cooling to reduce gold ions to obtain gold particles. This solution was centrifuged at 8500 rpm and 5 ° C. for 30 minutes and rinsed with methanol. This washing was performed 3 times. The precipitate thus obtained was vacuum dried at 60 ° C. for 3 days.
The surface of the gold nanoparticles was observed by a transmission method using an infrared spectrometer (FT / IR-4200, manufactured by Jusco). For the pellets for measurement, place a KBr plate (mini KBr plate, manufactured by Jusco Engineering) on a special press machine (mini press, manufactured by Jusco), add 0.001 g of gold nanoparticle powder, It was produced by sandwiching and pressing. The result is shown in FIG. In the comparative gold nanoparticles, a peak based on glutathione forming a protective layer was observed, but in the gold nanoparticles according to the present invention, only a peak of adsorbed water was obtained, and a peak indicating the presence of an organic compound due to aniline was obtained. I couldn't.
a1     対極
a2     参照極
a3     作用極
a4     ポリアニリン金ナノ粒子凝集体溶液
a1 Counter electrode a2 Reference electrode a3 Working electrode a4 Polyaniline gold nanoparticle aggregate solution
b1     参照極
b2     対極
b3     作用極
b4     ポリアニリン金ナノ粒子凝集体溶液
b5     参照極Ag|AgCl
b6     作用極 カーボンクロス
b7     電解液
b8     作用極 リード線
b9     対極 タンタル線
b10    バイコールガラス管
b11    Load
b1 Reference electrode b2 Counter electrode b3 Working electrode b4 Polyaniline gold nanoparticle aggregate solution b5 Reference electrode Ag | AgCl
b6 Working electrode Carbon cloth b7 Electrolyte b8 Working electrode Lead wire b9 Counter electrode Tantalum wire b10 Vycor glass tube b11 Load
c1     粒子の%
c2     平均粒径(nm)
c3     粒子の%
c4     平均粒径(nm)
c1% of particles
c2 Average particle size (nm)
c3% of particles
c4 Average particle size (nm)
d1     作用極:グラッシーカーボン(GC)電極
d2     参照極:Ag|AgCl
d3     対極:白金線
d4     電解質溶液
d5     ビーカー
d6     GC電極
d7     絶縁樹脂
d8     断面
d9     電極面
d10    GC
d1 Working electrode: Glassy carbon (GC) electrode d2 Reference electrode: Ag | AgCl
d3 Counter electrode: Platinum wire d4 Electrolyte solution d5 Beaker d6 GC electrode d7 Insulating resin d8 Cross section d9 Electrode surface d10 GC
e1     ×10-6A電流
e2     電位/V  vs.Ag|AgCl
e1 × 10 -6 A current e2 potential / V vs. Ag | AgCl
f1     a  電解前
f2     b  電解前
f3     c  18h電解後
f1 a before electrolysis f2 b before electrolysis f3 c after 18h electrolysis
g1     粒子の%
g2     平均粒径(nm)
g1% of particles
g2 Average particle size (nm)
h1     波数(cm-1
h2     波数(cm-1
h1 wave number (cm -1 )
h2 wave number (cm -1 )

Claims (12)

  1.  0~5mVのゼータ電位、0.5~10nmの平均粒径及びCV値が0~25%の粒度分布を有する金属ナノ粒子。 Metal nanoparticles having a zeta potential of 0 to 5 mV, an average particle size of 0.5 to 10 nm, and a particle size distribution with a CV value of 0 to 25%.
  2.  金属ナノ粒子が、金及び白金のいずれかを含む請求項1に記載の金属ナノ粒子。 The metal nanoparticle according to claim 1, wherein the metal nanoparticle contains either gold or platinum.
  3.  金属ナノ粒子が、金属ナノ粒子を測定したIRチャートにおいて、有機化合物に由来するピークを実質的に有さない請求項1に記載の金属ナノ粒子。 The metal nanoparticle according to claim 1, wherein the metal nanoparticle has substantially no peak derived from an organic compound in an IR chart obtained by measuring the metal nanoparticle.
  4.  金属ナノ粒子が、
     アニリン又はアニリン誘導体を還元剤として用いて金属イオンを還元して、ポリアニリン又はポリアニリン誘導体で覆われた金属ナノ粒子の凝集体を得て、
     得られた金属ナノ粒子の凝集体を電気分解することにより、ポリアニリン又はポリアニリン誘導体で覆われていない金属ナノ粒子を得る
    工程を含む製造方法によって得られる請求項1に記載の金属ナノ粒子。
    Metal nanoparticles,
    Metal ions are reduced using aniline or aniline derivatives as a reducing agent to obtain aggregates of metal nanoparticles covered with polyaniline or polyaniline derivatives,
    The metal nanoparticles according to claim 1, which are obtained by a production method including a step of obtaining metal nanoparticles not covered with polyaniline or a polyaniline derivative by electrolyzing the obtained aggregate of metal nanoparticles.
  5.  請求項1に記載の金属ナノ粒子からなる触媒。 A catalyst comprising the metal nanoparticles according to claim 1.
  6.  アニリン又はアニリン誘導体を還元剤として用いて金属イオンを還元して、ポリアニリン又はポリアニリン誘導体で覆われた金属ナノ粒子の凝集体を得て、
     得られた金属ナノ粒子の凝集体を電気分解することにより、ポリアニリン又はポリアニリン誘導体で覆われていない金属ナノ粒子を得る
    工程を含む金属ナノ粒子の製造方法。
    Metal ions are reduced using aniline or aniline derivatives as a reducing agent to obtain aggregates of metal nanoparticles covered with polyaniline or polyaniline derivatives,
    A method for producing metal nanoparticles, comprising electrolyzing the obtained aggregate of metal nanoparticles to obtain metal nanoparticles not covered with polyaniline or a polyaniline derivative.
  7.  還元が、金属イオンを含む水溶液と、アニリン又はアニリン誘導体を含む有機溶液とを接触させることによって行われる請求項6に記載の方法。 The method according to claim 6, wherein the reduction is carried out by bringing an aqueous solution containing metal ions into contact with an organic solution containing aniline or an aniline derivative.
  8.  電気分解が、金属ナノ粒子の凝集体を含む電解質溶液中で行われる請求項6に記載の方法。 The method according to claim 6, wherein the electrolysis is performed in an electrolyte solution containing an aggregate of metal nanoparticles.
  9.  電解質溶液が、12.0~14.0のpHを有する請求項6に記載の方法。 The method according to claim 6, wherein the electrolyte solution has a pH of 12.0 to 14.0.
  10.  電気分解が、1.5~2.2Vの電位で、1時間~20時間行われる請求項6に記載の方法。 The method according to claim 6, wherein the electrolysis is performed at a potential of 1.5 to 2.2 V for 1 hour to 20 hours.
  11.  電気分解が、1.5~2.0Vの電位で、1時間~15時間行われる請求項6に記載の方法。 The method according to claim 6, wherein the electrolysis is performed at a potential of 1.5 to 2.0 V for 1 hour to 15 hours.
  12.  金属が、金及び白金を含む貴金属である請求項6に記載の方法。 The method according to claim 6, wherein the metal is a noble metal containing gold and platinum.
PCT/JP2010/072562 2009-12-15 2010-12-15 Metal nanoparticles and method for producing metal nanoparticles WO2011074606A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011546148A JPWO2011074606A1 (en) 2009-12-15 2010-12-15 Metal nanoparticles and method for producing metal nanoparticles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-284121 2009-12-15
JP2009284121 2009-12-15

Publications (1)

Publication Number Publication Date
WO2011074606A1 true WO2011074606A1 (en) 2011-06-23

Family

ID=44167358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072562 WO2011074606A1 (en) 2009-12-15 2010-12-15 Metal nanoparticles and method for producing metal nanoparticles

Country Status (2)

Country Link
JP (1) JPWO2011074606A1 (en)
WO (1) WO2011074606A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014178283A1 (en) * 2013-05-01 2017-02-23 国立大学法人山梨大学 Method for producing metal fine particles, method for producing fuel cell electrode catalyst, supported metal fine particle catalyst, and fuel cell electrode catalyst
JP2018196854A (en) * 2017-05-23 2018-12-13 トヨタ自動車株式会社 Manufacturing method of platinum catalyst
CN114318469A (en) * 2021-12-30 2022-04-12 中国科学院合肥物质科学研究院 Preparation method and application of polyaniline nanofiber/carbon cloth composite electrode material
WO2022118612A1 (en) * 2020-12-02 2022-06-09 石福金属興業株式会社 Gold-supported carbon catalyst and method for manufacturing same
WO2023171691A1 (en) * 2022-03-10 2023-09-14 キヤノン株式会社 Conductive composition, method for manufacturing same, method for recording conductive image, and conductive image

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297617A (en) * 2002-04-03 2003-10-17 Sony Corp Method of manufacturing nano-sized ferromagnetic alloy particles
JP2005193202A (en) * 2004-01-09 2005-07-21 Kurita Water Ind Ltd Water treatment method and water treatment system
JP2006088011A (en) * 2004-09-22 2006-04-06 Yamaguchi Univ Method for decomposing hardly decomposable organometallic complex
WO2009014165A1 (en) * 2007-07-24 2009-01-29 Nippon Sheet Glass Company, Limited Method of concentrating colloid dispersion liquid
JP2009057594A (en) * 2007-08-31 2009-03-19 Shinko Kagaku Kogyosho:Kk Method for manufacturing fine metal particle
JP2009062570A (en) * 2007-09-05 2009-03-26 Mitsubishi Materials Corp Method for producing dispersion of high concentration of metal nanoparticle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297617A (en) * 2002-04-03 2003-10-17 Sony Corp Method of manufacturing nano-sized ferromagnetic alloy particles
JP2005193202A (en) * 2004-01-09 2005-07-21 Kurita Water Ind Ltd Water treatment method and water treatment system
JP2006088011A (en) * 2004-09-22 2006-04-06 Yamaguchi Univ Method for decomposing hardly decomposable organometallic complex
WO2009014165A1 (en) * 2007-07-24 2009-01-29 Nippon Sheet Glass Company, Limited Method of concentrating colloid dispersion liquid
JP2009057594A (en) * 2007-08-31 2009-03-19 Shinko Kagaku Kogyosho:Kk Method for manufacturing fine metal particle
JP2009062570A (en) * 2007-09-05 2009-03-26 Mitsubishi Materials Corp Method for producing dispersion of high concentration of metal nanoparticle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014178283A1 (en) * 2013-05-01 2017-02-23 国立大学法人山梨大学 Method for producing metal fine particles, method for producing fuel cell electrode catalyst, supported metal fine particle catalyst, and fuel cell electrode catalyst
US10693146B2 (en) 2013-05-01 2020-06-23 University Of Yamanashi Production method for fine metal particles, production method for fuel cell electrode catalyst, supported fine metal particle catalyst, and fuel cell electrode catalyst
JP2018196854A (en) * 2017-05-23 2018-12-13 トヨタ自動車株式会社 Manufacturing method of platinum catalyst
WO2022118612A1 (en) * 2020-12-02 2022-06-09 石福金属興業株式会社 Gold-supported carbon catalyst and method for manufacturing same
JPWO2022118612A1 (en) * 2020-12-02 2022-06-09
JP7181541B2 (en) 2020-12-02 2022-12-01 石福金属興業株式会社 Gold-supported carbon catalyst and method for producing the same
CN114318469A (en) * 2021-12-30 2022-04-12 中国科学院合肥物质科学研究院 Preparation method and application of polyaniline nanofiber/carbon cloth composite electrode material
CN114318469B (en) * 2021-12-30 2023-08-04 中国科学院合肥物质科学研究院 Preparation method and application of polyaniline nanofiber/carbon cloth composite electrode material
WO2023171691A1 (en) * 2022-03-10 2023-09-14 キヤノン株式会社 Conductive composition, method for manufacturing same, method for recording conductive image, and conductive image

Also Published As

Publication number Publication date
JPWO2011074606A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
Zhao et al. Intradendrimer exchange of metal nanoparticles
Balasubramanian et al. Reaction of Au55 (PPh3) 12Cl6 with thiols yields thiolate monolayer protected Au75 clusters
Chen et al. Synthesis of thiolate-stabilized platinum nanoparticles in protolytic solvents as isolable colloids
Huang et al. Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell
Donkers et al. Synthesis and isolation of the molecule-like cluster Au38 (PhCH2CH2S) 24
Ingram et al. Electroactive three-dimensional monolayers: anthraquinone ω-functionalized alkanethiolate-stabilized gold clusters
Chen 4-Hydroxythiophenol-protected gold nanoclusters in aqueous media
Jimenez et al. Hexanethiolate monolayer protected 38 gold atom cluster
Hiramatsu et al. pH-controlled assembly and disassembly of electrostatically linked CdSe− SiO2 and Au− SiO2 nanoparticle clusters
Song et al. Heterophase ligand exchange and metal transfer between monolayer protected clusters
JP6298884B2 (en) Metal nanoplate, method for producing the same, conductive ink composition containing the same, and conductive film
Shon et al. Water-soluble, sulfonic acid-functionalized, monolayer-protected nanoparticles and an ionically conductive molten salt containing them
Kokulnathan et al. Hydrothermal synthesis of silver molybdate/reduced graphene oxide hybrid composite: an efficient electrode material for the electrochemical detection of tryptophan in food and biological samples
Lu et al. Surface-enhanced raman scattering of a Cu/Pd alloy colloid protected by poly (N-vinyl-2-pyrrolidone)
Li et al. Synthesis and catalytic performance of polydopamine supported metal nanoparticles
Branham et al. Arylthiolate-protected silver quantum dots
Huang et al. Facile synthesis of dendritic gold nanostructures with hyperbranched architectures and their electrocatalytic activity toward ethanol oxidation
Chen et al. Carbene-functionalized ruthenium nanoparticles
WO2011074606A1 (en) Metal nanoparticles and method for producing metal nanoparticles
KP et al. Hierarchically-structured silver nanoflowers for highly conductive metallic inks with dramatically reduced filler concentration
Sangamithirai et al. A voltammetric biosensor based on poly (o-methoxyaniline)-gold nanocomposite modified electrode for the simultaneous determination of dopamine and folic acid
Jiang et al. Preparation, characterization, and catalytic effect of CS2-stabilized silver nanoparticles in aqueous solution
Ojani et al. Au hollow nanospheres on graphene support as catalyst for sodium borohydride electrooxidation
CN109103467B (en) Preparation method and application of electrochemical stripping graphene-based metal catalyst
Nimmala et al. Core size conversion: route for exclusive synthesis of Au38 or Au40 nanomolecules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837632

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011546148

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837632

Country of ref document: EP

Kind code of ref document: A1