JP2009062570A - Method for producing dispersion of high concentration of metal nanoparticle - Google Patents
Method for producing dispersion of high concentration of metal nanoparticle Download PDFInfo
- Publication number
- JP2009062570A JP2009062570A JP2007230273A JP2007230273A JP2009062570A JP 2009062570 A JP2009062570 A JP 2009062570A JP 2007230273 A JP2007230273 A JP 2007230273A JP 2007230273 A JP2007230273 A JP 2007230273A JP 2009062570 A JP2009062570 A JP 2009062570A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- dispersion
- metal nanoparticle
- nanoparticle dispersion
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Conductive Materials (AREA)
Abstract
Description
本発明は、本発明は、金属ナノ粒子が分散媒に分散した金属ナノ粒子分散液から分散媒の一部を遠心分離により除去して高濃度金属ナノ粒子分散液を得る製造方法に関するものである。 The present invention relates to a production method for obtaining a high-concentration metal nanoparticle dispersion by removing a part of a dispersion medium from a metal nanoparticle dispersion in which metal nanoparticles are dispersed in a dispersion medium by centrifugation. .
従来、数nmの金属ナノ粒子が溶媒中に均一に分散した状態の、いわゆる金属ナノ粒子分散液は、その特徴を活かして種々の分野で利用されてきており、例えば金属光沢を有する薄膜として、又はコンデンサやチップ抵抗器の電極材料やセラミック基板上の導体回路等における導電性皮膜として、各種の電子機器、電子部品、電子回路等に用いられている。そして、このような高濃度金属ナノ粒子分散液の製造方法として、金属塩溶液に還元剤が溶解した還元剤溶液を添加して混合し、金属塩を還元させて金属ナノ粒子が分散媒に分散した金属ナノ粒子分散液を得た後、このようにして得られた金属ナノ粒子分散液から分散媒の一部を遠心分離により除去して高濃度金属ナノ粒子分散液を得る製造方法が提案されている(例えば、特許文献1参照。)。
しかし、金属塩溶液に還元剤溶液を添加する際には、得られる金属ナノ粒子の分散媒に対する分散性を確保するため、金属ナノ粒子の表面を保護修飾する保護剤を添加させる場合も多い。このため、上述した従来の製造方法では、金属塩溶液を還元して得た金属ナノ粒子分散液に、余剰の保護剤や、還元剤、その他金属ナノ粒子分散液の原料に由来する雑イオンが含まれる。これらの保護剤、還元剤、雑イオンは、金属ナノ粒子の長期安定性や導電材料として使用した際の焼結性などに影響を及ぼす可能性があり、除去することが望ましい。 However, when a reducing agent solution is added to the metal salt solution, a protective agent that protects and modifies the surface of the metal nanoparticles is often added in order to ensure dispersibility of the resulting metal nanoparticles in the dispersion medium. For this reason, in the conventional manufacturing method described above, excess protective agent, reducing agent, and other ions derived from the raw material of the metal nanoparticle dispersion are added to the metal nanoparticle dispersion obtained by reducing the metal salt solution. included. These protective agents, reducing agents, and miscellaneous ions may affect the long-term stability of the metal nanoparticles and the sinterability when used as a conductive material, and are desirably removed.
また、金属ナノ粒子をペーストとして配線材料の用途に用いられる場合、焼成後の収縮を抑制するために、なるべく金属濃度を上げる必要がある。また、厚膜を形成する場合を考慮すると、1回の塗布によって所定の膜厚を達成することが好ましく、このような場合にも金属濃度を上げることが望ましい。すると、金属ナノ粒子分散液から分散媒の一部を遠心分離で除去する上述した製造方法では、金属ナノ粒子の分散安定性が高い場合、これを遠心分離法で沈降させるのには、高い遠心力が必要となる。また、一般に粒子径が小さいほど沈降速度が小さく、遠心分離法による回収率が低い不具合がある。 Further, when metal nanoparticles are used as a paste for wiring materials, it is necessary to increase the metal concentration as much as possible in order to suppress shrinkage after firing. Considering the case of forming a thick film, it is preferable to achieve a predetermined film thickness by one application, and it is also desirable to increase the metal concentration in such a case. Then, in the above-described manufacturing method in which a part of the dispersion medium is removed by centrifugation from the metal nanoparticle dispersion liquid, when the dispersion stability of the metal nanoparticles is high, the centrifugal separation method is used to precipitate this. Power is required. In general, the smaller the particle size, the lower the sedimentation rate and the lower the recovery rate by the centrifugal separation method.
本発明の目的は、保護剤、還元剤、雑イオンを減少させ得る高濃度金属ナノ粒子分散液の製造方法を提供することにある。
本発明の別の目的は、分散媒の一部を除去する遠心力を低減させるにも係わらず金属ナノ粒子の濃度が高い分散液を比較的高い収率で回収し得る高濃度金属ナノ粒子分散液の製造方法を提供することにある。
The objective of this invention is providing the manufacturing method of the high concentration metal nanoparticle dispersion liquid which can reduce a protective agent, a reducing agent, and a miscellaneous ion.
Another object of the present invention is to disperse high-concentration metal nanoparticles capable of recovering a dispersion with a high concentration of metal nanoparticles in a relatively high yield despite reducing centrifugal force to remove a part of the dispersion medium. It is in providing the manufacturing method of a liquid.
請求項1に係る発明は、図1に示すように、金属ナノ粒子が分散媒に分散した金属ナノ粒子分散液から分散媒の一部を遠心分離により除去して金属ナノ粒子の濃度を増加させる高濃度金属ナノ粒子分散液の製造方法の改良である。
その特徴ある点は、金属ナノ粒子が、100重量%の銀ナノ粒子、或いは75重量%以上の銀ナノ粒子と残部が、金、白金、パラジウム、ルテニウム、ニッケル、銅、錫、インジウム、亜鉛、鉄、クロム及びマンガンからなる群より選ばれた1種の粒子又は2種以上の混合組成若しくは合金組成からなり、遠心分離する以前に金属ナノ粒子の分散性を低下させる分散性低下剤を金属ナノ粒子分散液に添加することを特徴とする。
In the invention according to claim 1, as shown in FIG. 1, a part of the dispersion medium is removed by centrifugation from the metal nanoparticle dispersion in which the metal nanoparticles are dispersed in the dispersion medium to increase the concentration of the metal nanoparticles. It is an improvement of the manufacturing method of a high concentration metal nanoparticle dispersion.
The characteristic point is that the metal nanoparticles are 100% by weight of silver nanoparticles, or 75% by weight or more of silver nanoparticles and the balance is gold, platinum, palladium, ruthenium, nickel, copper, tin, indium, zinc, Metal nano-dispersion, which is composed of one type of particles selected from the group consisting of iron, chromium and manganese, or a mixed composition or alloy composition of two or more types, and reduces the dispersibility of the metal nanoparticles before centrifugation. It is added to the particle dispersion.
100重量%の銀ナノ粒子、或いは75重量%以上の銀ナノ粒子と残部が、金、白金、パラジウム、ルテニウム、ニッケル、銅、錫、インジウム、亜鉛、鉄、クロム及びマンガンからなる群より選ばれた1種の粒子又は2種以上の混合組成若しくは合金組成からなる金属ナノ粒子が分散した分散液はいわゆる静電反発力が比較的高く安定した分散性を有する。このように安定した分散性を有する分散液であっても、この請求項1に記載された高濃度金属ナノ粒子分散液の製造方法では、遠心分離する以前に分散性低下剤を金属ナノ粒子分散液に添加するので、金属ナノ粒子の分散安定性は低下し、これにより低い遠心力で金属ナノ粒子を遠心沈降させることが可能となる。このため、このように分散性低下剤を添加して分散安定性を低下させた金属ナノ粒子分散液に対して遠心分離を行うことで、より低い遠心力と短い処理時間で、高い回収率の遠心分離が可能となる。 100% by weight of silver nanoparticles, or 75% by weight or more of silver nanoparticles and the balance are selected from the group consisting of gold, platinum, palladium, ruthenium, nickel, copper, tin, indium, zinc, iron, chromium and manganese. In addition, a dispersion liquid in which metal nanoparticles composed of one kind of particle or two or more kinds of mixed composition or alloy composition are dispersed has a relatively high so-called electrostatic repulsion force and stable dispersibility. Even in such a dispersion having a stable dispersibility, in the method for producing a high concentration metal nanoparticle dispersion described in claim 1, the dispersibility reducing agent is dispersed in the metal nanoparticles before centrifugation. Since it is added to the liquid, the dispersion stability of the metal nanoparticles is lowered, which makes it possible to centrifugally precipitate the metal nanoparticles with a low centrifugal force. For this reason, by performing centrifugation on the metal nanoparticle dispersion whose dispersion stability has been reduced by adding a dispersibility reducing agent in this manner, a high recovery rate can be achieved with a lower centrifugal force and a shorter processing time. Centrifugation is possible.
また、金属ナノ粒子が分散した分散液は、遠心分離の際に、遠心力が大きくなるほど、金属ナノ粒子同士が強く凝集する傾向を示す。その遠心分離における遠心力を低減化させることにより、金属ナノ粒子の凝集を抑制することができる。 Moreover, the dispersion liquid in which the metal nanoparticles are dispersed shows a tendency that the metal nanoparticles are strongly aggregated as the centrifugal force increases during the centrifugation. By reducing the centrifugal force in the centrifugal separation, aggregation of the metal nanoparticles can be suppressed.
請求項2に係る発明は、請求項1に係る発明であって、遠心分離により分散媒の一部が除去された後の金属ナノ粒子分散液に純水を添加し、その後再び遠心分離を行って純水とともに分散媒の一部を更に除去することを特徴とする。
この請求項2に記載の高濃度金属ナノ粒子分散液の製造方法では、遠心分離後の金属ナノ粒子濃縮液に純水を加えて、沈降物を再度溶媒中に分散させることで、その分散液中に存在する保護剤、還元剤、雑イオン等の濃度を低減させることができる。これを再び遠心分離することにより、低い遠心力で、金属ナノ粒子の合成時に溶媒中に含まれる保護剤、還元剤、雑イオンを取り除き、分散媒の一部を除去する遠心力を低減させるにも係わらず金属ナノ粒子の濃度が高い分散液を比較的高い収率で回収することが可能になる。
The invention according to claim 2 is the invention according to claim 1, wherein pure water is added to the metal nanoparticle dispersion liquid after part of the dispersion medium is removed by centrifugation, and then centrifuged again. And a part of the dispersion medium is further removed together with pure water.
In the method for producing a high-concentration metal nanoparticle dispersion according to claim 2, pure water is added to the metal nanoparticle concentrate after centrifugation, and the precipitate is dispersed again in the solvent. The concentration of the protective agent, reducing agent, miscellaneous ions, etc. present therein can be reduced. By centrifuging this again, the centrifugal force that removes part of the dispersion medium is removed with low centrifugal force by removing the protective agent, reducing agent, and miscellaneous ions contained in the solvent during the synthesis of the metal nanoparticles. Nevertheless, a dispersion having a high concentration of metal nanoparticles can be recovered with a relatively high yield.
請求項3に係る発明は、請求項1又は2に係る発明であって、分散性低下剤が、塩酸、硝酸、アンモニア、アミン類及びこれらを用いた塩のいずれかであることを特徴とする。
請求項4に係る発明は、分散性低下剤が、金属ナノ粒子を構成する元素と同一の金属元素を含む塩であることを特徴とする。
この請求項3及び4に記載された高濃度金属ナノ粒子分散液の製造方法では、塩濃度が増加するか或いはpHが調整されるため、金属ナノ粒子分散液における金属ナノ粒子の分散安定性を確実に低下させることができる。
また、この請求項3及び4に記載された分散性低下剤は、焼成の際に揮発もしくは分解し易いものであり、長期安定性や導電材料として使用した際の焼結性などに影響を与えることはない。
The invention according to claim 3 is the invention according to claim 1 or 2, characterized in that the dispersibility reducing agent is any one of hydrochloric acid, nitric acid, ammonia, amines, and salts using these. .
The invention according to claim 4 is characterized in that the dispersibility reducing agent is a salt containing the same metal element as the element constituting the metal nanoparticle.
In the method for producing a high-concentration metal nanoparticle dispersion described in claims 3 and 4, since the salt concentration is increased or the pH is adjusted, the dispersion stability of the metal nanoparticles in the metal nanoparticle dispersion is improved. It can be reliably lowered.
In addition, the dispersibility reducing agent described in claims 3 and 4 is easily volatilized or decomposed during firing, and affects long-term stability and sinterability when used as a conductive material. There is nothing.
請求項5に係る発明は、請求項1ないし4いずれか1項に記載の製造方法によって得られた高濃度金属ナノ粒子分散液である。
なお、この明細書において「純水」とは、不純物及びイオン成分を除去した水を意味するものとする。このため、この「純水」には、濾過や蒸留により不純物を除去した「精製水」、イオン交換樹脂等で脱イオンした「脱イオン水」、蒸留により不純物を除去した「蒸留水」の何れも含まれるものとする。
The invention according to claim 5 is a high-concentration metal nanoparticle dispersion obtained by the production method according to any one of claims 1 to 4.
In this specification, “pure water” means water from which impurities and ionic components have been removed. For this reason, this “pure water” includes either “purified water” from which impurities have been removed by filtration or distillation, “deionized water” deionized by an ion exchange resin, etc., or “distilled water” from which impurities have been removed by distillation. Is also included.
本発明の高濃度金属ナノ粒子分散液の製造方法では、遠心分離する以前に金属ナノ粒子の分散性を低下させる分散性低下剤を金属ナノ粒子分散液に添加するので、金属ナノ粒子分散液が高い分散性を有していても、金属ナノ粒子の分散安定性は低下し、より低い遠心力で金属ナノ粒子を遠心沈降させることが可能となる。このため、このように分散性低下剤を添加して分散安定性を低下させた金属ナノ粒子分散液に対して遠心分離を行うことで、より低い遠心力と短い処理時間で、高い回収率の遠心分離が可能となる。また、金属ナノ粒子分散液は遠心分離の際に金属ナノ粒子同士が強く凝集する傾向を示すけれども、その遠心分離における遠心力を低減化させることにより、金属ナノ粒子の凝集を抑制することもできる。 In the method for producing a high-concentration metal nanoparticle dispersion of the present invention, a dispersibility reducing agent for reducing the dispersibility of metal nanoparticles is added to the metal nanoparticle dispersion before centrifuging. Even if it has high dispersibility, the dispersion stability of the metal nanoparticles is lowered, and the metal nanoparticles can be centrifugally settled with a lower centrifugal force. For this reason, by performing centrifugation on the metal nanoparticle dispersion whose dispersion stability has been reduced by adding a dispersibility reducing agent in this manner, a high recovery rate can be achieved with a lower centrifugal force and a shorter processing time. Centrifugation is possible. In addition, although the metal nanoparticle dispersion shows a tendency for the metal nanoparticles to strongly aggregate during the centrifugation, the aggregation of the metal nanoparticles can also be suppressed by reducing the centrifugal force in the centrifugation. .
また、遠心分離により分散媒の一部が除去された後の金属ナノ粒子分散液に純水を添加し、その後再び遠心分離を行って純水とともに分散媒の一部を更に除去するようにすれば、分散液中に存在する保護剤、還元剤、雑イオン等の濃度を低減させた状態で遠心分離することになり、低い遠心力で、金属ナノ粒子の合成時に溶媒中に含まれる保護剤、還元剤、雑イオンを取り除き、分散媒の一部を除去する遠心力を低減させるにも係わらず金属ナノ粒子の濃度が高い分散液を比較的高い収率で回収することが可能になる。
一方、分散性低下剤は高濃度金属ナノ粒子分散液中に残存することもあり得るけれども、その分散性低下剤が、塩酸、硝酸、アンモニア、アミン類及びこれらを用いた塩のいずれかである、或いは分散性低下剤が、金属ナノ粒子を構成する元素と同一の金属元素を含む塩であれば、焼成の際に揮発もしくは分解し易いものであるため、長期安定性や導電材料として使用した際の焼結性などに与える影響を減少させることができる。
In addition, pure water is added to the metal nanoparticle dispersion liquid after part of the dispersion medium is removed by centrifugation, and then centrifugal separation is performed again to further remove part of the dispersion medium together with pure water. For example, the protective agent contained in the solvent at the time of synthesizing the metal nanoparticles with low centrifugal force will be centrifuged in a state where the concentration of the protective agent, reducing agent, miscellaneous ions, etc. present in the dispersion is reduced. In addition, it is possible to recover a dispersion liquid having a high concentration of metal nanoparticles with a relatively high yield, although the reducing agent and miscellaneous ions are removed and the centrifugal force for removing a part of the dispersion medium is reduced.
On the other hand, although the dispersibility reducing agent may remain in the high-concentration metal nanoparticle dispersion, the dispersibility reducing agent is any one of hydrochloric acid, nitric acid, ammonia, amines, and salts using these. Or, if the dispersibility reducing agent is a salt containing the same metal element as the element constituting the metal nanoparticles, it is easy to volatilize or decompose during firing, so it was used as a long-term stability or conductive material The influence on the sinterability at the time can be reduced.
次に本発明を実施するための最良の形態を図面に基づいて説明する。
図1に示すように、本発明の高濃度金属ナノ粒子分散液の製造方法は、金属ナノ粒子が分散媒に分散した金属ナノ粒子分散液からその分散媒の一部を遠心分離により除去して金属ナノ粒子の濃度を増加させるものである。金属ナノ粒子が分散媒に分散した金属ナノ粒子分散液は、金属塩溶液における金属を還元することにより得られる。金属塩溶液は、金属化合物を溶媒に溶解させたものであって、金属化合物を溶媒に溶解することにより金属イオンを生じ、上記金属イオンが還元されて金属ナノ粒子が供給されるものである。上記金属ナノ粒子となる金属は、銀であることが好ましい。又は金属ナノ粒子となる金属は、75重量%以上の銀と残部が、金、白金、パラジウム、ルテニウム、ニッケル、銅、錫、インジウム、亜鉛、鉄、クロム及びマンガンより選ばれた1種の粒子又は2種以上の混合組成若しくは合金組成からなるものである。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
As shown in FIG. 1, in the method for producing a high concentration metal nanoparticle dispersion of the present invention, a part of the dispersion medium is removed by centrifugation from the metal nanoparticle dispersion in which the metal nanoparticles are dispersed in the dispersion medium. It increases the concentration of metal nanoparticles. A metal nanoparticle dispersion liquid in which metal nanoparticles are dispersed in a dispersion medium can be obtained by reducing the metal in the metal salt solution. The metal salt solution is a solution in which a metal compound is dissolved in a solvent, and metal ions are generated by dissolving the metal compound in the solvent, and the metal ions are reduced to supply metal nanoparticles. It is preferable that the metal used as the said metal nanoparticle is silver. Or the metal used as the metal nanoparticle is one kind of particles selected from gold, platinum, palladium, ruthenium, nickel, copper, tin, indium, zinc, iron, chromium, and manganese with 75% by weight or more of silver. Or it consists of 2 or more types of mixed compositions or alloy compositions.
上記溶媒としては上記金属化合物を溶解することができるものであれば特に限定されず、例えば、水、有機溶媒等を挙げることができる。上記有機溶媒等としては特に限定されず、例えば、エタノール、エチレングリコール等の炭素数1〜4のアルコール;アセトン等のケトン類;酢酸エチル等のエステル類等が挙げられる。上記溶媒としては1種又は2種以上を用いることができる。上記溶媒が水と有機溶媒との混合物である場合には、上記有機溶媒としては、水可溶性のものが好ましく、例えば、アセトン、メタノール、エタノール、エチレングリコール等が挙げられる。本発明においては、特に、水、アルコール並びに水及びアルコールの混合溶液が好ましい。しかし、これらに限定されるものではなく、水可溶性でない有機溶媒も使用可能である。そして、このような溶媒に上述した金属化合物を溶解させることにより金属塩溶液が調製される。 The solvent is not particularly limited as long as it can dissolve the metal compound, and examples thereof include water and organic solvents. It does not specifically limit as said organic solvent etc., For example, C1-C4 alcohol, such as ethanol and ethylene glycol; Ketones, such as acetone; Esters, such as ethyl acetate, etc. are mentioned. As the solvent, one type or two or more types can be used. When the solvent is a mixture of water and an organic solvent, the organic solvent is preferably water-soluble, and examples thereof include acetone, methanol, ethanol, ethylene glycol, and the like. In the present invention, water, alcohol, and a mixed solution of water and alcohol are particularly preferable. However, it is not limited to these, and organic solvents that are not water-soluble can also be used. And a metal salt solution is prepared by dissolving the metal compound mentioned above in such a solvent.
一方、この金属塩溶液における金属を還元する還元剤としては、硫酸第一鉄、水素化ホウ素ナトリウム等のアルカリ金属水素化ホウ素塩;ヒドラジン化合物;クエン酸;酒石酸;アスコルビン酸;ギ酸;ホルムアルデヒド;亜ニチオン酸塩、スルホキシル酸塩誘導体等を使用することができる。入手容易なことから、硫酸第一鉄、クエン酸;酒石酸;アスコルビン酸;蟻酸が好ましい。これらは、それぞれ塩の形のものを用いることで、中性近傍のpHでの反応が可能になる。 On the other hand, as a reducing agent for reducing the metal in the metal salt solution, alkali metal borohydride salts such as ferrous sulfate and sodium borohydride; hydrazine compound; citric acid; tartaric acid; ascorbic acid; formic acid; formaldehyde; Nithionate, sulfoxylate derivatives and the like can be used. Of these, ferrous sulfate, citric acid; tartaric acid; ascorbic acid; formic acid are preferable. These can each be used in the form of a salt, thereby enabling a reaction at a pH close to neutrality.
保護剤は還元剤溶液に含ませることが好ましい。保護剤は、金属塩溶液における金属を還元して得られた金属ナノ粒子の溶媒中における分散安定性を高める働きをするものであり、市販されているものを使用することができ、そのように市販されているものを単独で使用してもよく、2種以上を併用してもよい。具体的に、官能基として、水酸基(−OH)、カルボキシル基(−COOH)、カルボニル基(−C=O)、アミノ基、メルカブト基(−SH)などのいずれか一方、又は2つ以上を含有する有機分子を保護剤として用いることができる。 The protective agent is preferably included in the reducing agent solution. The protective agent functions to increase the dispersion stability of the metal nanoparticles obtained by reducing the metal in the metal salt solution in the solvent, and a commercially available one can be used as such. What is marketed may be used independently and may use 2 or more types together. Specifically, as the functional group, any one of hydroxyl group (—OH), carboxyl group (—COOH), carbonyl group (—C═O), amino group, mercapto group (—SH), or two or more thereof is used. The contained organic molecule can be used as a protective agent.
ここで、保護剤としてクエン酸ナトリウムを用い、還元剤として第1鉄を用いて金属塩溶液における金属を還元する場合をを具体的に説明する。先ず、保護剤であるクエン酸ナトリウムを脱イオン水等の水に溶解させて得られた濃度10〜40%のクエン酸ナトリウム水溶液に、窒素ガス等の不活性ガスの気流中で粒状又は粉状の硫酸第一鉄からなる還元剤を直接加えて溶解させ、クエン酸イオンと第一鉄イオンを3:2のモル比で含有する還元剤水溶液を調製する。次に上記不活性ガス気流中で上記還元剤水溶液を撹拌しながら、この還元剤水溶液に上記金属塩水溶液を滴下して混合する。ここで、金属塩水溶液の添加量は還元剤水溶液の量の1/10以下になるように、各溶液の濃度を調整することで、室温の金属塩水溶液を滴下しても反応温度が30〜60℃に保持されるようにすることが好ましい。また上記両水溶液の混合比は、金属塩水溶液中の金属イオンの総原子価数に対する、還元剤水溶液中のクエン酸イオンと第一鉄イオンのモル比がいずれも3倍モルとなるようにする。金属塩水溶液の滴下が終了した後、混合液の撹拌を更に10〜300分間続け、金属塩溶液における金属を還元することにより金属ナノ粒子が分散媒に分散した金属ナノ粒子分散液を得る。 Here, the case where the metal in a metal salt solution is reduced using sodium citrate as a protective agent and ferrous iron as a reducing agent will be specifically described. First, a sodium citrate, which is a protective agent, is dissolved in water such as deionized water, and the aqueous solution of sodium citrate having a concentration of 10 to 40% is granular or powdery in an inert gas stream such as nitrogen gas. A reducing agent comprising ferrous sulfate is directly added and dissolved to prepare an aqueous reducing agent solution containing citrate ions and ferrous ions in a molar ratio of 3: 2. Next, the aqueous metal salt solution is added dropwise to and mixed with the reducing agent aqueous solution while stirring the reducing agent aqueous solution in the inert gas stream. Here, by adjusting the concentration of each solution so that the addition amount of the metal salt aqueous solution is 1/10 or less of the amount of the reducing agent aqueous solution, the reaction temperature is 30 to 30 even when the metal salt aqueous solution at room temperature is dropped. It is preferable to keep the temperature at 60 ° C. The mixing ratio of the two aqueous solutions is such that the molar ratio of the citrate ions and the ferrous ions in the reducing agent aqueous solution is 3 times the total valence of the metal ions in the metal salt aqueous solution. . After the dropping of the aqueous metal salt solution is completed, the mixed solution is further stirred for 10 to 300 minutes to reduce the metal in the metal salt solution to obtain a metal nanoparticle dispersion in which the metal nanoparticles are dispersed in the dispersion medium.
このようにして得られた金属ナノ粒子分散液は、金属ナノ粒子が溶媒中に分散して視認できるような状態にある。そして、本発明では、還元により得られた金属ナノ粒子が、100重量%の銀ナノ粒子、或いは75重量%以上の銀ナノ粒子と残部が、金、白金、パラジウム、ルテニウム、ニッケル、銅、錫、インジウム、亜鉛、鉄、クロム及びマンガンより選ばれた1種の粒子又は2種以上の混合組成若しくは合金組成からなるものを対象とする。このような金属ナノ粒子が溶媒中に分散した分散液には、金属ナノ粒子及び保護剤のほかに、金属コロイド溶液の原料に由来する硝酸イオン等の雑イオンや、余剰の還元剤を含むものとなる。 The metal nanoparticle dispersion obtained in this way is in a state where the metal nanoparticles can be visually recognized dispersed in a solvent. In the present invention, the metal nanoparticles obtained by reduction are 100% by weight of silver nanoparticles, or 75% by weight or more of silver nanoparticles and the balance is gold, platinum, palladium, ruthenium, nickel, copper, tin. It is intended to be composed of one kind of particles selected from Indium, Zinc, Iron, Chromium and Manganese, or a mixed composition or alloy composition of two or more kinds. Such a dispersion in which metal nanoparticles are dispersed in a solvent contains miscellaneous ions such as nitrate ions derived from the raw material of the metal colloid solution and an excess reducing agent in addition to the metal nanoparticles and the protective agent. It becomes.
本発明の高濃度金属ナノ粒子分散液の製造方法では、溶媒の一部を遠心分離により除去するものであるけれども、遠心分離する以前に金属ナノ粒子の分散性を低下させる分散性低下剤を金属ナノ粒子分散液に添加することを特徴とする。分散性を低下させる方法は二つあり、一つは分散媒中の電解質濃度を上げて、粒子の周りに形成される電気二重層の厚さを薄くする方法であり、もう一つはゼータ電位と呼ばれる粒子表面近くの電位をゼロに近づけることである。分散性低下剤は、塩酸、硝酸、アンモニア、アミン類及びこれらを用いた塩のいずれかであることが好ましい。このようなものを分散性低下剤として金属ナノ粒子分散液に添加すると、その塩濃度(電解質濃度)が増加することにより金属ナノ粒子の分散安定性を確実に低下させることができる。更に、このように分散性低下剤を添加することで、分散液のpHをナノ粒子のゼータ電位がゼロとなることで特徴付けられる等電位点に近づけることで、ナノ粒子の分散安定性を低下させることができる。ここで、アミン類に関しては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、メチルエチルアミン、トリエタノールアミン、エチレンジアミン等が挙げられるが、これに限定されない。 In the method for producing a high-concentration metal nanoparticle dispersion of the present invention, a part of the solvent is removed by centrifugation, but a dispersibility reducing agent for reducing the dispersibility of the metal nanoparticles before centrifugation is added to the metal. It is added to the nanoparticle dispersion liquid. There are two methods for reducing the dispersibility. One is to increase the electrolyte concentration in the dispersion medium to reduce the thickness of the electric double layer formed around the particles. The other is to reduce the zeta potential. Is to bring the potential near the particle surface close to zero. The dispersibility reducing agent is preferably any one of hydrochloric acid, nitric acid, ammonia, amines, and salts using these. When such a compound is added to the metal nanoparticle dispersion as a dispersibility reducing agent, the salt concentration (electrolyte concentration) increases, so that the dispersion stability of the metal nanoparticles can be reliably reduced. Furthermore, by adding a dispersibility reducing agent in this way, the dispersion stability of the nanoparticles is reduced by bringing the pH of the dispersion closer to the equipotential point characterized by the zero zeta potential of the nanoparticles. Can be made. Examples of amines include, but are not limited to, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, methylethylamine, triethanolamine, and ethylenediamine.
一方、分散性低下剤は、金属ナノ粒子を構成する元素と同一の金属元素を含む塩であっても良い。このような塩からなる分散性低下剤を金属ナノ粒子分散液に添加すると、その塩濃度が増加することにより金属ナノ粒子の分散安定性を確実に低下させることができる。本発明では、このような分散性低下剤を添加した後に金属ナノ粒子分散液を遠心分離を行い、遠心力により分離した上澄み液である分散媒を除去することにより金属ナノ粒子の濃度を増加させる製造方法である。 On the other hand, the dispersibility reducing agent may be a salt containing the same metal element as the element constituting the metal nanoparticle. When a dispersibility reducing agent composed of such a salt is added to the metal nanoparticle dispersion, the dispersion stability of the metal nanoparticles can be reliably lowered by increasing the salt concentration. In the present invention, after adding such a dispersibility reducing agent, the metal nanoparticle dispersion is centrifuged, and the concentration of the metal nanoparticles is increased by removing the dispersion medium that is the supernatant separated by centrifugal force. It is a manufacturing method.
このように分散性低下剤を添加した後に遠心分離を行う本発明の製造方法では、分散性低下剤を添加することにより金属ナノ粒子は沈殿し、この部分における金属ナノ粒子の濃度を増加させることができる。一方、溶媒中に含まれる不要な雑イオン、塩やアミン及び上記高分子顔料保護剤は上澄み液中に溶解することになり、この上澄み液中に溶解するこれらの雑イオン、塩やアミンは、得られる金属コロイド溶液の安定性に悪影響を及ぼすおそれがある。しかし、本発明では、この上澄み液を遠心分離により取り除くので、これらの不要な成分が除去された高濃度金属ナノ粒子分散液を得ることができる。 Thus, in the production method of the present invention in which centrifugation is performed after adding the dispersibility reducing agent, the metal nanoparticles are precipitated by adding the dispersibility reducing agent, and the concentration of the metal nanoparticles in this portion is increased. Can do. On the other hand, unnecessary miscellaneous ions, salts and amines contained in the solvent and the polymer pigment protective agent are dissolved in the supernatant liquid, and these miscellaneous ions, salts and amines dissolved in the supernatant liquid are The stability of the resulting metal colloid solution may be adversely affected. However, in the present invention, since the supernatant is removed by centrifugation, a high-concentration metal nanoparticle dispersion from which these unnecessary components are removed can be obtained.
ここで、分散性低下剤の添加により金属ナノ粒子の分散性は低下しているので、本発明の製造方法では、比較的低い遠心力で、上記不要な雑イオン、塩やアミン及び保護剤を含む上澄み液を分離することができる。そして、得られた高濃度金属ナノ粒子分散液は、その金属ナノ粒子が、100重量%の銀ナノ粒子、或いは75重量%以上の銀ナノ粒子と残部が、金、白金、パラジウム、ルテニウム、ニッケル、銅、錫、インジウム、亜鉛、鉄、クロム及びマンガンより選ばれた1種の粒子又は2種以上の混合組成若しくは合金組成からなるものとなる。 Here, since the dispersibility of the metal nanoparticles is reduced by the addition of the dispersibility reducing agent, the production method of the present invention removes the unnecessary ions, salts, amines, and protective agents with a relatively low centrifugal force. The containing supernatant can be separated. The resulting high-concentration metal nanoparticle dispersion is composed of 100% by weight of silver nanoparticles, or 75% by weight or more of silver nanoparticles and the balance of gold, platinum, palladium, ruthenium, nickel. One type of particles selected from copper, tin, indium, zinc, iron, chromium and manganese, or a mixed composition or alloy composition of two or more types.
なお、本発明における製造方法では、図2に示すように、遠心分離により分散媒の一部が除去された後の金属ナノ粒子分散液に分散媒として純水を添加し、更に分散性低下剤を添加し、その後再び遠心分離を行って分散媒の一部を更に除去するようにしても良い。このように純水及び分散性低下剤の添加及び遠心分離を繰り返すことで、合成時に用いる金属塩、保護剤、還元剤等に由来する液相中の電解質濃度が減少し、微量でも金属ナノ粒子の焼結に影響を及ぼすこれらの電解質を比較的低い遠心力で分離することが可能になり、遠心分離操作による金属ナノ粒子の回収率を著しく高めることができる。 In the production method of the present invention, as shown in FIG. 2, pure water is added as a dispersion medium to the metal nanoparticle dispersion liquid after a part of the dispersion medium is removed by centrifugation, and a dispersibility reducing agent is further added. May then be added, followed by centrifugation again to further remove a portion of the dispersion medium. By repeatedly adding pure water and a dispersibility reducing agent and centrifuging in this way, the concentration of the electrolyte in the liquid phase derived from the metal salt, protective agent, reducing agent, etc. used in the synthesis is reduced, and even in trace amounts, metal nanoparticles It becomes possible to separate these electrolytes that affect the sintering of the metal with a relatively low centrifugal force, and the recovery rate of the metal nanoparticles by the centrifugal separation operation can be significantly increased.
次に本発明の実施例を比較例とともに詳しく説明する。
<比較例1>
Ag100wt%の金属ナノ粒子を形成する金属塩を脱イオン水に溶解して金属塩水溶液を調製した。また、クエン酸ナトリウムを脱イオン水に溶解して濃度が26重量%のクエン酸ナトリウム水溶液を調製した。このクエン酸ナトリウム水溶液に、35℃に保持された窒素ガス気流中で粒状の硫酸第1鉄を直接加えて溶解させ、クエン酸イオンと第1鉄イオンを3:2のモル比で含有する還元剤水溶液を調製した。
Next, examples of the present invention will be described in detail together with comparative examples.
<Comparative Example 1>
A metal salt forming Ag 100 wt% metal nanoparticles was dissolved in deionized water to prepare an aqueous metal salt solution. In addition, sodium citrate was dissolved in deionized water to prepare an aqueous sodium citrate solution having a concentration of 26% by weight. Reduction in which aqueous ferric sulfate is directly added and dissolved in this sodium citrate aqueous solution in a nitrogen gas stream maintained at 35 ° C. to contain citrate ions and ferrous ions in a molar ratio of 3: 2. An aqueous agent solution was prepared.
次いで、上記窒素ガス気流を35℃に保持した状態で、マグネチックスターラーの攪拌子を還元剤水溶液中に入れ、攪拌子を100rpmの回転速度で回転させて、上記還元剤水溶液を攪拌しながら、この還元剤水溶液に上記金属塩水溶液を滴下して混合した。ここで、還元剤水溶液への金属塩水溶液の添加量は、還元剤水溶液の量の1/10以下になるように、各溶液の濃度を調整することで、室温の金属塩水溶液を滴下しても反応温度が40℃に保持されるようにした。また上記還元剤水溶液と金属塩水溶液との混合比は、金属塩水溶液中の金属イオンの総原子価数に対する、還元剤水溶液のクエン酸イオンと第1鉄イオンのモル比がいずれも3倍モルとなるようにした。還元剤水溶液への金属塩水溶液の滴下が終了した後、混合液の攪拌を更に15分間続けることにより、混合液内部に金属ナノ粒子を生じさせ、この金属ナノ粒子が分散した金属ナノ粒子分散液を得た。 Next, with the nitrogen gas stream maintained at 35 ° C., a magnetic stirrer stirrer is placed in the reducing agent aqueous solution, and the stirrer is rotated at a rotational speed of 100 rpm while stirring the reducing agent aqueous solution. The metal salt aqueous solution was added dropwise to the reducing agent aqueous solution and mixed. Here, the amount of the metal salt aqueous solution added to the reducing agent aqueous solution is adjusted so that the concentration of each solution is adjusted to 1/10 or less of the amount of the reducing agent aqueous solution. The reaction temperature was maintained at 40 ° C. The mixing ratio of the reducing agent aqueous solution to the metal salt aqueous solution is such that the molar ratio of citrate ions and ferrous ions in the reducing agent aqueous solution to the total valence of metal ions in the metal salt aqueous solution is 3 times the mole. It was made to become. After the dropping of the aqueous metal salt solution into the reducing agent aqueous solution is completed, the mixed solution is further stirred for 15 minutes to generate metal nanoparticles inside the mixed solution, and the metal nanoparticle dispersion in which the metal nanoparticles are dispersed. Got.
得られた金属ナノ粒子分散液(Ag100wt%)1000mLに対し、遠心分離機を用いて、500Gで1分間遠心分離した。これによって濃縮液と上澄みに分離したため、上澄みを分離し、濃縮液に脱イオン水を100mL加え、スパチュラで撹拌して均一な金属ナノ粒子分散液を得た。この分散液に対し、再度1000Gで10分間の遠心分離を行って分散媒の一部を除去し、金属ナノ粒子の濃度を増加させた高濃度金属ナノ粒子分散液を得た。このようにして得られた高濃度金属ナノ粒子分散液を比較例1とした。 The obtained metal nanoparticle dispersion (Ag 100 wt%) 1000 mL was centrifuged at 500 G for 1 minute using a centrifuge. Since this separated into a concentrate and a supernatant, the supernatant was separated, 100 mL of deionized water was added to the concentrate, and the mixture was stirred with a spatula to obtain a uniform metal nanoparticle dispersion. This dispersion was again centrifuged at 1000 G for 10 minutes to remove a part of the dispersion medium to obtain a high concentration metal nanoparticle dispersion in which the concentration of metal nanoparticles was increased. The high-concentration metal nanoparticle dispersion thus obtained was used as Comparative Example 1.
<比較例2>
Agが95wt%であってCuが5wt%の金属ナノ粒子を形成する金属塩を脱イオン水に溶解して金属塩水溶液を調製した。このことを除き、比較例1と同一の条件及び手順により金属ナノ粒子が分散した金属ナノ粒子分散液を得た。
得られた金属ナノ粒子分散液(Ag95wt%、Cu5wt%)1000mLに対し、遠心分離機を用いて、500Gで1分間遠心分離した。これによって濃縮液と上澄みに分離した後上澄みを分離し、濃縮液に脱イオン水を100mL加え、スパチュラで撹拌して均一な金属ナノ粒子分散液を得た。この分散液を1000Gで10分間の遠心分離を行って分散媒の一部を除去し、金属ナノ粒子の濃度を増加させた高濃度金属ナノ粒子分散液を得た。このようにして得られた高濃度金属ナノ粒子分散液を比較例2とした。
<Comparative example 2>
An aqueous metal salt solution was prepared by dissolving a metal salt forming 95% by weight of Ag and 5% by weight of Cu to form metal nanoparticles in deionized water. Except for this, a metal nanoparticle dispersion in which metal nanoparticles were dispersed under the same conditions and procedures as in Comparative Example 1 was obtained.
The obtained metal nanoparticle dispersion (Ag 95 wt%, Cu 5 wt%) (1000 mL) was centrifuged at 500 G for 1 minute using a centrifuge. Thus, the supernatant was separated after being separated into the concentrate and the supernatant, and 100 mL of deionized water was added to the concentrate and stirred with a spatula to obtain a uniform metal nanoparticle dispersion. This dispersion was centrifuged at 1000 G for 10 minutes to remove a part of the dispersion medium, thereby obtaining a high concentration metal nanoparticle dispersion in which the concentration of metal nanoparticles was increased. The high-concentration metal nanoparticle dispersion liquid thus obtained was used as Comparative Example 2.
<比較例3>
硫酸銀と塩化金酸の混合水溶媒をAg:Au=75:25になるよう調製して沸騰させ、これにクエン酸三ナトリウム水溶媒を加えて激しく撹拌しながら10分間還流させて金属ナノ粒子を合成した。その後これを室温にまで冷却てpH3を示す金属ナノ粒子分散液を得た。
得られた金属ナノ粒子分散液(Ag75wt%、Au25wt%)1000mLに対し、遠心分離機を用いて、500Gで1分間遠心分離した。これによって濃縮液と上澄みに分離したその上澄みを分離し、濃縮液に脱イオン水を100mL加え、スパチュラで撹拌して均一な金属ナノ粒子分散液を得た。この分散液を1000Gで10分間の遠心分離を行って分散媒の一部を除去し、金属ナノ粒子の濃度を増加させた高濃度金属ナノ粒子分散液を得た。このようにして得られた高濃度金属ナノ粒子分散液を比較例3とした。
<Comparative Example 3>
A mixed water solvent of silver sulfate and chloroauric acid was prepared to be Ag: Au = 75: 25, boiled, trisodium citrate aqueous solvent was added to this, and the mixture was refluxed for 10 minutes with vigorous stirring. Was synthesized. Thereafter, this was cooled to room temperature to obtain a metal nanoparticle dispersion having a pH of 3.
The obtained metal nanoparticle dispersion (Ag 75 wt%, Au 25 wt%) (1000 mL) was centrifuged at 500 G for 1 minute using a centrifuge. Thereby, the supernatant separated into the concentrate and the supernatant was separated, 100 mL of deionized water was added to the concentrate, and the mixture was stirred with a spatula to obtain a uniform metal nanoparticle dispersion. This dispersion was centrifuged at 1000 G for 10 minutes to remove a part of the dispersion medium, thereby obtaining a high concentration metal nanoparticle dispersion in which the concentration of metal nanoparticles was increased. The high-concentration metal nanoparticle dispersion liquid thus obtained was used as Comparative Example 3.
<実施例1>
比較例1と同一の条件及び手順により比較例1と同一の金属ナノ粒子分散液を得た。
<Example 1>
The same metal nanoparticle dispersion as in Comparative Example 1 was obtained under the same conditions and procedures as in Comparative Example 1.
このようにして得られた金属ナノ粒子分散液(Ag100wt%)1000mLに対し、遠心分離機を用いて500Gで1分間遠心分離し、その上澄みを分離した。その後、この金属ナノ粒子分散液に比較例1と同様に脱イオン水を100mL加え、スパチュラで撹拌して均一な分散液を得た。
この分散液に対し、分散性低下剤である10モル濃度硝酸水溶媒を滴下して分散液をpH4に調製した。その後、500Gで1分間遠心分離し、上澄みを分離した。この操作を二回繰り返して高濃度金属ナノ粒子分散液を得た。このようにして得られた高濃度金属ナノ粒子分散液を実施例1とした。
The metal nanoparticle dispersion (Ag 100 wt%) 1000 mL thus obtained was centrifuged at 500 G for 1 minute using a centrifuge, and the supernatant was separated. Thereafter, 100 mL of deionized water was added to the metal nanoparticle dispersion in the same manner as in Comparative Example 1, and the mixture was stirred with a spatula to obtain a uniform dispersion.
To this dispersion, a 10 molar aqueous nitric acid solvent, which is a dispersibility reducing agent, was added dropwise to adjust the dispersion to pH 4. Then, it centrifuged at 500G for 1 minute, and isolate | separated the supernatant liquid. This operation was repeated twice to obtain a high concentration metal nanoparticle dispersion. The high-concentration metal nanoparticle dispersion liquid thus obtained was designated as Example 1.
<実施例2>
比較例2と同一の条件及び手順により比較例2と同一の金属ナノ粒子分散液を得た。
<Example 2>
Under the same conditions and procedures as in Comparative Example 2, the same metal nanoparticle dispersion as in Comparative Example 2 was obtained.
このようにして得られた金属ナノ粒子分散液(Ag95wt%、Cu5wt%)1000mLに対し、遠心分離機を用いて500Gで1分間遠心分離し、その上澄みを分離した。その後、この金属ナノ粒子分散液に比較例2と同様に脱イオン水を100mL加え、スパチュラで撹拌して均一な分散液を得た。
この分散液に対し、分散性低下剤である0.1重量%の硝酸銅水溶液を10mL滴下した。その後、500Gで1分間遠心分離し、上澄みを分離した。この操作を二回繰り返して高濃度金属ナノ粒子分散液を得た。このようにして得られた高濃度金属ナノ粒子分散液を実施例2とした。
The thus obtained metal nanoparticle dispersion (Ag 95 wt%, Cu 5 wt%) 1000 mL was centrifuged at 500 G for 1 minute using a centrifuge, and the supernatant was separated. Thereafter, 100 mL of deionized water was added to the metal nanoparticle dispersion in the same manner as in Comparative Example 2, and the mixture was stirred with a spatula to obtain a uniform dispersion.
To this dispersion, 10 mL of a 0.1 wt% aqueous copper nitrate solution as a dispersibility reducing agent was dropped. Then, it centrifuged at 500G for 1 minute, and isolate | separated the supernatant liquid. This operation was repeated twice to obtain a high concentration metal nanoparticle dispersion. The high-concentration metal nanoparticle dispersion liquid thus obtained was designated as Example 2.
<実施例3>
Agが75wt%であってPdが25wt%の金属ナノ粒子を形成する金属塩を脱イオン水に溶解して金属塩水溶液を調製した。このことを除き、比較例1と同一の条件及び手順により金属ナノ粒子が分散した金属ナノ粒子分散液を得た。
得られた金属ナノ粒子分散液(Ag75wt%、Pd25wt%)1000mLに対し、遠心分離機を用いて、500Gで1分間遠心分離した。これによって濃縮液と上澄みに分離した後上澄みを分離し、濃縮液に脱イオン水を100mL加え、スパチュラで撹拌して均一な金属ナノ粒子分散液を得た。
この分散液に対し、分散性低下剤である10モル濃度硝酸水溶媒を滴下して分散液をpH4に調製した。その後、800Gで1分間遠心分離し、上澄みを分離した。この操作を二回繰り返して高濃度金属ナノ粒子分散液を得た。このようにして得られた高濃度金属ナノ粒子分散液を実施例3とした。
<Example 3>
An aqueous metal salt solution was prepared by dissolving a metal salt forming Ag nanoparticles of 75 wt% and Pd of 25 wt% in deionized water. Except for this, a metal nanoparticle dispersion in which metal nanoparticles were dispersed under the same conditions and procedures as in Comparative Example 1 was obtained.
The obtained metal nanoparticle dispersion (Ag 75 wt%, Pd 25 wt%) 1000 mL was centrifuged at 500 G for 1 minute using a centrifuge. Thus, the supernatant was separated after being separated into the concentrate and the supernatant, and 100 mL of deionized water was added to the concentrate and stirred with a spatula to obtain a uniform metal nanoparticle dispersion.
To this dispersion, a 10 molar aqueous nitric acid solvent, which is a dispersibility reducing agent, was added dropwise to adjust the dispersion to pH 4. Then, it centrifuged at 800G for 1 minute, and isolate | separated the supernatant liquid. This operation was repeated twice to obtain a high concentration metal nanoparticle dispersion. The high-concentration metal nanoparticle dispersion liquid thus obtained was designated as Example 3.
<実施例4>
Agが99.5wt%であってRuが0.5wt%の金属ナノ粒子を形成する金属塩を脱イオン水に溶解して金属塩水溶液を調製した。このことを除き、比較例1と同一の条件及び手順により金属ナノ粒子が分散した金属ナノ粒子分散液を得た。
得られた金属ナノ粒子分散液(Ag99.5wt%、Ru0.5wt%)1000mLに対し、遠心分離機を用いて、500Gで1分間遠心分離した。これによって濃縮液と上澄みに分離した後上澄みを分離し、濃縮液に脱イオン水を100mL加え、スパチュラで撹拌して均一な金属ナノ粒子分散液を得た。
この分散液に対し、分散性低下剤である0.1重量%のクエン酸3アンモニウム水溶液を10mL滴下した。その後、800Gで1分間遠心分離し、上澄みを分離した。この操作を二回繰り返して高濃度金属ナノ粒子分散液を得た。このようにして得られた高濃度金属ナノ粒子分散液を実施例4とした。
<Example 4>
An aqueous metal salt solution was prepared by dissolving a metal salt forming metal nanoparticles with 99.5 wt% Ag and 0.5 wt% Ru in deionized water. Except for this, a metal nanoparticle dispersion in which metal nanoparticles were dispersed under the same conditions and procedures as in Comparative Example 1 was obtained.
The obtained metal nanoparticle dispersion (Ag 99.5 wt%, Ru 0.5 wt%) 1000 mL was centrifuged at 500 G for 1 minute using a centrifuge. Thus, the supernatant was separated after being separated into the concentrate and the supernatant, and 100 mL of deionized water was added to the concentrate and stirred with a spatula to obtain a uniform metal nanoparticle dispersion.
To this dispersion, 10 mL of a 0.1 wt% aqueous triammonium citrate solution as a dispersibility reducing agent was dropped. Then, it centrifuged at 800G for 1 minute, and isolate | separated the supernatant liquid. This operation was repeated twice to obtain a high concentration metal nanoparticle dispersion. The high-concentration metal nanoparticle dispersion liquid thus obtained was designated as Example 4.
<実施例5>
Agが99wt%であってNiが1wt%の金属ナノ粒子を形成する金属塩を溶媒に溶解して金属塩水溶液を調製した。溶媒は50重量%の脱イオン水と50重量%のエタノールの混合液を用いた。これらのことを除き、比較例1と同一の条件及び手順により金属ナノ粒子が分散した金属ナノ粒子分散液を得た。
得られた金属ナノ粒子分散液(Ag99wt%、Ni1wt%)1000mLに対し、遠心分離機を用いて、500Gで1分間遠心分離した。これによって濃縮液と上澄みに分離した後上澄みを分離し、濃縮液に上記溶媒を100mL加え、スパチュラで撹拌して均一な金属ナノ粒子分散液を得た。
この分散液に対し、分散性低下剤である0.1重量%の硝酸アンモニウム水溶液を10mL滴下した。その後、800Gで1分間遠心分離し、上澄みを分離した。この操作を二回繰り返して高濃度金属ナノ粒子分散液を得た。このようにして得られた高濃度金属ナノ粒子分散液を実施例5とした。
<Example 5>
An aqueous metal salt solution was prepared by dissolving a metal salt forming 99% by weight of Ag and 1% by weight of Ni to form metal nanoparticles in a solvent. As the solvent, a mixed solution of 50% by weight of deionized water and 50% by weight of ethanol was used. Except for these, a metal nanoparticle dispersion in which metal nanoparticles were dispersed under the same conditions and procedures as in Comparative Example 1 was obtained.
The obtained metal nanoparticle dispersion (Ag 99 wt%, Ni 1 wt%) 1000 mL was centrifuged at 500 G for 1 minute using a centrifuge. Thus, the supernatant was separated after separating into a concentrated solution and a supernatant, and 100 mL of the above solvent was added to the concentrated solution, followed by stirring with a spatula to obtain a uniform metal nanoparticle dispersion.
To this dispersion, 10 mL of a 0.1 wt% aqueous ammonium nitrate solution as a dispersibility reducing agent was dropped. Then, it centrifuged at 800G for 1 minute, and isolate | separated the supernatant liquid. This operation was repeated twice to obtain a high concentration metal nanoparticle dispersion. The high-concentration metal nanoparticle dispersion liquid thus obtained was designated as Example 5.
<実施例6>
Agが99wt%であってCuが1wt%の金属ナノ粒子を形成する金属塩を脱イオン水に溶解して金属塩水溶液を調製した。このことを除き、比較例1と同一の条件及び手順により金属ナノ粒子が分散した金属ナノ粒子分散液を得た。
得られた金属ナノ粒子分散液(Ag99wt%、Cu1wt%)1000mLに対し、遠心分離機を用いて、500Gで1分間遠心分離した。これによって濃縮液と上澄みに分離した後上澄みを分離し、濃縮液に脱イオン水を100mL加え、スパチュラで撹拌して均一な金属ナノ粒子分散液を得た。
この分散液に対し、分散性低下剤である0.1重量%の硝酸銅水溶液を5mL滴下した。その後、800Gで1分間遠心分離し、上澄みを分離した。この操作を二回繰り返して高濃度金属ナノ粒子分散液を得た。このようにして得られた高濃度金属ナノ粒子分散液を実施例6とした。
<Example 6>
A metal salt forming 99% by weight of Ag and 1% by weight of Cu forming metal nanoparticles was dissolved in deionized water to prepare a metal salt aqueous solution. Except for this, a metal nanoparticle dispersion in which metal nanoparticles were dispersed under the same conditions and procedures as in Comparative Example 1 was obtained.
The obtained metal nanoparticle dispersion (Ag 99 wt%, Cu 1 wt%) (1000 mL) was centrifuged at 500 G for 1 minute using a centrifuge. Thus, the supernatant was separated after being separated into the concentrate and the supernatant, and 100 mL of deionized water was added to the concentrate and stirred with a spatula to obtain a uniform metal nanoparticle dispersion.
To this dispersion, 5 mL of a 0.1% by weight copper nitrate aqueous solution, which is a dispersibility reducing agent, was dropped. Then, it centrifuged at 800G for 1 minute, and isolate | separated the supernatant liquid. This operation was repeated twice to obtain a high concentration metal nanoparticle dispersion. The high-concentration metal nanoparticle dispersion liquid thus obtained was designated as Example 6.
<実施例7>
Agが99wt%であってSnが1wt%の金属ナノ粒子を形成する金属塩を脱イオン水に溶解して金属塩水溶液を調製した。このことを除き、比較例1と同一の条件及び手順により金属ナノ粒子が分散した金属ナノ粒子分散液を得た。
得られた金属ナノ粒子分散液(Ag99wt%、Sn1wt%)1000mLに対し、遠心分離機を用いて、500Gで1分間遠心分離した。これによって濃縮液と上澄みに分離した後上澄みを分離し、濃縮液に脱イオン水を100mL加え、スパチュラで撹拌して均一な金属ナノ粒子分散液を得た。
この分散液に対し、分散性低下剤である0.1重量%の硝酸銀水溶液を10mL滴下した。その後、800Gで1分間遠心分離し、上澄みを分離した。この操作を二回繰り返して高濃度金属ナノ粒子分散液を得た。このようにして得られた高濃度金属ナノ粒子分散液を実施例7とした。
<Example 7>
An aqueous metal salt solution was prepared by dissolving a metal salt forming 99% by weight Ag and 1% by weight Sn metal nanoparticles in deionized water. Except for this, a metal nanoparticle dispersion in which metal nanoparticles were dispersed under the same conditions and procedures as in Comparative Example 1 was obtained.
The obtained metal nanoparticle dispersion (Ag 99 wt%, Sn 1 wt%) 1000 mL was centrifuged at 500 G for 1 minute using a centrifuge. Thus, the supernatant was separated after being separated into the concentrate and the supernatant, and 100 mL of deionized water was added to the concentrate and stirred with a spatula to obtain a uniform metal nanoparticle dispersion.
To this dispersion, 10 mL of a 0.1 wt% aqueous silver nitrate solution as a dispersibility reducing agent was dropped. Then, it centrifuged at 800G for 1 minute, and isolate | separated the supernatant liquid. This operation was repeated twice to obtain a high concentration metal nanoparticle dispersion. The high-concentration metal nanoparticle dispersion liquid thus obtained was designated as Example 7.
<実施例8>
Agが99.5wt%であってInが0.5wt%の金属ナノ粒子を形成する金属塩を脱イオン水に溶解して金属塩水溶液を調製した。このことを除き、比較例1と同一の条件及び手順により金属ナノ粒子が分散した金属ナノ粒子分散液を得た。
得られた金属ナノ粒子分散液(Ag99.5wt%、In0.5wt%)1000mLに対し、遠心分離機を用いて、500Gで1分間遠心分離した。これによって濃縮液と上澄みに分離した後上澄みを分離し、濃縮液に脱イオン水を100mL加え、スパチュラで撹拌して均一な金属ナノ粒子分散液を得た。
この分散液に対し、分散性低下剤である0.1重量%の硝酸インジウム水溶液を10mL滴下した。その後、800Gで1分間遠心分離し、上澄みを分離した。この操作を二回繰り返して高濃度金属ナノ粒子分散液を得た。このようにして得られた高濃度金属ナノ粒子分散液を実施例8とした。
<Example 8>
An aqueous metal salt solution was prepared by dissolving a metal salt forming 99.5 wt% Ag and 0.5 wt% In metal nanoparticles in deionized water. Except for this, a metal nanoparticle dispersion in which metal nanoparticles were dispersed under the same conditions and procedures as in Comparative Example 1 was obtained.
The obtained metal nanoparticle dispersion (Ag 99.5 wt%, In 0.5 wt%) (1000 mL) was centrifuged at 500 G for 1 minute using a centrifuge. Thus, the supernatant was separated after being separated into the concentrate and the supernatant, and 100 mL of deionized water was added to the concentrate and stirred with a spatula to obtain a uniform metal nanoparticle dispersion.
To this dispersion, 10 mL of 0.1 wt% indium nitrate aqueous solution as a dispersibility reducing agent was dropped. Then, it centrifuged at 800G for 1 minute, and isolate | separated the supernatant liquid. This operation was repeated twice to obtain a high concentration metal nanoparticle dispersion. The high-concentration metal nanoparticle dispersion liquid thus obtained was designated as Example 8.
<実施例9>
Agが95wt%であってZnが5wt%の金属ナノ粒子を形成する金属塩を脱イオン水に溶解して金属塩水溶液を調製した。このことを除き、比較例1と同一の条件及び手順により金属ナノ粒子が分散した金属ナノ粒子分散液を得た。
得られた金属ナノ粒子分散液(Ag95wt%、Zn5wt%)1000mLに対し、遠心分離機を用いて、500Gで1分間遠心分離した。これによって濃縮液と上澄みに分離した後上澄みを分離し、濃縮液に脱イオン水を100mL加え、スパチュラで撹拌して均一な金属ナノ粒子分散液を得た。
この分散液に対し、分散性低下剤である0.02重量%の硝酸アンモニウム水溶液を10mL滴下した。その後、800Gで1分間遠心分離し、上澄みを分離した。この操作を二回繰り返して高濃度金属ナノ粒子分散液を得た。このようにして得られた高濃度金属ナノ粒子分散液を実施例9とした。
<Example 9>
An aqueous metal salt solution was prepared by dissolving a metal salt that forms metal nanoparticles with 95 wt% Ag and 5 wt% Zn in deionized water. Except for this, a metal nanoparticle dispersion in which metal nanoparticles were dispersed under the same conditions and procedures as in Comparative Example 1 was obtained.
The obtained metal nanoparticle dispersion (Ag 95 wt%, Zn 5 wt%) (1000 mL) was centrifuged at 500 G for 1 minute using a centrifuge. Thus, the supernatant was separated after being separated into the concentrate and the supernatant, and 100 mL of deionized water was added to the concentrate and stirred with a spatula to obtain a uniform metal nanoparticle dispersion.
To this dispersion, 10 mL of a 0.02% by weight ammonium nitrate aqueous solution as a dispersibility reducing agent was dropped. Then, it centrifuged at 800G for 1 minute, and isolate | separated the supernatant liquid. This operation was repeated twice to obtain a high concentration metal nanoparticle dispersion. The high-concentration metal nanoparticle dispersion liquid thus obtained was designated as Example 9.
<実施例10>
Agが95wt%であってFeが5wt%の金属ナノ粒子を形成する金属塩を脱イオン水に溶解して金属塩水溶液を調製した。このことを除き、比較例1と同一の条件及び手順により金属ナノ粒子が分散した金属ナノ粒子分散液を得た。
得られた金属ナノ粒子分散液(Ag95wt%、Fe5wt%)1000mLに対し、遠心分離機を用いて、500Gで1分間遠心分離した。これによって濃縮液と上澄みに分離した後上澄みを分離し、濃縮液に脱イオン水を100mL加え、スパチュラで撹拌して均一な金属ナノ粒子分散液を得た。
この分散液に対し、分散性低下剤である0.1重量%の酢酸クロム水溶液を10mL滴下した。その後、800Gで1分間遠心分離し、上澄みを分離した。この操作を二回繰り返して高濃度金属ナノ粒子分散液を得た。このようにして得られた高濃度金属ナノ粒子分散液を実施例10とした。
<Example 10>
An aqueous metal salt solution was prepared by dissolving a metal salt forming 95% by weight of Ag and 5% by weight of Fe to form metal nanoparticles in deionized water. Except for this, a metal nanoparticle dispersion in which metal nanoparticles were dispersed under the same conditions and procedures as in Comparative Example 1 was obtained.
The obtained metal nanoparticle dispersion (Ag 95 wt%, Fe 5 wt%) 1000 mL was centrifuged at 500 G for 1 minute using a centrifuge. Thus, the supernatant was separated after being separated into the concentrate and the supernatant, and 100 mL of deionized water was added to the concentrate and stirred with a spatula to obtain a uniform metal nanoparticle dispersion.
To this dispersion, 10 mL of 0.1% by weight chromium acetate aqueous solution as a dispersibility reducing agent was dropped. Then, it centrifuged at 800G for 1 minute, and isolate | separated the supernatant liquid. This operation was repeated twice to obtain a high concentration metal nanoparticle dispersion. The high-concentration metal nanoparticle dispersion liquid thus obtained was designated as Example 10.
<実施例11>
Agが95wt%であってCrが5wt%の金属ナノ粒子を形成する金属塩を脱イオン水に溶解して金属塩水溶液を調製した。このことを除き、比較例1と同一の条件及び手順により金属ナノ粒子が分散した金属ナ粒子分散液を得た。
得られた金属ナノ粒子分散液(Ag95wt%、Cr5wt%)1000mLに対し、遠心分離機を用いて、500Gで1分間遠心分離した。これによって濃縮液と上澄みに分離した後上澄みを分離し、濃縮液に脱イオン水を100mL加え、スパチュラで撹拌して均一な金属ナノ粒子分散液を得た。
この分散液に対し、分散性低下剤である0.1重量%のギ酸アンモニウム水溶液を10mL滴下した。その後、500Gで1分間遠心分離し、上澄みを分離した。この操作を二回繰り返して高濃度金属ナノ粒子分散液を得た。このようにして得られた高濃度金属ナノ粒子分散液を実施例11とした。
<Example 11>
An aqueous metal salt solution was prepared by dissolving a metal salt that forms metal nanoparticles with 95 wt% Ag and 5 wt% Cr in deionized water. Except for this, a metal nanoparticle dispersion in which metal nanoparticles were dispersed under the same conditions and procedures as in Comparative Example 1 was obtained.
The obtained metal nanoparticle dispersion (Ag 95 wt%, Cr 5 wt%) 1000 mL was centrifuged at 500 G for 1 minute using a centrifuge. Thus, the supernatant was separated after being separated into the concentrate and the supernatant, and 100 mL of deionized water was added to the concentrate and stirred with a spatula to obtain a uniform metal nanoparticle dispersion.
To this dispersion, 10 mL of a 0.1 wt% aqueous solution of ammonium formate as a dispersibility reducing agent was dropped. Then, it centrifuged at 500G for 1 minute, and isolate | separated the supernatant liquid. This operation was repeated twice to obtain a high concentration metal nanoparticle dispersion. The high-concentration metal nanoparticle dispersion liquid thus obtained was designated as Example 11.
<実施例12>
Agが95wt%であってMnが5wt%の金属ナノ粒子を形成する金属塩を脱イオン水に溶解して金属塩水溶液を調製した。このことを除き、比較例1と同一の条件及び手順により金属ナノ粒子が分散した金属ナノ粒子分散液を得た。
得られた金属ナノ粒子分散液(Ag95wt%、Mn5wt%)1000mLに対し、遠心分離機を用いて、500Gで1分間遠心分離した。これによって濃縮液と上澄みに分離した後上澄みを分離し、濃縮液に脱イオン水を100mL加え、スパチュラで撹拌して均一な金属ナノ粒子分散液を得た。
この分散液に対し、分散性低下剤である0.1重量%のジメチルアミン塩酸塩水溶液を10mL滴下した。その後、1000Gで1分間遠心分離し、上澄みを分離した。この操作を二回繰り返して高濃度金属ナノ粒子分散液を得た。このようにして得られた高濃度金属ナノ粒子分散液を実施例12とした。
<Example 12>
An aqueous metal salt solution was prepared by dissolving a metal salt that forms metal nanoparticles with 95 wt% Ag and 5 wt% Mn in deionized water. Except for this, a metal nanoparticle dispersion in which metal nanoparticles were dispersed under the same conditions and procedures as in Comparative Example 1 was obtained.
The obtained metal nanoparticle dispersion (Ag 95 wt%, Mn 5 wt%) 1000 mL was centrifuged at 500 G for 1 minute using a centrifuge. Thus, the supernatant was separated after being separated into the concentrate and the supernatant, and 100 mL of deionized water was added to the concentrate and stirred with a spatula to obtain a uniform metal nanoparticle dispersion.
To this dispersion, 10 mL of a 0.1% by weight dimethylamine hydrochloride aqueous solution as a dispersibility reducing agent was dropped. Then, it centrifuged at 1000G for 1 minute, and isolate | separated the supernatant liquid. This operation was repeated twice to obtain a high concentration metal nanoparticle dispersion. The high-concentration metal nanoparticle dispersion liquid thus obtained was designated as Example 12.
<実施例13>
比較例3と同一の条件及び手順により金属ナノ粒子が分散した金属ナノ粒子分散液を得た。
得られた金属ナノ粒子分散液(Ag75wt%、Au25wt%)1000mLに対し、遠心分離機を用いて、500Gで1分間遠心分離した。これによって濃縮液と上澄みに分離したその上澄みを分離し、濃縮液に脱イオン水を100mL加え、スパチュラで撹拌して均一な金属ナノ粒子分散液を得た。
この分散液に対し、分散性低下剤であるアンモニア水を滴下して分散液をpH8調製した。その後、800Gで10分間遠心分離し、上澄みを分離した。この操作を二回繰り返して高濃度金属ナノ粒子分散液を得た。このようにして得られた高濃度金属ナノ粒子分散液を実施例13とした。
<Example 13>
A metal nanoparticle dispersion liquid in which metal nanoparticles were dispersed under the same conditions and procedures as in Comparative Example 3 was obtained.
The obtained metal nanoparticle dispersion (Ag 75 wt%, Au 25 wt%) (1000 mL) was centrifuged at 500 G for 1 minute using a centrifuge. Thereby, the supernatant separated into the concentrate and the supernatant was separated, 100 mL of deionized water was added to the concentrate, and the mixture was stirred with a spatula to obtain a uniform metal nanoparticle dispersion.
Ammonia water, which is a dispersibility-lowering agent, was added dropwise to this dispersion to adjust the dispersion to pH 8. Thereafter, the mixture was centrifuged at 800 G for 10 minutes, and the supernatant was separated. This operation was repeated twice to obtain a high concentration metal nanoparticle dispersion. The high-concentration metal nanoparticle dispersion liquid thus obtained was designated as Example 13.
<実施例14>
比較例3と同一の条件及び手順により金属ナノ粒子が分散した金属ナノ粒子分散液を得た。
得られた金属ナノ粒子分散液(Ag75wt%、Au25wt%)1000mLに対し、遠心分離機を用いて、500Gで1分間遠心分離した。これによって濃縮液と上澄みに分離したその上澄みを分離し、濃縮液に脱イオン水を100mL加え、スパチュラで撹拌して均一な金属ナノ粒子分散液を得た。
この分散液に対し、分散性低下剤である水酸化ナトリウム水を滴下して分散液をpH8調製した。その後、800Gで10分間遠心分離し、上澄みを分離した。この操作を二回繰り返して高濃度金属ナノ粒子分散液を得た。このようにして得られた高濃度金属ナノ粒子分散液を実施例14とした。
<Example 14>
A metal nanoparticle dispersion liquid in which metal nanoparticles were dispersed under the same conditions and procedures as in Comparative Example 3 was obtained.
The obtained metal nanoparticle dispersion (Ag 75 wt%, Au 25 wt%) (1000 mL) was centrifuged at 500 G for 1 minute using a centrifuge. Thereby, the supernatant separated into the concentrate and the supernatant was separated, 100 mL of deionized water was added to the concentrate, and the mixture was stirred with a spatula to obtain a uniform metal nanoparticle dispersion.
To this dispersion, sodium hydroxide water as a dispersibility reducing agent was added dropwise to adjust the dispersion to pH 8. Thereafter, the mixture was centrifuged at 800 G for 10 minutes, and the supernatant was separated. This operation was repeated twice to obtain a high concentration metal nanoparticle dispersion. The high-concentration metal nanoparticle dispersion liquid thus obtained was designated as Example 14.
<比較試験及び評価>
比較例1及び2並びに実施例1〜12におけるそれぞれの高濃度金属ナノ粒子分散液における金属ナノ粒子の回収率を分取した液について、含有する金属ナノ粒子を酸等で溶解し、更に誘導結合プラズマ発光分析法(ICP−AES法)で、金属濃度を測定することにより評価した。この試験条件及び結果を表1に示す。
<Comparison test and evaluation>
About the liquid which fractionated the recovery rate of the metal nanoparticles in each of the high-concentration metal nanoparticle dispersions in Comparative Examples 1 and 2 and Examples 1 to 12, the contained metal nanoparticles were dissolved with an acid or the like and further inductively coupled Evaluation was made by measuring the metal concentration by plasma emission analysis (ICP-AES method). The test conditions and results are shown in Table 1.
表1より明らかなように、遠心分離する以前に分散性低下剤を金属ナノ粒子分散液に添加しない比較例1〜3においては、金属の回収率が最大で15.1%であって、その値が著しく低いことが判る。
一方、遠心分離する以前に分散性低下剤を金属ナノ粒子分散液に添加する実施例1〜13においては、遠心分離における遠心力が1000G以下であるにも拘わらず、金属の回収率が高い値を示していることが判る。これは、遠心分離する以前に分散性低下剤を金属ナノ粒子分散液に添加するので、金属ナノ粒子の分散安定性が低下して低い遠心力で金属ナノ粒子を遠心沈降させることが可能となったことによるものと考えられる。
As is apparent from Table 1, in Comparative Examples 1 to 3 in which the dispersibility reducing agent was not added to the metal nanoparticle dispersion before centrifugation, the metal recovery rate was 15.1% at the maximum, It can be seen that the value is extremely low.
On the other hand, in Examples 1 to 13 in which the dispersibility reducing agent is added to the metal nanoparticle dispersion before centrifugation, the metal recovery rate is high even though the centrifugal force in the centrifugation is 1000 G or less. It can be seen that This is because the dispersibility-reducing agent is added to the metal nanoparticle dispersion before centrifuging, so that the dispersion stability of the metal nanoparticles is reduced, and the metal nanoparticles can be spun down with a low centrifugal force. This is thought to be due to this.
Claims (5)
金属ナノ粒子が、100重量%の銀ナノ粒子、或いは75重量%以上の銀ナノ粒子と残部が、金、白金、パラジウム、ルテニウム、ニッケル、銅、錫、インジウム、亜鉛、鉄、クロム及びマンガンからなる群より選ばれた1種の粒子又は2種以上の混合組成若しくは合金組成からなり、
遠心分離する以前に前記金属ナノ粒子の分散性を低下させる分散性低下剤を前記金属ナノ粒子分散液に添加する
ことを特徴とする高濃度金属ナノ粒子分散液の製造方法。 In the method for producing a high-concentration metal nanoparticle dispersion in which a part of the dispersion medium is removed by centrifugation from the metal nanoparticle dispersion in which the metal nanoparticles are dispersed in the dispersion medium to increase the concentration of the metal nanoparticles,
Metal nanoparticles are 100 wt% silver nanoparticles, or 75 wt% or more silver nanoparticles and the balance is gold, platinum, palladium, ruthenium, nickel, copper, tin, indium, zinc, iron, chromium and manganese It consists of one kind of particles selected from the group consisting of two or more kinds of mixed composition or alloy composition,
A method for producing a high-concentration metal nanoparticle dispersion, comprising adding a dispersibility reducing agent for reducing the dispersibility of the metal nanoparticles to the metal nanoparticle dispersion before centrifugation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007230273A JP5076753B2 (en) | 2007-09-05 | 2007-09-05 | Method for producing high-concentration metal nanoparticle dispersion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007230273A JP5076753B2 (en) | 2007-09-05 | 2007-09-05 | Method for producing high-concentration metal nanoparticle dispersion |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009062570A true JP2009062570A (en) | 2009-03-26 |
JP5076753B2 JP5076753B2 (en) | 2012-11-21 |
Family
ID=40557418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007230273A Expired - Fee Related JP5076753B2 (en) | 2007-09-05 | 2007-09-05 | Method for producing high-concentration metal nanoparticle dispersion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5076753B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011074606A1 (en) * | 2009-12-15 | 2011-06-23 | 公立大学法人大阪府立大学 | Metal nanoparticles and method for producing metal nanoparticles |
WO2012102286A1 (en) | 2011-01-26 | 2012-08-02 | 丸善石油化学株式会社 | Metallic nanoparticle composite and method for producing the same |
JP2015526836A (en) * | 2012-06-05 | 2015-09-10 | コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフCommissariata L’Energie Atomique Et Aux Energies Alternatives | Method for improving the electrical and optical performance of transparent conductor materials based on silver nanowires |
JP2015199992A (en) * | 2014-04-09 | 2015-11-12 | 株式会社ノリタケカンパニーリミテド | Alloy particulate dispersion liquid and method for producing the same |
US10086478B2 (en) | 2013-09-10 | 2018-10-02 | Kabushiki Kaisha Toshiba | Metallic particle paste, cured product using same, and semiconductor device |
CN112351598A (en) * | 2020-09-27 | 2021-02-09 | 深圳先进技术研究院 | Copper particle soldering paste, preparation method and sintering method thereof |
JP7506395B2 (en) | 2020-05-25 | 2024-06-26 | 公立大学法人 滋賀県立大学 | Method for producing silver nanoparticle thin film |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102836614B (en) * | 2012-09-14 | 2014-07-23 | 四川四通欧美环境工程有限公司 | Method for adsorbing nitrogen oxides by use of mordenite |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000054012A (en) * | 1998-07-31 | 2000-02-22 | Internatl Business Mach Corp <Ibm> | Production of transition metal nanograin |
JP2006169557A (en) * | 2004-12-13 | 2006-06-29 | Mitsui Mining & Smelting Co Ltd | Method for producing metal hyperfine particle slurry and metal hyperfine particle slurry obtained by the production method |
WO2007032144A1 (en) * | 2005-09-16 | 2007-03-22 | Fujifilm Corporation | Colored composition and photosensitive transfer material |
-
2007
- 2007-09-05 JP JP2007230273A patent/JP5076753B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000054012A (en) * | 1998-07-31 | 2000-02-22 | Internatl Business Mach Corp <Ibm> | Production of transition metal nanograin |
JP2006169557A (en) * | 2004-12-13 | 2006-06-29 | Mitsui Mining & Smelting Co Ltd | Method for producing metal hyperfine particle slurry and metal hyperfine particle slurry obtained by the production method |
WO2007032144A1 (en) * | 2005-09-16 | 2007-03-22 | Fujifilm Corporation | Colored composition and photosensitive transfer material |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011074606A1 (en) * | 2009-12-15 | 2011-06-23 | 公立大学法人大阪府立大学 | Metal nanoparticles and method for producing metal nanoparticles |
WO2012102286A1 (en) | 2011-01-26 | 2012-08-02 | 丸善石油化学株式会社 | Metallic nanoparticle composite and method for producing the same |
US9598553B2 (en) | 2011-01-26 | 2017-03-21 | Maruzen Petrochemical Co., Ltd. | Metal nanoparticle composite and method for producing the same |
JP2015526836A (en) * | 2012-06-05 | 2015-09-10 | コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフCommissariata L’Energie Atomique Et Aux Energies Alternatives | Method for improving the electrical and optical performance of transparent conductor materials based on silver nanowires |
US10086478B2 (en) | 2013-09-10 | 2018-10-02 | Kabushiki Kaisha Toshiba | Metallic particle paste, cured product using same, and semiconductor device |
JP2015199992A (en) * | 2014-04-09 | 2015-11-12 | 株式会社ノリタケカンパニーリミテド | Alloy particulate dispersion liquid and method for producing the same |
JP7506395B2 (en) | 2020-05-25 | 2024-06-26 | 公立大学法人 滋賀県立大学 | Method for producing silver nanoparticle thin film |
CN112351598A (en) * | 2020-09-27 | 2021-02-09 | 深圳先进技术研究院 | Copper particle soldering paste, preparation method and sintering method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5076753B2 (en) | 2012-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5076753B2 (en) | Method for producing high-concentration metal nanoparticle dispersion | |
JP5032005B2 (en) | High crystal silver powder and method for producing the high crystal silver powder | |
TWI389750B (en) | A fine particle dispersion liquid, and a method for producing a fine particle dispersion liquid | |
JP7329941B2 (en) | Core-shell particles and their applications | |
WO2005009652A1 (en) | Fine-grain silver powder and process for producing the same | |
JP2007239077A (en) | Method for producing particulate silver particle, and particulate silver particle obtained by the method | |
JPWO2014104032A1 (en) | Method for producing copper powder, copper powder and copper paste | |
KR102051321B1 (en) | A method for preparing silver-copper mixture powder of core-shell structure using wet process | |
JP2013541640A (en) | Silver particles and method for producing the same | |
JP4651533B2 (en) | Method for producing copper particles | |
JP2016176093A (en) | Silver-covered metal powder and method for producing the same | |
WO2022209558A1 (en) | Copper particles and method for producing same | |
JP7361464B2 (en) | AgPd core-shell particles and their use | |
JP2019178404A (en) | Core shell particle and application thereof | |
JP4433743B2 (en) | Method for producing copper fine particles | |
JP2017039991A (en) | Silver-coated copper powder, method for producing the same, and conductive paste using the same | |
JP4756652B2 (en) | Drop-shaped copper powder, method for producing drop-shaped copper powder and conductive paste | |
JPH0557324B2 (en) | ||
KR102017177B1 (en) | A method for preparing high-purity silver nano powder using wet process | |
JP7136117B2 (en) | Method for producing copper nanoparticles | |
JP7065676B2 (en) | A silver-coated metal powder and a method for producing the same, a conductive paste containing the silver-coated metal powder, and a method for producing a conductive film using the conductive paste. | |
JP3786191B2 (en) | Method for producing metal fine powder and conductive paste using the same | |
JP4485174B2 (en) | Composite metal fine particle dispersion and method for producing the same | |
JP2010037653A (en) | Copper powder for conductive paste, and conductive paste | |
JP2008223101A (en) | Method for producing metal grain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110901 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111025 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20111222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120731 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120813 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150907 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |