JP2010037653A - Copper powder for conductive paste, and conductive paste - Google Patents

Copper powder for conductive paste, and conductive paste Download PDF

Info

Publication number
JP2010037653A
JP2010037653A JP2009149493A JP2009149493A JP2010037653A JP 2010037653 A JP2010037653 A JP 2010037653A JP 2009149493 A JP2009149493 A JP 2009149493A JP 2009149493 A JP2009149493 A JP 2009149493A JP 2010037653 A JP2010037653 A JP 2010037653A
Authority
JP
Japan
Prior art keywords
copper powder
conductive paste
atm
particles
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009149493A
Other languages
Japanese (ja)
Inventor
Akihiro Oda
晃祐 織田
Tooru Kurimoto
透 栗本
Yoshiaki Uwazumi
義明 上住
Koichi Miyake
行一 三宅
Katsuhiko Yoshimaru
克彦 吉丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2009149493A priority Critical patent/JP2010037653A/en
Publication of JP2010037653A publication Critical patent/JP2010037653A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide copper powder which does not impair both of oxidation resistance and electric conductivity in spite of fineness in grain size, and further, copper powder for conductive paste which has less variation in shape and grain size and low concentration of contained oxygen. <P>SOLUTION: The copper powder for conductive paste comprises 0.1 to 10 atm% In inside the particles. Preferably, the copper powder comprises 0.01 to 0.3 atm% P (phosphorous) inside the particles. Preferably, the copper powder comprises 0.1 to 10 atm% Ag (silver) inside the particles. It is also preferable that the copper powder is produced by an atomizing process. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、導電性ペースト用銅粉及びそれを用いた導電性ペーストに関し、特に、スクリーン印刷アディティブ法による導体回路形成用や積層セラミックコンデンサの外部電極用等の各種電気的接点部材用の導電性ペーストの導電材料等に好適な銅粉とそれを用いた導電性ペーストに関する。     The present invention relates to copper powder for conductive paste and conductive paste using the same, and in particular, conductivity for various electrical contact members such as a conductor circuit formation by a screen printing additive method and an external electrode of a multilayer ceramic capacitor. The present invention relates to a copper powder suitable for a conductive material of a paste and a conductive paste using the copper powder.

銅粉は、その取り扱いの容易性から、スクリーン印刷アディティブ法による導体回路形成用や、積層セラミックコンデンサの外部電極用等の各種電気的接点部材用の導電性ペーストの導電材料等として従来から広く利用されている。     Copper powder has been widely used as a conductive material for conductive pastes for various electrical contact members such as conductor circuit formation by screen printing additive method and external electrodes of multilayer ceramic capacitors because of its ease of handling. Has been.

上記導電性ペーストは、例えば、銅粉にエポキシ樹脂等の樹脂及びその硬化剤等の各種添加剤を配合して混練することにより得ることができる。このときに使用される銅粉は、銅塩を含む溶液等から還元剤により析出させる湿式還元法や、銅塩を加熱気化させて気相中で還元させる気相還元法や、溶融した銅地金を不活性ガスや水等の冷媒で急冷して粉末化するアトマイズ法等により、製造することができる。     The said electrically conductive paste can be obtained by mix | blending and knead | mixing various additives, such as resin, such as an epoxy resin, and its hardening | curing agent, for example with copper powder. The copper powder used at this time is a wet reduction method in which a copper salt-containing solution or the like is precipitated by a reducing agent, a vapor phase reduction method in which the copper salt is heated and vaporized and reduced in the gas phase, or a molten copper base. It can be manufactured by an atomizing method or the like in which gold is rapidly cooled with a refrigerant such as an inert gas or water to be powdered.

上述したような銅粉の製造方法のうち、アトマイズ法は、一般的に広く利用されている湿式還元法に比べて、得られる銅粉中の不純物の残留濃度を小さくすることができると共に、得られる銅粉の粒子の表面から内部に至る細孔を少なくすることができるという利点を有している。
このため、アトマイズ法により製造された銅粉は、導電性ペーストの導電材料に使用した場合、ペースト硬化時のガス発生量を少なくできると共に、酸化の進行を大幅に抑制できる。
Among the methods for producing copper powder as described above, the atomizing method can reduce the residual concentration of impurities in the obtained copper powder as compared with a wet reduction method that is generally widely used. There is an advantage that pores extending from the surface to the inside of the copper powder particles can be reduced.
For this reason, when the copper powder manufactured by the atomizing method is used for the conductive material of the conductive paste, the amount of gas generated during paste curing can be reduced and the progress of oxidation can be significantly suppressed.

しかし、銅粉は、その導電性の高さゆえ、導電性ペーストの導電材料に好適であるが、粒度が微細になるにつれ、耐酸化性に劣ることとなり、それを改善するために銅の粒子表面をインジウムで被覆した金属粉体(特許文献1)等が提案されている。     However, copper powder is suitable for the conductive material of the conductive paste because of its high conductivity, but as the particle size becomes finer, it becomes inferior in oxidation resistance, and in order to improve it, copper particles A metal powder having a surface coated with indium (Patent Document 1) has been proposed.

特開2003−321701号公報Japanese Patent Laid-Open No. 2003-321701

昨今は導電性ペースト等による回路形成に際して、より微細化が求められ、必然的に導電性ペースト用に用いられる導電粉の粒度も微細化が求められている。それと同時に、ペースト特性の安定性、信頼性を確保する上で、形状や粒度のバラツキが小さく、かつ導電性を損なわないものでなければならない。そして耐酸化性のみ捉えれば、たとえば特許文献1の様な技術によれば相応の改善は可能である。     In recent years, when forming a circuit using a conductive paste or the like, further miniaturization is required, and inevitably, the particle size of the conductive powder used for the conductive paste is also required to be miniaturized. At the same time, in order to ensure the stability and reliability of the paste characteristics, the shape and particle size must be small and the conductivity should not be impaired. And if only oxidation resistance is grasped | ascertained, according to a technique like patent document 1, for example, a corresponding improvement is possible.

しかし、特許文献1の技術では、被覆技術に依存するため、銅以外の導電性を損なうインジウムの存在・露出により、当然導電性は犠牲とならざるを得ない上、確実に粒子表面を被覆させるとなると高価なインジウムを多量に要し、経済的でない。また、粒子表面にインジウムが十分量被覆されておらず、むしろ付着レベルでしか存在しない場合、耐酸化性改善もままならない。
このようなことから、本発明は、粒度微細ながら耐酸化性、導電性のバランス共に損なわない銅粉、さらには形状や粒度のバラツキが小さく、低含有酸素濃度である導電性ペースト用銅粉を提供することを目的とする。
However, since the technique of Patent Document 1 depends on the coating technique, the presence and exposure of indium that impairs the conductivity other than copper naturally inevitably sacrifices the conductivity, and the particle surface is reliably coated. This requires a large amount of expensive indium and is not economical. Also, if the particle surface is not coated with a sufficient amount of indium, but rather only present at the adhesion level, the oxidation resistance does not improve.
Therefore, the present invention provides a copper powder for conductive paste that has a fine particle size but does not impair the balance between oxidation resistance and conductivity, and further has a small variation in shape and particle size and a low oxygen concentration. The purpose is to provide.

本発明者等は、上記課題を解決するために鋭意検討した結果、銅粉の粒子内部に特定量のインジウムを含有させると、上記課題が解決することを見出し、本発明を完成した。     As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be solved when a specific amount of indium is contained inside the copper powder particles, and the present invention has been completed.

すなわち、本発明の導電性ペースト用銅粉は、粒子内部にインジウムを0.1atm%〜10atm%含有することを特徴とする。
さらに、粒子内部にりん(P)を0.01atm%〜0.3atm%含有してもよく、In/P(atm比)が4〜200であることが好ましい。
また、粒子内部にAgを0.1atm%〜10atm%含有していてもよい。
そして、アトマイズ法により製造されたものであることが好ましい。
また、250℃及び600℃での重量変化率(Tg(%))/比表面積(SSA)の差が1%/m/cm〜30%/m/cmであることが好ましい。
本発明の他の態様は、上記導電性ペースト用銅粉を含有する導電性ペーストにある。
That is, the copper powder for conductive paste of the present invention is characterized by containing 0.1 atm% to 10 atm% indium inside the particles.
Further, phosphorus (P) may be contained in the particles in an amount of 0.01 atm% to 0.3 atm%, and the In / P (atm ratio) is preferably 4 to 200.
Moreover, you may contain 0.1atm% -10atm% of Ag inside particle | grains.
And it is preferable that it was manufactured by the atomizing method.
Further, it is preferable that the difference in weight change rate at 250 ° C. and 600 ℃ (Tg (%)) / specific surface area (SSA) is 1% / m 2 / cm 3 ~30% / m 2 / cm 3.
Another aspect of the present invention resides in a conductive paste containing the copper powder for conductive paste.

本発明の導電性ペースト用銅粉は粒度微細ながら耐酸化性に優れ、かつ導電性のバランスも取れている。さらには形状や粒度のバラツキが小さく、低含有酸素濃度であるので、スクリーン印刷アディティブ法による導体回路形成用や、積層セラミックコンデンサの外部電極用等の各種電気的接点部材用の導電性ペーストの導電材料等に極めて良好に適用することができる。     The copper powder for conductive paste of the present invention is excellent in oxidation resistance while being fine in particle size, and has a good balance of conductivity. Furthermore, since the variation in shape and particle size is small and the oxygen content is low, the conductive paste is used for conductive circuit formation by screen printing additive method and for various electrical contact members such as external electrodes of multilayer ceramic capacitors. It can be applied very well to materials and the like.

本発明による導電性ペースト用銅粉の実施の形態を説明するが、本発明は以下の実施の形態に限定されるものではない。     Although embodiment of the copper powder for electrically conductive paste by this invention is described, this invention is not limited to the following embodiment.

本発明に係る導電性ペースト用銅粉は、粒子内部にインジウムを0.1atm%〜10atm%含有することを特徴とする。     The copper powder for conductive paste according to the present invention is characterized by containing 0.1 atm% to 10 atm% of indium inside the particles.

ここで重要なのは、単にInを含有しているというのではなく、特定量を粒子内部に含有していることにある。     What is important here is not simply containing In but a specific amount inside the particles.

すなわち、特許文献1のように、インジウムが銅粉粒子表面に被覆、あるいは付着した金属粉体では、耐酸化性改善には効果はあるものの、本発明が求める、導電性を損なうことなく、粒度微細で、耐酸化性に優れた銅粉とはいえない。     That is, as in Patent Document 1, a metal powder in which indium is coated on or attached to the surface of copper powder particles is effective in improving oxidation resistance, but without impairing the conductivity required by the present invention. It is not a fine copper powder with excellent oxidation resistance.

要するに、本発明に係る導電性ペースト用銅粉に含まれているInは、粒子内部の金属相中に分布しているものである。特に好ましいのは、これら成分が粒子内部にありながら、粒子表面に露出せず、粒子表面近傍に濃化存在している場合であり、耐酸化性改善に加え、優れた導電性を維持することができる。     In short, In contained in the copper powder for conductive paste according to the present invention is distributed in the metal phase inside the particles. Particularly preferred is the case where these components are present inside the particle but are not exposed to the particle surface and are concentrated near the particle surface, in addition to improving oxidation resistance and maintaining excellent conductivity. Can do.

そして、Inの含有量は0.1atm%〜10atm%であり、好ましくは0.5atm%〜8atm%であり、より好ましくは2atm%〜6atm%である。この含有量が0.1atm%未満では、本発明の求める効果が期待できない。また、10atm%を超える場合、導電性が損なわれるのみならず、添加に見合った効果が得られない。     The In content is 0.1 atm% to 10 atm%, preferably 0.5 atm% to 8 atm%, and more preferably 2 atm% to 6 atm%. If this content is less than 0.1 atm%, the effect sought by the present invention cannot be expected. On the other hand, if it exceeds 10 atm%, not only the conductivity is impaired, but also an effect commensurate with the addition cannot be obtained.

また、本発明に係る導電性ペースト用銅粉は、Inの他、粒子内部にP(りん)を好ましくは0.01atm%〜0.3atm%、より好ましくは0.02atm%〜0.1atm%含有すると良い。In及びPが銅粉中に共存し、このような特定量の範囲にあれば、粒度微細、耐酸化性を有し、導電性を損なわないこともさることながら、さらに形状や粒度のバラツキが小さく、低含有酸素濃度である特徴が向上する。     The copper powder for conductive paste according to the present invention preferably contains P (phosphorus) inside the particles in addition to In, preferably 0.01 atm% to 0.3 atm%, more preferably 0.02 atm% to 0.1 atm%. It is good to contain. If In and P coexist in the copper powder and are in such a specific amount range, there is further variation in shape and particle size while having fine particle size, oxidation resistance and not impairing conductivity. Small and low oxygen content features are improved.

また、本発明に係る導電性ペースト用銅粉は、In/P(atm比)が好ましくは4〜200、より好ましくは10〜100である。In/Pの比がこのような範囲であると、粒度微細、耐酸化性、高導電性、形状や粒度のバラツキが小、低含有酸素濃度であるという特徴のバランスが取りやすい。     The copper powder for conductive paste according to the present invention preferably has an In / P (atm ratio) of 4 to 200, more preferably 10 to 100. When the ratio of In / P is within such a range, it is easy to balance the characteristics of fine particle size, oxidation resistance, high conductivity, small variation in shape and particle size, and low oxygen content.

また本発明に係る導電性ペースト用銅粉は、粒子内部にAgを好ましくは0.1atm%〜10atm%、より好ましくは0.5atm%〜5atm%、最も好ましくは0.5atm%〜3atm%含有するとよい。このような特定量の範囲であれば、導電性ペースト用銅粉の耐酸化性を維持したまま、より導電性を向上させることができ、かつコストも抑えられる。     Further, the copper powder for conductive paste according to the present invention preferably contains 0.1 to 10 atm%, more preferably 0.5 to 5 atm%, most preferably 0.5 to 3 atm% of Ag inside the particle. Good. If it is the range of such a specific amount, electroconductivity can be improved more and the cost can also be suppressed, maintaining the oxidation resistance of the copper powder for electrically conductive pastes.

そして、In、Ag、及びP何れも含む場合、粒度微細ながら形状や粒度のバラツキが小さく飛躍的に耐酸化性に優れていることに加え、より導電性に優れた導電性ペースト用銅粉となる。     And in the case of including any of In, Ag, and P, the copper powder for conductive paste having a more excellent conductivity, in addition to having a fine particle size, small variations in shape and particle size, and excellent oxidation resistance. Become.

また、本発明に係る導電性ペースト用銅粉は、湿式還元法で得られるものであってもそれなりの効果を期待できるが、粒子形状が均整で、導電ペーストとして用いられる際にガス発生が少ない等の利点を考慮すると、アトマイズ法により製造されたものであると好ましい。     Further, the copper powder for conductive paste according to the present invention can be expected to have a certain effect even if it is obtained by a wet reduction method, but the particle shape is uniform and less gas is generated when used as a conductive paste. In view of the advantages such as the above, it is preferable to be manufactured by the atomizing method.

アトマイズ法については、ガスアトマイズ法と水アトマイズ法があるが、粒子形状の均整化を図るならばガスアトマイズ法を、粒子の微細化を図るならば水アトマイズ法を選択すれば良い。また、アトマイズ法の内、高圧アトマイズ法により製造されたものであると好ましい。このような高圧アトマイズ法により得られた銅粉は、粒子がより均整、あるいはより微細であり、好ましい。ちなみに、高圧アトマイズ法とは、水アトマイズ法においては、50MPa〜150MPa程度の水圧力でアトマイズする方法であり、ガスアトマイズ法においては、1.5MPa〜3MPa程度のガス圧力でアトマイズする方法である。     As the atomization method, there are a gas atomization method and a water atomization method. The gas atomization method may be selected if the particle shape is to be uniformed, and the water atomization method may be selected if the particles are miniaturized. Moreover, it is preferable that it is what was manufactured by the high pressure atomizing method among the atomizing methods. The copper powder obtained by such a high-pressure atomizing method is preferable because the particles are more uniform or finer. Incidentally, the high pressure atomizing method is a method of atomizing with a water pressure of about 50 MPa to 150 MPa in the water atomizing method, and a method of atomizing with a gas pressure of about 1.5 MPa to 3 MPa in the gas atomizing method.

また、本発明に係る導電性ペースト用銅粉は、熱重量・示差熱分析装置による250℃及び600℃での重量変化率(Tg(%))/比表面積(SSA)の差(以下、Δ(TG/SSA)と称す)が好ましくは1%/m/cm〜30%/m/cm、より好ましくは1%/m/cm〜25%/m/cmであることが好ましい。 In addition, the copper powder for conductive paste according to the present invention has a difference in weight change rate (Tg (%)) / specific surface area (SSA) at 250 ° C. and 600 ° C. by a thermogravimetric / differential thermal analyzer (hereinafter referred to as ΔS). (Referred to as (TG / SSA)) is preferably 1% / m 2 / cm 3 to 30% / m 2 / cm 3 , more preferably 1% / m 2 / cm 3 to 25% / m 2 / cm 3 Preferably there is.

このΔ(TG/SSA)という特性値によれば、銅粉の耐酸化性をみることができる。また、250℃〜600℃という温度領域は、例えば、セラミックコンデンサの外部電極焼成用導電ペースト等、主な導電性ペースト使用の際の加熱温度領域であり、この領域で耐酸化性を有することは非常に重要である。このΔ(TG/SSA)が上記の好ましい範囲であると、耐酸化性が十分発揮され、高導電性を確保するにも好適である。     According to this characteristic value Δ (TG / SSA), the oxidation resistance of the copper powder can be observed. The temperature range of 250 ° C. to 600 ° C. is a heating temperature range when using a main conductive paste, such as a conductive paste for firing an external electrode of a ceramic capacitor, and has oxidation resistance in this region. Very important. When Δ (TG / SSA) is in the above preferred range, the oxidation resistance is sufficiently exhibited, and it is suitable for ensuring high conductivity.

また、本発明に係る導電性ペースト用銅粉は、さらにNi、Al、Si、Ti、Fe、Co、Cr、Mg、Mn、Mo、W、Ta、Zr、Nb、B、Ge、Sn、Zn、Bi等のうちの少なくとも一種以上の元素成分を加えることにより、融点を低下させて焼結性を向上させること等をはじめとする、導電性ペーストに求められる諸特性向上効果を上げることができる。これら元素の銅に対する添加量は、添加する元素の種類に応じた導電特性やその他の各種特性等から適宜設定されるが、通常、0.001質量%〜2質量%程度である。     In addition, the copper powder for conductive paste according to the present invention further includes Ni, Al, Si, Ti, Fe, Co, Cr, Mg, Mn, Mo, W, Ta, Zr, Nb, B, Ge, Sn, Zn By adding at least one elemental component of Bi, etc., it is possible to improve various properties required for the conductive paste, such as lowering the melting point and improving the sinterability. . The amount of these elements added to copper is appropriately set based on the conductive characteristics and other various characteristics depending on the type of element to be added, but is usually about 0.001% by mass to 2% by mass.

また、本発明に係る導電性ペースト用銅粉は、その形状が、粒状をなしていると好ましく、特に、球状をなしているとさらに好ましい。ここで、粒状とは、アスペクト比(平均長径を平均短径で除した値)が1〜1.25程度で揃っている形状をいい、アスペクト比が1〜1.1程度で揃っている形状を特に球状という。なお、形状が揃っていない状態は、不定形状という。このような粒状をなす銅粉は、相互のからみが少なくなり、導電性ペーストの導電材料等に使用した場合、ペースト中での分散性が向上するので、非常に好ましい。     The copper powder for conductive paste according to the present invention preferably has a granular shape, and more preferably has a spherical shape. Here, granular means a shape in which the aspect ratio (value obtained by dividing the average major axis by the average minor axis) is about 1 to 1.25, and the aspect ratio is about 1 to 1.1. Is called spherical. A state where the shapes are not aligned is called an indefinite shape. Such a granular copper powder is very preferable because it causes less mutual entanglement and improves dispersibility in the paste when used as a conductive material for a conductive paste.

また、本発明に係る導電性ペースト用銅粉は、例えばレーザ回折散乱式粒度分布測定装置等により測定可能な、体積換算50%累積径D50及び標準偏差値SDとから求められる変動係数(SD/D50)が0.2〜0.6であると、粒度分布のバラツキが少なく、導電性ペーストの導電材料等に使用した場合のペースト中での分散性を向上させることができるので、非常に好ましい。 Further, the copper powder for conductive paste according to the present invention can be measured by, for example, a laser diffraction scattering type particle size distribution measuring device or the like, and a coefficient of variation (SD) obtained from a volume converted 50% cumulative diameter D 50 and a standard deviation value SD. / D 50 ) is 0.2 to 0.6, there is little variation in the particle size distribution, and the dispersibility of the conductive paste in the paste when used as a conductive material can be improved. Is preferable.

また、本発明に係る導電性ペースト用銅粉は、一次粒子の個数平均粒径を0.5μm〜50μmにすることにより、微細な前記導体回路形成用の導電性ペーストの導電材料等に好適なものとなる。     Moreover, the copper powder for conductive paste according to the present invention is suitable for a conductive material of a fine conductive paste for forming a conductive circuit by setting the number average particle size of primary particles to 0.5 μm to 50 μm. It will be a thing.

また、本発明に係る導電性ペースト用銅粉は、含有酸素濃度を30ppm〜2500ppmとすることにより、導電性を確実に確保することができ、導電性ペーストの導電材料等に好適なものとなる。     Moreover, the copper powder for electrically conductive pastes which concerns on this invention can ensure electrical conductivity reliably by making content oxygen concentration into 30 ppm-2500 ppm, and will become a suitable thing for the electrically conductive material of an electrically conductive paste, etc. .

次に、本発明に係る導電性ペースト用銅粉の好ましい具体的な製造方法について説明する。     Next, the preferable specific manufacturing method of the copper powder for electrically conductive paste which concerns on this invention is demonstrated.

本発明の導電性ペースト用銅粉は、溶融した銅にIn成分を母合金、又は化合物等の形態で、所定量添加した後、所定のアトマイズ法により粉体化することにより製造可能である。     The copper powder for conductive paste of the present invention can be produced by adding a predetermined amount of In component in the form of a mother alloy or a compound to molten copper and then pulverizing it by a predetermined atomization method.

上記製造方法によれば、粒度微細ながら耐酸化性、導電性のバランス共に損なわない銅粉、さらには形状や粒度のバラツキが小さく、低含有酸素濃度である銅粉を製造することができる。     According to the said manufacturing method, the copper powder which does not impair both oxidation resistance and electroconductivity balance with fine particle size, and also the copper powder which is small in the variation of a shape and a particle size and is a low content oxygen concentration can be manufactured.

この理由は定かではないが、溶融した銅または銅合金に添加したInが、導電性を損なわない程度で、生成銅粉粒子中の酸素を捉えて酸化を抑制するものと推測される。     The reason for this is not clear, but it is presumed that In added to molten copper or copper alloy captures oxygen in the produced copper powder particles and suppresses oxidation to the extent that conductivity is not impaired.

さらに、In成分に加え、P成分が加わると、アトマイズ時の溶湯の表面張力を小さくすることができ、粒子形状の均整化や溶湯中の脱酸素化が有効に行えるものと推測される。P成分の添加は、In成分と同様、溶融した銅にP成分を母合金、又は化合物の形態で、所定量添加すれば良い。     Furthermore, when the P component is added in addition to the In component, the surface tension of the molten metal during atomization can be reduced, and it is presumed that the particle shape can be leveled and the deoxygenation in the molten metal can be effectively performed. As with the In component, the P component may be added in a predetermined amount in the form of a mother alloy or a compound to the molten copper.

また、In成分に加え、Ag成分を含有させることにより、銅粉の耐酸化性を確保しつつ、更に導電性を向上させることができる。     Moreover, by containing an Ag component in addition to the In component, the conductivity can be further improved while ensuring the oxidation resistance of the copper powder.

また、上記製造方法においては、先に説明した理由から、高圧アトマイズ法を採用することが好ましい。ただし、ガスアトマイズ法に比して、水アトマイズ法では銅以外の添加成分の含有歩留まりが低い場合があるので、目的とする銅粉中の正味量に対し、Inの場合、1〜10倍量、Pの場合、1〜100倍量を添加する必要がある。     Moreover, in the said manufacturing method, it is preferable to employ | adopt a high pressure atomizing method from the reason demonstrated previously. However, since the content yield of additive components other than copper may be low in the water atomization method as compared with the gas atomization method, the amount in the case of In is 1 to 10 times the net amount in the target copper powder. In the case of P, it is necessary to add 1 to 100 times the amount.

また、上記製造方法においては、アトマイズした後、還元処理しても良い。この還元処理により、酸化の進行しやすい銅粉の表面の酸素濃度をさらに低減することができる。ここで、上記還元処理は、作業性の観点から、ガスによる還元が好ましい。この還元処理用ガスは、特に限定されることはないが、例えば、水素ガス、アンモニアガス、ブタンガス等を挙げることができる。     Moreover, in the said manufacturing method, after atomizing, you may reduce | restore. By this reduction treatment, it is possible to further reduce the oxygen concentration on the surface of the copper powder that is easily oxidized. Here, the reduction treatment is preferably gas reduction from the viewpoint of workability. The reducing gas is not particularly limited, and examples thereof include hydrogen gas, ammonia gas, and butane gas.

さらに、上記還元処理は、150℃〜300℃の温度で行うと好ましく、特に、170℃〜210℃の温度で行うとより好ましい。なぜなら、上記温度が150℃未満であると、還元速度が遅くなってしまい、処理効果を充分に発現することができず、上記温度が300℃を超えると、銅粉の凝集や焼結を引き起こしてしまうおそれがあり、上記温度が170℃〜210℃であると、酸素濃度の効率のよい低減化を図りながらも、銅粉の凝集や焼結を確実に抑制することができるからである。     Furthermore, the reduction treatment is preferably performed at a temperature of 150 ° C. to 300 ° C., and more preferably performed at a temperature of 170 ° C. to 210 ° C. This is because if the temperature is less than 150 ° C., the reduction rate becomes slow, and the treatment effect cannot be sufficiently exhibited, and if the temperature exceeds 300 ° C., it causes aggregation and sintering of copper powder. This is because when the temperature is 170 ° C. to 210 ° C., aggregation and sintering of copper powder can be reliably suppressed while efficiently reducing the oxygen concentration.

また、上記製造方法においては、粉体化した後、分級すると好ましい。この分級は、目的とする粒度が中心となるように、適切な分級装置を用いて、得られた銅粉から粗粉や微粉を分離することにより容易に実施することができる。ここで、先に説明した変動係数(SD/D50)が0.2〜0.6となるように分級することが望ましい。 Moreover, in the said manufacturing method, it is preferable to classify after pulverizing. This classification can be easily carried out by separating coarse powder and fine powder from the obtained copper powder using an appropriate classifier so that the target particle size becomes the center. Here, it is desirable to classify so that the coefficient of variation (SD / D 50 ) described above is 0.2 to 0.6.

以上説明したような銅粉に、例えば、エポキシ樹脂等の樹脂及びその硬化剤等の各種添加剤を配合して混練するなどして製造した本発明の導電性ペースト用銅粉を含有した導電性ペーストは、当該銅粉が、粒度微細ながら耐酸化性、導電性のバランスが取れており、形状のバラツキが少なく、かつ含有酸素濃度が低いので、スクリーン印刷アディティブ法による導体回路形成用や、積層セラミックコンデンサの外部電極用等の各種電気的接点部材用の導電性ペーストの導電材料等に極めて良好に適用することができる。     Conductivity containing the copper powder for the conductive paste of the present invention produced by mixing and kneading various additives such as a resin such as an epoxy resin and its curing agent with the copper powder as described above, for example. Since the copper powder is fine in particle size, the paste has a good balance between oxidation resistance and electrical conductivity, has little variation in shape, and has a low oxygen concentration. The present invention can be applied extremely well to conductive materials of conductive pastes for various electrical contact members such as external electrodes of ceramic capacitors.

その他、本発明の導電性ペースト用銅粉は、積層セラミックコンデンサの内部電極、インダクタやレジスター等のチップ部品、単板コンデンサー電極、タンタルコンデンサー電極、樹脂多層基板、セラミック(LTCC)多層基板、フレキシブルプリント基板(FPC)、アンテナスイッチモジュール、PAモジュールや高周波アクティブフィルター等のモジュール、PDP前面板及び背面板やPDPカラーフィルター用電磁遮蔽フィルム、結晶型太陽電池表面電極及び背面引き出し電極、導電性接着剤、EMIシールド、RF−ID、及びPCキーボード等のメンブレンスイッチ、異方性導電膜(ACF/ACP)等にも使用可能である。     In addition, the copper powder for conductive paste of the present invention is used for internal electrodes of multilayer ceramic capacitors, chip parts such as inductors and resistors, single plate capacitor electrodes, tantalum capacitor electrodes, resin multilayer substrates, ceramic (LTCC) multilayer substrates, flexible prints. Substrate (FPC), antenna switch module, module such as PA module and high frequency active filter, PDP front and back plate, electromagnetic shielding film for PDP color filter, crystal type solar cell surface electrode and back extraction electrode, conductive adhesive, It can also be used for EMI shield, RF-ID, membrane switch such as PC keyboard, anisotropic conductive film (ACF / ACP) and the like.

以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。
(実施例1)
ガスアトマイズ装置(日新技研(株)製、NEVA−GP2型)のチャンバ及び原料溶解室内を窒素ガスで充填した後、溶解室内にあるカーボン坩堝で原料を加熱溶解して溶融物とした(電気銅を溶解した溶湯中に、金属インジウムを7.20g添加して、800gの溶湯とし、充分に攪拌混合)。その後、溶湯を口径φ1.5mmのノズルから1250℃、3.0MPaで噴霧して、インジウムを粒子内部に含む銅粉を得た。しかる後、53μmテストシーブで篩い、篩下品を最終的な銅粉とした。得られた銅粉の特徴を表2に示す。
(実施例2〜4)
金属インジウム添加量を表1に示すように変更した以外は実施例1と同様の操作を行って、銅粉を得た。
(実施例5〜10)
金属インジウムに加え、銅−りん母合金(りん品位15質量%)も表1に示すように添加した以外は実施例1と同様の操作を行って、銅粉を得た。
(実施例11及び12)
金属インジウムや銅−りん母合金以外に、電気銀を表1に示すように添加した以外は実施例1と同様な操作を行って、銅粉を得た。
(比較例1〜4)
金属インジウムおよび/または銅−りん母合金の添加量を表1に示すように添加した以外は実施例1と同様の操作を行って、銅粉を得た。
Hereinafter, the present invention will be described in more detail based on the following examples and comparative examples.
Example 1
After filling the chamber and raw material melting chamber of the gas atomizer (Nisshin Giken Co., Ltd., NEVA-GP2 type) with nitrogen gas, the raw material was heated and melted in a carbon crucible in the melting chamber to obtain a molten material (electro-copper) 7.20 g of metal indium was added to the molten metal in which the molten metal was dissolved to obtain 800 g of molten metal, which was sufficiently stirred and mixed. Thereafter, the molten metal was sprayed from a nozzle having a diameter of φ1.5 mm at 1250 ° C. and 3.0 MPa to obtain copper powder containing indium inside the particles. Thereafter, it was sieved with a 53 μm test sieve, and the product under the sieve was made the final copper powder. Table 2 shows the characteristics of the obtained copper powder.
(Examples 2 to 4)
A copper powder was obtained by performing the same operation as in Example 1 except that the amount of metal indium added was changed as shown in Table 1.
(Examples 5 to 10)
In addition to metallic indium, a copper powder was obtained in the same manner as in Example 1 except that a copper-phosphorus mother alloy (phosphorus grade 15% by mass) was also added as shown in Table 1.
(Examples 11 and 12)
In addition to metallic indium and copper-phosphorus mother alloy, copper powder was obtained by performing the same operation as in Example 1 except that electrical silver was added as shown in Table 1.
(Comparative Examples 1-4)
A copper powder was obtained in the same manner as in Example 1 except that the addition amount of metal indium and / or copper-phosphorus alloy was added as shown in Table 1.

Figure 2010037653
Figure 2010037653

実施例および比較例で得られた銅粉に関して、以下に示す方法で諸特性を評価した。その結果を表2〜6に示す。     With respect to the copper powder obtained in the examples and comparative examples, various properties were evaluated by the following methods. The results are shown in Tables 2-6.

(1)インジウム、りん総含有量
試料を酸で溶解し、ICPにて分析した。
(2)酸素濃度
酸素・窒素分析装置(堀場製作所株式会社製「EMGA−520(型番)」)により分析した。その結果を表2に示す。なお、経時的な耐酸化性劣化を評価するために、山陽精工製のSK−8000を用いてAir流量8L/分でそれぞれ10℃/分で200℃まで昇温し、その後1時間保持した試料の酸素濃度も測定した。その結果を表5に示す。
(3)Δ(TG/SSA)
40℃〜600℃でのTg(%)を示差熱熱重量同時測定装置(TG/DTA)(SII製、TG/DTA6300高温型)(昇温速度:10℃/分、Air流量:200mL/分)で測定し、250℃〜600℃での重量変化率の差を求めた。一方、比表面積は粒度測定装置(日機装製、マイクロトラックMT−3000型)で測定した粒度分布から求め、両者の数値から算術的に求めた。温度に対応する実施例1〜11及び比較例1〜4のTG/SSAを表3に示す。また、実施例1〜11及び比較例2〜4のTG/SSAを比較例1の純銅粉のTG/SSA(表中[TG/SSA]Cuと記載)で除した結果を表4に示す。
(4)粒子形状
走査型電子顕微鏡にて観察した。
(5)D50、SD、SD/D50
試料(0.2g)を純水(100ml)中に入れて超音波を照射して(3分間)分散させた後、粒度分布測定装置(日機装株式会社製「マイクロトラック(商品名)FRA(型番)」)により、体積換算50%累積径D50及び標準偏差値SD並びに変動係数(SD/D50)をそれぞれ求めた。
(1) Total content of indium and phosphorus Samples were dissolved with acid and analyzed by ICP.
(2) Oxygen concentration The oxygen concentration was analyzed by an oxygen / nitrogen analyzer (“EMGA-520 (model number)” manufactured by Horiba, Ltd.). The results are shown in Table 2. In addition, in order to evaluate the oxidation resistance deterioration with time, a sample was heated to 200 ° C. at 10 ° C./min with an Air flow rate of 8 L / min using SK-8000 manufactured by Sanyo Seiko, and then held for 1 hour. The oxygen concentration of was also measured. The results are shown in Table 5.
(3) Δ (TG / SSA)
Tg (%) at 40 ° C. to 600 ° C. Differential thermogravimetric simultaneous measurement apparatus (TG / DTA) (SII, TG / DTA6300 high temperature type) (heating rate: 10 ° C./min, Air flow rate: 200 mL / min ) And the difference in weight change rate at 250 ° C. to 600 ° C. was determined. On the other hand, the specific surface area was obtained from the particle size distribution measured with a particle size measuring device (manufactured by Nikkiso Co., Ltd., Microtrac MT-3000 type) and arithmetically obtained from both numerical values. Table 3 shows TG / SSA of Examples 1 to 11 and Comparative Examples 1 to 4 corresponding to the temperature. Table 4 shows the results of dividing TG / SSA of Examples 1 to 11 and Comparative Examples 2 to 4 by TG / SSA of the pure copper powder of Comparative Example 1 (described as [TG / SSA] Cu in the table).
(4) Particle shape It observed with the scanning electron microscope.
(5) D 50 , SD, SD / D 50
A sample (0.2 g) is placed in pure water (100 ml) and irradiated with ultrasonic waves (for 3 minutes) to disperse, and then a particle size distribution analyzer ("Microtrack (trade name) FRA (model number) manufactured by Nikkiso Co., Ltd." by) "), it was determined in terms of volume of 50% cumulative diameter D 50 and the standard deviation value SD and coefficient of variation (SD / D 50), respectively.

Figure 2010037653
Figure 2010037653

Figure 2010037653
Figure 2010037653

Figure 2010037653
Figure 2010037653

表3および表4に示すように、実施例の銅粉は、インジウムを含有しない、あるいはインジウム及びりんを含有しない比較例と比較して耐酸化性に優れ、特に250℃〜600℃の温度領域において優れていることが分かった。     As shown in Tables 3 and 4, the copper powders of the examples are superior in oxidation resistance as compared with comparative examples not containing indium or not containing indium and phosphorus, particularly in the temperature range of 250 ° C to 600 ° C. Was found to be excellent.

また、表5に示すように、実施例の銅粉は、酸化し易い環境下に長時間保持した場合、比較例の銅粉と比較して、経時的な耐酸化性が顕著に優れていた。     In addition, as shown in Table 5, when the copper powder of the example was kept for a long time in an environment that is easily oxidized, the oxidation resistance over time was significantly superior compared to the copper powder of the comparative example. .

Figure 2010037653
Figure 2010037653

Claims (7)

粒子内部にインジウムを0.1atm%〜10atm%含有することを特徴とする導電性ペースト用銅粉。     A copper powder for conductive paste containing 0.1 atm% to 10 atm% of indium inside the particles. 粒子内部にP(りん)を0.01atm%〜0.3atm%含有することを特徴とする請求項1記載の導電性ペースト用銅粉。     2. The copper powder for conductive paste according to claim 1, wherein P (phosphorus) is contained in the particles in an amount of 0.01 atm% to 0.3 atm%. In/P(atm比)が4〜200であることを特徴とする請求項2に記載の導電性ペースト用銅粉。     In / P (atm ratio) is 4-200, The copper powder for electrically conductive pastes of Claim 2 characterized by the above-mentioned. 粒子内部にAg(銀)を0.1atm%〜10atm%含有することを特徴とする請求項1〜3の何れかに記載の導電性ペースト用銅粉。     The copper powder for conductive paste according to any one of claims 1 to 3, wherein Ag (silver) is contained in the particles in an amount of 0.1 atm% to 10 atm%. アトマイズ法により製造されたものであることを特徴とする請求項1〜4の何れかに記載の導電性ペースト用銅粉。     It is manufactured by the atomizing method, The copper powder for electrically conductive pastes in any one of Claims 1-4 characterized by the above-mentioned. 250℃及び600℃での重量変化率(Tg(%))/比表面積(SSA)の差が1%/m/cm〜30%/m/cmであることを特徴とする請求項1〜5の何れかに記載の導電性ペースト用銅粉。 The difference in weight change rate (Tg (%)) / specific surface area (SSA) at 250 ° C. and 600 ° C. is 1% / m 2 / cm 3 to 30% / m 2 / cm 3. The copper powder for conductive pastes in any one of claim | item 1 -5. 請求項1〜6の何れかに記載の導電性ペースト用銅粉を含有することを特徴とする導電性ペースト。     A conductive paste comprising the copper powder for conductive paste according to claim 1.
JP2009149493A 2008-07-11 2009-06-24 Copper powder for conductive paste, and conductive paste Pending JP2010037653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009149493A JP2010037653A (en) 2008-07-11 2009-06-24 Copper powder for conductive paste, and conductive paste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008181148 2008-07-11
JP2009149493A JP2010037653A (en) 2008-07-11 2009-06-24 Copper powder for conductive paste, and conductive paste

Publications (1)

Publication Number Publication Date
JP2010037653A true JP2010037653A (en) 2010-02-18

Family

ID=42010493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009149493A Pending JP2010037653A (en) 2008-07-11 2009-06-24 Copper powder for conductive paste, and conductive paste

Country Status (1)

Country Link
JP (1) JP2010037653A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196105A (en) * 2009-02-24 2010-09-09 Mitsui Mining & Smelting Co Ltd Copper powder for electroconductive paste, and electroconductive paste
JPWO2010004852A1 (en) * 2008-07-11 2011-12-22 三井金属鉱業株式会社 Copper powder for conductive paste and conductive paste
JP2017106047A (en) * 2015-12-07 2017-06-15 山陽特殊製鋼株式会社 Powder for conductive filler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169081A (en) * 2002-11-19 2004-06-17 Mitsui Mining & Smelting Co Ltd Metal powder and its manufacturing method
WO2006109573A1 (en) * 2005-04-01 2006-10-19 Asahi Kasei Emd Corporation Conductive filler and solder material
JP2009235556A (en) * 2008-03-04 2009-10-15 Mitsui Mining & Smelting Co Ltd Copper powder for conductive pastes, and conductive paste
WO2010004852A1 (en) * 2008-07-11 2010-01-14 三井金属鉱業株式会社 Copper powder for conductive paste, and conductive paste
JP2010196105A (en) * 2009-02-24 2010-09-09 Mitsui Mining & Smelting Co Ltd Copper powder for electroconductive paste, and electroconductive paste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169081A (en) * 2002-11-19 2004-06-17 Mitsui Mining & Smelting Co Ltd Metal powder and its manufacturing method
WO2006109573A1 (en) * 2005-04-01 2006-10-19 Asahi Kasei Emd Corporation Conductive filler and solder material
JP2009235556A (en) * 2008-03-04 2009-10-15 Mitsui Mining & Smelting Co Ltd Copper powder for conductive pastes, and conductive paste
WO2010004852A1 (en) * 2008-07-11 2010-01-14 三井金属鉱業株式会社 Copper powder for conductive paste, and conductive paste
JP2010196105A (en) * 2009-02-24 2010-09-09 Mitsui Mining & Smelting Co Ltd Copper powder for electroconductive paste, and electroconductive paste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010004852A1 (en) * 2008-07-11 2011-12-22 三井金属鉱業株式会社 Copper powder for conductive paste and conductive paste
JP2010196105A (en) * 2009-02-24 2010-09-09 Mitsui Mining & Smelting Co Ltd Copper powder for electroconductive paste, and electroconductive paste
JP2017106047A (en) * 2015-12-07 2017-06-15 山陽特殊製鋼株式会社 Powder for conductive filler

Similar Documents

Publication Publication Date Title
JP5405814B2 (en) Copper powder for conductive paste and conductive paste
JP5155743B2 (en) Copper powder for conductive paste and conductive paste
JP2010013730A (en) Copper powder for conductive paste, and conductive paste
JP2010196105A (en) Copper powder for electroconductive paste, and electroconductive paste
JP5937730B2 (en) Method for producing copper powder
JP2011006740A (en) Copper powder for conductive paste, and conductive paste
JPWO2010004852A1 (en) Copper powder for conductive paste and conductive paste
TWI499679B (en) Copper powder for conductive paste and conductive paste
JP6224933B2 (en) Silver-coated copper alloy powder and method for producing the same
JP6186197B2 (en) Silver-coated copper alloy powder and method for producing the same
JP5932638B2 (en) Copper powder for conductive paste and conductive paste
JP7272834B2 (en) Silver powder and its manufacturing method
JP2010037653A (en) Copper powder for conductive paste, and conductive paste
JP2011026631A (en) Copper powder, conductive paste, and conductive connection structure
JP2012067327A (en) Copper powder for conductive paste, and conductive paste
JP2011006739A (en) Copper powder for conductive paste, and conductive paste
JP7313195B2 (en) Method for producing metal powder and method for producing silver-coated metal powder
KR20120021704A (en) Copper powder for conductive paste and conductive paste
JP2017190483A (en) Silver-coated copper powder and method for producing the same
TW201209850A (en) Copper powder for conductive paste and conductive paste
JPWO2020158685A1 (en) Sn particles, a conductive composition using the Sn particles, and a method for producing Sn particles.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304